WorldWideScience

Sample records for human chondrocyte gene

  1. Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

    Science.gov (United States)

    Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E

    2015-09-20

    Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Differences in Cartilage-Forming Capacity of Expanded Human Chondrocytes From Ear and Nose and Their Gene Expression Profiles

    NARCIS (Netherlands)

    Hellingman, C.A.; Verwiel, E.T.P.; Slagt, I.; Koevoet, W.; Poublon, R.M.L.; Nolst-Trenite, G.J.; de Jong, R.J.B.; Jahr, H.; van Osch, G.J.V.M.

    2011-01-01

    The aim of this study was to evaluate the potential of culture-expanded human auricular and nasoseptal chondrocytes as cell source for regeneration of stable cartilage and to analyze the differences in gene expression profile of expanded chondrocytes from these specific locations. Auricular

  3. Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their gene expression profiles

    NARCIS (Netherlands)

    Hellingman, Catharine A.; Verwiel, Eugène T. P.; Slagt, Inez; Koevoet, Wendy; Poublon, René M. L.; Nolst-Trenité, Gilbert J.; Baatenburg de Jong, Robert J.; Jahr, Holger; van Osch, Gerjo J. V. M.

    2011-01-01

    The aim of this study was to evaluate the potential of culture-expanded human auricular and nasoseptal chondrocytes as cell source for regeneration of stable cartilage and to analyze the differences in gene expression profile of expanded chondrocytes from these specific locations. Auricular

  4. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  5. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  6. Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

    NARCIS (Netherlands)

    van Gool, S.A.; Emons, J.A.M.; Leijten, Jeroen Christianus Hermanus; Decker, E.; Sticht, C.; van Houwelingen, J.C.; Goeman, J.J.; Kleijburg, C.; Scherjon, S.; Gretz, N.; Wit, J.M.; Rappold, G.; Post, Janine Nicole; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Abstract We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether

  7. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  8. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    Science.gov (United States)

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    International Nuclear Information System (INIS)

    Saha, Sushmita; Kirkham, Jennifer; Wood, David; Curran, Stephen; Yang, Xuebin

    2010-01-01

    Research highlights: → This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. → Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. → Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. → Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed a difference in the

  10. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sushmita [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Kirkham, Jennifer [Biomineralisation Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom); Wood, David [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); Curran, Stephen [Smith and Nephew Research Centre, YO105DF (United Kingdom); Yang, Xuebin, E-mail: X.B.Yang@leeds.ac.uk [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS29LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA (United Kingdom)

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g. ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis revealed

  11. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Laurent Schibler

    Full Text Available Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD, achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM structure and turnover, especially glycosaminoglycan (GAG and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These

  12. Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes.

    Science.gov (United States)

    Benz, Karin; Breit, Stephen; Lukoschek, Martin; Mau, Hans; Richter, Wiltrud

    2002-04-26

    This study is intended to optimise expansion and differentiation of cultured human chondrocytes by growth factor application and to identify molecular markers to monitor their differentiation state. We dissected the molecular consequences of matrix release, monolayer, and 3D-alginate culture, growth factor optimised expansion, and re-differentiation protocols by gene expression analysis. Among 19 common cartilage molecules assessed by cDNA array, six proved best to monitor differentiation. Instant down-regulation at release of cells from the matrix was strongest for COL 2A1, fibromodulin, and PRELP while LUM, CHI3L1, and CHI3L2 were expansion-related. Both gene sets reflected the physiologic effects of the most potent growth-inducing (PDGF-BB) and proteoglycan-inducing (BMP-4) factors. Only CRTAC1 expression correlated with 2D/3D switches while the molecular phenotype of native chondrocytes was not restored. The markers and optimised protocols we suggest can help to improve cell therapy of cartilage defects and chondrocyte differentiation from stem cell sources.

  13. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Science.gov (United States)

    Ito, Akira; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Aoyama, Tomoki; Kuroki, Hiroshi

    2015-01-01

    Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis.

  14. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Directory of Open Access Journals (Sweden)

    Akira Ito

    Full Text Available Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH and citrate synthase (CS, which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1 and aggrecan (ACAN, was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y-box 9 (SOX9, which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and

  15. Impact of human platelet lysate on the expansion and chondrogenic capacity of cultured human chondrocytes for cartilage cell therapy.

    Science.gov (United States)

    Sykes, J G; Kuiper, J H; Richardson, J B; Roberts, S; Wright, K T; Kuiper, N J

    2018-05-01

    High hopes have been pinned on regenerative medicine strategies in order to prevent the progression of cartilage damage to osteoarthritis, particularly by autologous chondrocyte implantation (ACI). The loss of chondrocyte phenotype during in vitro monolayer expansion, a necessary step to obtain sufficient cell numbers, may be a key limitation in ACI. In this study, it was determined whether a shorter monolayer expansion approach could improve chondrogenic differentiation. The effects of two supplement types, foetal bovine serum (FBS) and Stemulate™ (a commercial source of human platelet lysate), on the expansion and re-differentiation potential of human chondrocytes, isolated from five individuals, were compared. Chondrocytes were expanded with 10 % FBS or 10 % Stemulate™. Pellets were cultured for 28 d in chondrogenic differentiation medium and assessed for the presence of cartilage matrix molecules and genes associated with chondrogenicity. Stemulate™ significantly enhanced the proliferation rate [average population doubling times: FBS, 25.07 ± 6.98 d (standard error of the mean, SEM) vs. Stemulate™, 13.10 ± 2.57 d (SEM)]. Sulphated glycosaminoglycans (sGAG), total collagen and qRT-PCR analyses of cartilage genes showed that FBS-expanded chondrocytes demonstrated significantly better chondrogenic capacity than Stemulate™-expanded chondrocytes. Histologically, FBS-expanded chondrocyte pellets appeared to be more stable, with a more intense staining for toluidine blue, indicating a greater chondrogenic capacity. Although Stemulate™ positively influenced chondrocyte proliferation, it had a negative effect on chondrogenic differentiation potential. This suggested that, in the treatment of cartilage defects, Stemulate™ might not be the ideal supplement for expanding chondrocytes (which maintained a chondrocyte phenotype) and, hence, for cell therapies (including ACI).

  16. Impact of human platelet lysate on the expansion and chondrogenic capacity of cultured human chondrocytes for cartilage cell therapy

    Directory of Open Access Journals (Sweden)

    JG Sykes

    2018-05-01

    Full Text Available High hopes have been pinned on regenerative medicine strategies in order to prevent the progression of cartilage damage to osteoarthritis, particularly by autologous chondrocyte implantation (ACI. The loss of chondrocyte phenotype during in vitro monolayer expansion, a necessary step to obtain sufficient cell numbers, may be a key limitation in ACI. In this study, it was determined whether a shorter monolayer expansion approach could improve chondrogenic differentiation. The effects of two supplement types, foetal bovine serum (FBS and Stemulate™ (a commercial source of human platelet lysate, on the expansion and re-differentiation potential of human chondrocytes, isolated from five individuals, were compared. Chondrocytes were expanded with 10 % FBS or 10 % Stemulate™. Pellets were cultured for 28 d in chondrogenic differentiation medium and assessed for the presence of cartilage matrix molecules and genes associated with chondrogenicity. Stemulate™ significantly enhanced the proliferation rate [average population doubling times: FBS, 25.07 ± 6.98 d (standard error of the mean, SEM vs. Stemulate™, 13.10 ± 2.57 d (SEM]. Sulphated glycosaminoglycans (sGAG, total collagen and qRT-PCR analyses of cartilage genes showed that FBS-expanded chondrocytes demonstrated significantly better chondrogenic capacity than Stemulate™-expanded chondrocytes. Histologically, FBS-expanded chondrocyte pellets appeared to be more stable, with a more intense staining for toluidine blue, indicating a greater chondrogenic capacity. Although Stemulate™ positively influenced chondrocyte proliferation, it had a negative effect on chondrogenic differentiation potential. This suggested that, in the treatment of cartilage defects, Stemulate™ might not be the ideal supplement for expanding chondrocytes (which maintained a chondrocyte phenotype and, hence, for cell therapies (including ACI.

  17. bFGF influences human articular chondrocyte differentiation

    DEFF Research Database (Denmark)

    Schmal, H; Zwingmann, J; Fehrenbach, M

    2007-01-01

    BACKGROUND: The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated. METHODS: [EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro......FGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained...... by 53%, which was correlated with diminished mRNA production. Monolayer cultured chondrocytes secreted significant amounts of aggrecan that decreased over time. Secretion of this cartilage-specific marker was further reduced by the addition of bFGF. DISCUSSION: These findings highlight the potential...

  18. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.

    Directory of Open Access Journals (Sweden)

    Carole Bougault

    Full Text Available Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK pathways and Smad2/3 (members of the canonical transforming growth factor (TGF-β pathways. A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how

  19. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films

    International Nuclear Information System (INIS)

    Antonioli, Eliane; Lobo, Anderson O.; Ferretti, Mario; Cohen, Moisés; Marciano, Fernanda R.; Corat, Evaldo J.; Trava-Airoldi, Vladimir J.

    2013-01-01

    Cartilage serves as a low-friction and wear-resistant articulating surface in diarthrodial joints and is also important during early stages of bone remodeling. Recently, regenerative cartilage research has focused on combinations of cells paired with scaffolds. Superhydrophilic vertically aligned carbon nanotubes (VACNTs) are of particular interest in regenerative medicine. The aim of this study is to evaluate cell expansion of human articular chondrocytes on superhydrophilic VACNTs, as well as their morphology and gene expression. VACNT films were produced using a microwave plasma chamber on Ti substrates and submitted to an O 2 plasma treatment to make them superhydrophilic. Human chondrocytes were cultivated on superhydrophilic VACNTs up to five days. Quantitative RT-PCR was performed to measure type I and type II Collagen, Sox9, and Aggrecan mRNA expression levels. The morphology was analyzed by scanning electron microscopy (SEM) and confocal microscopy. SEM images demonstrated that superhydrophilic VACNTs permit cell growth and adhesion of human chondrocytes. The chondrocytes had an elongated morphology with some prolongations. Chondrocytes cultivated on superhydrophilic VACNTs maintain the level expression of Aggrecan, Sox9, and Collagen II determined by qPCR. This study was the first to indicate that superhydrophilic VACNTs may be used as an efficient scaffold for cartilage or bone repair. Highlights: ► Chondrocytes were cultivated on Superhydrophilic Vertically Aligned Multiwall Carbon Nanotubes (VACNT). ► We have shown a correlation between gene expression and thermodynamics aspects. ► Superhydrhophilic VACNT will be an excellent substrate for cartilage and bone tissue regeneration.

  20. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Antonioli, Eliane, E-mail: eliane.antonioli@einstein.br [Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Lobo, Anderson O., E-mail: aolobo@univap.br [Laboratory of Biomedical Nanotechnology, Universidade do Vale do Paraiba, Sao Jose dos Campos, Sao Paulo (Brazil); Ferretti, Mario, E-mail: ferretti@einstein.br [Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Ortophedic Division, Federal University of Sao Paulo, SP (Brazil); Cohen, Moises, E-mail: m.cohen@uol.com.br [Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Ortophedic Division, Federal University of Sao Paulo, SP (Brazil); Marciano, Fernanda R., E-mail: femarciano@uol.com.br [Laboratory of Biomedical Nanotechnology, Universidade do Vale do Paraiba, Sao Jose dos Campos, Sao Paulo (Brazil); Corat, Evaldo J., E-mail: corat@las.inpe.br [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Sao Paulo (Brazil); Trava-Airoldi, Vladimir J., E-mail: vladimir@las.inpe.br [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Sao Paulo (Brazil)

    2013-03-01

    Cartilage serves as a low-friction and wear-resistant articulating surface in diarthrodial joints and is also important during early stages of bone remodeling. Recently, regenerative cartilage research has focused on combinations of cells paired with scaffolds. Superhydrophilic vertically aligned carbon nanotubes (VACNTs) are of particular interest in regenerative medicine. The aim of this study is to evaluate cell expansion of human articular chondrocytes on superhydrophilic VACNTs, as well as their morphology and gene expression. VACNT films were produced using a microwave plasma chamber on Ti substrates and submitted to an O{sub 2} plasma treatment to make them superhydrophilic. Human chondrocytes were cultivated on superhydrophilic VACNTs up to five days. Quantitative RT-PCR was performed to measure type I and type II Collagen, Sox9, and Aggrecan mRNA expression levels. The morphology was analyzed by scanning electron microscopy (SEM) and confocal microscopy. SEM images demonstrated that superhydrophilic VACNTs permit cell growth and adhesion of human chondrocytes. The chondrocytes had an elongated morphology with some prolongations. Chondrocytes cultivated on superhydrophilic VACNTs maintain the level expression of Aggrecan, Sox9, and Collagen II determined by qPCR. This study was the first to indicate that superhydrophilic VACNTs may be used as an efficient scaffold for cartilage or bone repair. Highlights: Black-Right-Pointing-Pointer Chondrocytes were cultivated on Superhydrophilic Vertically Aligned Multiwall Carbon Nanotubes (VACNT). Black-Right-Pointing-Pointer We have shown a correlation between gene expression and thermodynamics aspects. Black-Right-Pointing-Pointer Superhydrhophilic VACNT will be an excellent substrate for cartilage and bone tissue regeneration.

  1. Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Christelle Sanchez

    Full Text Available The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.Osteoarthritic (OA human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM. The production of aggrecan, matrix metalloproteinase (MMP-3, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-6 and nitric oxide (NO and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC or non-sclerotic (NSC subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008. MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01. TIMP-1 production was slightly increased at 3 μM (p = 0.02 and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05. IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in

  2. The synovial microenvironment of osteoarthritic joints alters RNA-seq expression profiles of human primary articular chondrocytes

    Science.gov (United States)

    Lewallen, Eric A.; Bonin, Carolina A.; Li, Xin; Smith, Jay; Karperien, Marcel; Larson, A. Noelle; Lewallen, David G.; Cool, Simon M.; Westendorf, Jennifer J.; Krych, Aaron J.; Leontovich, Alexey A.; Im, Hee-Jeong; van Wijnen, Andre J.

    2018-01-01

    Osteoarthritis (OA) is a disabling degenerative joint disease that prompts pain with limited treatment options. To permit early diagnosis and treatment of OA, a high resolution mechanistic understanding of human chondrocytes in normal and diseased states is necessary. In this study, we assessed the biological effects of OA-related changes in the synovial microenvironment on chondrocytes embedded within anatomically intact cartilage from joints with different pathological grades by next generation RNA-sequencing (RNA-seq). We determined the transcriptome of primary articular chondrocytes derived from pristine knees and ankles, as well as from joints affected by OA. The GALAXY bioinformatics platform was used to facilitate biological interpretations. Comparisons of patient samples by k-means, hierarchical clustering and principal component analysis reveal that primary chondrocytes exhibit OA grade-related differences in gene expression, including genes involved in cell-adhesion, ECM production and immune response. We conclude that diseased synovial microenvironments in joints with different histopathological OA grades directly alter gene expression in chondrocytes. One ramification of this finding is that sampling anatomically intact cartilage from OA joints is not an ideal source of healthy chondrocytes, nor should they be used to generate a normal baseline for the molecular characterization of diseased joints. PMID:27378743

  3. Efficiency of Human Epiphyseal Chondrocytes with Differential Replication Numbers for Cellular Therapy Products

    Directory of Open Access Journals (Sweden)

    Michiyo Nasu

    2016-01-01

    Full Text Available The cell-based therapy for cartilage or bone requires a large number of cells; serial passages of chondrocytes are, therefore, needed. However, fates of expanded chondrocytes from extra fingers remain unclarified. The chondrocytes from human epiphyses morphologically changed from small polygonal cells to bipolar elongated spindle cells and to large polygonal cells with degeneration at early passages. Gene of type II collagen was expressed in the cells only at a primary culture (Passage 0 and Passage 1 (P1 cells. The nodules by implantation of P0 to P8 cells were composed of cartilage and perichondrium. The cartilage consisted of chondrocytes with round nuclei and type II collagen-positive matrix, and the perichondrium consisted of spindle cells with type I collage-positive matrix. The cartilage and perichondrium developed to bone with marrow cavity through enchondral ossification. Chondrogenesis and osteogenesis by epiphyseal chondrocytes depended on replication number in culture. It is noteworthy to take population doubling level in correlation with pharmaceutical efficacy into consideration when we use chondrocytes for cell-based therapies.

  4. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  5. Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA

    OpenAIRE

    Crowe, N.; Swingler, T.E.; Le, L.T.T.; Barter, M.J.; Wheeler, G.; Pais, H.; Donell, S.T.; Young, D.A.; Dalmay, T.; Clark, I.M.

    2016-01-01

    Summary Objective To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray...

  6. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  7. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470

    International Nuclear Information System (INIS)

    Hering, Thomas M.; Kazmi, Najam H.; Huynh, Tru D.; Kollar, John; Xu, Laura; Hunyady, Aaron B.; Johnstone, Brian

    2004-01-01

    As part of a study to identify novel transcriptional regulators of chondrogenesis-related gene expression, we have cloned and characterized cDNA for zinc-finger protein 470 (ZNF470), the human ortholog of which encodes a 717 amino acid residue protein containing 17 Cys 2 His 2 zinc-finger domains, as well as KRAB-A and KRAB-B motifs. The cDNA library used to isolate the initial ZNF470 clone was prepared from human bone marrow-derived mesenchymal progenitor cells at an intermediate stage of chondrogenic differentiation. We have determined the intron-exon structure of the human ZNF470 gene, which has been mapped to a zinc-finger cluster in a known imprinted region of human chromosome 19q13.4. ZNF470 is expressed at high levels in human testis and is expressed at low or undetectible levels in other adult tissues. Human ZNF470 expressed in mammalian cells as an EGFP fusion protein localizes predominantly to the nucleus, consistent with a role in transcriptional regulation. ZNF470, analyzed by quantitative real time PCR, was transiently expressed before the maximal expression of COL2A1 during chondrogenic differentiation in vitro. We have also characterized the bovine ortholog of human ZNF470, which encodes a 508 amino acid residue protein having 10 zinc-finger domains. A bovine ZNF470 cDNA clone was used to examine expression of ZNF470 in bovine articular chondrocytes treated with retinoic acid to stimulate dedifferentiation. Bovine ZNF470 expression was undetectable in freshly isolated bovine articular chondrocytes, but was dramatically upregulated in dedifferentiated retinoic acid-treated chondrocytes. These results, in two model systems, suggest a possible role for ZNF470 in the regulation of chondrogenesis-specific gene expression

  8. Cyclic Equibiaxial Tensile Strain Alters Gene Expression of Chondrocytes via Histone Deacetylase 4 Shuttling.

    Directory of Open Access Journals (Sweden)

    Chongwei Chen

    Full Text Available This paper aims to investigate whether equibiaxial tensile strain alters chondrocyte gene expression via controlling subcellular localization of histone deacetylase 4 (HDAC4.Murine chondrocytes transfected with GFP-HDAC4 were subjected to 3 h cyclic equibiaxial tensile strain (CTS, 6% strain at 0.25 Hz by a Flexcell® FX-5000™ Tension System. Fluorescence microscope and western blot were used to observe subcellular location of HDAC4. The gene expression was analyzed by real-time RT-PCR. The concentration of Glycosaminoglycans in culture medium was quantified by bimethylmethylene blue dye; Collagen II protein was evaluated by western blot. Cells phenotype was identified by immunohistochemistry. Cell viability was evaluated by live-dead cell detect kit. Okadaic acid, an inhibitor of HDAC4 nuclear relocation, was used to further validate whether HDAC4 nuclear relocation plays a role in gene expression in response to tension stimulation.87.5% of HDAC4 was located in the cytoplasm in chondrocytes under no loading condition, but it was relocated to the nucleus after CTS. RT-PCR analysis showed that levels of mRNA for aggrecan, collagen II, LK1 and SOX9 were all increased in chondrocytes subjected to CTS as compared to no loading control chondrocytes; in contrast, the levels of type X collagen, MMP-13, IHH and Runx2 gene expression were decreased in the chondrocytes subjected to CTS as compared to control chondrocytes. Meanwhile, CTS contributed to elevation of glycosaminoglycans and collagen II protein, but did not change collagen I production. When Okadaic acid blocked HDAC4 relocation from the cytoplasm to nucleus, the changes of the chondrocytes induced by CTS were abrogated. There was no chondrocyte dead detected in this study in response to CTS.CTS is able to induce HDAC4 relocation from cytoplasm to nucleus. Thus, CTS alters chondrocytes gene expression in association with the relocation of HDAC4 induced by CTS.

  9. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA

    Directory of Open Access Journals (Sweden)

    Jakob Naranda

    2017-03-01

    Full Text Available Background Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. Methods Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2, collagen 1 (COL1 and aggrecan (ACAN was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. Results Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. Discussion In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a

  10. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro

    NARCIS (Netherlands)

    Korstjens, C.M.; van der Rijt, R.H.H.; Albers, G.H.; Semeins, C.M.; Klein-Nulend, J.

    2008-01-01

    We investigated whether low-intensity pulsed ultrasound (LIPUS) stimulates chondrocyte proliferation and matrix production in explants of human articular cartilage obtained from donors suffering from unicompartimental osteoarthritis of the knee, as well as in isolated human chondrocytes in vitro.

  11. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  12. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films.

    Science.gov (United States)

    Antonioli, Eliane; Lobo, Anderson O; Ferretti, Mario; Cohen, Moisés; Marciano, Fernanda R; Corat, Evaldo J; Trava-Airoldi, Vladimir J

    2013-03-01

    Cartilage serves as a low-friction and wear-resistant articulating surface in diarthrodial joints and is also important during early stages of bone remodeling. Recently, regenerative cartilage research has focused on combinations of cells paired with scaffolds. Superhydrophilic vertically aligned carbon nanotubes (VACNTs) are of particular interest in regenerative medicine. The aim of this study is to evaluate cell expansion of human articular chondrocytes on superhydrophilic VACNTs, as well as their morphology and gene expression. VACNT films were produced using a microwave plasma chamber on Ti substrates and submitted to an O2 plasma treatment to make them superhydrophilic. Human chondrocytes were cultivated on superhydrophilic VACNTs up to five days. Quantitative RT-PCR was performed to measure type I and type II Collagen, Sox9, and Aggrecan mRNA expression levels. The morphology was analyzed by scanning electron microscopy (SEM) and confocal microscopy. SEM images demonstrated that superhydrophilic VACNTs permit cell growth and adhesion of human chondrocytes. The chondrocytes had an elongated morphology with some prolongations. Chondrocytes cultivated on superhydrophilic VACNTs maintain the level expression of Aggrecan, Sox9, and Collagen II determined by qPCR. This study was the first to indicate that superhydrophilic VACNTs may be used as an efficient scaffold for cartilage or bone repair. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Chondrocyte secreted CRTAC1: a glycosylated extracellular matrix molecule of human articular cartilage.

    Science.gov (United States)

    Steck, Eric; Bräun, Jessica; Pelttari, Karoliina; Kadel, Stephanie; Kalbacher, Hubert; Richter, Wiltrud

    2007-01-01

    Cartilage acidic protein 1 (CRTAC1), a novel human marker which allowed discrimination of human chondrocytes from osteoblasts and mesenchymal stem cells in culture was so far studied only on the RNA-level. We here describe its genomic organisation and detect a new brain expressed (CRTAC1-B) isoform resulting from alternate last exon usage which is highly conserved in vertebrates. In humans, we identify an exon sharing process with the neighbouring tail-to-tail orientated gene leading to CRTAC1-A. This isoform is produced by cultured human chondrocytes, localized in the extracellular matrix of articular cartilage and its secretion can be stimulated by BMP4. Of five putative O-glycosylation motifs in the last exon of CRTAC1-A, the most C-terminal one is modified according to exposure of serial C-terminal deletion mutants to the O-glycosylation inhibitor Benzyl-alpha-GalNAc. Both isoforms contain four FG-GAP repeat domains and an RGD integrin binding motif, suggesting cell-cell or cell-matrix interaction potential. In summary, CRTAC1 acquired an alternate last exon from the tail-to-tail oriented neighbouring gene in humans resulting in the glycosylated isoform CRTAC1-A which represents a new extracellular matrix molecule of articular cartilage.

  14. Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Yamada, Tomoe; Lu, Hongxu; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2008-01-01

    Cartilaginous gene expression decreased when chondrocytes were expanded on cell-culture plates. Understanding the dedifferentiation mechanism may provide valuable insight into cartilage tissue engineering. Here, we demonstrated the relationship between the nuclear shape and gene expression during in vitro expansion culture of chondrocytes. Specifically, the projected nuclear area increased and cartilaginous gene expressions decreased during in vitro expansion culture. When the nuclear deformation was recovered by cytochalasin D treatment, aggrecan expression was up-regulated and type I collagen (Col1a2) expression was down-regulated. These results suggest that nuclear deformation may be one of the mechanisms for chondrocyte dedifferentiation during in vitro expansion culture

  15. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  16. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding.

    Science.gov (United States)

    Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B

    2018-03-01

    Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression.

    Directory of Open Access Journals (Sweden)

    Victor Y L Leung

    2011-11-01

    Full Text Available Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9-GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between

  18. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds.

    Science.gov (United States)

    Du, Mingchun; Liang, Hui; Mou, Chenchen; Li, Xiaoran; Sun, Jie; Zhuang, Yan; Xiao, Zhifeng; Chen, Bing; Dai, Jianwu

    2014-02-01

    To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH=2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-β (TGF-β) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-β (CC-T), the samples with CBD-bFGF/TGF-β (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. Immunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A Tumor Suppressor Gene Product, Platelet-Derived Growth Factor Receptor-Like Protein Controls Chondrocyte Proliferation and Differentiation.

    Science.gov (United States)

    Kawata, Kazumi; Kubota, Satoshi; Eguchi, Takanori; Aoyama, Eriko; Moritani, Norifumi H; Oka, Morihiko; Kawaki, Harumi; Takigawa, Masaharu

    2017-11-01

    The platelet-derived growth factor receptor-like (PDGFRL) gene is regarded as a tumor suppressor gene. However, nothing is known about the molecular function of PDGFRL. In this study, we initially clarified its function in chondrocytes. Among all cell lines examined, the PDGFRL mRNA level was the highest in chondrocytic HCS-2/8 cells. Interestingly, the proliferation of chondrocytic HCS-2/8 cells was promoted by PDGFRL overexpression, whereas that of the breast cancer-derived MDA-MB-231 cells was inhibited. Of note, in PDGFRL-overexpressing HCS-2/8 cells, the expression of chondrocyte differentiation marker genes, SOX9, ACAN, COL2A1, COL10A1, and ALP, was decreased. Moreover, we confirmed the expression of PDGFRL mRNA in normal cartilage tissue and chondrocytes. Eventually, the expression of PDGFRL mRNA in condrocytes except in the case of hypertrophic chondrocytes was demonstrated in vivo and in vitro. These findings suggest that PDGFRL plays the different roles, depending upon cell types. Particularly, in chondrocytes, PDGFRL may play a new and important role which is distinct from the function previously reported. J. Cell. Biochem. 118: 4033-4044, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Biotechnological Chondroitin a Novel Glycosamminoglycan With Remarkable Biological Function on Human Primary Chondrocytes.

    Science.gov (United States)

    Stellavato, Antonietta; Tirino, Virginia; de Novellis, Francesca; Della Vecchia, Antonella; Cinquegrani, Fabio; De Rosa, Mario; Papaccio, Gianpaolo; Schiraldi, Chiara

    2016-09-01

    Cartilage tissue engineering, with in vitro expansion of autologus chondrocytes, is a promising technique for tissue regeneration and is a new potential strategy to prevent and/or treat cartilage damage (e.g., osteoarthritis). The aim of this study was (i) to investigate and compare the effects of new biotechnological chondroitin (BC) and a commercial extractive chondroitin sulfate (CS) on human chondrocytes in vitro culture; (ii) to evaluate the anti-inflammatory effects of the innovative BC compared to extractive CS. A chondrogenic cell population was isolated from human nasoseptal cartilage and in vitro cultures were studied through time-lapse video microscopy (TLVM), immunohistochemical staining and cytometry. In order to investigate the effect of BC and CS on phenotype maintainance, chondrogenic gene expression of aggrecan (AGN), of the transcriptor factor SOX9, of the types I and II collagen (COL1A1 and COL1A2), were quantified through transcriptional and protein evaluation at increasing cultivation time and passages. In addition to resemble the osteoarthritis-like in vitro model, chondrocytes were treated with IL-1β and the anti-inflammatory activity of BC and CS was assessed using cytokines quantification by multiplex array. BC significantly enhances cell proliferation also preserving chondrocyte phenotype increasing type II collagen expression up to 10 days of treatment and reduces inflammatory response in IL-1β treated chondrocytes respect to CS treated cells. Our results, taken together, suggest that this new BC is of foremost importance in translational medicine because it can be applied in novel scaffolds and pharmaceutical preparations aiming at cartilage pathology treatments such as the osteoarthritis. J. Cell. Biochem. 117: 2158-2169, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  1. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    International Nuclear Information System (INIS)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-01-01

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA

  2. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  3. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    LS Moreira Teixeira

    2012-06-01

    Full Text Available Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  4. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo.

    Science.gov (United States)

    Moreira Teixeira, L S; Leijten, J C H; Sobral, J; Jin, R; van Apeldoorn, A A; Feijen, J; van Blitterswijk, C; Dijkstra, P J; Karperien, M

    2012-06-05

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous matrix deposition and remodelling. To address this issue, we designed a micro-mould to enable controlled high-throughput formation of micro-aggregates. Morphology, stability, gene expression profiles and chondrogenic potential of micro-aggregates of human and bovine chondrocytes were evaluated and compared to single-cells cultured in micro-wells and in 3D after encapsulation in Dextran-Tyramine (Dex-TA) hydrogels in vitro and in vivo. We successfully formed micro-aggregates of human and bovine chondrocytes with highly controlled size, stability and viability within 24 hours. Micro-aggregates of 100 cells presented a superior balance in Collagen type I and Collagen type II gene expression over single cells and micro-aggregates of 50 and 200 cells. Matrix metalloproteinases 1, 9 and 13 mRNA levels were decreased in micro-aggregates compared to single-cells. Histological and biochemical analysis demonstrated enhanced matrix deposition in constructs seeded with micro-aggregates cultured in vitro and in vivo, compared to single-cell seeded constructs. Whole genome microarray analysis and single gene expression profiles using human chondrocytes confirmed increased expression of cartilage-related genes when chondrocytes were cultured in micro-aggregates. In conclusion, we succeeded in controlled high-throughput formation of micro-aggregates of chondrocytes. Compared to single cell-seeded constructs, seeding of constructs with micro-aggregates greatly improved neo-cartilage formation. Therefore, micro-aggregation prior to chondrocyte implantation in current MACI procedures, may effectively accelerate hyaline cartilage formation.

  5. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.

    Science.gov (United States)

    Apelgren, Peter; Amoroso, Matteo; Lindahl, Anders; Brantsing, Camilla; Rotter, Nicole; Gatenholm, Paul; Kölby, Lars

    2017-01-01

    Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.

  6. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.

    Directory of Open Access Journals (Sweden)

    Peter Apelgren

    Full Text Available Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.

  7. Gene Modification of Mesenchymal Stem Cells and Articular Chondrocytes to Enhance Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Saliya Gurusinghe

    2014-01-01

    Full Text Available Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.

  8. Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor.

    Science.gov (United States)

    Wright, M O; Nishida, K; Bavington, C; Godolphin, J L; Dunne, E; Walmsley, S; Jobanputra, P; Nuki, G; Salter, D M

    1997-09-01

    Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation of approximately 40%. The mechanisms responsible for these changes are not fully understood but potentially involve signalling molecules such as integrins that link extracellular matrix with cytoplasmic components. The results reported in this paper demonstrate that the transduction pathways involved in the hyperpolarisation response of human articular chondrocytes in vitro after cyclical pressure-induced strain involve alpha 5 beta 1 integrin. We have demonstrated, using pharmacological inhibitors of a variety of intracellular signalling pathways, that the actin cytoskeleton, the phospholipase C calmodulin pathway, and both tyrosine protein kinase and protein kinase C activities are important in the transduction of the electrophysiological response. These results suggest that alpha 5 beta 1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function.

  9. RHEB: a potential regulator of chondrocyte phenotype for cartilage tissue regeneration.

    Science.gov (United States)

    Ashraf, S; Ahn, J; Cha, B-H; Kim, J-S; Han, I; Park, H; Lee, S-H

    2017-09-01

    As articular cartilage has a limited ability to self-repair, successful cartilage regeneration requires clinical-grade chondrocytes with innate characteristics. However, cartilage regeneration via chondrocyte transplantation is challenging, because chondrocytes lose their innate characteristics during in vitro expansion. Here, we investigated the mechanistic underpinning of the gene Ras homologue enriched in brain (RHEB) in the control of senescence and dedifferentiation through the modulation of oxidative stress in chondrocytes, a hallmark of osteoarthritis. Serial expansion of human chondrocytes led to senescence, dedifferentiation and oxidative stress. RHEB maintained the innate characteristics of chondrocytes by regulating senescence, dedifferentiation and oxidative stress, leading to the upregulation of COL2 expression via SOX9 and the downregulation of p27 expression via MCL1. RHEB also decreased the expression of COL10. RHEB knockdown mimics decreased the expression of SOX9, COL2 and MCL1, while abrogating the suppressive function of RHEB on p27 and COL10 in chondrocytes. RHEB-overexpressing chondrocytes successfully formed cartilage tissue in vitro as well as in vivo, with increased expression of GAG matrix and chondrogenic markers. RHEB induces a distinct gene expression signature that maintained the innate chondrogenic properties over a long period. Therefore, RHEB expression represents a potentially useful mechanism in terms of cartilage tissue regeneration from chondrocytes, by which chondrocyte phenotypic and molecular characteristics can be retained through the modulation of senescence, dedifferentiation and oxidative stress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Single Cell Confocal Raman Spectroscopy of Human Osteoarthritic Chondrocytes: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-04-01

    Full Text Available A great deal of effort has been focused on exploring the underlying molecular mechanism of osteoarthritis (OA especially at the cellular level. We report a confocal Raman spectroscopic investigation on human osteoarthritic chondrocytes. The objective of this investigation is to identify molecular features and the stage of OA based on the spectral signatures corresponding to bio-molecular changes at the cellular level in chondrocytes. In this study, we isolated chondrocytes from human osteoarthritic cartilage and acquired Raman spectra from single cells. Major spectral differences between the cells obtained from different International Cartilage Repair Society (ICRS grades of osteoarthritic cartilage were identified. During progression of OA, a decrease in protein content and an increase in cell death were observed from the vibrational spectra. Principal component analysis and subsequent cross-validation was able to associate osteoarthritic chondrocytes to ICRS Grade I, II and III with specificity 100.0%, 98.1%, and 90.7% respectively, while, sensitivity was 98.6%, 82.8%, and 97.5% respectively. The overall predictive efficiency was 92.2%. Our pilot study encourages further use of Raman spectroscopy as a noninvasive and label free technique for revealing molecular features associated with osteoarthritic chondrocytes.

  11. A Preliminary Study of Human Amniotic Membrane as a Potential Chondrocyte Carrier

    Directory of Open Access Journals (Sweden)

    L Boo

    2009-11-01

    Full Text Available PURPOSE: To investigate the feasibility of using processed human amniotic membrane (HAM to support the attachment and proliferation of chondrocytes in vitro which in turn can be utilised as a cell delivery vehicle in tissue engineering applications. METHODS: Fresh HAM obtained from patients undergoing routine elective caesarean sections was harvested, processed and dried using either freeze drying (FD or air drying (AD methods prior to sterilisation by gamma irradiation. Isolated, processed and characterised rabbit autologous chondrocytes were seeded on processed HAM and cultured for up to three weeks. Cell attachment and proliferation were examined qualitatively using inverted brightfield microscopy. RESULTS: Processed HAM appeared to allow cell attachment when implanted with chondrocytes. Although cells seeded on AD and FD HAM did not appear to attach as strongly as those seeded on glycerol preserved intact human amniotic membrane, these cells to be proliferated in cell culture conditions. CONCLUSION: Preliminary results show that processed HAM promotes chondrocyte attachment and proliferation.

  12. Culture temperature affects redifferentiation and cartilaginous extracellular matrix formation in dedifferentiated human chondrocytes.

    Science.gov (United States)

    Ito, Akira; Aoyama, Tomoki; Iijima, Hirotaka; Tajino, Junichi; Nagai, Momoko; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-05-01

    To date, there have been few studies on how temperature affects the phenotype and metabolism of human chondrocytes. Thus, the purpose of this study was to elucidate the effects of culture temperature on chondrocyte redifferentiation and extracellular matrix (ECM) formation using dedifferentiated mature human chondrocytes in vitro. Dedifferentiated chondrocytes were cultured in a pellet culture system for up to 21 days. The pellets were randomly divided into three groups with different culture temperature (32, 37, and 41°C). Chondrocyte redifferentiation and ECM formation were evaluated by wet weight, messenger ribonucleic acid (mRNA), histological, and biochemical analyses. The results showed that the wet weight and the mRNA expressions of collagen type II A1 and cartilage oligomeric matrix protein at 37°C were higher than the corresponding values at 32°C. The histological and biochemical analyses revealed that the syntheses of type II collagen and proteoglycan were promoted at 37°C compared to those at 32°C, whereas they were considerably inhibited at 41°C. In conclusion, the results obtained herein indicated that temperature affects chondrocyte redifferentiation and ECM formation, and modulation of temperature might thus represent an advantageous means to regulate the phenotype and biosynthetic activity of chondrocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription

    Directory of Open Access Journals (Sweden)

    James Claudine G

    2006-09-01

    Full Text Available Abstract Background Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3, is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown. Results Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter. Conclusion Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.

  14. Activation of Indian Hedgehog Promotes Chondrocyte Hypertrophy and Upregulation of MMP-13 in Human Osteoarthritic Cartilage

    Science.gov (United States)

    Wei, Fangyuan; Zhou, Jingming; Wei, Xiaochun; Zhang, Juntao; Fleming, Braden C.; Terek, Richard; Pei, Ming; Chen, Qian; Liu, Tao; Wei, Lei

    2012-01-01

    Objective The objectives of this study were to 1) determine the correlation between osteoarthritis (OA) and Ihh expression, and 2) establish the effects of Ihh on expression of markers of chondrocyte hypertrophy and MMP-13 in human OA cartilage. Design OA cartilage and synovial fluid samples were obtained during total knee arthroplasty. Normal cartilage samples were obtained from intra-articular tumor resections, and normal synovial fluid samples were obtained from healthy volunteers and the contralateral uninjured knee of patients undergoing anterior cruciate ligament reconstruction. OA was graded using the Mankin score. Expression of Ihh in synovial fluid was determined by western blot. Ihh, type X collagen and MMP-13 mRNA were determined by real time PCR. Protein expression of type X collagen and MMP-13 in cartilage samples were analyzed with immunohistochemistry. Chondrocyte size was measured using image analysis. Results Ihh expression was increased 2.6 fold in OA cartilage and 37% in OA synovial fluid when compared to normal control samples. Increased expression of Ihh was associated with the severity of OA and expression of markers of chondrocyte hypertrophy: type X collagen and MMP-13, and chondocyte size. Chondrocytes were more spherical with increasing severity of OA. There was a significant correlation between Mankin score and cell size (r2= 0.80) and Ihh intensity (r2 = 0.89). Exogenous Ihh induced a 6.8 fold increase of type X collagen and 2.8 fold increase of MMP-13 mRNA expression in cultured chondrocytes. Conversely, knockdown of Ihh by siRNA and Hh inhibitor Cyclopamine had the opposite effect. Conclusions Ihh expression correlates with OA progression and changes in chondrocyte morphology and gene expression consistent with chondrocyte hypertrophy and cartilage degradation seen in OA cartilage. Thus, Ihh may be a potential therapeutic target to prevent OA progression. PMID:22469853

  15. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase-13 in human chondrocytes.

