WorldWideScience

Sample records for human chromosome translocations

  1. Use of chromosome translocations for measuring prior environment exposures in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, J. D.

    1997-05-01

    Recent advances in cytogenetic methodology are beginning to have a major impact upon our ability to provide assessments of environmental exposure in humans. The advent of fluorescent-based techniques for `painting` whole chromosomes has made the analysis of chromosome translocations rapid, specific, sensitive and routine. Chromosome painting has been used to address a wide variety of scientific questions, resulting in an increased understanding of the biological consequences of adverse environmental exposure. This paper describes the use of chromosome translocations as a biological marker of exposure and effect in humans. The relevance of translocations is discussed, as are the advantages and disadvantages of painting compared to classical cytogenetic methods for translocation evaluation. The factors to consider in the use of translocations as a retrospective indicator of exposure are then described. Several theoretical parameters that are important to the use of translocations are provided, and the paper concludes with a vision for the future of cytogenetic methodology.

  2. International study of factors affecting human chromosome translocations

    Czech Academy of Sciences Publication Activity Database

    Sigurdson, A.J.; Ha, M.; Hauptmann, M.; Bhatti, P.; Šrám, Radim; Beskid, Olena; Tawn, E.J.; Whitehouse, C.A.; Lindholm, C.; Nakano, M.; Kodama, Y.; Nakamura, N.; Vorobtsova, I.; Oestreicher, U.; Stephan, G.; Yong, L.C.; Bauchinger, M.; Schmid, E.; Chung, H.W.; Darroudi, F.; Roy, L.; Voisin, P.; Barquinero, J.F.; Livingston, G.; Blakey, D.; Hayata, I.; Zhang, W.; Wang, Ch.; Benett, L.M.; Littlefield, L.G.; Edwards, A.A.; Kleinerman, R.A.; Tucker, J.D.

    2008-01-01

    Roč. 652, č. 2 (2008), s. 112-121 ISSN 1383-5718 R&D Projects: GA MŽP SL/5/160/05; GA MŽP SI/340/2/00; GA MŽP SL/740/5/03 Institutional research plan: CEZ:AV0Z50390512 Keywords : Chromosome translocations * FISH * Background frequency Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.363, year: 2008

  3. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  4. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    International Nuclear Information System (INIS)

    Jordan, R.; Schwartz, J.L.

    1994-01-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by 60 Co γ rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab

  5. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    Lopez Hidalgo, Juana Ines

    2000-01-01

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G 0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  6. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  7. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  8. Reciprocal products of chromosomal translocations in human cancer pathogenesis: key players or innocent bystanders?

    Science.gov (United States)

    Rego, Eduardo M; Pandolfi, Pier Paolo

    2002-08-01

    Chromosomal translocations are frequently involved in the pathogenesis of leukemias, lymphomas and sarcomas. They can lead to aberrant expression of oncogenes or the generation of chimeric proteins. Classically, one of the products is thought to be oncogenic. For example, in acute promyelocytic leukaemia (APL), reciprocal chromosomal translocations involving the retinoic acid receptor alpha (RARalpha) gene lead to the formation of two fusion genes: X-RARalpha and RARalpha-X (where X is the alternative RARalpha fusion partner: PML, PLZF, NPM, NuMA and STAT 5b). The X-RARalpha fusion protein is indeed oncogenic. However, recent data indicate that the RARalpha-X product is also critical in determining the biological features of this leukemia. Here, we review the current knowledge on the role of reciprocal products in cancer pathogenesis, and highlight how their expression might impact on the biology of their respective tumour types.

  9. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14, and 21: implications for recombination between nonhomologues and Robertsonian translocations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K H; Vissel, B; Brown, R; Filby, R G; Earle, E

    1988-02-25

    The authors report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a consensus in situ hybridization profile derived from 13 normal individuals revealed the localization of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocation involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.

  10. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  11. Chromosome segregation analysis in human embryos obtained from couples involving male carriers of reciprocal or Robertsonian translocation.

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    Full Text Available The objective of this study was to investigate the frequency and type of chromosome segregation patterns in cleavage stage embryos obtained from male carriers of Robertsonian (ROB and reciprocal (REC translocations undergoing preimplantation genetic diagnosis (PGD at our reproductive center. We used FISH to analyze chromosome segregation in 308 day 3 cleavage stage embryos obtained from 26 patients. The percentage of embryos consistent with normal or balanced segregation (55.1% vs. 27.1% and clinical pregnancy (62.5% vs. 19.2% rates were higher in ROB than the REC translocation carriers. Involvement of non-acrocentric chromosome(s or terminal breakpoint(s in reciprocal translocations was associated with an increase in the percent of embryos consistent with adjacent 1 but with a decrease in 3∶1 segregation. Similar results were obtained in the analysis of nontransferred embryos donated for research. 3∶1 segregation was the most frequent segregation type in both day 3 (31% and spare (35% embryos obtained from carriers of t(11;22(q23;q11, the only non-random REC with the same breakpoint reported in a large number of unrelated families mainly identified by the birth of a child with derivative chromosome 22. These results suggest that chromosome segregation patterns in day 3 and nontransferred embryos obtained from male translocation carriers vary with the type of translocation and involvement of acrocentric chromosome(s or terminal breakpoint(s. These results should be helpful in estimating reproductive success in translocation carriers undergoing PGD.

  12. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    Science.gov (United States)

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  13. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans.

    Science.gov (United States)

    Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki

    2009-02-01

    Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.

  14. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore......HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method...

  15. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Science.gov (United States)

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is

  16. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  17. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  18. Use of FISH-translocations analyses for retrospective biological dosimetry: How stable are stable chromosome aberrations?

    International Nuclear Information System (INIS)

    Darroudi, F.

    2000-01-01

    Chromosome aberrations, in particular dicentrics, in peripheral blood lymphocytes are used to estimate the absorbed dose immediately following a radiation accident. However, difficulties for dose estimation arise with old exposures, due to a decline of cells containing unstable dicentric aberrations. The fluorescence in situ hybridisation (FISH) technique employing chromosome specific DNA libraries to 'paint' individual human chromosomes has opened new perspectives for rapid and reliable detection of stable chromosome aberrations such as translocations. The inherent stability of translocations over cell generations has enabled them to be used as a biodosemeter. However, due to the limited life of circulating T-lymphocytes, a level of uncertainty exists on the long-term persistence of stable translocations. The objectives of the present work are to present the current state of knowledge on the stability of translocations detected by FISH. The following aspects have been considered; (1) experience so far of retrospective biological dosimetry in humans following accidental and occupational over-exposure, (2) animal studies using mice and monkeys, (3) the influence of subsequent cell divisions on the yield and persistence of translocations following in vitro irradiation of human lymphocytes, and (4) the needs for further work to standardise and validate the use of FISH as a biological dosemeter, and to investigate the influence of various parameters such as radiation quality, dose rate and the discrimination of sub-types of translocations on persistence. (author)

  19. Mode of ATM-dependent suppression of chromosome translocation

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Motohiro, E-mail: motoyama@nagasaki-u.ac.jp [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  20. Translocations used to generate chromosome segment duplications ...

    Indian Academy of Sciences (India)

    a duplication (Dp) of the translocated segment and four inviable (white, W) ascospores with .... of this work, namely, the definition of breakpoint junction sequences of 12 ..... then our results would place supercontig 10.9 in distal. LG VIR. A third ...

  1. Molecular cytogenetics: A novel approach for measuring chromosome translocations in individuals years after exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Lucas, J.N.; Straume, T.

    1992-04-01

    Chromosome painting was developed in our laboratory to facilitate rapid and accurate detection of chromosome translocations in human cells. Chromosome painting is the selective staining of one or more chromosomes by fluorescence in situ hybridization (FISH) using whole chromosome probes. This method permits essentially uniform hybridization and staining along the entire lengths of targeted chromosomes. Staining all other chromosomes a different color makes interchromosomal exchange aberrations readily apparent as bicolored chromosomes. Here we present a brief discussion of this methodology and recent results from studies in our laboratory

  2. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  3. Centrifugally driven microfluidic disc for detection of chromosomal translocations

    DEFF Research Database (Denmark)

    Brøgger, Anna Line; Kwasny, Dorota; Bosco, Filippo G.

    2012-01-01

    and prognosis of patients. In this work we demonstrate a novel, centrifugally-driven microfluidic system for controlled manipulation of oligonucleotides and subsequent detection of chromosomal translocations. The device is fabricated in the form of a disc with capillary burst microvalves employed to control...

  4. Development of a biological dosimeter for translocation scoring based on two-color fluorescence in situ hybridization of chromosome subsets

    Energy Technology Data Exchange (ETDEWEB)

    Popp, S; Cremer, T [Heidelberg Univ. (Germany). Inst. of Human Genetics and Anthropology

    1992-03-01

    Recently fluorescence in situ hybridization protocols have been developed which allow the paining of individual chromosomes using DNA-libraries from sorted human chromosomes. This approach has the particular advantage that radiation induced chromosome translocations can be easily detected, if chromosomes of distinctly different colors take part in the translocation event. To enhance the sensitivity of this approach two metaphase chromosome subsets A and B (A: chromosome 1, 2, 4, 8, 16; B: 3, 5, 9, 10, 13) were simultaneously painted in green and red color. Counterstaining of the chromosomes with DAPI resulted in a third subset which exhibited blue fluorescence only. Green-red, green-blue and red-blue translocation chromosomes could be easily detected after irradiation of lymphocyte cultures with {sup 137}Cs-{gamma}-rays. Analyses of painted chromosomes can be combined with conventional GTG-banding analyses. This new biological dosimeter should become useful to monitor both long term effects of single irradiation events and the cumulative effects of multiple or chronic irradiation exposure. In contrast to translocation scoring based on the analysis of banded chromosomes, this new approach has the particular advantage that a rapid, automated scoring of translocations can now be envisaged. (author).

  5. Balanced Chromosomal Translocation of Chromosomes 6 and 7: A Rare Male Factor of Spontaneous Abortions

    Directory of Open Access Journals (Sweden)

    Sefa Resim

    2013-06-01

    Full Text Available Background: Carriers of structural chromosomal rearrangements such as Robertsonian or reciprocal translocations have an increased risk of spontaneous abortion and producing offspring with genetic abnormalities. Case Report: We report a man with balanced chromosomal translocations located at 6p22, and 7q22. His wife has a history of four spontaneous abortions. Conclusion: Couples with a history of abortions should be investigated cytogenetically, after other causes of miscarriages are excluded. The possibility of spontaneous abortions can be reduced with preimplantation genetic diagnosis (PGD before embryo transfer.

  6. A strategy for generation and balancing of autosome: Y chromosome translocations.

    Science.gov (United States)

    Joshi, Sonal S; Cheong, Han; Meller, Victoria H

    2014-01-01

    We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced ( 2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.

  7. Experimental observation of G banding verifying X-ray workers' chromosome translocation detected by FISH

    International Nuclear Information System (INIS)

    Sun Yuanming; Li Jin; Wang Qin; Tang Weisheng; Wang Zhiquan

    2002-01-01

    Objective: FISH is the most effective way of detecting chromosome aberration and many factors affect its accuracy. G-banding is used to verify the results of early X-ray workers' chromosome translocation examined by FISH. Methods: The chromosome translocations of early X-ray workers have been analysed by FISH (fluorescence in situ hybridization) and G-banding, yields of translocation treated with statistics. Results: The chromosome aberrations frequencies by tow methods are closely related. Conclusion: FISH is a feasible way to analyse chromosome aberrations of X-ray workers and reconstruct dose

  8. Chromosomal translocation in a mongoloid male child and his normal mother

    Directory of Open Access Journals (Sweden)

    Willy Beçak

    1963-09-01

    Full Text Available The presence of a translocation 21/13-15 is related in 46 chromosomes, karyotypes of a mongoloid male child (Down's syndrome. The abnormal chromosome was transmitted by the mother of the patient. The possible deficiency of translocated chromosome 21 and the possible origin of the anomaly in the family was discussed and the presence of a markedly large Y chromosome in the karyotypes of the patient as in those of his father was also noted.

  9. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    International Nuclear Information System (INIS)

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy

  10. High dietary niacin intake is associated with decreased chromosome translocation frequency in airline pilots.

    Science.gov (United States)

    Yong, Lee C; Petersen, Martin R

    2011-02-01

    Experimental studies suggest that B vitamins such as niacin, folate, riboflavin, vitamin B6 and vitamin B12 may protect against DNA damage induced by ionising radiation (IR). However, to date, data from IR-exposed human populations are not available. We examined the intakes of these B vitamins and their food sources in relation to the frequency of chromosome translocations as a biomarker of cumulative DNA damage, in eighty-two male airline pilots. Dietary intakes were estimated by using a self-administered semi-quantitative FFQ. Translocations in peripheral blood lymphocytes were scored by using fluorescence in situ hybridisation whole-chromosome painting. Negative binomial regression was used to estimate rate ratios and 95 % CI, adjusted for age and occupational and lifestyle factors. We observed a significant inverse association between translocation frequency and dietary intake of niacin (P = 0·02): adjusted rate ratio for subjects in the highest tertile compared with the lowest tertile was 0·58 (95 % CI 0·40, 0·83). Translocation frequency was not associated with total niacin intake from food and supplements as well as dietary or total intake of folate, riboflavin or vitamin B6 or B12. However, the adjusted rate ratios were significant for subjects with ≥ median compared with food or a diet high in whole grains but low in red and processed meat may protect against cumulative DNA damage in IR-exposed persons.

  11. Occurence of translocations between irradiated and intact chromosomes of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Myasnyankina, E.N.; Abeleva, Eh.A.; Generalova, M.V.

    1980-01-01

    Two translocations between irradiated father and intact mother autosomes are obtained in Drosophila melanogaster. Five out of 283 regular translocations (between the second and the third chromosomes of an irradiated male) are accompanied by a recombination over the second or the third chromosomes. Nine flies out of twenty considered to be recombinants, could originate due to mutations. The data obtained prove that intact female autosomes can take part in the exchange with homologic (recombinations) and heterologic (translocations) irradiated male autosomes

  12. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses.

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-03-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.

  13. Primary vitreoretinal dysplasia resembling Norrie's disease in a female: association with X autosome chromosomal translocation.

    OpenAIRE

    Ohba, N.; Yamashita, T.

    1986-01-01

    A female infant with the typical clinical and histopathological features of vitreoretinal dysplasia is described. She had an apparently balanced reciprocal chromosomal translocation 46XX,t(X;10) with the X chromosome breakpoint being on the short arm. Since the parents' karyotypes were normal, it is most plausible that a de novo chromosomal translocation disrupted the vitreoretinal dysplasia gene itself. The severe clinical symptoms of this heterozygous female patient were explained by non-ra...

  14. Translocations affecting human immunoglobulin heavy chain locus

    Directory of Open Access Journals (Sweden)

    Sklyar I. V.

    2014-03-01

    Full Text Available Translocations involving human immunoglobulin heavy chain (IGH locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation.

  15. Characterization of human chromosome 22 : Cloning of breakpoints of the constitutional translocation t(11;22)(q23;q11) and detection of small constitutional delections by microarray CGH

    OpenAIRE

    Tapia Paez, Isabel

    2003-01-01

    Chromosome 22 is the second smallest human chromosome, composing approximately 1.5% of the genome. The short arm of this acrocentric chromosome harbors ribosomal genes and the long arm contains the protein coding genes. This chromosome is gene-rich in comparison to the majority of other chromosomes, containing approximately 600 so far characterized genes. Many of these are involved in the etiology of a wide spectrum of diseases such as congenital and psychiatric disorders as...

  16. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots.

    Science.gov (United States)

    Yong, Lee C; Petersen, Martin R; Sigurdson, Alice J; Sampson, Laura A; Ward, Elizabeth M

    2009-11-01

    Dietary antioxidants may protect against DNA damage induced by endogenous and exogenous sources, including ionizing radiation (IR), but data from IR-exposed human populations are limited. The objective was to examine the association between the frequency of chromosome translocations, as a biomarker of cumulative DNA damage, and intakes of vitamins C and E and carotenoids in 82 male airline pilots. Dietary intakes were estimated by using a self-administered semiquantitative food-frequency questionnaire. Translocations were scored by using fluorescence in situ hybridization with whole chromosome paints. Negative binomial regression was used to estimate rate ratios and 95% CIs, adjusted for potential confounders. Significant and inverse associations were observed between translocation frequency and intakes of vitamin C, beta-carotene, beta-cryptoxanthin, and lutein-zeaxanthin from food (P food; total vitamin C or E from food and supplements; or vitamin C or E or multivitamin supplements. The adjusted rate ratios (95% CI) for > or =median compared with or =median compared with food: 0.27 (0.14, 0.55). High combined intakes of vitamins C and E, beta-carotene, beta-cryptoxanthin, and lutein-zeaxanthin from food, or a diet high in their food sources, may protect against cumulative DNA damage in IR-exposed persons.

  17. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots1234

    Science.gov (United States)

    Petersen, Martin R; Sigurdson, Alice J; Sampson, Laura A; Ward, Elizabeth M

    2009-01-01

    Background: Dietary antioxidants may protect against DNA damage induced by endogenous and exogenous sources, including ionizing radiation (IR), but data from IR-exposed human populations are limited. Objective: The objective was to examine the association between the frequency of chromosome translocations, as a biomarker of cumulative DNA damage, and intakes of vitamins C and E and carotenoids in 82 male airline pilots. Design: Dietary intakes were estimated by using a self-administered semiquantitative food-frequency questionnaire. Translocations were scored by using fluorescence in situ hybridization with whole chromosome paints. Negative binomial regression was used to estimate rate ratios and 95% CIs, adjusted for potential confounders. Results: Significant and inverse associations were observed between translocation frequency and intakes of vitamin C, β-carotene, β-cryptoxanthin, and lutein-zeaxanthin from food (P food; total vitamin C or E from food and supplements; or vitamin C or E or multivitamin supplements. The adjusted rate ratios (95% CI) for ≥median compared with food: 0.27 (0.14, 0.55). Conclusion: High combined intakes of vitamins C and E, β-carotene, β-cryptoxanthin, and lutein-zeaxanthin from food, or a diet high in their food sources, may protect against cumulative DNA damage in IR-exposed persons. PMID:19793852

  18. Meiotic chromosomal translocations in male mice induced by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Savkovic, N.; Pecevski; Vuksanovic, L.; Radivojevic, D.; Alavantic, D.

    1983-01-01

    The dose-response curve for reciprocal translocations induced by acute exposure of spermatogonial stem cells to X-rays in treated mice and their F-1 sons was examined. Male mice were totally irradiated with doses of 1Gy;5x1Gy and 5Gy. The obtained results show that frequency of the chromosomal translocations in directly treated animals is dose dependent. The percentage of animals irradiated with 1Gy which had the chromosomal translocations was 60, while this percentage in animals irradiated with single and fractionated dose of 5Gy was 100. The frequency of chromosomal translocations varies from 1.5% to 8.0%. Multivalent configurations in F-1 males were observed after exposure to 5Gy only. The incidence of F-1 translocated males was 17.5%.

  19. CHROMOSOMAL SUBLOCALIZATION OF THE 2 13 TRANSLOCATION BREAKPOINT IN ALVEOLAR RHABDOMYOSARCOMA

    NARCIS (Netherlands)

    SHAPIRO, DN; VALENTINE, MB; SUBLETT, JE; SINCLAIR, AE; TEREBA, AM; SCHEFFER, H; BUYS, CHCM; LOOK, AT

    A characteristic balanced reciprocal chromosomal translocation [t(2;13)(q35;q14)] has been identified in more than 50% of alveolar rhabdomyosarcomas. As the first step in characterization of the genes involved in this translocation, we constructed somatic cell hybrids that retained either the

  20. Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines.

    Science.gov (United States)

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Laureys, G; De Paepe, A; Speleman, F

    2000-12-01

    M-FISH analysis was performed on 18 neuroblastoma cell lines, which were previously studied with cytogenetic, standard FISH and CGH data. One of the most striking findings of this study was the detection of chromosome 2 short arm rearrangements in 61% of the investigated cell lines. These rearrangements resulted from translocations with various partner chromosomes. All translocations, except one were unbalanced, leading to the consistent gain of chromosome segment 2pter-p22. A cryptic balanced translocation t(2;4) was observed with a breakpoint located in the vicinity of MYCN in cell line NBL-S. Combination of M-FISH results together with cytogenetic, standard FISH and CGH data yielded the most comprehensive description of chromosome 2 short arm rearrangements, leading to a consistent gain of chromosome 2 short arm material. Copyright 2000 Wiley-Liss, Inc.

  1. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  2. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  3. Cloning of the chromosome translocation breakpoint junction of the t(14;19) in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    McKeithan, T.W.; Rowley, J.D.; Shows, T.B.; Diaz, M.O.

    1987-01-01

    The authors' laboratory has reported that t(14;19)(q32;q13.1) is a recurring translocation in the neoplastic cells of patients with chronic lymphocytic leukemia. In the present study, they have analyzed the leukemic cells from one such patient with probes from the immunoglobulin heavy-chain locus, which is present on band q32 of chromosome 14. Using a probe for the α constant-region gene segments, they detected a rearranged band by Southern blot analysis. This rearranged band was cloned and mapped. A subclone free of repetitive sequences was shown to be from chromosome 19 by analysis of human-mouse somatic cell hybrids, confirming that the rearranged band contains the translocation breakpoint junction. This probe may be used to identify a gene on chromosome 19 adjacent to the breakpoint that can contribute to the malignant development of B lymphocytes

  4. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription.

    Science.gov (United States)

    Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W

    2017-08-10

    DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.

  5. Complex Variant t(9;22 Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ana Valencia

    2009-01-01

    Full Text Available The Philadelphia (Ph1 chromosome arising from the reciprocal t(9;22 translocation is found in more than 90% of chronic myeloid leukemia (CML patients and results in the formation of the chimeric fusion gene BCR-ABL. However, a small proportion of patients with CML have simple or complex variants of this translocation, involving various breakpoints in addition to 9q34 and 22q11. We report five CML cases carrying variant Ph translocations involving both chromosomes 9 and 22 as well as chromosomes 3, 5, 7, 8, or 10. G-banding showed a reciprocal three-way translocation involving 3q21, 5q31, 7q32, 8q24, and 10q22 bands. BCR-ABL fusion signal on der(22 was found in all of the cases by FISH.

  6. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    Science.gov (United States)

    Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2016-06-01

    Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences. Copyright © 2016 Khedkar and Seshasayee.

  7. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    Directory of Open Access Journals (Sweden)

    Supriya Khedkar

    2016-06-01

    Full Text Available Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter or the origin of replication (oriC; (b translocation maps may reflect chromosome topologies; and (c symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.

  8. Chromosome translocations in chinese medical X-ray workers analyzed by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Sun Yuanming; Li Jin; Wang Qin; Tang Weisheng; Wang Zhiquan

    2002-01-01

    Objective: To study long-term radiation effect in occupational workers exposed to low dose X-rays using the method of fluorescence in situ hybridization (FISH). Method: Chromosome translocations of 25 medical X-ray workers were analyzed by FISH with chromosome No. 4 and No. 7 probes according to PAINT (The Protocol for Aberration Identification and Nomenclature Terminology) system. Results: The frequency of genome translocation in X-ray workers was (13.14 ± 1.23)/1000 cells. The rate of complete and incomplete translocation was 1:1.7. According to the calendar year of entry before/after the year of 1965 as the border, the data showed that the incomplete translocation of the after 1965 group was obviously higher than those of the controls (P < 0.01 and P < 0.05, respectively). Conclusion: The chromosome translocation in early Chinese medical X-ray workers is mainly the incomplete one, the frequency of translocation does not dependent on chromosomal DNA content, and incomplete and complete ones increase along with prolongation of working years in their position

  9. Detection of reciprocal chromosome translocations as an indicator of organism exposure to ionizing radiation by FISH-WCP method

    International Nuclear Information System (INIS)

    Holeckova, B.; Sivikova, K.; Dianovsky, J.; Piesova, E.; Lakatosova, M.

    2006-01-01

    Chromosome translocations are considered to be the gold standard for assessing ionizing radiation exposure. Because translocations are inherently more stable through cell division than dicentrics, translocations have become the aberration of choice for evaluating many types of exposure. Fluorescence in situ hybridization with whole chromosome painting probes (FISH-WCP) has been shown to be a rapid method of detecting chromosomal rearrangements, and appears to be especially useful for analysis of induced translocations. The present paper shortly describes FISH-WCP method for detection of reciprocal translocations as indicators of exposure to ionizing radiation. (authors)

  10. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    International Nuclear Information System (INIS)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-01-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor α locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor α locus to a germ-line MYC oncogene results in MYC deregulation

  11. Chromosomal Translocations in Black Flies (Diptera: Simuliidae-Facilitators of Adaptive Radiation?

    Directory of Open Access Journals (Sweden)

    Peter H Adler

    Full Text Available A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential

  12. Preimplantation diagnosis of repeated miscarriage due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4- to 6-cell-stage embryos.

    Science.gov (United States)

    Tanaka, Atsushi; Nagayoshi, Motoi; Awata, Shoichiro; Mawatari, Yoshifumi; Tanaka, Izumi; Kusunoki, Hiroshi

    2004-01-01

    To evaluate the safety and accuracy of karyotyping the blastomere chromosomes at metaphase in the natural cell cycle for preimplantation diagnosis. A pilot study. A private infertility clinic and a university laboratory. Eleven patients undergoing IVF and preimplantation diagnosis. Intact human embryos at the 4- to 6-cell stage and human-mouse heterokaryons were cultured and checked hourly for disappearance of the nuclear envelope. After it disappeared, the metaphase chromosomes were analyzed by fluorescence in situ hybridization. Percentage of analyzable metaphase plates and safety and accuracy of the method. The success rate of electrofusion to form human-mouse heterokaryons was 87.1% (27/31), and analyzable chromosomes were obtained from 77.4% (24/31) of the heterokaryons. On the other hand, disappearance of the nuclear envelope occurred in 89.5% (17/19) of the human embryos and it began earlier than that in the heterokaryons. Analyzable chromosomes were obtained and their translocation sites were identified in all blastomeres biopsied from the 17 embryos. After the biopsy, 67.0% of the embryos could develop to the blastocyst stage. The natural cell cycle method reported herein requires frequent observation, but it is safe, with no artificial effects on the chromosomes and without loss of or damage to blastomeres, which occurred with the electrofusion method. Using the natural cell cycle method, we could perform preimplantation diagnosis with nearly 100% accuracy.

  13. Genetic markers, translocations and sexing genes on chromosome 2 of Ceratitis capitata

    International Nuclear Information System (INIS)

    Cladera, J.L.

    1997-01-01

    A review is presented of results obtained in a search for genetic markers, translocations and selectable genes obtained at the Instituto de Genetica, Castelar, Argentina, with special reference to chromosome 2 linked mutations and genes useful for developing self-sexing strains in Ceratitis capitata. (author)

  14. Nuchal translucency thickness and outcome in chromosome translocation diagnosed in the first trimester.

    Science.gov (United States)

    Sepulveda, W; Be, C; Youlton, R; Carstens, E; Reyes, M

    2001-09-01

    In order to determine the significance of nuchal translucency thickness on the subsequent natural history of first-trimester fetuses with a chromosome translocation, seven consecutive cases diagnosed between 11 and 13 weeks of gestation were reviewed. Nuchal translucency measurements were successfully obtained before chorionic villus sampling (CVS) in all cases. Three fetuses had an unbalanced translocation and all were associated with increased nuchal translucency and multiple anomalies at the detailed second-trimester scan. There were no survivors in this group. The remaining four fetuses had a balanced translocation; all had normal nuchal translucency thickness and no structural anomalies were detected in the second trimester. Three of these fetuses were born at > or =35 weeks of gestation and were phenotypically normal. However, an unexpected single fetal demise occurred in a dichorionic twin pregnancy at 28 weeks of gestation. It is concluded that nuchal translucency measurements provide important prognostic information on pregnancy outcome in first-trimester fetuses with a chromosome translocation. In parents with a known balanced translocation, the detection of increased nuchal translucency at 11-14 weeks of gestation is associated with unbalanced translocations, structural anomalies and poor pregnancy outcome. Copyright 2001 John Wiley & Sons, Ltd.

  15. Breeding few-seed/seedless watermelon via chromosome reciprocal translocation induced by gamma-ray

    International Nuclear Information System (INIS)

    Ming, W.; Xingping, Z.; Xian, Z.; Kechi, N.; Shuai, Z.; Juenlian, Z.

    1988-01-01

    The development of autotriploid watermelon was a great advance in the field of watermelon breeding. However, some disadvantages still existed with this type of seedless watermelon. Partial sterility may be induced in diploid watermelon via chromosome reciprocal translocation. We used gamma-rays to irradiate the seeds of homozygous translocation strains with one translocation ring composed of 4 chromosomes (symbol (4) ). Watermelon strains were 'Asahi Yamato', 'Mioyaka', and 'Fumin' saent to us by H. Kihara in 1977. In order to further induce multiple reciprocal translocations for developing new few-seed/seedless watermelon strains, the seeds of the above 3 strains were sown for further selfing in 1978. The seeds of each selfed fruit were grown as a single plant line in 1979 for evaluation of their characters. In addition, some crosses between common diploid watermelon cultivars and translocations were carried out to test the seed setting rate of the heterozygous translocation strains. Some of the crosses were 'Sugar Baby' x 'Asahi Yamato AT-1' and 'Akakotama' x Asahi Yamato AT-2'. The plump seed setting rate of the F1 of these crosses were ca. 50%

  16. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

    Science.gov (United States)

    Marculescu, Rodrig; Vanura, Katrina; Montpellier, Bertrand; Roulland, Sandrine; Le, Trang; Navarro, Jean-Marc; Jäger, Ulrich; McBlane, Fraser; Nadel, Bertrand

    2006-09-08

    A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.

  17. Amplification of chromosomal translocation junctions from paraffin-embedded tissues of follicular lymphoma patients

    International Nuclear Information System (INIS)

    Nambiar, Mridula; Raghavan, Sathees C; Choudhary, Bibha; Rao, Clementina R

    2008-01-01

    Follicular lymphoma is associated with the t(14;18) translocation, which is one of the most common chromosomal translocations in cancer. Generally, tissues from such patients are preserved as formalin-fixed and paraffin-embedded samples. Most of the time, retrieving the molecular information from such samples is hampered due to quality of preservation, extraction procedures and reaction conditions. In the present study, we isolate the chromosomal DNA from the paraffin-embedded nodal tissues of lymphoma patients and use a highly sensitive nested PCR approach to detect t(14;18) translocation. Our studies show that despite the sheared DNA obtained, appropriate modification of PCR reaction conditions can help in obtaining the desired amplifications. The DNA extraction protocol from paraffin-embedded nodal tissues and modifications in the PCR conditions are discussed. This study would contribute to the successful use of archival tissue samples in obtaining valuable information for cancer research

  18. Amplification of chromosomal translocation junctions from paraffin-embedded tissues of follicular lymphoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, Mridula; Raghavan, Sathees C [Department of Biochemistry, Indian Institute of Science, Bangalore-560 012 (India); Choudhary, Bibha [Manipal Institute of Regenerative Medicine, Manipal University, Bangalore-560 071 (India); Rao, Clementina R [Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore-560 029 (India)], E-mail: sathees@biochem.iisc.ernet.in

    2008-09-01

    Follicular lymphoma is associated with the t(14;18) translocation, which is one of the most common chromosomal translocations in cancer. Generally, tissues from such patients are preserved as formalin-fixed and paraffin-embedded samples. Most of the time, retrieving the molecular information from such samples is hampered due to quality of preservation, extraction procedures and reaction conditions. In the present study, we isolate the chromosomal DNA from the paraffin-embedded nodal tissues of lymphoma patients and use a highly sensitive nested PCR approach to detect t(14;18) translocation. Our studies show that despite the sheared DNA obtained, appropriate modification of PCR reaction conditions can help in obtaining the desired amplifications. The DNA extraction protocol from paraffin-embedded nodal tissues and modifications in the PCR conditions are discussed. This study would contribute to the successful use of archival tissue samples in obtaining valuable information for cancer research.

  19. Fine mapping of the human renal oncocytoma-associated translocation (5;11)(q35;q13) breakpoint

    NARCIS (Netherlands)

    Sinke, RJ; Dijkhuizen, T; Janssen, B; Weghuis, DO; Merkx, G; vandenBerg, E; Schuuring, E; Meloni, AM; deJong, B; vanKessel, AG

    1997-01-01

    Recent cytogenetic analysis of a series of human renal oncocytomas revealed the presence of a recurring chromosomal translocation (5;11)(q35;q13) as sole anomaly in a subset of the tumors. The molecular characterization of this translocation was initiated using two primary t(5;11)-positive renal

  20. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K

    2000-07-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (autho000.

  1. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    International Nuclear Information System (INIS)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K.

    2000-01-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (author)

  2. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  3. Relations between ultrastructure of mitotic spindle and chromosome translocation

    OpenAIRE

    Jadwiga A. Tarkowska

    2014-01-01

    Dividing endosperm cells of Haemanthus katherinae Bak. treated with an 0.25 per cent mixture of water-soluble glycosides from Nerium oleander were insepected in a light microscope (LM) and severe disturbances were found in all phases of mitosis. The same cells were observed in the electron microscope (EM) and relations were noted and analysed between the chromosome arrangement and the submicroscopic structure of the mitotuc spindle. The successive steps in the disintegration of the formed spi...

  4. Increased frequency of chromosome translocations in airline pilots with long-term flying experience.

    Science.gov (United States)

    Yong, L C; Sigurdson, A J; Ward, E M; Waters, M A; Whelan, E A; Petersen, M R; Bhatti, P; Ramsey, M J; Ron, E; Tucker, J D

    2009-01-01

    Chromosome translocations are an established biomarker of cumulative exposure to external ionising radiation. Airline pilots are exposed to cosmic ionising radiation, but few flight crew studies have examined translocations in relation to flight experience. We determined the frequency of translocations in the peripheral blood lymphocytes of 83 airline pilots and 50 comparison subjects (mean age 47 and 46 years, respectively). Translocations were scored in an average of 1039 cell equivalents (CE) per subject using fluorescence in situ hybridisation (FISH) whole chromosome painting and expressed per 100 CE. Negative binomial regression models were used to assess the relationship between translocation frequency and exposure status and flight years, adjusting for age, diagnostic x ray procedures, and military flying. There was no significant difference in the adjusted mean translocation frequency of pilots and comparison subjects (0.37 (SE 0.04) vs 0.38 (SE 0.06) translocations/100 CE, respectively). However, among pilots, the adjusted translocation frequency was significantly associated with flight years (p = 0.01) with rate ratios of 1.06 (95% CI 1.01 to 1.11) and 1.81 (95% CI 1.16 to 2.82) for a 1- and 10-year incremental increase in flight years, respectively. The adjusted rate ratio for pilots in the highest compared to the lowest quartile of flight years was 2.59 (95% CI 1.26 to 5.33). Our data suggests that pilots with long-term flying experience may be exposed to biologically significant doses of ionising radiation. Epidemiological studies with longer follow-up of larger cohorts of pilots with a wide range of radiation exposure levels are needed to clarify the relationship between cosmic radiation exposure and cancer risk.

  5. Chromosome aberrations in human lymphocytes for investigation of individual radiosensitivity

    International Nuclear Information System (INIS)

    Zitzelsberger, H.; Bauchinger, M.

    2000-01-01

    Stable translocations and insertions which are not selected against during cell proliferation can be reliably scored by use of fluorescence in situ hybridisation (FISH) which allows painting of selected chromosomes along their entire length. This temporal persistence makes them particulary valuable for quantifying post human radiation exposures ('biodosimetry'). A disadvantage of this approach is that for routine use only a partial genome analysis can be performed which is mostly based on triple combinations of DNA probes for particular chromosomes. Translocation frequencies from partial genome analysis are often scaled-up to equal the full genome. Basic assumptions for such scaling are, that double strand breaks leading to translocations must be distributed randomly throughout the genome and no preferential interaction between particular pairs of chromosomes occurs. Thus, the probability of a particular chromosome being involved in an exchange is proportional to its DNA content. However, this is not always supported by experimental findings and may thus indicate a differential radiosensitivity of particular chromosomes. Translocation measurements in peripheral blood of different healthy donors irradiated in vitro with the same dose revealed also some evidence for the existence of interindividual differences in radiosensitivity. Similar findings have been already demonstrated after therapeutic irradiation of tumour patients. Consequences thereof may result for long-term retrospective biodosimetry. In order to provide reliable estimates of an individual's exposure to ionising radiation, the extent, distribution and dose-dependence of the observed variability has to be carefully examined in larger groups of persons and larger sets of calibration data. (orig.) [de

  6. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination.