    Science.gov (United States)

    Rasheed, Zafar; Anbazhagan, Arivarasu N; Akhtar, Nahid; Ramamurthy, Sangeetha; Voss, Frank R; Haqqi, Tariq M

    2009-01-01

    The major risk factor for osteoarthritis (OA) is aging, but the mechanisms underlying this risk are only partly understood. Age-related accumulation of advanced glycation end products (AGEs) can activate chondrocytes and induce the production of proinflammatory cytokines and matrix metalloproteinases (MMPs). In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG) on AGE-modified-BSA (AGE-BSA)-induced activation and production of TNFalpha and MMP-13 in human OA chondrocytes. Human chondrocytes were derived from OA cartilage by enzymatic digestion and stimulated with in vitro-generated AGE-BSA. Gene expression of TNFalpha and MMP-13 was measured by quantitative RT-PCR. TNFalpha protein in culture medium was determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the MMP-13 production in the culture medium, phosphorylation of mitogen-activated protein kinases (MAPKs), and the activation of NF-kappaB. DNA binding activity of NF-kappaB p65 was determined using a highly sensitive and specific ELISA. IkappaB kinase (IKK) activity was determined using an in vitro kinase activity assay. MMP-13 activity in the culture medium was assayed by gelatin zymography. EGCG significantly decreased AGE-stimulated gene expression and production of TNFalpha and MMP-13 in human chondrocytes. The inhibitory effect of EGCG on the AGE-BSA-induced expression of TNFalpha and MMP-13 was mediated at least in part via suppression of p38-MAPK and JNK activation. In addition, EGCG inhibited the phosphorylating activity of IKKbeta kinase in an in vitro activity assay and EGCG inhibited the AGE-mediated activation and DNA binding activity of NF-kappaB by suppressing the degradation of its inhibitory protein IkappaBalpha in the cytoplasm. These novel pharmacological actions of EGCG on AGE-BSA-stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG-derived compounds may inhibit cartilage degradation by suppressing AGE

  16. Nanosized fibers' effect on adult human articular chondrocytes behavior

    International Nuclear Information System (INIS)

    Stenhamre, Hanna; Thorvaldsson, Anna; Enochson, Lars; Walkenström, Pernilla; Lindahl, Anders; Brittberg, Mats; Gatenholm, Paul

    2013-01-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum

  17. Nicotine promotes proliferation and collagen synthesis of chondrocytes isolated from normal human and osteoarthritis patients.

    Science.gov (United States)

    Ying, Xiaozhou; Cheng, Shaowen; Shen, Yue; Cheng, Xiaojie; An Rompis, Ferdinand; Wang, Wei; Lin, Zhongqin; Chen, Qingyu; Zhang, Wei; Kou, Dongquan; Peng, Lei; Tian, Xin Qiao; Lu, Chuan Zhu

    2012-01-01

    The aims of the study were to show the direct effect of nicotine with different concentrations (0, 25, 50, and 100 ng/ml) on chondrocytes isolated from normal human and osteoarthritis patients, respectively. Microscopic observation was performed during the culture with an inverted microscope. Methyl thiazolyl tetrazolium (MTT) assay method was adopted to observe the influence of nicotine on the proliferation of chondrocytes, and real-time PCR and ELISA were used to assay the mRNA and protein expression of type II collagen and aggrecan, respectively. We discovered that the OA chondrocytes were similar to fibroblasts in shape and grow slower than normal chondrocytes. The proliferation of the two kinds of chondrocytes was increased in a concentration-dependent manner and in a time-dependent manner (P<0.05). Also, we found that the mRNA level of type II collagen were upregulated under 25-100 ng/ml nicotine doses both in the two kinds of chondrocytes compared with control. The expression of protein levels of type II collagen were synthesized in line with the increase in mRNA. No effect was observed on aggrecan synthesis with any nicotine dose. We concluded that nicotine has the same effect on both chondrocytes, obtained either from osteoarthritis patients or from normal human, and the positive effect of smoking in OA may relate to the alteration in metabolism of chondrocytes.

  18. Doublecortin May Play a Role in Defining Chondrocyte Phenotype

    Directory of Open Access Journals (Sweden)

    Dongxia Ge

    2014-04-01

    Full Text Available Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype.

  19. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  20. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro

    OpenAIRE

    1988-01-01

    This report deals with the quantitation of both mRNA and transcription activity of type I collagen gene and of three cartilage-specific collagens (types II, IX, and X) during in vitro differentiation of chick chondrocytes. Differentiation was obtained by transferal to suspension culture of dedifferentiated cells passaged for 3 wk as adherent cells. The type I collagen mRNA, highly represented in the dedifferentiated cells, rapidly decreased during chondrocyte differentiation. On the contrary,...

  1. Effects of tofacitinib on nucleic acid metabolism in human articular chondrocytes.

    Science.gov (United States)

    Koizumi, Hideki; Arito, Mitsumi; Endo, Wataru; Kurokawa, Manae S; Okamoto, Kazuki; Omoteyama, Kazuki; Suematsu, Naoya; Beppu, Moroe; Kato, Tomohiro

    2015-07-01

    In our previous screening of chondrocyte protein profiles, the amount of adenosine monophosphate deaminase (AMPD) 2 was found to be decreased by tofacitinib. Extending the study, here we confirmed the decrease of AMPD2 by tofacitinib and further investigated effects of tofacitinib on purine nucleotide metabolism. Human articular chondrocytes and a chondrosarcoma cell line: OUMS-27 were stimulated with tofacitinib. Then the levels of AMPD2 and its related enzymes were investigated by Western blot. The levels of AMP and adenosine were assessed by mass spectrometry. We confirmed the significant decrease of AMPD2 by tofacitinib in chondrocytes (p = 0.025). The levels of adenosine kinase and 5'-nucleotidase were decreased in chondrocytes, although they did not meet statistical significance (p = 0.067 and p = 0.074, respectively). The results from OUMS-27 were similar to those from the chondrocytes. The cellular adenosine levels were significantly decreased by tofacitinib in OUMS-27 (p = 0.014). The cellular AMP levels were increased, although they did not meet statistical significance in OUMS-27 (p = 0.066). Our data indicate that tofacitinib increases the cellular levels of adenosine, which is known to have anti-inflammatory activity, through the downregulation of AMPD2. This would be a novel functional aspect of tofacitinib.

  2. Nanosized fibers' effect on adult human articular chondrocytes behavior

    Energy Technology Data Exchange (ETDEWEB)

    Stenhamre, Hanna [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Thorvaldsson, Anna, E-mail: anna.thorvaldsson@swerea.se [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Swerea IVF, Mölndal (Sweden); Enochson, Lars [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Walkenström, Pernilla [Swerea IVF, Mölndal (Sweden); Lindahl, Anders [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Brittberg, Mats [Cartilage Research Unit, University of Gothenburg, Department Orthopaedics, Kungsbacka Hospital, Kungsbacka (Sweden); Gatenholm, Paul [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2013-04-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum.

  3. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes.

    Science.gov (United States)

    Wu, Gong-Jhe; Chen, Tyng-Guey; Chang, Huai-Chia; Chiu, Wen-Ta; Chang, Chia-Chen; Chen, Ruei-Ming

    2007-08-15

    During inflammation, overproduction of nitric oxide (NO) can damage chondrocytes. In this study, we separately evaluated the toxic effects of exogenous and endogenous NO on human chondrocytes and their possible mechanisms. Human chondrocytes were exposed to sodium nitroprusside (SNP), an NO donor, or a combination of lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) as the exogenous and endogenous sources of NO, respectively. Administration of SNP or a combination of LPS and IFN-gamma in human chondrocytes increased cellular NO levels but decreased cell viability. Exposure to exogenous or endogenous NO significantly induced apoptosis of human chondrocytes. When treated with exogenous or endogenous NO, the mitochondrial membrane potential time-dependently decreased. Exposure to exogenous or endogenous NO significantly enhanced cellular reactive oxygen species (ROS) and cytochrome c (Cyt c) levels. Administration of exogenous or endogenous NO increased caspase-3 activity and consequently induced DNA fragmentation. Suppression of caspase-3 activation by Z-DEVD-FMK decreased NO-induced DNA fragmentation and cell apoptosis. Similar to SNP, exposure of human chondrocytes to S-nitrosoglutathione (GSNO), another NO donor, caused significant increases in Cyt c levels, caspase-3 activity, and DNA fragmentation, and induced cell apoptosis. Pretreatment with N-monomethyl arginine (NMMA), an inhibitor of NO synthase, significantly decreased cellular NO levels, and lowered endogenous NO-induced alterations in cellular Cyt c amounts, caspase-3 activity, DNA fragmentation, and cell apoptosis. Results of this study show that NO from exogenous and endogenous sources can induce apoptotic insults to human chondrocytes via a mitochondria-dependent mechanism.

  4. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    2014-11-01

    Full Text Available An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.

  5. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  6. Topographic variation in redifferentiation capacity of chondrocytes in the adult human knee joint.

    Science.gov (United States)

    Stenhamre, H; Slynarski, K; Petrén, C; Tallheden, T; Lindahl, A

    2008-11-01

    The aim of this study was to investigate the topographic variation in matrix production and cell density in the adult human knee joint. Additionally, we have examined the redifferentiation potential of chondrocytes expanded in vitro from the different locations. Full thickness cartilage-bone biopsies were harvested from seven separate anatomical locations of healthy knee joints from deceased adult human donors. Chondrocytes were isolated, expanded in vitro and redifferentiated in a pellet mass culture. Biochemical analysis of total collagen, proteoglycans and cellular content as well as histology and immunohistochemistry were performed on biopsies and pellets. In the biochemical analysis of the biopsies, we found lower proteoglycan to collagen (GAG/HP) ratio in the non-weight bearing (NWB) areas compared to the weight bearing (WB) areas. The chondrocytes harvested from different locations in femur showed a significantly better attachment and proliferation ability as well as good post-expansion chondrogenic capacity in pellet mass culture compared with the cells harvested from tibia. These results demonstrate that there are differences in extra cellular content within the adult human knee in respect to GAG/HP ratio. Additionally, the data show that clear differences between chondrocytes harvested from femur and tibia from healthy human knee joints exist and that the differences are not completely abolished during the process of de- and redifferentiation. These findings emphasize the importance of the understanding of topographic variation in articular cartilage biology when approaching new cartilage repair strategies.

  7. The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout.

    Science.gov (United States)

    Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Gamble, Gregory D; Dray, Michael; Pitto, Rocco; Bentley, Jarome; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2013-12-01

    Cartilage damage is frequently observed in advanced destructive gout. The aim of our study was to investigate the effects of monosodium urate monohydrate (MSU) crystals on chondrocyte viability and function. The alamarBlue assay and flow cytometry were used to assess the viability of primary human chondrocytes and cartilage explants following culture with MSU crystals. The number of dead chondrocytes in cartilage explants cultured with MSU crystals was quantified. Real-time PCR was used to determine changes in the relative mRNA expression levels of chondrocytic genes. The histological appearance of cartilage in joints affected by gout was also examined. MSU crystals rapidly reduced primary human chondrocyte and cartilage explant viability in a dose-dependent manner (p gout, normal cartilage architecture was lost, with empty chondrocyte lacunae observed. MSU crystals have profound inhibitory effects on chondrocyte viability and function. Interactions between MSU crystals and chondrocytes may contribute to cartilage damage in gout through reduction of chondrocyte viability and promotion of a catabolic state.

  8. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage.

    Science.gov (United States)

    Pearson, Mark J; Philp, Ashleigh M; Heward, James A; Roux, Benoit T; Walsh, David A; Davis, Edward T; Lindsay, Mark A; Jones, Simon W

    2016-04-01

    To identify long noncoding RNAs (lncRNAs), including long intergenic noncoding RNAs (lincRNAs), antisense RNAs, and pseudogenes, associated with the inflammatory response in human primary osteoarthritis (OA) chondrocytes and to explore their expression and function in OA. OA cartilage was obtained from patients with hip or knee OA following joint replacement surgery. Non-OA cartilage was obtained from postmortem donors and patients with fracture of the neck of the femur. Primary OA chondrocytes were isolated by collagenase digestion. LncRNA expression analysis was performed by RNA sequencing (RNAseq) and quantitative reverse transcriptase-polymerase chain reaction. Modulation of lncRNA chondrocyte expression was achieved using LNA longRNA GapmeRs (Exiqon). Cytokine production was measured with Luminex. RNAseq identified 983 lncRNAs in primary human hip OA chondrocytes, 183 of which had not previously been identified. Following interleukin-1β (IL-1β) stimulation, we identified 125 lincRNAs that were differentially expressed. The lincRNA p50-associated cyclooxygenase 2-extragenic RNA (PACER) and 2 novel chondrocyte inflammation-associated lincRNAs (CILinc01 and CILinc02) were differentially expressed in both knee and hip OA cartilage compared to non-OA cartilage. In primary OA chondrocytes, these lincRNAs were rapidly and transiently induced in response to multiple proinflammatory cytokines. Knockdown of CILinc01 and CILinc02 expression in human chondrocytes significantly enhanced the IL-1-stimulated secretion of proinflammatory cytokines. The inflammatory response in human OA chondrocytes is associated with widespread changes in the profile of lncRNAs, including PACER, CILinc01, and CILinc02. Differential expression of CILinc01 and CIinc02 in hip and knee OA cartilage, and their role in modulating cytokine production during the chondrocyte inflammatory response, suggest that they may play an important role in mediating inflammation-driven cartilage degeneration in

  9. Dexamethasone stimulates expression of C-type Natriuretic Peptide in chondrocytes

    Directory of Open Access Journals (Sweden)

    Beier Frank

    2006-11-01

    Full Text Available Abstract Background Growth of endochondral bones is regulated through the activity of cartilaginous growth plates. Disruption of the physiological patterns of chondrocyte proliferation and differentiation – such as in endocrine disorders or in many different genetic diseases (e.g. chondrodysplasias – generally results in dwarfism and skeletal defects. For example, glucocorticoid administration in children inhibits endochondral bone growth, but the molecular targets of these hormones in chondrocytes remain largely unknown. In contrast, recent studies have shown that C-type Natriuretic Peptide (CNP is an important anabolic regulator of cartilage growth, and loss-of-function mutations in the human CNP receptor gene cause dwarfism. We asked whether glucocorticoids could exert their activities by interfering with the expression of CNP or its downstream signaling components. Methods Primary mouse chondrocytes in monolayer where incubated with the synthetic glucocorticoid Dexamethasone (DEX for 12 to 72 hours. Cell numbers were determined by counting, and real-time PCR was performed to examine regulation of genes in the CNP signaling pathway by DEX. Results We show that DEX does influence expression of key genes in the CNP pathway. Most importantly, DEX significantly increases RNA expression of the gene encoding CNP itself (Nppc. In addition, DEX stimulates expression of Prkg2 (encoding cGMP-dependent protein kinase II and Npr3 (natriuretic peptide decoy receptor genes. Conversely, DEX was found to down-regulate the expression of the gene encoding its receptor, Nr3c1 (glucocorticoid receptor, as well as the Npr2 gene (encoding the CNP receptor. Conclusion Our data suggest that the growth-suppressive activities of DEX are not due to blockade of CNP signaling. This study reveals a novel, unanticipated relationship between glucocorticoid and CNP signaling and provides the first evidence that CNP expression in chondrocytes is regulated by endocrine

  10. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Niemeyer, Philipp

    2017-01-01

    Purpose: The use of passaged chondrocytes is the current standard for autologous chondrocyte implantation (ACI). De-differentiation due to amplification and donor site morbidity are known drawbacks highlighting the need for alternative cell sources. Methods: Via clinically validated flow cytometry...... analysis, we compared the expression of human stem cell and cartilage markers (collagen type 2 (Col2), aggrecan (ACAN), CD44) of chondrocytes (CHDR), passaged chondrocytes for ACI (CellGenix™), bone marrow derived mesenchymal stem cells (BMSC), and synovial derived stem cells (SDSC). Results: Primary...

  11. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

    Science.gov (United States)

    Murphy, Meghan K; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype with expansion. This study sought to investigate the effects of transforming growth factor β1 (TGF-β1), growth/differentiation factor 5 (GDF-5), and bone morphogenetic protein 2 (BMP-2) during postexpansion chondrogenesis in human articular chondrocytes (hACs) and to compare chondrogenesis in passaged hACs with that of passaged hMSCs. Through serial expansion, chondrocytes dedifferentiated, decreasing expression of chondrogenic genes while increasing expression of fibroblastic genes. However, following expansion, 10 ng/mL TGF-β1, 100 ng/mL GDF-5, or 100 ng/mL BMP-2 supplementation during three-dimensional aggregate culture each upregulated one or more markers of chondrogenic gene expression in both hACs and hMSCs. Additionally, in both cell types, the combination of TGF-β1, GDF-5, and BMP-2 induced the greatest upregulation of chondrogenic genes, that is, Col2A1, Col2A1/Col1A1 ratio, SOX9, and ACAN, and synthesis of cartilage-specific matrix, that is, glycosaminoglycans (GAGs) and ratio of collagen II/I. Finally, TGF-β1, GDF-5, and BMP-2 stimulation yielded mechanically robust cartilage rich in collagen II and GAGs in both cell types, following 4 weeks maturation. This study illustrates notable success in using the self-assembling method to generate robust, scaffold-free neocartilage constructs using expanded hACs and hMSCs. © 2014 AlphaMed Press.

  12. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  13. Widespread epigenomic, transcriptomic and proteomic differences between hip osteophytic and articular chondrocytes in osteoarthritis.

    Science.gov (United States)

    Steinberg, Julia; Brooks, Roger A; Southam, Lorraine; Bhatnagar, Sahir; Roumeliotis, Theodoros I; Hatzikotoulas, Konstantinos; Zengini, Eleni; Wilkinson, J Mark; Choudhary, Jyoti S; McCaskie, Andrew W; Zeggini, Eleftheria

    2018-05-08

    To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.

  14. Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs).

    Science.gov (United States)

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-04-01

    Stem cells (SCs) are a promising approach to regenerative medicine, with the potential to treat numerous orthopedic disorders, including osteo-degenerative diseases. The development of human-induced pluripotent stem cells (hiPSCs) has increased the potential of SCs for new treatments. However, current methods of differentiating hiPSCs into chondrocyte-like cells are suboptimal and better methods are needed. The aim of the present study was to assess four different chondrogenic differentiation protocols to identify the most efficient method of generating hiPSC-derived chondrocytes. For this study, hiPSCs were obtained from primary human dermal fibroblasts (PHDFs) and differentiated into chondrocyte-like cells using four different protocols: 1) monolayer culture with defined growth factors (GF); 2) embryoid bodies (EBs) in a chondrogenic medium with TGF-β3 cells; 3) EBs in chondrogenic medium conditioned with human chondrocytes (HC-402-05a cell line) and 4) EBs in chondrogenic medium conditioned with human chondrocytes and supplemented with TGF-β3. The cells obtained through these four protocols were evaluated and compared at the mRNA and protein levels. Although chondrogenic differentiation of hiPSCs was successfully achieved with all of these protocols, the two fastest and most cost-effective methods were the monolayer culture with GFs and the medium conditioned with human chondrocytes. Both of these methods are superior to other available techniques. The main advantage of the conditioned medium is that the technique is relatively simple and inexpensive while the directed method (i.e., monolayer culture with GFs) is faster than any protocol described to date because it is does not require additional steps such as EB formation.

  15. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Pedersen Christian

    2010-04-01

    Full Text Available Abstract Background Calcitonin has been demonstrated to have chondroprotective effects under pre-clinical settings. It is debated whether this effect is mediated through subchondral-bone, directly on cartilage or both in combination. We investigated possible direct effects of salmon calcitonin on proteoglycans and collagen-type-II synthesis in osteoarthritic (OA cartilage. Methods Human OA cartilage explants were cultured with salmon calcitonin [100 pM-100 nM]. Direct effects of calcitonin on articular cartilage were evaluated by 1 measurement of proteoglycan synthesis by incorporation of radioactive labeled 35SO4 [5 μCi] 2 quantification of collagen-type-II formation by pro-peptides of collagen type II (PIINP ELISA, 3 QPCR expression of the calcitonin receptor in OA chondrocytes using four individual primer pairs, 4 activation of the cAMP signaling pathway by EIA and, 5 investigations of metabolic activity by AlamarBlue. Results QPCR analysis and subsequent sequencing confirmed expression of the calcitonin receptor in human chondrocytes. All doses of salmon calcitonin significantly elevated cAMP levels (P 35SO4 incorporation, with a 96% maximal induction at 10 nM (P Conclusion Calcitonin treatment increased proteoglycan and collagen synthesis in human OA cartilage. In addition to its well-established effect on subchondral bone, calcitonin may prove beneficial to the management of joint diseases through direct effects on chondrocytes.

  16. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    Science.gov (United States)

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  17. The Involvement of Mutual Inhibition of ERK and mTOR in PLCγ1-Mediated MMP-13 Expression in Human Osteoarthritis Chondrocytes

    Directory of Open Access Journals (Sweden)

    Zejun Liu

    2015-08-01

    Full Text Available The issue of whether ERK activation determines matrix synthesis or degradation in osteoarthritis (OA pathogenesis currently remains controversial. Our previous study shows that PLCγ1 and mTOR are involved in the matrix metabolism of OA cartilage. Investigating the interplays of PLCγ1, mTOR and ERK in matrix degradation of OA will facilitate future attempts to manipulate ERK in OA prevention and therapy. Here, cultured human normal chondrocytes and OA chondrocytes were treated with different inhibitors or transfected with expression vectors, respectively. The levels of ERK, p-ERK, PLCγ1, p-PLCγ1, mTOR, p-mTOR and MMP-13 were then evaluated by Western blotting analysis. The results manifested that the expression level of ERK in human OA chondrocytes was lower than that in human normal articular chondrocytes, and the up-regulation of ERK could promote matrix synthesis, including the decrease in MMP-13 level and the increase in Aggrecan level in human OA chondrocytes. Furthermore, the PLCγ1/ERK axis and a mutual inhibition of mTOR and ERK were observed in human OA chondrocytes. Interestingly, activated ERK had no inhibitory effect on MMP-13 expression in PLCγ1-transformed OA chondrocytes. Combined with our previous study, the non-effective state of ERK activation by PLCγ1 on MMP-13 may be partly attributed to the inhibition of the PLCγ1/mTOR axis on the PLCγ1/ERK axis. Therefore, the study indicates that the mutual inhibition of ERK and mTOR is involved in PLCγ1-mediated MMP-13 expression in human OA chondrocytes, with important implication for the understanding of OA pathogenesis as well as for its prevention and therapy.

  18. A standardized extract of Butea monosperma (Lam.) flowers suppresses the IL-1β-induced expression of IL-6 and matrix-metalloproteases by activating autophagy in human osteoarthritis chondrocytes.

    Science.gov (United States)

    Ansari, Mohammad Y; Khan, Nazir M; Haqqi, Tariq M

    2017-12-01

    Osteoarthritis (OA) is a leading cause of joint dysfunction, disability and poor quality of life in the affected population. The underlying mechanism of joint dysfunction involves increased oxidative stress, inflammation, high levels of cartilage extracellular matrix degrading proteases and decline in autophagy-a mechanism of cellular defense. There is no disease modifying therapies currently available for OA. Different parts of the Butea monosperma (Lam.) plant have widely been used in the traditional Indian Ayurvedic medicine system for the treatment of various human diseases including inflammatory conditions. Here we studied the chondroprotective effect of hydromethanolic extract of Butea monosperma (Lam.) flowers (BME) standardized to the concentration of Butein on human OA chondrocytes stimulated with IL-1β. The hydromethanolic extract of Butea monosperma (Lam.) (BME) was prepared with 70% methanol-water mixer using Soxhlet. Chondrocytes viability after BME treatment was measured by MTT assay. Gene expression levels were determined by quantitative polymerase chain reaction (qPCR) using TaqMan assays and immunoblotting with specific antibodies. Autophagy activation was determined by measuring the levels of microtubule associated protein 1 light chain 3-II (LC3-II) by immunoblotting and visualization of autophagosomes by transmission electron and confocal microscopy. BME was non-toxic to the OA chondrocytes at the doses employed and suppressed the IL-1β induced expression of inerleukin-6 (IL-6) and matrix metalloprotease-3 (MMP-3), MMP-9 and MMP-13. BME enhanced autophagy in chondrocytes as determined by measuring the levels of LC3-II by immunoblotting and increased number of autophagosomes in BME treated chondrocytes by transmission electron microscopy and confocal microscopy. BME upregulated the expression of several autophagy related genes and increased the autophagy flux in human OA chondrocytes under pathological conditions. Further analysis revealed that

  19. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    Science.gov (United States)

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Prittinen, Juha [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Jiang, Yu [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Ylärinne, Janne H. [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Lammi, Mikko J., E-mail: mikko.lammi@uef.fi [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Qu, Chengjuan [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland)

    2014-10-01

    This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α{sub 1}(II), procollagen α{sub 1}(X), and procollagen α{sub 2}(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α{sub 1}(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α{sub 2}(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes. - Highlights: • Methods to avoid chondrocyte dedifferentiation would be useful for cartilage

  1. Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament.

    Science.gov (United States)

    Sugita, Daisuke; Yayama, Takafumi; Uchida, Kenzo; Kokubo, Yasuo; Nakajima, Hideaki; Yamagishi, Atsushi; Takeura, Naoto; Baba, Hisatoshi

    2013-10-15

    Histological, immunohistochemical, and immunoblot analyses of the expression of Indian hedgehog (Ihh) signaling in human cervical ossification of the posterior longitudinal ligament (OPLL). To examine the hypothesis that Ihh signaling in correlation with Sox9 and parathyroid-related peptide hormone (PTHrP) facilitates chondrocyte differentiation in enchondral ossification process in human cervical OPLL. In enchondral ossification, certain transcriptional factors regulate cell differentiation. OPLL is characterized by overexpression of these factors and disturbance of the normal cell differentiation process. Ihh signaling is essential for enchondral ossification, especially in chondrocyte hypertrophy. Samples of ossified ligaments were harvested from 45 patients who underwent anterior cervical decompressive surgery for symptomatic OPLL, and 6 control samples from patients with cervical spondylotic myelopathy/radiculopathy without OPLL. The harvested sections were stained with hematoxylin-eosin and toluidine blue, examined by transmission electron microscopy, and immunohistochemically stained for Ihh, PTHrP, Sox9, type X, XI collagen, and alkaline phosphatase. Immunoblot analysis was performed in cultured cells derived from the posterior longitudinal ligaments in the vicinity of the ossified plaque and examined for the expression of these factors. The ossification front in OPLL contained chondrocytes at various differentiation stages, including proliferating chondrocytes in fibrocartilaginous area, hypertrophic chondrocytes around the calcification front, and apoptotic chondrocytes near the ossified area. Immunoreactivity for Ihh and Sox9 was evident in proliferating chondrocytes and was strongly positive for PTHrP in hypertrophic chondrocytes. Mesenchymal cells with blood vessel formation were positive for Ihh, PTHrP, and Sox9. Cultured cells from OPLL tissues expressed significantly higher levels of Ihh, PTHrP, and Sox9 than those in non-OPLL cells. Our results

  2. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Liping; Duan, Zhiguang [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Mi, Yu; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Chang, Le [School of Chemical Engineering, Northwest University, Xi' an, Shaanxi 710069 (China)

    2013-03-01

    Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive Registered-Sign Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 {+-} 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering. - Highlights: Black-Right-Pointing-Pointer Human-like collagen was first used to prepare cartilage tissue engineering scaffold. Black-Right-Pointing-Pointer Genipin, a natural biological cross-linking agent, was introduced to treat scaffold. Black-Right-Pointing-Pointer We chose market product as a control.

  3. PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue.

    Science.gov (United States)

    Klinger, P; Lukassen, S; Ferrazzi, F; Ekici, A B; Hotfiel, T; Swoboda, B; Aigner, T; Gelse, K

    2017-01-01

    Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.

  4. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds

    DEFF Research Database (Denmark)

    Zwingmann, Joern; Mehlhorn, Alexander T; Südkamp, Norbert

    2007-01-01

    Cartilage tissue engineering is applied clinically to cover and regenerate articular cartilage defects. Two bioresorbable nonwoven scaffolds, polyglycolic acid (PGA) and poly(lactic-co-glycolic acid) (PLGA) (90/10 copolymer of L-lactide and glycolide), were seeded with human chondrocytes after in...

  5. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes.

    Science.gov (United States)

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-03-15

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates that significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Bone marrow extract as a growth supplement for human iliac apophyseal chondrocyte culture

    Directory of Open Access Journals (Sweden)

    Balasubramanian Balakumar

    2016-01-01

    Full Text Available Background & objectives: Human bone marrow is rich in various growth factors which may support the chondrocyte growth. This study was conducted to compare the culture characteristics of human growth plate chondrocyte in foetal bovine serum (FBS and human autologous bone marrow extract (BME in monolayer culture. Methods: Iliac crest apophyseal cartilage was harvested from four donors, aged between two and nine years, undergoing hip surgery. Chondrocytes were propagated under two culture conditions, with 10 per cent FBS and 10 per cent autologous BME harvested from the same donors. Cells were harvested at 7, 14 and 21 days to assess viability, morphology, cell count and immunocytochemistry. Results: With an initial seeding density of 2500 cells/cm 2 , the average yield in monolayer cultured with FBS was 3.35 × 10 5 , 5.9 × 10 5 , 14.1 × 10 5 and BME was 0.66 × 10 5 , 1.57 × 10 5 and 3.48 × 10 5 at 7, 14 and 21 days, respectively. Viability was 98.21 per cent with FBS and 97.45 per cent with BME at 21 days. In BME supplemented cultures, hyaline phenotype was maintained up to 21 days. The yield was higher in the FBS supplemented group; however, the phenotype could not be maintained by the FBS group as long as BME group. Interpretation & conclusions: Autologous BME was found to be a safer alternative to FBS for human studies. BME could maintain the hyaline phenotype for a longer time. Ways to enhance the cell yield needs to be explored in future studies.

  7. Fluoroquinolone's effect on growth of human chondrocytes and chondrosarcomas. In vitro and in vivo correlation

    DEFF Research Database (Denmark)

    Multhaupt, H A; Alvarez, J C; Rafferty, P A

    2001-01-01

    Clinical and in vitro studies have demonstrated that fluoroquinolones are toxic to chondrocytes; however, the exact mechanism of fluoroquinolone arthropathy is unknown. We investigated the toxicity of ciprofloxacin on normal cartilage and on cartilaginous tumors. Normal human cartilage, enchondroma...... with use of conventional light microscopy, electron microscopy, and immunohistochemistry to identify extracellular matrix, cell proliferation, and apoptosis. Cultures of normal chondrocytes expressed type-II collagen. Electron microscopy revealed a large amount of glycogen in the cells; the presence of fat...... of vimentin filaments. The treated chondrocytes showed a decrease in cell proliferation, but there was no induction of apoptosis or effect on the expression of extracellular matrix proteins. Ciprofloxacin-treated chondrosarcoma cultures and tissue samples showed changes in cartilage matrix composition...

  8. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.

    Science.gov (United States)

    Legendre, Florence; Ollitrault, David; Hervieu, Magalie; Baugé, Catherine; Maneix, Laure; Goux, Didier; Chajra, Hanane; Mallein-Gerin, Frédéric; Boumediene, Karim; Galera, Philippe; Demoor, Magali

    2013-07-01

    Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.

  9. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2015-08-01

    Full Text Available Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA. Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP/Transforming growth factor-β (TGFβ, Parathyroid hormone-related peptide (PTHrP, Indian hedgehog (IHH, Fibroblast growth factor (FGF, Insulin like growth factor (IGF and Hypoxia-inducible factor (HIF. This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  10. THE EFFECT OF PIROXICAM ON THE METABOLISM OF ISOLATED HUMAN CHONDROCYTES

    NARCIS (Netherlands)

    BULSTRA, SK; KUIJER, R; BUURMAN, WA; TERWINDTROUWENHORST, E; GUELEN, PJM; VANDERLINDEN, AJ

    The effect of piroxicam on the metabolism of healthy and osteoarthrotic (OA) chondrocytes was studied in vitro. The chondrocytes were obtained from five healthy, five moderately OA, and four severely OA hips or knees. The chondrocytes were cultured in a high-density, short-term in vitro model. In

  11. Analysis of human articular chondrocyte CD44 isoform expression and function in health and disease.

    Science.gov (United States)

    Salter, D M; Godolphin, J L; Gourlay, M S; Lawson, M F; Hughes, D E; Dunne, E

    1996-08-01

    Interactions between articular chondrocytes and components of the extracellular matrix are of potential importance in the normal function of cartilage and in the pathophysiology of arthritis. Little is known of the basis of these interactions, but cell adhesive molecules such as CD44 are likely to be involved. Immunohistology using six well-characterized anti-CD44 monoclonal antibodies demonstrated standard CD44 isoform (CD44H) expression by all chondrocytes in normal and osteoarthrotic (OA) cartilage but absence of the CD44E variant. Polymerase chain reaction (PCR) of reverse transcribed mRNA from monolayer cultures of normal and OA chondrocytes using primer sequences which span the region containing variably spliced exons produced a predominant band representing the standard form of CD44, which lacks the variable exons 6-15 (v1-v10). No product was seen at the expected size of the epithelial variant of CD44 (CD44v8-10). Use of exon-specific primers, however, showed expression of variant exons resulting in multiple minor isoforms. Standard CD44 was also shown to be the predominantly expressed isoform identified by immunoprecipitation, but human articular chondrocytes did not adhere to hyaluronan in vitro. Chondrocyte CD44 may function as an adhesion receptor for other matrix molecules such as fibronectin or collagen.

  12. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation.

    Science.gov (United States)

    Imamura, Katsuyuki; Maeda, Shingo; Kawamura, Ichiro; Matsuyama, Kanehiro; Shinohara, Naohiro; Yahiro, Yuhei; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-04-04

    Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.

  13. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model.

    Science.gov (United States)

    Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J

    2007-05-01

    Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and

  14. Cell expansion of human articular chondrocytes on macroporous gelatine scaffolds-impact of microcarrier selection on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Sofia; Kratz, Gunnar [Laboratory for Reconstructive Plastic Surgery, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Wetteroe, Jonas [Rheumatology/AIR, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Tengvall, Pentti, E-mail: sofia.pettersson@liu.se [Institute of Clinical Sciences, Department of Biomaterials, The Sahlgrenska Academy at University of Gothenburg, SE-405 30 Gothenburg (Sweden)

    2011-12-15

    This study investigates human chondrocyte expansion on four macroporous gelatine microcarriers (CultiSpher) differing with respect to two manufacturing processes-the amount of emulsifier used during initial preparation and the gelatine cross-linking medium. Monolayer-expanded articular chondrocytes from three donors were seeded onto the microcarriers and cultured in spinner flask systems for a total of 15 days. Samples were extracted every other day to monitor cell viability and establish cell counts, which were analysed using analysis of variance and piecewise linear regression. Chondrocyte densities increased according to a linear pattern for all microcarriers, indicating an ongoing, though limited, cell proliferation. A strong chondrocyte donor effect was seen during the initial expansion phase. The final cell yield differed significantly between the microcarriers and our results indicate that manufacturing differences affected chondrocyte densities at this point. Remaining cells stained positive for chondrogenic markers SOX-9 and S-100 but extracellular matrix formation was modest to undetectable. In conclusion, the four gelatine microcarriers supported chondrocyte adhesion and proliferation over a two week period. The best yield was observed for microcarriers produced with low emulsifier content and cross-linked in water and acetone. These results add to the identification of optimal biomaterial parameters for specific cellular processes and populations.

  15. Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    M. Lehmann

    2013-11-01

    Full Text Available Cartilage regeneration based on isolated and culture-expanded chondrocytes has been studied in various in vitro models, but the quality varies with respect to the morphology and the physiology of the synthesized tissues. The aim of our study was to promote in vitro chondrogenesis of human articular chondrocytes using a novel three-dimensional (3-D cultivation system in combination with the chondrogenic differentiation factors transforming growth factor beta 2 (TGF-b2 and L-ascorbic acid. Articular chondrocytes isolated from six elderly patients were expanded in monolayer culture. A single-cell suspension of the dedifferentiated chondrocytes was then added to agar-coated dishes without using any scaffold material, in the presence, or absence of TGF-b2 and/or L-ascorbic acid. Three-dimensional cartilage-like constructs, called single spheroids, and microtissues consisting of several spheroids fused together, named as fusions, were formed. Generated tissues were mainly characterized using histological and immunohistochemical techniques. The morphology of the in vitro tissues shared some similarities to native hyaline cartilage in regard to differentiated S100-positive chondrocytes within a cartilaginous matrix, with strong collagen type II expression and increased synthesis of proteoglycans. Finally, our innovative scaffold-free fusion culture technique supported enhanced chondrogenesis of human articular chondrocytes in vitro. These 3-D hyaline cartilage-like microtissues will be useful for in vitro studies of cartilage differentiation and regeneration, enabling optimization of functional tissue engineering and possibly contributing to the development of new approaches to treat traumatic cartilage defects or osteoarthritis.

  16. Influence of cell printing on biological characters of chondrocytes.

    Science.gov (United States)

    Qu, Miao; Gao, Xiaoyan; Hou, Yikang; Shen, Congcong; Xu, Yourong; Zhu, Ming; Wang, Hengjian; Xu, Haisong; Chai, Gang; Zhang, Yan

    2015-01-01

    To establish a two-dimensional biological printing technique of chondrocytes and compare the difference of related biological characters between printed chondrocytes and unprinted cells so as to control the cell transfer process and keep cell viability after printing. Primary chondrocytes were obtained from human mature and fetal cartilage tissues and then were regularly sub-cultured to harvest cells at passage 2 (P2), which were adjusted to the single cell suspension at a density of 1×10(6)/mL. The experiment was divided into 2 groups: experimental group P2 chondrocytes were transferred by rapid prototype biological printer (driving voltage value 50 V, interval in x-axis 300 μm, interval in y-axis 1500 μm). Afterwards Live/Dead viability Kit and flow cytometry were respectively adopted to detect cell viability; CCK-8 Kit was adopted to detect cell proliferation viability; immunocytochemistry, immunofluorescence and RT-PCR was employed to identify related markers of chondrocytes; control group steps were the same as the printing group except that cell suspension received no printing. Fluorescence microscopy and flow cytometry analyses showed that there was no significant difference between experimental group and control group in terms of cell viability. After 7-day in vitro culture, control group exhibited higher O.D values than experimental group from 2nd day to 7th day but there was no distinct difference between these two groups (P>0.05). Inverted microscope observation demonstrated that the morphology of these two groups had no significant difference either. Similarly, Immunocytochemistry, immunofluorescence and RT-PCR assays also showed that there was no significant difference in the protein and gene expression of type II collagen and aggrecan between these two groups (P>0.05). Conclusion Cell printing has no distinctly negative effect on cell vitality, proliferation and phenotype of chondrocytes. Biological printing technique may provide a novel approach

  17. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability.

    Science.gov (United States)

    Krawczak, David A; Westendorf, Jennifer J; Carlson, Cathy S; Lewis, Jack L

    2009-06-01

    The aim of this study was to determine the effects of bone morphogenetic protein-2 (BMP-2) on articular chondrocyte tissues grown as monolayers in vitro for up to 8 weeks. Articular chondrocytes were isolated from New Zealand White rabbits and plated in monolayer cultures. The cultures were supplemented with 100 ng/mL of BMP-2 for up to 8 weeks and the extracellular matrix (ECM) composition, material properties, and messenger RNA (mRNA) expression were analyzed. mRNA expression of cartilage-specific genes, type II collagen, and aggrecan showed that BMP-2 enhanced chondrocyte stability for up to 3 weeks. After 3 weeks in culture, there was substantially more type I collagen expression and more osteopontin and runt-related transcription factor 2 expression in 5- and 8-week cultures treated with BMP-2 than in controls. Additionally, matrix metalloproteinase-13 and ADAMTS-5 (A disintegrin-like and metalloproteinase with thrombospondin 5) were upregulated in 5- and 8-week cultures treated with BMP-2, coinciding with a loss of ECM density, collagen, and proteoglycan. Eight-week tissue stimulated with BMP-2 was more fragile and tore more easily when removed from the culture dish as compared to controls, suggesting temporal limitations to the effectiveness of BMP-2 in monolayer systems and perhaps other models to enhance the generation of a cartilage-like tissue for tissue engineering purposes.

  18. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes.

    Science.gov (United States)

    Ismail, Heba M; Yamamoto, Kazuhiro; Vincent, Tonia L; Nagase, Hideaki; Troeberg, Linda; Saklatvala, Jeremy

    2015-07-01

    Aggrecan enables articular cartilage to bear load and resist compression. Aggrecan loss occurs early in osteoarthritis and rheumatoid arthritis and can be induced by inflammatory cytokines such as interleukin-1 (IL-1). IL-1 induces cleavage of specific aggrecans characteristic of the ADAMTS proteinases. The aim of this study was to identify the intracellular signaling pathways by which IL-1 causes aggrecan degradation by human chondrocytes and to investigate how aggrecanase activity is controlled by chondrocytes. We developed a cell-based assay combining small interfering RNA (siRNA)-induced knockdown with aggrecan degradation assays. Human articular chondrocytes were overlaid with bovine aggrecan after transfection with siRNAs against molecules of the IL-1 signaling pathway. After IL-1 stimulation, released aggrecan fragments were detected with AGEG and ARGS neoepitope antibodies. Aggrecanase activity and tissue inhibitor of metalloproteinases 3 levels were measured by enzyme-linked immunosorbent assay. Low-density lipoprotein receptor-related protein 1 (LRP-1) shedding was analyzed by Western blotting. ADAMTS-5 is a major aggrecanase in human chondrocytes, regulating aggrecan degradation in response to IL-1. The tumor necrosis factor receptor-associated 6 (TRAF-6)/transforming growth factor β-activated kinase 1 (TAK-1)/MKK-4 signaling axis is essential for IL-1-induced aggrecan degradation, while NF-κB is not. Of the 3 MAPKs (ERK, p38, and JNK), only JNK-2 showed a significant role in aggrecan degradation. Chondrocytes constitutively secreted aggrecanase, which was continuously endocytosed by LRP-1, keeping the extracellular level of aggrecanase low. IL-1 induced aggrecanase activity in the medium in a JNK-2-dependent manner, possibly by reducing aggrecanase endocytosis, because IL-1 caused JNK-2-dependent shedding of LRP-1. The signaling axis TRAF-6/TAK-1/MKK-4/JNK-2 mediates IL-1-induced aggrecanolysis. The level of aggrecanase is controlled by its

  19. PPAR-δ Agonist With Mesenchymal Stem Cells Induces Type II Collagen-Producing Chondrocytes in Human Arthritic Synovial Fluid.

    Science.gov (United States)

    Heck, Bruce E; Park, Joshua J; Makani, Vishruti; Kim, Eun-Cheol; Kim, Dong Hyun

    2017-08-01

    Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints. An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by 2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect, while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells (MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combination consists of peroxisome proliferator-activated receptor (PPAR) δ agonist, human bone marrow (hBM)-derived MSCs, and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on chondrogenesis. GW0742, a PPAR-δ agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming growth factor β that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the combination of hBM-MSCs, PPAR-δ agonist, and HA gel significantly enhanced the formation of type II collagen-producing chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-δ agonist, hBM-MSCs, and HA gel can overcome synovial inflammation to form

  20. Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A

    Science.gov (United States)

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-01-01

    Human induced pluripotent stem cells (hiPSCs) offer promise in regenerative medicine, however more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte-like cells and the relative value of cell differentiation markers. The main aims of the present study were as follows: To determine the gene expression profile of chondrogenic-like cells derived from hiPSCs cultured in mediums conditioned with HC-402-05a cells or supplemented with transforming growth factor β3 (TGF-β3), and to assess the relative utility of the most commonly used chondrogenic markers as indicators of cell differentiation. These issues are relevant with regard to the use of human fibroblasts in the reprogramming process to obtain hiPSCs. Human fibroblasts are derived from the mesoderm and thus share a wide range of properties with chondrocytes, which also originate from the mesenchyme. Thus, the exclusion of dedifferentiation instead of chondrogenic differentiation is crucial. The hiPSCs were obtained from human primary dermal fibroblasts during a reprogramming process. Two methods, both involving embryoid bodies (EB), were used to obtain chondrocytes from the hiPSCs: EBs formed in a chondrogenic medium supplemented with TGF-β3 (10 ng/ml) and EBs formed in a medium conditioned with growth factors from HC-402-05a cells. Based on immunofluorescence and reverse transcription-quantiative polymerase chain reaction analysis, the results indicated that hiPSCs have the capacity for effective chondrogenic differentiation, in particular cells differentiated in the HC-402-05a-conditioned medium, which present morphological features and markers that are characteristic of mature human chondrocytes. By contrast, cells differentiated in the presence of TGF-β3 may demonstrate hypertrophic characteristics. Several genes [paired box 9, sex determining region Y-box (SOX) 5, SOX6

  1. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition

    NARCIS (Netherlands)

    Miot, Sylvie; Woodfield, T.B.F.; Daniels, Alma U.; Suetterlin, Rosemarie; Peterschmitt, Iman; Heberer, Michael; van Blitterswijk, Clemens; Riesle, J.U.; Martin, Ivan

    2005-01-01

    We investigated whether the post-expansion redifferentiation and cartilage tissue formation capacity of adult human nasal chondrocytes can be regulated by controlled modifications of scaffold composition and architecture. As a model system, we used poly(ethylene

  2. Comparison of Efficacy of Endogenous and Exogenous IGF-I in Stimulating Matrix Production in Neonatal and Mature Chondrocytes.

    Science.gov (United States)

    Aguilar, Izath N; Trippel, Stephen B; Shi, Shuiliang; Bonassar, Lawrence J

    2015-10-01

    The goal of this study was to compare the efficacy of endogenous upregulation of IGF-I by gene therapy and exogenous addition of insulin-like growth factor I (IGF-I) in enhancing proteoglycan synthesis by skeletally mature and neonatal chondrocytes. Chondrocyte transplantation therapy is a common treatment for focal cartilage lesions, with both mature and neonatal chondrocytes used as a cell source. Additionally, gene therapy strategies to upregulate growth factors such as IGF-I have been proposed to augment chondrocyte transplantation therapies. Both skeletally mature and neonatal chondrocytes were exposed to either an adeno-associated virus-based plasmid containing the IGF-I gene or exogenous IGF-I. Analysis of IGF-I and glycosaminoglycan production using a 4-parameter dose-response model established a clear connection between the amount of IGF-I produced by cells and their biosynthetic response. Both neonatal and mature chondrocytes showed this relationship, but the sensitivities were quite different, with EC50 of 0.57 ng/mL for neonatal chondrocytes and EC50 of 8.70 ng/mL IGF-I for skeletally mature chondrocytes. These data suggest that IGF-I gene therapy may be more effective with younger cell sources. Both cell types were less sensitive to exogenous IGF-I than endogenous IGF-I.

  3. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo

    OpenAIRE

    Apelgren, Peter; Amoroso, Matteo; Lindahl, Anders; Brantsing, Camilla; Rotter, Nicole; Gatenholm, Paul; Kölby, Lars

    2017-01-01

    Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold....

  4. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    Science.gov (United States)

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  5. Treatment of osteoarthritis using a helper-dependent adenoviral vector retargeted to chondrocytes

    Directory of Open Access Journals (Sweden)

    Merry ZC Ruan

    2016-01-01

    Full Text Available Osteoarthritis (OA is a joint disease characterized by degeneration of the articular cartilage, subchondral bone remodeling, and secondary inflammation. It is among the top three causes of chronic disability, and currently there are no treatment options to prevent disease progression. The localized nature of OA makes it an ideal candidate for gene and cell therapy. However, gene and cell therapy of OA is impeded by inefficient gene transduction of chondrocytes. In this study, we developed a broadly applicable system that retargets cell surface receptors by conjugating antibodies to the capsid of helper-dependent adenoviral vectors (HDVs. Specifically, we applied this system to retarget chondrocytes by conjugating an HDV to an α-10 integrin monoclonal antibody (a10mab. We show that a10mab-conjugated HDV (a10mabHDV-infected chondrocytes efficiently in vitro and in vivo while detargeting other cell types. The therapeutic index of an intra-articular injection of 10mabHDV-expressing proteoglycan 4 (PRG4 into a murine model of post-traumatic OA was 10-fold higher than with standard HDV. Moreover, we show that PRG4 overexpression from articular, superficial zone chondrocytes is effective for chondroprotection in postinjury OA and that α-10 integrin is an effective protein for chondrocyte targeting.

  6. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation.

    Science.gov (United States)

    Feyerabend, Frank; Witte, Frank; Kammal, Michael; Willumeit, Regine

    2006-12-01

    The effect of unphysiologically high extracellular magnesium concentrations on chondrocytes, induced by the supplementation of magnesium sulfate, was studied using a 3-phase tissue engineering model. The experiments showed that chondrocyte proliferation and redifferentiation, on the gene and protein expression level, are enhanced. A negative influence was found during chondrogenesis where an inhibition of extracellular matrix formation was observed. In addition, a direct impact on chondrocyte metabolism, elevated magnesium concentrations also affected growth factor effectiveness by consecutive influences during chondrogenesis. All observations were dosage dependent. The results of this study indicate that magnesium may be a useful tool for cartilage tissue engineering.

  7. Tissue engineering applications: cartilage lesions repair by the use of autologous chondrocytes

    Directory of Open Access Journals (Sweden)

    L. De Franceschi

    2011-09-01

    Full Text Available Promising new therapies based on tissue engineering have been recently developed for cartilage repair. The association of biomaterials with autologous chondrocytes expanded in vitro can represent a useful tool to regenerate this tissue. The scaffolds utilised in such therapeutical applications should provide a pre-formed three-dimensional shape, prevent cells from floating out of the defect, have sufficient mechanical strength, facilitate uniform spread of cells and stimulate the phenotype of transplanted cells. Hyaff®-11 is a hyaluronic-acid based biodegradable polymer, that has been shown to provide successful cell carrier for tissue-engineered repair. From our findings we can state that human chondrocytes seeded on Hyaff®-11 are able to maintain in vitro the characteristic of differentiated cells, expressing and producing collagen type II and aggrecan which are the main markers of cartilage phenotype, down-regulating collagen type I. Moreover, it seems to be a useful scaffold for cartilage repair both in animal models and clinical trials in humans, favouring the formation of a hyaline-like tissue. In the light of these data, we can hypothesise, for the future, the use of autologous chondrocyte transplantation together with gene therapy as a treatment for rheumatic diseases such as osteoarthritis.

  8. Regulation of hypoxia-inducible factor-1α (HIF-1α expression by interleukin-1β (IL-1 β, insulin-like growth factors I (IGF-I and II (IGF-II in human osteoarthritic chondrocytes

    Directory of Open Access Journals (Sweden)

    Angelica Rossi Sartori-Cintra

    2012-01-01

    Full Text Available OBJECTIVE: Hypoxia-inducible factor 1 alpha regulates genes related to cellular survival under hypoxia. This factor is present in osteroarthritic chondrocytes, and cytokines, such as interleukin-1 beta, participate in the pathogenesis of osteoarthritis, thereby increasing the activities of proteolytic enzymes, such as matrix metalloproteinases, and accelerating cartilage destruction. We hypothesize that Hypoxia Inducible Factor-1 alpha (HIF-1α can regulate cytokines (catabolic action and/or growth factors (anabolic action in osteoarthritis. The purpose of this study was to investigate the modulation of HIF-1α in human osteoarthritic chondrocytes by interleukin-1 beta (IL-1β and insulin-like growth factors I (IGF-I and II (IGF-II and to determine the involvement of the phosphatidylinositol-3kinase (PI-3K pathway in this process. METHODS: Human osteroarthritic chondrocytes were stimulated with IL-1β, IGF-I and IGF-II and LY294002, a specific inhibitor of PI-3K. Nuclear protein levels and gene expression were analyzed by western blot and quantitative reverse transcription-polymerase chain reaction analyses, respectively. RESULTS: HIF-1α expression was upregulated by IL-1β at the protein level but not at the gene level. IGF-I treatment resulted in increases in both the protein and mRNA levels of HIF-1α , whereas IGF-II had no effect on its expression. However, all of these stimuli exploited the PI-3K pathway. CONCLUSION: IL-1β upregulated the levels of HIF-1α protein post-transcriptionally, whereas IGF-I increased HIF-1α at the transcript level. In contrast, IGF-II did not affect the protein or gene expression levels of HIF-1α . Furthermore, all of the tested stimuli exploited the PI-3K pathway to some degree. Based on these findings, we are able to suggest that Hypoxia inducible Factor-1 exhibits protective activity in chondrocytes during osteoarthritis.

  9. NF-κB Mediates the Stimulation of Cytokine and Chemokine Expression by Human Articular Chondrocytes in Response to Fibronectin Fragments1

    Science.gov (United States)

    Pulai, Judit I.; Chen, Hong; Im, Hee-Jeong; Kumar, Sanjay; Hanning, Charles; Hegde, Priti S.; Loeser, Richard F.

    2010-01-01

    Fibronectin fragments (FN-f) that bind to the α5β1 integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene β (GRO-β). Constitutive and FN-f-inducible expression of GRO-α and GRO-γ were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1β expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-κB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction. PMID:15843581

  10. MSX2 stimulates chondrocyte maturation by controlling Ihh expression.

    Science.gov (United States)

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-10-24

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA along with chondrocyte differentiation in murine primary chondrocytes. Overexpression of wild-type Msx2 stimulated calcification of primary chondrocytes in the presence of BMP2. We also found that constitutively active Msx2 (caMsx2) enhanced BMP2-dependent calcification more efficiently than wild-type Msx2. Consistently, caMsx2 overexpression up-regulated the expression of alkaline phosphatase and collagen type X induced by BMP2. Furthermore, organ culture experiments using mouse embryonic metatarsals indicated that caMsx2 clearly stimulated the maturation of chondrocytes into the prehypertrophic and hypertrophic stages in the presence of BMP2. In contrast, knockdown of Msx2 inhibited maturation of primary chondrocytes. The stimulatory effect of Msx2 on chondrocyte maturation was enhanced by overexpression of Smad1 and Smad4 but inhibited by Smad6, an inhibitory Smad for BMP2 signaling. These data suggest that Msx2 requires BMP2/Smad signaling for its chondrogenic action. In addition, caMsx2 overexpression induced Ihh (Indian hedgehog) expression in mouse primary chondrocytes. Importantly, treatment with cyclopamine, a specific inhibitor for hedgehogs, blocked Msx2-induced chondrogenesis. Collectively, our results indicated that Msx2 promotes the maturation of chondrocytes, at least in part, through up-regulating Ihh expression.

  11. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Ota Naoshi

    2009-03-01

    Full Text Available Abstract Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.

  12. Role of interleukin-1 in antigen presentation by normal articular chondrocytes

    International Nuclear Information System (INIS)

    Tiku, M.L.; Liu, S.; Tiku, K.

    1986-01-01

    Recently the authors have described that normal articular chondrocytes of rabbits present antigen to immune T cells. In the present study the authors investigated the role of interleukin-1 (IL-1) on antigen presentation by chondrocytes. For these experiments the antigen pulsed chondroyctes were either untreated or fixed with paraformaldehyde and then co-cultured with immune T cells. T cell proliferation was measured by 3 H-thymidine incorporation. Pulsed non-fixed chondrocytes presented antigen, as expected, but pulsed and fixed cells failed to present antigen to T cells. The 3 H-TdR incorporation was partially restored by addition of purified human IL-1. Next, IL-1 activity was measured in primary chondrocyte culture supernatants stimulated with or without lipopolysaccharide (LPS) in comitogen thymocyte assay. No activity was detected in chondrocyte supernatants. Propagated chondrocyte culture supernatants also lacked IL-1 activity when stimulated with LPS in the presence of increasing concentration of indomethacin. On the other hand the authors observed that chondrocyte culture supernatants in a dose dependent manner inhibited human IL-1 induced 3 H-TdR incorporation of murine thymocytes. This suggested that these cells may produce an inhibitor of IL-1 and IL-1 production by chondrocytes may be essential for T cell proliferation by these cells. Inability to detect IL-1 in chondrocyte supernatants may be due to the presence of an inhibitor to IL-1. These findings may help in elucidating the immunological mechanisms in situations where chondrocytes and T cell interact, such as in arthritis

  13. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  14. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    Science.gov (United States)

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  15. Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees.

    Science.gov (United States)

    Salter, D M; Godolphin, J L; Gourlay, M S

    1995-04-01

    During development and at maturity different forms of cartilage vary in morphology and macromolecular content. This reflects heterogeneity of chondrocyte activity, in part involving differential interactions with the adjacent extracellular matrix via specialized cell surface receptors such as integrins. We undertook an immunohistological study on a series of human fetal knee joints to assess variation in the expression of integrins by chondrocytes and potential matrix ligands in articular, epiphyseal, growth plate, and meniscal cartilage. The results show that articular chondrocytes (beta 1+, beta 5 alpha V+, alpha 1+, alpha 2+/-, alpha 5+, weakly alpha 6+, alpha V+) differed from epiphyseal (beta 1+, beta 5 alpha V+, alpha 1+/-, alpha 2+/-, alpha 5+, alpha 6+, alpha V+) growth plate (beta 1+, beta 5 alpha V+, alpha 1-, alpha 2-, alpha 5+, alpha 6+, alpha V+), and meniscal cells (beta 1+, beta 5 alpha V+, alpha 1+, strongly alpha 2+, alpha 5+, alpha 6+, alpha V+ in expression of integrin subunits. There was no expression of beta 3, beta 4, beta 6, or alpha 3 by chondrocytes. These results differ from previous reports on the expression of integrins by adult articular cartilage, where alpha 2 and alpha 6 are not seen. Variation in distribution of matrix ligands was also seen. Fibronectin, laminin and Type VI collagen were expressed in all cartilages but there was restricted expression of tenascin, ED-A and ED-B fibronectin isoforms (articular cartilage and meniscus), and vitronectin (absent from growth plate cartilage). Regulated expression of integrins by chondrocytes, associated with changes in the pericellular matrix composition, is of potential importance in control of cartilage differentiation and function in health and disease.

  16. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation

    Directory of Open Access Journals (Sweden)

    Jianmei Li

    2016-01-01

    Full Text Available Chondrocytes communicate with each other mainly via diffusible signals rather than direct cell-to-cell contact. The chondrogenic differentiation of mesenchymal stem cells (MSCs is well regulated by the interactions of varieties of growth factors, cytokines, and signaling molecules. A number of critical signaling molecules have been identified to regulate the differentiation of chondrocyte from mesenchymal progenitor cells to their terminal maturation of hypertrophic chondrocytes, including bone morphogenetic proteins (BMPs, SRY-related high-mobility group-box gene 9 (Sox9, parathyroid hormone-related peptide (PTHrP, Indian hedgehog (Ihh, fibroblast growth factor receptor 3 (FGFR3, and β-catenin. Except for these molecules, other factors such as adenosine, O2 tension, and reactive oxygen species (ROS also have a vital role in cartilage formation and chondrocyte maturation. Here, we outlined the complex transcriptional network and the function of key factors in this network that determine and regulate the genetic program of chondrogenesis and chondrocyte differentiation.

  17. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Yan, Jidong; Xu, Jing; Fei, Yao; Jiang, Congshan; Zhu, Wenhua; Han, Yan; Lu, Shemin

    2016-01-01

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which are required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the roles of

  18. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jidong [Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Xu, Jing [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Fei, Yao [College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069 (China); Jiang, Congshan; Zhu, Wenhua; Han, Yan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Lu, Shemin, E-mail: lushemin@xjtu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China (China)

    2016-05-15

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which are required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the roles of

  19. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities

    Science.gov (United States)

    Long, D.L.; Ulici, V.; Chubinskaya, S.; Loeser, R.F.

    2015-01-01

    Objective We determined if the epidermal growth factor receptor ligand HB-EGF is produced in cartilage and if it regulates chondrocyte anabolic or catabolic activity. Methods HB-EGF expression was measured by quantitative PCR using RNA isolated from mouse knee joint tissues and from normal and OA human chondrocytes. Immunohistochemistry was performed on normal and OA human cartilage and meniscus sections. Cultured chondrocytes were treated with fibronectin fragments (FN-f) as a catabolic stimulus and osteogenic protein 1 (OP-1) as an anabolic stimulus. Effects of HB-EGF on cell signaling were analyzed by immunoblotting of selected signaling proteins. MMP-13 was measured in conditioned media, proteoglycan synthesis was measured by sulfate incorporation, and matrix gene expression by quantitative PCR. Results HB-EGF expression was increased in 12-month old mice at 8 weeks after surgery to induce OA and increased amounts of HB-EGF were noted in human articular cartilage from OA knees. FN-f stimulated chondrocyte HB-EGF expression and HB-EGF stimulated chondrocyte MMP-13 production. However, HB-EGF was not required for FN-f stimulation of MMP-13 production. HB-EGF activated the ERK and p38 MAP kinases and stimulated phosphorylation of Smad1 at an inhibitory serine site which was associated with inhibition of OP-1 mediated proteoglycan synthesis and reduced aggrecan (ACAN) but not COL2A1 expression. Conclusion HB-EGF is a new factor identified in OA cartilage that promotes chondrocyte catabolic activity while inhibiting anabolic activity suggesting it could contribute to the catabolic-anabolic imbalance seen in OA cartilage. PMID:25937027

  20. Msx2 Stimulates Chondrocyte Maturation by Controlling Ihh Expression*

    OpenAIRE

    Amano, Katsuhiko; Ichida, Fumitaka; Sugita, Atsushi; Hata, Kenji; Wada, Masahiro; Takigawa, Yoko; Nakanishi, Masako; Kogo, Mikihiko; Nishimura, Riko; Yoneda, Toshiyuki

    2008-01-01

    Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA...

  1. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  2. Lipofection of rabbit chondrocytes and long lasting expression of a lacZ reporter system in alginate beads.

    Science.gov (United States)

    Stöve, J; Fiedler, J; Huch, K; Günther, K-P; Puhl, W; Brenner, R

    2002-03-01

    Our aim was to investigate the maintenance of the transfection status of non-viral transfected chondrocytes in an alginate culture system. Chondrocytes harvested from rabbit knees were isolated by sequential digestion and cultivated in monolayer culture. At 60-70% cell density, chondrocytes were transfected with different transfection systems (FuGENE6, CaCl2, Lipofectin). A lac Z expression vector (pcDNA 3.1/Myc-His+ lacZ) was used as a reporter system. In order to improve transfection rates, hyaluronidase (4 U/ml) was used prior and during the transfection procedure. Thereafter, transfected cells were either kept in monolayer culture or embedded in alginate beads and kept in culture for up to the next 30 weeks. Transfection efficiency was maximal using FuGENE6TM/DNA at a ratio of 3:2 and hyaluronidase (4 U/ml). Transfection efficiency reached up to 40.8% (+/- 3.2%) after 36 h. In alginate beads lac Z positive cells declined to 8.5% +/- 3.3% after 4 weeks and to 4.6% +/- 3.2% after 12 weeks of culturing. After 30 weeks 3% of chondrocytes still expressed lac Z. In contrast, during culturing in monolayer, no lac Z expression was detectable after 4 weeks. Differentiation status of the chondrocytes was confirmed by histology and immunohistochemistry methods. After successful gene transfer to rabbit chondrocytes the alginate system made it possible to culture lipofected chondrocytes phenotypically stable. Genetically engineered chondrocytes express the lac Z reporter gene over a period of at least 30 weeks. This transfection and culture system provides a promising tool to further investigate the over-expression of growth factors and enzyme inhibitors. Copyright 2002 OsteoArthritis Research Society International.

  3. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer.

    Science.gov (United States)

    Cucchiarini, Magali; Terwilliger, Ernest F; Kohn, Dieter; Madry, Henning

    2009-08-01

    Compensating for the loss of extracellular cartilage matrix, as well as counteracting the alterations of the chondrocyte phenotype in osteoarthritis are of key importance to develop effective therapeutic strategies against this disorder. In the present study, we analysed the benefits of applying a potent gene combination to remodel human osteoarthritic (OA) cartilage. We employed the promising recombinant adeno-associated virus (rAAV) vector to deliver the mitogenic fibroblast growth factor 2 (FGF-2) factor, alone or simultaneously with the transcription factor Sox9 as a key activator of matrix synthesis, to human normal and OA articular chondrocytes. We evaluated the effects of single (FGF-2) or combined (FGF-2/SOX9) transgene expression upon the regenerative activities of chondrocytes in three dimensional cultures in vitro and in cartilage explants in situ. Single overexpression of FGF-2 enhanced the survival and proliferation of both normal and OA chondrocytes, without stimulating the matrix synthetic processes in the increased pools of cells. The mitogenic properties of FGF-2 were maintained when SOX9 was co-overexpressed and concomitant with an increase in the production of proteoglycans and type-II collagen, suggesting that the transcription factor was capable of counterbalancing the effects of FGF-2 on matrix accumulation. Also important, expression of type-X collagen, a marker of hypertrophy strongly decreased following treatment by the candidate vectors. Most remarkably, the levels of activities achieved in co-treated human OA cartilage were similar to or higher than those observed in normal cartilage. The present findings show that combined expression of candidate factors in OA cartilage can re-establish key features of normal cartilage and prevent the pathological shift of metabolic homeostasis. These data provide further motivation to develop coupled gene transfer approaches via rAAV for the treatment of human OA.

  4. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    Science.gov (United States)

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  5. Hydrostatic Pressure Influences HIF-2 Alpha Expression in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Hiroaki Inoue

    2015-01-01

    Full Text Available Hypoxia-inducible factor (HIF-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP 70, HIF-2α, nuclear factor kappa B (NF-κB, matrix metalloproteinase (MMP-13, MMP-3, and vascular endothelial growth factor (VEGF gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.

  6. Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes.

    Science.gov (United States)

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-05

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.

  7. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  8. Normal proliferation and differentiation of Hoxc-8 transgenic chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Mello Maria

    2003-04-01

    Full Text Available Abstract Background Hox genes encode transcription factors that are involved in pattern formation in the skeleton, and recent evidence suggests that they also play a role in the regulation of endochondral ossification. To analyze the role of Hoxc-8 in this process in more detail, we applied in vitro culture systems, using high density cultures of primary chondrocytes from neonatal mouse ribs. Results Cultured cells were characterized on the basis of morphology (light microscopy and production of cartilage-specific extracellular matrix (sulfated proteoglycans and type II Collagen. Hypertrophy was demonstrated by increase in cell size, alkaline phosphatase activity and type X Collagen immunohistochemistry. Proliferation was assessed by BrdU uptake and flow cytometry. Unexpectedly, chondrocytes from Hoxc-8 transgenic mice, which exhibit delayed cartilage maturation in vivo 1, were able to proliferate and differentiate normally in our culture systems. This was the case even though freshly isolated Hoxc-8 transgenic chondrocytes exhibited significant molecular differences as measured by real-time quantitative PCR. Conclusions The results demonstrate that primary rib chondrocytes behave similar to published reports for chondrocytes from other sources, validating in vitro approaches for studies of Hox genes in the regulation of endochondral ossification. Our analysis of cartilage-producing cells from Hoxc-8 transgenic mice provides evidence that the cellular phenotype induced by Hoxc-8 overexpression in vivo is reversible in vitro.

  9. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  10. Stimulation of chondrocytes in vitro by gene transfer with plasmids coding for epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF)

    DEFF Research Database (Denmark)

    Schmal, H; Mehlhorn, A T; Zwingmann, J

    2005-01-01

    Human epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF) influence critical characteristics of chondrocytes. The effects on metabolism and differentiation were evaluated following transfection using specific plasmids coding for both cytokines. Chondrocytes were isolated from...... of recombinant hEGF and bFGF resulted in a significant increase in cell proliferation and glucosaminoglycan production. Chondrocytes were transfected with vectors coding for either hEGF or bFGF and the production of these proteins was measured in supernatants by ELISA. Expression kinetics showed different...... patterns: hEGF was detectable 2.5 days following transfection and peaked at day 5.5, whereas bFGF-production reached its maximum 1.5 days after transfection, declining thereafter. Chondrocytes endogenously produced significant amounts of bFGF within 5 days following isolation. Proliferation of h...

  11. [Effects of in vitro continuous passaging on the phenotype of mouse hyaline chondrocytes and the balance of the extra- cellular matrix].

    Science.gov (United States)

    Linyi, Cai; Xiangli, Kong; Jing, Xie

    2016-06-01

    This study aimed to investigate the effects of in vitro continuous passaging on the morphological phenotype and differentiation characteristics of mouse hyaline chondrocytes, as well as on the balance of the extracellular matrix (ECM). Enzymatic digestion was conducted to isolate mouse hyaline chondrocytes, which expanded over five passages in vitro. Hematoxylin-eosin stain was used to show the changes in chondrocyte morphology. Semi-quantitative polymerase chain reaction was performed to analyze the mRNA changes in the marker genes, routine genes, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) in chondrocytes. Zymography was carried out to elucidate changes in gelatinase activities. After continuous expansion in vitro, the morphology of round or polygonal chondrocytes changed to elongated and spindled shape. The expression of marker genes significantly decreased (P 0.05). Meanwhile, the ratio of MMPs/TIMPs was altered. At the protein level, the activities of gelatinases decreased after passaging, especially for P4 and P5 chondrocytes (P cartilage ECM became uncontrollable and led to the imbalance of ECM homeostasis. When hyaline chondrocytes are applied in research on relevant diseases or cartilage tissue engineering, P0-P2 chondrocytes should be used.

  12. Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering

    NARCIS (Netherlands)

    van Osch, Gerjo J. V. M.; Mandl, Erik W.; Jahr, Holger; Koevoet, Wendy; Nolst-Trenité, Gilbert; Verhaar, Jan A. N.

    2004-01-01

    Articular cartilage is often used for research on cartilage tissue engineering. However, ear cartilage is easier to harvest, with less donor-site morbidity. The aim of this study was to evaluate whether adult human ear chondrocytes were capable of producing cartilage after expansion in monolayer

  13. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification

    International Nuclear Information System (INIS)

    Takegami, Yasuhiko; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Nakashima, Hiroaki; Ishiguro, Naoki; Ohno, Kinji

    2016-01-01

    Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. In contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca 2+ signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. - Highlights: • Rspo2 is a secreted activator of Wnt, and its knockout shows extended proliferating chondrocytes in endochondral ossification. • In proliferating chondrocytes of Rspo2-knockout mice, Sox9 and collagen type 2 are increased and β-catenin is decreased. • Rspo2 and its receptor Lgr5, as well as Sox9 and collagen type 2, are expressed in differentiating ATDC5 chondrogenic cells. • In ATDC5 cells, Rspo2 decreases expressions

  14. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Yasuhiko [Division of Neurogenetics, Center of Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya (Japan); Ohkawara, Bisei; Ito, Mikako; Masuda, Akio [Division of Neurogenetics, Center of Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan); Nakashima, Hiroaki; Ishiguro, Naoki [Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya (Japan); Ohno, Kinji, E-mail: ohnok@med.nagoya-u.ac.jp [Division of Neurogenetics, Center of Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2016-04-22

    Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. In contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca{sup 2+} signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. - Highlights: • Rspo2 is a secreted activator of Wnt, and its knockout shows extended proliferating chondrocytes in endochondral ossification. • In proliferating chondrocytes of Rspo2-knockout mice, Sox9 and collagen type 2 are increased and β-catenin is decreased. • Rspo2 and its receptor Lgr5, as well as Sox9 and collagen type 2, are expressed in differentiating ATDC5 chondrogenic cells. • In ATDC5 cells, Rspo2 decreases

  15. Chondroprotective Effects of Ginsenoside Rg1 in  Human Osteoarthritis Chondrocytes and a Rat Model  of Anterior Cruciate Ligament Transection

    Directory of Open Access Journals (Sweden)

    Wendan Cheng

    2017-03-01

    Full Text Available This study aimed to assess whether Ginsenoside Rg1 (Rg1 inhibits inflammatory responses in human chondrocytes and reduces articular cartilage damage in a rat model of osteoarthritis (OA. Gene expression and protein levels of type II collagen, aggrecan, matrix metalloproteinase (MMP‐13 and cyclooxygenase‐2 (COX‐2 were determined in vitro by quantitative real‐time‐polymerase chain reaction and Western blotting. Prostaglandin E2 (PGE2 amounts in the culture medium were determined by enzyme‐linked immunosorbent assay (ELISA. For in vivo assessment, a rat model of OA was generated by anterior cruciate ligament transection (ACLT. Four weeks after ACLT, Rg1 (30 or 60 mg/kg or saline was administered by gavage once a day for eight consecutive weeks. Joint damage was analyzed by histology and immunohistochemistry. Ginsenoside Rg1 inhibited Interleukin (IL‐1β‐induced chondrocyte gene and protein expressions of MMP‐13, COX‐2 and PGE2, and prevented type II collagen and aggrecan degradation, in a dose‐dependent manner. Administration of Ginsenoside Rg1 to OA rats attenuated cartilage degeneration, and reduced type II collagen loss and MMP‐13 levels. These findings demonstrated that Ginsenoside Rg1 can inhibit inflammatory responses in human chondrocytes in vitro and reduce articular cartilage damage in vivo, confirming the potential therapeutic value of Ginsenoside Rg1 in OA.

  16. CARTILAGE CONSTRUCTS ENGINEERED FROM CHONDROCYTES OVEREXPRESSING IGF-I IMPROVE THE REPAIR OF OSTEOCHONDRAL DEFECTS IN A RABBIT MODEL

    Science.gov (United States)

    Madry, Henning; Kaul, Gunter; Zurakowski, David; Vunjak-Novakovic, Gordana; Cucchiarini, Magali

    2015-01-01

    Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes over expressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-over expressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects. PMID:23588785

  17. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model

    Directory of Open Access Journals (Sweden)

    H Madry

    2013-04-01

    Full Text Available Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-overexpressing chondrocytes markedly improved osteochondral repair compared with control (lacZ constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects.

  18. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P

    2011-01-01

    OBJECTIVE: Maintenance of chondrocyte phenotype is a major issue in prevention of degeneration and repair of articular cartilage. Although the critical pathways in chondrocyte maturation and homeostasis have been revealed, the in-depth understanding is deficient and novel modifying components...... subgroups. Cartilage specific expression was highest in proliferating and prehypertrophic zones during development, and in adult articular cartilage, expression was restricted to the uncalcified zone, including chondrocyte clusters in human osteoarthritic cartilage. Studies with experimental chondrogenesis...... chondrocytes and adult articular chondrocytes with possible functions associated with development and maintenance of chondrocyte phenotype....

  19. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients.

    Directory of Open Access Journals (Sweden)

    Serena Guidotti

    Full Text Available Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA, but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy.In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763 were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS production (2',7'-dichlorofluorescin diacetate staining. Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21, flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining.In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10.In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via

  20. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients.

    Science.gov (United States)

    Guidotti, Serena; Minguzzi, Manuela; Platano, Daniela; Cattini, Luca; Trisolino, Giovanni; Mariani, Erminia; Borzì, Rosa Maria

    2015-01-01

    Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy. In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2',7'-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining. In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10. In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of

  1. Effect of donor age on DNA repair by articular chondrocytes

    International Nuclear Information System (INIS)

    Lipman, J.M.

    1986-01-01

    The hypothesis that aging of articular chondrocytes at a cellular level results from loss of DNA repair capability was studied by two different measures: unscheduled DNA synthesis (UDS) and O 6 -methylguanine acceptor protein (MGAP) activity. UDS following damage by 254 nm ultraviolet irradiation (20J/m 2 ) was examined in intact articular cartilage from rabbits of different ages. Semiconservative DNA synthesis was suppressed with hydroxurea and repair followed by the incorporation of [ 3 H]-thymidine ([ 3 H]-dThd). After repair the cartilage was digested in proteinase K (0.5mg/ml) with dodecyl sodium sulfate (0.2%) and DNA determined with Hoechst 33258 dye. UDS (dpm [ 3 H]-dThd/μg DNA) was greater in articular cartilage from 3- than 39-month-old rabbits. MGAP was studied in cell extracts of cultured human and rabbit chondrocytes by transfer of [ 3 H] O 6 -methyl groups from exogenous DNA to protein. It was significantly less in rabbit than in human cells on a per protein or DNA basis. There was no decline in this activity in human chondrocytes from newborn to 60 years of age; and rabbits from 3- to 36-months-old. The data indicate that in the two different repair mechanisms, age differences are found with resting but not dividing chondrocytes

  2. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.

    Science.gov (United States)

    Cao, Zhen; Dou, Ce; Dong, Shiwu

    2017-01-01

    Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.

  3. Autologous chondrocytes as a novel source for neo-chondrogenesis in haemophiliacs.

    Science.gov (United States)

    Stocco, Elena; Barbon, Silvia; Radossi, Paolo; Rajendran, Senthilkumar; Dalzoppo, Daniele; Bortolami, Marina; Bagno, Andrea; Grandi, Francesca; Gamba, Pier Giorgio; Parnigotto, Pier Paolo; Tagariello, Giuseppe; Grandi, Claudio

    2016-10-01

    Haemophilic arthropathy is the major cause of disability in patients with haemophilia and, despite prophylaxis with coagulation factor concentrates, some patients still develop articular complications. We evaluate the feasibility of a tissue engineering approach to improve current clinical strategies for cartilage regeneration in haemophiliacs by using autologous chondrocytes (haemophilic chondrocytes; HaeCs). Little is known about articular chondrocytes from haemophilic patients and no characterisation has as yet been performed. An investigation into whether blood exposure alters HaeCs should be interesting from the perspective of autologous implants. The typical morphology and expression of specific target genes and surface markers were therefore assessed by optical microscopy, reverse transcription plus the polymerase chain reaction (PCR), real-time PCR and flow-cytometry. We then considered chondrocyte behaviour on a bio-hybrid scaffold (based on polyvinyl alcohol/Wharton's jelly) as an in vitro model of articular cartilage prosthesis. Articular chondrocytes from non-haemophilic donors were used as controls. HaeC morphology and the resulting immunophenotype CD44(+)/CD49c(+)/CD49e(+)/CD151(+)/CD73(+)/CD49f(-)/CD26(-) resembled those of healthy donors. Moreover, HaeCs were active in the transcription of genes involved in the synthesis of the extracellular matrix proteins of the articular cartilage (ACAN, COL1A, COL2A, COL10A, COL9A, COMP, HAS1, SOX9), although the over-expression of COL1A1, COL10A1, COMP and HAS was observed. In parallel, the composite scaffold showed adequate mechanical and biological properties for cartilage tissue engineering, promoting chondrocyte proliferation. Our preliminary evidence contributes to the characterisation of HaeCs, highlighting the opportunity of using them for autologous cartilage implants in patients with haemophilia.

  4. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  5. Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Lenz, Philipp; Kreuz, Peter C

    2010-01-01

    PURPOSE: We report the 2-year clinical results and identify prognostic factors in patients treated with autologous chondrocyte transplantation by use of a collagen membrane to seed the chondrocytes (ACT-CS). METHODS: This is a prospective study of 59 patients who were treated with ACT......-CS represents a technical modification of membrane-associated autologous chondrocyte transplantation that combines easy handling and attractive application properties with reliable clinical results 24 months after surgery, especially in patients with isolated cartilage defects. Even though the failure rate...

  6. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    Science.gov (United States)

    Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R.