    Directory of Open Access Journals (Sweden)

    Sheng Sun

    2017-08-01

    Full Text Available Species within the human pathogenic Cryptococcus species complex are major threats to public health, causing approximately 1 million annual infections globally. Cryptococcus amylolentus is the most closely known related species of the pathogenic Cryptococcus species complex, and it is non-pathogenic. Additionally, while pathogenic Cryptococcus species have bipolar mating systems with a single large mating type (MAT locus that represents a derived state in Basidiomycetes, C. amylolentus has a tetrapolar mating system with 2 MAT loci (P/R and HD located on different chromosomes. Thus, studying C. amylolentus will shed light on the transition from tetrapolar to bipolar mating systems in the pathogenic Cryptococcus species, as well as its possible link with the origin and evolution of pathogenesis. In this study, we sequenced, assembled, and annotated the genomes of 2 C. amylolentus isolates, CBS6039 and CBS6273, which are sexual and interfertile. Genome comparison between the 2 C. amylolentus isolates identified the boundaries and the complete gene contents of the P/R and HD MAT loci. Bioinformatic and chromatin immunoprecipitation sequencing (ChIP-seq analyses revealed that, similar to those of the pathogenic Cryptococcus species, C. amylolentus has regional centromeres (CENs that are enriched with species-specific transposable and repetitive DNA elements. Additionally, we found that while neither the P/R nor the HD locus is physically closely linked to its centromere in C. amylolentus, and the regions between the MAT loci and their respective centromeres show overall synteny between the 2 genomes, both MAT loci exhibit genetic linkage to their respective centromere during meiosis, suggesting the presence of recombinational suppressors and/or epistatic gene interactions in the MAT-CEN intervening regions. Furthermore, genomic comparisons between C. amylolentus and related pathogenic Cryptococcus species provide evidence that multiple chromosomal

  7. Obstructive jaundice promotes bacterial translocation in humans.

    Science.gov (United States)

    Kuzu, M A; Kale, I T; Cöl, C; Tekeli, A; Tanik, A; Köksoy, C

    1999-01-01

    Significant bacterial translocation was demonstrated following experimental biliary obstruction, however very little is known about the importance and the prevalence of gut-origin sepsis in obstructive jaundice patients. Therefore, the aim of this study was to investigate the concept of gut-origin sepsis in obstructive jaundiced patients and its clinical importance. Twenty-one patients requiring laparotomy for obstructive jaundice (group I) and thirty patients operated on electively mainly for chronic cholecystitis (group II) were studied. Peritoneal swab, mesenteric lymph node, portal venous blood, liver wedge biopsy and bile were sampled for culture immediately after opening the peritoneum. Additionally, peripheral blood samples were taken pre- and post-operatively from all patients. Post-operatively, patients were monitored for infectious complications. The mean serum bilirubin concentration, gamma glutamyl transferase and alkaline phosphatase levels in jaundiced patients before therapeutic intervention were significantly higher than in control patients. Five patients demonstrated bacterial translocation in group I (24%), whereas only one did so in group II (3.5%, p jaundice significantly promotes bacterial translocation in humans, however, its clinical importance has yet to be defined.

  8. Pregnancy outcomes following 24-chromosome preimplantation genetic diagnosis in couples with balanced reciprocal or Robertsonian translocations.

    Science.gov (United States)

    Idowu, Dennis; Merrion, Katrina; Wemmer, Nina; Mash, Janine Gessner; Pettersen, Barbara; Kijacic, Dusan; Lathi, Ruth B

    2015-04-01

    To report live birth rates (LBR) and total aneuploidy rates in a series of patients with balanced translocations who pursued in vitro fertilization (IVF)-preimplantation genetic diagnosis (PGD) cycles. Retrospective cohort analysis. Genetic testing reference laboratory. Seventy-four couples who underwent IVF-PGD due to a parental translocation. IVF cycles and embryo biopsies were performed by referring clinics. Biopsy samples were sent to a single reference lab for PGD for the translocation plus 24-chromosome aneuploidy screening with the use of a single-nucleotide polymorphism (SNP) microarray. LBR per biopsy cycle, aneuploidy rate, embryo transfer (ET) rate, miscarriage rate. The LBR per IVF biopsy cycle was 38%. LBR for patients reaching ET was 52%. Clinical miscarriage rate was 10%. Despite a mean age of 33.8 years and mean of 7 embryos biopsied, there was a 30% chance for no chromosomally normal embryos. Maternal age >35 years, day 3 biopsy, and having fewer than five embryos available for biopsy increased the risk of no ET. IVF-PGD for translocation and aneuploidy screening had good clinical outcomes. Patients carrying a balanced translocation who are considering IVF-PGD should be aware of the high risk of no ET, particularly in women ≥35 years old. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Relations between ultrastructure of mitotic spindle and chromosome translocation

    Directory of Open Access Journals (Sweden)

    Jadwiga A. Tarkowska

    2014-01-01

    Full Text Available Dividing endosperm cells of Haemanthus katherinae Bak. treated with an 0.25 per cent mixture of water-soluble glycosides from Nerium oleander were insepected in a light microscope (LM and severe disturbances were found in all phases of mitosis. The same cells were observed in the electron microscope (EM and relations were noted and analysed between the chromosome arrangement and the submicroscopic structure of the mitotuc spindle. The successive steps in the disintegration of the formed spindle are described: fragmentatiun of all microtubules (MTs starting from the poles, disappearance of non-kinetachore MTs and further the external MTs of the kineto,chore bundle. The central (internal parallel ones remain the longest at the kinerf,ochares. Oleander glycosides cause disintegration of the existing MTs and prevent formation of new ones. The causes of restitution transformations in the successive phases of mitosis are discussed.

  10. Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori.

    Science.gov (United States)

    Abe, H; Seki, M; Ohbayashi, F; Tanaka, N; Yamashita, J; Fujii, T; Yokoyama, T; Takahashi, M; Banno, Y; Sahara, K; Yoshido, A; Ihara, J; Yasukochi, Y; Mita, K; Ajimura, M; Suzuki, M G; Oshiki, T; Shimada, T

    2005-08-01

    In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+(w-2) chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+(w-2) chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+(w-2) chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene.

  11. Incidental detection of congenital Robertsonian translocation at diagnosis of Philadelphia chromosome-positive acute lymphocytic leukemia.

    Science.gov (United States)

    Yamaguchi, Tsukasa; Igarashi, Aiko; Kawamura, Machiko; Ozasa, Yuka; Yoshida, Masayuki; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2015-05-01

    A man in his early forties who had undergone 3 years of unsuccessful treatment for infertility due to oligospermia and asthenospermia developed fever and bone pain in December 20XX. He was subsequently diagnosed with acute lymphocytic leukemia. Conventional cytogenetic analysis revealed Robertsonian translocation (RT) with der(13;14)(q10;q10) in addition to the Philadelphia (Ph) chromosome. Dasatinib and prednisolone induced complete remission (CR) with disappearance of the Ph chromosome. However, RT persisted despite achieving CR. We speculate that RT is possibly congenital in our present case and might also have been responsible for the aforementioned infertility. Hematologists should be aware of the possibility that congenital chromosomal disorders might be found incidentally through diagnostic chromosome analysis for leukemia.

  12. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  13. A Balanced Chromosomal Translocation Disrupting ARHGEF9 Is Associated With Epilepsy, Anxiety, Aggression, and Mental Retardation

    OpenAIRE

    Kalscheuer, Vera M.; Musante, Luciana; Fang, Cheng; Hoffmann, Kirsten; Fuchs, Celine; Carta, Eloisa; Deas, Emma; Venkateswarlu, Kanamarlapudi; Menzel, Corinna; Ullmann, Reinhard; Tommerup, Niels; Dalprà, Leda; Tzschach, Andreas; Selicorni, Angelo; Lüscher, Bernhard

    2009-01-01

    Clustering of inhibitory γ-aminobutyric acidA (GABAA) and glycine receptors at synapses is thought to involve key interactions between the receptors, a “scaffolding” protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the brea...

  14. Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations.

    Science.gov (United States)

    Martin, Guillaume; Carreel, Françoise; Coriton, Olivier; Hervouet, Catherine; Cardi, Céline; Derouault, Paco; Roques, Danièle; Salmon, Frédéric; Rouard, Mathieu; Sardos, Julie; Labadie, Karine; Baurens, Franc-Christophe; D'Hont, Angélique

    2017-09-01

    Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  16. Importance of No. 21 chromosome in translocation t(8:21) in acute myelocytic leukemia (AML) to the genesis of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T; Minamihisamatsu, M

    1986-05-01

    The results are reported of the chromosome analysis of 17 cases of acute myelocytic leukemia (AML), mostly belonging to M2 of the FAB classification, especially on the translocation t(8:21) and its variant translocations. The presence of two cases with simple variant translocation not involving No. 8 chromosome seems to suggest that No. 21 chromosome is more important to the genesis of AML than the No. 8 chromosome. This assumption appears to be supported by findings on cases with complex translocation: In two cases with complex translocation, the portion translocated from No. 21 chromosome onto No. 8 was firmly maintained in the specific site (q21) on No. 8 whereas the portion translocated from No. 8 chromosome onto No. 21 was involved in further translocation with another chromosome, onto which it was re-translocated. The results of the present cytogenetic study indicate that the analysis of variant translocations in various specific chromosome translocations in leukemia and other malignant disorders is very useful to elucidate the problem as to whether the genesis of such disorders lies in either one or both of the pair of chromosomes involved in the specific translocations of the respective diseases.

  17. The chromosomal risk in sperm from heterozygous Robertsonian translocation carriers is related to the sperm count and the translocation type.

    Science.gov (United States)

    Ferfouri, Fatma; Selva, Jacqueline; Boitrelle, Florence; Gomes, Denise Molina; Torre, Antoine; Albert, Martine; Bailly, Marc; Clement, Patrice; Vialard, François

    2011-12-01

    To study the chromosomal risk in sperm from Robertsonian translocation (RobT) carriers as a function of the sperm count and translocation type. Prospective study. Departments of reproductive biology, cytogenetics, gynecology, and obstetrics. A total of 29 RobT patients (8 normozoospermic and 21 oligozoospermic) and 20 46,XY patients (10 normozoospermic and 10 oligozoospermic). Sperm fluorescence in situ hybridization with probes for translocation malsegregation and chromosome 13, 18, 21, X, and Y probes for studying the interchromosomal effect (ICE). Translocation malsegregation and ICE aneuploidy rates. In RobT carriers, the sperm translocation malsegregation rate was significantly lower in normozoospermic patients (9.7%) than in oligozoospermic patients (18.0%). Considering only oligozoospermic patients, sperm malsegregation rates were significantly lower for rob(14;21) than for rob(13;14) (11.4% vs. 18.9%). In turn, the rates were significantly lower for rob(13;14) than for rare RobTs (18.9% vs. 25.3%). In sperm from normozoospermic RobT, an ICE was suggested by higher chromosome 13 and 21 aneuploidy rates than in control sperm. Conversely, chromosome 13 and 21 sperm aneuploidy rates were lower in oligozoospermic RobT patients than in oligozoospermic 46,XY patients, but higher than in control subjects. Both translocation type and sperm count influence the RobT malsegregation risk. Of the chromosomes analyzed (13, 18, 21, X, and Y), only chromosomes 13 and 21 were found to be associated with an ICE. Relative to the RobT effect, idiopathic alterations in spermatogenesis in 46,XY patients appear to be more harmful for meiosis. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Follow-up of translocations and dicentrics by chromosome painting (Fish) after accidental exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Lindhom, C.; Salomaa, S.; Tekkel, M.; Veidebaum, T.

    1997-01-01

    Chromosome painting was applied to follow the frequencies of translocations and dicentrics in blood lymphocytes from eight persons involved in a radiation accident in Estonia, 1994. Complete translocation frequencies remained relatively constant during the first year of study, whereas the rate of complete dicentrics declined rapidly in patients exposed to 1 Gy or more. The high proportion of incomplete translocations observed right after the accident declined during the first year after the exposure, approaching the level of incomplete dicentrics. (authors)

  19. Further studies on the possible relationship between radiation-induced reciprocal translocations and intrinsic radiosensitivity of human tumor cells

    International Nuclear Information System (INIS)

    Virsik-Peuckert, P.; Rave-Fraenk, M.; Schmidberger, H.

    1996-01-01

    Background and purpose. The aim of the present study was to estimate yields of radiation-induced translocations in surviving cells of several human tumor cell lines and in normal diploid human fibroblasts, and to compare these yields with corresponding intrinsic radiosensitivities determined by standard colony-formation assay. Material and methods. The yields of radiation-induced reciprocal translocations were investigated by fluorescence in situ hybridization. Chromosomes no. 1 and no. 4 were 'painted' with fluorescent hybridization probes for whole chromosomes. Translocation yields and cell survival were determined for different doses up to 6 Gy of 200 kV X-rays. Results. We observed a higher frequency of reciprocal translocations in the radiosensitive cells MCF-7 and MDA-MB-436 than in the radioresistant cells CaSki, WiDr, A549 and normal skin fibroblasts. For primary squamous cell carcinoma cells, ZMK-1, an intermediate radiosensitivity and an intermediate translocation yield were observed. The dose-dependence of translocation yields involving chromosomes no. 1 or no. 4 varied in different cell lines: it was linear or linear with a plateau at higher doses. Conclusions. A comparison of the data obtained with chromosomes no. 1 and no. 4 in the investigated cell types, indicates that intrinsic radiosensitivity of different tumor cells observed at the survival level, is correlated with different translocation yields, respectively. This correlation was observed for all cell types investigated, independent of the number of copies of the painted chromosome per cell or the radiation dose. However, for low doses (under 1 Gy), the yields of translocations determined for the individual chromosomes seem to be too low for a discrimination between radioresistant or radiosensitive cells

  20. A feasible strategy of preimplantation genetic diagnosis for carriers with chromosomal translocation: Using blastocyst biopsy and array comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Chu-Chun Huang

    2013-09-01

    Conclusion: Our study demonstrates an effective PGD strategy with promising outcomes. Blastocyst biopsy can retrieve more genetic material and may provide more reliable results, and aCGH offers not only detection of chromosomal translocation but also more comprehensive analysis of 24 chromosomes than traditional FISH. More cases are needed to verify our results and this strategy might be considered in general clinical practice.

  1. Chromosome translocation in residents of the high background radiation areas in southern China

    International Nuclear Information System (INIS)

    Hayata, Isamu; Minamihisamatsu, Masako; Wang Chunyan; Wei Zhang; Chen Deqing; Morishima, Hiroshige; Yuan Yongling; Wei Luxin; Sugahara, Tsutomu

    2000-01-01

    We performed a cytogenetical study using chromosome painting analysis on 9 residents of the naturally high background radiation areas (HBRA) and 8 residents of the control areas in southern China. The estimated dose (air kerma) of each resident measured by an electric pocket dosimeter showed 2.20-4.23 mGy/year in HBRA and 0.56-0.70 mGy/year in the control areas. A total of 14,096 cells (1,566 cells/case) in the former and 17,522 cells (2,190 cells/case) in the latter were analyzed. Children, both in HBRA and in the control areas, had translocations at low frequencies. The frequency of translocations among elder individuals varied widely and it was not possible to detect dose effect although it was detected in dicentrics. The effect of radiation on the induction of chromosome aberrations, which have a statistically potential risk of causing malignant or congenital diseases, seems to be less significant than those of metabolic factors and/or mutagenic agents (excluding radiation) even in HBRA in China. (author)

  2. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations

    International Nuclear Information System (INIS)

    Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E.

    1991-01-01

    A new Hessian fly (Mayetiola destructor) resistance gene derived from 'Balbo' rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant 'Balbo' rye and susceptible 'Suwon 92' wheat and between the F1 amphidiploids and susceptible 'TAM 106' and 'Amigo' wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats 'TAM 106,' 'TAM 101,' and 'Vona.' After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 μm) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs

  3. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Ahmad, F.; Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-01-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ( 60 Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  4. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, F. [Brandon Univ., Manitoba (Canada); Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-03-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ({sup 60}Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  5. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    Science.gov (United States)

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  6. Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events

    International Nuclear Information System (INIS)

    Kim, Hani; Gillis, Lisa C; Jarvis, Jordan D; Yang, Stuart; Huang, Kai; Der, Sandy; Barber, Dwayne L

    2011-01-01

    Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions. Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL-PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3-TEL-JAK2 cells were switched to factor-independent conditions. Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Vα1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB. Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles. Many of the genes identified are known to be involved in processes associated with leukemogenesis, including cell migration, proliferation and differentiation. This study offers the basis for further work that could lead to an understanding of the specificity of diseases caused by these three chromosomal translocations

  7. Molecular and cytogenetic characterization of the 5DS-5BS chromosome translocation conditioning soft kernel texture in durum wheat

    Science.gov (United States)

    Cultivar ‘Soft Svevo’, a new non-GMO soft durum cultivar with soft kernel texture, was developed through a 5DS(5BS) chromosomal translocation from event. cv. Chinese Spring, and subsequently used to create new soft durum germplasm. The development of Soft Svevo featured the Ph1b-mediated homoeologou...

  8. A rare balanced nonrobertsonian translocation involving acrocentric chromosomes: Chromosome abnormality of t(13;15(p11.2;q22.1

    Directory of Open Access Journals (Sweden)

    Dalvi Rupa

    2016-01-01

    Full Text Available BACKGROUND: Balanced non-robertsonian translocation (RT, involving acrocentric chromosomes, is a rare event and only a few cases are reported. Most of the RTs are balanced involving acrocentric chromosomes with the breakpoints (q10;q10. MATERIALS AND METHODS: Chromosome analysis was performed as per standard procedure – Giemsa-trypsin banding with 500 band resolution was analyzed for chromosome identification. RESULTS: In the present study, we report a rare balanced non-RTs involving chromosomes 13 and 15 with cytogenetic finding of 46, XX, t(13;15(p11.2;q22.1. CONCLUSION: To the best of our knowledge, this is the first such report of an unusual non-RT of t(13:15 with (p11.2;q22.1 break points.

  9. Evaluating changes in stable chromosomal translocation frequency in patients receiving radioimmunotherapy

    International Nuclear Information System (INIS)

    Wong, Jeffrey Y.C.; Wang Jianyi; Liu An; Odom-Maryon, Tamara; Shively, John E.; Raubitschek, Andrew A.; Williams, Lawrence E.

    2000-01-01

    Purpose: The lack of any consistent correlation between radioimmunotherapy (RIT) dose and observed hematologic toxicity has made it difficult to validate RIT radiation dose estimates to marrow. Stable chromosomal translocations (SCT) which result after radiation exposure may be a biologic parameter that more closely correlates with RIT radiation dose. Increases in the frequency of SCT are observed after radiation exposure and are highly correlated with absorbed radiation dose. SCT are cumulative after multiple radiation doses and conserved through an extended number of cell divisions. The purpose of this study was to evaluate whether increases in SCT frequency were detectable in peripheral lymphocytes after RIT and whether the magnitude of these increases correlated with estimated radiation dose to marrow and whole body. Methods and Materials: Patients entered in a Phase I dose escalation therapy trial each received 1-3 intravenous cycles of the radiolabeled anti-carcinoembryonic antigen (CEA) monoclonal antibody, 90 Y-chimeric T84.66. Five mCi of 111 In-chimeric T84.66 was co-administered for imaging and biodistribution purposes. Blood samples were collected immediately prior to the start of therapy and 5-6 weeks after each therapy cycle. Peripheral lymphocytes were harvested after 72 hours of phytohemagglutinin stimulation and metaphase spreads prepared. Spreads were then stained by fluorescence in situ hybridization (FISH) using commercially available chromosome paint probes to chromosomes 3 and 4. Approximately 1000 spreads were evaluated for each chromosome sample. Red marrow radiation doses were estimated using the AAPM algorithm and blood clearance curves. Results: Eighteen patients were studied, each receiving at least one cycle of therapy ranging from 5-22 mCi/m 2 . Three patients received 2 cycles and two patients received 3 cycles of therapy. Cumulative estimated marrow doses ranged from 9.2 to 310 cGy. Increases in SCT frequencies were observed after

  10. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

    Science.gov (United States)

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland; Tashiro, Satoshi

    2018-05-08

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. © 2018, Sun et al.

  11. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  12. A Balanced Chromosomal Translocation Disrupting ARHGEF9 Is Associated With Epilepsy, Anxiety, Aggression, and Mental Retardation

    Science.gov (United States)

    Kalscheuer, Vera M.; Musante, Luciana; Fang, Cheng; Hoffmann, Kirsten; Fuchs, Celine; Carta, Eloisa; Deas, Emma; Venkateswarlu, Kanamarlapudi; Menzel, Corinna; Ullmann, Reinhard; Tommerup, Niels; Dalprà, Leda; Tzschach, Andreas; Selicorni, Angelo; Lüscher, Bernhard; Ropers, Hans-Hilger; Harvey, Kirsten; Harvey, Robert J.

    2013-01-01

    Clustering of inhibitory γ-aminobutyric acidA (GABAA) and glycine receptors at synapses is thought to involve key interactions between the receptors, a “scaffolding” protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the breakpoint indicates disruption of the collybistin gene (ARHGEF9) on chromosome Xq11, while the other breakpoint lies in a region of 18q11 that lacks any known or predicted genes. We show that defective collybistin transcripts are synthesized and exons 7–10 are replaced by cryptic exons from chromosomes X and 18. These mRNAs no longer encode the pleckstrin homology (PH) domain of collybistin, which we now show binds phosphatidylinositol-3-phosphate (PI3P/ PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the “membrane activation model” of gephyrin clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABAA receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABAA receptor subtypes involved in epilepsy, anxiety, aggression, insomnia, and learning and memory. PMID:18615734

  13. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    Science.gov (United States)

    Li, Xiaojun; Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  14. Application of conventional chromosomal aberration and fluorescence in-situ hybridisation translocation in the assessment of occupationally derived irradiation

    International Nuclear Information System (INIS)

    Samavat, H.; Seaward, M. R. D.; Gonzales, D. H.; Azizian, Gh.

    2004-01-01

    Background: Most of our current understanding of the biological effects of exposure to ionising radiation is based on conventional cytogenetic techniques, which enable our to determine the relationship between chromosomal aberration and dose received by radiation workers. However, conventional techniques have numerous limitations and chromosomal aberrations can be easily missed. Since fluorescence in situ hybridisation plays an important role in detecting chromosomal changes, this method was used to reassess data derived from previous studies employing conventional techniques. Materials and Methods: Two groups of radiographers were the subject of a study on conventional chromosomal aberration and fluorescence in situ hybridisation for translocation. The first group was chosen following an accidental contamination incident in a nuclear medicine department. The second group was composed of six radiographers working in an x-ray department with a previous record of overdose as recorded by film-badges; these workers had been the subjects of a previous chromosomal study. Coded blood samples from 11 radiographers and 11 controls were analysed for chromosomal aberration and by fluorescence in-situ hybridisation for translocation. 200 metaphases from the peripheral blood lymphocytes per subject were analysed to investigate possible frequencies of chromosome and chromatid type aberration and 2000 metaphases per subject were scored in fluorescence in-situ hybridisation method. Results: There was no significant difference between the radiographers and the control groups in conventional analysis; also there was no significant difference at the 95 % level of confidence in fluorescence in-situ hybridisation analysis. There was no correlation between levels of translocation and total lifetime doses from occupational ( according film-badge and TLD) and/or background irradiation. Conclusion: The overall conclusion is that the frequency of chromosomal damage in both groups of

  15. Human oocyte chromosome analyses need a standardized ...

    Indian Academy of Sciences (India)

    Studies of DNA polymorphisms in human trisomic abor- tions and liveborn have ... Keywords. human oocyte chromosomes; cytogenetic analysis; aneuploidy; nondisjunction; predivision. Journal of .... oocytes and giant embryos. Hum. Reprod.

  16. X-ray induction of autosomal translocations in spermatozoa of Drosophila melanogaster and maternal effects of X.Y-chromosomes

    International Nuclear Information System (INIS)

    Leigh, B.

    1979-01-01

    Wild-type ORK Drosophila melanogaster males were given an exposure of 3000 R X-radiation. Mature sperm were then sampled by mating to X.Y/X.Y, X.Y/X, or X/X females that carried markers on the second and third chromosomes for the detection of induced autosomal translocations. Two pairs of maternal stocks were used and heterozygous X.Y/X females were obtained by making both reciprocal crosses. The highest frequencies of induced translocations were obtained with X/X females. In one series these frequencies are higher than those obtained with either X.Y/X or X.Y/X.Y females. In the other series a uniform frequency of translocations was obtained with all types of female, except for one of the two types of heterozygous female, which gave lower frequencies. The experiments have provided data which show that the addition of Y-chromosomes to the maternal genome does not have a specific effect on the recovery of induced paternal autosomal translocations. Maternal Y-chromosomes increased the proportions of fertile F 1 males, this effect being consistent in direction but varying in degree. (Auth.)

  17. First Birth after Sperm Selection through Discontinuous Gradient Centrifugation and Artificial Insemination from a Chromosomal Translocation Carrier

    Directory of Open Access Journals (Sweden)

    Alexandre Rouen

    2014-01-01

    Full Text Available Introduction. Balanced chromosomal carriers, though usually healthy, are confronted with recurrent spontaneous abortions and malformations in the offspring. Those are related to the transmission of an abnormal, chromosomally unbalanced genotype. We evidenced that the proportion of unbalanced spermatozoa can be significantly decreased through a sperm preparation process called discontinuous gradient centrifugation (DGC. We therefore started offering intrauterine inseminations with this procedure to couples with a male translocation carriers. Case Presentation. We report the case of a 37-year-old man carrying a t(3;10(q25;p13 reciprocal translocation. He and his partner had had trouble conceiving for ten years and had four spontaneous abortions. DGC in this patient decreased the proportion of unbalanced spermatozoa from 63.6% to 52.3%. They were therefore offered intrauterine insemination with DGC, which eventually led to the birth of a healthy female child carrying the paternal translocation. Conclusion. We showed that translocation carriers could be offered intrauterine inseminations with DGC. Before this, the only two options were natural conception with prenatal diagnosis and termination of chromosomally unbalanced fetuses or preimplantation genetic diagnosis, which is a much heavier and costly procedure. We are currently offering this option through a multicentric program in France, and this is the first birth originating from it.

  18. Anterior pituitary failure (panhypopituitarism) with balanced chromosome translocation 46,XY,t(11;22)(q24;q13).

    Science.gov (United States)

    Yang, C Y; Chou, C W; Chen, S Y; Cheng, H M

    2001-04-01

    Hypopituitarism is the clinical syndrome that results from failure of the anterior pituitary gland to produce its hormones. Hypopituitarism can result from: (1) intrinsic or primary pituitary disease; (2) intrinsic hypothalamic or secondary pituitary disease; or (3) extrinsic extrasellar or parasellar disease. The etiologies of primary hypopituitarism are miscellaneous. The dominant clinical picture of hypopituitarism in the adult is that of hypogonadism. Reports have associated hypopituitarism with anti-pituitary-antibodies, hereditary syndrome and chromosome defects, but hypopituitarism has rarely been associated with balanced chromosome translocation (11;22)(q24;q13). Here, we describe a case of anterior pituitary failure with balanced chromosome translocation. A 19-year-old Chinese teenager presented with failure of pubertal development and sexual infantilism. On examination, the patient had the classic appearance of hypogonadism. Endocrine studies and three combined pituitary function tests revealed panhypopituitarism. A chromosomal study revealed 46,XY,t(11;22)(q24;q13), a balanced translocation between 11q24 and 22q13. Chest films showed delayed fusion of bilateral humeral head epiphyses and bilateral acromions. Scrotal sonography revealed testes were small bilaterally. Magnetic resonance imaging (MRI) of the sella revealed pituitary dwarfism. The patient received 19 months replacement therapy, including steroids (prednisolone 5 mg each day), L-thyroxine (Eltroxin 100 ug each day), and testosterone enanthate 250 mg every two weeks. His height increased 4 cm with secondary sexual characteristics developed, and muscle power increased.

  19. Occupational exposure to pesticides and occurrence of the chromosomal translocation t(14;18 among farmers in Jordan

    Directory of Open Access Journals (Sweden)

    Bara’a M. Qaqish

    Full Text Available Background: An increased incidence of non-Hodgkin’s lymphoma (NHL has been reported in farmers and other occupational groups working with pesticides. In these individuals, an increased prevalence of the chromosomal translocation t(14;18(q32;q21, one of the most common chromosomal abnormalities in NHL, has been detected in peripheral blood lymphocytes. This translocation juxtaposes the antiapoptotic BCL2 protein to the immunoglobulin heavy chain gene locus (IGH leading to overexpression of BCL2. This causes an increase in cell survival, paving the way for malignant transformation. Aim of the study: The present study aimed to evaluate the association between the occurrence of the chromosomal translocation t(14;18 and occupational exposure to pesticides among a group of Jordanian farmers. Methods: A total of 192 male subjects including 96 agricultural workers and 96 control subjects participated in this study. BCL2-IGH t(14;18 fusions were detected by a nested polymerase chain reaction (PCR assay targeting the major breakpoint region (MBR. Results: We found that occupational exposure to pesticides in open-field farming and insecticide used on animals increased the frequency of the chromosomal translocation t(14;18. Farmers occupationally exposed to pesticides and insecticide were 13.5 times more likely to harbor t(14;18. 63.5% (61 of 96 of farmers compared to 11.5% (11 of 96 of controls carried the translocation (odds ratio: 13.5; 95% confidence interval (CI = 6.3–28.6. We ruled out the influence of possible confounding factors such as age, duration of sun exposure, alcohol intake, smoking, and use of personal protective equipment. Conclusion: Our results indicate that pesticides increased the frequency of chromosomal translocation in the 14q32 region. Accordingly, the presented data agrees with previous suggestions from the literature that pesticides might be involved in the development of NHL through the t(14;18 pathway. Keywords

  20. Analysis of chromosome translocation in the residents of Namie Town after the accident of Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoshida, Mitsuaki A.; Nakata, Akifumi; Miura, Tomisato; Nishimura, Miya; Takamagi, Shizuka; Kasai, Kosuke; Konno, Norio; Yoshida, Ryoko; Sekine, Shunji

    2014-01-01

    The dose estimation by behavior survey of the residents carried out by Fukushima Prefecture after the accident reported that there are no residents who were exposed by over 1 mSv radiation. However, a lot of the parents are worrying about the health condition of their children in future. Our Hirosaki University accepted the request of the local government of this Namie-Town in Fukushima which wants to know whether children were exposed by radiological substances or not and started the inspection about the contamination and exposure level and dose estimation at an accident using chromosomal translocation analysis for 855 out of 3700 children whose age was under 18 years old at the time of accident. In order to estimate radiation dose using chromosome aberration in the accidents, there are four kinds of cytogenetic method; dicentric assay, a translocation assay, the PCC-ring assay and micronucleus test. A dicentric assay is used for the dose estimation in acute and external exposure cases, the chromosomal translocation method for dose assessment in chronic and old exposure and the PCC method for high dose exposure, respectively. In the case of the residents in Namie-Town, since about one year and ten months had already passed after the accident when implementation of this inspection was determined, the chromosomal translocation method was applied for the dose estimation of the initial exposure level. The main purpose of this translocation analysis using their own cells is to take away affairs of the residents including parents and children and also to reduce the uneasiness which is not wiped away by the health check due to a behavioral survey. In this inspection, after the contents and process of this analysis were explained in the Tsushima, Namie-Town temporarily constructed clinic, 3∼4 ml of whole 5 blood were taken from each children whose parents agreed with this analysis. The lymphocytic cells are isolated from the whole blood using CPT (Cell Preparation Tube

  1. Clinical outcomes for couples containing a reciprocal chromosome translocation carrier without preimplantation genetic diagnosis.

    Science.gov (United States)

    Yin, Biao; Zhu, Yuanchang; Wu, Tonghua; Shen, Shuqiu; Zeng, Yong; Liang, Desheng

    2017-03-01

    To evaluate the pregnancy outcomes of couples containing a carrier of a reciprocal chromosome translocation (RCT) after assisted reproductive technology without preimplantation genetic diagnosis. A retrospective study was performed using data for couples with an RCT carrier and control couples with a normal karyotype (1:4 ratio) who underwent assisted reproductive technology cycles at a Chinese fertility center in 2010-2011. The embryos were fertilized via in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Only the first pick-up cycles were used for analysis. Clinical variables were compared. Compared with the control group (n=164), the RCT group (n=41) had a marginally lower clinical pregnancy rate (46.3% [19/41] vs 54.3% [89/164]), implantation rate (21.7% [23/106] vs 26.9% [118/438]), multiple-gestation pregnancy rate (21.1% [4/19] vs 32.6% [29/89]), and delivery rate (36.6% [15/41] vs 47.6% [78/164]), whereas the spontaneous abortion rate was slightly higher (21.1% [4/19] vs 12.4% [11/89]). However, none of these differences were significant. The clinical outcomes for RCT carriers were acceptable after IVF/ICSI without performing preimplantation genetic diagnosis, indicating that this approach might comprise a feasible alternative fertility treatment for RCT carriers. © 2016 International Federation of Gynecology and Obstetrics.

  2. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  3. Radiation hybrid mapping of human chromosome 18

    International Nuclear Information System (INIS)

    Francke, U.; Moon, A.J.; Chang, E.; Foellmer, B.; Strauss, B.; Haschke, A.; Chihlin Hsieh; Geigl, E.M.; Welch, S.

    1990-01-01

    The authors have generated a Chinese hamster V79/380-6 HPRT minus x human leukocyte hybrid cell line (18/V79) with chromosome 18 as the only human chromosome that is retained at high frequency without specific selection. Hybrid cells were selected in HAT medium, and 164 individual colonies were isolated. Of 110 colonies screened for human DNA by PCR amplification using a primer specific for human Alu repeats 67 (61%) were positive. These were expanded in culture for large-scale DNA preparations. Retesting expanded clones by PCR with Alu and LINE primers has revealed unique patterns of amplification products. In situ hybridization of biotin labelled total human DNA to metaphase spreads from various hybrids revealed the presence of one or more human DNA fragments integrated in hamster chromosomes. The authors have generated a resource that should allow the construction of a radiation map, to be compared with the YAC contig map also under construction in their laboratory

  4. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  5. Identification of 2nd chromosome region translocated onto the W chromosome by RFLP with EST-cDNA clones in the Gensei-kouken strains of the mulberry silkworm, Bombyx mori L

    Directory of Open Access Journals (Sweden)

    Sivaramakurup Sreekumar

    2010-01-01

    Full Text Available In silkworms, sex-limited strains are either obtained spontaneously or induced by X-rays or gamma rays. When a fragment of an autosome carrying a dominant allele of those genes responsible for certain characters is translocated onto a W chromosome, the female of the successive generations will express these phenotypic characters and sex discrimination can be facilitated. Gensei-kouken strains are sex-limited strains of silkworms developed by irradiating the pupae with gamma rays, by which a portion of the second chromosome is translocated onto the W chromosome. In these improved strains, the females are yellow-blooded and spin yellow cocoons. By using the EST-cDNA clones mapped on the Z chromosome, we identified the sex according to the polymorphic banding pattern or intensity of the signals. Furthermore, by using the clones on the second chromosome, the region of the second chromosome translocated onto the W chromosome was also defined. In both the A95 and A 96 strains selected for the present study, only the mid-portion of the second chromosome was translocated. The differences in length of the fragments translocated in these strains are discussed.

  6. Chromosome painting analysis of X-ray-induced aberrations in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Matsuoka, A.; Hayashi, M.; Yamazaki, N.; Sofuni, T.

    1994-01-01

    Chromosomal rearrangements in human lymphocytes induced by X-rays (0, 0.5, 1.0 and 2.0 Gray) were analyzed using chromosome painting. DNA probes for human chromosomes 1, 3 or 4 alone, and a combination of 1 and 4, were used for analysis. The frequency of cells with rearrangements, i.e. reciprocal translocations, dicentrics, insertions, tricentrics and fragments, involving chromosome 4 increased with dose in both 48 and 72 h cultures. The number of translocations per cell also increased with dose at 48 and 72 h. Dicentrics increased with dose in 48 h but not in 72 h cultures. The estimated genomic frequency of aberrations per cell was comparable with results in banded cells. No difference was shown on the detection efficiency of chromosome rearrangements among the various DNA probes used. Since this technique does not necessarily require well-spread metaphases for analysis, it is possible to increase the number of analyzable metaphases compared with the banding technique. Chromosome painting is a simpler, more objective and practical method for detecting chromosome rearrangements than conventional banding analyses. (Author)

  7. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  8. A paternally transmitted complex chromosomal rearrangement (CCR) involving chromosomes 2, 6, and 18 includes eight breakpoints and five insertional translocations (ITs) through three generations.

    Science.gov (United States)

    Gruchy, Nicolas; Barreau, Morgane; Kessler, Ketty; Gourdier, Dominique; Leporrier, Nathalie

    2010-01-01

    Complex chromosomal rearrangements (CCRs) are uncommon and mainly occur de novo. We report here on a familial CCR involving chromosomes 2, 6, and 18. The propositus is a boy first referred because of growth delays, hypotonia, and facial anomalies, suggestive of deletion 18q syndrome. However, a cytogenetic family study disclosed a balanced CCR in three generations, which was detailed by FISH using BAC clones, and consisted of eight breakpoints with five insertional translocations (ITs). The propositus had a cryptic 18q deletion and a 6p duplication. Paternal transmission of this CCR was observed through three generations without meiotic recombination. Our investigation allowed us to provide porosities counseling and management of prenatal diagnosis for propositus cousin who carries this particular CCR.