    2016-01-01

    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair. PMID:27671122

  7. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

    Directory of Open Access Journals (Sweden)

    Margot E Bowen

    Full Text Available Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC patients causes benign cartilage tumors on the bone surface (exostoses and within bones (enchondromas. To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the

  8. [Comparative effects of vitamin C on the effects of local anesthetics ropivacaine, bupivacaine, and lidocaine on human chondrocytes].

    Science.gov (United States)

    Tian, Jun; Li, Yan

    2016-01-01

    Intra-articular injections of local anesthetics are commonly used to enhance post-operative analgesia following orthopedic surgery as arthroscopic surgeries. Nevertheless, recent reports of severe complications due to the use of intra-articular local anesthetic have raised concerns. The study aims to assess use of vitamin C in reducing adverse effects of the most commonly employed anesthetics - ropivacaine, bupivacaine and lidocaine - on human chondrocytes. The chondrocyte viability following exposure to 0.5% bupivacaine or 0.75% ropivacaine or 1.0% lidocaine and/or vitamin C at doses 125, 250 and 500μM was determined by Live/Dead assay and annexin V staining. Expression levels of caspases 3 and 9 were assessed using antibodies by Western blotting. Flow cytometry was performed to analyze the generation of reactive oxygen species. On exposure to the local anesthetics, chondrotoxicity was found in the order ropivacaineC effectively improved the reduced chondrocyte viability and decreased the raised apoptosis levels following exposure to anesthesia. At higher doses, vitamin C was found efficient in reducing the generation of reactive oxygen species and as well down-regulate the expressions of caspases 3 and 9. Vitamin C was observed to effectively protect chondrocytes against the toxic insult of local anesthetics ropivacaine, bupivacaine and lidocaine. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Comparative effects of vitamin C on the effects of local anesthetics ropivacaine, bupivacaine, and lidocaine on human chondrocytes.

    Science.gov (United States)

    Tian, Jun; Li, Yan

    2016-01-01

    Intra-articular injections of local anesthetics are commonly used to enhance post-operative analgesia following orthopedic surgery as arthroscopic surgeries. Nevertheless, recent reports of severe complications due to the use of intra-articular local anesthetic have raised concerns. The study aims to assess use of vitamin C in reducing adverse effects of the most commonly employed anesthetics - ropivacaine, bupivacaine and lidocaine - on human chondrocytes. The chondrocyte viability following exposure to 0.5% bupivacaine or 0.75% ropivacaine or 1.0% lidocaine and/or vitamin C at doses 125, 250 and 500 μM was determined by LIVE/DEAD assay and annexin V staining. Expression levels of caspases 3 and 9 were assessed using antibodies by Western blotting. Flow cytometry was performed to analyze the generation of reactive oxygen species. On exposure to the local anesthetics, chondrotoxicity was found in the order ropivacaineC effectively improved the reduced chondrocyte viability and decreased the raised apoptosis levels following exposure to anesthesia. At higher doses, vitamin C was found efficient in reducing the generation of reactive oxygen species and as well down-regulate the expressions of caspases 3 and 9. Vitamin C was observed to effectively protect chondrocytes against the toxic insult of local anesthetics ropivacaine, bupivacaine and lidocaine. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis

    DEFF Research Database (Denmark)

    Aszodi, Attila; Hunziker, Ernst B; Brakebusch, Cord

    2003-01-01

    Beta1 integrins are highly expressed on chondrocytes, where they mediate adhesion to cartilage matrix proteins. To assess the functions of beta1 integrin during skeletogenesis, we inactivated the beta1 integrin gene in chondrocytes. We show here that these mutant mice develop a chondrodysplasia...... of various severity. beta1-deficient chondrocytes had an abnormal shape and failed to arrange into columns in the growth plate. This is caused by a lack of motility, which is in turn caused by a loss of adhesion to collagen type II, reduced binding to and impaired spreading on fibronectin, and an abnormal F......-actin organization. In addition, mutant chondrocytes show decreased proliferation caused by a defect in G1/S transition and cytokinesis. The G1/S defect is, at least partially, caused by overexpression of Fgfr3, nuclear translocation of Stat1/Stat5a, and up-regulation of the cell cycle inhibitors p16 and p21...

  11. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment.

    Science.gov (United States)

    Martinez, Inigo; Elvenes, Jan; Olsen, Randi; Bertheussen, Kjell; Johansen, Oddmund

    2008-01-01

    The main purpose of this work has been to establish a new culturing technique to improve the chondrogenic commitment of isolated adult human chondrocytes, with the aim of being used during cell-based therapies or tissue engineering strategies. By using a rather novel technique to generate scaffold-free three-dimensional (3D) structures from in vitro expanded chondrocytes, we have explored the effects of different culture environments on cartilage formation. Three-dimensional chondrospheroids were developed by applying the hanging-drop technique. Cartilage tissue formation was attempted after combining critical factors such as serum-containing or serum-free media and atmospheric (20%) or low (2.5%) oxygen tensions. The quality of the formed microtissues was analyzed by histology, immunohistochemistry, electron microscopy, and real-time PCR, and directly compared with native adult cartilage. Our results revealed highly organized, 3D tissue-like structures developed by the hanging-drop method. All culture conditions allowed formation of 3D spheroids; however, cartilage generated under low oxygen tension had a bigger size, enhanced matrix deposition, and higher quality of cartilage formation. Real-time PCR demonstrated enhanced expression of cartilage-specific genes such us collagen type II and aggrecan in 3D cultures when compared to monolayers. Cartilage-specific matrix proteins and genes expressed in hanging-drop-developed spheroids were comparable to the expression obtained by applying the pellet culture system. In summary, our results indicate that a combination of 3D cultures of chondrocytes in hanging drops and a low oxygen environment represent an easy and convenient way to generate cartilage-like microstructures. We also show that a new specially tailored serum-free medium is suitable for in vitro cartilage tissue formation. This new methodology opens up the possibility of using autogenously produced solid 3D structures with redifferentiated chondrocytes as an

  12. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription.

    Science.gov (United States)

    Wang, Weiguang; Lian, Na; Li, Lingzhen; Moss, Heather E; Wang, Weixi; Perrien, Daniel S; Elefteriou, Florent; Yang, Xiangli

    2009-12-01

    Activating transcription factor 4 (Atf4) is a leucine-zipper-containing protein of the cAMP response element-binding protein (CREB) family. Ablation of Atf4 (Atf4(-/-)) in mice leads to severe skeletal defects, including delayed ossification and low bone mass, short stature and short limbs. Atf4 is expressed in proliferative and prehypertrophic growth plate chondrocytes, suggesting an autonomous function of Atf4 in chondrocytes during endochondral ossification. In Atf4(-/-) growth plate, the typical columnar structure of proliferative chondrocytes is disturbed. The proliferative zone is shortened, whereas the hypertrophic zone is transiently expanded. The expression of Indian hedgehog (Ihh) is markedly decreased, whereas the expression of other chondrocyte marker genes, such as type II collagen (Col2a1), PTH/PTHrP receptor (Pth1r) and type X collagen (Col10a1), is normal. Furthermore, forced expression of Atf4 in chondrocytes induces endogenous Ihh mRNA, and Atf4 directly binds to the Ihh promoter and activates its transcription. Supporting these findings, reactivation of Hh signaling pharmacologically in mouse limb explants corrects the Atf4(-/-) chondrocyte proliferation and short limb phenotypes. This study thus identifies Atf4 as a novel transcriptional activator of Ihh in chondrocytes that paces longitudinal bone growth by controlling growth plate chondrocyte proliferation and differentiation.

  13. Reprogrammed chondrocytes engineered to produce IL-12 provide novel ex vivo immune-gene therapy for cancer.

    Science.gov (United States)

    Tada, Hiroyuki; Kishida, Tsunao; Fujiwara, Hitoshi; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Ichikawa, Daisuke; Okamoto, Kazuma; Otsuji, Eigo; Mazda, Osam

    2017-03-01

    The somatic cell reprogramming technology was applied to a novel and promising ex vivo immune-gene therapy strategy for cancer. To establish a novel ex vivo cytokine gene therapy of cancer using the somatic cell reprogramming procedures. Mouse fibroblasts were converted into chondrocytes and subsequently transduced with IL-12 gene. The resultant IL-12 induced chondrogenic cells were irradiated with x-ray and inoculated into mice bearing CT26 colon cancer. The irradiation at 20 Gy or higher totally eliminated the proliferative potential of the cells, while less significantly influencing the IL-12 production from the cells. An inoculation of the irradiated IL-12 induced chondrogenic cells significantly suppressed tumor by inducing tumor-specific cytotoxic T lymphocytes, enhancing natural killer tumoricidal activity and inhibiting tumor neoangiogenesis in the mice. The somatic cell reprogramming procedures may provide a novel and effective means to treat malignancies.

  14. Inflammation induction of Dickkopf-1 mediates chondrocyte apoptosis in osteoarthritic joint.

    Science.gov (United States)

    Weng, L-H; Wang, C-J; Ko, J-Y; Sun, Y-C; Su, Y-S; Wang, F-S

    2009-07-01

    Dysregulated Wnt signaling appears to modulate chondrocyte fate and joint disorders. Dickkopf-1 (DKK1) regulates the pathogenesis of skeletal tissue by inhibiting Wnt actions. This study examined whether DKK1 expression is linked to chondrocyte fate in osteoarthritis (OA). Articular cartilage specimens harvested from nine patients with knee OA and from six controls with femoral neck fracture were assessed for DKK1, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), Bad, Bax, Bcl2 and caspase-3 expression by real time-polymerase chain reaction (RT-PCR) and immunohistochemistry. Apoptotic chondrocytes were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL) and 4', 6-dianidino-2-phenylindole dihydrochloride (DAPI) staining. Human chondrocyte cultures were treated with recombinant IL-1beta and monoclonal DKK1 antibody to determine whether DKK1 impairs chondrocyte survival. Expression of DKK1 correlated with inflammatory cytokine levels (IL-1beta and TNF-alpha expressions), proapoptosis regulators (Bad and caspase-3 expressions) and TUNEL staining in OA cartilage tissues. The IL-1beta induced expressions of DKK1, Bax, Bad and caspase-3-dependent apoptosis of chondrocyte cultures. Neutralization of DKK1 by monoclonal DKK1 antibody significantly abrogated IL-1beta-mediated caspase-3 cleavage and apoptosis and reversed chondrocyte proliferation. Recombinant DKK1 treatment impaired chondrocyte growth and promoted apoptosis. By suppressing nuclear beta-catenin accumulation and Akt phosphorylation, DKK1 mediated IL-1beta promotion of chondrocyte apoptosis. Chondrocyte apoptosis correlates with joint OA. Expression of DKK1 contributes to cartilage deterioration and is a potent factor in OA pathogenesis. Attenuating DKK1 may reduce cartilage deterioration in OA.

  15. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  16. Histone Deacetylase 3 Suppresses Erk Phosphorylation and Matrix Metalloproteinase (Mmp)-13 Activity in Chondrocytes

    Science.gov (United States)

    Carpio, Lomeli R.; Bradley, Elizabeth W.; Westendorf, Jennifer J.

    2017-01-01

    Histone deacetylase inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls Mmp13 expression in chondrocytes. In Hdac3-depleted chondrocytes, Erk1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development. PMID:27662443

  17. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    Science.gov (United States)

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  18. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    Science.gov (United States)

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  19. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2018-01-01

    Full Text Available In this study, we first used gelatin/chondroitin-6-sulfate/hyaluronan/chitosan highly elastic cryogels, which showed total recovery from large strains during repeated compression cycles, as 3D scaffolds to study the effects of cyclic dynamic compressive loading on chondrocyte gene expression and extracellular matrix (ECM production. Dynamic culture of porcine chondrocytes was studied at 1 Hz, 10% to 40% strain and 1 to 9 h/day stimulation duration, in a mechanical-driven multi-chamber bioreactor for 14 days. From the experimental results, we could identify the optimum dynamic culture condition (20% and 3 h/day to enhance the chondrocytic phenotype of chondrocytes from the expression of marker (Col I, Col II, Col X, TNF-α, TGF-β1 and IGF-1 genes by quantitative real-time polymerase chain reactions (qRT-PCR and production of ECM (GAGs and Col II by biochemical analysis and immunofluorescence staining. With up-regulated growth factor (TGF-β1 and IGF-1 genes, co-culture of chondrocytes with porcine adipose-derived stem cells (ASCs was employed to facilitate chondrogenic differentiation of ASCs during dynamic culture in cryogel scaffolds. By replacing half of the chondrocytes with ASCs during co-culture, we could obtain similar production of ECM (GAGs and Col II and expression of Col II, but reduced expression of Col I, Col X and TNF-α. Subcutaneous implantation of cells/scaffold constructs in nude mice after mono-culture (chondrocytes or ASCs or co-culture (chondrocytes + ASCs and subject to static or dynamic culture condition in vitro for 14 days was tested for tissue-engineering applications. The constructs were retrieved 8 weeks post-implantation for histological analysis by Alcian blue, Safranin O and Col II immunohistochemical staining. The most abundant ectopic cartilage tissue was found for the chondrocytes and chondrocytes + ASCs groups using dynamic culture, which showed similar neo-cartilage formation capability with half of the

  20. Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh.

    Science.gov (United States)

    Wang, Weiguang; Lian, Na; Ma, Yun; Li, Lingzhen; Gallant, Richard C; Elefteriou, Florent; Yang, Xiangli

    2012-02-01

    Atf4 is a leucine zipper-containing transcription factor that activates osteocalcin (Ocn) in osteoblasts and indian hedgehog (Ihh) in chondrocytes. The relative contribution of Atf4 in chondrocytes and osteoblasts to the regulation of skeletal development and bone formation is poorly understood. Investigations of the Atf4(-/-);Col2a1-Atf4 mouse model, in which Atf4 is selectively overexpressed in chondrocytes in an Atf4-null background, demonstrate that chondrocyte-derived Atf4 regulates osteogenesis during development and bone remodeling postnatally. Atf4 overexpression in chondrocytes of the Atf4(-/-);Col2a1-Atf4 double mutants corrects the reduction in stature and limb in Atf4(-/-) embryos and rectifies the decrease in Ihh expression, Hh signaling, proliferation and accelerated hypertrophy that characterize the Atf4(-/-) developing growth plate cartilages. Unexpectedly, this genetic manipulation also restores the expression of osteoblastic marker genes, namely Ocn and bone sialoprotein, in Atf4(-/-) developing bones. In Atf4(-/-);Col2a1-Atf4 adult mice, all the defective bone parameters found in Atf4(-/-) mice, including bone volume, trabecular number and thickness, and bone formation rate, are rescued. In addition, the conditioned media of ex vivo cultures from wild-type or Atf4(-/-);Col2a1-Atf4, but not Atf4(-/-) cartilage, corrects the differentiation defects of Atf4(-/-) bone marrow stromal cells and Ihh-blocking antibody eliminates this effect. Together, these data indicate that Atf4 in chondrocytes is required for normal Ihh expression and for its paracrine effect on osteoblast differentiation. Therefore, the cell-autonomous role of Atf4 in chondrocytes dominates the role of Atf4 in osteoblasts during development for the control of early osteogenesis and skeletal growth.

  1. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.

    Science.gov (United States)

    Fischer, J; Dickhut, A; Rickert, M; Richter, W

    2010-09-01

    The use of bone marrow-derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.

  2. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing, E-mail: dmx@mail.hzau.edu.cn

    2014-04-15

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and

  3. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-01

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  4. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  5. Secondary chondrocyte-derived Ihh stimulates proliferation of periosteal cells during chick development.

    Science.gov (United States)

    Buxton, Paul G; Hall, Brian; Archer, Charles W; Francis-West, Philippa

    2003-10-01

    The development of the skull is characterised by its dependence upon epigenetic influences. One of the most important of these is secondary chondrogenesis, which occurs following ossification within certain membrane bone periostea, as a result of biomechanical articulation. We have studied the genesis, character and function of the secondary chondrocytes of the quadratojugal of the chick between embryonic days 11 and 14. Analysis of gene expression revealed that secondary chondrocytes formed coincident with Sox9 upregulation from a precursor population expressing Cbfa1/Runx2: a reversal of the normal sequence. Such secondary chondrocytes rapidly acquired a phenotype that is a compound of prehypertrophic and hypertrophic chondrocytes, exited from the cell cycle and upregulated Ihh. Pulse and pulse/chase experiments with BrdU confirmed the germinal region as the highly proliferative source of the secondary chondrocytes, which formed by division of chondrocyte-committed precursors. By blocking Hh signalling in explant cultures we show that the enhanced proliferation of the germinal region surrounding the secondary chondrocytes derives from this Ihh source. Additionally, in vitro studies on membrane bone periosteal cells (non-germinal region) demonstrated that these cells can also respond to Ihh, and do so both by enhanced proliferation and precocious osteogenesis. Despite the pro-osteogenic effects of Ihh on periosteal cell differentiation, mechanical articulation of the quadratojugal/quadrate joint in explant culture revealed a negative role for articulation in the regulation of osteocalcin by germinal region descendants. Thus, the mechanical stimulus that is the spur to secondary chondrocyte formation appears able to override the osteogenic influence of Ihh on the periosteum, but does not interfere with the cell cycle-promoting component of Hh signalling.

  6. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Lei; Yao, Yongchang; Wang, Dong-an; Chen, Xiaofeng

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis

  7. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  8. The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1β

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2006-04-01

    Full Text Available Abstract Background Cartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1. We hypothesized that two natural products of South American origin, would limit cartilage degradation by respectively suppressing catabolism and activating local IGF-1 anabolic pathways. One extract, derived from cat's claw (Uncaria guianensis, vincaria®, is a well-described inhibitor of NF-κB. The other extract, derived from the vegetable Lepidium meyenii (RNI 249, possessed an uncertain mechanism of action but with defined ethnomedical applications for fertility and vitality. Methods Human cartilage samples were procured from surgical specimens with consent, and were evaluated either as explants or as primary chondrocytes prepared after enzymatic digestion of cartilage matrix. Assessments included IGF-1 gene expression, IGF-1 production (ELISA, cartilage matrix degradation and nitric oxide (NO production, under basal conditions and in the presence of IL-1β. Results RNI 249 enhanced basal IGF-1 mRNA levels in human chondrocytes by 2.7 fold, an effect that was further enhanced to 3.8 fold by co-administration with vincaria. Enhanced basal IGF-1 production by RNI 249 alone and together with vincaria, was confirmed in both explants and in primary chondrocytes (P Conclusion The identification of agents that activate the autocrine production of IGF-1 in cartilage, even in the face of suppressive pro-inflammatory, catabolic cytokines like IL-1β, represents a novel therapeutic approach to cartilage biology. Chondroprotection associated with prevention of the catabolic events and the potential for sustained anabolic activity with this natural product suggests that it holds significant promise in the treatment of debilitating joint diseases.

  9. Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Kim, Hye-Joung; Im, Gun-Il

    2011-12-01

    The purpose of this study was to test the hypothesis that the SOX trio genes (SOX-5, SOX-6, and SOX-9) have a lower level of expression during the chondrogenic differentiation of mesenchymal stem cells (MSCs) compared with chondrocytes and that the electroporation-mediated gene transfer of SOX trio promotes chondrogenesis from human MSCs. An in vitro pellet culture was carried out using MSCs or chondrocytes at passage 3 and analyzed after 7 and 21 days. Then, MSCs were transfected with SOX trio genes and analyzed for the expression of chondrogenic markers after 21 days of in vitro culture. Without transforming growth factor-β1, the untransfected MSCs had a lower level of SOX trio gene and protein expression than chondrocytes. However, the level of SOX-9 gene expression increased in MSCs when treated with transforming growth factor-β1. GAG level significantly increased 7-fold in MSCs co-transfected with SOX trio, which was corroborated by Safranin-O staining. SOX trio co-transfection significantly increased COL2A1 gene and protein and decreased COL10A1 protein in MSCs. It is concluded that the SOX trio have a significantly lower expression in human MSCs than in chondrocytes and that the electroporation-mediated co-transfection of SOX trio enhances chondrogenesis and suppresses hypertrophy of human MSCs.

  10. Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice*

    Science.gov (United States)

    Takarada, Takeshi; Kodama, Ayumi; Hotta, Shogo; Mieda, Michihiro; Shimba, Shigeki; Hinoi, Eiichi; Yoneda, Yukio

    2012-01-01

    We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression. PMID:22936800

  11. The chondrocytic journey in endochondral bone growth and skeletal dysplasia.

    Science.gov (United States)

    Yeung Tsang, Kwok; Wa Tsang, Shun; Chan, Danny; Cheah, Kathryn S E

    2014-03-01

    The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia. Copyright © 2014 Wiley Periodicals

  12. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1.

    Science.gov (United States)

    Loeser, Richard F; Gandhi, Uma; Long, David L; Yin, Weihong; Chubinskaya, Susan

    2014-08-01

    To determine the effects of aging and oxidative stress on the response of human articular chondrocytes to insulin-like growth factor 1 (IGF-1) and osteogenic protein 1 (OP-1). Chondrocytes isolated from normal articular cartilage obtained from tissue donors were cultured in alginate beads or monolayer. Cells were stimulated with 50-100 ng/ml of IGF-1, OP-1, or both. Oxidative stress was induced using tert-butyl hydroperoxide. Sulfate incorporation was used to measure proteoglycan synthesis, and immunoblotting of cell lysates was performed to analyze cell signaling. Confocal microscopy was performed to measure nuclear translocation of Smad4. Chondrocytes isolated from the articular cartilage of tissue donors ranging in age from 24 years to 81 years demonstrated an age-related decline in proteoglycan synthesis stimulated by IGF-1 and IGF-1 plus OP-1. Induction of oxidative stress inhibited both IGF-1- and OP-1-stimulated proteoglycan synthesis. Signaling studies showed that oxidative stress inhibited IGF-1-stimulated Akt phosphorylation while increasing phosphorylation of ERK, and that these effects were greater in cells from older donors. Oxidative stress also increased p38 phosphorylation, which resulted in phosphorylation of Smad1 at the Ser(206) inhibitory site and reduced nuclear accumulation of Smad1. Oxidative stress also modestly reduced OP-1-stimulated nuclear translocation of Smad4. These results demonstrate an age-related reduction in the response of human chondrocytes to IGF-1 and OP-1, which are 2 important anabolic factors in cartilage, and suggest that oxidative stress may be a contributing factor by altering IGF-1 and OP-1 signaling. Copyright © 2014 by the American College of Rheumatology.

  13. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    Science.gov (United States)

    Murata, Koichi; Kitaori, Toshiyuki; Oishi, Shinya; Watanabe, Naoki; Yoshitomi, Hiroyuki; Tanida, Shimei; Ishikawa, Masahiro; Kasahara, Takashi; Shibuya, Hideyuki; Fujii, Nobutaka; Nagasawa, Takashi; Nakamura, Takashi; Ito, Hiromu

    2012-01-01

    Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  14. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    Full Text Available Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/- mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/- mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/- mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/- mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/- mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/- mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/- mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/- mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  15. Characterization of collagenase-3 binding and internalization by rabbit chondrocytes

    International Nuclear Information System (INIS)

    Raggatt, L.J.; Choundhury, I.; Williams, S.

    2002-01-01

    Full text: Collagenase-3 (MMP-13) is an extracellular matrix metalloproteinase that cleaves type II collagen, the major protein component of cartilage, with high specificity. Several studies have identified increased levels of MMP-13 in arthritic synovial fluid where it may contribute to matrix destruction in this disease. Our laboratory has previously documented a process where by osteoblastic cells remove MMP-13 from the surrounding milieu by binding the enzyme to a specific receptor. The enzyme is then internalized and degraded through the actions of the endocytotic receptor, the low-density lipoprotein receptor-related protein (LRP). Such a mechanism provides for a controlled elimination of a potentially destructive enzyme from the extracellular environment. This process of MMP-13 internalization also occurs in chondrocytes and is significantly reduced in OA chondrocytes. We are currently characterizing the internalization of MMP-13 in normal rabbit chondrocytes. Primary rabbit chondrocytes were harvested and cultured in monolayers for three passages. Reverse transcription polymerase chain reaction (RT-PCR) was used to asses the cell phenotype during the culture period and the rabbit chondrocytes were found to express the cartilage specific genes aggrecan and type II collagen throughout this time. 125I-MMP-13 was used to assess the ability of the rabbit chondrocytes to bind MMP-13. Appreciable specific cell-association of MMP-13 was detected after 10 mm of exposure to the ligand and equilibrium was obtained after 2 h. After identifying the time to equilibrium we determined whether binding was saturable by incubating the chondrocytes with increasing concentrations of 125I-MMP-13 ranging from 0 to 100 nM at 4 deg C for 2h. The amount of specifically associated MMP-13 approached saturation at 75 nM, allowing assessment of the receptor kinetics. Finally, we have assessed the ability of rabbit chondrocytes to internalize a single cohort of 125I-MMP-13 over time at

  16. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes

    Directory of Open Access Journals (Sweden)

    Princz Sascha

    2016-09-01

    Full Text Available Cultivation of human nasal septal chondrocytes in a self-established automated bioreactor system with a new designed reactor glass vessel and the results of a computational fluid dynamics model are presented. The first results show the effect of a homogeneous fluidic condition of the continuous medium flow and the resulting stresses on the scaffolds’ surface and their influence on the migration of the cells into the scaffold matrix under these conditions. For this purpose computational models, generated with the computational fluid dynamics software STAR-CCM+, and the results of alcian blue staining for newly synthesized sulphated glycosaminoglycans have been compared during cultivation in the new and a first version of the glass reactor vessel with inhomogeneous fluidic conditions, with the same automated bioreactor system and under similar cultivation conditions.

  17. Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation.

    Science.gov (United States)

    Vuppalapati, Karuna K; Bouderlique, Thibault; Newton, Phillip T; Kaminskyy, Vitaliy O; Wehtje, Henrik; Ohlsson, Claes; Zhivotovsky, Boris; Chagin, Andrei S

    2015-12-01

    Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes. © 2015 American Society for Bone and Mineral Research.

  18. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Tohoku University School of Medicine, Sendai (Japan); Andres, MC de [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Hashimoto, Ko [Hospital for Special Surgery, NY (United States); Pitt, Dominic [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan); Goldring, Mary B. [Hospital for Special Surgery, NY (United States); Roach, Helmtrud I.; Oreffo, Richard O.C. [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom)

    2011-02-18

    Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N

  19. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    International Nuclear Information System (INIS)

    Imagawa, Kei; Andres, MC de; Hashimoto, Ko; Pitt, Dominic; Itoi, Eiji; Goldring, Mary B.; Roach, Helmtrud I.; Oreffo, Richard O.C.

    2011-01-01

    Research highlights: → Glucosamine and a NF-kB inhibitor reduce inflammation in OA. → Cytokine induced demethylation of CpG site in IL1β promoter prevented by glucosamine. → Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1β, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1β and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma

  20. IKKα/CHUK regulates extracellular matrix remodeling independent of its kinase activity to facilitate articular chondrocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Eleonora Olivotto

    Full Text Available BACKGROUND: The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase, has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM homeostasis and differentiation towards hypertrophy. METHODOLOGY/PRINCIPAL FINDINGS: IKKα expression was ablated in primary human osteoarthritic (OA chondrocytes and in immature murine articular chondrocytes (iMACs derived from IKKα(f/f:CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively. MMP-10 was identified as a major target of IKKα in chondrocytes by mRNA profiling, quantitative RT-PCR analysis, immunohistochemistry and immunoblotting. ECM integrity, as assessed by type II collagen (COL2 deposition and the lack of MMP-dependent COL2 degradation products, was enhanced by IKKα ablation in mice. MMP-13 and total collagenase activities were significantly reduced, while TIMP-3 (tissue inhibitor of metalloproteinase-3 protein levels were enhanced in IKKα-deficient chondrocytes. IKKα deficiency suppressed chondrocyte differentiation, as shown by the quantitative inhibition of.Alizarin red staining and the reduced expression of multiple chondrocyte differentiation effectors, including Runx2, Col10a1 and Vegfa,. Importantly, the differentiation of IKKα-deficient chondrocytes was rescued by a kinase-dead IKKα protein mutant. CONCLUSIONS/SIGNIFICANCE: IKKα acts independent of its kinase activity to help drive chondrocyte differentiation towards a hypertrophic-like state. IKKα positively modulates ECM remodeling via multiple downstream targets (including MMP-10 and TIMP-3 at the mRNA and post-transcriptional levels, respectively to maintain maximal MMP-13 activity, which is required for ECM

  1. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    Science.gov (United States)

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease.

    Directory of Open Access Journals (Sweden)

    Trevor L Cameron

    2015-09-01

    Full Text Available Schmid metaphyseal chondrodysplasia (MCDS involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2, generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent or pathologically redundant (XBP1-dependent. XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-β, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-β transcriptional co-factors, GADD45-β and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-β-mediated chondrocyte differentiation

  3. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes.

    Science.gov (United States)

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali; Galera, Philippe

    2015-02-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.

  4. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    Science.gov (United States)

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  5. Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung-Hoon [Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Medical Education Program for Human Resources, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Park, Seung-Yoon [Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714 (Korea, Republic of); Crombrugghe, Benoit de [Department of Genetics, University of Texas, M.D. Anderson Cancer Center, Houston (United States); Kim, Jung-Eun, E-mail: kjeun@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Medical Education Program for Human Resources, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Conditional ablation of Osterix (Osx) in chondrocytes leads to skeletal defects. Black-Right-Pointing-Pointer Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes. Black-Right-Pointing-Pointer Osx has an autonomous function in chondrocytes during endochondral ossification. -- Abstract: Osterix (Osx) is an essential transcription factor required for osteoblast differentiation during both intramembranous and endochondral ossification. Endochondral ossification, a process in which bone formation initiates from a cartilage intermediate, is crucial for skeletal development and growth. Osx is expressed in differentiating chondrocytes as well as osteoblasts during mouse development, but its role in chondrocytes has not been well studied. Here, the in vivo function of Osx in chondrocytes was examined in a chondrocyte-specific Osx conditional knockout model using Col2a1-Cre. Chondrocyte-specific Osx deficiency resulted in a weak and bent skeleton which was evident in newborn by radiographic analysis and skeletal preparation. To further understand the skeletal deformity of the chondrocyte-specific Osx conditional knockout, histological analysis was performed on developing long bones during embryogenesis. Hypertrophic chondrocytes were expanded, the formation of bone trabeculae and marrow cavities was remarkably delayed, and subsequent skeletal growth was reduced. The expression of several chondrocyte differentiation markers was reduced, indicating the impairment of chondrocyte differentiation and endochondral ossification in the chondrocyte-specific Osx conditional knockout. Taken together, Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes, suggesting an autonomous function of Osx in chondrocytes during endochondral ossification.

  6. Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?

    Directory of Open Access Journals (Sweden)

    Alice Roffi

    2014-01-01

    Full Text Available PRP cryopreservation remains a controversial point. Our purpose was to investigate the effect of freezing/thawing on PRP molecule release, and its effects on the metabolism of chondrocytes and synoviocytes. PRP was prepared from 10 volunteers, and a half volume underwent one freezing/thawing cycle. IL-1β, HGF, PDGF AB/BB, TGF-β1, and VEGF were assayed 1 hour and 7 days after activation. Culture media of chondrocytes and synoviocytes were supplemented with fresh or frozen PRP, and, at 7 days, proliferation, gene expression, and secreted proteins levels were evaluated. Results showed that in the freeze-thawed PRP the immediate and delayed molecule releases were similar or slightly lower than those in fresh PRP. TGF-β1 and PDGF AB/BB concentrations were significantly reduced after freezing both at 1 hour and at 7 days, whereas HGF concentration was significantly lower in frozen PRP at 7 days. In fresh PRP IL-1β and HGF concentrations underwent a significant further increase after 7 days. Similar gene expression was found in chondrocytes cultured with both PRPs, whereas in synoviocytes HGF gene expression was higher in frozen PRP. PRP cryopreservation is a safe procedure, which sufficiently preserves PRP quality and its ability to induce proliferation and the production of ECM components in chondrocytes and synoviocytes.

  7. Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks

    NARCIS (Netherlands)

    Almqvist, K. F.; Wang, L.; Wang, J.; Baeten, D.; Cornelissen, M.; Verdonk, R.; Veys, E. M.; Verbruggen, G.

    2001-01-01

    OBJECTIVE: To produce tissue engineered cartilage by human articular chondrocytes in vitro for further use in in vivo manipulations for the treatment of cartilage defects. METHODS: Human articular chondrocytes were cultured in 0.5%, 1.0%, and 2.0% of alginate for up to four weeks. The optimal

  8. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  9. Primary chondrocytes enhance cartilage tissue formation upon co-culture with expanded chondrocytes, dermal fibroblasts, 3T3 feeder cells and embryonic stem cells

    NARCIS (Netherlands)

    Hendriks, J.A.A.; Miclea, Razvan L.; Schotel, Roka; de Bruijn, Ewart; Moroni, Lorenzo; Karperien, Hermanus Bernardus Johannes; Riesle, J.U.; van Blitterswijk, Clemens

    2010-01-01

    Co-culture models have been increasingly used in tissue engineering applications to understand cell–cell interactions and consequently improve regenerative medicine strategies. Aiming at further elucidating cartilage tissue formation, we co-cultured bovine primary chondrocytes (BPCs) with human

  10. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.

    Science.gov (United States)

    Csaki, Constanze; Mobasheri, Ali; Shakibaei, Mehdi

    2009-01-01

    Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual

  11. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Sara Cheleschi

    2017-01-01

    Full Text Available Mechanical loading and hydrostatic pressure (HP regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA. This study investigated the effects of a cyclic HP (1–5 MPa, in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4. Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01 of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01 of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001 in OA chondrocytes at basal conditions and significantly reduced (p < 0.01 by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation.

  12. Longitudinal bone growth is impaired by direct involvement of caffeine with chondrocyte differentiation in the growth plate.

    Science.gov (United States)

    Choi, Hyeonhae; Choi, Yuri; Kim, Jisook; Bae, Jaeman; Roh, Jaesook

    2017-01-01

    We showed previously that caffeine adversely affects longitudinal bone growth and disrupts the histomorphometry of the growth plate during the pubertal growth spurt. However, little attention has been paid to the direct effects of caffeine on chondrocytes. Here, we investigated the direct effects of caffeine on chondrocytes of the growth plate in vivo and in vitro using a rapidly growing young rat model, and determined whether they were related to the adenosine receptor signaling pathway. A total of 15 male rats (21 days old) were divided randomly into three groups: a control group and two groups fed caffeine via gavage with 120 and 180 mg kg -1  day -1 for 4 weeks. After sacrifice, the tibia processed for the analysis of the long bone growth and proliferation of chondrocytes using tetracycline and BrdU incorporation, respectively. Caffeine-fed animals showed decreases in matrix mineralization and proliferation rate of growth plate chondrocytes compared with the control. To evaluate whether caffeine directly affects chondrocyte proliferation and chondrogenic differentiation, primary rat chondrocytes were isolated from the growth plates and cultured in either the presence or absence of caffeine at concentrations of 0.1-1 mm, followed by determination of the cellular proliferation or expression profiles of cellular differentiation markers. Caffeine caused significant decreases in extracellular matrix production, mineralization, and alkaline phosphatase activity, accompanied with decreases in gene expression of the cartilage-specific matrix proteins such as aggrecan, type II collagen and type X. Our results clearly demonstrate that caffeine is capable of interfering with cartilage induction by directly inhibiting the synthetic activity and orderly expression of marker genes relevant to chondrocyte maturation. In addition, we found that the adenosine type 1 receptor signaling pathway may be partly involved in the detrimental effects of caffeine on chondrogenic

  13. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2016-01-01

    Full Text Available This study reports the effects of the iron chelator deferoxamine (DFO on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM. Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA, AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  14. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  15. Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation.

    Science.gov (United States)

    Koziel, Lydia; Wuelling, Manuela; Schneider, Sabine; Vortkamp, Andrea

    2005-12-01

    During endochondral ossification, the secreted growth factor Indian hedgehog (Ihh) regulates several differentiation steps. It interacts with a second secreted factor, parathyroid hormone-related protein (PTHrP), to regulate the onset of hypertrophic differentiation, and it regulates chondrocyte proliferation and ossification of the perichondrium independently of PTHrP. To investigate how the Ihh signal is translated in the different target tissues, we analyzed the role of the zinc-finger transcription factor Gli3, which acts downstream of hedgehog signals in other organs. Loss of Gli3 in Ihh mutants restores chondrocyte proliferation and delays the accelerated onset of hypertrophic differentiation observed in Ihh-/- mutants. Furthermore the expression of the Ihh target genes patched (Ptch) and PTHrP is reactivated in Ihh-/-;Gli3-/- mutants. Gli3 seems thus to act as a strong repressor of Ihh signals in regulating chondrocyte differentiation. In addition, loss of Gli3 in mice that overexpress Ihh in chondrocytes accelerates the onset of hypertrophic differentiation by reducing the domain and possibly the level of PTHrP expression. Careful analysis of chondrocyte differentiation in Gli3-/- mutants revealed that Gli3 negatively regulates the differentiation of distal, low proliferating chondrocytes into columnar, high proliferating cells. Our results suggest a model in which the Ihh/Gli3 system regulates two distinct steps of chondrocyte differentiation: (1) the switch from distal into columnar chondrocytes is repressed by Gli3 in a PTHrP-independent mechanism; (2) the transition from proliferating into hypertrophic chondrocytes is regulated by Gli3-dependent expression of PTHrP. Furthermore, by regulating distal chondrocyte differentiation, Gli3 seems to position the domain of PTHrP expression.

  16. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  17. ICAM-1 expression on chondrocytes in rheumatoid arthritis: induction by synovial cytokines

    Directory of Open Access Journals (Sweden)

    M. E. Davies

    1992-01-01

    Full Text Available The intercellular adhesion molecule-1 (ICAM-1 was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1α, TNFα and IFNγ or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus.

  18. The in vitro biocompatibility of d-(+) raffinose modified chitosan: Two-dimensional and three-dimensional systems for culturing of horse articular chondrocytes.

    Science.gov (United States)

    De Angelis, Elena; Ravanetti, Francesca; Martelli, Paolo; Cacchioli, Antonio; Ivanovska, Ana; Corradi, Attilio; Nasi, Sonia; Bianchera, Annalisa; Passeri, Benedetta; Canelli, Elena; Bettini, Ruggero; Borghetti, Paolo

    2017-12-01

    The present study investigated the biocompatibility of chitosan films and scaffolds modified with d-(+)raffinose and their capability to support the growth and maintenance of the differentiation of articular chondrocytes in vitro. Primary equine articular chondrocytes were cultured on films and scaffolds of modified d-(+) raffinose chitosan. Their behavior was compared to that of chondrocytes grown in conventional bi- and three-dimensional culture systems, such as micromasses and alginate beads. Chitosan films maintained the phenotype of differentiated chondrocytes (typical round morphology) and sustained the synthesis of cartilaginous extracellular matrix (ECM), even at 4weeks of culture. Indeed, starting from 2weeks of culture, chondrocytes seeded on chitosan scaffolds were able to penetrate the surface pores and to colonize the internal matrix. Moreover they produced ECM expressing the genes of typical chondrocytes differentiation markers such as collagen II and aggrecan. In conclusion, chitosan modified with d-raffinose represents an ideal support for chondrocyte adhesion, proliferation and for the maintenance of cellular phenotypic and genotypic differentiation. This novel biomaterial could potentially be a reliable support for the re-differentiation of dedifferentiated chondrocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 5-Aza-2'-deoxycytidine acts as a modulator of chondrocyte hypertrophy and maturation in chick caudal region chondrocytes in culture.

    Science.gov (United States)

    Haq, Samina Hyder

    2016-06-01

    This study was carried out to explore the effect of DNA hypomethylation on chondrocytes phenotype, in particular the effect on chondrocyte hypertrophy, maturation, and apoptosis. Chondrocytes derived from caudal region of day 17 embryonic chick sterna were pretreated with hypomethylating drug 5-aza-2'-deoxycytidine for 48 hours and then maintained in the normal culture medium for up to 14 days. Histological studies showed distinct morphological changes occurred in the pretreated cultures when compared to the control cultures. The pretreated chondrocytes after 7 days in culture became bigger in size and acquired more flattened fibroblastic phenotype as well as a loss of cartilage specific extracellular matrix. Scanning electron microscopy at day 7 showed chondrocytes to have increased in cell volume and at day 14 in culture the extracellular matrix of the pretreated cultures showed regular fibrillar structure heavily embedded with matrix vesicles, which is the characteristic feature of chondrocyte hypertrophy. Transmission electron microscopic studies indicated the terminal fate of the hypertrophic cells in culture. The pretreated chondrocytes grown for 14 days in culture showed two types of cells: dark cells which had condense chromatin in dark patches and dark cytoplasm. The other light chondrocytes appeared to be heavily loaded with endoplasmic reticulum indicative of very active protein and secretory activity; their cytoplasm had large vacuoles and disintegrating cytoplasm. The biosynthetic profile showed that the pretreated cultures were actively synthesizing and secreting type X collagen and alkaline phosphatase as a major biosynthetic product.

  20. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture.

    Science.gov (United States)

    Pleumeekers, M M; Nimeskern, L; Koevoet, J L M; Karperien, M; Stok, K S; van Osch, G J V M

    2018-01-01

    Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.

  1. In vitro evaluation of chondrosarcoma cells and canine chondrocytes on layer-by-layer (LbL) self-assembled multilayer nanofilms

    International Nuclear Information System (INIS)

    Shaik, J; Mohammed, J Shaikh; McShane, M J; Mills, D K

    2013-01-01

    Short-term cell–substrate interactions of two secondary chondrocyte cell lines (human chondrosarcoma cells, canine chondrocytes) with layer-by-layer self-assembled multilayer nanofilms were investigated for a better understanding of cellular-behaviour dependence on a number of nanofilm layers. Cell–substrate interactions were studied on polyelectrolyte multilayer nanofilms (PMNs) of eleven different biomaterials. Surface characterization of PMNs performed using AFM showed increasing surface roughness with increasing number of layers for most of the biomaterials. LDH-L and MTT assays were performed on chondrosarcoma cells and canine chondrocytes, respectively. A major observation was that 10-bilayer nanofilms exhibited lesser cytotoxicity towards human chondrosarcoma cells than their 5-bilayer counterparts. In the case of canine chondrocytes, BSA enhanced cell metabolic activity with increasing number of layers, underscoring the importance of the multilayer nanofilm architecture on cellular behaviour. (paper)

  2. Cellular automata model for human articular chondrocytes migration, proliferation and cell death: An in vitro validation.

    Science.gov (United States)

    Vaca-González, J J; Gutiérrez, M L; Guevara, J M; Garzón-Alvarado, D A

    2017-01-01

    Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.

  3. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells.

    Science.gov (United States)

    Park, Yong-Beom; Seo, Sinji; Kim, Jin-A; Heo, Jin-Chul; Lim, Young-Cheol; Ha, Chul-Won

    2015-06-24

    The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.

  4. HIF-1α-induced HSP70 regulates anabolic responses in articular chondrocytes under hypoxic conditions.

    Science.gov (United States)

    Tsuchida, Shinji; Arai, Yuji; Takahashi, Kenji A; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Inoue, Hiroaki; Ikoma, Kazuya; Ueshima, Keiichiro; Matsuki, Tomohiro; Mazda, Osam; Kubo, Toshikazu

    2014-08-01

    We assessed whether heat shock protein 70 (HSP70) is involved in hypoxia inducible factor 1 alpha (HIF-1α)-dependent anabolic pathways in articular chondrocytes under hypoxic conditions. Primary rabbit chondrocytes were cultured under normoxia (20% oxygen condition) or hypoxia (1% oxygen condition). Alternatively, cells cultured under normoxia were treated with CoCl2 , which induces HIF-1α, to simulate hypoxia, or transfected with siRNAs targeting HIF-1α (si-HIF-1α) and HSP70 (si-HSP70) under hypoxia. HSP70 expression was enhanced by the increased expression of HIF-1α under hypoxia or simulated hypoxia, but not in the presence of si-HIF-1α. Hypoxia-induced overexpression of ECM genes was significantly suppressed by si-HIF-1α or si-HSP70. Cell viability positively correlated with hypoxia, but transfection with si-HIF-1α or si-HSP70 abrogated the chondroprotective effects of hypoxia. Although LDH release from sodium nitroprusside-treated cells and the proportion of TUNEL positive cells were decreased under hypoxia, transfection with si-HIF-1α or si-HSP70 almost completely blocked these effects. These findings indicated that HIF-1α-induced HSP70 overexpression increased the expression levels of ECM genes and cell viability, and protected chondrocytes from apoptosis. HIF-1α may regulate the anabolic effects of chondrocytes under hypoxic conditions by regulating HSP70 expression. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. The Results of Fetal Chondrocytes Transplantation in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Natalya Krivoruchko

    2014-12-01

    Full Text Available Introduction. Nowadays anti-inflammatory and immunosuppressive therapy has significantly improved the quality of life and prognosis of rheumatoid arthritis (RA. Nevertheless, there are still many patients with progressive rheumatoid inflammation, resulting in the destruction of joints. Cell therapy seems like a promising direction in rheumatology. The aim of our research was to evaluate the efficacy of fetal chondrocyte transplantation in patients with RA.Methods. We examined 60 patients with rheumatoid arthritis (I - III stages between 20 and 63 years of age. They were divided into 2 groups: the first group underwent the fetal chondrocytes transplantation (n = 40, and the second was a control group who got conservative therapy (n = 20. Donor cells were taken from the chondrogenic layer of the humerus or femur heads and hip condyles of human embryos in gestation for 17-20 weeks. A suspension of fetal chondrocytes injected into affected areas of the articular surfaces under X-ray control. Cell viability was determined before the injection. Efficacy of the therapy was assessed by clinical, instrumental, and laboratory tests. This clinical trial was allowed by The Ministry of Public Health and Ethics Committee. All of our patients gave informed consent for the fetal chondrocytes transplantation.Results. Evaluation of the clinical manifestations of RA in the first group of patients showed 3.7 times decrease in pain and 1.6 times relief of synovitis. Complete reduction of contracture was observed in 82% of patients in the first group. Morphometric changes in X-ray demonstrated inhibition of the destruction in articular cartilage and surfaces of bones after transplantation of fetal chondrocytes. The dynamics of morphological changes in synovium showed 2.5 times reduction of the inflammatory reaction. Transplantation of fetal chondrocytes led to a significant reduction in ESR, CRP, fibrinogen , γ-globulin after a period of 12 months (p < 0

  6. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise

    2006-01-01

    ADAM12-S transgenic mice exhibit a pronounced increase in the length of bones, such as femur, tibia, and vertebrae. The effect of ADAM12-S on longitudinal bone growth involves the modulation of chondrocyte proliferation and maturation, likely through proteolytic activities and altered cell......: Transgenic mice expressing the secreted form of human ADAM12, ADAM12-S, or a truncated metalloprotease-deficient form of ADAM12-S in the circulation were used to study the effects of ADAM12 on the skeleton. In addition, murine chondrocyte cultures were used to study the effect of ADAM12-S on cell...... studies showed that ADAM12-S inhibits chondrocyte adhesion to fibronectin and collagen type II. CONCLUSIONS: ADAM12-S stimulates bone growth in mice by modulating chondrocyte proliferation and maturation through mechanisms probably involving both metalloprotease and adhesion activities....

  7. Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation.

    Directory of Open Access Journals (Sweden)

    B Frank Eames

    2011-08-01

    Full Text Available Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1, both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.

  8. Expression Profiling and Functional Implications of a Set of Zinc Finger Proteins, ZNF423, ZNF470, ZNF521, and ZNF780B, in Primary Osteoarthritic Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Maria Mesuraca

    2014-01-01

    Full Text Available Articular chondrocytes are responsible for the maintenance of healthy articulations; indeed, dysregulation of their functions, including the production of matrix proteins and matrix-remodeling proteases, may result in fraying of the tissue and development of osteoarthritis (OA. To explore transcriptional mechanisms that contribute to the regulation of chondrocyte homeostasis and may be implicated in OA development, we compared the gene expression profile of a set of zinc finger proteins potentially linked to the control of chondrocyte differentiation and/or functions (ZNF423, ZNF470, ZNF521, and ZNF780B in chondrocytes from patients affected by OA and from subjects not affected by OA. This analysis highlighted a significantly lower expression of the transcript encoding ZNF423 in chondrocytes from OA, particularly in elderly patients. Interestingly, this decrease was mirrored by the similarly reduced expression of PPARγ, a known target of ZNF423 with anti-inflammatory and chondroprotective properties. The ZNF521 mRNA instead was abundant in all primary chondrocytes studied; the RNAi-mediated silencing of this gene significantly altered the COL2A/COL1 expression ratio, associated with the maintenance of the differentiated phenotype, in chondrocytes cultivated in alginate beads. These results suggest a role for ZNF423 and ZNF521 in the regulation of chondrocyte homeostasis and warrant further investigations to elucidate their mechanism of action.

  9. Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia.

    Science.gov (United States)

    Ruiz-Perez, Victor L; Blair, Helen J; Rodriguez-Andres, M Elena; Blanco, Maria Jose; Wilson, Amy; Liu, Yu-Ning; Miles, Colin; Peters, Heiko; Goodship, Judith A

    2007-08-01

    EVC is a novel protein mutated in the human chondroectodermal dysplasia Ellis-van Creveld syndrome (EvC; OMIM: 225500). We have inactivated Evc in the mouse and show that Evc(-/-) mice develop an EvC-like syndrome, including short ribs, short limbs and dental abnormalities. lacZ driven by the Evc promoter revealed that Evc is expressed in the developing bones and the orofacial region. Antibodies developed against Evc locate the protein at the base of the primary cilium. The growth plate of Evc(-/-) mice shows delayed bone collar formation and advanced maturation of chondrocytes. Indian hedgehog (Ihh) is expressed normally in the growth plates of Evc(-/-) mice, but expression of the Ihh downstream genes Ptch1 and Gli1 was markedly decreased. Recent studies have shown that Smo localises to primary cilia and that Gli3 processing is defective in intraflagellar transport mutants. In vitro studies using Evc(-/-) cells demonstrate that the defect lies downstream of Smo. Chondrocyte cilia are present in Evc(-/-) mice and Gli3 processing appears normal by western blot analysis. We conclude that Evc is an intracellular component of the hedgehog signal transduction pathway that is required for normal transcriptional activation of Ihh target genes.

  10. Study on human chondrocyte culture viability for autologous transplantation in clinical application

    Directory of Open Access Journals (Sweden)

    Christiane Lombello

    2003-06-01

    Full Text Available Objective: The limited regenerative capacity of the cartilage tissuemakes the treatment of chondral lesions difficult. The techniquescurrently available to treat cartilage lesions may relieve symptoms,but do not regenerate the injured tissue. Autologous chondrocytetransplantation uses cell biology and cell culture techniques toregenerate the hyaline cartilage. Methods: In this study, we analyzechondrocyte biopsy collection and culture for autologoustransplantation. Ultrastructural analyses of hyaline cartilage biopsieswere performed 0, 6, 24 and 48 hours after collection. The tissue evenafter 48 hours. Eleven cell culture assays were performed to evaluateisolation, viability, morphology, proliferation and absence ofcontaminants. Results: The cell culture techniques used allowedchondrocyte proliferation. Rates on cell viability were maintained abovethe acceptable patterns (above 90. Control of cell culture laboratoryconditions showed absence of contaminants, assuring safety of theprocess. The chondrocytes obtained presented the morphology typicalof cultured cell monolayers. Conclusion: The results indicate viabilityof chondrocyte culture technique for clinical application in autologoustransplantation.

  11. Importance of Donor Chondrocyte Viability for Osteochondral Allografts.

    Science.gov (United States)

    Cook, James L; Stannard, James P; Stoker, Aaron M; Bozynski, Chantelle C; Kuroki, Keiichi; Cook, Cristi R; Pfeiffer, Ferris M

    2016-05-01

    Osteochondral allograft (OCA) transplantation provides a biological treatment option for functional restoration of large articular cartilage defects in multiple joints. While successful outcomes after OCA transplantation have been linked to viable donor chondrocytes, the importance of donor cell viability has not been comprehensively validated. To use a canine model to determine the importance of donor chondrocyte viability at the time of implantation with respect to functional success of femoral condylar OCAs based on radiographic, gross, cell viability, histologic, biochemical, and biomechanical outcome measures. Controlled laboratory study. After approval was obtained from the institutional animal care and use committee, adult female dogs (N = 16) were implanted with 8-mm cylindrical OCAs from male dogs in the lateral and medial femoral condyles of 1 knee. OCAs were preserved for 28 or 60 days after procurement, and chondrocyte viability was quantified before implantation. Two different storage media, temperatures, and time points were used to obtain a spectrum of percentage chondrocyte viability at the time of implantation. A successful outcome was defined as an OCA that was associated with graft integration, maintenance of hyaline cartilage, lack of associated cartilage disorder, and lack of fibrillation, fissuring, or fibrous tissue infiltration of the allograft based on subjective radiographic, gross, and histologic assessments at 6 months after implantation. Chondrocyte viability ranged from 23% to 99% at the time of implantation. All successful grafts had >70% chondrocyte viability at the time of implantation, and no graft with chondrocyte viability <70% was associated with a successful outcome. Live-dead stained sections and histologic findings with respect to cell morphological features suggested that successful grafts were consistently composed of viable chondrocytes in lacunae, while grafts that were not successful were composed of nonviable

  12. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  13. The formation of human auricular cartilage from microtic tissue: An in vivo study.

    Science.gov (United States)

    Ishak, Mohamad Fikeri bin; See, Goh Bee; Hui, Chua Kien; Abdullah, Asma bt; Saim, Lokman bin; Saim, Aminuddin bin; Idrus, Ruszymah bt Haji

    2015-10-01

    This study aimed to isolate, culture-expand and characterize the chondrocytes isolated from microtic cartilage and evaluate its potential as a cell source for ear cartilage reconstruction. Specific attention was to construct the auricular cartilage tissue by using fibrin as scaffold. Cell culture experiment with the use of microtic chondrocytes. Cell culture experiment with the use of microtic chondrocytes. After ear reconstructive surgery at the Universiti Kebangsaan Malaysia Medical Center, chondrocytes were isolated from microtic cartilage. Chondrocytes isolated from the tissue were cultured expanded until passage 4 (P4). Upon confluency at P4, chondrocytes were harvested and tissue engineered constructs were made with human plasma polymerized to fibrin. Constructs formed later is implanted at the dorsal part of nude mice for 8 weeks, followed by post-implantation evaluation with histology staining (Hematoxylin and Eosin (H&E) and Safranin O), immunohistochemistry and RT-PCR for chondrogenic associated genes expression level. Under gross assessment, the construct after 8 weeks of implantation showed similar physical characteristics that of cartilage. Histological staining showed abundant lacunae cells embedded in extracellular matrix similar to that of native cartilage. Safranin O staining showed positive staining which indicates the presence of proteoglycan-rich matrix. Immunohistochemistry analysis showed the strong positive staining for collagen type II, the specific collagen type in the cartilage. Gene expression quantification showed no significant differences in the expression of chondrogenic gene used which is collagen type I, collagen type II, aggrecan core protein (ACP), elastin and sox9 genes when compared to construct formed from normal auricular tissue. Chondrocytes isolated from microtia cartilage has the potential to be used as an alternative cell source for external ear reconstruction in future clinical application. Copyright © 2015 Elsevier

  14. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix.

    Science.gov (United States)

    Gigout, A; Guehring, H; Froemel, D; Meurer, A; Ladel, C; Reker, D; Bay-Jensen, A C; Karsdal, M A; Lindemann, S

    2017-11-01

    Fibroblast growth factor (FGF) 18 has been shown to increase cartilage volume when injected intra-articularly in animal models of osteoarthritis (OA) and in patients with knee OA (during clinical development of the recombinant human FGF18, sprifermin). However, the exact nature of this effect is still unknown. In this study, we aimed to investigate the effects of sprifermin at the cellular level. A combination of different chondrocyte culture systems was used and the effects of sprifermin on proliferation, the phenotype and matrix production were evaluated. The involvement of MAPKs in sprifermin signalling was also studied. In monolayer, we observed that sprifermin promoted a round cell morphology and stimulated both cellular proliferation and Sox9 expression while strongly decreasing type I collagen expression. In 3D culture, sprifermin increased the number of matrix-producing chondrocytes, improved the type II:I collagen ratio and enabled human OA chondrocytes to produce a hyaline extracellular matrix (ECM). Furthermore, we found that sprifermin displayed a 'hit and run' mode of action, with intermittent exposure required for the compound to fully exert its anabolic effect. Finally, sprifermin appeared to signal through activation of ERK. Our results indicate that intermittent exposure to sprifermin leads to expansion of hyaline cartilage-producing chondrocytes. These in vitro findings are consistent with the increased cartilage volume observed in the knees of OA patients after intra-articular injection with sprifermin in clinical studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. CCN2/CTGF is required for matrix organization and to protect growth plate chondrocytes from cellular stress.

    Science.gov (United States)

    Hall-Glenn, Faith; Aivazi, Armen; Akopyan, Lusi; Ong, Jessica R; Baxter, Ruth R; Benya, Paul D; Goldschmeding, Roel; van Nieuwenhoven, Frans A; Hunziker, Ernst B; Lyons, Karen M

    2013-08-01

    CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

  16. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo.

    Science.gov (United States)

    Yang, Yuanheng; Lin, Hang; Shen, He; Wang, Bing; Lei, Guanghua; Tuan, Rocky S

    2018-03-15

    Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for

  17. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation.

    Science.gov (United States)

    Yuan, Y; Zhang, G Q; Chai, W; Ni, M; Xu, C; Chen, J Y

    2016-10-01

    Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1.Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J

  18. Regulation of collagenase inhibitor production in chondrosarcoma chondrocytes

    International Nuclear Information System (INIS)

    Harper, J.; Harper, E.

    1987-01-01

    Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase. This inhibitor is similar to those isolated from normal cartilage tissues. These cells will synthesize proteins in the absence of serum. Since serum contains inhibitors of collagenase, it is necessary to culture cells without serum in order to obtain accurate measurements of enzyme and inhibitor levels. They examined the effect of insulin on inhibitor secretion by cultures of Swarm rat chondrosarcoma chondrocytes. They observed a 2.5 to 3.5 fold stimulation of inhibitory activity in the presence of as little as 10 ng/ml insulin as compared to controls in serum free Dulbecco's modified Eagle's medium supplemented with 4.5 g/l glucose. The units of inhibitor were determined over a 7 day culture period. Medium was harvested daily and assayed for collagenase activity and for inhibition of a known collagenase from rabbit skin or human skin, using the 14 C-glycine peptide release assay. The amount of inhibitor obtained from days 2 through 7 were: 1.4 unit (control), 3.8 units (10 ng/ml insulin), 5.2 units (1 μg/ml insulin). The addition of 1 mM dibutyryl cyclic AMP to these chondrocytes in the presence of 1 μg/ml insulin caused a decrease in the level of inhibitor, suggesting that a dephosphorylation event may be necessary for this stimulation by insulin to occur

  19. Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis

    Science.gov (United States)

    Musumeci, Giuseppe; Castrogiovanni, Paola; Trovato, Francesca Maria; Weinberg, Annelie Martina; Al-Wasiyah, Mohammad K.; Alqahtani, Mohammed H.; Mobasheri, Ali

    2015-01-01

    Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA. PMID:26334269

  20. The inhibitory roles of Ihh downregulation on chondrocyte growth and differentiation.

    Science.gov (United States)

    Deng, Ang; Zhang, Hongqi; Hu, Minyu; Liu, Shaohua; Wang, Yuxiang; Gao, Qile; Guo, Chaofeng

    2018-01-01

    The proliferative rate of chondrocytes affects bone elongation. Chondrocyte hypertrophy is required for endochondral bone formation as chondrocytes secrete factors required for osteoblast differentiation and maturation. Previous studies have demonstrated that the Indian hedgehog (Ihh) signaling pathway is a key regulator of skeletal development and homeostasis. The aim of the present study was to investigate the function of Ihh in chondrocyte proliferation and differentiation, as well as the underlying mechanisms. Ihh was knocked down in mouse chondrocyte cells using short hairpin RNA. Chondrocyte apoptosis and cell cycle arrest were assessed using flow cytometry and the results indicated that knockdown of Ihh significantly inhibited cell growth (PIhh also resulted in cell cycle arrest at G1 to S phase in chondrocytes. It was also observed that knockdown of Ihh decreased alkaline phosphatase activity and mineral deposition of chondrocytes. The inhibitory roles of Ihh downregulation on chondrocyte growth and differentiation may be associated with the transforming growth factor-β/mothers against decapentaplegic and osteoprotegerin/receptor activator of nuclear factor κB ligand signaling pathway. The results of the present study suggest that chondrocyte-derived Ihh is essential for maintaining bone growth plates and that manipulation of Ihh expression or its signaling components may be a novel therapeutic technique for the treatment of skeletal diseases, including achondroplasia.

  1. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    Science.gov (United States)

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1. PMID:14871928

  2. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young; Park, Joo-In; Yun, Jeanho; Bae, Yoe-Sik

    2006-01-01

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P 2 , S1P 3 , S1P 4 , but not S1P 1 . When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P 1 - and S1P 4 -selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G i protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process

  3. Targeted deletion of Atg5 in chondrocytes promotes age-related osteoarthritis.

    Science.gov (United States)

    Bouderlique, Thibault; Vuppalapati, Karuna K; Newton, Phillip T; Li, Lei; Barenius, Björn; Chagin, Andrei S

    2016-03-01

    It has been suggested that the lysosomal recycling process called macro-autophagy plays a role in osteoarthritis development. We thus decided to genetically ablate the autophagy-indispensable Atg5 gene specifically in chondrocytes and analyse the development of osteoarthritis upon aging and in a post-traumatic model. Mice lacking the Atg5 gene in their chondrocytes (Atg5cKO) were generated by crossing Atg5-floxed mice with transgenic mice that expressed cre recombinase driven by the collagen type 2 promoter. Animals were analysed at the age of 2, 6 and 12 months for age-related osteoarthritis or underwent mini-open partial medial meniscectomy at 2 months of age and were analysed 1 or 2 months after surgery. We evaluated osteoarthritis using the Osteoarthritis Research Society International (OARSI) scoring on safranin-O-stained samples. Cell death was evaluated by terminal deoxy-nucleotidyl-transferase-mediated deoxy-UTP nick end labelling (TUNEL) and by immunostaining of cleaved caspases. We observed the development of osteoarthritis in Atg5cKO mice with aging including fibrillation and loss of proteoglycans, which was particularly severe in males. The ablation of Atg5 was associated with an increased cell death as assessed by TUNEL, cleaved caspase 3 and cleaved caspase 9. Surprisingly, no difference in the development of post-traumatic osteoarthritis was observed between Atg5cKO and control mice. Autophagy protects from age-related osteoarthritis by facilitating chondrocyte survival. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique.

    Science.gov (United States)

    Goh, Bee See; Che Omar, Siti Nurhadis; Ubaidah, Muhammad Azhan; Saim, Lokman; Sulaiman, Shamsul; Chua, Kien Hui

    2017-04-01

    In conclusion, these result showed HADSCs could differentiate into chondrocytes-like cells, dependent on signaling induced by TGF-β3 and chondrocytes. This is a promising result and showed that HADSCs is a potential source for future microtia repair. The technique of co-culture is a positive way forward to assist the microtia tissue. Reconstructive surgery for the repair of microtia still remains the greatest challenge among the surgeons. Its repair is associated with donor-site morbidity and the degree of infection is inevitable when using alloplastic prosthesis with uncertain long-term durability. Thus, human adipose derived stem cells (HADSCs) can be an alternative cell source for cartilage regeneration. This study aims to evaluate the chondrogenic potential of HADSCs cultured with transforming growth factor-beta (TGF-β) and interaction of auricular chondrocytes with HADSCs for new cartilage generation. Multi-lineages differentiation features of HADSCs were monitored by Alcian Blue, Alizarin Red, and Oil Red O staining for chondrogenic, adipogenic, and osteogenic differentiation capacity, respectively. Further, HADSCs alone were culture in medium added with TGF-β3; and human auricular chondrocytes were interacted indirectly in the culture with and without TGF-βs for up to 21 days, respectively. Cell morphology and chondrogenesis were monitored by inverted microscope. For cell viability, Alamar Blue assay was used to measure the cell viability and the changes in gene expression of auricular chondrocyte markers were determined by real-time polymerase chain reaction analysis. For the induction of chondrogenic differentiation, HADSCs showed a feature of aggregation and formed a dense matrix of proteoglycans. Staining results from Alizirin Red and Oil Red O indicated the HADSCs also successfully differentiated into adipogenic and osteogenic lineages after 21 days. According to a previous study, HADSCs were strongly positive for the mesenchymal markers CD90, CD73

  5. Transforming growth factor-beta predominantly stimulates phenotypically changed chondrocytes in osteoarthritic human cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van Roy, H. L.; van der Kraan, P. M.; van den Berg, W. B.; Bijlsma, J. W.

    1997-01-01

    One of the most prominent alterations that characterizes osteoarthritic cartilage damage is a reduction of proteoglycan content, reflecting an imbalance between synthesis and release of proteoglycans. Both synthesis and release depend on the activity of cartilage cells. Chondrocytes in the upper

  6. Na+, K+-ATPase Subunit Composition in a Human Chondrocyte Cell Line; Evidence for the Presence of α1, α3, β1, β2 and β3 Isoforms

    Directory of Open Access Journals (Sweden)

    Ali Mobasheri

    2012-04-01

    Full Text Available Membrane transport systems participate in fundamental activities such as cell cycle control, proliferation, survival, volume regulation, pH maintenance and regulation of extracellular matrix synthesis. Multiple isoforms of Na+, K+-ATPase are expressed in primary chondrocytes. Some of these isoforms have previously been reported to be expressed exclusively in electrically excitable cells (i.e., cardiomyocytes and neurons. Studying the distribution of Na+, K+-ATPase isoforms in chondrocytes makes it possible to document the diversity of isozyme pairing and to clarify issues concerning Na+, K+-ATPase isoform abundance and the physiological relevance of their expression. In this study, we investigated the expression of Na+, K+-ATPase in a human chondrocyte cell line (C-20/A4 using a combination of immunological and biochemical techniques. A panel of well-characterized antibodies revealed abundant expression of the α1, β1 and β2 isoforms. Western blot analysis of plasma membranes confirmed the above findings. Na+, K+-ATPase consists of multiple isozyme variants that endow chondrocytes with additional homeostatic control capabilities. In terms of Na+, K+-ATPase expression, the C-20/A4 cell line is phenotypically similar to primary and in situ chondrocytes. However, unlike freshly isolated chondrocytes, C-20/A4 cells are an easily accessible and convenient in vitro model for the study of Na+, K+-ATPase expression and regulation in chondrocytes.

  7. Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation.

    Science.gov (United States)

    Mathy-Hartert, M; Hogge, L; Sanchez, C; Deby-Dupont, G; Crielaard, J M; Henrotin, Y

    2008-07-01

    Beside matrix metalloproteinases, reactive oxygen species (ROS) are the main biochemical factors of cartilage degradation. To prevent ROS toxicity, chondrocytes possess a well-coordinated enzymatic antioxidant system formed principally by superoxide dismutases (SODs), catalase (CAT) and glutathione peroxidase (GPX). This work was designed to assess the effects of interleukin (IL)-1beta and IL-6 on the enzymatic activity and gene expression of SODs, CAT and GPX in bovine chondrocytes. Bovine chondrocytes were cultured in monolayer for 4-96 h in the absence or in the presence of IL-1beta (0.018-1.8ng/ml) or IL-6 (10-100 ng/ml). To study signal transduction pathway, inhibitors of mitogen-activated protein kinases (MAPK) (PD98059, SB203580 and SP600125) (5-20 microM) and nuclear factor (NF)-kappaB inhibitors [BAY11-7082 (1-10 microM) and MG132 (0.1-10 microM)] were used. SODs, CAT and GPX enzymatic activities were evaluated in cellular extract by using colorimetric enzymatic assays. Mn SODs, Cu/Zn SOD, extracellular SOD (EC SOD), CAT and GPX gene expressions were quantified by real-time and quantitative polymerase chain reaction (PCR). Mn SOD and GPX activities were dose and time-dependently increased by IL-1beta. In parallel, IL-1beta markedly enhanced Mn SOD and GPX gene expressions, but decreased Cu/Zn SOD, EC SOD and CAT gene expressions. Induction of SOD enzymatic activity and Mn SOD mRNA expression were inhibited by NF-kappaB inhibitors but not by MAPK inhibitors. IL-6 effects were similar but weaker than those of IL-1beta. In conclusion, IL-1beta, and to a lesser extend IL-6, dysregulates enzymatic antioxidant defenses in chondrocyte. These changes could lead to a transient accumulation of H(2)O(2) in mitochondria, and consequently to mitochondria damage. These changes contribute to explain the mitochondrial dysfunction observed in osteoarthritis chondrocytes.

  8. Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells

    Directory of Open Access Journals (Sweden)

    Ryo Ito

    2016-03-01

    Full Text Available DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET family proteins converted 5-methylcytosine (5mC to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1 promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.

  9. Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors.

    Science.gov (United States)

    Ladet, S G; Tahiri, K; Montembault, A S; Domard, A J; Corvol, M-T M

    2011-08-01

    We investigated the bioactivity of new chitosan-based multi-membrane hydrogel (MMH) architectures towards chondrocyte-like cells. The microstructure of the hydrogels constituting the membranes precludes any living cell penetration, whereas their lower scale architecture allows the protein diffusion. The biological behavior of chondrocytes implanted within the MMH inter-membrane spaces was studied for 45 days in culture. Chondrocytes formed cell aggregates and proliferated without loosing their chondrogenic phenotype as illustrated by collagen II and aggrecan expressions at the mRNA and protein levels. Cells produced neo-formed alcyan blue matrix proteins filling MMH interspaces. The HiF-2α/SOX9 pattern of expression suggested that the elevated chondrocytic phenotype in MMH could be related to a better hypoxic local environment than in classical culture conditions. Pro-inflammatory markers were not expressed during the period of culture. The low level of nitric oxide accumulation within the inter-membrane spaces and in the incubation medium implied that chitosan consumed nitrites produced by entrapped chondrocytes, in relation with the decrease of its molecular weight of 50%. Our data suggest that MMH structures may be considered as complex chondrocytic cell bioreactors; "active decoys of biological media", potentially promising for various biomedical applications like the inter-vertebral disk replacement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro

    Directory of Open Access Journals (Sweden)

    S Giovannini

    2010-10-01

    Full Text Available Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.

  11. Viability of chondrocytes seeded onto a collagen I/III membrane for matrix-induced autologous chondrocyte implantation.

    Science.gov (United States)

    Hindle, Paul; Hall, Andrew C; Biant, Leela C

    2014-11-01

    Cell viability is crucial for effective cell-based cartilage repair. The aim of this study was to determine the effect of handling the membrane during matrix-induced autologous chondrocyte implantation surgery on the viability of implanted chondrocytes. Images were acquired under five conditions: (i) Pre-operative; (ii) Handled during surgery; (iii) Cut edge; (iv) Thumb pressure applied; (v) Heavily grasped with forceps. Live and dead cell stains were used. Images were obtained for cell counting and morphology. Mean cell density was 6.60 × 10(5) cells/cm(2) (5.74-7.11 × 10(5) ) in specimens that did not have significant trauma decreasing significantly in specimens that had been grasped with forceps (p < 0.001) or cut (p = 0.004). Cell viability on delivery grade membrane was 75.1%(72.4-77.8%). This dropped to 67.4%(64.1-69.7%) after handling (p = 0.002), 56.3%(51.5-61.6%) after being thumbed (p < 0.001) and 28.8%(24.7-31.2%) after crushing with forceps (p < 0.001). When cut with scissors there was a band of cell death approximately 275 µm in width where cell viability decreased to 13.7%(10.2-18.2%, p < 0.001). Higher magnification revealed cells without the typical rounded appearance of chondrocytes. We found that confocal laser-scanning microscope (CLSM) can be used to quantify and image the fine morphology of cells on a matrix-induced autologous chondrocyte implantation (MACI) membrane. Careful handling of the membrane is essential to minimise chondrocyte death during surgery. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    Science.gov (United States)

    Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel

    2012-01-01

    Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  13. Overexpression of Galnt3 in chondrocytes resulted in dwarfism due to the increase of mucin-type O-glycans and reduction of glycosaminoglycans.

    Science.gov (United States)

    Yoshida, Carolina Andrea; Kawane, Tetsuya; Moriishi, Takeshi; Purushothaman, Anurag; Miyazaki, Toshihiro; Komori, Hisato; Mori, Masako; Qin, Xin; Hashimoto, Ayako; Sugahara, Kazuyuki; Yamana, Kei; Takada, Kenji; Komori, Toshihisa

    2014-09-19

    Galnt3, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-D-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2(-/-) cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3(-/-) mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3(-/-) mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix.

    Science.gov (United States)

    Demoor, M; Maneix, L; Ollitrault, D; Legendre, F; Duval, E; Claus, S; Mallein-Gerin, F; Moslemi, S; Boumediene, K; Galera, P

    2012-06-01

    Since the emergence in the 1990s of the autologous chondrocytes transplantation (ACT) in the treatment of cartilage defects, the technique, corresponding initially to implantation of chondrocytes, previously isolated and amplified in vitro, under a periosteal membrane, has greatly evolved. Indeed, the first generations of ACT showed their limits, with in particular the dedifferentiation of chondrocytes during the monolayer culture, inducing the synthesis of fibroblastic collagens, notably type I collagen to the detriment of type II collagen. Beyond the clinical aspect with its encouraging results, new biological substitutes must be tested to obtain a hyaline neocartilage. Therefore, the use of differentiated chondrocytes phenotypically stabilized is essential for the success of ACT at medium and long-term. That is why researchers try now to develop more reliable culture techniques, using among others, new types of biomaterials and molecules known for their chondrogenic activity, giving rise to the 4th generation of ACT. Other sources of cells, being able to follow chondrogenesis program, are also studied. The success of the cartilage regenerative medicine is based on the phenotypic status of the chondrocyte and on one of its essential component of the cartilage, type II collagen, the expression of which should be supported without induction of type I collagen. The knowledge accumulated by the scientific community and the experience of the clinicians will certainly allow to relief this technological challenge, which influence besides, the validation of such biological substitutes by the sanitary authorities. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway.

    Science.gov (United States)

    Wang, Yongmei; Cheng, Zhiqiang; Elalieh, Hashem Z; Nakamura, Eiichiro; Nguyen, Minh-Thanh; Mackem, Susan; Clemens, Thomas L; Bikle, Daniel D; Chang, Wenhan

    2011-07-01

    Systemic derangements and perinatal death of generalized insulin-like growth factor 1 (IGF-1) and IGF-1 receptor (IGF-1R) knockout mice preclude definitive assessment of IGF-1R actions in growth-plate (GP) chondrocytes. We generated cartilage-specific Igf1r knockout ((Cart) Igf1r(-/-)) mice to investigate local control of chondrocyte differentiation in the GP by this receptor. These mice died shortly after birth and showed disorganized chondrocyte columns, delayed ossification and vascular invasion, decreased cell proliferation, increased apoptosis, and increased expression of parathyroid hormone-related protein (Pthrp) RNA and protein in their GPs. The increased Pthrp expression in the knockout GPs likely was due to an increase in gene transcription, as determined by the increased activity of a LacZ reporter that was inserted downstream of the endogenous PTHrP promoter and bred into the knockout mice. To circumvent the early death of (Cart) Igf1r(-/-) mice and investigate the role of IGF-1R during postnatal growth, we made tamoxifen (Tam)-inducible, cartilage-specific Igf1r knockout ((TamCart) Igf1r(-/-)) mice. At 2 weeks of age and 7 to 8 days after Tam injection, the (TamCart) Igf1r(-/-) mice showed growth retardation with a disorganized GP, reduced chondrocyte proliferation, decreased type 2 collagen and Indian Hedgehog (Ihh) expression, but increased expression of PTHrP. Consistent with in vivo observations, in vitro knockout of the Igf1r gene by adenoviral expression of Cre recombinase suppressed cell proliferation, promoted apoptosis, and increased Pthrp expression. Our data indicate that the IGF-1R in chondrocytes controls cell growth, survival, and differentiation in embryonic and postnatal GPs in part by suppression of Pthrp expression. Copyright © 2011 American Society for Bone and Mineral Research.

  16. Nitric Oxide Mediates Crosstalk between Interleukin 1β and WNT Signaling in Primary Human Chondrocytes by Reducing DKK1 and FRZB Expression.

    Science.gov (United States)

    Zhong, Leilei; Schivo, Stefano; Huang, Xiaobin; Leijten, Jeroen; Karperien, Marcel; Post, Janine N

    2017-11-22

    Interleukin 1 beta (IL1β) and Wingless-Type MMTV Integration Site Family (WNT) signaling are major players in Osteoarthritis (OA) pathogenesis. Despite having a large functional overlap in OA onset and development, the mechanism of IL1β and WNT crosstalk has remained largely unknown. In this study, we have used a combination of computational modeling and molecular biology to reveal direct or indirect crosstalk between these pathways. Specifically, we revealed a mechanism by which IL1β upregulates WNT signaling via downregulating WNT antagonists, DKK1 and FRZB. In human chondrocytes, IL1β decreased the expression of Dickkopf-1 (DKK1) and Frizzled related protein (FRZB) through upregulation of nitric oxide synthase (iNOS), thereby activating the transcription of WNT target genes. This effect could be reversed by iNOS inhibitor 1400W, which restored DKK1 and FRZB expression and their inhibitory effect on WNT signaling. In addition, 1400W also inhibited both the matrix metalloproteinase (MMP) expression and cytokine-induced apoptosis. We concluded that iNOS/NO play a pivotal role in the inflammatory response of human OA through indirect upregulation of WNT signaling. Blocking NO production may inhibit the loss of the articular phenotype in OA by preventing downregulation of the expression of DKK1 and FRZB.

  17. Curcumin Inhibits Apoptosis of Chondrocytes through Activation ERK1/2 Signaling Pathways Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2017-04-01

    Full Text Available Osteoarthritis (OA is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective in treating pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe, and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Curcumin, the principal curcuminoid and the most active component in turmeric, is a biologically active phytochemical. Evidence from several recent in vitro studies suggests that curcumin may exert a chondroprotective effect through actions such as anti-inflammatory, anti-oxidative stress, and anti-catabolic activity that are critical for mitigating OA disease pathogenesis and symptoms. In the present study, we investigated the protective mechanisms of curcumin on interleukin 1β (IL-1β-stimulated primary chondrocytes in vitro. The treatment of interleukin (IL-1β significantly reduces the cell viability of chondrocytes in dose and time dependent manners. Co-treatment of curcumin with IL-1β significantly decreased the growth inhibition. We observed that curcumin inhibited IL-1β-induced apoptosis and caspase-3 activation in chondrocytes. Curcumin can increase the expression of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2, autophagy marker light chain 3 (LC3-II, and Beclin-1 in chondrocytes. The expression of autophagy markers could be decreased when the chondrocytes were incubated with ERK1/2 inhibitor U0126. Our results suggest that curcumin suppresses apoptosis and inflammatory signaling through its actions on the ERK1/2-induced autophagy in chondrocytes. We propose that curcumin should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.