  9. The human thyroglobulin gene: a polymorphic marker localized distal to C-MYC on chromosome 8 band q24

    NARCIS (Netherlands)

    Baas, F.; Bikker, H.; Geurts van Kessel, A.; Melsert, R.; Pearson, P. L.; de Vijlder, J. J.; van Ommen, G. J.

    1985-01-01

    The human thyroglobulin (Tg) gene is localized to chromosome 8 and regionally to band q24 as shown independently by both in situ hybridization techniques and Southern blot analysis of human-rodent somatic cell hybrids. Analysis of hybrids derived from a Burkitt lymphoma, with a translocation

  10. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  11. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  12. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  13. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenic forms of Burkitt lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Neri, A.; Barriga, F.; Knowles, D.M.; Magrath, I.T.; Dalla-Favera, R.

    1988-04-01

    The authors show that endemic (eBL), sporadic (sBL), and acquired immunodeficiency syndrome-associated (AIDS-BL) forms of Burkitt lymphoma (BL) carrying t(8; 14) chromosomal translocations display different breakpoints within the immunoglobulin heavy-chain locus (IGH) on chromosome 14. In sBL (7 out of 11) and AIDS-BL (5 out of 6), the breakpoints occurred within or near the IGH ..mu.. switch (S/sub mu/) region on chromosome 14 and within the c-myc locus (MYC) on chromosome 8. In most eBL (13 out of 16) the breakpoints were mapped within or 5' to the IGH joining J/sub H/ region on chromosome 14 and outside the MYC locus on chromosome 8. Cloning and sequencing of the (8; 14) chromosomal junctions from two eBL cell lines and one eBL biopsy sample show that the recombination do not involve IGH-specific recombination signals on chromosome 14 or homologous sequences on chromosome 8, suggesting that these events are not likely to be mediated by the same mechanisms or enzymes as in IGH rearrangements. In general, these data have implications for the timing of occurrence of chromosomal translocations during B-cell differentiation in different BL types.

  14. Effects of a Balanced Translocation between Chromosomes 1 and 11 Disrupting the DISC1 Locus on White Matter Integrity.

    Directory of Open Access Journals (Sweden)

    Heather C Whalley

    Full Text Available Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1 is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11 (q42.1;q14.3.Within the original pedigree, we examined the effects of the t(1;11 translocation on white matter integrity, measured by fractional anisotropy (FA. This included family members with (n = 7 and without (n = 13 the translocation, along with a clinical control sample of patients with psychosis (n = 34, and a group of healthy controls (n = 33.We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity.We demonstrate that the t(1;11 translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis.

  15. Chondromyxoid fibroma of rib with a novel chromosomal translocation: a report of four additional cases at unusual sites

    Directory of Open Access Journals (Sweden)

    Parwani Anil V

    2007-11-01

    Full Text Available Abstract Background Chondromyxoid fibromas (CMFs are rare benign chondroid/myxoid matrix-producing tumors that occur in metaphyses of long tubular bones, and very rarely in small bones of hands and feet. Flat bone involvement is even more uncommon. Prior cytogenetic analyses have identified complex abnormalities involving chromosome 6 in the majority of cases. Methods A search for CMF over an 8-year period (1999–2006 from the surgical pathology files of our institution yielded 16 cases. Four cases occurred in relatively unusual regions, three from the small bones of distal extremities and one from the rib. The rib lesion wassubmitted forroutinecytogenetic analysis. Results Radiographic studies revealed that all four lesions were well-defined expansile radiolucent lesions which expanded the bony cortices with lobulated margins, sclerotic rim, septation, and no calcification. Morphologically, all four lesions showed typical features of CMF and had low proliferative index with Ki-67. Cytogenetic analysis on the rib lesion revealed a novel chromosomal translocation, t(1;5(p13;p13. None of the four patients had a recurrence after a mean duration of follow-up of 24 months. Conclusion CMF originating in unusual locations should be distinguished from chondrosarcomas, especially on small biopsies, and should be included in the differential diagnosis. As previously noted in the literature, the cells can be positive for actin but unlike conventional chondroid neoplasms can be negative for S-100. To our knowledge, this is the first report describing a novel chromosomal translocation, t(1;5(p13;p13 in CMF.

  16. Extra skeletal Soft Tissue Ewing?s Sarcoma with Variant Translocation of Chromosome t (4; 22) (q35; q12)-A Case Report

    OpenAIRE

    Nagaraj, Prashanth; H, Srinivas C; Rao, Raghavendra; Manohar, Sandesh

    2013-01-01

    Introduction: Ewing’s sarcomas is a rare primitive neuroectodermal tumour (PNET) which has an annual incidence of 2.9 /million population in USA 1Jeffery Toretsky et al (2008) They are very uncommon in African and Asian population .lt is commonly associated with reciprocal translocation between chromosome 11 and 12 t (11:12) or less frequently the t(21 ;22)(q22;ql 2) translocation. It is highly aggressive tumor which is PAS- and CD99 (MIC2)-positive relatively few variant translocations have ...

  17. High rate of translocation-based gene birth on the Drosophila Y chromosome.

    Science.gov (United States)

    Tobler, Ray; Nolte, Viola; Schlötterer, Christian

    2017-10-31

    The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species. Copyright © 2017 the Author(s). Published by PNAS.

  18. Chronic Myeloid Leukemia with Variant Chromosomal Translocations: Results of Treatment with Imatinib Mesylate

    Directory of Open Access Journals (Sweden)

    Rohan Bhise

    2013-01-01

    Full Text Available Objective: To evaluate the efficacy of imatinib in chronic myeloid leukemia patients with variant translocations. Methods: Forty eight chronic myeloid leukemia patients carrying variant translocations and treated with imatinib at our institute were considered for the study. Survival and response rates were evaluated. Results: The median follow up was 48 months(m. Forty three (89.58% patients achieved complete hematologic response. Thirty one (64.58% patients achieved complete cytogenetic response and 19(39.58% achieved major molecular response anytime during their follow up period. Only 18.75% of the patients achieved complete cytogenetic response and major molecular response within the stipulated time frames.The estimated overall survival at 48 m median follow up was 81.2%.The progression free survival was also 81.2% and the event free survival was 79.1%.There was no significant survival difference between low vs intermediate and high risk sokal group. Conclusion: We report suboptimal responses to imatinib in chronic myeloid leukemia with variant translocations. Further studies with imatinib and the newer more active drugs dasatinib and nilotinib are justified.

  19. Human oocyte chromosome analysis: complicated cases and major ...

    Indian Academy of Sciences (India)

    Human oocyte chromosome analysis: complicated cases and major ... dardized even after more than 20 years of research, making it difficult to draw .... (c) Part of a metaphase with a chromosome break in the centromeric region (arrows).

  20. Disruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndrome

    DEFF Research Database (Denmark)

    Borg, Isabella; Freude, Kristine; Kübart, Sabine

    2005-01-01

    with different C-termini: one membrane bound through a glycosylphosphatidylinositol anchor and the other soluble. The membrane-bound protein isoform would be affected by the breakpoint, whereas the soluble form would remain intact. Our results suggest that the central nervous system is sensitive to NTNG1...... hybridisations, utilizing probes derived from breakpoint spanning BACs, detected several aberrant fragments specific for the patient. Sequence analysis of the cloned junction fragment indicated that on chromosome 1 the predominantly brain-expressed Netrin G1 (NTNG1) gene is disrupted, whereas on chromosome 7...... there was no indication for a truncated gene. The chromosome 1 breakpoint lies within the 3' part of NTNG1 and affects alternatively spliced transcripts, suggesting that the phenotype in this patient is the result of disturbed NTNG1 expression. In silico translation of the NTNG1 splice variants predicted protein isoforms...

  1. Entropic effects in formation of chromosome territories: towards understanding of radiation-induced gene translocation frequency

    Science.gov (United States)

    Gudowska-Nowak, Ewa; Ritter, Sylvia; Durante, Marco; Deperas-Standylo, Joanna; Ciesla, Michal

    2012-07-01

    A detailed understanding of structural organization of biological target, such as geometry of an inter-phase chromosome, is an essential prerequisite for gaining deeper insight into relationship between radiation track structure and radiation-induced biological damage [1]. In particular, coupling of biophysical models aimed to describe architecture of chromosomes and their positioning in a cell nucleus [2-4] with models of local distribution of ionizations caused by passing projectiles, are expected to result in more accurate estimates of aberration induction caused by radiation. There is abundant experimental evidence indicating that arrangements of chromosomes in eukaryotic cell nucleus is non-random and has been evolutionary conserved in specific cell types. Moreover, the radial position of a given chromosome territory (CT) within the cell nucleus has been shown to correlate with its size and gene density. Usually it is assumed that chromosomal geometry and positioning result from the action of specific forces acting locally, such as hydrogen bonds, electrostatic, Van der Waals or hydrophobic interactions operating between nucleosomes and within their interiors. However, it is both desirable and instructive to learn to what extend organization of inter-phase chromosomes is affected by nonspecific entropic forces. In this study we report results of a coarse-grained analysis of a chromatin structure modeled by two distinct approaches. In the first method, we adhere to purely statistical analysis of chromatin packing within a chromosome territory. On the basis of the polymer theory, the chromatin fiber of diameter 30nm is approximated by a chain of spheres, each corresponding to about 30 kbp. Random positioning of the center of the domain is repeated for 1000 spherical nuclei. Configuration of the domain is determined by a random packing of a polymer (a string of identical beads) in estimated fraction of space occupied by a chromosome of a given length and mass

  2. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Science.gov (United States)

    Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M

    2016-01-01

    SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  3. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Directory of Open Access Journals (Sweden)

    Baundauna Bose

    Full Text Available SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  4. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew.

    Science.gov (United States)

    An, Diaoguo; Zheng, Qi; Zhou, Yilin; Ma, Pengtao; Lv, Zhenling; Li, Lihui; Li, Bin; Luo, Qiaoling; Xu, Hongxing; Xu, Yunfeng

    2013-07-01

    Rye is an important and valuable gene resource for wheat improvement. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. Identification and deployment of new resistance gene sources in rye are, therefore, of especial importance and urgency. A new wheat-rye line, designated as WR41-1, was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. It was proved to be a new wheat-rye T4BL·4RL and T7AS·4RS translocation line using sequential genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), and expressed sequence tag-simple sequence repeat (EST-SSR) marker analysis. WR41-1 showed high levels of resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) pathogens prevalent in China at the adult growth stage and 13 of 23 Bgt isolates tested at the seedling stage. According to its resistant pattern to 23 different Bgt isolates, WR41-1 may possess new gene(s) for resistance to powdery mildew, which differed from previously identified and known powdery mildew genes from rye (Pm7, Pm8, Pm17, and Pm20). In addition, WR41-1 was cytologically stable, had a desirable fertility, and is expected to be useful in wheat improvement.

  5. Infertile spermatozoa in a human carrier of robertsonian translocation 14;22.

    Science.gov (United States)

    Baccetti, Baccio; Capitani, Serena; Collodel, Giulia; Estenoz, Mariela; Gambera, Laura; Piomboni, Paola

    2002-11-01

    To present the ultrastructural, functional, and chromosomal analyses of spermatozoa from an infertile man with normal phenotype and chromosomal translocation 14;22. Case report. Regional Reference Center for Male Infertility in Siena, Italy. A 36-year-old man with primary infertility for 3 years and his parents. Family history and lymphocytic karyotypes, physical and hormonal assays, and semen analysis. Morphological sperm evaluation was performed by light, fluorescent, and electron microscopy; chromosomal constitution was examined by the fluorescence in situ hybridization (FISH) technique. The penetration ability of spermatozoa was checked by the hamster test. The spermatozoa of the patient showed unusual ultrastructural defects. The nuclei were large, spheroidal, and generally uncondensed; the acrosomes were frequently absent or reduced; and the axonemes were often devoid of dynein arms or central singlet tubules. These characteristics are related to immaturity. The lymphocytic karyotype revealed a robertsonian translocation 14;22 in the sterile patient and his mother. FISH sperm analysis demonstrated a high frequency of diploidy for the chromosome 18,XY. The hamster penetration test gave negative results. The unusual structural sperm immaturity is associated with the translocation 14;22. This chromosomal anomaly may therefore negatively influence the spermatogenesis; an interchromosomal effect on meiosis segregation is also suggested.

  6. Rapid Simultaneous Amplification and Detection of the MBR/JH Chromosomal Translocation by Fluorescence Melting Curve Analysis

    Science.gov (United States)

    Bohling, Sandra D.; King, Thomas C.; Wittwer, Carl T.; Elenitoba-Johnson, Kojo S. J.

    1999-01-01

    Polymerase chain reaction (PCR) amplification and product analysis for the detection of chromosomal translocations, such as the t(14;18), has traditionally been a two-step process. PCR product detection has generally entailed gel electrophoresis and/or hybridization or sequencing for confirmation of assay specificity. Using a microvolume fluorimeter integrated with a thermal cycler and a PCR-compatible double-stranded DNA (dsDNA) binding fluorescent dye (SYBR Green I), we investigated the feasibility of simultaneous thermal amplification and detection of MBR/JH translocation products by fluorescence melting curve analysis. We analyzed DNA from 30 cases of lymphoproliferative disorders comprising 19 cases of previously documented MBR/JH-positive follicle center lymphoma and 11 reactive lymphadenopathies. The samples were coded and analyzed blindly for the presence of MBR/JH translocations by fluorescence melting curve analysis. We also performed dilutional assays using the MBR/JH-positive cell line SUDHL-6. Multiplex PCR for MBR/JH and β-globin was used to simultaneously assess sample adequacy. All (100%) of the 19 cases previously determined to be MBR/JH positive by conventional PCR analysis showed a characteristic sharp decrease in fluorescence at ∼90°C by melting curve analysis after amplification. Fluorescence melting peaks obtained by plotting the negative derivative of fluorescence over temperature (−dF/dT) versus temperature (T) showed melting temperatures (Tm) at 88.85 ± 1.15°C. In addition, multiplex assays using both MBR/JH and β-globin primers yielded easily distinguishable fluorescence melting peaks at ∼90°C and 81.2°C, respectively. Dilutional assays revealed that fluorescence melting curve analysis was more sensitive than conventional PCR and agarose gel electrophoresis with ultraviolet transillumination by as much as 100-fold. Simultaneous amplification and fluorescence melting curve analysis is a simple, reliable, and sensitive method

  7. HRAS1-selected chromosome transfer generates markers that colocalize aniridia- and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13.

    OpenAIRE

    Porteous, D J; Bickmore, W; Christie, S; Boyd, P A; Cranston, G; Fletcher, J M; Gosden, J R; Rout, D; Seawright, A; Simola, K O

    1987-01-01

    We show that chromosome-mediated gene transfer can provide an enriched source of DNA markers for predetermined, subchromosomal regions of the human genome. Forty-four human DNA recombinants isolated from a HRAS1-selected chromosome-mediated gene transformant map exclusively to chromosome 11, with several sublocalizing to the Wilms tumor region at 11p13. We present a detailed molecular map of the deletion chromosomes 11 from five WAGR (Wilms tumor/aniridia/genitourinary abnormalities/mental re...

  8. Flow cytometry measurements of human chromosome kinetochore labeling

    International Nuclear Information System (INIS)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-01-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results

  9. Use of a human chromosome 11 radiation hybrid panel to map markers at 11q13

    International Nuclear Information System (INIS)

    Withers, D.; Richard, C. III; Meeker, T.C.; Maurer, S.; Evans, G.; Myers, R.M.; Cox, D.R.

    1990-01-01

    A human/hamster hybrid cell line containing human chromosome 11 was X-irradiated and 102-independent derivative lines were recovered. These 'radiation hybrids' contain random fragments of human chromosome 11. This radiation hybrid panel was used to score the retention of markers at band 11q13. Statistical analysis of marker co-retention patterns in the radiation hybrid panel permits a preliminary ordering and mapping of the markers used. The best order for six scored markers is: proximal - CD5 - CD20 - PGA - HST - BCL1 - SEA - distal. Additional markers are currently being scored. The six 11q13 markers above are spread over approximately 10-12 mB of DNA. The mapping data has implications for the identification of the bcl-1 gene. bcl-1 is the site of chromosome breakage in translocations associated with B lymphocytic malignancy. bcl-1 markers map at least 4 Mb away from any of four genes previously hypothesized to be activated by such translocations, thereby making them unlikely candidates for activation

  10. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  11. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    Science.gov (United States)

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.

  12. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  13. A constitutional translocation t(1;17(p36.2;q11.2 in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes.

    Directory of Open Access Journals (Sweden)

    Karl Vandepoele

    Full Text Available The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17(p36.2;q11.2 may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types.

  14. Localization of the cellular retinoic acid binding protein (CRABP) gene relative to the acute promyelocytic leukemia-associated breakpoint on human chromosome 15

    NARCIS (Netherlands)

    A.H.M. Geurts van Kessel (Ad); H. de Leeuw (H.); E.J. Dekker (Erik Jan); J.M. Rijks (Jolianne); N. Spurr (N.); A.M. Ledbetter (Andrew M.); E. Kootwijk (E.); M.J. Vaessen (Marie-Josée)

    1991-01-01

    textabstractA human genomic fragment comprising the cellular retinoic acid binding protein (CRABP) gene was isolated. By using a panel of somatic cell hybrids, this gene could be assigned to human chromosome 15. Subsequently, a possible involvement of the CRABP gene in translocation (15;17)

  15. Study of the frequency of translocations and dicentrics in human spermatozoid using fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Alvarez, R.; Ponsa, I.; Tusell, L.; Genesca, A.; Miro, R.; Egozcue, J.

    1998-01-01

    Present study has intended to analyze the induction translocations and dicentrics in human sperms irradiated in vitro to the dose 4Gy by means of the use technical in situ hybridization with probes marked fluorescently

  16. Chromosome aberrations: plants to human and Feulgen to FISH

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2005-01-01

    Chromosome aberrations and their impact on human health have been recognized for a long time. In the 1950s, in India, studies on induced chromosome aberrations in plants were initiated by Swaminathan and his students. I trace here the impact of these initial studies on further developments in this field. The studies which were started in plants have been extended to mammals (including human) and the simple squash and solid staining have been improved by molecular cytogenetic techniques, thus enabling accurate identification and quantification of different types of chromosome aberrations. These studies have also thrown light on the mechanisms of chromosome aberration formation, especially following exposure to ionizing radiation. (author)

  17. Human chromosome-specific changes in a human-hamster hybrid cell line (AL) assessed by fluorescent in situ hybridization (fish)

    International Nuclear Information System (INIS)

    Geard, Charles R.; Jenkins, Gloria

    1995-01-01

    Purpose: To quantitatively assess all gamma-ray induced chromosomal changes confined to one human chromosome using fluorescence microscopy and in situ hybridization with a fluorescently labeled human chromosome specific nucleic acid probe. Methods and Materials: Synchronized human-hamster hybrid cells containing human chromosome 11 were obtained by a modified mitotic shake-off procedure. G1 phase cells (> 95%) were irradiated with 137 Cs gamma rays (0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, and 10.0 Gy) at a dose rate of 1.1 Gy/min and mitotic cells collected 16-20 h later; chromosomal spreads were prepared, denatured, and hybridized with a fluorescein-tagged nucleic acid probe against total human DNA. Chromosomes were examined by fluorescence microscopy and all categories of change involving the human chromosome 11 as target, recorded. Results: Overall, of the 3104 human-hamster hybrid cells examined, 82.1% were euploid, of which 88.6% contained one copy of human chromosome 11, 6.2% contained two copies, and 5.2% contained 0 copies. This is compatible with mitotic nondisjunction in a small fraction of cells. Of the remaining 17.9% of cells, 85.2% were tetraploid cells with two copies of human chromosome 11. For all aberrations involving human chromosome 11 there was a linear relationship between yield and absorbed dose of 0.1 aberrations per chromosome per Gy. The yield of dicentrics, translocations, and terminal deletions that involve one lesion on the human chromosome was linear, while the yield of interstitial deletions that arise from two interacting lesions on the human chromosome was curvilinear. The frequencies of dicentrics and translocations were about equal, while there was a high (40-60%) incidence of incomplete exchanges between human and hamster chromosomes. Conclusions: Fluorescent in situ hybridization (FISH) procedures allow for the efficient detection of a broad range of induced changes in target chromosomes. Symmetrical exchanges induced in G1

  18. Study of ionizing radiation effect on human spermatozoa chromosomes

    International Nuclear Information System (INIS)

    Rousseaux, S.

    1990-02-01

    The purpose of this thesis is to study the radio-induced chromosomal aberrations in spermatozoa. After a brief recall on ionizing radiations, the author reviews the radio-induced chromosomal anomalies on somatic cells and on germinal line cells and spermatozoa. The author presents the technical aspects of human spermatozoa karyotype and finally studies the radio induced chromosomal anomalies of sperm to patients undergoing a radiotherapy. 13 tabs., 28 figs., 28 photos

  19. Dose Assessment using Chromosome Aberration Analyses in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin-Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The healthy five donors were recruited to establish the dose-response calibration curve for chromosomal aberrations by ionizing radiation exposure. Our cytogenetic results revealed that the mean frequency of chromosome aberration increased with increasing radiation dose. In this study, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation. Therefore, these chromosome aberration analyses will be the foundation for biological dosimetric analysis with additional research methods such as translocation and PCC assay. The conventional analysis of dicentric chromosomes in HPBL was suggested by Bender and Gooch in 1962. This assay has been for many years, the golden standard and the most specific method for ionizing radiation damage. The dicentric assay technique in HPBL has been shown as the most sensitive biological method and reliable bio-indicator of quantifying the radiation dose. In contrast, the micronucleus assay has advantages over the dicentric assay since it is rapid and requires less specialized expertise, and accordingly it can be applied to monitor a big population. The cytokinesis-block micronucleus (CBMN) assay is a suitable method for micronuceli measurement in cultured human as well as mammalian cells. The aim of our study was to establish the dose response curve of radiation-induced chromosome aberrations in HPBL by analyzing the frequency of dicentrics and micronuclei.

  20. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Valentina Tosato

    2017-09-01

    Full Text Available In mammalian organisms liquid tumors such as acute myeloid leukemia (AML are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in

  1. Detection of Chromosome X;18 Breakpoints and Translocation of the Xq22.3;18q23 Regions Resulting in Variable Fertility Phenotypes

    Directory of Open Access Journals (Sweden)

    Attila Szvetko

    2012-01-01

    Full Text Available We describe a familial pattern of gonosomal-autosomal translocation between the X and 18 chromosomes, balanced and unbalanced forms, in male and female siblings. The proposita was consulted for hypergonadotropic hypogonadism. Karyotype analysis revealed a balanced 46, X, t(X;18(q22.3;q23 genotype. The sister of the proband presented with oligomenorrhea with irregular menses and possesses an unbalanced form of the translocation 46, X, der(X, t(X;18(q22.3;q23. The brother of the proband was investigated and was found to possess the balanced form of the same translocation, resulting in disrupted spermatogenesis. Maternal investigation revealed the progenitor karyotype 46, X, t(X;18(q22.3;q23. Maternal inheritance and various genomic events contributed to the resultant genotypes. Primary infertility was initially diagnosed in all progeny; however, the male individual recently fathered twins. We briefly review the mechanisms associated with X;18 translocations and describe a pattern of inheritance, where breakpoints and translocation of the Xq22.3;18q23 regions have resulted in variable fertility.

  2. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  3. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia.

    Science.gov (United States)

    Fonseca, Ana Carolina S; Bonaldi, Adriano; Bertola, Débora R; Kim, Chong A; Otto, Paulo A; Vianna-Morgante, Angela M

    2013-05-07

    The association of balanced rearrangements with breakpoints near SOX9 [SRY (sex determining region Y)-box 9] with skeletal abnormalities has been ascribed to the presumptive altering of SOX9 expression by the direct disruption of regulatory elements, their separation from SOX9 or the effect of juxtaposed sequences. We report on two sporadic apparently balanced translocations, t(7;17)(p13;q24) and t(17;20)(q24.3;q11.2), whose carriers have skeletal abnormalities that led to the diagnosis of acampomelic campomelic dysplasia (ACD; MIM 114290). No pathogenic chromosomal imbalances were detected by a-CGH. The chromosome 17 breakpoints were mapped, respectively, 917-855 kb and 601-585 kb upstream of the SOX9 gene. A distal cluster of balanced rearrangements breakpoints on chromosome 17 associated with SOX9-related skeletal disorders has been mapped to a segment 932-789 kb upstream of SOX9. In this cluster, the breakpoint of the herein described t(17;20) is the most telomeric to SOX9, thus allowing the redefining of the telomeric boundary of the distal breakpoint cluster region related to skeletal disorders to 601-585 kb upstream of SOX9. Although both patients have skeletal abnormalities, the t(7;17) carrier presents with relatively mild clinical features, whereas the t(17;20) was detected in a boy with severe broncheomalacia, depending on mechanical ventilation. Balanced and unbalanced rearrangements associated with disorders of sex determination led to the mapping of a regulatory region of SOX9 function on testicular differentiation to a 517-595 kb interval upstream of SOX9, in addition to TESCO (Testis-specific enhancer of SOX9 core). As the carrier of t(17;20) has an XY sex-chromosome constitution and normal male development for his age, the segment of chromosome 17 distal to the translocation breakpoint should contain the regulatory elements for normal testis development. These two novel translocations illustrate the clinical variability in carriers of balanced

  4. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  5. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  6. The distribution of chromosome aberrations among chromosomes of karyotype in exposed human lymphocyte

    International Nuclear Information System (INIS)

    Que Tran; Tien Hoang Hung

    1997-01-01

    Induced chromosome aberrations (ch. ab.) in exposed Human peripheral blood lymphocyte have been used to assay radio.bio.doses, because of their characters such as: the maintaining Go phase in cell cycle in body, the distribution of cell in blood system and the distribution of ch. ab. in exposed cells of body and among chromosomes of karyotype. The frequency of ch. ab. reflected the quantity of radiation dose, dose rate and radiation energy. The dependence between radiation dose and frequency of ch. ab. was illustrated by the mathematic equations. The distribution of induced ch. ab. among the cells exposed to uniform radiation fields was Poisson's, but the distribution of ch. ab. among chromosomes in karyotype depended on radiation field and mononucleotid sequence of DNA molecular of each chromosome. The minimum influence of mononucleotid sequence of DNA molecular in inform ch. ab. will be advantageous state for dose-assessments. The location of induced ch. ab. in exposed Human lymphocyte had been determined by karyotype analyses. The data of statistic analyse had improved that the number of ch. ab. depended on the size of chromosomes in karyotype. The equal distribution of ch. ab.among chromosomes in karyotype provided the objectiveness and the accuracy of using the chromosomal aberrant analysis technique on bio-dosimetry. (author)

  7. Truncated ALK derived from chromosomal translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K.

    Science.gov (United States)

    Polgar, Doris; Leisser, Christina; Maier, Susanne; Strasser, Stephan; Rüger, Beate; Dettke, Markus; Khorchide, Maya; Simonitsch, Ingrid; Cerni, Christa; Krupitza, Georg

    2005-02-15

    The chromosomal translocation t(2;5)(p23;q35) is associated with "Anaplastic large cell lymphomas" (ALCL), a Non Hodgkin Lymphoma occurring in childhood. The fusion of the tyrosine kinase gene-ALK (anaplastic lymphoma kinase) on chromosome 2p23 to the NPM (nucleophosmin/B23) gene on chromosome 5q35 results in a 80 kDa chimeric protein, which activates the "survival" kinase PI3K. However, the binding mechanism between truncated ALK and PI3K is poorly understood. Therefore, we attempted to elucidate the molecular interaction between ALK and the regulatory p85 subunit of PI3K. Here we provide evidence that the truncated ALK homodimer binds to the SH3 domain of p85. This finding may be useful for the development of a new target-specific intervention.

  8. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method...... of manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties...... of human chromosomes in polyamine buffer. These can then be used to optimize system designs for further characterization and even sorting. The experimental data from the dielectrophoretic manipulation were combined with theoretical calculations to extract a range of values for the permittivity...

  9. The study of human Y chromosome variation through ancient DNA.

    Science.gov (United States)

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  10. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  11. Preparation and bivariate analysis of suspensions of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    van den Engh, G.J.; Trask, B.J.; Gray, J.W.; Langlois, R.G.; Yu, L.C.

    1985-01-01

    Chromosomes were isolated from a variety of human cell types using a HEPES-buffered hypotonic solution (pH 8.0) containing KCl, MgSO/sub 4/ dithioerythritol, and RNase. The chromosomes isolated by this procedure could be stained with a variety of fluorescent stains including propidium iodide, chromomycin A3, and Hoeschst 33258. Addition of sodium citrate to the stained chromosomes was found to improve the total fluorescence resolution. High-quality bivariate Hoeschst vs. chromomycin fluorescence distributions were obtained for chromosomes isolated from a human fibroblast cell strain, a human colon carcinoma cell line, and human peripheral blood lymphocyte cultures. Good flow karyotypes were also obtained from primary amniotic cell cultures. The Hoeschst vs. chromomycin flow karyotypes of a given cell line, made at different times and at dye concentrations varying over fourfold ranges, show little variation in the relative peak positions of the chromosomes. The size of the DNA in chromosomes isolated using this procedure ranges from 20 to 50 kilobases. The described isolation procedure is simple, it yields high-quality flow karyotypes, and it can be used to prepare chromosomes from clinical samples. 22 references, 7 figures, 1 table.

  12. Childhood pre-B cell acute lymphoblastic leukemia with translocation t(1;19)(q21.1;p13.3) and two additional chromosomal aberrations involving chromosomes 1, 6, and 13: a case report.

    Science.gov (United States)

    Wafa, Abdulsamad; As'sad, Manar; Liehr, Thomas; Aljapawe, Abdulmunim; Al Achkar, Walid

    2017-04-07

    The translocation t(1;19)(q23;p13), which results in the TCF3-PBX1 chimeric gene, is one of the most frequent rearrangements observed in B cell acute lymphoblastic leukemia. It appears in both adult and pediatric patients with B cell acute lymphoblastic leukemia at an overall frequency of 3 to 5%. Most cases of pre-B cell acute lymphoblastic leukemia carrying the translocation t(1;19) have a typical immunophenotype with homogeneous expression of CD19, CD10, CD9, complete absence of CD34, and at least diminished CD20. Moreover, the translocation t(1;19) correlates with known clinical high risk factors, such as elevated white blood cell count, high serum lactate dehydrogenase levels, and central nervous system involvement; early reports indicated that patients with translocation t(1;19) had a poor outcome under standard treatment. We report the case of a 15-year-old Syrian boy with pre-B cell acute lymphoblastic leukemia with abnormal karyotype with a der(19)t(1;19)(q21.1;p13.3) and two yet unreported chromosomal aberrations: an interstitial deletion 6q12 to 6q26 and a der(13)t(1;13)(q21.1;p13). According to the literature, cases who are translocation t(1;19)-positive have a significantly higher incidence of central nervous system relapse than patients with acute lymphoblastic leukemia without the translocation. Of interest, central nervous system involvement was also seen in our patient. To the best of our knowledge, this is the first case of childhood pre-B cell acute lymphoblastic leukemia with an unbalanced translocation t(1;19) with two additional chromosomal aberrations, del(6)(q12q26) and t(1;13)(q21.3;p13), which seem to be recurrent and could influence clinical outcome. Also the present case confirms the impact of the translocation t(1;19) on central nervous system relapse, which should be studied for underlying mechanisms in future.

  13. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  14. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  15. The DNA sequence of the human X chromosome

    Science.gov (United States)

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  16. Structure and chromosomal localization of the human lymphotoxin gene

    International Nuclear Information System (INIS)

    Nedwin, G.E.; Jarrett-Nedwin, J.; Smith, D.H.; Naylor, S.L.; Sakaguchi, A.Y.; Goeddel, D.V.; Gray, P.W.

    1987-01-01

    The authors have isolated, sequenced, and determined the chromosomal localization of the gene encoding human lymphotoxin (LT). The single copy gene was isolated from a human genomic library using a /sup 32/P-labeled 116 bp synthetic DNA fragment whose sequence was based on the NH/sub 2/-terminal amino acid sequence of LT. The gene spans 3 kb of DNA and is interrupted by three intervening sequences. The LT gene is located on human chromosome 6, as determined by Southern blot analysis of human-murine hybrid DNA. Putative transcriptional control regions and areas of homology with the promoters of interferon and other genes are identified

  17. Persistence of X-ray-induced chromosomal rearrangements in long-term cultures of human diploid fibroblasts

    International Nuclear Information System (INIS)

    Kano, Y.; Little, J.B.

    1984-01-01

    As part of a long-term study of mechanisms of human cell neoplastic transformation, the authors have examined the change in the frequencies of X-ray-induced chromosome rearrangements in density-inhibited human foreskin fibroblasts as a function of subculture time. In nonproliferating cells, the frequency of chromosomal aberrations declined within 24 to 48 hr but still remained at a relatively high level up to 43 days after irradiation. Aberrations disappeared rapidly, however, when the cells were allowed to proliferate, indicating that these lesions are lethal to dividing cells. The frequency of induced translocations, as determined by analysis of G-banded karyotypes, was dose dependent and remained stable up to 20 mean population doublings after irradiation. When subculture of density-inhibited cultures was delayed for 4 hr after irradiation (confluent holding), the frequency of chromosomal aberrations in the first mitosis declined, whereas the translocation frequencies at later passage were elevated as compared with cells subcultured immediately. This correlates with the reported increase in the frequency of transformation under similar conditions. These findings support the hypothesis that chromosomal rearrangements induced by DNA damage may be involved in the initiation of cancer

  18. A disseminated alveolar rhabdomyosarcoma in a 9-year-old boy disclosed by chromosomal translocation (2;13) (q35;q14)

    Science.gov (United States)

    Brichard, B; Ninane, J; Gosseye, S; Verellen-Dumoulin, C; Vermylen, C; Rodhain, J; Cornu, G

    1991-01-01

    A 9-year-old boy presented with a small subcutaneous tumor of the trunk and diffuse bone marrow involvement. The first histological diagnosis given was undifferentiated malignancy possibly of neural crest origin and chemotherapy was started immediately using vincristine, cyclophosphamide, cisplatin, and teniposide (OPEC). Complete response was achieved after four courses of chemotherapy. Histological slides were then reviewed and the final diagnosis of alveolar rhabdomyosarcoma (RMS) was retained. Moreover, chromosome analysis of malignant cells in the bone marrow revealed a translocation involving chromosomes 2 and 13:t(2;13) (q35;q14). This specific karyotype finding has been recently reported in a few cases and could be specific for alveolar RMS. The patient had a relapse 7 months after diagnosis and died 4 months later.

  19. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S

    1994-01-01

    that stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that IL-2...... induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  20. New Complex Chromosomal Translocation in Chronic Myeloid Leukaemia: t(9;18;22(q34;p11;q11

    Directory of Open Access Journals (Sweden)

    Abdeljabar El Andaloussi

    2007-01-01

    Full Text Available A Chronic myeloid leukaemia (CML case with a new complex t(9;18;22(q34;p11;q11 of a 29-year-old man is being reported. For the first time, this translocation has been characterized by karyotype complemented with fluorescence in situ hybridization (FISH. In CML, the complex and standard translocations have the same prognosis. The patient was treated with standard initial therapy based on hydroxyurea before he died due to heart failure four months later. Our finding indicates the importance of combined cytogenetic analysis for diagnosis and guidance of treatment in clinical diagnosis of CML.

  1. Impact of personal and environmental factors on the rate of chromosome aberrations named translocations - Part 1: age, gender, smoking, alcohol; Impact des facteurs individuels et environnementaux sur le taux d'aberrations chromosomiques de type translocations - Partie 1: age, sexe, tabac, alcool

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, E.; Gruel, G.; Martin, C.; Roch-Lefevre, S.; Vaurijoux, A.; Voisin, P.; Roy, L. [IRSN, Laboratoire de Dosimetrie Biologique, 92 - Fontenay-aux-Roses (France)

    2010-04-15

    The assessment of exposure to ionizing radiation, carried out long time after exposure, is currently performed by scoring of translocations, a specific type of chromosomal aberrations. The translocations rate observed in peripheral blood lymphocytes of exposed subjects is compared to that observed in a control population. However, the translocation specificity towards radiation exposure is not clearly identified. To avoid any hasty conclusion, it is necessary to identify all the factors likely to induce translocation. To our knowledge, no study has thus far examined the effects of all these different factors on translocation rates. A review of the literature thus allowed us to assess the impact of host factors and lifestyle on the production of translocations. This study confirms that age appears to be the factor having the greatest impact on the rate of translocations, especially over 60 years. To date, the factor 'age' is already considered in estimating the impact of radiation on the rate of translocation for all age groups. However, the study also shows that this rate varies significantly when the patient is exposed simultaneously and significantly towards many lifestyle agents. A precise threshold translocation rate should thus be established as a function of known behavioral exposures, below which it is impossible to conclude that radiological exposure has occurred. The effects of chemicals on the translocation rate after occupational exposure will be the subject of a second part. (authors)

  2. Enhanced stimulation of chromosomal translocations and sister chromatid exchanges by either HO-induced double-strand breaks or ionizing radiation in Saccharomyces cerevisiae yku70 mutants

    International Nuclear Information System (INIS)

    Fasullo, Michael; St Amour, Courtney; Zeng Li

    2005-01-01

    DNA double-strand break (DSB) repair occurs by homologous recombination (HR) or non-homologous endjoining (NHEJ). In Saccharomyces cerevisiae, expression of both MAT a and MATα inhibits NHEJ and facilitates DSB-initiated HR. We previously observed that DSB-initiated recombination between two his3 fragments, his3-Δ5' and his3-Δ3'::HOcs is enhanced in haploids and diploids expressing both MAT a and MATα genes, regardless of the position or orientation of the his3 fragments. Herein, we measured frequencies of DNA damage-associated translocations and sister chromatid exchanges (SCEs) in yku70 haploid mutants, defective in NHEJ. Translocation and SCE frequencies were measured in strains containing the same his3 fragments after DSBs were made directly at trp1::his3-Δ3'::HOcs. Wild type and yku70 cells were also exposed to ionizing radiation and radiomimetic agents methyl methanesulfonate (MMS), phleomycin, and 4-nitroquinolone-1-oxide (4-NQO). Frequencies of X-ray-associated and DSB-initiated translocations were five-fold higher in yku70 mutants compared to wild type; however, frequencies of phleomycin-associated translocations were lower in the yku70 haploid mutant. Frequencies of DSB-initiated SCEs were 1.8-fold higher in the yku70 mutant, compared to wild type. Thus, DSB-initiated HR between repeated sequences on non-homologous chromosomes and sister chromatids occurs at higher frequencies in yku70 haploid mutants; however, higher frequencies of DNA damage-associated HR in yku70 mutants depend on the DNA damaging agent

  3. [Molecular and cytogenetic characterization of six 46, XX males due to translocations between the short arms of X and Y chromosomes].

    Science.gov (United States)

    Xing, Ya; Ji, Xing; Xiao, Bing; Jiang, Wen-ting; Hu, Qin; Hu, Juan; Cao, Ying; Tao, Jiong

    2012-08-01

    To characterize molecular and cytogenetic abnormalities in six 46, XX males, and to investigate the clinical manifestations and underlying mechanisms in such patients. Clinical data of six XX male patients were collected. Karyotyping, multiple polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) were utilized to detect and locate the sex determining region (SRY) gene. PCR and FISH showed that all patients were SRY-positive XX males. All patients have their SRY gene located at the tip of derivative X chromosomes, which have resulted from translocation between short arms of X and Y chromosomes. High resolution karyotyping at 550-750 band level has revealed that the translocation breakpoints were at Xp22.33 and Yp11.2 in three patients. In the remaining patients, the breakpoints were either at Xp22.32 and Yp11.31 or Xp22.31 and Yp11.2. The breakpoints at Xp22.32, Xp22.31 and Yp11.31 were rarely reported. Genotype-phenotype correlation analysis indicated that the clinical manifestations were age-specific. Four adult patients have come to clinical attention due to infertility, with typical features including azoospermia and testis dysgenesis, whereas poorly developed secondary sexual characteristics and short stature were main complaints of adolescence patients, and short stature was the sole symptom in a child patient. Combined karyotyping, PCR and FISH are important for the analysis of XX males. Particularly, high resolution karyotyping is valuable for the refinement of chromosome breakpoints and detailed analysis of genotype-phenotype correlation.

  4. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. An X-linked Myh11-CreERT2 mouse line resulting from Y to X chromosome-translocation of the Cre allele.

    Science.gov (United States)

    Liao, Mingmei; Zhou, Junmei; Wang, Fen; Ali, Yasmin H; Chan, Kelvin L; Zou, Fei; Offermanns, Stefan; Jiang, Zhisheng; Jiang, Zhihua

    2017-09-01

    The Myh11-CreER T2 mouse line (Cre + ) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/Y Cre+ ), which excluded its application in female mice. Our group established a Cre + colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X-linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/X Cre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/Y Cre+ mice. This mosaicism, however, diminished in homozygous X Cre+ /X Cre+ mice. In a model of aortic aneurysm induced by a SMC-specific Tgfbr1 deletion, the homozygous X Cre+ /X Cre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/X Cre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X-inactivation. The homozygous X Cre+ /X Cre+ mice produce uniform Cre activity in arterial SMCs. © 2017 Wiley Periodicals, Inc.

  6. Natural Selection Reduced Diversity on Human Y Chromosomes

    Science.gov (United States)

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  7. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1991-06-01

    This document lists the major accomplishments funded by DOE in the period of January 1989 through June 1991. Specific topics covered include: studies of chromosome translocations in patients with Acute Myeloid Leukemia (AML) de novo; correlation of karyotype and therapeutic response; the relationship of specific chromosomal abnormalities to a patient's occupational history; definition of regions on chromosome 5 involved in leukemogenesis; the influence of pervious chemotherapy on leukemogenesis; identification of genes at or near breakpoints involved in leukemia and lymphoma; identification of the critical rearrangement in the 9;11 translocation; molecular analysis of translocations involving 11q23; identification of other genes (like RAS) involved in leukemogenesis; development of fluorescence in situ hybridization as a cytogenetic tool; and examination of an unequivocal case of radiation induced preleukemia. 26 refs., 8 figs., 6 tabs

  8. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...

  9. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  10. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  11. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type.

    Science.gov (United States)

    Duro, D; Bernard, O; Della Valle, V; Leblanc, T; Berger, R; Larsen, C J

    1996-02-15

    We have reported previously a preliminary study of a t(9;14)(p21-22; q11) in B-cell acute lymphoblastic leukemia. This translocation had rearranged the TCRA/D locus on chromosome band 14q11 and the locus encoding the tumor suppressor gene P16INK4/MTS1 (P16) on band 9p21 (D. Duro et al., Oncogene, 11: 21-29, 1995). In the present report, the breakpoints were precisely localized on each chromosome partner. On the 14q- derivative, the sequence derived from chromosome 9 was interrupted at 1.0 kb upstream of the first exon of P16, close to a consensus recombination heptamer, CACTGTG. In addition, the chromosome 14 breakpoint was localized at the end of the TCRD2 (delta 2) segment, and 22 residues with unknown origin were present at the translocation junction. On the 9p+ derivative, chromosome 9 sequences were in continuity with those displaced onto chromosome 14, and the 14q11 breakpoint was located within TCRJA29 segment. These features are consistent with aberrant activity of the TCR gene recombinase complex. Although all three coding exons of P16 were displaced onto the chromosome 14q-derivative, no P16 transcript was detected in the leukemic cells. Because the region spanning the P16 exon 1 was not inactivated by methylation and because the other P16 allele was deleted, the implication is that the chromosome breakpoint was likely to disrupt regulatory elements involved in the normal expression of the gene. As a whole, then, our results show that translocations affecting band 9p21 can participate to the inactivation of P16, thus justifying a systematic survey of translocations of the 9p21 band in acute lymphoblastic leukemia.

  12. Report on the Second International Workshop on Human Chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, D.J. [Brigham and Women`s Hospital, Boston, MA (United States); Armour, J. [Univ. of Leicester (England). Dept. of Genetics; Bale, A.E. [Yale Univ., New Haven, CT (United States). Dept. of Genetics] [and others

    1993-12-31

    The Second International Workshop on Human Chromosome 9 was held in Chatham, Massachusetts on April 18--20, 1993. Fifty-three abstracts were received and the data presented on posters. The purpose of the meeting was to bring together all interested investigators working on the map of chromosome 9, many of whom had disease-specific interests. After a brief presentation of interests and highlighted results, the meeting broke up into the following subgroups for production of consensus maps: 9p; 9cen-q32; 9q32 ter. A global mapping group also met. Reports of each of these working groups is presented in the summary.

  13. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.; Wienberg, J.; Ermert, K. [Universitaet Muenchen (Germany)] [and others

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  14. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  15. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  16. Cloning an expressed gene shared by the human sex chromosomes

    International Nuclear Information System (INIS)

    Darling, S.M.; Banting, G.S.; Pym, B.; Wolfe, J.; Goodfellow, P.N.

    1986-01-01

    The existence of genes shared by mammalian sex chromosomes has been predicted on both evolutionary and functional grounds. However, the only experimental evidence for such genes in humans is the cell-surface antigen encoded by loci on the X and Y chromosomes (MIC2X and MIC2Y, respectively), which is recognized by the monoclonal antibody 12E7. Using the bacteriophage λgt11 expression system in Escherichia coli and immunoscreening techniques, the authors have isolated a cDNA clone whose primary product is recognized by 12E7. Southern blot analysis using somatic cell hybrids containing only the human X or Y chromosomes shows that the sequences reacting with the cDNA clone are localized to the sex chromosomes. In addition, the clone hybridizes to DNAs isolated from mouse cells that have been transfected with human DNA and selected for 12E7 expression on the fluorescence-activated cell sorter. The authors conclude that the cDNA clone encodes the 12E7 antigen, which is the primary product of the MIC2 loci. The clone was used to explore sequence homology between MIC2X and MIC2Y; these loci are closely related, if not identical

  17. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  18. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  19. Statistical properties of nucleotides in human chromosomes 21 and 22

    International Nuclear Information System (INIS)

    Zhang Linxi; Sun Tingting

    2005-01-01

    In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r n-1 and a rapid decrease for r > 4 n-1 . In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N 0 (l) can be described by a power law: N 0 (l) ∼ l -μ . The distance distributions P 0 (S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P 0 (S) = a + bS + cS 2 , and it is quite different from the random sequence

  20. A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development

    NARCIS (Netherlands)

    Santos, Margarida Avo; van de Werken, Christine; de Vries, Marieke; Jahr, Holger; Vromans, Martijn J. M.; Laven, Joop S. E.; Fauser, Bart C.; Kops, Geert J.; Lens, Susanne M.; Baart, Esther B.

    BACKGROUND: Human embryos generated by IVF demonstrate a high incidence of chromosomal segregation errors during the cleavage divisions. To analyse underlying molecular mechanisms, we investigated the behaviour of the chromosomal passenger complex (CPC) in human oocytes and embryos. This important

  1. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Daniela, E-mail: d.kraft@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Ritter, Sylvia, E-mail: s.ritter@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Durante, Marco, E-mail: m.durante@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt (Germany); Seifried, Erhard, E-mail: e.seifried@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Fournier, Claudia, E-mail: c.fournier@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Tonn, Torsten, E-mail: t.tonn@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Technische Universität Dresden, Med. Fakultät Carl Gustav Carus, Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden (Germany)

    2015-07-15

    Highlights: • Radiation induced formation and transmission of chromosomal aberrations were assessed. • Cytogenetic analysis was performed in human CD34+ HSPC by mFISH. • We report transmission of stable aberrations in irradiated, clonally expanded HSPC. • Unstable aberrations in clonally expanded HSPC occur independently of irradiation. • Carbon ions and X-rays bear a similar risk for propagation of cytogenetic changes. - Abstract: In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34{sup +} cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60–85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼30–35% apoptotic cells for 2 Gy carbon ions compared to ∼25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼70% and

  2. NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others

    1997-03-01

    NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

  3. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  4. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  5. Standard guidelines for the chromosome-centric human proteome project.

    Science.gov (United States)

    Paik, Young-Ki; Omenn, Gilbert S; Uhlen, Mathias; Hanash, Samir; Marko-Varga, György; Aebersold, Ruedi; Bairoch, Amos; Yamamoto, Tadashi; Legrain, Pierre; Lee, Hyoung-Joo; Na, Keun; Jeong, Seul-Ki; He, Fuchu; Binz, Pierre-Alain; Nishimura, Toshihide; Keown, Paul; Baker, Mark S; Yoo, Jong Shin; Garin, Jerome; Archakov, Alexander; Bergeron, John; Salekdeh, Ghasem Hosseini; Hancock, William S

    2012-04-06

    The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-HPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome.

  6. Termini of human chromosomes display elevated rates of mitotic recombination.

    Science.gov (United States)

    Cornforth, M N; Eberle, R L

    2001-01-01

    The strand-specific in situ hybridization technique of CO-FISH was used to probe telomeres of human mitotic cells in order to determine the spontaneous frequency of crossover. This approach allowed the detection of recombinational crossovers occurring anywhere along the length of individual chromosomes, including reciprocal events taking place between sister chromatids. Although the process of sister chromatid exchange (SCE) is the most prominent type of recombination in somatic mammalian cells, our results show that SCEs accounted for less than a third of the recombinational events revealed by CO-FISH. It is concluded that chromosomal regions near the termini of chromosome arms undergo extraordinarily high rates of spontaneous recombination, producing terminal crossovers whose small size precludes detection by standard cytogenetic methods. That similar results were observed for transformed epithelial cells, as well as primary fibroblasts, suggests that the phenomenon is a common characteristic of human cells. These findings are noteworthy because, although telomeric and subtelomeric DNA is known to be preferentially involved in certain types of recombination, the tips of somatic mammalian chromosomes have not previously been identified as preferred sites for crossover. Implications of these results are discussed in terms of limitations imposed on CO-FISH for its proposed use in directional hybridization mapping.

  7. Hexavalent chromium induces chromosome instability in human urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215 (United States); Liou, Louis [Department of Pathology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 (United States); Adam, Rosalyn M. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Wise, John Pierce Sr., E-mail: john.wise@louisville.edu [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States)

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.

  8. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human

    NARCIS (Netherlands)

    E. Mulugeta (Eskeatnaf); W.M. Baarends (Willy); J.H. Gribnau (Joost); J.A. Grootegoed (Anton)

    2010-01-01

    textabstractChimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural

  9. A scale invariant clustering of genes on human chromosome 7

    Directory of Open Access Journals (Sweden)

    Kendal Wayne S

    2004-01-01

    Full Text Available Abstract Background Vertebrate genes often appear to cluster within the background of nontranscribed genomic DNA. Here an analysis of the physical distribution of gene structures on human chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible underlying statistical and biological mechanisms. Results Clustering of genes was confirmed by virtue of a variance of the number of genes per unit physical length that exceeded the respective mean. Further evidence for clustering came from a power function relationship between the variance and mean that possessed an exponent of 1.51. This power function implied that the spatial distribution of genes on chromosome 7 was scale invariant, and that the underlying statistical distribution had a Poisson-gamma (PG form. A PG distribution for the spatial scattering of genes was validated by stringent comparisons of both the predicted variance to mean power function and its cumulative distribution function to data derived from chromosome 7. Conclusion The PG distribution was consistent with at least two different biological models: In the microrearrangement model, the number of genes per unit length of chromosome represented the contribution of a random number of smaller chromosomal segments that had originated by random breakage and reconstruction of more primitive chromosomes. Each of these smaller segments would have necessarily contained (on average a gamma distributed number of genes. In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these gene sites through a stochastic birth death and immigration process to yield a PG distribution. On the basis of the gene position data alone it was not possible to identify the biological model which best explained the observed clustering. However, the underlying PG statistical model implicated neutral

  10. Y chromosome diversity, human expansion, drift, and cultural evolution.

    Science.gov (United States)

    Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L

    2009-12-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.

  11. Establishment of a new human pre-B acute lymphoblastic leukemia cell line (KMO-90) with 1;19 translocation carrying p53 gene alterations.

    Science.gov (United States)

    Sotomatsu, M; Hayashi, Y; Kawamura, M; Yugami, S; Shitara, T

    1993-10-01

    A new human pre-B acute lymphoblastic leukemia cell line (KMO-90) was established from the bone marrow sample of a 12-year-old girl with acute lymphoblastic leukemia (ALL) carrying 1;19 chromosome translocation. KMO-90 cells expressed HLA-DR, CD10, CD19, and CD22 antigens. These cells had also cytoplasmic immunoglobulin lacking surface immunoglobulin, indicating that these had a pre-B phenotype. Chromosome analysis of this cell line showed 48, XX, +8, +19, t(1;19)(q23;p13). Southern blot analysis showed the same sized rearrangements of the E2A gene in KMO-90 cells as those in the original leukemic cells. By means of reverse transcriptase-polymerase chain reaction analysis, we detected E2A/PBX1 fusion transcripts in KMO-90 cells. KMO-90 is useful when studying the role of the 1;19 translocation in the etiology of pre-B ALL. Furthermore, we studied alterations of the p53 gene in this cell line by polymerase chain reaction, single-strand conformation polymorphism analysis. KMO-90 cells were identified to have a point mutation at codon 177 (CCC-->TCC) of the p53 gene, suggesting that alterations of the p53 gene may have an important role in the establishment of this cell line.

  12. Cytogenetic evaluation of Fansidar on human lymphocyte chromosomes in vitro.

    Science.gov (United States)

    Praveen, Nuzhat; Saifi, Muheet Alam; Shadab, G G H A

    2011-01-01

    Fansidar is a fixed combination of two antimalarial agents a diaminopyrimidine (Pyrimethamine) and a sulphonamide (Sulphadoxine) in the ratio 1:20- that have been used extensively worldwide for the treatment of Chloroquine resistant Plasmodium falciparum malaria, toxoplasmosis and Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. This study examined the effect of Fansidar on chromosomes in human lymphocyte culture. Fansidar was added to peripheral blood lymphocyte cultures in vitro at four different concentrations: 5,15, 25 and 50 microl in the ratio 1:20, 3:60, 5:100 and 10:200 microg ml(-1). Result shows that this drug induces moderate increase in the frequency of gaps, breaks and rearrangements. Therefore it can be concluded that Fansidar has moderate clastogenic effect on human chromosomes in vitro.

  13. A recurrent translocation is mediated by homologous recombination between HERV-H elements

    Directory of Open Access Journals (Sweden)

    Hermetz Karen E

    2012-01-01

    Full Text Available Abstract Background Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. Results Array CGH resolved the breakpoints of the 6.97-Megabase (Mb loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. Conclusions Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.

  14. New insights into human nondisjunction of chromosome 21 in oocytes.

    Directory of Open Access Journals (Sweden)

    Tiffany Renee Oliver

    2008-03-01

    Full Text Available Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short tandem repeat markers along chromosome 21 were genotyped in DNA collected from individuals with free trisomy 21 and their parents. This information was used to determine the origin of the nondisjunction error and the maternal recombination profile. We analyzed 615 maternal meiosis I and 253 maternal meiosis II cases stratified by maternal age. The examination of meiosis II errors, the first of its type, suggests that the presence of a single exchange within the pericentromeric region of 21q interacts with maternal age-related risk factors. This observation could be explained in two general ways: 1 a pericentromeric exchange initiates or exacerbates the susceptibility to maternal age risk factors or 2 a pericentromeric exchange protects the bivalent against age-related risk factors allowing proper segregation of homologues at meiosis I, but not segregation of sisters at meiosis II. In contrast, analysis of maternal meiosis I errors indicates that a single telomeric exchange imposes the same risk for nondisjunction, irrespective of the age of the oocyte. Our results emphasize the fact that human nondisjunction is a multifactorial trait that must be dissected into its component parts to identify specific associated risk factors.

  15. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomar......We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  16. Chromosome segregation regulation in human zygotes : Altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex

    NARCIS (Netherlands)

    Van De Werken, C.; Avo Santos, M.; Laven, J. S E; Eleveld, C.; Fauser, B. C J M; Lens, S. M A; Baart, E. B.

    2015-01-01

    STUDY QUESTION Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? SUMMARY ANSWER Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal

  17. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  18. A worldwide phylogeography for the human X chromosome.

    Directory of Open Access Journals (Sweden)

    Simone S Santos-Lopes

    Full Text Available BACKGROUND: We reasoned that by identifying genetic markers on human X chromosome regions where recombination is rare or absent, we should be able to construct X chromosome genealogies analogous to those based on Y chromosome and mitochondrial DNA polymorphisms, with the advantage of providing information about both male and female components of the population. METHODOLOGY/PRINCIPAL FINDINGS: We identified a 47 Kb interval containing an Alu insertion polymorphism (DXS225 and four microsatellites in complete linkage disequilibrium in a low recombination rate region of the long arm of the human X chromosome. This haplotype block was studied in 667 males from the HGDP-CEPH Human Genome Diversity Panel. The haplotypic diversity was highest in Africa (0.992+/-0.0025 and lowest in the Americas (0.839+/-0.0378, where no insertion alleles of DXS225 were observed. Africa shared few haplotypes with other geographical areas, while those exhibited significant sharing among themselves. Median joining networks revealed that the African haplotypes were numerous, occupied the periphery of the graph and had low frequency, whereas those from the other continents were few, central and had high frequency. Altogether, our data support a single origin of modern man in Africa and migration to occupy the other continents by serial founder effects. Coalescent analysis permitted estimation of the time of the most recent common ancestor as 182,000 years (56,700-479,000 and the estimated time of the DXS225 Alu insertion of 94,400 years (24,300-310,000. These dates are fully compatible with the current widely accepted scenario of the origin of modern mankind in Africa within the last 195,000 years and migration out-of-Africa circa 55,000-65,000 years ago. CONCLUSIONS/SIGNIFICANCE: A haplotypic block combining an Alu insertion polymorphism and four microsatellite markers on the human X chromosome is a useful marker to evaluate genetic diversity of human populations and

  19. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  20. Chromosomal aberrations induced by low-dose γ-irradiation: Study of R-banded chromosomes of human lymphocytes

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Lefrancois, D.; Aurias, A.

    1991-01-01

    The effect of low-dose (0-0.5 Gy) γ-radiations was studied on R-banded chromosomes from lymphocytes of healthy donors of various ages. In cells from newborns, an increase of chromosome damage roughly proportional to the dose was found. In lymphocytes from young adults chromosomal aberrations were not detected at doses of 0.05 and 0.1 Gy, and in lymphocytes from old adults not even at 0.2 Gy. The difficulty in detecting aberrations in lymphocytes from adults is largely due to a considerable background of chromosomal anomalies which should be borne in mind in dosimetry studies. The rate of induction largely depends on the types of rearrangements. One-break terminal deletions are efficiently induced at 0.1 and 0.2 Gy and are the best indicators of exposure at these doses. At 0.5 Gy, the frequencies of 2-break lesions, i.e., dicentrics and reciprocal translocations, increase, whereas the of deletions decreases. (author). 6 refs., 3 figs., 2 tabs

  1. Duplication of C7orf58, WNT16 and FAM3C in an obese female with a t(7;22)(q32.1;q11.2) chromosomal translocation and clinical features resembling Coffin-Siris Syndrome.

    Science.gov (United States)

    Zhu, Jun; Qiu, Jun; Magrane, Gregg; Abedalthagafi, Malak; Zanko, Andrea; Golabi, Mahin; Chehab, Farid F

    2012-01-01

    We characterized the t(7;22)(q32;q11.2) chromosomal translocation in an obese female with coarse features, short stature, developmental delay and a hypoplastic fifth digit. While these clinical features suggest Coffin-Siris Syndrome (CSS), we excluded a CSS diagnosis by exome sequencing based on the absence of deleterious mutations in six chromatin-remodeling genes recently shown to cause CSS. Thus, molecular characterization of her translocation could delineate genes that underlie other syndromes resembling CSS. Comparative genomic hybridization microarrays revealed on chromosome 7 the duplication of a 434,682 bp region that included the tail end of an uncharacterized gene termed C7orf58 (also called CPED1) and spanned the entire WNT16 and FAM3C genes. Because the translocation breakpoint on chromosome 22 did not disrupt any apparent gene, her disorder was deemed to result from the rearrangement on chromosome 7. Mapping of yeast and bacterial artificial chromosome clones by fluorescent in situ hybridization on chromosome spreads from this patient showed that the duplicated region and all three genes within it were located on both derivative chromosomes 7 and 22. Furthermore, DNA sequencing of exons and splice junctional regions from C7orf58, WNT16 and FAM3C revealed the presence of potential splice site and promoter mutations, thereby augmenting the detrimental effect of the duplicated genes. Hence, dysregulation and/or disruptions of C7orf58, WNT16 and FAM3C underlie the phenotype of this patient, serve as candidate genes for other individuals with similar clinical features and could provide insights into the physiological role of the novel gene C7orf58.

  2. Duplication of C7orf58, WNT16 and FAM3C in an obese female with a t(7;22(q32.1;q11.2 chromosomal translocation and clinical features resembling Coffin-Siris Syndrome.

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available We characterized the t(7;22(q32;q11.2 chromosomal translocation in an obese female with coarse features, short stature, developmental delay and a hypoplastic fifth digit. While these clinical features suggest Coffin-Siris Syndrome (CSS, we excluded a CSS diagnosis by exome sequencing based on the absence of deleterious mutations in six chromatin-remodeling genes recently shown to cause CSS. Thus, molecular characterization of her translocation could delineate genes that underlie other syndromes resembling CSS. Comparative genomic hybridization microarrays revealed on chromosome 7 the duplication of a 434,682 bp region that included the tail end of an uncharacterized gene termed C7orf58 (also called CPED1 and spanned the entire WNT16 and FAM3C genes. Because the translocation breakpoint on chromosome 22 did not disrupt any apparent gene, her disorder was deemed to result from the rearrangement on chromosome 7. Mapping of yeast and bacterial artificial chromosome clones by fluorescent in situ hybridization on chromosome spreads from this patient showed that the duplicated region and all three genes within it were located on both derivative chromosomes 7 and 22. Furthermore, DNA sequencing of exons and splice junctional regions from C7orf58, WNT16 and FAM3C revealed the presence of potential splice site and promoter mutations, thereby augmenting the detrimental effect of the duplicated genes. Hence, dysregulation and/or disruptions of C7orf58, WNT16 and FAM3C underlie the phenotype of this patient, serve as candidate genes for other individuals with similar clinical features and could provide insights into the physiological role of the novel gene C7orf58.

  3. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  4. Low level dose induced chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Unstable structural aberrations in chromosomes of human blood lymphocytes cannot be used as biological dosemeters in the low dose range, when extrapolating from high doses using a linear dose response, as required by the original formula of the dual radiation action theory. A survey is given of experimental dose-response curves of chromosome aberrations, obtained in investigations not only by this institute, in cooperation with many other laboratories, but also by various authors in different areas of the world. The results are not compatible with the predicted linear dose relationships at in vivo dose ranges up to 30 mGy.y -1 . The aberration frequencies rise sharply with dose within the normal environmental exposure up to about twice that level. At higher doses, aberration frequencies increase less rapidly and reach a plateau. Some in vitro experiments of various authors with higher doses of low LET radiations, up to about 400 mGy have found dose responses with steps. (author)

  5. Chromosome surveys of human populations: between epidemiology and anthropology.

    Science.gov (United States)

    de Chadarevian, Soraya

    2014-09-01

    It is commonly held that after 1945 human genetics turned medical and focussed on the individual rather than on the study of human populations that had become discredited. However, a closer look at the research practices at the time quickly reveals that human population studies, using old and new tools, prospered in this period. The essay focuses on the rise of chromosome analysis as a new tool for the study of human populations. It reviews a broad array of population studies ranging from newborn screening programmes to studies of isolated or 'primitive' people. Throughout, it highlights the continuing role of concerns and opportunities raised by the propagation of atomic energy for civilian and military uses, the collection of large data bases and computers, and the role of international organisations like the World Health Organisation and the International Biological Programme in shaping research agendas and carving out a space for human heredity in the postwar era. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Regulation of CD95 expression and CD95-mediated cell death by interferon-gamma in acute lymphoblastic leukemia with chromosomal translocation t(4;11).

    Science.gov (United States)

    Dörrie, J; Schuh, W; Keil, A; Bongards, E; Greil, J; Fey, G H; Zunino, S J

    1999-10-01

    The regulatory effects of IFNgamma on CD95 expression and CD95-mediated cell death were investigated in three high-risk pro-B acute lymphoblastic leukemia (ALL) lines that carry the chromosomal translocation t(4;11)(q21;q23). These leukemias are characteristically refractory to conventional chemotherapeutic treatments operating through the induction of apoptosis. However, the mechanisms leading to increased cell survival and resistance to cell death in these leukemias are largely unknown. Interferon-gamma (IFNgamma), a potent inhibitor of hematopoiesis, acts in part by upregulating CD95 and sensitizing cells to CD95-induced apoptosis. The t(4;11) lines SEM, RS4;11, and MV4;11 expressed low levels of CD95, but were completely resistant to CD95-mediated death. Addition of IFNgamma markedly upregulated CD95 expression in SEM (8-9-fold), RS4;11 (2-3-fold), and MV4;11 (2-3-fold) lines. However, after treatment with IFNgamma, only an 11% increase in sensitivity to CD95-mediated cell death was observed in SEM cells, whereas RS4;11 and MV4;11 cells remained resistant. Cycloheximide, but not actinomycin D or brefeldin A, increased CD95-specific cell death only in IFNgamma-treated RS4;11 cells by approximately 12%. Abundant levels of Bcl-2 and Bcl-XL, known to inhibit CD95-signaling in some cells, were present suggesting a possible role for both molecules in the resistance to CD95-mediated cell death. Resistance of the leukemic blasts to CD95-mediated cell death and the failure of IFNgamma to substantially sensitize the CD95-signaling pathway may contribute to the highly malignant phenotype of pro-B ALL with translocation t(4;11).

  7. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  8. Human Chromosome 21: Mapping of the chromosomes and cloning of cDNAs

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.

    1991-09-01

    The objective of the research funded by DOE grant DE-FG02-89ER60857 from 6/15/89 to 8/31/91 was to contribute to the physical mapping of human chromosome 21 (HC21) by cloning large fragments of DNA into Yeast Artificial Chromosomes (YACs) and identify YACs that map on HC21. A total of 54 sequence tagged sites (STS) have been developed and mapped in our laboratory to HC21 and can be used as initial reference points for YAC identification and construction of overlapping clones. A small YAC library was constructed which is HC21 specific. DNA from somatic cell hybrid WAV17 or from flow-sorted HC21 was partially digested with EcoRI, ligated into vectors PJS97, PJS98, and YACs have been obtained with average size insert of more than 300 kb. This library has been deposited in D. Patterson's lab for the Joint YAC screening effort. Additional YAC libraries from ICI Pharmaceuticals or from Los Alamos National Laboratories have been screened with several STS and positive YACs have been identified. Work in progress includes screening of YAC libraries in order to construct overlapping clones, characterization of the cloning ends of YACs, characterization of additional STS and cloning of HC21 specific cDNAs. 15 refs., 2 figs., 5 tabs.

  9. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan

    2012-01-01

    /or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing......The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  10. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo

    2009-01-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or γ-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The γ contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for γ-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the kinetics of cellular

  11. The effects of severe mixed environmental pollution on human chromosomes.

    Science.gov (United States)

    Katsantoni, A; Nakou, S; Antoniadou-Koumatou, I; Côté, G B

    1986-01-01

    Cytogenetic studies were conducted on healthy young mothers, shortly after child birth, in two residential areas each with an approximate population of 20,000, situated about 25 km from Athens, Greece. One of the areas, Elefsis, is subject to severe mixed industrial pollution, and the other, Koropi, is relatively free of pollution. Chromosomal aberrations were investigated in 16 women from each area in 72 hour lymphocyte cultures treated with gentian violet to enhance any chromosomal instability induced by the pollution. The women were of a comparable socioeconomic level, aged between 20 and 31 years, and with no history of factors associated with mutagenesis. Venous blood samples were taken from the two groups and processed concurrently. The slides were coded and examined independently by two observers, who were unaware of the source of the samples. A total of 100 cells was examined on each sample. The two observers obtained highly comparable results. Women from Elefsis had an average of 0.42 anomalies per cell and those from Koropi had 0.39. The absence of a statistically significant difference between the two groups clearly shows that the severe mixed environmental pollution of Elefsis has no significant visible effect on human chromosomes in most residents. However, two Elefsis women had abnormal results and could be at risk. Their presence is not sufficient to raise significantly their group's average, but the induction by pollution of an increased rate of chromosomal anomalies in only a few people at risk could account for the known association between urban residence and cancer mortality. PMID:3783622

  12. Cloning and chromosomal localization of the three human syntrophin genes

    Energy Technology Data Exchange (ETDEWEB)

    Feener, C.A.; Anderson, M.D.S.; Selig, S. [Children`s Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Dystrophin, the protein product the Duchenne muscular dystrophy locus, is normally found to be associated with a complex of proteins. Among these dystrophin-associated proteins are the syntrophins, a group of 59 kDa membrane-associated proteins. When the syntrophins are purified based upon their association with dystrophin, they have been shown previously to form two distinct groups, the acidic ({alpha}) and basic ({beta}) forms. Based on peptide and rodent cDNA sequences, three separate syntrophin genes have been cloned and characterized from human tissues. The predicted amino acid sequences from these cDNA reveal that these proteins are related but are distinct with respect to charge, as predicted from their biochemistry. The family consists of one acidic ({alpha}-syntrophin, analogous to mouse syntrophin-1) and two basic ({beta}{sub 1}-syntrophin; and {beta}{sub 2}-syntrophin, analogous to mouse syntrophin-2) genes. Each of the three genes are widely expressed in a variety of human tissues, but the relative abundance of the three are unique with respect to each other. {alpha}-syntrophin is expressed primarily in skeletal muscle and heart as a single transcript. {beta}{sub 1}-syntrophin is expressed widely in up to five distinct transcript sizes, and is most abundant in brain. The human chromosomal locations of the three syntrophins are currently being mapped. {beta}{sub 1}-syntrophin maps to chromosome 8q23-24 and {beta}{sub 2}-syntrophin to chromosome 16. The {alpha}-syntrophin gene will be mapped accordingly. Although all three genes are candidates for neuromuscular diseases, the predominant expression of {alpha}-syntrophin in skeletal muscle and heart makes it a strong candidate to be involved in a neuromuscular disease.

  13. High-speed AFM of human chromosomes in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Picco, L M; Dunton, P G; Ulcinas, A; Engledew, D J; Miles, M J [H H Wills Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hoshi, O; Ushiki, T [Division of Microscopic Anatomy and Bio-Imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1, Niigata, 951-8150 (Japan)], E-mail: m.j.miles@bristol.ac.uk

    2008-09-24

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  14. Progress towards construction of a total restriction fragment map of a human chromosome.

    NARCIS (Netherlands)

    H. Vissing; F.G. Grosveld (Frank); E. Solomon; G. Moore; N. Lench; N. Shennan; R. Williamson

    1987-01-01

    textabstractWe present an approach to the construction of an overlapping restriction fragment map of a single human chromosome. A genomic cosmid library genome was constructed from a mouse-human hybrid cell line containing chromosome 17 as its only human genetic component. Cosmids containing human

  15. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content

    NARCIS (Netherlands)

    Hughes, Jennifer F.; Skaletsky, Helen; Pyntikova, Tatyana; Graves, Tina A.; van Daalen, Saskia K. M.; Minx, Patrick J.; Fulton, Robert S.; McGrath, Sean D.; Locke, Devin P.; Friedman, Cynthia; Trask, Barbara J.; Mardis, Elaine R.; Warren, Wesley C.; Repping, Sjoerd; Rozen, Steve; Wilson, Richard K.; Page, David C.

    2010-01-01

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome(1,2). Little is known about the recent evolution of the Y chromosome because only

  16. An integrated physical map of 210 markers assigned to the short arm of human chromosome 11

    NARCIS (Netherlands)

    Redeker, E.; Hoovers, J. M.; Alders, M.; van Moorsel, C. J.; Ivens, A. C.; Gregory, S.; Kalikin, L.; Bliek, J.; de Galan, L.; van den Bogaard, R.; Visser, J.; van der Voort, R.; Feinberg, A. P.; Little, P. F. R.; Westerveld, A.; Mannens, M.

    1994-01-01

    Using a panel of patient cell lines with chromosomal breakpoints, we constructed a physical map for the short arm of human chromosome 11. We focused on 11p15, a chromosome band harboring at least 25 known genes and associated with the Beckwith-Wiedemann syndrome, several childhood tumors, and

  17. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  18. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    McBride, O.W.; Zmudzka, B.Z.; Wilson, S.H.

    1987-01-01

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  19. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants.

    Science.gov (United States)

    Krystal, M; D'Eustachio, P; Ruddle, F H; Arnheim, N

    1981-01-01

    The distributions of three human ribosomal gene polymorphisms among individual chromosomes containing nucleolus organizers were analyzed by using mouse--human hybrid cells. Different nucleolus organizers can contain the same variant, suggesting the occurrence of genetic exchanges among ribosomal gene clusters on nonhomologous chromosomes. Such exchanges appear to occur less frequently in mice. This difference is discussed in terms of the nucleolar organization and chromosomal location of ribosomal gene clusters in humans and mice. Images PMID:6272316

  20. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Evans, B.A.; Yun, Z.X.; Close, J.A.

    1988-01-01

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  1. Computational simulation of chromosome breaks in human liver

    International Nuclear Information System (INIS)

    Yang Jianshe; Li Wenjian; Jin Xiaodong

    2006-01-01

    An easy method was established for computing chromosome breaks in cells exposed to heavily charged particles. The cell chromosome break value by 12 C +6 ions was theoretically calculated, and was tested with experimental data of chromosome breaks by using a premature chromosome condensation technique. The theoretical chromosome break value agreed well with the experimental data. The higher relative biological effectiveness of the heavy ions was closely correlated to its physical characteristics. In addition, the chromosome break value can be predicted off line. (authors)

  2. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ponnusamy, Rajesh [Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal); Lebedev, Andrey A. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Pahlow, Steffen [University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg (Germany); Lohkamp, Bernhard, E-mail: bernhard.lohkamp@ki.se [Karolinska Institutet, Tomtebodavägen 6, 4tr, 17177 Stockholm (Sweden); Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal)

    2014-06-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.