  18. MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha.

    Science.gov (United States)

    Bai, R; Zhao, A-Q; Zhao, Z-Q; Liu, W-L; Jian, D-M

    2015-02-01

    The chondrocytes, the resident cells of cartilage, are maintained and take effects in the whole life upon chronic hypoxic exposure, which hypoxia-inducible factor 1 alpha (HIF-1α) play pivotal roles in response to. Dysregulation of some microRNA (miRNAs) have also been identified to be involved in hypoxia-related physiologic and pathophysiologic responses in some tissues or cell lines. However, the mechanism of miRNAs reponse to hypoxia remain largely unknown in chondrocytes, including the microRNA-195 (miR-195). AIM To investigate the effects of microRNAs (miRNAs) and hypoxia-inducible factor 1 alpha (HIF-1α) on chondrocytes in physiologic environment. We compared the expression of miR-195 and HIF-1α mRNA on hypoxia with that on normoxia in ATDC 5 cells by qRT-PCR. Further experiments was performed to confirmed the relationships of miR-195 and HIF-1α by bioinformatics analysis and dual reporter gene assay. we also assessed the effect of miR-195 on apoptosis in hypoxic ATDC 5 cells by transfect with miR-195 mimics. It was found the downregulated miR-195 and upregulated HIF-1α were present in hypoxic ATDC 5 cells. miR-195 negatively regulated HIF-1α by targeting its 3'-untranslated region. Moreover, the founding indicated miR-195 greatly increased apoptosis and downregulated HIF-1α mRNA occurred simultaneously in hypoxic chondrocytes. We concluded that miR-195 induced apoptosis in hypoxic chondrocytes by directly targeting HIF-1α.

  19. Defective postnatal endochondral bone development by chondrocyte-specific targeted expression of parathyroid hormone type 2 receptor.

    Science.gov (United States)

    Panda, Dibyendu Kumar; Goltzman, David; Karaplis, Andrew C

    2012-12-15

    The human parathyroid hormone type 2 receptor (PTH2R) is activated by PTH and by tuberoinfundibular peptide of 39 residues (TIP39), the latter likely acting as its natural ligand. Although the receptor is expressed at highest levels in the nervous system, we have observed that both PTH2R and TIP39 are expressed in the newborn mouse growth plate, with the receptor localizing in the resting zone and the ligand TIP39 localizing exclusively in prehypertrophic and hypertrophic chondrocytes. To address the role of PTH2R in postnatal skeletal growth and development, Col2a1-hPTH2R (PTH2R-Tg) transgenic mice were generated. The mice were viable and of nearly normal size at birth. Expression of the transgene in the growth plate was limited to chondrocytes. We found that chondrocyte proliferation was decreased, as determined by in vivo BrdU labeling of proliferating chondrocytes and CDK4 and p21 expression in the growth plate of Col2a1-hPTH2R transgenic mice. Similarly, the differentiation and maturation of chondrocytes was delayed, as characterized by decreased Sox9 expression and weaker immunostaining for the chondrocyte differentiation markers collagen type II and type X and proteoglycans. As well, there was altered expression of Gdf5, Wdr5, and β-catenin, factors implicated in chondrocyte maturation, proliferation, and differentiation.These effects impacted on the process of endochondral ossification, resulting in delayed formation of the secondary ossification center, and diminished trabecular bone volume. The findings substantiate a role for PTH2R signaling in postnatal growth plate development and subsequent bone mass acquisition.

  20. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation

    NARCIS (Netherlands)

    Malda, J.; van Blitterswijk, Clemens; Grojec, M.; Martens, D.E.; Tramper, J.; Riesle, J.U.

    2003-01-01

    Functional cartilage implants for orthopedic surgery or in vitro tissue evaluation can be created from expanded chondrocytes and biodegradable scaffolds. Expansion of chondrocytes in two-dimensional culture systems results in their dedifferentiation. The hallmark of this process is the switch of

  1. Indian hedgehog signaling triggers Nkx3.2 protein degradation during chondrocyte maturation

    Science.gov (United States)

    Choi, Seung-Won; Jeong, Da-Un; Kim, Jeong-Ah; Lee, Boyoung; Joeng, Kyu Sang; Long, Fanxin; Kim, Dae-Won

    2015-01-01

    The Indian hedgehog (Ihh) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes, and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in this work, we investigate whether Nkx3.2, an early stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. Here, we show that Ihh signaling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (Wnt co-receptor) and Sfrp (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocyte. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signaling by deletion of either Ihh or Smoothened. Thus, these results suggest that Ihh/Wnt5a signaling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis. PMID:22507129

  2. The signs of differentiation of chondrocytes in the formation of early cartilage lesions in the elderly

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2011-01-01

    Results. The activity of collagen type II cleavage was shown to be increased in the area of age-related OA-like cartilage lesions. This was accompanied by the high expression of collagenases of metalloproteinases (MMP 1, 14 (MT1-MMP, aggrecanases - desintegrin and MMP with thrombospondin type 1 motif (ADAMTS 5, the cytokines of interleukins (IL 1α/β and tumor necrosis factor-α (TNF-α, as well as the genes associated with chondrocyte hypertrophy of type X collagen (C0L10A1, MMP 13 and 9, Indian hedgehog (Ihh and cas-pase 3 in the immediate vicinity of a lesion area. At the same time, there was a high expression of growth factors associated with the proliferation phase of chondrocytes, namely: parathyroid hormone-related peptide (PTHrP, fibroblast growth factor-2 (FGF-2, transforming growth factor β1/2 (TGF-β1/2, as well as macromolecules of matrix of type II collagen (C0L2A1 and aggrecan in both the areas adjacent to the lesions and at a considerable distance from their center. However, these areas showed no higher collagen cleavage activity. Nether higher collagen cleavage, nor excess expression of the genes examined were observed in the absolutely intact cartilage areas. Conclusion. Our studies have indicated that the area of very early age-related OA-like focal cartilage lesions exhibits enhanced type II collagen cleavage that is attended by the expression of the genes associated with chondrocyte differentiation in the embryonic growth plate.

  3. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation

    International Nuclear Information System (INIS)

    Dombrecht, E.J.; De Tollenaere, C.B.; Aerts, K.; Cos, P.; Schuerwegh, A.J.; Bridts, C.H.; Van Offel, J.F.; Ebo, D.G.; Stevens, W.J.; De Clerck, L.S.

    2006-01-01

    The objective of this study was to evaluate the effect of bisphosphonates (BPs) and simvastatin on chondrocyte lipid peroxidation. For this purpose, a flow cytometrical method using C11-BODIPY 581/591 was developed to detect hydroperoxide-induced lipid peroxidation in chondrocytes. Tertiary butylhydroperoxide (t-BHP) induced a time and concentration dependent increase in chondrocyte lipid peroxidation. Addition of a Fe 2+ /EDTA complex to t-BHP or hydrogen peroxide (H 2 O 2 ) clearly enhanced lipid peroxidation. The lipophilic simvastatin demonstrated a small inhibition in the chondrocyte lipid peroxidation. None of three tested BPs (clodronate, pamidronate, and risedronate) had an effect on chondrocyte lipid peroxidation induced by t-BHP. However, when Fe 2+ /EDTA complex was added to t-BHP or H 2 O 2 , BPs inhibited the lipid peroxidation process varying from 25% to 58%. This study demonstrates that BPs have antioxidant properties as iron chelators, thereby inhibiting the chondrocyte lipid peroxidation. These findings add evidence to the therapeutic potential of bisphosphonates and statins in rheumatoid arthritis

  4. Dlx5 Is a cell autonomous regulator of chondrocyte hypertrophy in mice and functionally substitutes for Dlx6 during endochondral ossification.

    Directory of Open Access Journals (Sweden)

    Hui Zhu

    Full Text Available The axial and appendicular skeleton of vertebrates develops by endochondral ossification, in which skeletogenic tissue is initially cartilaginous and the differentiation of chondrocytes via the hypertrophic pathway precedes the differentiation of osteoblasts and the deposition of a definitive bone matrix. Results from both loss-of-function and misexpression studies have implicated the related homeobox genes Dlx5 and Dlx6 as partially redundant positive regulators of chondrocyte hypertrophy. However, experimental perturbations of Dlx expression have either not been cell type specific or have been done in the context of endogenous Dlx5 expression. Thus, it has not been possible to conclude whether the effects on chondrocyte differentiation are cell autonomous or whether they are mediated by Dlx expression in adjacent tissues, notably the perichondrium. To address this question we first engineered transgenic mice in which Dlx5 expression was specifically restricted to immature and differentiating chondrocytes and not the perichondrium. Col2a1-Dlx5 transgenic embryos and neonates displayed accelerated chondrocyte hypertrophy and mineralization throughout the endochondral skeleton. Furthermore, this transgene specifically rescued defects of chondrocyte differentiation characteristic of the Dlx5/6 null phenotype. Based on these results, we conclude that the role of Dlx5 in the hypertrophic pathway is cell autonomous. We further conclude that Dlx5 and Dlx6 are functionally equivalent in the endochondral skeleton, in that the requirement for Dlx5 and Dlx6 function during chondrocyte hypertrophy can be satisfied with Dlx5 alone.

  5. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    NARCIS (Netherlands)

    Zhong, Leilei; Huang, X; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole

    2015-01-01

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the

  6. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    Directory of Open Access Journals (Sweden)

    Ingrid Garzón

    Full Text Available Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ. One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1 and anti-apoptotic genes (SON, HTT, FAIM2 may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  7. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Directory of Open Access Journals (Sweden)

    Kai Jiao

    Full Text Available BACKGROUND: Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. METHODS: Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. RESULTS: In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05. CD163(+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+ chondrocytes with enhanced phagocytic activity were present in Col-II(+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+ chondrocytes were also found in isolated Col-II(+ chondrocytes stimulated with TNF-α (P<0.05. Mid-zone distribution of CD163(+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05. CONCLUSIONS: An increased number of CD163(+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a

  8. Reduction of Environmental Temperature Mitigates Local Anesthetic Cytotoxicity in Bovine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Tarik Onur, Alexis Dang

    2014-09-01

    Full Text Available The purpose of this study was to assess whether reducing environmental temperature will lead to increased chondrocyte viability following injury from a single-dose of local anesthetic treatment. Bovine articular chondrocytes from weight bearing portions of femoral condyles were harvested and cultured. 96-well plates were seeded with 15,000 chondrocytes per well. Chondrocytes were treated with one of the following conditions: ITS Media, 1x PBS, 2% lidocaine, 0.5% bupivacaine, or 0.5% ropivacaine. Each plate was then incubated at 37°C, 23°C, or 4°C for one hour and then returned to media at 37°C. Chondrocyte viability was assessed 24 hours after treatment. Chondrocyte viability is presented as a ratio of the fluorescence of the treatment group over the average of the media group at that temperature (ratio ± SEM. At 37°C, lidocaine (0.35 ± 0.04 and bupivacaine (0.30 ± 0.05 treated chondrocytes show low cell viability when compared to the media (1.00 ± 0.03 control group (p < 0.001. Lidocaine treated chondrocytes were significantly more viable at 23°C (0.84 ± 0.08 and 4°C (0.86±0.085 than at 37°C (p < 0.001. Bupivacaine treated chondrocytes were significantly more viable at 4°C (0.660 ± 0.073 than at 37°C or 23°C (0.330 ± 0.069 (p < 0.001 and p = 0.002 respectively. Reducing the temperature from 37°C to 23°C during treatment with lidocaine increases chondrocyte viability following injury. Chondrocytes treated with bupivacaine can be rescued by reducing the temperature to 4°C.

  9. Protective Effect of Ginger (Zingiber officinale Roscoe) Extract against Oxidative Stress and Mitochondrial Apoptosis Induced by Interleukin-1β in Cultured Chondrocytes.

    Science.gov (United States)

    Hosseinzadeh, Azam; Bahrampour Juybari, Kobra; Fatemi, Mohammad Javad; Kamarul, Tunku; Bagheri, Aboulfazl; Tekiyehmaroof, Neda; Sharifi, Ali Mohammad

    2017-01-01

    The protective effects of ginger (Zingiber officinale Roscoe) extract on IL-1β-mediated oxidative stress and mitochondrial apoptosis were investigated in C28I2 human chondrocytes. The effects of various concentrations of ginger extract on C28I2 human chondrocyte viability were evaluated in order to obtain noncytotoxic concentrations of the drug by methylthiotetrazole assay. The cells were pretreated with 5 and 25 μg/mL ginger extract for 24 h, followed by incubation with IL-1β (10 ng/mL) for 24 h. The effects of ginger extract on IL-1β-induced intracellular reactive oxygen species (ROS) production and lipid peroxidation were examined. The mRNA expressions of antioxidant enzymes including catalase, superoxide dismutase-1, glutathione peroxidase-1, glutathione peroxidase-3, and glutathione peroxidase-4 were evaluated by reverse transcription polymerase chain reaction. The protein expressions of Bax, Bcl-2, and caspase-3 were analyzed by Western blotting. No cytotoxicity was observed at any concentration of ginger extract in C28I2 cells. Ginger extract pretreatment remarkably increased the gene expression of antioxidant enzymes and reduced the IL-1β-induced elevation of ROS, lipid peroxidation, the Bax/Bcl-2 ratio, and caspase-3 activity. Ginger extract could considerably reduce IL-1β-induced oxidative stress and consequent mitochondrial apoptosis as the major mechanisms of chondrocyte cell death. These beneficial effects of ginger extract may be due to its antioxidant properties. It may be considered as a natural herbal product to prevent OA-induced cartilage destruction in the clinical setting. © 2017 S. Karger AG, Basel.

  10. Autologous Chondrocyte Implantation in Osteoarthritic Surroundings

    DEFF Research Database (Denmark)

    Ossendorff, Robert; Grad, Sibylle; Stoddart, Martin J

    2018-01-01

    BACKGROUND: Autologous chondrocyte implantation (ACI) fails in up to 20% of cases. Advanced intra-articular degeneration paired with an inflammatory environment may be closely related to implantation failure. Certain cytokines have been identified to play a major role during early osteoarthritis....... PURPOSE: To investigate the effects of tumor necrosis factor α (TNFα) and its potential inhibition by adalimumab on cartilage regeneration in an in vitro model of ACI. STUDY DESIGN: Controlled laboratory study. METHODS: Bovine articular chondrocytes were cultivated and transferred at passage 3 to fibrin...

  11. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components

    Directory of Open Access Journals (Sweden)

    Chang Qing

    2011-04-01

    Full Text Available Chondrocytes and bone marrow mesenchymal stem cells (BMSCs are frequently used as seed cells in cartilage tissue engineering. In the present study, we determined if the co-culture of rabbit articular chondrocytes and BMSCs in vitro promotes the expression of cartilaginous extracellular matrix and, if so, what is the optimal ratio of the two cell types. Cultures of rabbit articular chondrocytes and BMSCs were expanded in vitro and then cultured individually or at a chondrocyte:BMSC ratio of 4:1, 2:1, 1:1, 1:2, 1:4 for 21 days and cultured in DMEM/F12. BMSCs were cultured in chondrogenic induction medium. Quantitative real-time RT-PCR and Western blot were used to evaluate gene expression. In the co-cultures, type II collagen and aggrecan expression increased on days 14 and 21. At the mRNA level, the expression of type II collagen and aggrecan on day 21 was much higher in the 4:1, 2:1, and 1:1 groups than in either the articular chondrocyte group or the induced BMSC group, and the best ratio of co-culture groups seems to be 2:1. Also on day 21, the expression of type II collagen and aggrecan proteins in the 2:1 group was much higher than in all other groups. The results demonstrate that the co-culture of rabbit chondrocytes and rabbit BMSCs at defined ratios can promote the expression of cartilaginous extracellular matrix. The optimal cell ratio appears to be 2:1 (chondrocytes:BMSCs. This approach has potential applications in cartilage tissue engineering since it provides a protocol for maintaining and promoting seed-cell differentiation and function.

  12. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components.

    Science.gov (United States)

    Qing, Chang; Wei-ding, Cui; Wei-min, Fan

    2011-04-01

    Chondrocytes and bone marrow mesenchymal stem cells (BMSCs) are frequently used as seed cells in cartilage tissue engineering. In the present study, we determined if the co-culture of rabbit articular chondrocytes and BMSCs in vitro promotes the expression of cartilaginous extracellular matrix and, if so, what is the optimal ratio of the two cell types. Cultures of rabbit articular chondrocytes and BMSCs were expanded in vitro and then cultured individually or at a chondrocyte:BMSC ratio of 4:1, 2:1, 1:1, 1:2, 1:4 for 21 days and cultured in DMEM/F12. BMSCs were cultured in chondrogenic induction medium. Quantitative real-time RT-PCR and Western blot were used to evaluate gene expression. In the co-cultures, type II collagen and aggrecan expression increased on days 14 and 21. At the mRNA level, the expression of type II collagen and aggrecan on day 21 was much higher in the 4:1, 2:1, and 1:1 groups than in either the articular chondrocyte group or the induced BMSC group, and the best ratio of co-culture groups seems to be 2:1. Also on day 21, the expression of type II collagen and aggrecan proteins in the 2:1 group was much higher than in all other groups. The results demonstrate that the co-culture of rabbit chondrocytes and rabbit BMSCs at defined ratios can promote the expression of cartilaginous extracellular matrix. The optimal cell ratio appears to be 2:1 (chondrocytes:BMSCs). This approach has potential applications in cartilage tissue engineering since it provides a protocol for maintaining and promoting seed-cell differentiation and function.

  13. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria.

    Science.gov (United States)

    Thorpe, Stephen D; Gambassi, Silvia; Thompson, Clare L; Chandrakumar, Charmilie; Santucci, Annalisa; Knight, Martin M

    2017-09-01

    Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2-dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog-related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  14. Chondrocyte survival in osteochondral transplant cylinders depends on the harvesting technique.

    Science.gov (United States)

    Hafke, Benedikt; Petri, Maximilian; Suero, Eduardo; Neunaber, Claudia; Kwisda, Sebastian; Krettek, Christian; Jagodzinski, Michael; Omar, Mohamed

    2016-07-01

    In autologous osteochondral transplantation, the edges of the harvested plug are particularly susceptible to mechanical or thermal damage to the chondrocytes. We hypothesised that the applied harvesting device has an impact on chondrocyte vitality. Both knees of five blackhead sheep (ten knees) underwent open osteochondral plug harvesting with three different circular harvesting devices (osteoarticular transfer system harvester [OATS; diameter 8 mm; Arthrex, Munich, Germany], diamond cutter [DC; diameter 8.35 mm; Karl Storz, Tuttlingen, Germany] and hollow reamer with cutting crown [HRCC; diameter 7 mm; Dannoritzer, Tuttlingen, Germany]) from distinctly assigned anatomical sites of the knee joint. The rotary cutters (DC and HRCC) were either used with (+) or without cooling (-). Surgical cuts of the cartilage with a scalpel blade were chosen as control method. After cryotomy cutting, chondrocyte vitality was assessed using fluorescence microscopy and a Live/Dead assay. There were distinct patterns of chondrocyte vitality, with reproducible accumulations of dead chondrocytes along the harvesting edge. No statistical difference in chondrocyte survivorship was seen between the OATS technique and the control method, or between the HRCC+ technique and the control method (P > 0.05). The DC+, HRCC- and DC- techniques yielded significantly lower chondrocyte survival rates compared with the control method (P vitality.

  15. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro.

    Science.gov (United States)

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Viriyakhasem, Nawarat; Chomdej, Siriwadee; Ongchai, Siriwan; Harada, Yasuji; Nganvongpanit, Korakot

    2015-09-01

    Intra-articular injection with non-steroidal anti-inflammatory drugs (NSAIDs) is used to treat inflammatory joint disease, but the side effects of NSAIDs include chondrotoxicity. Hyaluronan has shown positive effects on chondrocytes by reducing apoptosis and increasing proteoglycan synthesis. The purposes of this study were to evaluate the effects of low molecular weight hyaluronan (low MW HA), carprofen 25 mg/ml, carprofen 12.5 mg/ml, and a combination of HA and carprofen on canine osteoarthritis (OA) articular chondrocytes and a cartilage explant model in terms of cell viability, extracellular matrix remaining, and gene expression after exposure. In chondrocyte culture, MTT assay was used to evaluate the chondrotoxicity of IC50 and IC80 of carprofen with HA. In cartilage explant culture, two kinds of extracellular matrix (uronic acid and collagen) remaining in cartilage were used to evaluate cartilage damage for 14 d after treatment. Expression of COL2A1, AGG, and MMP3 was used to evaluate the synthesis and degradation of the matrix for 7 d after treatment. In chondrocyte culture, low MW HA could preserve OA chondrocyte viability but could not reduce the chondrotoxicity level of carprofen (P carprofen caused less destruction of uronic acid and collagen structure when compared with the control (P carprofen resulted in higher COL2A1 and AGG expression levels than carprofen alone.

  16. The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2017-02-01

    Full Text Available Neurodegeneration, the progressive death of neurons, loss of brain function, and cognitive decline is an increasing problem for senior populations. Its causes are poorly understood and therapies are largely ineffective. Neurons, with high energy and oxygen requirements, are especially vulnerable to detrimental factors, including age-related dysregulation of biochemical pathways caused by altered expression of multiple genes. GHK (glycyl-l-histidyl-l-lysine is a human copper-binding peptide with biological actions that appear to counter aging-associated diseases and conditions. GHK, which declines with age, has health promoting effects on many tissues such as chondrocytes, liver cells and human fibroblasts, improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, boney tissue, increases collagen, decorin, angiogenesis, and nerve outgrowth, possesses anti-oxidant, anti-inflammatory, anti-pain and anti-anxiety effects, increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Studies using the Broad Institute Connectivity Map show that GHK peptide modulates expression of multiple genes, resetting pathological gene expression patterns back to health. GHK has been recommended as a treatment for metastatic cancer, Chronic Obstructive Lung Disease, inflammation, acute lung injury, activating stem cells, pain, and anxiety. Here, we present GHK’s effects on gene expression relevant to the nervous system health and function.

  17. Inhibition of T-Type Voltage Sensitive Calcium Channel Reduces Load-Induced OA in Mice and Suppresses the Catabolic Effect of Bone Mechanical Stress on Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Padma P Srinivasan

    Full Text Available Voltage-sensitive calcium channels (VSCC regulate cellular calcium influx, one of the earliest responses to mechanical stimulation in osteoblasts. Here, we postulate that T-type VSCCs play an essential role in bone mechanical response to load and participate in events leading to the pathology of load-induced OA. Repetitive mechanical insult was used to induce OA in Cav3.2 T-VSCC null and wild-type control mouse knees. Osteoblasts (MC3T3-E1 and chondrocytes were treated with a selective T-VSCC inhibitor and subjected to fluid shear stress to determine how blocking of T-VSCCs alters the expression profile of each cell type upon mechanical stimulation. Conditioned-media (CM obtained from static and sheared MC3T3-E1 was used to assess the effect of osteoblast-derived factors on the chondrocyte phenotype. T-VSCC null knees exhibited significantly lower focal articular cartilage damage than age-matched controls. In vitro inhibition of T-VSCC significantly reduced the expression of both early and late mechanoresponsive genes in osteoblasts but had no effect on gene expression in chondrocytes. Furthermore, treatment of chondrocytes with CM obtained from sheared osteoblasts induced expression of markers of hypertrophy in chondrocytes and this was nearly abolished when osteoblasts were pre-treated with the T-VSCC-specific inhibitor. These results indicate that T-VSCC plays a role in signaling events associated with induction of OA and is essential to the release of osteoblast-derived factors that promote an early OA phenotype in chondrocytes. Further, these findings suggest that local inhibition of T-VSCC may serve as a therapy for blocking load-induced bone formation that results in cartilage degeneration.

  18. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation.

    Science.gov (United States)

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken

    2016-03-23

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.

  19. The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Directory of Open Access Journals (Sweden)

    Salvador Fernández-Arroyo

    2015-10-01

    Full Text Available Background: Imbalances in the functional binding of fibroblast growth factors (FGFs to their receptors (FGFRs have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.

  20. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Amilton M Fernandes

    Full Text Available Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM derived mesenchymal stem cells (MSCs from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin, ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.

  1. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    International Nuclear Information System (INIS)

    Miyatake, Kazumasa; Tsuji, Kunikazu; Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Muneta, Takeshi

    2013-01-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis

  2. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyatake, Kazumasa [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); Tsuji, Kunikazu, E-mail: ktsuji.gcoe@tmd.ac.jp [International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo (Japan); Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); Sekiya, Ichiro [Section of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo (Japan); Muneta, Takeshi [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo (Japan)

    2013-02-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.

  3. Effect of Collagen Type I or Type II on Chondrogenesis by Cultured Human Articular Chondrocytes

    NARCIS (Netherlands)

    Rutgers, M.; Saris, Daniël B.F.; Vonk, L.A.; van Rijen, M.H.P.; Akrum, V.; Langeveld, D.; van Boxtel, A.; Dhert, W.J.A.; Creemers, L.B.

    2013-01-01

    Introduction: Current cartilage repair procedures using autologous chondrocytes rely on a variety of carriers for implantation. Collagen types I and II are frequently used and valuable properties of both were shown earlier in vitro, although a preference for either was not demonstrated. Recently,

  4. IGF-1 Gene Transfer to Human Synovial MSCs Promotes Their Chondrogenic Differentiation Potential without Induction of the Hypertrophic Phenotype

    Directory of Open Access Journals (Sweden)

    Yasutoshi Ikeda

    2017-01-01

    Full Text Available Mesenchymal stem cell- (MSC- based therapy is a promising treatment for cartilage. However, repair tissue in general fails to regenerate an original hyaline-like tissue. In this study, we focused on increasing the expression levels for insulin-like growth factor-1 (IGF-1 to improve repair tissue quality. The IGF-1 gene was introduced into human synovial MSCs with a lentiviral vector and examined the levels of gene expression and morphological status of MSCs under chondrogenic differentiation condition using pellet cultures. The size of the pellets derived from IGF-1-MSCs were significantly larger than those of the control group. The abundance of glycosaminoglycan (GAG was also significantly higher in the IGF-1-MSC group. The histology of the IGF-1-induced pellets demonstrated similarities to hyaline cartilage without exhibiting features of a hypertrophic chondrocyte phenotype. Expression levels for the Col2A1 gene and protein were significantly higher in the IGF-1 pellets than in the control pellets, but expression levels for Col10, MMP-13, ALP, and Osterix were not higher. Thus, IGF-1 gene transfer to human synovial MSCs led to an improved chondrogenic differentiation capacity without the detectable induction of a hypertrophic or osteogenic phenotype.

  5. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.

    Science.gov (United States)

    Markstedt, Kajsa; Mantas, Athanasios; Tournier, Ivan; Martínez Ávila, Héctor; Hägg, Daniel; Gatenholm, Paul

    2015-05-11

    The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the engineering of complex structures from the bottom up. In this study, a bioink that combines the outstanding shear thinning properties of nanofibrillated cellulose (NFC) with the fast cross-linking ability of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.

  6. Mechanical properties and structure-function relationships of human chondrocyte-seeded cartilage constructs after in vitro culture.

    Science.gov (United States)

    Middendorf, Jill M; Griffin, Darvin J; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Cohen, Itai; Bonassar, Lawrence J

    2017-10-01

    Autologous Chondrocyte Implantation (ACI) is a widely recognized method for the repair of focal cartilage defects. Despite the accepted use, problems with this technique still exist, including graft hypertrophy, damage to surrounding tissue by sutures, uneven cell distribution, and delamination. Modified ACI techniques overcome these challenges by seeding autologous chondrocytes onto a 3D scaffold and securing the graft into the defect. Many studies on these tissue engineered grafts have identified the compressive properties, but few have examined frictional and shear properties as suggested by FDA guidance. This study is the first to perform three mechanical tests (compressive, frictional, and shear) on human tissue engineered cartilage. The objective was to understand the complex mechanical behavior, function, and changes that occur with time in these constructs grown in vitro using compression, friction, and shear tests. Safranin-O histology and a DMMB assay both revealed increased sulfated glycosaminoglycan (sGAG) content in the scaffolds with increased maturity. Similarly, immunohistochemistry revealed increased lubricin localization on the construct surface. Confined compression and friction tests both revealed improved properties with increased construct maturity. Compressive properties correlated with the sGAG content, while improved friction coefficients were attributed to increased lubricin localization on the construct surfaces. In contrast, shear properties did not improve with increased culture time. This study suggests the various mechanical and biological properties of tissue engineered cartilage improve at different rates, indicating thorough mechanical evaluation of tissue engineered cartilage is critical to understanding the performance of repaired cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2298-2306, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    Science.gov (United States)

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.

  8. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    Science.gov (United States)

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.

  9. Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes.

    Science.gov (United States)

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Chondral and osteochondral defects affect a large number of people in which treatment options are currently limited. Due to its ability to mimic the natural nanofibrous structure of cartilage, this current in vitro study aimed at introducing a new scaffold, called XanoMatrix™, for cartilage regeneration. In addition, this same scaffold is introduced here as a new substrate onto which to study chondrocyte functions. Current studies on chondrocyte functions are limited due to nonbiologically inspired cell culture substrates. With its polyethylene terephthalate and cellulose acetate composition, good mechanical properties and nanofibrous structure resembling an extracellular matrix, XanoMatrix offers an ideal surface for chondrocyte growth and proliferation. This current study demonstrated that the XanoMatrix scaffolds promote chondrocyte growth and proliferation as compared with the Corning and Falcon surfaces normally used for chondrocyte cell culture. The XanoMatrix scaffolds also have greater hydrophobicity, three-dimensional surface area, and greater tensile strength, making them ideal candidates for alternative treatment options for chondral and osteochondral defects as well as cell culture substrates to study chondrocyte functions.

  10. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis

    DEFF Research Database (Denmark)

    Cai, Yunpeng; López-Ruiz, Elena; Wengel, Jesper

    2017-01-01

    Hyaluronic acid (HA) is an attractive biomaterial for osteoarthritis (OA) treatment due to inherent functional and compatibility properties as an endogenous knee joint component. In this work, we describe a HA-based hydrogel with the dual functionality of increased CD44-dependent chondrocyte......:3) for identifying designs displaying optimal engagement of OA patient-derived CD44-expressing chondrocytes. Correlation was found between cell binding and CD44 expression, with maximal binding exhibited at a HA/chitosan ratio of 7:3, that was 181% higher than CD44-negative MCF-7 cell control cells. Transfection...... agent-free uptake into OA chondrocytes of fluorescent 13-mer DNA oligonucleotides with a flanked locked nucleic acid (LNA) gapmer design, in contrast to naked siRNA, was demonstrated by confocal and flow cytometric analysis. A sustained and complete release over 5days was found with the 7:3 hydrogel...

  11. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes

    Directory of Open Access Journals (Sweden)

    Srujana Vedicherla

    2017-01-01

    Full Text Available Laboratory based processing and expansion to yield adequate cell numbers had been the standard in Autologous Disc Chondrocyte Transplantation (ADCT, Allogeneic Juvenile Chondrocyte Implantation (NuQu®, and Matrix-Induced Autologous Chondrocyte Implantation (MACI. Optimizing cell isolation is a key challenge in terms of obtaining adequate cell numbers while maintaining a vibrant cell population capable of subsequent proliferation and matrix elaboration. However, typical cell yields from a cartilage digest are highly variable between donors and based on user competency. The overall objective of this study was to optimize chondrocyte isolation from cartilaginous nasal tissue through modulation of enzyme concentration exposure (750 and 3000 U/ml and incubation time (1 and 12 h, combined with physical agitation cycles, and to assess subsequent cell viability and matrix forming capacity. Overall, increasing enzyme exposure time was found to be more detrimental than collagenase concentration for subsequent viability, proliferation, and matrix forming capacity (sGAG and collagen of these cells resulting in nonuniform cartilaginous matrix deposition. Taken together, consolidating a 3000 U/ml collagenase digest of 1 h at a ratio of 10 ml/g of cartilage tissue with physical agitation cycles can improve efficiency of chondrocyte isolation, yielding robust, more uniform matrix formation.

  12. [The concept of cellular immortality, a myth or a reality. Example of "immortalized" articular chondrocytes].

    Science.gov (United States)

    Adolphe, M; Thenet, S

    1990-01-01

    The concept of cellular immortality, which arose from the historical studies of A. Carrel, is getting a new start with the progress of virology. However, the definition of cell immortalization is still ambiguous. Although scientists agree that cells regarded as immortal have acquired an infinite growth capacity, the relationship of this change with the first stages of transformation is difficult to clearly define. Immortalized cell lines have already been obtained from numerous cell types by using viral infection or transfection with viral and cellular genes. Immortalization of cells is interesting for three main reasons: it permits study of the steps in progression to transformation, allows establishment of cell lines for producing biological products, and permits various cell types to maintain a part of their differentiated functions. For example, hypothalamic neurosecretory cells, macrophages, astrocytes and intestinal epithelial cells have been immortalized and these lines can be used for understanding the balance between division and differentiation, and also for pharmacotoxicological studies. In our laboratory, we immortalized rabbit articular chondrocytes by transfection with SV40 large T and little t encoding genes. At the 9th subculture, when the control culture was senescent, clones of polygonal cells appeared in the transfected cell cultures. Three clones have been selected and have been maintained in culture for two years. Growth curves of normal and SV40-transfected chondrocytes were compared and displayed similar doubling times (approximately 20 hours). The exponential phase of growth was longer for immortalized cells resulting in a 2-fold higher saturation density. These cells appear to be not fully transformed and maintain some properties of differentiated chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cartilage repair: Generations of autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Zeller, Philip; Singer, Philipp; Resinger, Christoph; Vecsei, Vilmos

    2006-01-01

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation

  14. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  15. The NAD-Dependent Deacetylase Sirtuin-1 Regulates the Expression of Osteogenic Transcriptional Activator Runt-Related Transcription Factor 2 (Runx2 and Production of Matrix Metalloproteinase (MMP-13 in Chondrocytes in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Koh Terauchi

    2016-06-01

    Full Text Available Aging is one of the major pathologic factors associated with osteoarthritis (OA. Recently, numerous reports have demonstrated the impact of sirtuin-1 (Sirt1, which is the NAD-dependent deacetylase, on human aging. It has been demonstrated that Sirt1 induces osteogenic and chondrogenic differentiation of mesenchymal stem cells. However, the role of Sirt1 in the OA chondrocytes still remains unknown. We postulated that Sirt1 regulates a hypertrophic chondrocyte lineage and degeneration of articular cartilage through the activation of osteogenic transcriptional activator Runx2 and matrix metalloproteinase (MMP-13 in OA chondrocytes. To verify whether sirtuin-1 (Sirt1 regulates chondrocyte activity in OA, we studied expressions of Sirt1, Runx2 and production of MMP-13, and their associations in human OA chondrocytes. The expression of Sirt1 was ubiquitously observed in osteoarthritic chondrocytes; in contrast, Runx2 expressed in the osteophyte region in patients with OA and OA model mice. OA relating catabolic factor IL-1βincreased the expression of Runx2 in OA chondrocytes. OA chondrocytes, which were pretreated with Sirt1 inhibitor, inhibited the IL-1β-induced expression of Runx2 compared to the control. Since the Runx2 is a promotor of MMP-13 expression, Sirt1 inactivation may inhibit the Runx2 expression and the resultant down-regulation of MMP-13 production in chondrocytes. Our findings suggest thatSirt1 may regulate the expression of Runx2, which is the osteogenic transcription factor, and the production of MMP-13 from chondrocytes in OA. Since Sirt1 activity is known to be affected by several stresses, including inflammation and oxidative stress, as well as aging, SIRT may be involved in the development of OA.

  16. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair

    Science.gov (United States)

    Hinton, R.J.; Jing, Y.; Jing, J.; Feng, J.Q.

    2016-01-01

    The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived). PMID:27664203

  17. Articular chondrocyte alignment in the rat after surgically induced osteoarthritis

    Science.gov (United States)

    Takahashi, Hideaki; Tamaki, Hiroyuki; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    [Purpose] Chondrocytes in articular cartilage are aligned as columns from the joint surface. Notably, loss of chondrocyte and abnormalities of differentiation factors give rise to osteoarthritis (OA). However, the relationship between chondrocyte alignment and OA progression remains unclear. This study was performed to investigate temporal alterations in surgically-induced OA rats. [Subjects and Methods] Thirteen-week-old Wistar rats (n=30) underwent destabilized medial meniscus surgery in their right knee and sham surgery in their left knee. Specimens (n=5) were collected at 0, 1, 2, 4 and 8 weeks after surgery. Histological analysis with Osteoarthritis Research Society International (OARSI) scores, cell density ratios, cell alignments and correlation between OARSI scores and cell density/alignment was performed. [Results] OARSI scores were significantly higher at 1, 2, 4 and 8 weeks in the DMM group than in the control. Cell density ratios were decreased significantly in the DMM group at 2, 4 and 8 weeks compared with the control. Chondrocyte alignment was decreased significantly in the DMM group at 4 and 8 weeks. There were negative correlations between OA severity and cell density / cell alignment. [Conclusion] The results suggest a relationship between chondrocyte alignment and cartilage homeostasis, which plays an important role in OA progression. PMID:28533592

  18. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  19. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

    Directory of Open Access Journals (Sweden)

    Erh-Hsuin Lim

    2013-11-01

    Full Text Available BackgroundTo overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF into an electrospun poly(L-lactide scaffold.MethodsThe electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats.ResultsChemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen.ConclusionsWe have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

  20. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Outani

    Full Text Available The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4 and one chondrogenic factor (SOX9 can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon cells from human dermal fibroblast (HDF culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.

  1. [Construction of porous hydroxyapatite (HA) block loaded with cultured chondrocytes].

    Science.gov (United States)

    Yan, M; Dang, G

    1999-07-01

    To construct a kind of bone healing enhancing implant with cultured chondrocytes bound to hydroxyapatite (HA). Chondrocytes were obtained from the costicartilage of rat and were cultured on the porous HA blocks, 3 mm x 3 mm x 4 mm size, for three and seven days. Scanning electron micrograph was taken to show whether the cells grew outside and inside the pore of HA block. The cells cultured on tiny glass sheet for 2 days were used to prove where the cells come from by in situ hybridization technique with alpha1 (II) cDNA probe. Scanning electron micrographs showed that the pores of the HA surface and inside of the blocks are filled with cultured cells, especially the longer cultured block. The cells were chondrocytes confirmed by in situ hybridization. The porous HA can be used as cell cultured substrate and chondrocyte can adhere and proliferate inside the porous HA block.