  3. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    International Nuclear Information System (INIS)

    Ponnusamy, Rajesh; Lebedev, Andrey A.; Pahlow, Steffen; Lohkamp, Bernhard

    2014-01-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs

  4. Chromosomes

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  5. Cryopreservation and xenografting of human ovarian fragments: medulla decreases the phosphatidylserine translocation rate

    Directory of Open Access Journals (Sweden)

    Vladimir Isachenko

    2016-11-01

    Full Text Available Abstract Background Phosphatidylserine is the phospholipid component which plays a key role in cell cycle signaling, specifically in regards to necrosis and apoptosis. When a cell affected by some negative factors, phosphatidylserine is no longer restricted to the intracellular side of membrane and can be translocated to the extracellular surface of the cell. Cryopreservation can induce translocation of phosphatidylserine in response to hypoxia, increasing intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species and lipid peroxidation. As such the aim of this study was to test the level of phosphatidylserine translocation in frozen human medulla-contained and medulla-free ovarian tissue fragments. Methods Ovarian fragments from twelve patients were divided into small pieces of two types, medulla-free cortex (Group 1, n = 42, 1.5–3.0 × 1.5–3.0 × 0.5–0.8 mm and cortex with medulla (Group 2, n = 42, 1.5–3.0 × 1.5–3.0 × 1.5–2.0 mm, pre-cooled after operative removal to 5 °C for 24 h and then conventionally frozen with 6 % dimethyl sulfoxide, 6 % ethylene glycol and 0.15 M sucrose in standard 5-ml cryo-vials. After thawing at +100 °C and step-wise removal of cryoprotectants in 0.5 M sucrose, ovarian pieces were xenografted to SCID mice for 45 days. The efficacy of tissues cryopreservation, taking into account the presence or absence of medulla, was evaluated by the development of follicles (histology with hematoxylin-eosin and through the intensity of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide. Results For Groups 1 and 2, the mean densities of follicles per 1 mm3 were 9.8, and 9.0, respectively. In these groups, 90 and 90 % preantral follicles appeared morphologically normal. However, FACS analysis showed a significantly decreased intensity of translocation of phosphatidylserine (FITC-Annexin V positive after

  6. Molecular mechanism in the formation of a human ring chromosome 21

    International Nuclear Information System (INIS)

    Wong, C.; Kazazian, H.H. Jr.; Stetten, G.; Earnshaw, W.C.; Antonarakis, S.E.; Van Keuren, M.L.

    1989-01-01

    The authors have characterized the structural rearrangements of a chromosome 21 that led to the de novo formation of a human ring chromosome 21 [r(21)]. Molecular cloning and chromosomal localization of the DNA regions flanking the ring junction provide evidence for a long arm to long arm fusion in formation of the r(21). In addition, the centromere and proximal long arm region of a maternal chromosome 21 are duplicated in the r(21). Therefore, the mechanism in formation of the r(21) was complex involving two sequential chromosomal rearrangements. (i) Duplication of the centromere and long arm of one maternal chromosome 21 occurred forming a rearranged intermediate. (ii) Chromosomal breaks in both the proximal and telomeric long arm regions on opposite arms of this rearranged chromosome occurred with subsequent reunion producing the r(21)

  7. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  8. Genealogical and evolutionary inference with the human Y chromosome.

    Science.gov (United States)

    Stumpf, M P; Goldstein, D B

    2001-03-02

    Population genetics has emerged as a powerful tool for unraveling human history. In addition to the study of mitochondrial and autosomal DNA, attention has recently focused on Y-chromosome variation. Ambiguities and inaccuracies in data analysis, however, pose an important obstacle to further development of the field. Here we review the methods available for genealogical inference using Y-chromosome data. Approaches can be divided into those that do and those that do not use an explicit population model in genealogical inference. We describe the strengths and weaknesses of these model-based and model-free approaches, as well as difficulties associated with the mutation process that affect both methods. In the case of genealogical inference using microsatellite loci, we use coalescent simulations to show that relatively simple generalizations of the mutation process can greatly increase the accuracy of genealogical inference. Because model-free and model-based approaches have different biases and limitations, we conclude that there is considerable benefit in the continued use of both types of approaches.

  9. The Human Proteome Organization Chromosome 6 Consortium: integrating chromosome-centric and biology/disease driven strategies.

    Science.gov (United States)

    Borchers, C H; Kast, J; Foster, L J; Siu, K W M; Overall, C M; Binkowski, T A; Hildebrand, W H; Scherer, A; Mansoor, M; Keown, P A

    2014-04-04

    The Human Proteome Project (HPP) is designed to generate a comprehensive map of the protein-based molecular architecture of the human body, to provide a resource to help elucidate biological and molecular function, and to advance diagnosis and treatment of diseases. Within this framework, the chromosome-based HPP (C-HPP) has allocated responsibility for mapping individual chromosomes by country or region, while the biology/disease HPP (B/D-HPP) coordinates these teams in cross-functional disease-based groups. Chromosome 6 (Ch6) provides an excellent model for integration of these two tasks. This metacentric chromosome has a complement of 1002-1034 genes that code for known, novel or putative proteins. Ch6 is functionally associated with more than 120 major human diseases, many with high population prevalence, devastating clinical impact and profound societal consequences. The unique combination of genomic, proteomic, metabolomic, phenomic and health services data being drawn together within the Ch6 program has enormous potential to advance personalized medicine by promoting robust biomarkers, subunit vaccines and new drug targets. The strong liaison between the clinical and laboratory teams, and the structured framework for technology transfer and health policy decisions within Canada will increase the speed and efficacy of this transition, and the value of this translational research. Canada has been selected to play a leading role in the international Human Proteome Project, the global counterpart of the Human Genome Project designed to understand the structure and function of the human proteome in health and disease. Canada will lead an international team focusing on chromosome 6, which is functionally associated with more than 120 major human diseases, including immune and inflammatory disorders affecting the brain, skeletal system, heart and blood vessels, lungs, kidney, liver, gastrointestinal tract and endocrine system. Many of these chronic and persistent

  10. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  11. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  12. Structural and functional studies of FKHR-PAX3, a reciprocal fusion gene of the t(2;13 chromosomal translocation in alveolar rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Qiande Hu

    Full Text Available Alveolar rhabdomyosarcoma (ARMS is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13 chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.

  13. Detection of chromosomal aberrations by fluorescence in situ hybridization in the first three postirradiation divisions of human lymphocytes

    International Nuclear Information System (INIS)

    Boei, J.J.W.A.; Vermeulen, S.; Natarajan, A.T.

    1996-01-01

    Chromosomal aberrations in human lymphocytes were analyzed by fluorescence in situ hybridization (FISH) in the first 3 postirradiation (0 and 2 Gy) divisions. Cells were grown in the presence of BrdU, collected at different sampling times (47, 70 and 91 h) and analyzed using an alphoid centromeric probe and PCR amplified DNA libraries for chromosomes 2 and 8. Following differential staining of sister chromatids, the analyzed cells were identified to be either in the first, second or third mitosis after irradiation. The frequencies of both dicentrics and fragments showed a reduction of about 50% after each cell generation, whereas translocations were more persistent. Cells within the same postirradiation division showed higher aberration frequencies when derived from later sampling times, indicating a delay in progression of aberrant cells. As a result, the frequencies for dicentrics and fragments remained rather constant at different sampling times if the cell cycle parameter was not taken into account. Thus, the average generation time of the lymphocytes had a clear effect on the obtained aberration frequencies. The described method allows the study of the persistence of chromosome damage using the FISH technique during 3 subsequent cell divisions in vitro

  14. Chromosome aberrations in human lymphocytes for investigation of individual radiosensitivity; Chromosomenaberrationen in peripheren Lymphozyten zur Untersuchung der individuellen Strahlenempfindlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Zitzelsberger, H. [LMU Muenchen (Germany). Strahlenbiologisches Inst.; Bauchinger, M. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Oberschleissheim (Germany). Inst. fuer Strahlenbiologie

    2000-07-01

    Stable translocations and insertions which are not selected against during cell proliferation can be reliably scored by use of fluorescence in situ hybridisation (FISH) which allows painting of selected chromosomes along their entire length. This temporal persistence makes them particulary valuable for quantifying post human radiation exposures ('biodosimetry'). A disadvantage of this approach is that for routine use only a partial genome analysis can be performed which is mostly based on triple combinations of DNA probes for particular chromosomes. Translocation frequencies from partial genome analysis are often scaled-up to equal the full genome. Basic assumptions for such scaling are, that double strand breaks leading to translocations must be distributed randomly throughout the genome and no preferential interaction between particular pairs of chromosomes occurs. Thus, the probability of a particular chromosome being involved in an exchange is proportional to its DNA content. However, this is not always supported by experimental findings and may thus indicate a differential radiosensitivity of particular chromosomes. Translocation measurements in peripheral blood of different healthy donors irradiated in vitro with the same dose revealed also some evidence for the existence of interindividual differences in radiosensitivity. Similar findings have been already demonstrated after therapeutic irradiation of tumour patients. Consequences thereof may result for long-term retrospective biodosimetry. In order to provide reliable estimates of an individual's exposure to ionising radiation, the extent, distribution and dose-dependence of the observed variability has to be carefully examined in larger groups of persons and larger sets of calibration data. (orig.) [German] Durch die Anfaerbung kompletter Chromosomen mit Hilfe der Fluoreszenz-in-situ Hybridisierung (FISH) lassen sich die waehrend der Zellproliferation als stabil angesehenen Translokationen

  15. Report of the Fourth international workshop on human chromosome 18 mapping 1996

    International Nuclear Information System (INIS)

    Silverman, G.A.; Overhauser, J.; Gerken, S.; Aburomia, R.; O'Connell, P.; Krauter, K.S.; Detera-Wadleigh, S.D.; Yoshikawa, T.; Collins, A.R.; Geurts van Kessel, A.

    1996-01-01

    The fourth international workshop on human chromosome 18 mapping was held in Boston, Massachusetts, USA on October 7-9, 1996. The workshop was attended by 34 participants from 7 countries. The goals of the workshop were to (1) generate integrated genetic and physical maps, (2) update the transcriptional map, (3) assess the syntenic relationships between human chromosome 18 and the mouse genome, and (4) establish a chromosome 18 web site

  16. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  17. Cloning, expression, and chromosome mapping of human galectin-7

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Flint, T

    1995-01-01

    The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Here we report the cloning and expression of a novel member of this family (galectin-7) that correspond to IEF (isoelectric focusing) 17 (12,700 Da; pI, 7.6) in the human...... keratinocyte protein data base, and that is strikingly down-regulated in SV40 transformed keratinocytes (K14). The cDNA was cloned from a lambda gt11 cDNA expression library using degenerated oligodeoxyribonucleotides back-translated from an IEF 17 peptide sequence. The protein encoded by the galectin-7 clone......14 keratinocytes imply a role in cell-cell and/or cell-matrix interactions necessary for normal growth control. The galectin-7 gene was mapped to chromosome 19. Udgivelsesdato: 1995-Mar-17...

  18. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    International Nuclear Information System (INIS)

    Kaur, G.P.; Athwal, R.S.

    1989-01-01

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9

  19. Chromosomal clustering of a human transcriptome reveals regulatory background

    Directory of Open Access Journals (Sweden)

    Purmann Antje

    2005-09-01

    Full Text Available Abstract Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02. Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications.

  20. Characterization of a t(5;8)(q31;q21) translocation in a patient with mental retardation and congenital heart disease: implications for involvement of RUNX1T1 in human brain and heart development

    DEFF Research Database (Denmark)

    Zhang, Litu; Tümer, Zeynep; Møllgård, Kjeld

    2009-01-01

    The chromosome break points of the t(8;21)(q21.3;q22.12) translocation associated with acute myeloid leukemia disrupt the RUNX1 gene (also known as AML1) and the RUNX1T1 gene (also known as CBFA2T3, MTG8 and ETO) and generate a RUNX1-RUNX1T1 fusion protein. Molecular characterization of the trans...... development and support the notion that disruption of the RUNX1T1 gene is associated with the patient's phenotype.European Journal of Human Genetics advance online publication, 28 January 2009; doi:10.1038/ejhg.2008.269....

  1. Radiation hybrids from human chromosome 3: A basis for the construction of region and specific sublibraries

    International Nuclear Information System (INIS)

    Atchison, L.; Cosmis, R.L.; Atchison, M.L.

    1990-01-01

    The authors are interested in identifying genes on human chromosome involved in disease processes. To date at least 20 different loci on this chromosome are implicated with various disease states. DNA libraries containing clones derived from a small chromosomal subregion implicated in a particular disease would greatly assist these studies. They have utilized the radiation hybrid (RH) technique to generate a series of somatic cell hybrids that contain small segments of human chromosome 3 as the only human genetic material. A Chinese hamster-human cell hybrid (Q314-2) containing only human chromosome 3 was used to prepare radiation hybrids. Cells were lethally X-irradiated with 6,000 rads and fused to Urd(??) Chinese hamster cells by PEG 1000 treatment. The majority of hybrids (>72%) analyzed retained portions of chromosome 3. The amount of chromosome 3 in each hybrid ranged from nearly all of the chromosome to very little. Currently these hybrids are being further characterized with single copy probes of known map location in order to isolate regions of chromosome 3 that contain specific disease locus. These reduced hybrids can then be used for the construction of region specific libraries and for the generation of new DNA probes from the specific region of interest

  2. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    2010-08-01

    Full Text Available Genome rearrangement often produces chromosomes with two centromeres (dicentrics that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

  3. Conserved chromosomal positions of dual domains of the ets protooncogene in cats, mice, and humans

    International Nuclear Information System (INIS)

    Watson, D.K.; McWilliams-Smith, M.J.; Kozak, C.

    1986-01-01

    The mammalian protooncogene homologue of the avian v-ets sequence from the E26 retrovirus consists of two sequentially distinct domains located on different chromosomes. Using somatic cell hybrid panels, the authors have mapped the mammalian homologue of the 5' v-ets-domain to chromosome 11 (ETS1) in man, to chromosome 9 (ets-1) in mouse, and to chromosome D1 (ETS1) in the domestic cat. The mammalian homologue of the 3' v-ets domain was similarly mapped to human chromosome 21 (ETS2), to mouse chromosome 16 (Ets-2), and to feline chromosome C2 (ETS2). Both protooncogenes fell in syntenic groups of homologous linked loci that were conserved among the three species. The occurrence of two distinct functional protooncogenes and their conservation of linkage positions in the three mammalian orders indicate that these two genes have been separate since before the evolutionary divergence of mammals

  4. Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ushiki, Tatsuo; Hoshi, Osamu [Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 (Japan); Shigeno, Masatsugu [SII NanoTechnology Incorporated, RBM Tsukiji Building, Shintomi 2-15-5, Chuo-ku, Tokyo 104-0041 (Japan)], E-mail: t-ushiki@med.niigata-u.ac.jp

    2008-09-24

    The purpose of this study was to obtain three-dimensional images of wet chromosomes by atomic force microscopy (AFM) in liquid conditions. Human metaphase chromosomes-obtained either by chromosome spreads or by an isolation technique-were observed in a dynamic mode by AFM in a buffer solution. Under suitable operating conditions with a soft triangular cantilever (with the spring constant of 0.08-0.4 N m{sup -1}), clear images of fixed chromosomes in the chromosome spread were obtained by AFM. For imaging isolated chromosomes with the height of more than 400 nm, a cantilever with a high aspect ratio probing tip was required. The combination of a Q-control system and the sampling intelligent scan (SIS) system in dynamic force mode AFM was useful for obtaining high-quality images of the isolated chromosomes, in which globular or cord-like structures about 50 nm thick were clearly observed on the surface of each chromatid.

  5. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation: Comprehensive progress report, January 1986--June 1988

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1988-06-01

    I purchased one of the few available prototypes of the pulse field gel electrophoresis (PFGE) apparatus. We used PFGE and its various modifications to map the human Abelson protooncogene (ABL) and to show that the two alternative first exons (Ia and Ib) are separated by at least 200 kilobases (kb). This has provided the first evidence that alternative splicing from exon Ib to the common splice acceptor site (exon II) could occur over such very large distances. We are actively using vertical field gel electrophoresis, a modification of PFGE, for mapping various DNA probes on chromosome 5. Another major advance has been the development of the polymerase chain reaction (PCR). We are currently using this to define the breakpoints in the BCR gene in the 9; 22 translocation in chronic myeloid leukemia (CML) and in Ph 1 -positive acute lymphoblastic leukemia (ALL). I had expected to be able to describe major progress in cloning the chromosome translocation breakpoints in ANLL, and this has not occurred. Our laboratory knows how to solve the problem. We successfully cloned a new translocation breakpoint in B cell chronic lymphatic leukemia involving Nos. 14 and 19. 22 refs., 2 figs., 5 tabs

  6. Chromosome microdissection and cloning in human genome and genetic disease analysis

    International Nuclear Information System (INIS)

    Kao, Faten; Yu, Jingwei

    1991-01-01

    A procedure has been described for microdissection and microcloning of human chromosomal DNA sequences in which universal amplification of the dissected fragments by Mbo I linker adaptor and polymerase chain reaction is used. A very large library comprising 700,000 recombinant plasmid microclones from 30 dissected chromosomes of human chromosome 21 was constructed. Colony hybridization showed that 42% of the clones contained repetitive sequences and 58% contained single or low-copy sequences. The insert sizes generated by complete Mbo I cleavage ranged from 50 to 1,100 base pairs with a mean of 416 base pairs. Southern blot analysis of microclones from the library confirmed their human origin and chromosome 21 specificity. Some of these clones have also been regionally mapped to specific sites of chromosome 21 by using a regional mapping panel of cell hybrids. This chromosome microtechnology can generate large numbers of microclones with unique sequences from defined chromosomal regions and can be used for processes such as (i) isolating corresponding yeast artificial chromosome clones with large inserts, (ii) screening various cDNA libraries for isolating expressed sequences, and (iii) constructing region-specific libraries of the entire human genome. The studies described here demonstrate the power of this technology for high-resolution genome analysis and explicate their use in an efficient search for disease-associated genes localized to specific chromosomal regions

  7. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    Science.gov (United States)

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  8. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  9. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    Joergensen, A.L.; Bostock, C.J.; Bak, A.L.

    1987-01-01

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  10. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip microfl...

  11. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Yuki; Nakajima, Miki; Mohri, Takuya [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Takamiya, Masataka; Aoki, Yasuhiro [Department of Legal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Fukami, Tatsuki [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@kenroku.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2012-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. -- Highlights: ► Overexpression of miR-24 into human cell lines decreased the ARNT protein level. ► miR-24-dependent down-regulation of ARNT affected the expression of CYP1A1 and CA IX. ► Luciferase assay was performed to identify functional MREs for miR-24 in ARNT mRNA. ► The miR-24 levels inversely correlated with the ARNT protein levels in human liver.

  12. Molecular analysis of the distribution of chromosomal breakpoints: characterization of a 'hot' region for breaks in human chromosome 11

    International Nuclear Information System (INIS)

    Vannais, D.B.; Hirai, Y.; Cologne, J.B.; Waldren, C.A.; Ueno, A.

    2003-01-01

    Full text: Ionizing radiation randomly damages DNA and chromosomes whereas subsequent chromosome breaks are non-random. Assuming, as an ideal and naive but useful proposition, that breaks are equally likely anywhere in the chromosome and that a deletion always occurs between two breaks, the frequency of fragments would decrease linearly with increasing fragment size. This simple distribution is not, however, observed. To shed light on the 'real' situation of break formation we mapped breakpoints in the human chromosome no. 11 of 353 independent CD59- mutants isolated from human/hamster hybrid AL cells exposed to radiations (high and low dose-rate gamma rays, high LET carbon or nitrogen ions, protons) or chemicals (arsenic or irradiated, mutagenic histidine) or unexposed. The number of breaks per unit length of DNA differed significantly in different regions of chromosome 11.The highest level of breaks (140/mbp) were in the 0.8 mbp segment between CD59 and Catalase (CAT). Finer mapping of break points was carried out using 26 PCR primer pairs spread across this interval in 15 independent mutants. In two mutants, the break point was in a 107 bp fragment; in the other 13 the breaks were in a single 35 mbp fragment, but not all were at exactly the same site; 4 of 13 occurred in 3 different 3 mbp sub-segments. We are sequencing these fragments to look for such features as repeats: 'colder' regions like that between CD59 and WT will also be analyzed. But, since at least some breaks occurred at different sites and the frequency and distribution of breaks was about the same for all treatments, our we postulate that hot (and cold spots) may be due more to structural features or specific repair than to sequence or type of damage

  13. Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data.

    Science.gov (United States)

    Ralf, Arwin; Montiel González, Diego; Zhong, Kaiyin; Kayser, Manfred

    2018-05-01

    Next-generation sequencing (NGS) technologies offer immense possibilities given the large genomic data they simultaneously deliver. The human Y-chromosome serves as good example how NGS benefits various applications in evolution, anthropology, genealogy, and forensics. Prior to NGS, the Y-chromosome phylogenetic tree consisted of a few hundred branches, based on NGS data, it now contains many thousands. The complexity of both, Y tree and NGS data provide challenges for haplogroup assignment. For effective analysis and interpretation of Y-chromosome NGS data, we present Yleaf, a publically available, automated, user-friendly software for high-resolution Y-chromosome haplogroup inference independently of library and sequencing methods.

  14. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    International Nuclear Information System (INIS)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase

  15. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  16. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste.

    Science.gov (United States)

    Liu, Qiang; Cao, Jia; Li, Ke Qiu; Miao, Xu Hong; Li, Guang; Fan, Fei Yue; Zhao, Yong Cheng

    2009-05-01

    It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with 'E-wastes'. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group

  17. Chromosomal radiosensitivity of human leucocytes in relation to sampling time

    International Nuclear Information System (INIS)

    Buul, P.P.W. van; Natarajan, A.T.

    1980-01-01

    Frequencies of chromosomal aberrations after irradiation with X-rays of peripheral blood lymphocytes in vitro were determined at different times after initiation of cultures. In each culture, the kinetics of cell multiplication was followed by using BrdU labelling and differential staining of chromosomes. The results indicate that the mixing up of first and second cell cycle cells at later sampling times cannot explain the observed variation in the frequencies of chromosomal aberrations but that donor-to-donor variation is a predominant factor influencing yields of aberrations. The condition of a donor seems to be most important because repeats on the same donor also showed marked variability. (orig.)

  18. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  19. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    International Nuclear Information System (INIS)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L.; Berrueta, Lisbeth; Salmen, Siham

    2016-01-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  20. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Peterson, Darrell L. [Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA (United States); Berrueta, Lisbeth, E-mail: lberruet@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Salmen, Siham, E-mail: sihamsa@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of)

    2016-05-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  1. Implications for x-chromosome regulation from studies of human x-chromosome DNA

    International Nuclear Information System (INIS)

    Wolf, S.F.; Migeon, B.R.

    1983-01-01

    It is clear that there must be multiple events involved in the regulation of the mammalian X chromosome. The initial event, occurring about the time of implantation results in inactivation of all but a single X chromosome in diploid cells. A popular working hypothesis is that DNA modification, such as methylation or sequence rearrangement, might be responsible for maintenance of the inactive state. Methylation is particularly attractive, since the preference for methylating half-methylated sites might result in perpetuation of the differentiated state. In this paper we discuss several facets of our studies of X inactivation; specifically, our general strategy, studies of X DNA methylation, and studies of loci that escape inactivation. 47 references, 8 figures, 2 tables

  2. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys

    Science.gov (United States)

    Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.

    1996-01-01

    Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.

  3. Prediction for the occurrence of clonal chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Nakano, M.; Kadama, Y.; Ohtaki, K.; Itoh, M.; Awa, A.; Cologne, J.; Nakamura, N.

    2003-01-01

    Full text: Identical chromosome aberrations among multiple blood lymphocytes in a blood sample (clonal aberrations) are encountered occasionally during cytogenetic examination of radiation-exposed people. Clonal aberrations are found primarily among high-dose exposed people but no systematic surveys were ever conducted. Therefore, the underlying mechanism is unknown. Here we conducted a large-scale screening for detecting clonal aberrations using FISH followed by Q-banding. Examinations of 500 cells from each of 513 A-bomb survivors led us to detect 96 clones. The clonal cell fraction (Cf) varied from 0.6% to 20% among the 500 cells. As the number of clonal event was inversely proportional to Cf, we hypothesized that the progenitor cells vary extensively in the number of offspring that they can produce and relative number of progenitor cells decreases as the increase of treatment, while other genes such as DNA repair proteinsnumber of progenitor cells capable to form clones (Cf >=0.6%) to be 2 (1 to 3) in non-exposed individuals. The number increased to up to 7 among the high-dose exposed survivors. Further, our preliminary results for the origins of 10 clones indicated that both hematopoietic stem cells (HSCs) and mature T cells contributed to the clone formation roughly equally. Thus, the estimated number of 2 in non-exposed individuals is shared as one HSC and one mature T cells. The model could neatly explain the frequency of clones in two reports. Our model predicts that clonal aberrations are rarely found but clonal expansion of T lymphocytes occurs commonly. In fact, clonal expansions of non-aberrant cells are reported using TCR gene rearrangement patterns as a marker. We now understand the rough structure of lymphocyte pool in humans and can predict the probability of detecting a clone if the individual frequency of non-clonal translocations and the number of cells scored are given

  4. Cosmic radiation induced chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    De Angelis, G.; Facius, R.; Reitz, G.

    2003-01-01

    Since decades, elevated frequencies of dicentric chromosomes (DIC) in human lymphocytes have successfully been used as a biological dosimeter in cases of acute, often accidental exposures to ionizing radiation. As long as duration and time lags after exposure are small compared to the lifetime of DIC, their frequencies can also be used to assess doses from protracted, chronic irradiation. E.g., within the substantial range of uncertainties, the frequencies of DIC observed in cosmonauts are compatible with the frequencies expected from doses of low and high LET radiation to which they were exposed in low earth orbit (LEO). On the other hand, frequencies of DIC detected in lymphocytes of civilian aviation crewmembers rarely correlate with the doses accumulated all along their professional career. For such long duration exposures with relatively low induction rates, the concomitant decay of DIC frequencies due to the removal during exposure of lymphocytes carrying DIC has to be taken into account. We present temporal profiles of frequencies of DIC during the exposure calculated with a model of exponential decay of DIC for some scenarios of chronic exposure to cosmic radiation. E.g., even after a 'heavily' shielded Mars mission, the expected frequencies of DIC in lymphocytes of astronauts will be 10 to 40 times higher than the terrestrial control levels. For air flight personnel we calculated the time profiles of frequencies of DIC in lymphocytes of a 'typical' pilot, a male cabin attendant and a female cabin attendant whose professional radiation exposures were recalculated for the actual flight routes flown during their entire flight career as recorded in detailed duty logs. These results demonstrate that experimental (epidemiological) studies concerning DIC in air or space flight personnel must explicitly take into consideration the temporal exposure profiles in the prospective study population and that the point in time at which blood samples are to be drawn must

  5. Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction.

    Science.gov (United States)

    Ivanova, Christa; Ramoni, Jonas; Aouam, Thiziri; Frischmann, Alexa; Seiboth, Bernhard; Baker, Scott E; Le Crom, Stéphane; Lemoine, Sophie; Margeot, Antoine; Bidard, Frédérique

    2017-01-01

    The hydrolysis of biomass to simple sugars used for the production of biofuels in biorefineries requires the action of cellulolytic enzyme mixtures. During the last 50 years, the ascomycete Trichoderma reesei , the main source of industrial cellulase and hemicellulase cocktails, has been subjected to several rounds of classical mutagenesis with the aim to obtain higher production levels. During these random genetic events, strains unable to produce cellulases were generated. Here, whole genome sequencing and transcriptomic analyses of the cellulase-negative strain QM9978 were used for the identification of mutations underlying this cellulase-negative phenotype. Sequence comparison of the cellulase-negative strain QM9978 to the reference strain QM6a identified a total of 43 mutations, of which 33 were located either close to or in coding regions. From those, we identified 23 single-nucleotide variants, nine InDels, and one translocation. The translocation occurred between chromosomes V and VII, is located upstream of the putative transcription factor vib1 , and abolishes its expression in QM9978 as detected during the transcriptomic analyses. Ectopic expression of vib1 under the control of its native promoter as well as overexpression of vib1 under the control of a strong constitutive promoter restored cellulase expression in QM9978, thus confirming that the translocation event is the reason for the cellulase-negative phenotype. Gene deletion of vib1 in the moderate producer strain QM9414 and in the high producer strain Rut-C30 reduced cellulase expression in both cases. Overexpression of vib1 in QM9414 and Rut-C30 had no effect on cellulase production, most likely because vib1 is already expressed at an optimal level under normal conditions. We were able to establish a link between a chromosomal translocation in QM9978 and the cellulase-negative phenotype of the strain. We identified the transcription factor vib1 as a key regulator of cellulases in T. reesei whose

  6. Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.

    Science.gov (United States)

    van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B

    2015-10-01

    Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin, but phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote. Human cleavage stage embryos show high levels of chromosomal instability. What causes this high error rate is unknown, as mechanisms used to ensure proper chromosome segregation in mammalian embryos are poorly described. In this study, we investigated the pathways regulating CPC targeting to the inner centromere in human embryos. We characterized the distribution of the CPC in relation to activity of its two main centromeric targeting pathways: the Bub1-H2ApT120-Sgo-CPC and Haspin-H3pT3-CPC pathways. The study was conducted between May 2012 and March 2014 on human surplus embryos resulting from in vitro fertilization treatment and donated for research. In zygotes, nuclear envelope breakdown was monitored by time-lapse imaging to allow timed incubations with specific inhibitors to arrest at prometaphase and metaphase, and to interfere with Haspin and Aurora B/C kinase activity. Functionality of the targeting pathways was assessed through characterization of histone phosphorylation dynamics by immunofluorescent analysis, combined with gene expression by RT-qPCR and immunofluorescent localization of key pathway proteins. Immunofluorescent analysis of the CPC subunit Inner Centromere Protein revealed the pool of stably bound CPC proteins was not strictly confined to the inner centromere of prometaphase chromosomes in human zygotes, as observed in later stages of preimplantation development and somatic cells. Investigation of the

  7. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  8. Problem-elephant translocation: translocating the problem and the elephant?

    Directory of Open Access Journals (Sweden)

    Prithiviraj Fernando

    Full Text Available Human-elephant conflict (HEC threatens the survival of endangered Asian elephants (Elephas maximus. Translocating "problem-elephants" is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: "homers" returned to the capture site, "wanderers" ranged widely, and "settlers" established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals.

  9. Computer graphics of SEM images facilitate recognition of chromosome position in isolated human metaphase plates.

    Science.gov (United States)

    Hodge, L D; Barrett, J M; Welter, D A

    1995-04-01

    There is general agreement that at the time of mitosis chromosomes occupy precise positions and that these positions likely affect subsequent nuclear function in interphase. However, before such ideas can be investigated in human cells, it is necessary to determine first the precise position of each chromosome with regard to its neighbors. It has occurred to us that stereo images, produced by scanning electron microscopy, of isolated metaphase plates could form the basis whereby these positions could be ascertained. In this paper we describe a computer graphic technique that permits us to keep track of individual chromosomes in a metaphase plate and to compare chromosome positions in different metaphase plates. Moreover, the computer graphics provide permanent, easily manipulated, rapid recall of stored chromosome profiles. These advantages are demonstrated by a comparison of the relative position of group A-specific and groups D- and G-specific chromosomes to the full complement of chromosomes in metaphase plates isolated from a nearly triploid human-derived cell (HeLa S3) to a hypo-diploid human fetal lung cell.

  10. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. (Harvard Medical School, Boston, MA (USA))

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  11. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    International Nuclear Information System (INIS)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F.

    1988-01-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid β precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS

  12. Human chromosome 9 can complement UV sensitivity of xeroderma pigmentosum group A cells

    International Nuclear Information System (INIS)

    Ishizaki, Kanji; Sasaki, Masao S.; Ikenaga, Mituo; Nakamura, Yusuke

    1990-01-01

    A single human chromosome derived from normal human fibroblasts and tagged with the G418 resistance gene was transferred into SV40-transformed xeroderma pigmentosum group A (XP-A) cells via microcell fusion. When chromosome 1 or 12 was transferred, UV sensitivity of microcell hybrid cells was not changed. By contrast, after transferring chromosome 9,7 of 11 reipient clones were as UV-resistant as normal human cells. Four other clones were still as UV-sensitive as the parental XP-A cells. Southern hybridization analysis using a polymorphic probe, pEKZ19.3, which is homologous to a sequence of the D9S17 locus on chromosome 9, has confirmed that at least a part of normal human chromosome 9 was transferred into the recipient clones. However, amounts iof UV-induced unscheduled DNA synthesis in the UV-resistant clones were only one-third of those in normal human cells. These results indicate that a gene on chromosome 9 can confer complementation of high UV sensitivity of XP-A cells although it is still possible that 2 or more genes might be involved in the defective-repair phenotypes of XP-A. (author). 20 refs.; 3 figs.; 1 tab

  13. Non-random distribution of instability-associated chromosomal rearrangement breakpoints in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Moore, Stephen R.; Papworth, David; Grosovsky, Andrew J.

    2006-01-01

    Genomic instability is observed in tumors and in a large fraction of the progeny surviving irradiation. One of the best-characterized phenotypic manifestations of genomic instability is delayed chromosome aberrations. Our working hypothesis for the current study was that if genomic instability is in part attributable to cis mechanisms, we should observe a non-random distribution of chromosomes or sites involved in instability-associated rearrangements, regardless of radiation quality, dose, or trans factor expression. We report here the karyotypic examination of 296 instability-associated chromosomal rearrangement breaksites (IACRB) from 118 unstable TK6 human B lymphoblast, and isogenic derivative, clones. When we tested whether IACRB were distributed across the chromosomes based on target size, a significant non-random distribution was evident (p < 0.00001), and three IACRB hotspots (chromosomes 11, 12, and 22) and one IACRB coldspot (chromosome 2) were identified. Statistical analysis at the chromosomal band-level identified four IACRB hotspots accounting for 20% of all instability-associated breaks, two of which account for over 14% of all IACRB. Further, analysis of independent clones provided evidence within 14 individual clones of IACRB clustering at the chromosomal band level, suggesting a predisposition for further breaks after an initial break at some chromosomal bands. All of these events, independently, or when taken together, were highly unlikely to have occurred by chance (p < 0.000001). These IACRB band-level cluster hotspots were observed independent of radiation quality, dose, or cellular p53 status. The non-random distribution of instability-associated chromosomal rearrangements described here significantly differs from the distribution that was observed in a first-division post-irradiation metaphase analysis (p = 0.0004). Taken together, these results suggest that genomic instability may be in part driven by chromosomal cis mechanisms

  14. Genome association study of human chromosome 13 and ...

    Indian Academy of Sciences (India)

    Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University,. Jinan, Shandong ... chromosome 13 and susceptibility to coronary artery disease in a Chinese population. J. Genet. .... of the 164 bp allele in cases was significantly lower than .... 5-lipoxygenase activating protein (FLAP), is associated with.

  15. Mapping of the human APOB gene to chromosome 2p and demonstration of a two-allele restriction fragment length polymorphism

    International Nuclear Information System (INIS)

    Huang, L.; Miller, D.A.; Bruns, G.A.P.; Breslow, J.L.

    1986-01-01

    ApoB is a large glycoprotein with an apparent molecular mass of 550 kDa on NaDodSO 4 /PAGE. Recently, apoB cDNA clones have been isolated from an expression library made with mRNA from a human hepatoma cell line. These clones, which were all 1.5-1.6 kilobases (kb) long and corresponded to the 3' end of apoB mRNA, were used to demonstrate that hepatic apoB mRNA is ≅ 22 kb long. In the current report, a probe derived from one of these cDNA clones, pB8, was used for in situ hybridization experiments to map the human gene for apoB, APOB, to the distal half of the short arm of chromosome 2. This probe was also used to analyze somatic cell hybrids and, in agreement with the in situ hybridization studies, concordancy was demonstrated with chromosome 2. In addition, two hybrids with chromosome 2 translocations that contain only the short arm reacted with the pB8 probe. A third hybrid with a complex rearrangement of chromosome 2, which deleted an interstitial region and the tip of the short arm of chromosome 2, did not react. These data indicate that APOB maps to either 2p21-p23 or 2p24-pter. In further studies, DNA from normal individuals, digested with the restriction endonuclease EcoRI and subjected to Southern blot analysis with the pB8 probe, revealed a two-allele restriction fragment length polymorphism (RFLP). The mapping studies provide the means for understanding the relationship of the APOB locus to others in the human genome, whereas the demonstration of an APOB RFLP increases their ability to assess the role of this locus in determining plasma lipoprotein levels

  16. Chromatid Painting for Chromosomal Inversion Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...

  17. Chromatid Painting for Chromosomal Inversion Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...

  18. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death

    Directory of Open Access Journals (Sweden)

    Kim Yong K

    2011-04-01

    Full Text Available Abstract Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.

  19. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation

    Directory of Open Access Journals (Sweden)

    Giuliana Cassinelli

    2009-01-01

    Full Text Available Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC. We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs.