  2. Conditional expression of constitutively active estrogen receptor α in chondrocytes impairs longitudinal bone growth in mice

    International Nuclear Information System (INIS)

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-01-01

    Highlights: ► Conditional transgenic mice expressing constitutively active estrogen receptor α (caERα) in chondrocytes were developed. ► Expression of caERα in chondrocytes impaired longitudinal bone growth in mice. ► caERα affects chondrocyte proliferation and differentiation. ► This mouse model is useful for understanding the physiological role of ERαin vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERα ColII , expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERα ColII mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERα ColII mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERα ColII mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  3. Hyaluronan Protects Bovine Articular Chondrocytes against Cell Death Induced by Bupivacaine under Supraphysiologic Temperatures

    Science.gov (United States)

    Liu, Sen; Zhang, Qing-Song; Hester, William; O’Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2013-01-01

    Background Bupivacaine and supraphysiologic temperature can independently reduce cell viability of articular chondrocytes. In combination these two deleterious factors could further impair cell viability. Hypothesis Hyaluronan may protect chondrocytes from death induced by bupivacaine at supraphysiologic temperatures. Study Design Controlled laboratory study. Methods Bovine articular chondrocytes were treated with hyaluronan at physiologic (37°C) and supraphysiologic temperatures (45°C and 50°C) for one hour, and then exposed to bupivacaine for one hour at room temperature. Cell viability was assessed at three time points: immediately after treatment, six hours later, and twenty-four hours later using flow cytometry and fluorescence microscopy. The effects of hyaluronan on the levels of sulfated glycosaminoglycan in the chondrocytes were determined using Alcian blue staining. Results (1) Bupivacaine alone did not induce noticeable chondrocyte death at 37°C; (2) bupivacaine and temperature synergistically increased chondrocyte death, that is, when the chondrocytes were conditioned to 45°C and 50°C, 0.25% and 0.5% bupivacaine increased the cell death rate by 131% to 383% in comparison to the phosphate-buffered saline control group; and, (3) addition of hyaluronan reduced chondrocyte death rates to approximately 14% and 25% at 45°C and 50°C, respectively. Hyaluronan’s protective effects were still observed at six and twenty-four hours after bupivacaine treatment at 45°C. However, at 50°C, hyaluronan delayed but did not prevent the cell death caused by bupivacaine. One-hour treatment with hyaluronan significantly increased sulfated glycosaminoglycan levels in the chondrocytes. Conclusions Bupivacaine and supraphysiologic temperature synergistically increase chondrocyte death and hyaluronan may protect articular chondrocytes from death caused by bupivacaine. Clinical Relevance This study provides a rationale to perform pre-clinical and clinical studies to

  4. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    Science.gov (United States)

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  5. Chondroprotective effects of a proanthocyanidin rich Amazonian genonutrient reflects direct inhibition of matrix metalloproteinases and upregulation of IGF-1 production by human chondrocytes

    Directory of Open Access Journals (Sweden)

    Gupta Kalpana

    2007-08-01

    Full Text Available Abstract Background The Amazonian medicinal plant Sangre de grado (Croton palanostigma has traditional applications for the treatment of wound healing and inflammation. We sought to characterize two extracts (progrado and zangrado in terms of safety and oligomeric proanthocyanidin chain length. Additionally progrado was evaluated for antioxidant activity and possible chondroprotective actions. Methods Acute oral safety and toxicity was tested in rats according under OECD protocol number 420. The profile of proanthocyanidin oligomers was determined by HPLC and progrado's antioxidant activity quantified by the ORAC, NORAC and HORAC assays. Human cartilage explants, obtained from surgical specimens, were used to assess chondroproteciton with activity related to direct inhibitory effects on human matrix metalloproteinase (MMP, gelatinolytic activity using synovial fluid and chondrocytes activated with IL-1β (10 ng/ml. Additionally, progrado (2–10 μg/ml was tested for its ability to maintain optimal IGF-1 transcription and translation in cartilage explants and cultured chondrocytes. Results Both progrado and zangrado at doses up to 2000 mg/kg (po displayed no evidence of toxicity. Oligomeric proanthocyanidin content was high for both progrado (158 mg/kg and zangrado (124 mg/kg, with zangrado almost entirely composed of short oligomers ( Conclusion Progrado has a promising safety profile, significant chondroprotective and antioxidant actions, directly inhibits MMP activity and promotes the production of the cartilage repair factor, IGF-1. This suggests that progrado may offer therapeutic benefits in joint health, wound healing and inflammation.

  6. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua; Li, Zubing

    2012-01-01

    Highlights: ► Different PTH administration exerts different effects on condylar chondrocyte. ► Intermittent PTH administration suppresses condylar chondrocyte proliferation. ► Continuous PTH administration maintains condylar chondrocyte proliferating. ► Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.

  7. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Eliane Antonioli

    2015-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BM-MSCs are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA, anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures. There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring.

  8. Inhibition of Chondrocyte Hypertrophy of Osteoarthritis by Disruptor Peptide

    Science.gov (United States)

    2017-07-01

    with PTHR and inhibits the pathogenic beta-catenin- mediated PTHR signaling switch. In Aim 2, we will define the role of disruptor peptide in...confirmed that disruptor peptide conjugated to penetratin can enter cells. Importantly, disruptor peptide can reverse the beta-catenin- mediated PTH... mediated PTHR signaling switch in chondrocytes. Mouse primary chondrocytes express both β-catenin and PTHR. Our data showed that Pen-dis- pep

  9. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using In-situ Forming Degradable Hydrogel Scaffolds

    NARCIS (Netherlands)

    Huang, Xiaobin; Hou, Yong; Zhong, Leilei; Huang, Dechun; Qian, Hongliang; Karperien, Marcel; Chen, Wei

    2018-01-01

    We investigated the effects of different oxygen tension (21% and 2.5% O2) on the chondrogenesis of different cell systems cultured in pH-degradable PVA hydrogels, including human articular chondrocytes (hACs), human mesenchymal stem cells (hMSCs), and their cocultures with a hAC/hMSC ratio of 20/80.

  10. Study of differential properties of fibrochondrocytes and hyaline chondrocytes in growing rabbits.

    Science.gov (United States)

    Huang, L; Li, M; Li, H; Yang, C; Cai, X

    2015-02-01

    We aimed to build a culture model of chondrocytes in vitro, and to study the differential properties between fibrochondrocytes and hyaline chondrocytes. Histological sections were stained with haematoxylin and eosin so that we could analyse the histological structure of the fibrocartilage and hyaline cartilage. Condylar fibrochondrocytes and femoral hyaline chondrocytes were cultured from four, 4-week-old, New Zealand white rabbits. The production of COL2A1, COL1OA1, SOX9 and aggrecan was detected by real time-q polymerase chain reaction (RT-qPCR) and immunoblotting and the differences between them were compared statistically. Histological structures obviously differed between fibrocartilage and hyaline cartilage. COL2A1 and SOX9 were highly expressed within cell passage 2 (P2) of both fibrochondrocytes and hyaline chondrocytes, and reduced significantly after cell passage 4 (P4). The mRNA expressions of COL2A1 (p=0.05), COL10A1 (p=0.04), SOX9 (p=0.03), and aggrecan (p=0.04) were significantly higher in hyaline chondrocytes than in fibrochondrocytes, whereas the expression of COL1A1 (p=0.02) was the opposite. Immunoblotting showed similar results. We have built a simple and effective culture model of chondrocytes in vitro, and the P2 of chondrocytes is recommended for further studies. Condylar fibrocartilage and femoral hyaline cartilage have unique biological properties, and the regulatory mechanisms of endochondral ossification for the condyle should be studied independently in the future. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Clinical outcome 3 years after autologous chondrocyte implantation does not correlate with the expression of a predefined gene marker set in chondrocytes prior to implantation but is associated with critical signaling pathways

    NARCIS (Netherlands)

    Stenberg, Johan; de Windt, Tommy S.; Synnergren, Jane; Hynsjö, Lars; van der Lee, Josefine; Saris, Daniël B.F.; Brittberg, Mats; Peterson, Lars; Lindahl, Anders

    2014-01-01

    Background: There is a need for tools to predict the chondrogenic potency of autologous cells for cartilage repair. Purpose: To evaluate previously proposed chondrogenic biomarkers and to identify new biomarkers in the chondrocyte transcriptome capable of predicting clinical success or failure after

  12. In-vitro interactions of human chondrocytes and mesenchymal stem cells, and of mouse macrophages with phospholipid-covered metallic implant materials

    Directory of Open Access Journals (Sweden)

    R Willumeit

    2007-03-01

    Full Text Available Phospholipid-coatings on metallic implant surfaces were evaluated in terms of adhesion, proliferation and matrix production of skeletal cells, and of macrophage stimulation. The working hypothesis is that mimicking a model biomembrane by phospholipids on surfaces to which cells adhere, the surface recognition by surrounding cells is altered. In this study, 1 mirror-like polished Ti-6Al-7Nb and 2 porous Ti-6Al-4V specimens were covered with the phospholipids POPE (palmitoyl-oleoyl phosphatidyl-ethanolamine and POPC (palmitoyl-oleoyl phosphatidyl-choline, and the interactions of a human articular chondrocytes (HAC, b human mesenchymal stem cells (HMSC, and c mouse macrophages (RAW 264.7 were tested in vitro. On POPE-covered polished surfaces adherence of HAC (42% of seeded cells after 2 hrs and metabolic activity (MTT after 3 days were reduced, while on porous surfaces 99% HAC adhered, and metabolic activity was significantly increased, compared to respective native surfaces. On both POPE-covered surfaces the chondrocyte phenotype was present. After 3 weeks of chondrogenic differentiation, cartilage matrix production (measuring chondroitin sulphate per HAC number was significantly increased by about 30% on both POPE-covered metallic surfaces. On both POPC-covered surfaces nearly no adhering and surviving HAC were found. HMSC grown on POPE-covered porous substrates showed osteogenic differentiation by improved osteopontin and collagen I expression in RT-PCR, and osteocalcin fluorescence and bone nodule formation was only detectable on POPE-covered porous surfaces. In contrast to POPC and other phospholipids used as positive controls, POPE did not stimulate the NO production in mouse macrophage cultures. We therefore conclude that a phospholipid coating by POPE shows potential as surface modification for metallic implant materials.

  13. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Li, Zubing, E-mail: lizubing0827@163.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular

  14. THE ACTIVATION OF MATRIX METALLOPROTEINASES AND CHONDROCYTE DIFFERENTIATION, WHICH ACCOMPANIES THE INDUCTION OF COLLAGEN DECOMPOSITION UNDER THE ACTION OF COLLAGEN PEPTIDE IN THE CARTILAGE OFHEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. This study has shown that the induction of collagenase activity by CB12-2 in the human articular cartilage chondrocytes is attended by terminal differentiation/hypertrophy of these cells. The terminal differentiation of chondrocytes may be one of the mechanisms of chondrolysis in osteoarthrosis since it naturally occurs not only in endochondrial ossification, but also in the development of pathology.

  15. Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis.

    Science.gov (United States)

    Oh, H; Kwak, J-S; Yang, S; Gong, M-K; Kim, J-H; Rhee, J; Kim, S K; Kim, H-E; Ryu, J-H; Chun, J-S

    2015-12-01

    Hypoxia-inducible factor-2α (HIF-2α) transcriptionally upregulates Nampt in articular chondrocytes. NAMPT, which exhibits nicotinamide phosphoribosyltransferase activity, in turn causes osteoarthritis (OA) in mice by stimulating the expression of matrix-degrading enzymes. Here, we sought to elucidate whether HIF-2α activates the NAMPT-NAD(+)-SIRT axis in chondrocytes and thereby contributes to the pathogenesis of OA. Assays of NAD levels, SIRT activity, reporter gene activity, mRNA, and protein levels were conducted in primary cultured mouse articular chondrocytes. Experimental OA in mice was induced by intra-articular (IA) injection of adenovirus expressing HIF-2α (Ad-Epas1) or NAMPT (Ad-Nampt). The functions of SIRT in OA were examined by IA co-injection of SIRT inhibitors or adenovirus expressing individual SIRT isoforms or shRNA targeting specific SIRT isoforms. HIF-2α activated the NAMPT-NAD(+)-SIRT axis in chondrocytes by upregulating NAMPT, which stimulated NAD(+) synthesis and thereby activated SIRT family members. The activated NAMPT-SIRT pathway, in turn, promoted HIF-2α protein stability by negatively regulating its hydroxylation and 26S proteasome-mediated degradation, resulting in increased HIF-2α transcriptional activity. Among SIRT family members (SIRT1-7), SIRT2 and SIRT4 were positively associated with HIF-2α stability and transcriptional activity in chondrocytes. This reciprocal regulation was required for the expression of catabolic matrix metalloproteinases (MMP3, MMP12, and MMP13) and OA cartilage destruction caused by IA injection of Ad-Epas1 Ad-Nampt. The reciprocal regulation of HIF-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in OA cartilage destruction caused by HIF-2α or NAMPT. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    Science.gov (United States)

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-01-01

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993

  17. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia

    Science.gov (United States)

    Horiki, Mitsuru; Imamura, Takeshi; Okamoto, Mina; Hayashi, Makoto; Murai, Junko; Myoui, Akira; Ochi, Takahiro; Miyazono, Kohei; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2004-01-01

    Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo. PMID:15123739

  18. Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage.

    Science.gov (United States)

    Hilton, Matthew J; Tu, Xiaolin; Long, Fanxin

    2007-08-01

    Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development by signaling to both chondrocytes and perichondrial cells. Previous efforts to delineate direct effects of Ihh on chondrocytes by Col2-Cre-mediated ablation of Smoothened (Smo, encoding a transmembrane protein indispensable for Ihh signaling) has been only partially successful, due to the inability to discriminate between chondrocytes and perichondrial cells. Here we report a transgenic line (Col2-Cre) expressing under the control of the Colalpha1(II) promoter an inert form of Cre that is activatable by exogenous tamoxifen (TM); TM administration at proper times during embryogenesis induced Cre activity in chondrocytes but not in the perichondrium. By using this mouse line, we deleted Smo within subsets of chondrocytes without affecting the perichondrium and found that Smo removal led to localized disruption of the expression of parathyroid hormone-related protein (PTHrP) and the morphology of chondrocytes. Unexpectedly, TM invariably induced Cre activity in a subset of cells associated with the trabecular bone surface of long bones. These cells, when genetically marked and cultured in vitro, were capable of producing bone nodules. Expression of the Col2-Cre transgene in these cells likely reflected the endogenous Colalpha1(II) promoter activity as similar cells were found to express the IIA isoform of Colalpha1(II) mRNA endogenously. In summary, the present study has not only provided evidence that Ihh signaling directly controls PTHrP expression and chondrocyte morphology in the growth region cartilage, but has also uncovered a distinct cell type associated with the trabecular bone that appears to possess osteogenic potential.

  19. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  20. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae.

    Science.gov (United States)

    Macmull, Simon; Jaiswal, Parag K; Bentley, George; Skinner, John A; Carrington, Richard W J; Briggs, Tim W R

    2012-07-01

    Chondromalacia patella is a distinct clinical entity of abnormal softening of the articular cartilage of the patella, which results in chronic retropatellar pain. Its aetiology is still unclear but the process is thought to be a due to trauma to superficial chondrocytes resulting in a proteolytic enzymic breakdown of the matrix. Our aim was to assess the effectiveness of autologous chondrocyte implantation on patients with a proven symptomatic retropatellar lesion who had at least one failed conventional marrow-stimulating therapy. We performed chondrocyte implantation on 48 patients: 25 received autologous chondrocyte implantation with a type I/III membrane (ACI-C) method (Geistlich Biomaterials, Wolhusen, Switzerland), and 23 received the Matrix-assisted Chondrocyte Implantation (MACI) technique (Genzyme, Kastrup, Denmark). Over a mean follow-up period of 40.3 months, there was a statistically significant improvement in subjective pain scoring using the visual analogue scale (VAS) and objective functional scores using the Modified Cincinnati Rating System (MCS) in both groups. Chondromalacia patellae lesions responded well to chondrocyte implantation. Better results occurred with MACI than with ACI-C. Excellent and good results were achieved in 40% of ACI-C patients and 57% of MACI patients, but success of chondrocyte implantation was greater with medial/odd-facet lesions. Given that the MACI procedure is technically easier and less time consuming, we consider it to be useful for treating patients with symptomatic chondral defects secondary to chondromalacia patellae.

  1. Centrifugation assay for measuring adhesion of serially passaged bovine chondrocytes to polystyrene surfaces.

    Science.gov (United States)

    Kaplan, David S; Hitchins, Victoria M; Vegella, Thomas J; Malinauskas, Richard A; Ferlin, Kimberly M; Fisher, John P; Frondoza, Carmelita G

    2012-07-01

    A major obstacle in chondrocyte-based therapy for cartilage repair is the limited availability of cells that maintain their original phenotype. Propagation of chondrocytes as monolayer cultures on polystyrene surfaces is used extensively for amplifying cell numbers. However, chondrocytes undergo a phenotypic shift when propagated in this manner and display characteristics of more adherent fibroblastic cells. Little information is available about the effect of this phenotypic shift on cellular adhesion properties. We evaluated changes in adhesion property as bovine chondrocytes were serially propagated up to five passages in monolayer culture using a centrifugation cell adhesion assay, which was based on counting of cells before and after being exposed to centrifugal dislodgement forces of 120 and 350 g. Chondrocytes proliferated well in a monolayer culture with doubling times of 2-3 days, but they appeared more fibroblastic and exhibited elongated cell morphology with continued passage. The centrifugation cell adhesion assay showed that chondrocytes became more adhesive with passage as the percentage of adherent cells after centrifugation increased and was not statistically different from the adhesion of the fibroblast cell line, L929, starting at passage 3. This increased adhesiveness correlated with a shift to a fibroblastic morphology and increased collagen I mRNA expression starting at passage 2. Our findings indicate that the centrifugation cell adhesion assay may serve as a reproducible tool to track alterations in chondrocyte phenotype during their extended propagation in culture.

  2. The Effect of Soy Isoflavone on the Proliferation and Differentiation of Adipose-Derived Mesenchymal Stem Cells into Chondrocytes and Expression of Collagen II and Aggrecan Genes

    Directory of Open Access Journals (Sweden)

    Fatemeh Bamdadpasand Shekarsarayi

    2017-03-01

    Full Text Available Background and Objectives: Due to the lack of blood vessels in cartilage tissue, its damage is not repairable. This study was conducted to investigate the effect of soy isoflavone on proliferation and differentiation of adipose-derived mesenchymal stem cells into chondrocytes and expression of collagen II and aggrecan genes. Methods: In this experimental study, human subcutaneous fat was obtained during liposuction and incubated with collagenase enzyme (type 1 for the breakdown of collagen, and collagenase was deactivated by DMEM medium, and was cultured in the cell sediment after centrifugation, the cells were isolated after the third passage, were placed in chondrogenic medium for differentiate into the cartilage, and were divided into three groups, including control, treatment with TGF-β1, and treatment with soy isoflavones tablets. The tablets were dissolved in distilled water, sterilized by passing through a 0.2 um filter and were added to the culture medium. After 48 hours, cell viability was determined by MTT assay, and after 14 days, collagen II and aggrecan gene expressions were assessed by real-time PCR technique. Data were statistically analyzed by one-way ANOVA and Tukey's post-hoc test using SPSS 20 and p<0.05. Results: The results of MTT assay showed a significant increase in viability in the TGF-β1 group compared to the control and soy isoflavone groups (p<0.05. The RT-PCR indicated a significant increase in the expression of collagen II and aggrecan genes in isoflavones and TGF-β1 groups compared to the control group, and also, the mean CT associated with collagen II gene had a significant increase in isoflavone and TGF-β1groups compared to the control group (p<0.05. Conclusion: Soy in culture medium increases the expression of collagen II and aggrecan genes and cell proliferation, but this increase is not high compared to the TGF-β1 group.

  3. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  4. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes.

    Science.gov (United States)

    Shao, Yvonne Y; Wang, Lai; Welter, Jean F; Ballock, R Tracy

    2012-01-01

    Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Loss of ATRX in chondrocytes has minimal effects on skeletal development.

    Directory of Open Access Journals (Sweden)

    Lauren A Solomon

    Full Text Available BACKGROUND: Mutations in the human ATRX gene cause developmental defects, including skeletal deformities and dwarfism. ATRX encodes a chromatin remodeling protein, however the role of ATRX in skeletal development is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: We induced Atrx deletion in mouse cartilage using the Cre-loxP system, with Cre expression driven by the collagen II (Col2a1 promoter. Growth rate, body size and weight, and long bone length did not differ in Atrx(Col2cre mice compared to control littermates. Histological analyses of the growth plate did not reveal any differences between control and mutant mice. Expression patterns of Sox9, a transcription factor required for cartilage morphogenesis, and p57, a marker of cell cycle arrest and hypertrophic chondrocyte differentiation, was unaffected. However, loss of ATRX in cartilage led to a delay in the ossification of the hips in some mice. We also observed hindlimb polydactily in one out of 61 mutants. CONCLUSIONS/SIGNIFICANCE: These findings indicate that ATRX is not directly required for development or growth of cartilage in the mouse, suggesting that the short stature in ATR-X patients is caused by defects in cartilage-extrinsic mechanisms.

  6. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation

    OpenAIRE

    Boopalan, P. R. J. V. C.; Sathishkumar, Solomon; Kumar, Senthil; Chittaranjan, Samuel

    2006-01-01

    Articular cartilage defects have a poor capacity for repair. Most of the current treatment options result in the formation of fibro-cartilage, which is functionally inferior to normal hyaline articular cartilage. We studied the effectiveness of allogenic chondrocyte transplantation for focal articular cartilage defects in rabbits. Chondrocytes were cultured in vitro from cartilage harvested from the knee joints of a New Zealand White rabbit. A 3 mm defect was created in the articular cartilag...

  7. Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model.

    Science.gov (United States)

    Ng, Kenneth W; Lima, Eric G; Bian, Liming; O'Conor, Christopher J; Jayabalan, Prakash S; Stoker, Aaron M; Kuroki, Keiichi; Cook, Cristi R; Ateshian, Gerard A; Cook, James L; Hung, Clark T

    2010-03-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-beta3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects.

  8. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    Science.gov (United States)

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  9. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    Science.gov (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  10. IGF1 regulates RUNX1 expression via IRS1/2: Implications for antler chondrocyte differentiation

    OpenAIRE

    Yang, Zhan-Qing; Zhang, Hong-Liang; Duan, Cui-Cui; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Yue, Zhan-Peng; Guo, Bin

    2017-01-01

    Although IGF1 is important for the proliferation and differentiation of chondrocytes, its underlying molecular mechanism is still unknown. Here we addressed the physiologic function of IGF1 in antler cartilage and explored the interplay of IGF1, IRS1/2 and RUNX1 in chondrocyte differentiation. The results showed that IGF1 was highly expressed in antler chondrocytes. Exogenous rIGF1 could increase the proliferation of chondrocytes and cell proportion in the S phase, whereas IGF1R inhibitor PQ4...

  11. Normal age-related viscoelastic properties of chondrons and chondrocytes isolated from rabbit knee

    Institute of Scientific and Technical Information of China (English)

    DUAN Wang-ping; SUN Zhen-wei; LI Qi; LI Chun-jiang; WANG Li; CHEN Wei-yi; Jennifer Tickner; ZHENG Ming-hao; WEI Xiao-chun

    2012-01-01

    Background The mechanical microenvironment of the chondrocytes plays an important role in cartilage homeostasis and in the health of the joint.The pericellular matrix,cellular membrane of the chondrocytes,and their cytoskeletal structures are key elements in the mechanical environment.The aims of this study are to measure the viscoelastic properties of isolated chondrons and chondrocytes from rabbit knee cartilage using micropipette aspiration and to determine the effect of aging on these properties.Methods Three age groups of rabbit knees were evaluated:(1) young (2 months,n=10);(2) adult (8 months,n=10);and (3) old (31 months,n=10).Chondrocytes were isolated from the right knee cartilage and chondrons were isolated from left knees using enzymatic methods.Micropipette aspiration combined with a standard linear viscoelastic solid model was used to quantify changes in the viscoelastic properties of chondrons and chondrocytes within 2 hours of isolation.The morphology and structure of isolated chondrons were evaluated by optical microscope using hematoxylin and eosin staining and collagen-6 immunofluorescence staining.Results In response to an applied constant 0.3-0.4 kPa of negative pressure,all chondrocytes exhibited standard linear viscoelastic solid properties.Model predictions of the creep data showed that the average equilibrium modulus (E∞),instantaneous modulus (E0).and apparent viscosity (μ) of old chondrocytes was significantly lower than the young and adult chondrocytes (P<0.001);however,no difference was found between young and adult chondrocytes (P>0.05).The adult and old chondrons generally possessed a thicker pericellular matrix (PCM) with more enclosed cells.The young and adult chondrons exhibited the same viscoelastic creep behavior under a greater applied pressure (1.0-1.1kPa) without the deformation seen in the old chondrons.The viscoelastic properties (E∞,E0,and u) of young and adult chondrons were significantly greater than that observed

  12. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  13. Pronounced biomaterial dependency in cartilage regeneration using nonexpanded compared with expanded chondrocytes

    NARCIS (Netherlands)

    Tsuchida, A.I.; Bekkers, J.E.J.; Beekhuizen, M.; Vonk, L.A.; Dhert, W.J.A.; Saris, Daniël B.F.; Creemers, L.B.

    2013-01-01

    We aimed to investigate freshly isolated compared with culture-expanded chondrocytes with respect to early regenerative response, cytokine production and cartilage formation in response to four commonly used biomaterials. Materials & methods: Chondrocytes were both directly and after expansion to

  14. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL...... in chondrocytes of osteoarthritic cartilage mainly in the superficial and middle zone of the cartilage rather than the deep zone. There was a tendency for high number of YKL-40 positive chondrocytes in areas of the femoral head with a considerable biomechanical load. The number of chondrocytes with a positive...

  15. Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Mahmood, Amer

    2009-01-01

    of dlk1/FA1 as a novel surface marker for chondroprogenitor cells during hESC differentiation. We found that, Dlk1/FA1 is expressed specifically in cells undergoing transition from proliferating to prehypertrophic chondrocytes during endochondral ossification of the mouse limb. In hESC cells, dlk1/FA1...... was not expressed by undifferentiated hESC, but expressed during in vitro embryoid bodies (hEBs) formation upon down-regulation of undifferentiated markers e.g. Oct 3/4. Similarly, dlk1/FA1 was expressed in chondrocytic cells during in vivo teratoma formation. Interestingly, treatment of hEBs with Activin B......, a member of TGF-ss family, markedly increased Dlk1 expression in association with up-regulation of the mesoderm-specific markers (e.g. FOXF1, KDR and VE-cadherin) and SOX9. dlk1/FA1(+) cells isolated by fluorescence activated cell sorting (FACS) were capable of differentiating into chondrocytic cells when...

  16. The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner

    International Nuclear Information System (INIS)

    Yano, Fumiko; Kugimiya, Fumitaka; Ohba, Shinsuke; Ikeda, Toshiyuki; Chikuda, Hirotaka; Ogasawara, Toru; Ogata, Naoshi; Takato, Tsuyoshi; Nakamura, Kozo; Kawaguchi, Hiroshi; Chung, Ung-il

    2005-01-01

    To better understand the role of the canonical Wnt signaling pathway in cartilage development, we adenovirally expressed a constitutively active (Canada) or a dominant negative (dn) form of lymphoid enhancer factor-1 (LEF-1), the main nuclear effector of the pathway, in undifferentiated mesenchymal cells, chondrogenic cells, and primary chondrocytes, and examined the expression of markers for chondrogenic differentiation and hypertrophy. caLEF-1 and LiCl, an activator of the canonical pathway, promoted both chondrogenic differentiation and hypertrophy, whereas dnLEF-1 and the gene silencing of β-catenin suppressed LiCl-promoted effects. To investigate whether these effects were dependent on Sox9, a master regulator of cartilage development, we stimulated Sox9-deficient ES cells with the pathway. caLEF-1 and LiCl promoted both chondrogenic differentiation and hypertrophy in wild-type, but not in Sox9-deficient, cells. The response of Sox9-deficient cells was restored by the adenoviral expression of Sox9. Thus, the canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner

  17. RAGE and activation of chondrocytes and fibroblast-like synoviocytes in joint diseases

    NARCIS (Netherlands)

    Steenvoorden, Marjan Maria Claziena

    2007-01-01

    This dissertation describes a new model in which cartilage degradation can be studied. New cartilage is formed by bovine chondrocytes obtained from the slaughterhouse and cocultured with synovial cells from rheumatoid arthritis (RA) patients to study the interaction between the chondrocytes and

  18. CCAAT/Enhancer Binding Protein β Regulates Expression of Indian Hedgehog during Chondrocytes Differentiation

    Science.gov (United States)

    Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Ishihara, Kohei; Doi, Toshio; Iwamoto, Yukihide

    2014-01-01

    Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh) also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2) was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation. Methodology/Results Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between −214 and −210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression. Conclusions C

  19. CCAAT/enhancer binding protein β regulates expression of Indian hedgehog during chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Takahiro Ushijima

    Full Text Available CCAAT/enhancer binding protein β (C/EBPβ is a transcription factor that promotes hypertrophic differentiation of chondrocytes. Indian hedgehog (Ihh also stimulates the hypertrophic transition of chondrocytes. Furthermore, runt-related transcription factor-2 (RUNX2 was reported to regulate chondrocyte maturation during skeletal development and to directly regulate transcriptional activity of Ihh. In this study, we investigated whether the interaction of C/EBPβ and RUNX2 regulates the expression of Ihh during chondrocyte differentiation.Immunohistochemistry of embryonic growth plate revealed that both C/EBPβ and Ihh were strongly expressed in pre-hypertrophic and hypertrophic chondrocytes. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked stimulation of Ihh and Runx2. Conversely, knockdown of C/EBPβ by lentivirus expressing shRNA significantly repressed Ihh and Runx2 in ATDC5 cells. A reporter assay revealed that C/EBPβ stimulated transcriptional activity of Ihh. Deletion and mutation analysis showed that the C/EBPβ responsive element was located between -214 and -210 bp in the Ihh promoter. An electrophoretic mobility shift assay (EMSA and a chromatin immunoprecipitation (ChIP assay also revealed the direct binding of C/EBPβ to this region. Moreover, reporter assays demonstrated that RUNX2 failed to stimulate the transcriptional activity of the Ihh promoter harboring a mutation at the C/EBPβ binding site. EMSA and ChIP assays showed that RUNX2 interacted to this element with C/EBPβ. Immunoprecipitation revealed that RUNX2 and C/EBPβ formed heterodimer complex with each other in the nuclei of chondrocytes. These data suggested that the C/EBPβ binding element is also important for RUNX2 to regulate the expression of Ihh. Ex vivo organ culture of mouse limbs transfected with C/EBPβ showed that the expression of Ihh and RUNX2 was increased upon ectopic C/EBPβ expression.C/EBPβ and RUNX2 cooperatively stimulate

  20. Engineering Cartilage Tissue by Pellet Coculture of Chondrocytes and Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Wu, Ling; Post, Janine Nicole; Karperien, Hermanus Bernardus Johannes; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2015-01-01

    Coculture of chondrocytes and mesenchymal stromal cells (MSCs) in pellets has been shown to be beneficial in engineering cartilage tissue in vitro. In these cultures trophic effects of MSCs increase the proliferation and matrix deposition of chondrocytes. Thus, large cartilage constructs can be made

  1. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  2. Articular chondrocyte metabolism and osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, H.R.

    1989-01-01

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain into a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.

  3. Bauhinia championi (Benth.) Benth. polysaccharides upregulate Wnt/β-catenin signaling in chondrocytes.

    Science.gov (United States)

    Li, Huiting; Li, Xihai; Liu, Guozhong; Chen, Jiashou; Weng, Xiaping; Liu, Fayuan; Xu, Huifeng; Liu, Xianxiang; Ye, Hongzhi

    2013-12-01

    Bauhinia championi (Benth.) Benth. polysaccharides (BCBPs), extracted from Bauhinia championi (Benth.) Benth., which has been used in traditional Chinese medicine (TCM) for the treatment of osteoarthritis (OA), are the bioactive constituents of Bauhinia championi (Benth.) rattan. However, the molecular mechanisms responsible for their effects on OA are poorly understood. The Wnt/β-catenin signaling pathway plays an important role in the proliferation of chondrocytes. In the present study, the effects of BCBPs on Wnt/β-catenin signaling in chondrocytes were investigated. BCBPs were obtained by hot-water extraction and identified by the modified high performance liquid chromatography (HPLC) method. Chondrocytes were isolated from the knees of Sprague‑Dawley rats and identified by type II collagen immunohistochemistry. The chondrocytes were treated with or without BCBPs for 48 h. Cell viability was evaluated by MTT assay. The mRNA and protein levels of Wnt-4, β-catenin, Frizzled-2, glycogen synthase kinase (GSK)-3β, cyclin D1 and collagen II were detected by western blot analysis and reverse transcription PCR (RT-PCR), respectively. We found that the BCBPs contained at least seven monosaccharides, including D-mannose, rhamnose, D-(+) glucuronic acid, D-(+) galacturonic acid, D-glucose, galactose and arabinose. The cell viability of the chondrocytes treated with 50, 100 and 200 µg/ml BCBPs was significantly higher than that of the chondroctyes in the control group (treated with 0 µg/ml BCBPs). Furthermore, compared with the control group, the mRNA and protein expression of Wnt-4, β-catenin, Frizzled-2 and cyclin D1 in the BCBP-treated groups markedly increased, whereas the mRNA and protein expression of GSK-3β significantly decreased. Of note, the dose of 100 µg/ml BCBPs was more effective than the dose of 50 µg/ml BCBPs and 200 µg/ml BCBPs. In addition, we found that treatment with BCBPs upregulated the protein levels of collagen II in the

  4. Fate of Meckel's cartilage chondrocytes in ocular culture

    International Nuclear Information System (INIS)

    Richman, J.M.; Diewert, V.M.

    1988-01-01

    Modulation of the chondrocyte phenotype was observed in an organ culture system using Meckel's cartilage. First branchial arch cartilage was dissected from fetal rats of 16- and 17-day gestation. Perichondrium was mechanically removed, cartilage was split at the rostral process, and each half was grafted into the anterior chamber of an adult rat eye. The observed pattern of development in nonirradiated specimens was the following: hypertrophy of the rostral process and endochondral-type ossification, fibrous atrophy in the midsection, and mineralization of the malleus and incus. A change in matrix composition of the implanted cartilage was demonstrated with immunofluorescence staining for cartilage-specific proteoglycan (CSPG). After 15 days of culture, CSPG was found in the auricular process but not in the midsection or rostral process. In order to mark the implanted cells and follow their fate, cartilage was labeled in vitro with [3H]thymidine [3H]TdR). Immediately after labeling 20% of the chondrocytes contained [3H]TdR. After culturing for 5 days, 20% of the chondrocytes were still labeled and 10% of the osteogenic cells also contained radioactive label. The labeling index decreased in both cell types with increased duration of culture. Multinucleated clast-type cells did not contain label. Additional cartilages not labeled with [3H]TdR were exposed to between 20000 and 6000 rad of gamma irradiation before ocular implantation. Irradiated cartilage did not hypertrophy or form bone but a fibrous region developed in the midsection. Cells of the host animal were not induced to form bone around the irradiated cartilage. Our studies suggest that fully differentiated chondrocytes of Meckel's cartilage have the capacity to become osteocytes, osteoblasts, and fibroblasts

  5. The Ihh signal is essential for regulating proliferation and hypertrophy of cultured chicken chondrocytes.

    Science.gov (United States)

    Ma, R S; Zhou, Z L; Luo, J W; Zhang, H; Hou, J F

    2013-10-01

    The Indian hedgehog (Ihh) signal plays a vital role in regulating proliferation and hypertrophy of chondrocytes. To investigate its function in postnatal chicken (Gallus gallus) chondrocytes, cyclopamine was used to inhibit Ihh signaling. The MTT and ALP assays revealed the downgrade-proliferation and upgrade-differentiation of chondrocytes. To further elucidate the mechanism, the mRNA expression levels of Ihh, parathyroid hormone related protein (PTHrP), Gli-2, Bcl-2, Bone Morphogenetic Protein 6 (BMP-6), type X collagen (Col X) and type II collagen (Col II) were detected by quantitative real-time RT-PCR analysis, and the protein expressions of Ihh, Col X, and Col II were determined using Western blot analysis. After the Ihh signal was blocked, chondrocytes demonstrated high expression levels of PTHrP and Col X and low levels of Gli-2, BMP-6, Bcl-2 and Col II although Ihh expression was increased. Based on these results, the Ihh signal is essential for balancing chicken chondrocyte proliferation and hypertrophy, and the regulatory function of PTHrP acts in an Ihh-dependent manner. Furthermore, BMP-6 and Bcl-2 played roles in maintaining the development of chondrocytes and may be downstream regulatory factors of Ihh signaling. © 2013.

  6. IL-1β Suppresses the Formation of Osteoclasts by Increasing OPG Production via an Autocrine Mechanism Involving Celecoxib-Related Prostaglandins in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yusuke Watanabe

    2009-01-01

    Full Text Available Elevated interleukin (IL-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1β stimulated the expression of prostaglandin (PG receptor EP4 via increased PGE2 production. However, the effect of IL-1β on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1β and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF, receptor activator of NF-κB ligand (RANKL, and osteoprotegerin (OPG in human chondrocytes, and the indirect effect of IL-1β on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1β; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1β. Conditioned medium from IL-1β-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1β suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.

  7. Assay for plasma somatomedin: (/sup 3/H)thymidine incorporation by isolated rabbit chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ashton, I K; Francis, M J.O. [Nuffield Orthopaedic Centre, Oxford (UK)

    1977-01-01

    The incorporation of (/sup 3/H)thymidine by rabbit chondrocytes in vitro has been developed as a sensitive assay for plasma somatomedin. A concentration of normal plasma of 2.5% enhanced (/sup 3/H)thymidine incorporation by 5- to 20-fold compared with basal levels in the absence of plasma. The mean potency of plasma from normal adult men was 0.96 +-0.1 u./ml (mean +- S.D.) and from acromegalic patients 1.9 +- 0.4 u./ml. The apparent potency of hypopituitary plasma alone increased on heating which suggested the presence of heat-labile inhibitors of somatomedin activity. The potency of heated hypopituitary plasma (0.6 +- 0.09 u./ml) remained significantly lower (P < 0.01) than normal plasma. Human growth hormone (0.1 to 20 ..mu..u/ml), bovine growth hormone (0.5 to 20 ..mu..u/ml), insulin (0.5 to 5 ..mu..u/ml) and glucose (0.3 to 2 mmol/l) had no direct effect on the incorporation of (/sup 3/H)thymidine. Chondrocytes which had been previously stored frozen also showed a response to plasma somatomedin.

  8. Do chondroitin sulfates with different structures have different activities on chondrocytes and macrophages?

    Science.gov (United States)

    da Cunha, André L; Aguiar, Jair A K; Correa da Silva, Flavio S; Michelacci, Yara M

    2017-10-01

    The aim of the present study was to investigate the activities of natural chondroitin sulfates (CS) with different structures on cultured chondrocytes and macrophages. CS were isolated from cartilages of bovine trachea (BT), porcine trachea (PT), chicken sternum (Ch) and skate (Sk). The preparations were 90-98% pure, with ∼1% proteins, nucleic acids and keratan sulfate contaminants. Structural analysis of these CS and of commercial chondroitin 4- and 6-sulfate (C4S, C6S) have shown that most of their disaccharides are monosulfated, with varying proportions of 4- and 6-sulfation, and 2-7% non-sulfated disaccharides. Sk-CS and C6S contained detectable amounts of disulfated disaccharides. All the CS were polydisperse, with modal molecular weights of 26-135kDa. These CS had anti-inflammatory activities on both chondrocytes and macrophages, but with different efficiencies. On horse and human chondrocytes, they reduced the IL-1β-induced liberation of NO and PGE 2 , and on RAW 264.7 immortalized macrophage-like cell line, C4S, C6S, Ch and Sk-CS decreased the LPS-induced liberation of TNF-α, but did not affect IL-6. In contrast, on bone marrow derived macrophages, C4S, C6S, BT and PT-CS reduced the LPS-induced liberation of TNF-α, IL-6, IL-1β and NO, indicating that the RAW response to CS was different from that of primary macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. ACTIVITY OF CANONICAL WNT SIGNAL SYSTEM IN HYALINE CARTILAGE ARTICULAR CHONDROCYTES IN PROCESS OF SYNOVIAL JOINT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A.O. Molotkov

    2009-03-01

    Full Text Available Canonical and non-canonical Wnt systems are essential regulators of chondrogenesis and bone development. However, the roles of these systems in synovial joint development are not well studied. To determine if canonical Wnt system is active in developing articular chondrocytes we used immunohistochemistry for в-galactosidase and doublecortin (cell-type specific marker for articular chondrocytes to double label sections through joint regions of E14.5, E18.5, P10 and adult mice. Here the following results are presented. Canonical Wnt signal system does not work in developing articular chondrocytes at early embryonic stages (E14.5; it is active in the articular chondrocytes at late embryonic stages (E16.5-E18.5 and during postnatal development (P7-P10, but is turned off again in the adult articular chondrocytes. These results suggest that canonical Wnt signaling is being regulated during articular chondrocytes differentiation and joint formation.