  20. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation1

    Science.gov (United States)

    Cassinelli, Giuliana; Favini, Enrica; Degl'Innocenti, Debora; Salvi, Alessandro; De Petro, Giuseppina; Pierotti, Marco A; Zunino, Franco; Borrello, Maria Grazia; Lanzi, Cinzia

    2009-01-01

    Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC). We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F) devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs. PMID:19107227

  1. Human male infertility, the Y chromosome, and dinosaur extinction

    Directory of Open Access Journals (Sweden)

    Sherman J. Silber

    2011-06-01

    Our studies of the Y chromosome and male infertility suggest that the default mechanism for determining the sex of offspring is the temperature of egg incubation, and that genetic sex determination (based on sex chromosomes like X and Y has evolved many times over and over again in different ways, in different genera, as a more foolproof method than temperature variation of assuring a balanced sex ratio in offspring. The absence of such a genetic sex determining mechanism in dinosaurs may have led to a skewed sex ratio when global temperature dramatically changed 65,000,000 years ago, resulting in a preponderance of males, and consequentially a rapid decline in population.

  2. Loss of heterozygosity of chromosome 15 in human lung carcinomas

    International Nuclear Information System (INIS)

    Mitchell, C.E.; Palmisano, W.A.; Lechner, J.F.

    1994-01-01

    Loss of heterozygosity (LOH) in tumors may be associated with the inactivation of tumor suppressor genes. A tumor suppressor gene for lung cancer may reside on chromosome 15, because deletions in this chromosome are frequently observed. Recently, it was reported that a newly discovered gene, GTPase-activating protein-3 (GAP3) maps to chromosome 15. GAP3 is a member of a family of GAP-related genes. Although the precise function of GAP3 is not known, it is thought that GAP3 is involved in the regulation of ras-like GTPase activities. Ras proteins have a low intrinsic activity, and their inactivation is dependent on GAPS in vivo. Oncogenic mutants of ras proteins, for example, at codons 12, 13, or 61, are resistant to GAP-mediated GTPase stimulation and are constituitively locked in their active, GTP-bound states. The purpose of this investigation was to determine the frequency and extent of LOH of GAP3 in a group of patients with lung cancer

  3. Chromosomes of older humans are more prone to aminopterine-induced breakage

    International Nuclear Information System (INIS)

    Esposito, D.; Fassina, G.; Szabo, P.; Weksler, M.; De Angelis, P.; Siniscalco, M.; Rodgers, L.

    1989-01-01

    The authors have adopted a simplified version of the cell hybrid cotransfer method to test the hypothesis that human lymphocytes derived from elderly individuals have a higher chromosome instability. Peripheral blood lymphocytes from old male individuals and young controls were fused with a Chinese hamster cell line (CHO-YH21), yielding 10 HAT-resistant rodent-human clones from the old propositi and 22 from the young controls. Both series of hybrid clones were analyzed with respect to the retention of the enzyme glucose-6-phosphate dehydrogenase and the surface antigen MIC2 identified by monoclonal antibody 12E7, two human X chromosome-linked markers located at opposite ends of the X chromosome. Cell hybrid clones with an X chromosome from a young control retained both markers in about 70% of the cells. In contrast, cell hybrid clones with an X chromosome from an old donor retained the MIC2 marker in only 30% of their cells. Slot-blot hybridization studies have established that the observed loss of the MIC2 marker is due to loss of the coding gene, not to suppression of its expression. T lymphocytes from old donors were also found to have an LD 50 for aminopterine significantly lower than the concentration of this drug in the HAT medium used to grow the hybrids. They speculate that the higher rate of chromosomal breakage and of marker loss observed along the old-age X chromosomes could be the result of molecular scars accumulated with aging at sites of constitutive chromosomal fragility

  4. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    Science.gov (United States)

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  5. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  6. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    International Nuclear Information System (INIS)

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed

  7. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    OpenAIRE

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fu...

  8. Three-Dimensional Organization of Chromosome Territories and the Human Interphase Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1998-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte

  9. Three-Dimensional Organization of Chromosome Territories and the Human Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    1999-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models, which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte

  10. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    International Nuclear Information System (INIS)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-01-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system

  11. Radiobiological application of atomic force microscopy. Analysis on human chromosomes in culture medium

    International Nuclear Information System (INIS)

    Watanabe, Makoto; Kinjo, Yasuhito

    1995-01-01

    We have proposed a 'Heterogeneous Chromatin Target Model' on the regulating mechanisms involved in chromosome mutation due to ionizing radiations. The heterogeneity of chromatin is derived from the highly condensed organization of chromatin segments that consist of hypersensitive and fragile sites in the fluctuating assembly of nucleosome clusters (superbeads). The above consideration is going to be subjected to a new experimental approach applying the atomic force microscope (AFM), one of the most promising members of a family of scanning probe microscope (SPM). The AFM can be operated in liquid as well as in air. A living specimen can be examined without any preparative procedures (for instance, fixation, staining, vecuum evaporation and so on). Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. In the present report, the mitotic metaphase chromosomes released from living cells (human lymphocytes RPMI) were spread on the clean surface of distilled water filled in a trough. The spread surface film, in which the chromosomes were embedded, was picked up and adhered tightly on a specimen substrate made of silicon. The whole-mounted chromosome were submerged in a solution of culture medium and observed within a liquid immersion cell for AFM. We used an AFM system, SPA-300 made by Seiko Instruments. The particulate chromatin segments of nucleosome clusters (superbeads) were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (author)

  12. Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications

    Czech Academy of Sciences Publication Activity Database

    Lucas, S. J.; Akpinar, B. A.; Šimková, Hana; Kubaláková, Marie; Doležel, Jaroslav; Budak, H.

    2014-01-01

    Roč. 15, DEC 9 2014 (2014) ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : Wheat genome * Chromosome sorting * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.986, year: 2014

  13. Protective Effect of Curcumin on γ - radiation Induced Chromosome Aberrations in Human Blood Lymphocytes

    International Nuclear Information System (INIS)

    AlSuhaibani, E.S

    2008-01-01

    The present work is aimed at evaluating the radioprotective effect of curcumin on γ radiation induced genetic toxicity. The DNA damage was analyzed by the frequencies of chromosome aberrations assay. Human lymphocytes were treated in vitro with 5.0 γg/ml of curcumin for 30 min at 37 degree C then exposed to 1, 2 and 4 Gy gamma-radiation. The lymphocytes which were pre-treated with curcumin exhibited a significant decrease in the frequency of chromosome aberration at 1 and 2 Gy radiation-induced chromosome damage as compared with the irradiated cells which did not receive the curcumin pretreatment. Thus, pretreatment with curcumin gives protection to lymphocytes against γ-radiation induced chromosome aberration at certain doses. (author)

  14. The flavones apigenin and luteolin induce FOXO1 translocation but inhibit gluconeogenic and lipogenic gene expression in human cells.

    Directory of Open Access Journals (Sweden)

    Christiane Bumke-Vogt

    Full Text Available The flavones apigenin (4',5,7,-trihydroxyflavone and luteolin (3',4',5,7,-tetrahydroxyflavone are plant secondary metabolites with antioxidant, antiinflammatory, and anticancer activities. We evaluated their impact on cell signaling pathways related to insulin-resistance and type 2 diabetes. Apigenin and luteolin were identified in our U-2 OS (human osteosarcoma cell screening assay for micronutrients triggering rapid intracellular translocation of the forkhead box transcription factor O1 (FOXO1, an important mediator of insulin signal transduction. Insulin reversed the translocation of FOXO1 as shown by live cell imaging. The impact on the expression of target genes was evaluated in HepG2 (human hepatoma cells. The mRNA-expression of the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK and glucose-6-phosphatase (G6Pc, the lipogenic enzymes fatty-acid synthase (FASN and acetyl-CoA-carboxylase (ACC were down-regulated by both flavones with smaller effective dosages of apigenin than for luteolin. PKB/AKT-, PRAS40-, p70S6K-, and S6-phosphorylation was reduced by apigenin and luteolin but not that of the insulin-like growth factor receptor IGF-1R by apigenin indicating a direct inhibition of the PKB/AKT-signaling pathway distal to the IGF-1 receptor. N-acetyl-L-cysteine did not prevent FOXO1 nuclear translocation induced by apigenin and luteolin, suggesting that these flavones do not act via oxidative stress. The roles of FOXO1, FOXO3a, AKT, sirtuin1 (SIRT1, and nuclear factor (erythroid-derived2-like2 (NRF2, investigated by siRNA knockdown, showed differential patterns of signal pathways involved and a role of NRF2 in the inhibition of gluconeogenic enzyme expression. We conclude that these flavones show an antidiabetic potential due to reduction of gluconeogenic and lipogenic capacity despite inhibition of the PKB/AKT pathway which justifies detailed investigation in vivo.

  15. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes.

    Directory of Open Access Journals (Sweden)

    Andreas Bolzer

    2005-05-01

    Full Text Available Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs in nuclei of quiescent (G0 and cycling (early S-phase human diploid fibroblasts (46, XY. Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes-independently of their gene density-were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.

  16. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    Science.gov (United States)

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  17. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture.

    Directory of Open Access Journals (Sweden)

    Victoria Nikitina

    Full Text Available Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa.The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells.The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12% are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described.The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before

  18. Active role of a human genomic insert in replication of a yeast artificial chromosome.

    Science.gov (United States)

    van Brabant, A J; Fangman, W L; Brewer, B J

    1999-06-01

    Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.

  19. Protannotator: a semiautomated pipeline for chromosome-wise functional annotation of the "missing" human proteome.

    Science.gov (United States)

    Islam, Mohammad T; Garg, Gagan; Hancock, William S; Risk, Brian A; Baker, Mark S; Ranganathan, Shoba

    2014-01-03

    The chromosome-centric human proteome project (C-HPP) aims to define the complete set of proteins encoded in each human chromosome. The neXtProt database (September 2013) lists 20,128 proteins for the human proteome, of which 3831 human proteins (∼19%) are considered "missing" according to the standard metrics table (released September 27, 2013). In support of the C-HPP initiative, we have extended the annotation strategy developed for human chromosome 7 "missing" proteins into a semiautomated pipeline to functionally annotate the "missing" human proteome. This pipeline integrates a suite of bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology, and biochemical pathways. From sequential BLAST searches, we have primarily identified homologues from reviewed nonhuman mammalian proteins with protein evidence for 1271 (33.2%) "missing" proteins, followed by 703 (18.4%) homologues from reviewed nonhuman mammalian proteins and subsequently 564 (14.7%) homologues from reviewed human proteins. Functional annotations for 1945 (50.8%) "missing" proteins were also determined. To accelerate the identification of "missing" proteins from proteomics studies, we generated proteotypic peptides in silico. Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the 3831 "missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15 "missing" proteins. The chromosome-wise functional annotation of all "missing" proteins is freely available to the scientific community through our web server (http://biolinfo.org/protannotator).

  20. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  1. [Architecture of the X chromosome, expression of LIM kinase 1, and recombination in the agnostic mutants of Drosophila: a model of human Williams syndrome].

    Science.gov (United States)

    Savvateeva-Popova, E V; Peresleni, A I; Sharagina, L M; Medvedeva, A V; Korochkina, S E; Grigor'eva, I V; Diuzhikova, N A; Popov, A V; Baricheva, E M; Karagodin, D; Heisenberg, M

    2004-06-01

    As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.

  2. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    Science.gov (United States)

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  3. Damage of chromosoms under irradiation of human blood lymphocytes and development of bystander effect.

    Science.gov (United States)

    Shemetun, O V

    2016-12-01

    the research the distribution of radiation induced damages among chromosomes and their bands in irra diated in vitro human blood lymphocytes and in unirradiated bystander cells.Material and methods of research: cultivation of human peripheral blood lymphocytes by semi micromethod D.A. Hungerford, modeling of radiation induced bystander effect in mixed cultures consisting of irradiated in vitro and non irradiated blood lymphocytes from persons of different gender, GTG staining of metaphase chromosomes and their cytogenetic analysis. Break points in chromosomes under the formation of aberrations were identified in exposed in vitro human peripheral blood lymphocytes in doses 0.25 Gy (95 breaks in 1248 cells) and 1.0 Gy (227 breaks in 726 cells) and in non irradiated bystander cells under their joint cultivation with irradiated in vitro human lymphocytes (51 breaks in 1137 cells at irradiation of adjacent populations of lymphocytes in dose 0.25 Gy and 75 breaks in 1321 cells at irradiation of adjacent population of lymphocytes in a dose 1.0 Gy). The distribution of injuries among the chromo somes and their bands was investigated. in radiation exposed in vitro human peripheral blood lymphocytes as well as in bystander cells the fre quency of damaged bands and number of breaks which localized in them exceeded the control value (p chromosomes were damaged according to their relative length. Location of bands with increasing number of breaks coincided with the «hot spots» of chromosome damage following irradiation and fragile sites. More sensitive to damage were G negative euchromatin chromosome bands, in which were localized 82 88 % breaks. Damageability of telomeric regions in the irradiated cells had no significant difference from the control, while in bystander cells was lower than control value (p < 0.05). O. V. Shemetun.

  4. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis

    Czech Academy of Sciences Publication Activity Database

    Šíchová, Jindra; Ohno, M.; Dincă, V.; Watanabe, M.; Sahara, K.; Marec, František

    2016-01-01

    Roč. 118, č. 3 (2016), s. 457-471 ISSN 0024-4066 R&D Projects: GA ČR(CZ) GA14-22765S Grant - others:GA JU(CZ) 052/2013/P Institutional support: RVO:60077344 Keywords : karyotype evolution * meiotic pairing * multiple sex chromosomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.288, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/bij.12756/full

  5. Radiation-induced chromosome aberrations and cell killing in normal human fibroblasts and ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Kawata, T.; Saito, M.; Uno, T.; Ito, H.; Shigematsu, N.

    2003-01-01

    Full text: When cells are held in a non-dividing state (G0) after irradiation, an enhanced survival can be observed compared to that of immediate plating. A change of survival depending on post irradiation condition is known to be repair of potentially lethal damage (RPLD). The effects of confluent holding recovery (24-h incubation following irradiation) on chromosome aberrations in normal human fibroblasts (AG1522) and ataxia telangiectasia fibroblasts (GM02052C) were examined. A chemical-induced premature chromosome condensation (PCC) technique with fluorescent in situ hybridization (FISH) was applied to study chromosome aberrations in G2 and M-phase. Results from cell survival showed that the capacity for potentially lethal damage repair was normal in AG1522 cells but very little in GM02052C cells. The frequency of chromosome aberrations in AG1522 cells decreased when cells were allowed to repair for 24-h. Especially complex type exchanges were found to decrease markedly at high doses (4Gy and 6Gy). However, the frequency of chromosome aberrations including complex type exchanges showed little decrease in GM02052C cells. Confluent holding can effectively reduce chromosome aberrations, especially complex type exchanges in normal cells

  6. Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19.

    Directory of Open Access Journals (Sweden)

    Marco Di Stefano

    Full Text Available The connection between chromatin nuclear organization and gene activity is vividly illustrated by the observation that transcriptional coregulation of certain genes appears to be directly influenced by their spatial proximity. This fact poses the more general question of whether it is at all feasible that the numerous genes that are coregulated on a given chromosome, especially those at large genomic distances, might become proximate inside the nucleus. This problem is studied here using steered molecular dynamics simulations in order to enforce the colocalization of thousands of knowledge-based gene sequences on a model for the gene-rich human chromosome 19. Remarkably, it is found that most (≈ 88% gene pairs can be brought simultaneously into contact. This is made possible by the low degree of intra-chromosome entanglement and the large number of cliques in the gene coregulatory network. A clique is a set of genes coregulated all together as a group. The constrained conformations for the model chromosome 19 are further shown to be organized in spatial macrodomains that are similar to those inferred from recent HiC measurements. The findings indicate that gene coregulation and colocalization are largely compatible and that this relationship can be exploited to draft the overall spatial organization of the chromosome in vivo. The more general validity and implications of these findings could be investigated by applying to other eukaryotic chromosomes the general and transferable computational strategy introduced here.

  7. [Association between inflammatory markers and microbial translocation in patients with human immunodeficiency virus infection taking antiretroviral treatment].

    Science.gov (United States)

    Reus Bañuls, Sergio; Portilla Sogorb, Joaquín; Sanchez-Paya, José; Boix Martínez, Vicente; Giner Oncina, Livia; Frances, Rubén; Such, José; Merino Lucas, Esperanza; Gimeno Gascón, Adelina

    2014-01-21

    Inflammatory biomarkers are increased in patients with human immunodeficiency virus (HIV) infection. Antiretroviral treatment (ART) improves some parameters but do not normalize them. The aim of this study is to determine those factors (including microbial translocation) associated with higher inflammation in HIV treated patients. Transversal observational study. HIV patients receiving ART with an HIV viral load (VL)<400 copies/mL. Selection of patients: consecutively between November 2011 and January 2012. Main variable: plasma levels of interleukin 6 (IL-6) and tumour necrosis factor α (TNF-α). Main explanatory variable: microbial translocation markers (16S ribosomal DNA and sCD14). Patients with IL-6 or TNF-α levels above percentile 75 (group 1) were compared with the rest of patients (group 2). Odds ratio (OR) were determined. Eighty-one patients were included (73% male, median age 45 years, 48% stage C). Twenty-six percent had chronic hepatitis C. Median CD4 cell was 493/mm(3) and 30% had detectable HIV VL. 16S ribosomal DNA was detected in 21% of patients. Factors associated with the higher levels of inflammatory markers were 16S ribosomal DNA (OR 77, P<.0001), sCD14 levels (P<.0001) and history of cardiovascular disease (OR 15, P<.01). In multivariate analysis, associations remained for 16S ribosomal DNA (OR 62, P<.0001) and previous cardiovascular disease (OR 25, P<.01). In patients with HIV infection receiving treatment, the higher levels of inflammatory markers are associated with microbial translocation and past cardiovascular events. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  8. Large-scale polymorphism near the ends of several human chromosomes analyzed by using fluorescence in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.J.; Friedman, C. [Univ. of Washington, Seattle, WA (United States); Giorgi, D. [CNRS, Montpelier (France)] [and others

    1994-09-01

    We have discovered a large DNA segment that is polymorphically present at the ends of several human chromosomes. The segment, f7501, was originally derived form a human chromosome 19-specific cosmid library. FISH was used to determine the cosmid`s chromosomal distribution on 44 unrelated humans and several closely related primates. The human subjects represent a diversity of reproductively isolated ethnic populations. FISH analysis revealed that sequences highly homologous to the cosmid`s insert are present on both homologs at 3q, 15q,. and 19p in almost all individuals (88, 85, and 87 of 88 homologs, respectively). Other chromosomes sites were labeled much more rarely in the sampled individuals. For example, 56 of the 88 analyzed chromosomes 11 were labeled (18+/+, 6-/-, and 20+/- individuals). In contrast, 2q was labeled on only 1/88 sampled chromosomes. The termini of 2q, 5q, 6p, 6q, 7p, 8p, 9p, 9q, 11p, 12q, 16p, 19q, and 20q and an interstitial site at 2q13-14 were labeled in at least one individual of the set. EcoR1-fragments derived from the cosmid showed the same hybridization pattern as the entire cosmid, indicating that at least 40 kbp is shared by these chromosome ends. Ethnic differences in the allele frequency of these polymorphic variants was observed. For example, signals were observed on 8/10 and 7/10 of the chromosomes 7p and 16q, respectively, derived form Biakan Pygmies, but these sites were infrequently labeled in non-Pygmy human populations (2/68, respectively). This region has undergone significant changes in chromosome location during human evolution. Strong signal was seen on chimpanzee and gorilla chromosome 3, which is homologous to human chromosome 4, a chromosome unlabeled in any of the humans we have analyzed.

  9. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development.

    Science.gov (United States)

    Meyfour, Anna; Pooyan, Paria; Pahlavan, Sara; Rezaei-Tavirani, Mostafa; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-12-01

    One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.

  10. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  11. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control.We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples.Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes from Kerala, India.

  12. Neuropeptide Y receptor genes on human chromosome 4q31-q32 map to conserved linkage groups on mouse chromosomes 3 and 8

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, C.M.; Frankel, W.N. [Jackson Lab., Bar Harbor, ME (United States); Richards, J.E. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1997-05-01

    Npy1r and Npy2r, the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31-q32. We have now assigned Npy1r and Npy2r to conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 20 refs., 1 fig.

  13. Premature chromosome condensation studies in human leukemia. I. Pretreatment characteristics.

    Science.gov (United States)

    Hittelman, W N; Broussard, L C; McCredie, K

    1979-11-01

    The phenomenon of premature chromosome condensation (PCC) was used to compare the bone marrow proliferation characteristics of 163 patients with various forms of leukemia prior to the initiation of new therapy. The proliferative potential index (PPI, or fraction of G1 cells in late G1 phase) and the fraction of cells in S phase was determined and compared to the type of disease and the bone marrow blast infiltrate for each patient. Previously untreated patients with acute leukemia exhibited an average PPI value three times that of normal bone marrow (37.5% for acute myeloblastic leukemia [AML], acute monomyeloblastic leukemia [AMML], or acute promyelocytic leukemia [APML] and 42% for acute lymphocytic leukemia [ALL] or acute undifferentiated leukemia [AUL]). Untreated chronic myelogenous leukemia (CML) patients showed intermediate PPI values (25.2%), whereas CML patients with controlled disease exhibited nearly normal PPI values (14.6%). On the other hand, blastic-phase CML patients exhibited PPI values closer to that observed in patients with acute leukemia (35.4%). Seven patients with chronic lymphocytic leukemia (CLL) exhibited even higher PPI values. No correlations were observed between PPI values, fraction of cells in S phase, and marrow blast infiltrate. For untreated acute disease patients, PPI values were prognostic for response only at low and high PPI values. These results suggest that the PCC-determined proliferative potential is a biologic reflection of the degree of malignancy within the bone marrow.

  14. A Quest for Missing Proteins : update 2015 on Chromosome-Centric Human Proteome Project

    NARCIS (Netherlands)

    Horvatovich, Péter; Lundberg, Emma K; Chen, Yu-Ju; Sung, Ting-Yi; He, Fuchu; Nice, Edouard C; Goode, Robert J A; Yu, Simon; Ranganathan, Shoba; Baker, Mark S; Domont, Gilberto B; Velasquez, Erika; Li, Dong; Liu, Siqi; Wang, Quanhui; He, Qing-Yu; Menon, Rajasree; Guan, Yuanfang; Corrales, Fernando Jose; Segura, Victor; Casal, José Ignacio; Pascual-Montano, Alberto; Albar, Juan Pablo; Fuentes, Manuel; Gonzalez-Gonzalez, Maria; Diez, Paula; Ibarrola, Nieves; Degano, Rosa M; Mohammed, Yassene; Borchers, Christoph H; Urbani, Andrea; Soggiu, Alessio; Yamamoto, Tadashi; Archakov, Alexander I; Ponomarenko, Elena; Lisitsa, Andrey V; Lichti, Cheryl F; Mostovenko, Ekaterina; Kroes, Roger A; Rezeli, Melinda; Vegvari, Akos; Fehniger, Thomas E; Bischoff, Rainer; Vizcaíno, Juan Antonio; Deutsch, Eric W; Lane, Lydie; Nilsson, Carol L; Marko-Varga, György; Omenn, Gilbert S; Jeong, Seul-Ki; Cho, Jin-Young; Paik, Young-Ki; Hancock, William S

    2015-01-01

    This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level

  15. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Kalle, W.H.J.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, Jan; de Grooth, B.G.; van Hulst, N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single

  16. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans

    Science.gov (United States)

    York, Dan; Higgins, Robert J.; LeCouteur, Richard A.; Joshi, Nikhil; Bannasch, Danika

    2016-01-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041

  17. Students as "Humans Chromosomes" in Role-Playing Mitosis and Meiosis

    Science.gov (United States)

    Chinnici, Joseph P.; Yue, Joyce W.; Torres, Kieron M.

    2004-01-01

    Students often find it challenging to understand mitosis and meiosis and determine their processes. To develop an easier way to understand these terms, students are asked to role-play mitosis and meiosis and students themselves act as human chromosomes, which help students to learn differences between mitosis and meiosis.

  18. Chromosomes and irradiation: in vitro study of the action of X-rays on human lymphocytes

    International Nuclear Information System (INIS)

    Mouriquand, C.; Patet, J.; Gilly, C.; Wolff, C.

    1966-01-01

    Radioinduced chromosomal aberrations were studied in vitro on leukocytes of human peripheral blood after x irradiation at 25, 50, 100, 200, and 300 R. The numeric and structural anomalies were examined on 600 karyotypes. The relationship between these disorders and the dose delivered to the blood are discussed. An explanation on their mechanism of formation is tentatively given. (authors) [fr

  19. Cloning, chromosome localization and features of a novel human ...

    Indian Academy of Sciences (India)

    Unknown

    Math2 may have the same functions in the nervous system. [Guo L., Jiang M., Ma Y., Cheng ... from a human foetal brain cDNA library, and its localiza- tion in the human ... using the BLASTN,. BLASTP and BLASTX algorithms on the NCBI web.

  20. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  1. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans.

    Science.gov (United States)

    Romanenko, Svetlana A; Perelman, Polina L; Trifonov, Vladimir A; Serdyukova, Natalia A; Li, Tangliang; Fu, Beiyuan; O'Brien, Patricia C M; Ng, Bee L; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.

  2. Cell killing and chromosomal aberration induced by heavy-ion beams in cultured human tumor cells

    International Nuclear Information System (INIS)

    Takakura, K.; Funada, A.; Mohri, M.; Lee, R.; Aoki, M.; Furusawa, Y.; Gotoh, E.

    2003-01-01

    Full text: To clarify the relation between cell death and chromosomal aberration in cultured human tumor cells irradaited with heavy-ion beams. The analyses were carried out on the basis of the linear energy transfer (LET) values of heavy ion beams as radiation source. Exponentially growing human tumor cells, Human Salivary Gland Tumor cells (HSG cells), were irradiated with various high energy heavy ions, such as 13 keV/micrometer carbon (C) ions as low LET charged particle radiation source, 120 keV/ micrometer carbon (C) ions and 440 keV/micrometer iron (Fe) ions as high LET charged particle radiation sources.The cell death was analysed by the colony formation method, and the chromosomal aberration and its repairing kinetics was analysed by prematurely chromosome condensation method (PCC method) using calyculin A. Chromatid-type breaks, isochromatid breaks and exchanges were scored for the samples from the cells keeping with various incubation time after irradiation. The LET dependence of the cell death was similar to that of the chromosome exchange formation after 12 hours incubation. A maximum peak was around 120 keV/micrometer. However it was not similar to the LET dependence of isochromatid breaks or chromatid breaks after 12 hours incubation. These results suggest that the exchanges formed in chromosome after irradiation should be one of essential causes to lead the cell death. The different quality of induced chromosome damage between high-LET and low-LET radiation was also shown. About 89 % and 88 % chromatid breaks induced by X rays and 13 keV/micrometer C ions were rejoined within 12 hours of post-irradiation, though only 71% and 58 % of chromatid breaks induced by 120 keV/micrometer C ions and 440 keV/micrometer Fe ions were rejoined within 12 hours of post-irradiation

  3. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  4. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q.

    Science.gov (United States)

    Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D

    1988-01-01

    A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.

  5. [Familial febrile convulsions is supposed to link to human chromosome 19p13.3].

    Science.gov (United States)

    Qi, Y; Lü, J; Wu, X

    2001-01-10

    To localize the familial febrile convulsion (FC) genes on human chromosomes. For 63 FC pedigrees, tetranucleotide repeat markers D19S253 D19S395 and D19S591 on the short arm of chromosome 19, as well as dinucleotide repeat markers D8S84 and D8S85 on the long arm of chromosome 8 were genotyped. Transmission disequilibrium test (TDT) and Lod score calculation were carried out. The data were processed by PPAP software package. All the alleles in every locus of FC probands and normal controls were in Hardy-Weinburg balance. Transmission disequilibrium was found on D8S84, D19S395 and D19S591 in FC families. chi(2) values were 4.0, 5.124 and 7.364 separately. Each P value was < 0.05, and significantly meaningful. The two-point Lod scores between D8S84 and FC, D8S85 and FC, D19S253 and FC, D19S395 and FC, D19S591 and FC are 0.00002, 0.000017, 0.58, 1.53 and 1.42 respectively. The multi-point Lod score among markers on chromosome 8q and FC was 0.88, while Lod score among markers on chromosome 19p and FC reached 2.78. The results by both the non-parameter (TDT) and parameter (Lod score) methods were consistant on a whole. FC is linked with chromosome region 19p13.3, but not with chromosome 8q.

  6. Analysis of the frequency of unstable chromosome aberrations in human lymphocytes irradiated with 60Co

    International Nuclear Information System (INIS)

    Mendonca, Julyanne C.G.; Mendes, Mariana E.; Lima, Fabiana F.; Santos, Neide

    2013-01-01

    The aim of this study was to analyze the frequency of unstable chromosomal aberrations induced by gamma radiation from a 60 Co source at two different doses. Samples were obtained from a healthy donor and exposed to 60 Co source (Gammacel 220 ) located in the Department of Nuclear Energy of Pernambuco Federal University (DEN/UFPe/Brazil) with a rate of air Kerma to 3,277 Gy/h. Exposures resulted in absorbed dose 0.51 Gy and 0.77 Gy. Mitotic metaphases were obtained by culturing lymphocytes for chromosome analysis and the slides were stained with 5% Giemsa. Among the unstable chromosomal aberrations the dicentric chromosomes, ring chromosomes and acentric fragments were analyzed. To calculate the significance level the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. To calculate the significance level of the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. The results showed that there was significant difference of the frequencies of dicentric chromosomes (from 0.18 to 0.51 to 0.37 Gy to 0.77 Gy), however there was no statistically significant difference between the frequencies of acentric fragments ( 0.054 to 0, 51 Gy to 0.063 to 0.77 Gy) and ring chromosomes (0.001 to 0.51 Gy to 0.003 to 0.77 Gy). The low number of rings is found justified, considering that in irradiated human lymphocytes, its appearance is rare relative to dicentrics. The results confirm that dicentrics are the most reliable biomarkers in estimating dose after exposure to gamma radiation. These two points will make the calibration curve dose-response being built for Biological Dosimetry Laboratory of CRCN-NE/CNEN

  7. Chromosomal damages and mutagenesis in mammalian and human cells induced by ionizing radiations with different LET

    International Nuclear Information System (INIS)

    Govorun, R.D.

    1997-01-01

    On the basis of literature and proper data the inference was made about essential role of structural chromosomal (and gene) damages in spontaneous and radiation-induced mutagenesis of mammalian and human cells on HPRT-loci. The evidences of increasing role of these damages in the mutagenesis after the influence of ionizing radiations with high LET are adduced. The consequences of HPRT-gene damages have been examined hypothetically. The geterogeneity of mutant subclones on their cytogenetical properties were revealed experimentally. The data reflect a phenomenon of the reproductive chromosomal instability in many generations of mutant cell. The mutagenesis of mammalian cells is also accompanied by the impairment of chromosome integrity with high probability as a stage of appropriate genome reorganization because of changed vital conditions

  8. Cytogenetic biological dosimetry in radiological protection: chromosome aberration analysis in human lymphocyties

    International Nuclear Information System (INIS)

    Campos, I.M.A. de.

    1988-01-01

    The effects of ionizing radiation on chromosomes have been know for several decades and dose effect relationships are also fairly well established for several doses and dose rates. Apart from its biological significance, the interpretation of chromosome aberration frequency associated with human exposure to radiation plays an important role in dose assessment, particularly in cases where exposure is though to have occurred but no physical dose monitoring system was present. Based on the cytogenetic data obtained from seven cases of exposure to radiation the aberration frequency have been fitted to the quadratic function Y= αD + βD 2 as the dose response curves from literature. The dose equivalent estimate by frequency of chromosomic aberration found here was compared with 60 Co and 192 Ir already published curves obtained at almost similar dose rate together with some hematological data. (author) [pt

  9. Effects of radiation and porphyrin on mitosis and chromosomes in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Tan, J.C.; Huang, C.C.; Fiel, R.J.

    1976-01-01

    The effect on mitosis of a human hematopoietic cell line RPMI-1788 treated with a metal chelate (Zn ++ ) of meso-tetra (p-carboxyphenyl) porphine (Zn-TCPP) alone at various concentrations or in combination with gamma-irradiation at various doses were studied. The results showed that both Zn-TCPP and radiation were effective in interfering with normal mitosis and that the effect of radiation was relatively more effective. Data also suggest interacting effects between Zn-TCPP and gamma-irradiation. At low doses of radiation, Zn-TCPP potentiated the effect of radiation. The reverse seemed to be true at a high dose of radiation. The effects of two porphyrins (Zn-TCPP and hematoporphyrin) and radiation on chromosomes were also studied. Chromosomal aberrations characteristic of radiation were observed. The porphyrins were found not to be effective chromosome-breaking agents under the experimental conditions tested

  10. Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation.

    Directory of Open Access Journals (Sweden)

    Bhupesh K Prusty

    Full Text Available More than 95% of the human population is infected with human herpesvirus-6 (HHV-6 during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6. In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR. Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation.

  11. Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(Fluorescence In Situ Hybridization) and SCGE(Single Cell Gel Electrophoresis)

    International Nuclear Information System (INIS)

    Chung, Hai Won; Kim, Su Young; Kim, Byung Mo; Kim, Sun Jin; Ha, Sung Whan; Kim, Tae Hwan; Cho, Chul Koo

    2000-01-01

    Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using Fluorescence In Situ Hybridization(FISH) and Single Cell Gel Electrophoresis(SCGE). Chromosomal aberrations in human lymphocyte exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method for detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.0407, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single Cell Gel Electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method for detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses

  12. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  13. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes

    Science.gov (United States)

    Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.

  14. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    Science.gov (United States)

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-02

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

  15. Different radiosensitization effects of the halogenated compounds on the human chromosome in vitro

    International Nuclear Information System (INIS)

    Kang, Y.S.

    1976-01-01

    Unscheduled DNA synthesis and chromosome aberrations were compared following X- or UV-irradiation or methyl methanesulfonate treatment in cultures of HeLa S 3 or KB cells or human and rabbit lymphocytes. The sensitization by incorporation of the halouridines BUdR and IUdR was also investigated. Unscheduled DNA synthesis occurred in two established cell lines after irradiation with 0 to 10 kR of X-rays. The rate of unscheduled synthesis was dose dependent and differed for the two cell lines. The unscheduled synthesis was not correlated with the modal chromosome number nor with the number of aberrations produced. UV-irradiated rabbit lymphocytes exhibited unscheduled DNA synthesis which saturated after a dose of 250 ergs/mm 2 . In contrast the incorporation of BUdR or IUdR eliminated this saturation and caused an increasing effect with increasing dose up to 1000 ergs/mm 2 . The degree of sensitization varied between the two halo-uridines, BUdR being more effective at high doses while IUdR was a more potent sensitizer at low doses. Chromosome aberrations were not directly related to unscheduled DNA synthesis but were sensitized by halo-uridine incorporation. In this case IUdR was more potent than BUdR at all doses studied. Methyl methanesulfonate was an effective producer of chromosome aberration in human lymphocytes of both the chromosome and chromatid type. Prior incorporation of BUdR or IUdR did not increase the total aberration produced but did increase the number of chromosome type aberration at the expense of the chromatid type

  16. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  17. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  18. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    Science.gov (United States)

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  19. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  20. Fluorescent in-situ hybridization of cattle and sheep chromosomes with cloned human fragile-X DNA

    DEFF Research Database (Denmark)

    Ali, Ahmd; Thomsen, Preben Dybdahl; Babar, M.E.

    2009-01-01

    An extensive study on spontaneous and 5-Fluorodeoxyuridine induced fragile sites identified Xq31 in cattle (Bos taurus) and (Xq24, Xq26) in sheep (Ovis aries) in addition to several autosomal fragile sites (under publication). A ZOO-FISH study using three cloned human fragile-X probes with CCG....../CGG(n) trinucleotide repeat sequence was carried out to determine homology between human and bovine fragile-X. The hybridisation results showed only a weak signal on a human chromosome that was not an X with all three fragile site probes. No signals were detected in sheep chromosomes. The signal of all three human...... fragile-X probes on cattle chromosomes was however, medium-prominent sub-centromeric signal on two homologues. BrdU administration in 12 h before harvesting identified these homologues to be chromosome number 5. In addition retrospective slides of cattle and sheep chromosomes used for fragile site studies...

  1. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    International Nuclear Information System (INIS)

    Steele, P.E.; Martin, M.A.; Rabson, A.B.; Bryan, T.; O'Brien, S.J.

    1986-01-01

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked

  2. Cloning, chromosome localization and features of a novel human ...

    Indian Academy of Sciences (India)

    We report cloning and some features of a novel human gene, MATH2, which encodes a protein of 337 amino acid residues with a basic helix–loop–helix domain ... State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China ...

  3. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, D.M.; Bolund, Lars; As part of the Chinese Human Genome Sequencing Consortium, E.T.A.L.

    2006-01-01

    as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion...

  4. Chromosomal locations of members of a family of novel endogenous human retroviral genomes

    International Nuclear Information System (INIS)

    Horn, T.M.; Huebner, K.; Croce, C.; Callahan, R.

    1986-01-01

    Human cellular DNA contains two distinguishable families of retroviral related sequences. One family shares extensive nucleotide sequence homology with infectious mammalian type C retroviral genomes. The other family contains major regions of homology with the pol genes of infectious type A and B and avian type C and D retroviral genomes. Analysis of the human recombinant clone HLM-2 has shown that the pol gene in the latter family is located within an endogenous proviral genome. The authors show that the proviral genome in HLM-2 and the related recombinant clone HLM-25 are located, respectively, on human chromosomes 1 and 5. Other related proviral genomes are located on chromosomes 7, 8, 11, 14, and 17

  5. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    NARCIS (Netherlands)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. It is generally accepted that, when no chromosomal rearrangements are involved, man

  6. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    , heart, lung, skeletal muscle, kidney, and pancreas. The human laminin alpha5-chain gene (LAMA5) was assigned to chromosome 20q13.2-q13.3 by in situ hybridization, and the mouse gene (Lama5) was mapped by linkage analysis to a syntonic region of distal chromosome 2, close to the locus for the ragged (Ra...

  7. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    Science.gov (United States)

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  8. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  9. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  10. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    Science.gov (United States)

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  11. Development of a high-throughput method for the systematic identification of human proteins nuclear translocation potential

    Directory of Open Access Journals (Sweden)

    Kawai Jun

    2009-09-01

    Full Text Available Abstract Background Important clues to the function of novel and uncharacterized proteins can be obtained by identifying their ability to translocate in the nucleus. In addition, a comprehensive definition of the nuclear proteome undoubtedly represents a key step toward a better understanding of the biology of this organelle. Although several high-throughput experimental methods have been developed to explore the sub-cellular localization of proteins, these methods tend to focus on the predominant localizations of gene products and may fail to provide a complete catalog of proteins that are able to transiently locate into the nucleus. Results We have developed a method for examining the nuclear localization potential of human gene products at the proteome scale by adapting a mammalian two-hybrid system we have previously developed. Our system is composed of three constructs co-transfected into a mammalian cell line. First, it contains a PCR construct encoding a fusion protein composed of a tested protein, the PDZ-protein TIP-1, and the transactivation domain of TNNC2 (referred to as ACT construct. Second, our system contains a PCR construct encoding a fusion protein composed of the DNA binding domain of GAL4 and the PDZ binding domain of rhotekin (referred to as the BIND construct. Third, a GAL4-responsive luciferase reporter is used to detect the reconstitution of a transcriptionally active BIND-ACT complex through the interaction of TIP-1 and rhotekin, which indicates the ability of the tested protein to translocate into the nucleus. We validated our method in a small-scale feasibility study by comparing it to green fluorescent protein (GFP fusion-based sub-cellular localization assays, sequence-based computational prediction of protein sub-cellular localization, and current sub-cellular localization data available from the literature for 22 gene products. Conclusion Our reporter-based system can rapidly screen gene products for their ability

  12. Genetic integrity of the human Y chromosome exposed to groundwater arsenic

    Directory of Open Access Journals (Sweden)

    Ali Sher

    2010-08-01

    Full Text Available Abstract Background Arsenic is a known human carcinogen reported to cause chromosomal deletions and genetic anomalies in cultured cells. The vast human population inhabiting the Ganges delta in West Bengal, India and Bangladesh is exposed to critical levels of arsenic present in the groundwater. The genetic and physiological mechanism of arsenic toxicity in the human body is yet to be fully established. In addition, lack of animal models has made work on this line even more challenging. Methods Human male blood samples were collected with their informed consent from 5 districts in West Bengal having groundwater arsenic level more than 50 μg/L. Isolation of genomic DNA and preparation of metaphase chromosomes was done using standard protocols. End point PCR was performed for established sequence tagged sites to ascertain the status of recombination events. Single nucleotide variants of candidate genes and amplicons were carried out using appropriate restriction enzymes. The copy number of DYZ1 array per haploid genome was calculated using real time PCR and its chromosomal localization was done by fluorescence in-situ hybridization (FISH. Results We studied effects of arsenic exposure on the human Y chromosome in males from different areas of West Bengal focusing on known recombination events (P5-P1 proximal; P5-P1 distal; gr/gr; TSPY-TSPY, b1/b3 and b2/b3, single nucleotide variants (SNVs of a few candidate Y-linked genes (DAZ, TTY4, BPY2, GOLGA2LY and the amplicons of AZFc region. Also, possible chromosomal reorganization of DYZ1 repeat arrays was analyzed. Barring a few microdeletions, no major changes were detected in blood DNA samples. SNV analysis showed a difference in some alleles. Similarly, DYZ1 arrays signals detected by FISH were found to be affected in some males. Conclusions Our Y chromosome analysis suggests that the same is protected from the effects of arsenic by some unknown mechanisms maintaining its structural and functional

  13. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Georgeta Crivat

    Full Text Available The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in 'diabetic' flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4, the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM. We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to

  14. Insulin Stimulates Translocation of Human GLUT4 to the Membrane in Fat Bodies of Transgenic Drosophila melanogaster

    Science.gov (United States)

    Crivat, Georgeta; Lizunov, Vladimir A.; Li, Caroline R.; Stenkula, Karin G.; Zimmerberg, Joshua; Cushman, Samuel W.; Pick, Leslie

    2013-01-01

    The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in ‘diabetic’ flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin

  15. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease.

    Science.gov (United States)

    Cantone, Irene; Fisher, Amanda G

    2017-11-05

    X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  16. Clastogenic effects of different Ureaplasma urealyticum serovars on human chromosomes

    Directory of Open Access Journals (Sweden)

    R.A.F Cunha

    1997-06-01

    Full Text Available The possibility that Ureaplasma urealyticum might play an important role in human infertility was first raised more than 20 years ago, but this association remains speculative. Considering the hypothesis that the pathogenicity of Ureaplasma urealyticum may depend on its serotypes, the clastogenic effects of different strains of Ureaplasma urealyticum, at concentrations of 103 CCU (color changing units/ml, 104 CCU/ml and 105 CCU/ml, were evaluated in vitro in short-term cultures of human lymphocytes. Total or partial mitotic inhibition was produced by Ureaplasma urealyticum serotypes 2, 3 and 10 independent of the concentration (103 CCU/ml, 104 CCU/ml or 105 CCU/ml of the microorganisms employed. In contrast, the clastogenic effects observed with serotypes 1, 7 and 12 varied according to the concentration employed in the test. Mitotic alterations were observed in Ureaplasma urealyticum serotypes 5, 6, 7, 8, 9, 11 and 12. Chromatid gaps (53.0% and chromatid breaks (13.9% were the most frequent types of alterations observed. The results of this in vitro assay demonstrated that the clastogenic effects varied with the Ureaplasma urealyticum serotypes evaluated

  17. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes.

    Science.gov (United States)

    Pongsavee, Malinee

    2009-10-30

    Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. It showed that the immune cell proliferation (lymphocyte proliferation) was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI). The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Borax had effects on immune cell proliferation (lymphocyte proliferation) and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  18. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    Directory of Open Access Journals (Sweden)

    Pongsavee Malinee

    2009-10-01

    Full Text Available Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. Results It showed that the immune cell proliferation (lymphocyte proliferation was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI. The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Conclusion Borax had effects on immune cell proliferation (lymphocyte proliferation and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  19. Kinetics of human lymphocyte division and chromosomal radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, N O; Bianchi, M S; Larramendy, M [Instituto Multidisciplinario de Biologia Celular, La Plata (Argentinia)

    1979-12-01

    Human blood from normal donors was irradiated with 200 R during the G/sub 0/ phase, and the X-ray sensitivity of early and late dividing lymphocytes in culture was expressed as percentage of induced dicentrics. Cells in first or subsequent divisions were individualized by BrdU-Giemsa techniques. Lymphocytes in the first division at 40, 44 and 72 h after the start of culture had a lower sensitivity to radiation than lymphocytes making their first division at 48, 52 and 56 h. It was observed that: (a) the combination of radiation followed by BrdU did not increase the clastoyenic action of X-rays, (b)X-rays in the dose and duration used in our cultures did not increase the frequency of SCEs, and (c) minor changes in culture conditions probably influenced the frequency of SCEs.

  20. WARBURG EFFECT AND TRANSLOCATION-INDUCED GENOMIC INSTABILITY: TWO YEAST MODELS FOR CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Valentina eTosato

    2013-01-01

    Full Text Available Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression i the activity of pyruvate kinase (PK, which recapitulates metabolic features of cancer cells, including the Warburg effect, and ii Bridge-Induced chromosome Translocation (BIT mimicking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect, and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, pyruvate kinase, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and posttranslational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (translocants, between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the Bridge-Induced Translocation system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  1. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    Science.gov (United States)

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  2. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  3. Epigenetic basis of neuronal plasticity: Association with R/G-band boundaries on human chromosomes

    Directory of Open Access Journals (Sweden)

    Yoshihisa Watanabe

    2016-09-01

    Full Text Available Epigenetic mechanisms have been suggested to have roles in neuroplasticity, in particular with regard to learning and memory formation, and in a range of neural diseases. In addition to epigenetic marks, the human genome also contains large-scale compartmentalized structures that might also influence neuroplasticity and neural disease. These structures result from variations in the amounts of GC% and in the timing of DNA replication and give rise to longitudinal differentiation (light and dark bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries. We propose that the R/G-band boundaries on human chromosomes can be altered by epigenetic mechanisms, and that these changes may affect neuroplasticity, which is important to memory and learning, and may also have a role in the development of neural diseases associated with genomic instability.

  4. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay.

    Science.gov (United States)

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Marchetti, F; Martenies, S E; Perry, M J

    2014-10-10

    Is there an association between human sperm sex chromosome disomy and sperm DNA damage? An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY disomy from 0.56 to 1.47% (representing the 25th to 75th percentile), there was a mean increase of 5.08 µm in comet extent. No other statistically significant

  5. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli

    OpenAIRE

    Sullivan, Gareth J.; Bridger, Joanna M.; Cuthbert, Andrew P.; Newbold, Robert F.; Bickmore, Wendy A.; McStay, Brian

    2001-01-01

    Human ribosomal gene repeats are distributed among five nucleolar organizer regions (NORs) on the p arms of acrocentric chromosomes. On exit from mitosis, nucleoli form around individual active NORs. As cells progress through the cycle, these mini-nucleoli fuse to form large nucleoli incorporating multiple NORs. It is generally assumed that nucleolar incorporation of individual NORs is dependent on ribosomal gene transcription. To test this assumption, we determined the nuclear location of in...

  6. Report of the first international workshop on human chromosome 14 mapping 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.W.

    1995-06-01

    The first International Workshop on Human Chromosome 14 mapping was held at Novotel in Toronto, Canada on June 9-12, 1993. There were 23 participants from nine countries. The goals of the workshop were to compile physical maps and a consensus linkage map, to consolidate available data on disease loci, to catalogue and facilitate distribution of resources and to encourage new collaborations and data sharing.

  7. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    OpenAIRE

    Pongsavee Malinee

    2009-01-01

    Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0...

  8. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    Science.gov (United States)

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. High-resolution YAC-cosmid-STS map of human chromosome 13.

    Science.gov (United States)

    Cayanis, E; Russo, J J; Kalachikov, S; Ye, X; Park, S H; Sunjevaric, I; Bonaldo, M F; Lawton, L; Venkatraj, V S; Schon, E; Soares, M B; Rothstein, R; Warburton, D; Edelman, I S; Zhang, P; Efstratiadis, A; Fischer, S G

    1998-01-01

    We have assembled a high-resolution physical map of human chromosome 13 DNA (approximately 114 Mb) from hybridization, PCR, and FISH mapping data using a specifically designed set of computer programs. Although the mapping of 13p is limited, 13q (approximately 98 Mb) is covered by an almost continuous contig of 736 YACs aligned to 597 contigs of cosmids. Of a total of 10,789 cosmids initially selected from a chromosome 13-specific cosmid library (16,896 colonies) using inter-Alu PCR probes from the YACs and probes for markers mapped to chromosome 13, 511 were assembled in contigs that were established from cross-hybridization relationships between the cosmids. The 13q YAC-cosmid map was annotated with 655 sequence tagged sites (STSs) with an average spacing of 1 STS per 150 kb. This set of STSs, each identified by a D number and cytogenetic location, includes database markers (198), expressed sequence tags (93), and STSs generated by sequencing of the ends of cosmid inserts (364). Additional annotation has been provided by positioning 197 cosmids mapped by FISH on 13q. The final (comprehensive) map, a list of STS primers, and raw data used in map assembly are available at our Web site (genome1.ccc.columbia.edu/ approximately genome/) and can serve as a resource to facilitate accurate localization of additional markers, provide substrates for sequencing, and assist in the discovery of chromosome 13 genes associated with hereditary diseases.

  10. cDNA cloning and characterization of the human THRAP2 gene which maps to chromosome 12q24, and its mouse ortholog Thrap2.

    Science.gov (United States)

    Musante, Luciana; Bartsch, Oliver; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2004-05-12

    Characterization of a balanced t(2;12)(q37;q24) translocation in a patient with suspicion of Noonan syndrome revealed that the chromosome 12 breakpoint lies in the vicinity of a novel human gene, thyroid hormone receptor-associated protein 2 (THRAP2). We therefore characterized this gene and its mouse counterpart in more detail. Human and mouse THRAP2/Thrap2 span a genomic region of about 310 and >170 kilobases (kb), and both contain 31 exons. Corresponding transcripts are approximately 9.5 kb long. Their open reading frames code for proteins of 2210 and 2203 amino acids, which are 93% identical. By northern blot analysis, human and mouse THRAP2/Thrap2 genes showed ubiquitous expression. Transcripts were most abundant in human skeletal muscle and in mouse heart. THRAP2 protein is 56% identical to human TRAP240, which belongs to the thyroid hormone receptor associated protein (TRAP) complex and is evolutionary conserved up to yeast. This complex is involved in transcriptional regulation and is believed to serve as adapting interface between regulatory proteins bound to specific DNA sequences and RNA polymerase II.

  11. Relative biological effectiveness of tritiated water on human chromosomes of lymphocytes and bone marrow cells

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Sawada, Shozo; Kamada, Nanao

    1992-01-01

    One of the major toxic effluent from nuclear power industries is tritiated water (HTO), which is released into the environment in large quantities. Low dose radiation effects and dose rate effects of HTO on human lymphocytes and bone marrow cells are not well studied. The present study was performed to investigate dose-response relationship for chromosome aberration frequencies in the human lymphocytes and bone marrow cells, by HTO in-vitro exposure at low dose ranges of 0.1 to 1 Gy. Go lymphocytes and bone marrow cells were incubated for 10 - 150 minutes with HTO at 2 cGy/min. Also 60 Co γ and 137 Cs γ rays were used as controls. Dicentric chromosomes were scored in 1,000 to 2,000 cells of each experimental series. The RBE values of HTO at low dose range for the induction of dicentric chromosomes and chromatid type aberrations were 2.7 in lymphocytes and approximately 3.8 in bone marrow cells with respect to 60 Co γ ray, respectively. Also lymphocytes were chronically exposed to HTO for 24 to 72 hrs at lower dose rates (0.2 and 0.05 cGy/min). The yields of dicentrics and rings decreased with the reduction in the dose rate of HTO, presenting a clear dose rate effects of HTO. These results provide an useful information for the assessment for health risk in humans exposed to low concentration level to HTO. (author)

  12. Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China.

    Science.gov (United States)

    Cui, Yinqiu; Li, Hongjie; Ning, Chao; Zhang, Ye; Chen, Lu; Zhao, Xin; Hagelberg, Erika; Zhou, Hui

    2013-09-30

    The West Liao River valley in Northeast China is an ecologically diverse region, populated in prehistory by human populations with a wide range of cultures and modes of subsistence. To help understand the human evolutionary history of this region, we performed Y chromosome analyses on ancient human remains from archaeological sites ranging in age from 6500 to 2700 BP. 47 of the 70 individuals provided reproducible results. They were assigned into five different Y sub-haplogroups using diagnostic single nucleotide polymorphisms, namely N1 (xN1a, N1c), N1c, C/C3e, O3a (O3a3) and O3a3c. We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. There appears to be significant genetic differences between populations of the West Liao River valley and adjacent cultural complexes in the prehistoric period, and these prehistoric populations were shown to carry similar haplotypes as present-day Northeast Asians, but at markedly different frequencies. Our results suggest that the prehistoric cultural transitions were associated with immigration from the Yellow River valley and the northern steppe into the West Liao River valley. They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations.

  13. Towards a cumulative biological dosimeter based on chromosome painting and digital image analysis

    International Nuclear Information System (INIS)

    Popp, S.; Cremer, C.; Remm, B.; Hausmann, M.; Cremer, T.; Luehrs, H.; Kaick, G. van

    1990-01-01

    An approach for a long-term (cumulative) biological dosimeter is described, based on the idea that stem cells with irradiation-induced reciprocal translocations and their progeny would neither lose nor gain genetic material and thus should retain the same proliferative potential as non-irradiated cells. Rapid detection of chromosome translocations has become possible in irradiated human lymphocytes by a newly developed fluorescent in situ hybridization method called 'chromosome painting'. We have used this approach to score chromosome aberrations, including translocation events, in over 8000 chromosomes painted in lymphocytes from two patients exposed to an X-ray contrast medium containing Th-232 and from two age-matched control persons. The percentage of both the total fraction of aberrant painted chromosomes and of translocations was found significantly higher in exposed patients. A program was developed which can automatically determine the number of normal and aberrant painted chromosomes and classify evaluated cells as 'normal' or 'aberrant' within 1 to 2 seconds. (orig.) [de

  14. Comparative Genomic Hybridization of Human Malignant Gliomas Reveals Multiple Amplification Sites and Nonrandom Chromosomal Gains and Losses

    Science.gov (United States)

    Schròck, Evelin; Thiel, Gundula; Lozanova, Tanka; du Manoir, Stanislas; Meffert, Marie-Christine; Jauch, Anna; Speicher, Michael R.; Nürnberg, Peter; Vogel, Siegfried; Janisch, Werner; Donis-Keller, Helen; Ried, Thomas; Witkowski, Regine; Cremer, Thomas

    1994-01-01

    Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 and underrepresentation of chromosome 10 as the most frequent events (1 of 2 astrocytomas, 7 of 7 glioblastomas). Gain of a part or the whole chromosome 19 and losses of chromosome bands 9pter-23 and 22q13 were detected each in five cases. Loss of chromosome band 17p13 and gain of chromosome 20 were revealed each in three cases. The validity of the CGH data was confirmed using interphase cytogenetics with YAC clones, chromosome painting in tumor metaphase spreads, and DNA fingerprinting. A comparison of CGH data with the results of chromosome banding analyses indicates that metaphase spreads accessible in primary tumor cell cultures may not represent the clones predominant in the tumor tissue ImagesFigure 1Figure 4Figure 6 PMID:8203461

  15. The Biological Effectiveness of Four Energies of Neon Ions for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2011-01-01

    Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.

  16. A revised root for the human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa.

    Science.gov (United States)

    Cruciani, Fulvio; Trombetta, Beniamino; Massaia, Andrea; Destro-Bisol, Giovanni; Sellitto, Daniele; Scozzari, Rosaria

    2011-06-10

    To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT. We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of 142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204 African DNA samples showed that the deepest clades of the revised MSY phylogeny are currently found in central and northwest Africa, opening new perspectives on early human presence in the continent. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Analysis of the conservation of synteny between Fugu and human chromosome 12

    Directory of Open Access Journals (Sweden)

    Koop Ben F

    2003-07-01

    Full Text Available Abstract Background The pufferfish Fugu rubripes (Fugu with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified. Results We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6 in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci. Conclusion This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.

  18. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    Science.gov (United States)

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  19. Gold nanoparticle-assisted primer walking for closing the human chromosomal gap

    DEFF Research Database (Denmark)

    Li, H; Shi, B; Li, X

    2013-01-01

    The finished sequence of the human genome still contains 260 euchromatic gaps. All the PCR-based genome walking techniques used to close gaps have common limitations, such as low efficiency and low specificity. We herein describe a strategy to solve this problem by employing gold nanoparticles (Au......NPs) to improve the efficiency in primer walking amplification. We used this strategy to close a gap in human chromosome 5 containing a DNA stretch composed of the 12SAT repeat. The obtained gap sequence is highly conserved among several mammalian genomes. The demonstrated AuNP-assisted primer walking strategy...

  20. Effect of mobile phone station on micronucleus frequency and chromosomal aberrations in human blood cells.

    Science.gov (United States)

    Yildirim, M S; Yildirim, A; Zamani, A G; Okudan, N

    2010-01-01

    The use of mobile telephones has rapidly increased worldwide as well as the number of mobile phone base stations that lead to rise low level radiofrequency emissions which may in turn have possible harm for human health. The national radiation protection board has published the known effects of radio waves exposure on humans living close to mobile phone base stations. However, several studies have claimed that the base station has detrimental effects on different tissues. In this study, we aimed to evaluate the effects of mobile phone base stations on the micronucleus (MN) frequency and chromosomal aberrations on blood in people who were living around mobile phone base stations and healthy controls. Frequency of MN and chromosomal aberrations in study and control groups was 8.96 +/- 3.51 and 6.97 +/- 1.52 (p: 0.16); 0.36 +/- 0.31 and 0.75 +/- 0.61 (p: 0.07), respectively. Our results show that there was not a significant difference of MN frequency and chromosomal aberrations between the two study groups. The results claim that cellular phones and their base stations do not produce important carcinogenic changes.

  1. Effect of estradiol on radiation-induced chromosome aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Kanda, Reiko; Hayata, Isamu

    1999-01-01

    As a part of studies on physiological factors that affect radiosensitivity, we examined the in vitro effect of estradiol (E2) on the yield of radiation-induced chromosome aberrations in human peripheral lymphocytes. Lymphocytes were cultured for 3 days in the medium containing E2 at 0-100000 ng/ml. On the second day, they were irradiated by X-rays at 3 Gy, and then 2% phytohemagglutinin and 0.05 μg/ml colcemid were added to the medium. After further 48 h, mitotic indices and the yields of chromosome aberrations were examined at various E2 concentrations. E2 treatment at concentrations above 1000 ng/ml resulted in dose-related inhibition of mitosis. Repeated experiments showed that the yield of dicentrics plus centric rings in the culture containing E2 at 100 ng/ml was significantly higher than the yields at 0 ng/ml. Similarly, the yield of total chromosome breaks in the culture containing E2 at 100 ng/ml was significantly higher than that at 1 ng/ml. This study provides the direct evidence in human that radiosensitivity may vary in relation to hormonal conditions. (author)

  2. Loss of heterozygosity on the X chromosome in human breast cancer.

    Science.gov (United States)

    Loupart, M L; Adams, S; Armour, J A; Walker, R; Brammar, W; Varley, J

    1995-08-01

    The analysis of loss of heterozygosity (LOH) in tumours can be a powerful tool for mapping the sites of tumour suppressor genes in the human genome. A panel of breast cancer patients was assembled as pairs of tumour and lymphocyte DNA samples and LOH studies carried out by Southern hybridisation with polymorphic loci mapping to the X chromosome with appropriate controls. Deletion mapping revealed a high frequency of small regionalised deletions, defining at least three independent regions, one of which is particularly well mapped to a 500 kb stretch of DNA in the distal portion of the pseudoautosomal region of Xp. A second region has been identified within the pseudoautosomal region close to the pseudoautosomal boundary, and there is a third discrete site of loss on distal Xq. Perturbations of sequences at these regions represent independent events in a number of patients. This study represents the first detailed analysis of LOH on the X chromosome in human breast tumours, the results of which indicate that at least three regions of this chromosome are involved in the disease.

  3. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  4. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.

    Science.gov (United States)

    Choudhury, Monisha Nath; Uddin, Arif; Chakraborty, Supriyo

    2017-06-01

    Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.

  5. Types of structural chromosome aberrations and their incidences in human spermatozoa X-irradiated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Yujiroh; Tateno, Hiroyuki; Mikamo, Kazuya (Asahikawa Medical College (Japan). Department of Biological Sciences)

    1990-02-01

    The authors studied the effects of in vitro X-irradiation on human sperm chromosomes, using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. 28 semen samples from 5 healthy men were exposed to 0.23, 0.45, 0.91 and 1.82 Gy of X-rays. Totals of 2098 and 2862 spermatozoa were karyotyped in the control and the irradiated groups, respectively. The indicence of spermatozoa with X-ray-induced structural chromosome aberrations (Y) increased linearly with increasing dosage (D), being best expressed by the equation, Y = 0.08 + 34.52 D. The incidence of breakage-type aberrations was moe than 9 times higher than that of exchange-type aberrations. Both of them showed linear dose-dependent increases, which were expressed by the regression lines, Y = -0.014 + 0.478 D and Y -0.010 + 0.057 D, respectively. The incidence of chromosome-ltype aberrations was about 6 times higher than that of chromatid-type aberrations. Their dose-dependent increases were expressed by the regression lines, Y = -0.015 + 0.462 D and Y = -0.006 + 0.079 D, respectively. These results are discussed in relation to the previous data obtained with {gamma}-rays. The repair mechanism of X-ray-induced sperm DNA lesions is also discussed. (author). 21 refs.; 4 figs.; 4 tabs.

  6. Translocation of fission products in the human food chain of the Republic of Croatia during the period from 1986 to 1989

    International Nuclear Information System (INIS)

    Lokobauer, Nevenka; Bauman, Alica; Marovic, Gordana

    2004-01-01

    The human environment in the Republic of Croatia is contaminated with fission products which have originated in nuclear explosions and nuclear facility accidents through fallout. The investigation of the deposition of radionuclides and their translocation through the food chain have been carried out by the Department for Radiation Protection since 1959. Because of the Chernobyl accident which led to enhanced deposition of all fission products the contamination of human environment in Croatia has been much higher than ever in the past three decades. This paper deals with deposition and translocation of 137 Cs and 90 Sr after the Chernobyl nuclear accident particularly in the human food chain. The investigation focused on most significant food components consumed by the population of Croatia in the period from 1986 to 1989

  7. Three-dimensional visualization of a human chromosome using coherent x-ray diffraction

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Ishikawa, Tetsuya; Takahashi, Yukio; Imamoto, Naoko; Maeshima, Kazuhiro

    2010-01-01

    We succeeded in observing a human chromosome in two- and three-dimensions using x-ray diffraction microscopy. X-ray diffraction microscopy is a lens-less imaging technique utilizing coherent x-ray diffraction, and can overcome various limitations in conventional lens-based x-ray microscopy. Biological applications of the method have been limited to 2D observation, and 3D observation has been long waited. We found that the reconstructed chromosome images contain high-density axial structure, which has not been observed under unstained or unlabeled conditions. The result experimentally demonstrates the effectiveness of x-ray diffraction microscopy in observing internal structures of unstained biological samples with high image contrast. (author)

  8. A study of some problems in chromosome cultivation after ionization radiation of human blood in vitro

    International Nuclear Information System (INIS)

    Jiang Benrong; Yao Bo; Chen Zhijian

    1992-01-01

    The effects of Cytochalasin B (Cyt-B) and cultural time on mitotic index (MI) during chromosome culture of human peripheral blood irradiated by 6 MV X-ray in vitro were studied. The results showed: (1) a successful cultivation with enough mitotic figures could be carried out in order to estimate the irradiation dose with chromosome aberrations and when the predicted dose was above 6 Gy in a radiation accident, when the predicted dose was up to 15 Gy the cultural time should be prolonged and Cyt-B should be added to the cultural medium; (2) it was possible to establish a dose effect calibration curve for doses above 5 Gy by adding Cyt-B and prolonging the cultural time; so that its value as a biological dosimeter for clinical application might be increased than before

  9. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  10. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7

    DEFF Research Database (Denmark)

    Ebert, Grit; Steininger, Anne; Weißmann, Robert

    2014-01-01

    of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS: Our study suggests a link of nuclear architecture and the propagation of SDs across......BACKGROUND: Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders...... chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome....

  11. Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Nishio, Sachiyo; Ohira, Takahito; Sunamura, Naohiro; Oshimura, Mitsuo; Ryoke, Kazuo; Kugoh, Hiroyuki

    2015-01-01

    Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcription compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.

  12. Repression of hTERT transcription by the introduction of chromosome 3 into human oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Sachiyo [Division of Oral and Maxillofacial Biopathological Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503 (Japan); Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503 (Japan); Ohira, Takahito; Sunamura, Naohiro [Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503 (Japan); Oshimura, Mitsuo [Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, 683-8503 (Japan); Ryoke, Kazuo [Division of Oral and Maxillofacial Biopathological Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503 (Japan); Kugoh, Hiroyuki, E-mail: kugoh@med.tottori-u.ac.jp [Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503 (Japan); Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, 683-8503 (Japan)

    2015-10-30

    Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcription compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.

  13. Simulation of DNA Damage in Human Cells from Space Radiation Using a Physical Model of Stochastic Particle Tracks and Chromosomes

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu

    2015-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.

  14. Type 1 IGF receptor translocates to the nucleus of human tumor cells

    OpenAIRE

    Aleksic, Tamara; Chitnis, Meenali M.; Perestenko, Olga V.; Gao, Shan; Thomas, Peter H.; Turner, Gareth D.; Protheroe, Andrew S.; Howarth, Mark; Macaulay, Valentine M.

    2010-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein comprising two extracellular α subunits and two β subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated in cancers, and signals from the cell surface to promote proliferation and cell survival. Recent attention has focused on the IGF-1R as a target for cancer treatment. Here we report that the nuclei of human tumor cells contain IGF-1R, detectable using multiple antibodies to α- and ...

  15. Regulated expression of genes inserted at the human chromosomal β-globin locus by homologous recombination

    International Nuclear Information System (INIS)

    Nandi, A.K.; Roginski, R.S.; Gregg, R.G.; Smithies, O.; Skoultchi, A.I.

    1988-01-01

    The authors have examined the effect of the site of integration on the expression of cloned genes introduced into cultured erythroid cells. Smithies et al. reported the targeted integration of DNA into the human β-globin locus on chromosome 11 in a mouse erythroleukemia-human cell hybrid. These hybrid cells can undergo erythroid differentiation leading to greatly increased mouse and human β-globin synthesis. By transfection of these hybrid cells with a plasmid carrying a modified human β-globin gene and a foreign gene composed of the coding sequence of the bacterial neomycin-resistance gene linked to simian virus 40 transcription signals (SVneo), cells were obtained in which the two genes are integrated at the β-globin locus on human chromosome 11 or at random sites. When they examined the response of the integrated genes to cell differentation, they found that the genes inserted at the β-globin locus were induced during differentiation, whereas randomly positioned copies were not induced. Even the foreign SVneo gene was inducible when it had been integrated at the β-globin locus. The results show that genes introduced at the β-globin locus acquire some of the regulatory properties of globin genes during erythroid differentiation

  16. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  17. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  18. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  19. Altered DNA methylation associated with a translocation linked to major mental illness

    OpenAIRE

    McCartney, Daniel L; Walker, Rosie M; Morris, Stewart W; Anderson, Susan M; Duff, Barbara J; Marioni, Riccardo E; Millar, J Kirsty; McCarthy, Shane E; Ryan, Niamh M; Lawrie, Stephen M; Watson, Andrew R; Blackwood, Douglas H R; Thomson, Pippa A; McIntosh, Andrew M; McCombie, W Richard

    2018-01-01

    Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumin...

  20. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  1. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation.

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-06-05

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation*

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-01-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  3. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    Science.gov (United States)

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  4. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents

    International Nuclear Information System (INIS)

    Albertsen, H.M.; Abderrahim, H.; Cann, H.M.; Dausset, J.; Le Paslier, D.; Cohen, D.

    1990-01-01

    Prior to constructing a library of yeast artificial chromosomes (YACs) containing very large human DNA fragments, the authors performed a series of preliminary experiments aimed at developing a suitable protocol. They found an inverse relationship between YAC insert size and transformation efficiency. Evidence of occasional rearrangement within YAC inserts was found resulting in clonally stable internal deletions or clonally unstable size variations. A protocol was developed for preparative electrophoretic enrichment of high molecular mass human DNA fragments from partial restriction digests and ligation with the YAC vector in agarose. A YAC library has been constructed from large fragments of DNA from an Epstein-Barr virus-transformed human lymphoblastoid cell line. The library presently contains 50,000 clones, 95% of which are greater than 250 kilobase pairs in size. The mean YAC size of the library, calculated from 132 randomly isolated clones, is 430 kilobase pairs. The library thus contains the equivalent of approximately seven haploid human genomes

  5. Translocation heterozygosity in southern African species of Viscum

    Directory of Open Access Journals (Sweden)

    D. Wiens

    1980-11-01

    Full Text Available Sex-associated and floating translocation complexes are characteristic of dioecious species of  Viscum,  but are virtually absent in monoecious species. The majority of dioecious species has fixed sex-associated translocation complexes with the male being the heterozygous sex. The sex-associated multivalent is usually O4 (ring-of-four or O6 , rarely O8 . Dioecious species without sex-associated translocations are much less common. Most of the dioecious species are also polymorphic for floating translocations, producing one or more additional multivalents ranging from O4 to O12. Floating translocations may be more frequent in species that do not have sex-associated translocations. Supernumerary chromosomes are also present in several species. Sex ratios are at unity in most dioecious species, but female-biased ratios may occur in some species. The high correlation between dioecy and translocation heterozygosity suggests that translocations are primarily associated with the origin and establishment of dioecy. Any róle in the maintenance of biased sex ratios through meiotic drive is probably secondary. Sex-associated translocations may serve to stabilize dioecy by bringing the sex factors into close linkage. Subsequent structural rearrangements within a sex-associated translocation complex may bring the sex factors together in one chromosome pair, releasing floating translocations. The high frequencies of floating translocation heterozygosity in some species indicate that such heterozygosity also has adaptive value.

  6. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini)

    Science.gov (United States)

    2009-01-01

    In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus,Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates. PMID:21637455

  7. Screening human populations for chromosome damage. Progress report, March 1982-November 1982

    International Nuclear Information System (INIS)

    Norman, A.

    1982-01-01

    The micronuclear counts in 73 relatively young and healthy patients obtained in previous studies were examined. The natural logarithm of the micronuclear counts (LMNC) was approximately normally distributed so we have tested the effects of age, sex, and medical x-ray exposure on the counts. The results show a clear dependence of micronuclear counts on age, and demonstrate that studies of chromosome damage in radiation workers or in other populations exposed to radiation may be misinterpreted if the effects of age and medical x-ray examinations are not controlled. The results also show that the variability in LNMC among the individuals examined cannot be accounted for totally by the factors of age, sex, or medical x-rays. There are at least two other important sources of variation: counting statistics and degree of lymphocyte proliferation. A single set of harlequin stained cells may be sufficient for estimating micronuclear yields, the degree of lymphocyte proliferation, and possibly the frequency of chromosome aberrations. These results point to the usefulness of the micronucleus assay for screening human populations for chromosome damage

  8. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini).

    Science.gov (United States)

    Gifalli-Iughetti, Cristiani; Koiffmann, Célia P

    2009-10-01

    In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus,Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates.

  9. Detection of chromosomal instability in α-irradiated and bystander human fibroblasts

    International Nuclear Information System (INIS)

    Ponnaiya, Brian; Jenkins-Baker, Gloria; Bigelow, Alan; Marino, Stephen; Geard, Charles R.

    2004-01-01

    There is increasing evidence biological responses to ionizing radiation are not confined to those cells that are directly hit, but may be seen in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated cells (bystander effects). These so called non-targeted phenomena would have significant contributions to radiation-induced carcinogenesis, especially at low doses where only a limited number of cells in a population are directed hit. Here we present data using a co-culturing protocol examining chromosomal instability in α-irradiated and bystander human fibroblasts BJ1-htert. At the first cell division following exposure to 0.1 and 1 Gy α-particles, irradiated populations demonstrated a dose dependent increase in chromosome-type aberrations. At this time bystander BJ1-htert populations demonstrated elevated chromatid-type aberrations when compared to controls. Irradiated and bystander populations were also analyzed for chromosomal aberrations as a function of time post-irradiation. When considered over 25 doublings, all irradiated and bystander populations had significantly higher frequencies of chromatid aberrations when compared to controls (2-3-fold over controls) and were not dependent on dose. The results presented here support the link between the radiation-induced phenomena of genomic instability and the bystander effect

  10. Synteny of human chromosomes 14 and 15 in the platyrrhines (Primates, Platyrrhini

    Directory of Open Access Journals (Sweden)

    Cristiani Gifalli-Iughetti

    2009-01-01

    Full Text Available In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus, Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62. The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates.

  11. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    Science.gov (United States)

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  12. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    Science.gov (United States)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  13. The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Eichler Evan E

    2008-08-01

    Full Text Available Abstract Background It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs. This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements. Results Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.

  14. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Final report, January 1--December 31, 1997

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1998-03-01

    It has been clear for the last 15 years that cloning translocation breakpoints in both AML de novo and t-AML would provide the DNA probes required to determine whether the breakpoints in cytogenetically apparently similar translocations were identical at the level of DNA. Therefore the author has pursued an analysis of rearrangements in both types of leukemia simultaneously. She has also cloned and sequenced several translocations in acute lymphoblastic leukemia and in chronic lymphatic leukemia. Recently she cloned the breakpoint in a number of translocations involving chromosome bands 11q23 and 21q22. She has cloned the gene which she called MLL, that is located in 11q23 that is involved in the 6;11, 9;11, and 11;19 translocations that are seen in AML de novo as well as in t-AML. She has evidence that the breakpoint in 11q23 and in the t(9;11) is relatively similar in de novo and secondary AML. In addition, she has cloned the gene at the breakpoint in chromosome 21 in the t(3;21). These studies have provided DNA probes that will be very important for diagnosis and for monitoring the patient's response to treatment

  15. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1994-06-01

    This comprehensive progress report provides a synopsis of major research accomplishments during the years of 1991-1994, including the technical aspects of the project. The objectives and accomplishments are as follows: 1. Defining the chromosome segments associated with radiation and chemically-induced leukemogenesis (treatment-related acute myeloid leukemia, t-AML); A. Continued genetic analysis of chromosomes 5 and 7, B. Correlation of treatment with balanced and unbalanced translocations. 2. Cloning the breakpoints in balanced translocations in t-AML; A. Clone the t(9;11) and t(11;19) breakpoints, B. Clone the t(3,21)(q26,q22) breakpoint, C. Determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 3. Compare the breakpoint junctions in patients who have the same translocations in t-AML and AML de novo. 4. Map the scaffold attachment regions in the genes that are involved in balanced translocations in t-AML. Plans for the continuation of present objectives and possible new objectives in consideration of past results are also provided.

  16. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Final report, January 1--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1998-03-01

    It has been clear for the last 15 years that cloning translocation breakpoints in both AML de novo and t-AML would provide the DNA probes required to determine whether the breakpoints in cytogenetically apparently similar translocations were identical at the level of DNA. Therefore the author has pursued an analysis of rearrangements in both types of leukemia simultaneously. She has also cloned and sequenced several translocations in acute lymphoblastic leukemia and in chronic lymphatic leukemia. Recently she cloned the breakpoint in a number of translocations involving chromosome bands 11q23 and 21q22. She has cloned the gene which she called MLL, that is located in 11q23 that is involved in the 6;11, 9;11, and 11;19 translocations that are seen in AML de novo as well as in t-AML. She has evidence that the breakpoint in 11q23 and in the t(9;11) is relatively similar in de novo and secondary AML. In addition, she has cloned the gene at the breakpoint in chromosome 21 in the t(3;21). These studies have provided DNA probes that will be very important for diagnosis and for monitoring the patient`s response to treatment.

  17. Induction and persistence of chromosome aberrations in human lymphocytes exposed to neutrons in vitro or in vivo: Implications of findings in 'retrospective' biological dosimetry

    International Nuclear Information System (INIS)

    Littlefield, L.G.; McFee, A.F.; Sayer, A.M.; O'Neill, J.P.; Kleinerman, R.A.; Maor, M.H.

    2000-01-01

    The induction and persistence were evaluated of chromosome aberrations in lymphocytes exposed in vitro to highly efficient 1 MeV monoenergetic neutrons and in patients who received fast neutrons as therapy for tumours. For the in vitro studies, lymphocytes were exposed to various doses of neutrons and cultured for one or 20 cell cycles. Aberrations were quantified in painted chromosome pairs 1, 2 or 4. These 1 MeV neutrons were highly efficient in inducing aberrations, and dicentrics as well as one-way and two-way translocations increased as a linear function of dose. About 30% of the aberrant metaphases displayed complex aberrations. After multiple in vitro cell divisions, virtually all asymmetrical aberrations had been eliminated from the cell population, and the frequency of one-way translocations was reduced dramatically. In contrast, most two-way translocations apparently survived through multiple cell divisions and still displayed excellent correlation with dose after 20 cell cycles. Classical methods were used to evaluate persistence of aberrations in patients who received fractionated neutron therapy to tumours located in many different sites. Neutron induced dicentrics and rings disappeared from the peripheral circulation within the first three years after exposure, while translocations persisted for more than 17 y. However, considerable variability in numbers of aberrations were observed between patients who had received similar 'average bone marrow doses'. Results of these studies are discussed in relation to the possible use of translocations as retrospective dosemeters in persons exposed to radiation many years ago. (author)

  18. Induction of chromosomal instability in human lymphoblasts by low doses of γ-radiation

    International Nuclear Information System (INIS)

    Gibbons, C.F.; Grosovsky, A.J.

    2003-01-01

    Full text: Genomic instability is a hallmark of tumorigenic progression, and a similar phenotype is also observed in a high fraction (10 - 50%) of cells that survive exposure to ionizing radiation. In both cases unstable clones are characterized by non-clonal chromosomal rearrangements, which are indicative of a high rate of genetic change during the outgrowth of an unstable parental cell. We postulate that the remarkably high frequency of radiation-induced genomic instability is incompatible with a mutational mechanism for a specific gene, or even a large family of genes. Rather, we hypothesize that a major portion of instability is attributable to the formation of chromosomal rearrangement junction sequences that act as de novo chromosomal breakage hotspots. We further suggest that critical target sequences, which represent at least 10% of the genome and include repetitive DNA sequences such as those found in centromeric heterochromatin, can be involved in breakage and rearrangement hotspots that drive persistent genomic instability and karyotypic heterogeneity. Since chromosomal damage is induced even by low dose radiation exposure, we hypothesize that this phenotype can be efficiently induced at doses that are relevant to environmental, occupational, or medical exposure. In the present study, TK6 human B-lymphoblastoid cells were irradiated with 0, 10, 20 and 200cGy, in order to provide a set of data points for single, low dose exposures. Independent clones were analyzed karyotypically approximately 40 generations after radiation exposure. Preliminary results suggest that the fraction of clones exhibiting genomic instability after 20 cGy (0.16) is similar to and statistically indistinguishable from the fraction of unstable clones following 200 cGy (0.2) exposure. These findings support the hypothesis that instability following radiation, and perhaps also in cancer, primarily reflects non-mutational mechanisms

  19. Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health.

    Science.gov (United States)

    Wood, Michael L; Royle, Nicola J

    2017-07-12

    Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.

  20. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  1. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S. [Institute of Genetics, Taipei (Taiwan, Province of China)

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viral DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.

  2. Measurement of background translocation frequencies in individuals with clones

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Marcelle J. [California State Univ. (CalState), Hayward, CA (United States)

    1996-08-01

    In the leukemia case the unseparated B and T lymphocytes had a high translocation frequency even after 0.0014, respectively. After purging all clones from the data, the translocation frequencies for Bio 8 and Bio 23 were 0.00750.0014 and 0.0073 metaphases were scored for chromosomal aberrations,, specifically reciprocal translocations, using fluorescence in situ hybridization (FISH). Metaphase spreads were used from two healthy, unexposed individuals (not exposed to radiation, chemotherapy or radiotherapy) and one early B- precursor acute lymphocytic leukemia (ALL) patient (metaphase spreads from both separated T lymphocytes and unseparated B and T lymphocytes were scored). All three individuals had an abnormally high translocation frequency. The high translocation frequencies resulted from clonal expansion of specific translocated chromosomes. I show in this thesis that by purging (discounting or removing) clones from the data of unexposed individuals, one can obtain true background translocation frequencies. In two cases, Bio 8 and Bio 23, the measured translocation frequency for chromosomes 1, 2 and 4 was 0.0124 purging all of the clones from the data. This high translocation frequency may be due to a low frequency of some clones and may not be recognized. The separated T lymphocytes had a higher translocation frequency than expected.

  3. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, L.M. (Department of Molecular Genetics, Institute of Genetics, Sofia (Bulgaria)); Mullenders, L.H.F.; Natarajan, A.T. (J.A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (Netherlands))

    1994-12-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations.

  4. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    International Nuclear Information System (INIS)

    Stoilov, L.M.; Mullenders, L.H.F.; Natarajan, A.T.

    1994-01-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations

  5. Radiation exposure and chromosome abnormalities. Human cytogenetic studies at the National Institute of Radiological Sciences, Japan, 1963-1988

    International Nuclear Information System (INIS)

    Ishihara, T.; Kohno, S.; Minamihisamatsu, M.

    1990-01-01

    The results of human cytogenetic studies performed at the National Institute of Radiological Sciences (NIRS), Chiba, Japan for about 25 years are described. The studies were pursued primarily under two major projects: one involving people exposed to radiation under various conditions and the other involving patients with malignant diseases, especially leukemias. Whereas chromosome abnormalities in radiation-exposed people are excellent indicators of radiation exposure, their behavior in bone marrow provide useful information for a better understanding of chromosome abnormalities in leukemias and related disorders. The role of chromosome abnormalities in the genesis and development of leukemia and related disorders is considered, suggesting a view for future studies in this field

  6. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    Science.gov (United States)

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  7. Isolation of anonymous, polymorphic DNA fragments from human chromosome 22q12-qter

    NARCIS (Netherlands)

    J.P. Dumanski (Jan); A.H.M. Geurts van Kessel (Ad); M. Ruttledge (Martin); A. Wladis (Andreas); N. Sugawa (Noriaki); V.P. Collins (Peter); M. Nordenskjöld

    1990-01-01

    textabstractA series of 195 random chromosome 22-specific probes, equivalent to approximately 1% of the size of this chromosome, have been isolated from a chromosome 22-specific bacteriophage lambda genomic library. These probes were mapped to four different regions of chromosome 22 on a panel of

  8. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, January 1, 1980-December 31, 1982

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1982-06-01

    The observations that two particular translocations are consistently associated with specific differentiation stages of acute nonlymphocytic leukemia were confirmed. These are the translocation between chromosomes 8 and 21 in acute myeloblastic leukemia with maturation and the translocation between chromosomes 15 and 17 in acute promyelocytic leukemia. The observation of others that structural rearrangements involving the long arm of No. 11 are frequently seen in acute monoblastic leukemia was also confirmed. The chromosome aberrations that are observed in the great majority of patients with acute leukemia secondary to cytotoxic therapy were defined. Thus of 47 patients with secondary acute nonlymphocytic leukemia, an aneuploid clone was seen in 44, and 39 of the 44 had a loss of part or all of No. 5 and/or No. 7. I have been able to localize the region of chromosome No. 7, loss of which is important for the development of leukemia was localized. Patients with ANLL de novo whose occupational histories suggest exposure to potentially mutagenic agents have a higher frequency of aberrations involving Nos. 5 and/or 7, than do patients not so exposed. Thus 50% of exposed versus 10% of nonexposed patients had aberrations of Nos. 5 or 7

  9. Mechanisms of induction of chromosomal aberrations and their detection by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2002-01-01

    Recently introduced fluorescence in situ hybridization (FISH) technique employing chromosome specific DNA libraries as well as region specific DNA probes (e.g., centromere, telomere) have helped to analyse chromosomal aberrations in great detail and thus have given some new insights into the mechanisms of induction of chromosomal aberrations. The relative proportion of induction of translocations and dicentrics by ionising radiation was studied in human, mice and Chinese hamster cells. Many of the studies point to the differences between the mechanisms of induction of dicentrics and translocations. Preliminary results obtained in our laboratory using arm specific probes for human chromosomes 1 and 3 indicate that the aberrations between the arms appear to be more than expected on a random basis. By employing telomeric probes the frequencies of interstitial deletions were found to be high and similar to the frequencies of dicentrics both in human and mouse lymphocytes. A recent study with human chromosome specific probes clearly shows variation of sensitivity of chromosomes for the induction of exchange aberrations. Radiation response studies with Chinese hamster cells using telomeric probes, suggest that telomeric sequences, especially interstitial ones appear to be an important factor in the origin of both spontaneous and induced chromosomal aberrations

  10. Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by β-catenin translocation and MMP7 activation

    International Nuclear Information System (INIS)

    Kimura, Ryota; Tanzawa, Hideki; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Koyama, Tomoyoshi; Fukumoto, Chonji; Kouzu, Yukinao; Higo, Morihiro; Endo-Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi

    2013-01-01

    Glutamate decarboxylase 1 (GAD1), a rate-limiting enzyme in the production of γ-aminobutyric acid (GABA), is found in the GABAergic neurons of the central nervous system. Little is known about the relevance of GAD1 to oral squamous cell carcinoma (OSCC). We investigated the expression status of GAD1 and its functional mechanisms in OSCCs. We evaluated GAD1 mRNA and protein expressions in OSCC-derived cells using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunoblotting analyses. To assess the critical functions of GAD1, i.e., cellular proliferation, invasiveness, and migration, OSCC-derived cells were treated with the shRNA and specific GAD1 inhibitor, 3-mercaptopropionic acid (3-MPA). GAD1 expression in 80 patients with primary OSCCs was analyzed and compared to the clinicopathological behaviors of OSCC. qRT-PCR and immunoblotting analyses detected frequent up-regulation of GAD1 in OSCC-derived cells compared to human normal oral keratinocytes. Suppression of nuclear localization of β-catenin and MMP7 secretion was observed in GAD1 knockdown and 3-MPA-treated cells. We also found low cellular invasiveness and migratory abilities in GAD1 knockdown and 3-MPA-treated cells. In the clinical samples, GAD1 expression in the primary OSCCs was significantly (P < 0.05) higher than in normal counterparts and was correlated significantly (P < 0.05) with regional lymph node metastasis. Our data showed that up-regulation of GAD1 was a characteristic event in OSCCs and that GAD1 was correlated with cellular invasiveness and migration by regulating β-catenin translocation and MMP7 activation. GAD1 might play an important role in controlling tumoral invasiveness and metastasis in oral cancer

  11. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison.

    Science.gov (United States)

    Mao, Xiuguang; Nie, Wenhui; Wang, Jinhuan; Su, Weiting; Ao, Lei; Feng, Qing; Wang, Yingxiang; Volleth, Marianne; Yang, Fengtang

    2007-01-01

    Rhinolophus (Rhinolophidae) is the second most speciose genus in Chiroptera and has extensively diversified diploid chromosome numbers (from 2n = 28 to 62). In spite of many attempts to explore the karyotypic evolution of this genus, most studies have been based on conventional Giemsa staining rather than G-banding. Here we have made a whole set of chromosome-specific painting probes from flow-sorted chromosomes of Aselliscus stoliczkanus (Hipposideridae). These probes have been utilized to establish the first genome-wide homology maps among six Rhinolophus species with four different diploid chromosome numbers (2n = 36, 44, 58, and 62) and three species from other families: Rousettus leschenaulti (2n = 36, Pteropodidae), Hipposideros larvatus (2n = 32, Hipposideridae), and Myotis altarium (2n = 44, Vespertilionidae) by fluorescence in situ hybridization. To facilitate integration with published maps, human paints were also hybridized to A. stoliczkanus chromosomes. Our painting results substantiate the wide occurrence of whole-chromosome arm conservation in Rhinolophus bats and suggest that Robertsonian translocations of different combinations account for their karyotype differences. Parsimony analysis using chromosomal characters has provided some new insights into the Rhinolophus ancestral karyotype and phylogenetic relationships among these Rhinolophus species so far studied. In addition to Robertsonian translocations, our results suggest that whole-arm (reciprocal) translocations involving multiple non-homologous chromosomes as well could have been involved in the karyotypic evolution within Rhinolophus, in particular those bats with low and medium diploid numbers.

  12. Utilization of a cloned alphoid repeating sequence of human DNA in the study of polymorphism of chromosomal heterochromatin regions

    International Nuclear Information System (INIS)

    Kruminya, A.R.; Kroshkina, V.G.; Yurov, Yu.B.; Aleksandrov, I.A.; Mitkevich, S.P.; Gindilis, V.M.

    1988-01-01

    The chromosomal distribution of the cloned PHS05 fragment of human alphoid DNA was studied by in situ hybridization in 38 individuals. It was shown that this DNA fraction is primarily localized in the pericentric regions of practically all chromosomes of the set. Significant interchromosomal differences and a weakly expressed interindividual polymorphism were discovered in the copying ability of this class of repeating DNA sequences; associations were not found between the results of hybridization and the pattern of Q-polymorphism

  13. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation

    Directory of Open Access Journals (Sweden)

    Duangmano Suwit

    2012-10-01

    Full Text Available Abstract Background Cucurbitacin B, an oxygenated tetracyclic triterpenoid compound extracted from the Thai medicinal plant Trichosanthes cucumerina L., has been reported to have several biological activities including anti-inflammatory, antimicrobial and anticancer. Cucurbitacin B is great of interest because of its biological activity. This agent inhibits growth of various types of human cancer cells lines. Methods In this study, we explored the novel molecular response of cucurbitacin B in human breast cancer cells, MCF-7 and MDA-MB-231. The growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay. The effects of cucurbitacin B on microtubules morphological structure and tubulin polymerization were analyzed using immunofluorescence technique and tubulin polymerization assay kit, respectively. Proteomic analysis was used to identify the target-specific proteins that involved in cucurbitacin B treatment. Some of the differentially expressed genes and protein products were validated by real-time RT-PCR and western blot analysis. Cell cycle distributions and apoptosis were investigated using flow cytometry. Results Cucurbitacin B exhibited strong antiproliferative effects against breast cancer cells in a dose-dependent manner. We show that cucurbitacin B prominently alters the cytoskeletal network of breast cancer cells, inducing rapid morphologic changes and improper polymerization of the microtubule network. Moreover, the results of 2D-PAGE, real-time RT-PCR, and western blot analysis revealed that the expression of nucleophosmin/B23 and c-Myc decreased markedly after cucurbitacin B treatment. Immunofluorescence microscopy showed that cucurbitacin B induced translocation of nucleophosmin/B23 from the nucleolus to nucleoplasm. Treatment with cucurbitacin B resulted in cell cycle arrest at G2/M phase and the enhancement of apoptosis. Conclusions Our findings suggest that cucurbitacin B may inhibit the

  14. On-line sorting of human chromosomes by centromeric index, and identification of sorted populations by GTG-banding and fluorescent in situ hybridization

    NARCIS (Netherlands)

    Boschman, G. A.; Rens, W.; Manders, E.; van Oven, C.; Barendsen, G. W.; Aten, J. A.

    1990-01-01

    Using slit-scan flow cytometry, the shape of human metaphase chromosomes, as expressed in their centromeric index (CI), and the DNA content of the chromosomes have been used as parameters in bivariate flow karyotyping. The resolution of the DNA vs CI flow karyogram of the larger chromosomes up to

  15. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  16. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  17. Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage

    DEFF Research Database (Denmark)

    Hagmar, L; Brøgger, A; Hansteen, I L

    1994-01-01

    Cytogenetic assays in peripheral blood lymphocytes (PBL) have been used extensively to survey the exposure of humans to genotoxic agents. The conceptual basis for this has been the hypothesis that the extent of genetic damage in PBL reflects critical events for carcinogenic processes in target...... tissues. Until now, no follow-up studies have been performed to assess the predictive value of these methods for subsequent cancer risk. In an ongoing Nordic cohort study of cancer incidence, 3182 subjects were examined between 1970 and 1988 for chromosomal aberrations (CA), sister chromatid exchange.......0009) in CA strata with regard to subsequent cancer risk. The point estimates of the standardized incidence ratio in the three CA strata were 0.9, 0.7, and 2.1, respectively. Thus, an increased level of chromosome breakage appears to be a relevant biomarker of future cancer risk....

  18. Molecular analysis of human complement component C5: localization of the structural gene to chromosome 9

    International Nuclear Information System (INIS)

    Wetsel, R.A.; Lemons, R.S.; Le Beau, M.M.; Barnum, S.R.; Noack, D.; Tack, B.F.

    1988-01-01

    A human C5 clone (pC5HG2) was isolated from a cDNA library constructed from Hep G2 mRNA. he DNA sequence showed that the pC5HG2 insert was comprised of 3309 base pairs of pro-C5 coding sequence and 404 base pairs of 3'-untranslated sequence. The derived amino acid sequence contained the entire coding sequence of the C5 α-chain, the β-α-chain junction region, and 100 amino acids (approximately 50%) of the β-chain. Protein sequences of four C5 tryptic peptides were aligned exactly to this sequence and demonstrated that C5 synthesized and secreted by Hep G2 cells is probably identical with plasma-derived C5. Coding sequence alignment of the human C5 sequences with those of murine C5 indicated that 80% of the nucleotides and 79% of the amino acids were placed identically in the two species. Amino acid sequence alignment of the homologous family members C3, C4, and α 2 -macroglobulin with that of C5 demonstrated 27%, 25%, and 19% identity, respectively. As was found in murine C5, the corresponding thiol ester region of human C5 contained several conserved amino acids, but the critical cysteine and glutamine residues which give rise to the intramolecular thiol ester bond in C3, C4, and α 2 -macroglobulin were absent in C5, having been replaced by serine and alanine, respectively. With the use of a panel of hamster-human somatic cell hybrids, the C5 gene was mapped to human chromosome 9. In situ chromosomal hybridization studies employing metaphase cells further localized the gene to bands 9q32-34, with the largest cluster of grains at 9q34.1

  19. Biological effects of tritiated water in low concentration of human lymphocyte chromosome

    International Nuclear Information System (INIS)

    Tanaka, K.; Kamada, N.; Sawaeda, S.

    1992-01-01

    This study was undertaken to investigate the dose-response relationship of tritiated water (HTO) for chromosome aberration in the human lymphocytes, at low dose in vitro exposure ranging from 0.1-1 Gy. The Relative Biological Effectiveness values of HTO with respect to 60 Co gamma ray at a dose rate of 2 cGy/min(15 mCi/ml), at low dose range for the induction of dicentric and centric ring chromosomes were 2.7 in lymphocytes. Also lymphocytes were chronically exposed to HTO for 67 to 80 hrs at different lower dose rates (0.5 and 0.02 cGy/min). There was a 77% decrease in the yields of dicentrics and centric rings, at the dose rate of 0.02cGy/min of HTO, presenting a clear dose rate effect of HTO. The RBE value of HTO relative to 137 Cs gamma ray was 2.0 at the dose rate of 0.02cGy/min(0.15mCi/ml). This suggests that a higher dose rate of HTO exposure has a higher risk and a decrease of RBE value at low dose rate. These results provide useful information for the assessment of health risks in humans specially exposed to low concentration of HTO. (author). 6 refs., 2 figs

  20. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, L.S.; Bennett, P.R.; Moore, G.E. [Queen Charlotte`s and Chelsea Hospital, London (United Kingdom)

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  1. Studies on chromosome aberrations induced in human lymphocytes by very low-dose exposure to tritium

    International Nuclear Information System (INIS)

    Hori, T.; Moriya, Junko; Nakai, Sayaka

    1978-01-01

    Assessment of potential hazard from environmental tritium to man becomes very important with increasing the development of nuclear-power industry. However, little data are available as to the determination on the genetic effect of tritium especially at the low levels. The object of the present study is to obtain quantitative data for chromosome aberrations in human lymphocytes, as an indicator for genetic risk estimation, induced by tritium at very low dose levels. Leukocyte cultures of human peripheral blood were chronically exposed for 48h to tritiated water and 3 H-thymidine using a wide range of tritium doses, and aberrations in lymphocyte chromosomes at the first metaphases were examined. In the experimental conditions, the types of aberrations induced by radiation emitted from both tritiated water and 3 H-thymidine were mostly chromatid types, such as chromatid gaps and deletions. The dose-response relations for chromatid breaks per cell exhibited unusual dose-dependency in both cases. It was demonstrated that at higher dose range the yields of chromatid breaks increased linearly with dose, while those at lower dose range were significantly higher than would be expected by a downward extraporation from the linear relation. Partial-hit or partial-target kinetics events appeared at very low dose exposure. (author)

  2. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    International Nuclear Information System (INIS)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S.; Rocchi, M.

    1991-01-01

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH 2 -terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH 2 -terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids

  3. Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration.

    Science.gov (United States)

    Gilbert-Girard, Shella; Gravel, Annie; Artusi, Sara; Richter, Sara N; Wallaschek, Nina; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency ( P integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A. IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the

  4. Origins of endemic island tortoises in the western Indian Ocean : A critique of the human-translocation hypothesis

    NARCIS (Netherlands)

    Hansen, Dennis M.; Austin, Jeremy J.; Baxter, Rich H.; de Boer, Erik J.; Falcón, Wilfredo; Norder, Sietze J.; Rijsdijk, Kenneth F.; Thébaud, Christophe; Bunbury, Nancy J.; Warren, Ben H.

    How do organisms arrive on isolated islands, and how do insular evolutionary radiations arise? In a recent paper, Wilmé et al. () argue that early Austronesians that colonized Madagascar from Southeast Asia translocated giant tortoises to islands in the western Indian Ocean. In the Mascarene

  5. Styl RFLP recognized by a human IRBP cDNA localized to chromosome 10

    Energy Technology Data Exchange (ETDEWEB)

    Chin, K S; Mathew, C G.P.; Fong, S L; Bridges, C D; Ponder, B A.J.

    1988-02-25

    A 2184 bp cDNA (H.4 IRBP) encoding human interstitial retinol-biding protein isolated from a human retina cDNA library in lambdagt10 by screening with a bovine IRBP cDNA probe. Styl identifies a 2-allele polymorphism with bands at 2.3 kb (Cl) and 1.95 kb (C2) and invariant bands at 1.1, 1.0 and 0.8kb. Codominant segregation was observed in two informative families. The RFLP was mapped to chromosome 10 using somatic cell hybrids. In situ hybridization suggests regional assignments near p11.2 -q11.2 with a secondary site of hybridization at q24-25.

  6. Tiptoeing to chromosome tips: facts, promises and perils of today's human telomere biology.

    Science.gov (United States)

    Fajkus, J; Simícková, M; Maláska, J

    2002-04-29

    The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.

  7. Induction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Seyyedi, S. S.; Mozdarani, H.; Rezaei Tavirani, M.; Heydari, S.

    2010-01-01

    Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to extremely low-frequency electromagnetic fields may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk estimation. Materials and Methods: Primary cultures of fibroblasts from human skin biopsy were exposed to continuous extremely low-frequency electromagnetic fields (3, 50 and 60 Hz, sinusoidal, 3h, and 4 m T). Also immortalized cell lines, SW480, MCF-7 and 1321N1 were exposed to continuous extremely low-frequency electromagnetic fields (50 Hz, sinusoidal, 3 h, 4 m T). Metaphase plates Were prepared according to standard methods and stained in 5% Giemsa solution. Chromosomal aberrations of both chromosome and chromatid types were scored to evaluate the effects of extremely low-frequency electromagnetic fields on primary or established cell lines. Results: Results indicate that by increasing the frequency of extremely low-frequency electromagnetic fields, chromosomal aberrations were increased up to 7-fold above background levels in primary human fibroblast cells. In addition, continuous exposure to a 50 Hz electromagnetic field led to a significant increase in chromosomal aberrations in SW480, MCF-7 and 1321N1 cell lines compared to sham control. Conclusion: Results obtained indicate that extremely low-frequency electromagnetic fields has the potential for induction of chromosomal aberrations in all cell types.

  8. Familial cryptic translocation in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M. [ECU School of Medicine, Greenville, NC (United States)] [and others

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  9. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells

    Science.gov (United States)

    Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao

    2017-01-01

    Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301

  10. Suitability of amphibians and reptiles for translocation.

    Science.gov (United States)

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.

  11. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    Science.gov (United States)

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  12. The use of premature chromosome condensation to study in interphase cells the influence of environmental factors on human genetic material

    Directory of Open Access Journals (Sweden)

    Vasiliki I. Hatzi

    2006-01-01

    Full Text Available Nowadays, there is a constantly increasing concern regarding the mutagenic and carcinogenic potential of a variety of harmful environmental factors to which humans are exposed in their natural and anthropogenic environment. These factors exert their hazardous potential in humans' personal (diet, smoking, pharmaceuticals, cosmetics and occupational environment that constitute part of the anthropogenic environment. It is well known that genetic damage due to these factors has dramatic implications for human health. Since most of the environmental genotoxic factors induce arrest or delay in cell cycle progression, the conventional analysis of chromosomes at metaphase may underestimate their genotoxic potential. Premature Chromosome Condensation (PCC induced either by means of cell fusion or specific chemicals, enables the microscopic visualization of interphase chromosomes whose morphology depends on the cell cycle stage, as well as the analysis of structural and numerical aberrations at the G1 and G2 phases of the cell cycle. The PCC has been successfully used in problems involving cell cycle analysis, diagnosis and prognosis of human leukaemia, assessment of interphase chromosome malformations resulting from exposure to radiation or chemicals, as well as elucidation of the mechanisms underlying the conversion of DNA damage into chromosomal damage. In this report, particular emphasis is given to the advantages of the PCC methodology used as an alternative to conventional metaphase analysis in answering questions in the fields of radiobiology, biological dosimetry, toxicogenetics, clinical cytogenetics and experimental therapeutics.

  13. An unusual haplotype structure on human chromosome 8p23 derived from the inversion polymorphism.

    Science.gov (United States)

    Deng, Libin; Zhang, Yuezheng; Kang, Jian; Liu, Tao; Zhao, Hongbin; Gao, Yang; Li, Chaohua; Pan, Hao; Tang, Xiaoli; Wang, Dunmei; Niu, Tianhua; Yang, Huanming; Zeng, Changqing

    2008-10-01

    Chromosomal inversion is an important type of genomic variations involved in both evolution and disease pathogenesis. Here, we describe the refined genetic structure of a 3.8-Mb inversion polymorphism at chromosome 8p23. Using HapMap data of 1,073 SNPs generated from 209 unrelated samples from CEPH-Utah residents with ancestry from northern and western Europe (CEU); Yoruba in Ibadan, Nigeria (YRI); and Asian (ASN) samples, which were comprised of Han Chinese from Beijing, China (CHB) and Japanese from Tokyo, Japan (JPT)-we successfully deduced the inversion orientations of all their 418 haplotypes. In particular, distinct haplotype subgroups were identified based on principal component analysis (PCA). Such genetic substructures were consistent with clustering patterns based on neighbor-joining tree reconstruction, which revealed a total of four haplotype clades across all samples. Metaphase fluorescence in situ hybridization (FISH) in a subset of 10 HapMap samples verified their inversion orientations predicted by PCA or phylogenetic tree reconstruction. Positioning of the outgroup haplotype within one of YRI clades suggested that Human NCBI Build 36-inverted order is most likely the ancestral orientation. Furthermore, the population differentiation test and the relative extended haplotype homozygosity (REHH) analysis in this region discovered multiple selection signals, also in a population-specific manner. A positive selection signal was detected at XKR6 in the ASN population. These results revealed the correlation of inversion polymorphisms to population-specific genetic structures, and various selection patterns as possible mechanisms for the maintenance of a large chromosomal rearrangement at 8p23 region during evolution. In addition, our study also showed that haplotype-based clustering methods, such as PCA, can be applied in scanning for cryptic inversion polymorphisms at a genome-wide scale.

  14. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  15. Kinetic analysis of the translocator protein positron emission tomography ligand [{sup 18}F]GE-180 in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Claire [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Hammersmith Hospital, Computational, Cognitive and Clinical Neuroimaging Laboratory, London (United Kingdom); Scott, Gregory; Raffel, Joel; Roberts, S.; Coello, Christopher; Jolly, Amy; Searle, Graham; Goldstone, A.P.; Nicholas, Richard S.; Gunn, Roger N.; Sharp, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Brooks, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark); Trigg, William [GE Healthcare Ltd, Amersham (United Kingdom)

    2016-11-15

    PET can image neuroinflammation by targeting the translocator protein (TSPO), which is upregulated in activated microglia. The high nonspecific binding of the first-generation TSPO radioligand [{sup 11}C]PK-11195 limits accurate quantification. [{sup 18}F]GE-180, a novel TSPO ligand, displays superior binding to [{sup 11}C]PK-11195 in vitro. Our objectives were to: (1) evaluate tracer characteristics of [{sup 18}F]GE-180 in the brains of healthy human subjects; and (2) investigate whether the TSPO Ala147Thr polymorphism influences outcome measures. Ten volunteers (five high-affinity binders, HABs, and five mixed-affinity binders, MABs) underwent a dynamic PET scan with arterial sampling after injection of [{sup 18}F]GE-180. Kinetic modelling of time-activity curves with one-tissue and two-tissue compartment models and Logan graphical analysis was applied to the data. The primary outcome measure was the total volume of distribution (V{sub T}) across various regions of interest (ROIs). Secondary outcome measures were the standardized uptake values (SUV), the distribution volume and SUV ratios estimated using a pseudoreference region. The two-tissue compartment model was the best model. The average regional delivery rate constant (K{sub 1}) was 0.01 mL cm{sup -3} min{sup -1} indicating low extraction across the blood-brain barrier (1 %). The estimated median V{sub T} across all ROIs was also low, ranging from 0.16 mL cm{sup -3} in the striatum to 0.38 mL cm{sup -3} in the thalamus. There were no significant differences in V{sub T} between HABs and MABs across all ROIs. A reversible two-tissue compartment model fitted the data well and determined that the tracer has a low first-pass extraction (approximately 1 %) and low V{sub T} estimates in healthy individuals. There was no observable dependency on the rs6971 polymorphism as compared to other second-generation TSPO PET tracers. Investigation of [{sup 18}F]GE-180 in populations with neuroinflammatory disease is needed

  16. Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited

    International Nuclear Information System (INIS)

    Gué, Michaël; Sun, Jian-Sheng; Boudier, Thomas

    2006-01-01

    Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static 'contact first' model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic 'breakage first' model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static 'contact first' model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static 'contact first' model of translocation. The recently proposed dynamic 'breakage first' model offers an attractive alternative explanation

  17. Chromosomal radiosensitivity: a study of the chromosomal G2 assay in human blood lymphocytes indicating significant inter-individual variability

    International Nuclear Information System (INIS)

    Smart, V.; Curwen, G.B.; Whitehouse, C.A.; Edwards, A.; Tawn, E.J.

    2003-01-01

    The G 2 chromosomal radiosensitivity assay is a technically demanding assay. To ensure that it is reproducible in our laboratory, we have examined the effects of storage and culture conditions by applying the assay to a group of healthy controls and determined the extent of intra- and inter-individual variations. Nineteen different individuals provided one or more blood samples resulting in a total of 57 successful tests. Multiple cultures from a single blood sample showed no statistically significant difference in the number of chromatid type aberrations between cultures. A 24 h delay prior to culturing the lymphocytes did not significantly affect the induced G 2 score. Intra-individual variation was not statistically significant in seven out of nine individuals. Inter-individual variation was highly statistically significant (P<0.001), indicating that there is a real difference between individuals in the response to radiation using this assay

  18. Induction of complete and incomplete chromosome aberrations by bleomycin in human lymphocytes

    International Nuclear Information System (INIS)

    Benkhaled, L.; Xuncla, M.; Caballin, M.R.; Barrios, L.; Barquinero, J.F.

    2008-01-01

    Bleomycin (BLM) is a clastogenic compound, which due to the overdispersion in the cell distribution of induced dicentrics has been compared to the effect of high-LET radiation. Recently, it has been described that in fibroblast derived cell lines BLM induces incomplete chromosome elements more efficiently than any type of ionizing radiation. The objective of the present study was to evaluate in human lymphocytes the induction of dicentrics and incomplete chromosome elements by BLM. Peripheral blood samples have been treated with different concentrations of BLM. Two cytogenetic techniques were applied, fluorescence plus Giemsa (FPG) and FISH using pan-centromeric and pan-telomeric probes. The observed frequency of dicentric equivalents increases linearly with the BLM concentration, and for all BLM concentrations the distribution of dicentric equivalents was overdispersed. In the FISH study the ratio between total incomplete elements and multicentrics was 0.27. The overdispersion in the dicentric cell distribution, and the linear BLM-concentration dependence of dicentrics can be compared to the effect of high-LET radiation, on the contrary the ratio of incomplete elements and multicentrics is similar to the one induced by low-LET radiation (∼0.40). The elevated proportion of interstitial deletions in relation to total acentric fragments, higher than any type of ionizing radiation could be a characteristic signature of the clastogenic effect of BLM

  19. Chromosome aberrations in human lymphocytes exposed to tritiated water in vitro

    International Nuclear Information System (INIS)

    Bocian, E.; Ziemba-zak, B.; Rosiek, O.; Sablinski, J.

    1978-01-01

    The induction of chromosome aberrations in human peripheral blood lymphocytes by tritiated water or 180 kV X-rays in vitro was studied. Lymphocytes were exposed to various concentrations of HTO for 2 h or for 53 h. Chromosome and chromatid type aberrations were scored during the first mitotic division after stimulation with phytohaemagglutinin. For the analysis of the dose-response relationship the data were fitted by the method of least-squares to different models. After acute exposure to tritium β-rays and X-rays, the dicentrics + centric rings and terminal + interstitial deletions gave the best fit to the linear-quadratic function. However, data for these types of aberrations after 53 h exposure to HTO gave equally good fit to the linear and linear-quadratic functions. The best description of the dose-response relationship for chromatid aberrations is given by the linear model. In the system studied the RBE of tritium β-rays as compared to 180 KV X-rays was 1.17+-0.02. (Auth.)

  20. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus.

    Science.gov (United States)

    Vakili, Hana; Jin, Yan; Cattini, Peter A

    2014-11-01

    Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.

  1. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    Monobe, Manami

    2002-01-01

    We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/μm carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dic