  10. Patenting human genes: Chinese academic articles' portrayal of gene patents.

    Science.gov (United States)

    Du, Li

    2018-04-24

    The patenting of human genes has been the subject of debate for decades. While China has gradually come to play an important role in the global genomics-based testing and treatment market, little is known about Chinese scholars' perspectives on patent protection for human genes. A content analysis of academic literature was conducted to identify Chinese scholars' concerns regarding gene patents, including benefits and risks of patenting human genes, attitudes that researchers hold towards gene patenting, and any legal and policy recommendations offered for the gene patent regime in China. 57.2% of articles were written by law professors, but scholars from health sciences, liberal arts, and ethics also participated in discussions on gene patent issues. While discussions of benefits and risks were relatively balanced in the articles, 63.5% of the articles favored gene patenting in general and, of the articles (n = 41) that explored gene patents in the Chinese context, 90.2% supported patent protections for human genes in China. The patentability of human genes was discussed in 33 articles, and 75.8% of these articles reached the conclusion that human genes are patentable. Chinese scholars view the patent regime as an important legal tool to protect the interests of inventors and inventions as well as the genetic resources of China. As such, many scholars support a gene patent system in China. These attitudes towards gene patents remain unchanged following the court ruling in the Myriad case in 2013, but arguments have been raised about the scope of gene patents, in particular that the increasing numbers of gene patents may negatively impact public health in China.

  11. MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair

    International Nuclear Information System (INIS)

    Dhollander, A.A.M.; Huysse, W.C.J.; Verdonk, P.C.M.; Verstraete, K.L.; Verdonk, R.; Verbruggen, G.; Almqvist, K.F.

    2010-01-01

    Aim: The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects of the knee. MRI was used for the morphological analysis of cartilage repair. The correlation between MRI findings and clinical outcome was also studied. Methods: A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of symptomatic chondral and osteochondral lesions in the knee. Twenty-one patients were prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9 and 12 months of follow-up. Of the 21 patients, 12 had consented to follow the postoperative MRI evaluation protocol. MRI data were analyzed based on the original MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) and modified MOCART scoring system. The correlation between the clinical outcome and MRI findings was evaluated. Results: A statistically significant clinical improvement became apparent after 6 months and patients continued to improve during the 12 months of follow-up. One of the two MRI scoring systems that were used, showed a statistically significant deterioration of the repair tissue at 1 year of follow-up. Twelve months after the operation complete filling or hypertrophy was found in 41.6%. Bone-marrow edema and effusion were seen in 41.7% and 25% of the study patients, respectively. We did not find a consistent correlation between the MRI criteria and the clinical results. Discussion: The present study confirmed the primary role of MRI in the evaluation of cartilage repair. Two MOCART-based scoring systems were used in a longitudinal fashion and allowed a practical and morphological evaluation of the repair tissue. However, the correlation between clinical outcome and MRI findings was poor. Further

  12. MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Dhollander, A.A.M., E-mail: Aad.Dhollander@Ugent.b [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium); Huysse, W.C.J., E-mail: Wouter.Huysse@Ugent.b [Department of Radiology, Ghent University Hospital, De Pintelaan 185, -1K12 IB, B9000 Gent (Belgium); Verdonk, P.C.M., E-mail: pverdonk@yahoo.co [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium); Verstraete, K.L., E-mail: Koenraad.Verstraete@Ugent.b [Department of Radiology, Ghent University Hospital, De Pintelaan 185, -1K12 IB, B9000 Gent (Belgium); Verdonk, R., E-mail: Rene.Verdonk@Ugent.b [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium); Verbruggen, G., E-mail: Gust.Verbruggen@Ugent.b [Laboratory of Connective Tissue Biology, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent (Belgium); Almqvist, K.F., E-mail: Fredrik.Almqvist@Ugent.b [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium)

    2010-07-15

    Aim: The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects of the knee. MRI was used for the morphological analysis of cartilage repair. The correlation between MRI findings and clinical outcome was also studied. Methods: A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of symptomatic chondral and osteochondral lesions in the knee. Twenty-one patients were prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9 and 12 months of follow-up. Of the 21 patients, 12 had consented to follow the postoperative MRI evaluation protocol. MRI data were analyzed based on the original MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) and modified MOCART scoring system. The correlation between the clinical outcome and MRI findings was evaluated. Results: A statistically significant clinical improvement became apparent after 6 months and patients continued to improve during the 12 months of follow-up. One of the two MRI scoring systems that were used, showed a statistically significant deterioration of the repair tissue at 1 year of follow-up. Twelve months after the operation complete filling or hypertrophy was found in 41.6%. Bone-marrow edema and effusion were seen in 41.7% and 25% of the study patients, respectively. We did not find a consistent correlation between the MRI criteria and the clinical results. Discussion: The present study confirmed the primary role of MRI in the evaluation of cartilage repair. Two MOCART-based scoring systems were used in a longitudinal fashion and allowed a practical and morphological evaluation of the repair tissue. However, the correlation between clinical outcome and MRI findings was poor. Further

  13. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study.

    Science.gov (United States)

    Sha'ban, Munirah; Kim, Soon Hee; Idrus, Ruszymah Bh; Khang, Gilson

    2008-04-25

    Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 x 10(6) cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM). Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for

  14. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  15. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  16. Antioxidant effects of betulin on porcine chondrocyte behavior in gelatin/C6S/C4S/HA modified tricopolymer scaffold

    International Nuclear Information System (INIS)

    Lin, Wen-Yang; Lin, Feng-Huei; Sadhasivam, S.; Savitha, S.

    2010-01-01

    The antioxidant effects of betulin on porcine chondrocytes cultured in gelatin/C6S/C4S/HA modified tricopolymer scaffold for a period of 4 weeks was investigated. The porous structure of the scaffold and cell attachment was observed by scanning electron microscopy (SEM). Biochemical measures of necrosis, cell proliferation, sulfated glycosaminoglycans (sGAG) content and extracellular matrix related gene expressions were quantitatively evaluated. The cell proliferation data showed good cellular viability in tricopolymer scaffold and increased optical density for total DNA demonstrated that the cells continued to proliferate inside the scaffold. The sGAG production indicated chondrogenic differentiation. Chondrocytes treated with betulin expressed transcripts encoding type II collagen, aggrecan, and decorin. To conclude, the substantiated results supported cell proliferation, production of extracellular matrix proteins and down-regulation of matrix metalloproteases and cytokine, in betulin treated scaffolds.

  17. Antioxidant effects of betulin on porcine chondrocyte behavior in gelatin/C6S/C4S/HA modified tricopolymer scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Yang; Lin, Feng-Huei [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Sadhasivam, S., E-mail: rahulsbio@yahoo.co.in [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-10

    The antioxidant effects of betulin on porcine chondrocytes cultured in gelatin/C6S/C4S/HA modified tricopolymer scaffold for a period of 4 weeks was investigated. The porous structure of the scaffold and cell attachment was observed by scanning electron microscopy (SEM). Biochemical measures of necrosis, cell proliferation, sulfated glycosaminoglycans (sGAG) content and extracellular matrix related gene expressions were quantitatively evaluated. The cell proliferation data showed good cellular viability in tricopolymer scaffold and increased optical density for total DNA demonstrated that the cells continued to proliferate inside the scaffold. The sGAG production indicated chondrogenic differentiation. Chondrocytes treated with betulin expressed transcripts encoding type II collagen, aggrecan, and decorin. To conclude, the substantiated results supported cell proliferation, production of extracellular matrix proteins and down-regulation of matrix metalloproteases and cytokine, in betulin treated scaffolds.

  18. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification

    Directory of Open Access Journals (Sweden)

    TJM Welting

    2011-12-01

    Full Text Available Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2 in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2 during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development.

  19. Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2010-02-01

    Full Text Available Hox genes encode transcription factors, which regulate skeletal patterning and chondrocyte differentiation during the development of cartilage, the precursor to mature bone. Overexpression of the homeobox transcription factors Hoxc8 and Hoxd4 causes severe cartilage defects due to delay in cartilage maturation. Matrix metalloproteinases (MMPs, bone morphogenetic proteins (BMPs and fibroblastic growth factors (FGFs are known to play important roles in skeletal development and endochondral bone formation and remodeling. In order to investigate whether these molecules are aberrantly expressed in Hoxc8- and/or Hoxd4-transgenic cartilage, we performed quantitative RT-PCR on chondrocytes from Hox-transgenic mice. Gene expression levels of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were altered in Hoxc8-transgenic chondrocytes, and Fgfr3, Ihh, Mmp8, and Wnt3a expression levels were altered in Hoxd4-transgenic chondrocytes, respectively. Notably, Wnt3a expression was elevated in Hoxc8- and reduced in Hoxd4-transgenic cartilage. These results suggest that both transcription factors affect cartilage maturation through different molecular mechanisms, and provide the basis for future studies into the role of these genes and possible interactions in pathogenesis of cartilage defects in Hoxc8- and Hoxd4-transgenic mice.

  20. Chondrocyte activity is increased in psoriatic arthritis and axial spondyloarthritis

    DEFF Research Database (Denmark)

    Gudmann, Natasja Stæhr; Munk, Heidi Lausten; Christensen, Anne Friesgaard

    2016-01-01

    . There is a need for biomarkers reflecting core disease pathways for diagnosis and disease mapping. Pro-C2 reflects mature cartilage collagen type IIB formation, while C-Col10 represents turnover of type X collagen, which is exclusively expressed by hypertrophic chondrocytes. The objectives of this study were......SpA undergoing TNFi treatment may reflect that hypertrophic chondrocytes in axSpA are targeted by TNFi. ROC curve analysis showed a diagnostic potential for Pro-C2 in axSpA and PsA....

  1. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes

    International Nuclear Information System (INIS)

    Newman, P.; Watt, F.M.

    1988-01-01

    There is growing evidence that cell shape regulates both proliferation and differentiated gene expression in a variety of cell types. The authors have explored the relationship between the morphology of articular chondrocytes in culture and the amount and type of proteoglycan they synthesize, using cytochalasin D to induce reversible cell rounding. When chondrocytes were prevented from spreading or when spread cells were induced to round up, 35 SO 4 incorporation into proteoglycan was stimulated. Incorporation into the cell layer was stimulated more than into the medium. When the cells were allowed to respread by removing cytochalasin D, proteoglycan synthesis returned to control levels. Cytochalasin D-induced stimulation of 35 SO 4 incorporation reflected an increase in core protein synthesis rather than lengthening of glycosaminoglycan chains, because [ 3 H]serine incorporation into core protein was also stimulated. Cytochalasm D-treatment of cells in suspension caused no further stimulation of 35 SO 4 incorporation, suggesting that the observed effects were due to cell rounding rather than exposure to cytochalasin D per se

  2. Conditional inactivation of TNFα-converting enzyme in chondrocytes results in an elongated growth plate and shorter long bones.

    Directory of Open Access Journals (Sweden)

    Kenta Saito

    Full Text Available TNFα-converting enzyme (TACE is a membrane-bound proteolytic enzyme with essential roles in the functional regulation of TNFα and epidermal growth factor receptor (EGFR ligands. Previous studies have demonstrated critical roles for TACE in vivo, including epidermal development, immune response, and pathological neoangiogenesis, among others. However, the potential contribution of TACE to skeletal development is still unclear. In the present study, we generated a Tace mutant mouse in which Tace is conditionally disrupted in chondrocytes under the control of the Col2a1 promoter. These mutant mice were fertile and viable but all exhibited long bones that were approximately 10% shorter compared to those of wild-type animals. Histological analyses revealed that Tace mutant mice exhibited a longer hypertrophic zone in the growth plate, and there were fewer osteoclasts at the chondro-osseous junction in the Tace mutant mice than in their wild-type littermates. Of note, we found an increase in osteoprotegerin transcripts and a reduction in Rankl and Mmp-13 transcripts in the TACE-deficient cartilage, indicating that dysregulation of these genes is causally related to the skeletal defects in the Tace mutant mice. Furthermore, we also found that phosphorylation of EGFR was significantly reduced in the cartilage tissue lacking TACE, and that suppression of EGFR signaling increases osteoprotegerin transcripts and reduces Rankl and Mmp-13 transcripts in primary chondrocytes. In accordance, chondrocyte-specific abrogation of Egfr in vivo resulted in skeletal defects nearly identical to those observed in the Tace mutant mice. Taken together, these data suggest that TACE-EGFR signaling in chondrocytes is involved in the turnover of the growth plate during postnatal development via the transcriptional regulation of osteoprotegerin, Rankl, and Mmp-13.

  3. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, P.; Khillan, J.S.; Prockop, D.J.; Helminen, H.; Kontusaari, S.; Ala-Kokko, L. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1991-09-01

    A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing the minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.

  4. Stimulation of chondrocyte proliferation following photothermal, thermal, and mechanical injury in ex-vivo cartilage grafts

    Science.gov (United States)

    Pandoh, Nidhi S.; Truong, Mai T.; Diaz-Valdes, Sergio H.; Gardiner, David M.; Wong, Brian J.

    2002-06-01

    Laser irradiation may stimulate chondrocytes proliferation in the peripheral region surrounding a photothermally-heated area in rabbit nasal septal cartilage. In this study, ex- vivo rabbit nasal septal cartilages maintained in culture were irradiated with an Nd:YAG laser ((lambda) equals1.32 micrometers , 4-16 sec, 10-45 W/cm2) to examine the relationship between the diameter of replicating cells and irradiation time. Also, this study investigated whether proliferation occurs following heating (by immersion in hot saline baths, with a heated metal rod, and a soldering iron) and mechanical modification (crushing with a metal stamp and scoring with a scalpel). Replicating chondrocytes were identified using a Bromodeoxyuridine (BrdU) double antibody detection system in whole mount tissue. Light microscopy was used to confirm the presence of BrdU stained chondrocytes. The mechanical and thermal stressors used failed to produce a proliferative response in chondrocytes as previously seen with laser irradiation. We suspect that chondrocyte proliferation may be induced as a response to alteration in matrix structure produced by photothermal, thermal, or mechanical modification of the matrix. Heat generated by a laser to stimulate chondrocyte proliferation may lead to new treatment options for degenerative articular diseases and disorders. Laser technology can be adapted for use with minimally invasive surgical instrumentation to deliver light into otherwise inaccessible regions of the body.

  5. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    Science.gov (United States)

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL......-40 in osteoarthritic (n=9) and macroscopically normal (n=5) human articular cartilage, collected from 12 pre-selected areas of the femoral head, to discover a potential role for YKL-40 in cartilage remodelling in osteoarthritis. Immunohistochemical analysis showed that YKL-40 staining was found...... in chondrocytes of osteoarthritic cartilage mainly in the superficial and middle zone of the cartilage rather than the deep zone. There was a tendency for high number of YKL-40 positive chondrocytes in areas of the femoral head with a considerable biomechanical load. The number of chondrocytes with a positive...

  7. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    Science.gov (United States)

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    Science.gov (United States)

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  9. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2016-06-01

    It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

  10. Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro?

    Science.gov (United States)

    Surrao, Denver C; Khan, Aasma A; McGregor, Aaron J; Amsden, Brian G; Waldman, Stephen D

    2011-08-01

    Tissue engineering is a promising approach for articular cartilage repair; however, it is challenging to produce adequate amounts of tissue in vitro from the limited number of cells that can be extracted from an individual. Relatively few cell expansion methods exist without the problems of de-differentiation and/or loss of potency. Recently, however, several studies have noted the benefits of three-dimensional (3D) over monolayer expansion, but the ability of 3D expanded chondrocytes to synthesize cartilaginous tissue constructs has not been demonstrated. Thus, the purpose of this study was to compare the properties of engineered cartilage constructs from expanded cells (monolayer and 3D microcarriers) to those developed from primary chondrocytes. Isolated bovine chondrocytes were grown for 3 weeks in either monolayer (T-Flasks) or 3D microcarrier (Cytodex 3) expansion culture. Expanded and isolated primary cells were then seeded in high density culture on Millicell™ filters for 4 weeks to evaluate the ability to synthesize cartilaginous tissue. While microcarrier expansion was twice as effective as monolayer expansion (microcarrier: 110-fold increase, monolayer: 52-fold increase), the expanded cells (monolayer and 3D microcarrier) were not effectively able to synthesize cartilaginous tissue in vitro. Tissues developed from primary cells were substantially thicker and accumulated significantly more extracellular matrix (proteoglycan content: 156%-292% increase; collagen content: 70%-191% increase). These results were attributed to phenotypic changes experienced during the expansion phase. Monolayer expanded chondrocytes lost their native morphology within 1 week, whereas microcarrier-expanded cells were spreading by 3 weeks of expansion. While the use of 3D microcarriers can lead to large cellular yields, preservation of chondrogenic phenotype during expansion is required in order to synthesize cartilaginous tissue.

  11. Mechanical and hypoxia stress can cause chondrocytes apoptosis through over-activation of endoplasmic reticulum stress.

    Science.gov (United States)

    Huang, Ziwei; Zhou, Min; Wang, Qian; Zhu, Mengjiao; Chen, Sheng; Li, Huang

    2017-12-01

    To examine the role of mechanical force and hypoxia on chondrocytes apoptosis and osteoarthritis (OA)-liked pathological change on mandibular cartilage through over-activation of endoplasmic reticulum stress (ERS). We used two in vitro models to examine the effect of mechanical force and hypoxia on chondrocytes apoptosis separately. The mandibular condylar chondrocytes were obtained from three-week-old male Sprague-Dawley rats. Flexcell 5000T apparatus was used to produce mechanical forces (12%, 0.5Hz, 24h vs 20%, 0.5Hz, 24h) on chondrocytes. For hypoxia experiment, the concentration of O 2 was down regulated to 5% or 1%. Cell apoptosis rates were quantified by annexin V and propidium iodide (PI) double staining and FACS analysis. Quantitative real-time PCR and western blot were performed to evaluate the activation of ERS and cellular hypoxia. Then we used a mechanical stress loading rat model to verify the involvement of ERS in OA-liked mandibular cartilage pathological change. Histological changes in mandibular condylar cartilage were assessed via hematoxylin & eosin (HE) staining. Immunohistochemistry of GRP78, GRP94, HIF-1α, and HIF-2α were performed to evaluate activation of the ERS and existence of hypoxia. Apoptotic cells were detected by the TUNEL method. Tunicamycin, 20% mechanical forces and hypoxia (1% O 2 ) all significantly increased chondrocytes apoptosis rates and expression of ERS markers (GRP78, GRP94 and Caspase 12). However, 12% mechanical forces can only increase the apoptotic sensitivity of chondrocytes. Mechanical stress resulted in OA-liked pathological change on rat mandibular condylar cartilage which included thinning cartilage and bone erosion. The number of apoptotic cells increased. ERS and hypoxia markers expressions were also enhanced. Salubrinal, an ERS inhibitor, can reverse these effects in vitro and in vivo through the down-regulation of ERS markers and hypoxia markers. We confirmed that mechanical stress and local hypoxia both

  12. RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway.

    Science.gov (United States)

    Öztürk, Ece; Despot-Slade, Evelin; Pichler, Michael; Zenobi-Wong, Marcy

    2017-11-15

    De-differentiation comprises a major drawback for the use of autologous chondrocytes in cartilage repair. Here, we investigate the role of RhoA and canonical Wnt signaling in chondrocyte phenotype. Chondrocyte de-differentiation is accompanied by an upregulation and nuclear localization of RhoA. Effectors of canonical Wnt signaling including β-catenin and YAP/TAZ are upregulated in de-differentiating chondrocytes in a Rho-dependent manner. Inhibition of Rho activation with C3 transferase inhibits nuclear localization of RhoA, induces expression of chondrogenic markers on 2D and enhances the chondrogenic effect of 3D culturing. Upregulation of chondrogenic markers by Rho inhibition is accompanied by loss of canonical Wnt signaling markers in 3D or on 2D whereas treatment of chondrocytes with Wnt-3a abrogates this effect. However, induction of canonical Wnt signaling inhibits chondrogenic markers on 2D but enhances chondrogenic re-differentiation on 2D with C3 transferase or in 3D. These data provide insights on the context-dependent role of RhoA and Wnt signaling in de-differentiation and on mechanisms to induce chondrogenic markers for therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2.

    Science.gov (United States)

    Karamesinis, Konstantinos; Spyropoulou, Anastasia; Dalagiorgou, Georgia; Katsianou, Maria A; Nokhbehsaim, Marjan; Memmert, Svenja; Deschner, James; Vastardis, Heleni; Piperi, Christina

    2017-01-01

    The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.

  14. TGF-β2 is involved in the preservation of the chondrocyte phenotype under hypoxic conditions

    NARCIS (Netherlands)

    Das, R.; Timur, U. T.; Edip, S.; Haak, E.; Wruck, C.; Weinans, H.; Jahr, H.

    2015-01-01

    Culturing chondrocytes under oxygen tension closely resembling their in vivo environment has been shown to have positive effects on matrix synthesis. In redifferentiation of expanded chondrocytes, hypoxia increased collagen type II expression. However, the mechanism by which hypoxia enhances

  15. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis

    Science.gov (United States)

    Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J

    2017-01-01

    Objective This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Methods Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Results Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 μm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. Conclusions This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. PMID:24225059

  16. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line

    Directory of Open Access Journals (Sweden)

    Y Kobayashi

    2009-06-01

    Full Text Available Low-intensity pulsed ultrasound (LIPUS stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1 exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x105 cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm2 compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF. These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration.

  17. Effect of ceramic calcium-phosphorus ratio on chondrocyte-mediated biosynthesis and mineralization.

    Science.gov (United States)

    Boushell, Margaret K; Khanarian, Nora T; LeGeros, Raquel Z; Lu, Helen H

    2017-10-01

    The osteochondral interface functions as a structural barrier between cartilage and bone, maintaining tissue integrity postinjury and during homeostasis. Regeneration of this calcified cartilage region is thus essential for integrative cartilage healing, and hydrogel-ceramic composite scaffolds have been explored for calcified cartilage formation. The objective of this study is to test the hypothesis that Ca/P ratio of the ceramic phase of the composite scaffold regulates chondrocyte biosynthesis and mineralization potential. Specifically, the response of deep zone chondrocytes to two bioactive ceramics with different calcium-phosphorus ratios (1.35 ± 0.01 and 1.41 ± 0.02) was evaluated in agarose hydrogel scaffolds over two weeks in vitro. It was observed that the ceramic with higher calcium-phosphorus ratio enhanced chondrocyte proliferation, glycosaminoglycan production, and induced an early onset of alkaline phosphorus activity, while the ceramic with lower calcium-phosphorus ratio performed similarly to the ceramic-free control. These results underscore the importance of ceramic bioactivity in directing chondrocyte response, and demonstrate that Ca/P ratio is a key parameter to be considered in osteochondral scaffold design. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2694-2702, 2017. © 2017 Wiley Periodicals, Inc.

  18. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  19. Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration

    Science.gov (United States)

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun

    2014-01-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841

  20. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Sobral, J.; Jin, R.; van Apeldoorn, Aart A.; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous

  1. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Devon E. Anderson

    2017-12-01

    Full Text Available Articular cartilage functions to transmit and translate loads. In a classical structure–function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure–function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells

  2. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different

  3. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    International Nuclear Information System (INIS)

    Tu, Yihui; Xue, Huaming; Francis, Wendy; Davies, Andrew P.; Pallister, Ian; Kanamarlapudi, Venkateswarlu; Xia, Zhidao

    2013-01-01

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  4. Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yihui [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Xue, Huaming [Department of Orthopaedics, Yangpu District Central Hospital Affiliated to Tongji University School of Medicine, 450 Tengyue Road, Shanghai (China); Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Francis, Wendy [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Davies, Andrew P. [Department of Orthopaedics and Trauma, Moriston Hospital, Swansea (United Kingdom); Pallister, Ian; Kanamarlapudi, Venkateswarlu [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom); Xia, Zhidao, E-mail: zhidao.xia@gmail.com [Institute of Life Science, College of Medicine, Swansea University, Singleton Park (United Kingdom)

    2013-11-08

    Highlights: •Dex exerts dose-dependant inhibition of HACs viability and induction of apoptosis. •Dex-induced impairment of chondrocytes was attenuated by rhLF. •ERK and FASL/FAS signaling are involved in the effects of rhLF. •OA patients with glucocorticoid-induced cartilage damage may benefit from treatment with rhLF. -- Abstract: Dexamethasone (Dex) is commonly used for osteoarthritis (OA) with excellent anti-inflammatory and analgesic effect. However, Dex also has many side effects following repeated use over prolonged periods mainly through increasing apoptosis and inhibiting proliferation. Lactoferrin (LF) exerts significantly anabolic effect on many cells and little is known about its effect on OA chondrocytes. Therefore, the aim of this study is to investigate whether LF can inhibit Dex-induced OA chondrocytes apoptosis and explore its possible molecular mechanism involved in. MTT assay was used to determine the optimal concentration of Dex and recombinant human LF (rhLF) on chondrocytes at different time and dose points. Chondrocytes were then stimulated with Dex in the absence or presence of optimal concentration of rhLF. Cell proliferation and viability were evaluated using MTT and LIVE/DEAD assay, respectively. Cell apoptosis was evaluated by multi-parameter apoptosis assay kit using both confocal microscopy and flow cytometry, respectively. The expression of extracellular signal-regulated kinase (ERK), FAS, FASL, and Caspase-3 (CASP3) at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The optimal concentration of Dex (25 μg/ml) and rhLF (200 μg/ml) were chosen for the following experiments. rhLF significantly reversed the detrimental effect of Dex on chondrocytes proliferation, viability, and apoptosis. In addition, rhLF significantly prevented Dex-induced down-regulation of ERK and up-regulation of FAS, FASL, and CASP3. These findings demonstrated that rhLF acts as

  5. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  6. Comprehensive high-resolution genomic profiling and cytogenetics of human chondrocyte cultures by GTG-banding, locus-specific FISH, SKY and SNP array.

    Science.gov (United States)

    Wallenborn, M; Petters, O; Rudolf, D; Hantmann, H; Richter, M; Ahnert, P; Rohani, L; Smink, J J; Bulwin, G C; Krupp, W; Schulz, R M; Holland, H

    2018-04-23

    In the development of cell-based medicinal products, it is crucial to guarantee that the application of such an advanced therapy medicinal product (ATMP) is safe for the patients. The consensus of the European regulatory authorities is: "In conclusion, on the basis of the state of art, conventional karyotyping can be considered a valuable and useful technique to analyse chromosomal stability during preclinical studies". 408 chondrocyte samples (84 monolayers and 324 spheroids) from six patients were analysed using trypsin-Giemsa staining, spectral karyotyping and fluorescence in situ hybridisation, to evaluate the genetic stability of an ATMP named Spherox®. Single nucleotide polymorphism (SNP) array analysis was performed on chondrocyte spheroids from five of the six donors. Applying this combination of techniques, the genetic analyses performed revealed no significant genetic instability until passage 3 in monolayer cells and interphase cells from spheroid cultures at different time points. Clonal occurrence of polyploid metaphases and endoreduplications were identified associated with prolonged cultivation time. Also, gonosomal losses were observed in chondrocyte spheroids, with increasing passage and duration of the differentiation phase. Interestingly, in one of the donors, chromosomal aberrations that are also described in extraskeletal myxoid chondrosarcoma were identified. The SNP array analysis exhibited chromosomal aberrations in two donors and copy neutral losses of heterozygosity regions in four donors. This study showed the necessity of combined genetic analyses at defined cultivation time points in quality studies within the field of cell therapy.

  7. Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication

    Directory of Open Access Journals (Sweden)

    Eva Skiöldebrand

    2018-01-01

    Full Text Available Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1β and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.

  8. Photobiostimulation on chondrocytes proliferation in different concentration of fetal bovine serum under low-level laser irradiation

    Science.gov (United States)

    Zheng, Liqin; Wang, Yuhua; Qiu, Caimin; Chen, Jianlin; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2015-03-01

    The aim of this in vitro study was to evaluate the influence of low-level laser irradiation (LLLI) on the chondrocytes proliferation cultured in different concentration of fetal bovine serum (FBS) using 658 nm, 785 nm and 830 nm diode lasers. The role of energy density (10-70 mJ·cm-2) on chondrocytes proliferation following irradiation with 658 nm laser for 2 days was firstly investigated to find out the best laser energy density. Then the effect of LLLI on the proliferation of chondrocytes cultured with fetal bovine serum at 0%, 2%, 5% and 10% was also evaluated. The results showed that there was no or little photobiostimulation on the proliferation of chondrocytes cultured with 0% FBS and 10% FBS; the cell proliferation at 2% and 5% FBS was significantly modulated by LLLI.

  9. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shunqing [Department of Biomedical Engineering, Jinan University, Guangzhou 510632 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130 (United States)

    2007-09-15

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.

  10. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  11. Advances in the Surgical Management of Articular Cartilage Defects: Autologous Chondrocyte Implantation Techniques in the Pipeline.

    Science.gov (United States)

    Stein, Spencer; Strauss, Eric; Bosco, Joseph

    2013-01-01

    The purpose of this review is to gain insight into the latest methods of articular cartilage implantation (ACI) and to detail where they are in the Food and Drug Administration approval and regulatory process. A PubMed search was performed using the phrase "Autologous Chondrocyte Implantation" alone and with the words second generation and third generation. Additionally, clinicaltrials.gov was searched for the names of the seven specific procedures and the parent company websites were referenced. Two-Stage Techniques: BioCart II uses a FGF2v1 culture and a fibrinogen, thrombin matrix, whereas Hyalograft-C uses a Hyaff 11 matrix. MACI uses a collagen I/III matrix. Cartipatch consists of an agarose-alginate hydrogel. Neocart uses a high-pressure bioreactor for culturing with a type I collagen matrix. ChondroCelect makes use of a gene expression analysis to predict chondrocyte proliferation and has demonstrated significant clinical improvement, but failed to show superiority to microfracture in a phase III trial. One Step Technique: CAIS is an ACI procedure where harvested cartilage is minced and implanted into a matrix for defect filling. As full thickness defects in articular cartilage continue to pose a challenge to treat, new methods of repair are being researched. Later generation ACI has been developed to address the prevalence of fibrocartilage with microfracture and the complications associated with the periosteal flap of first generation ACI such as periosteal hypertrophy. The procedures and products reviewed here represent advances in tissue engineering, scaffolds and autologous chondrocyte culturing that may hold promise in our quest to alter the natural history of symptomatic chondral disease.

  12. [Stimulation of maturing and terminal differentiation by concanavalin A in rabbit permanent chondrocyte cultures].

    Science.gov (United States)

    Yan, W Q; Yang, T S; Hou, L Z; Susuki, F; Kato, Y

    1994-12-01

    The effect of concanavalin A (Con A) on maturing and terminal differentiation in permanent chondrocyte cultures were examined. Chondrocytes isolated from permanent cartilage were seeded at low density and grown in MEM medium containing 10% fetal bovine serum, 50 micrograms/ml of ascorbic acid and antibiotics, at 37 degrees C under 50% CO2 in air. At 0.3% of low serum concentration, addition of Con A to the culture medium increased by 3- to 4-fold the incorporation of [35S] sulfate into large chondroitin sulfate proteoglycan that characteristically found in cartilage. Chemical analysis showed a 4-fold increase in the accumulation of macromolecular containing hexuronic acid in Con A-maintained cultures. The effect of Con A on [35S]sulfate incorporation into proteoglycan was greater than that of various growth factor or hormones. Brief exposure of the permanent chondrocytes to Con A (5 micrograms/ml) for 24 hours and subsequent incubation in its absence for 5-10 days resulted in 10- to 100-fold increase in alkaline phosphatase and binding of 1.25 (OH)2 vitamin D3 to cells. Treatment with Con A also resulted in 10- to 20-fold increase in calcium content and 45Ca incorporation into insoluble material. Methyl-D-mannopyranoside reversed the effect of Con A on [35S]sulfate incorporation into proteoglycan and alkaline phosphatase activity. Since other lectins, such as wheat germ agglutinin, lentil lectin, phytohemagglutinin, Ulex europeasu agglutinin and garden pea lectin had been tested to have little effect on [35S]sulfate incorporation into proteoglycans and induction of alkaline phosphatase activity, the Con A action on chondrocytes seems specific. These results indicate that Con A is a potent modulator of differentiation of chondrocytes, which induces the onset on a maturing and a terminal differentiation in chondrocytes, leading to extensive calcification of the extracellular matrix.

  13. Increased classical endoplasmic reticulum stress is sufficient to reduce chondrocyte proliferation rate in the growth plate and decrease bone growth.

    Directory of Open Access Journals (Sweden)

    Louise H W Kung

    Full Text Available Mutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED and pseudoachondroplasia (PSACH. The majority of these diseases feature classical endoplasmic reticulum (ER stress and activation of the unfolded protein response (UPR as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown. The aim of this study was to investigate the generic role of ER stress and the UPR in the pathogenesis of these diseases. A transgenic mouse line (ColIITgcog was generated using the collagen II promoter to drive expression of an ER stress-inducing protein (Tgcog in chondrocytes. The skeletal and histological phenotypes of these ColIITgcog mice were characterised. The expression and intracellular retention of Tgcog induced ER stress and activated the UPR as characterised by increased BiP expression, phosphorylation of eIF2α and spliced Xbp1. ColIITgcog mice exhibited decreased long bone growth and decreased chondrocyte proliferation rate. However, there was no disruption of chondrocyte morphology or growth plate architecture and perturbations in apoptosis were not apparent. Our data demonstrate that the targeted induction of ER stress in chondrocytes was sufficient to reduce the rate of bone growth, a key clinical feature associated with MED and PSACH, in the absence of any growth plate dysplasia. This study establishes that classical ER stress is a pathogenic factor that contributes to the disease mechanism of MED and PSACH. However, not all the pathological features of MED and PSACH were recapitulated, suggesting that a combination of intra- and extra-cellular factors are likely to be responsible for the disease pathology as a whole.

  14. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... and introns of the likely human orthologue (termed hPHT2). Northern analyses with EST clones indicated that hPHT1 is primarily expressed in skeletal muscle and spleen, whereas hPHT2 is found in spleen, placenta, lung, leukocytes, and heart. These results suggest considerable complexity of the human POT gene...

  15. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  16. Biocompatibility of Human Auricular Chondrocytes Cultured onto a Chitosan/Polyvynil Alcohol/Epichlorohydrin-Based Hydrogel for Tissue Engineering Application

    OpenAIRE

    Melgarejo-Ramírez, Yaaziel; Sánchez-Sánchez, Roberto; García-Carvajal, Zaira; García-López, Julieta; Gutiérrez-Gómez, Claudia; Luna-Barcenas, Gabriel; Ibarra, Clemente; Velasquillo, Cristina

    2014-01-01

    Tissue engineering (TE) has become an alternative for auricular reconstruction based on the combination of cells, molecular signals and biomaterials. Scaffolds are biomaterials that provide structural support for cell attachment and subsequent tissue development. Ideally, a scaffold should have characteristics such as biocompatibility and bioactivity to adequate support cell functions. Our purpose was to evaluate biocompatibility of microtic auricular chondrocytes seeded onto a chitosan-polyv...

  17. A BMP responsive transcriptional region in the chicken type X collagen gene.

    Science.gov (United States)

    Volk, S W; Luvalle, P; Leask, T; Leboy, P S

    1998-10-01

    Bone morphogenetic proteins (BMPs) were originally identified by their ability to induce ectopic bone formation and have been shown to promote both chondrogenesis and chondrocyte hypertrophy. BMPs have recently been found to activate a membrane serine/threonine kinase signaling mechanism in a variety of cell types, but the downstream effectors of BMP signaling in chondrocyte differentiation remain unidentified. We have previously reported that BMP-2 markedly stimulates type X collagen expression in prehypertrophic chick sternal chondrocytes, and that type X collagen mRNA levels in chondrocytes cultured under serum-free (SF) conditions are elevated 3- to 5-fold within 24 h. To better define the molecular mechanisms of induction of chondrocyte hypertrophy by BMPs, we examined the effect of BMPs on type X collagen production by 15-day chick embryo sternal chondrocytes cultured under SF conditions in the presence or absence of 30 ng/ml BMP-2, BMP-4, or BMP-7. Two populations of chondrocytes were used: one representing resting cartilage isolated from the caudal third of the sterna and the second representing prehypertrophic cartilage from the cephalic third of the sterna. BMP-2, BMP-4, and BMP-7 all effectively promoted chondrocyte maturation of cephalic sternal chondrocytes as measured by high levels of alkaline phosphatase, diminished levels of type II collagen, and induction of the hypertrophic chondrocyte-specific marker, type X collagen. To test whether BMP control of type X collagen expression occurs at the transcriptional level, we utilized plasmid constructs containing the chicken collagen X promoter and 5' flanking regions fused to a reporter gene. Constructs were transiently transfected into sternal chondrocytes cultured under SF conditions in the presence or absence of 30 ng/ml BMP-2, BMP-4, or BMP-7. A 533 bp region located 2.4-2.9 kb upstream from the type X collagen transcriptional start site was both necessary and sufficient for strong BMP responsiveness

  18. Uptake of {sup 99m}Tc-labeled chondroitin sulfate by chondrocytes and cartilage: a promising agent for imaging of cartilage degeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Sobal, Grazyna [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)], E-mail: grazyna.sobal@meduniwien.ac.at; Menzel, Johannes [Institute of Immunology, Medical University of Vienna, Vienna 1090 (Austria); Sinzinger, Helmut [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)

    2009-01-15

    Chondroitin sulfate (CS) is used in the treatment of human osteoarthritis as a slow-acting symptomatic drug. For this reason, we performed uptake studies with {sup 99m}TcCS using different chondrocyte cultures, as well as cartilage tissue in vitro. For uptake studies, adherent monolayer cultures of human chondrocytes (2.7x10{sup 4} cells/well) and {sup 99m}TcCS (1 {mu}Ci) were used. In parallel, we also performed uptake studies with cell suspensions of human chondrocytes at 1x10{sup 6} cells/well incubated with {sup 99m}TcCS (5 {mu}Ci) under identical conditions. Uptake was studied also in cartilage tissue samples and frozen tissue sections for autoradiography. The uptake was monitored for 10-240 min, every 10-30 min for cell cultures and for cartilage tissue up to 72 h. As the commercially available drug Condrosulf (IBSA, Lugano, Switzerland) contains magnesium (Mg) stearate as additive, we investigated the uptake with and without this additive. The washout of the tracer was assessed after the uptake experiments with PBS buffer for different time intervals (10 min-3 h). Tracer uptake in monolayer{+-}additives with low number of cells was low. With the use of chondrocytes in culture suspensions with higher number of cells, a higher uptake of 5.9{+-}0.65% and 1.0{+-}0.1% (n=6) was found, with and without additive, respectively. The saturation was achieved after 100 min. With the use of human rib cartilage, the uptake of {sup 99m}TcCS was continuously increasing with time and was very high with additive amounting to 101.8{+-}5.2% vs. 53.0{+-}8.3% (n=6) without after 72 h and showing delayed saturation up to 30 h. Thus, not only the resorption of the drug is enhanced by Mg-stearate, but also the uptake. The washout of the tracer from cartilage after 3 h of uptake amounted to 3.75{+-}1.5% with additive vs. 13.1{+-}2.1% without. After 24 h, washout was lower amounting to 1.75{+-}0.15% vs. 3.25{+-}0.25%, respectively. The autoradiographic studies paralleled the results

  19. Genome-wide mRNA and miRNA expression data analysis to screen for markers involved in sarcomagenesis in human chondrosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Biju Issac

    2014-12-01

    Full Text Available Genes and miRNAs involved in sarcomagenesis related pathways are unknown and therefore signaling events leading to mesenchymal cell transformation to sarcoma are poorly elucidated. Exiqon and Illumina microarray study on human chondrosarcoma JJ012 and chondrocytes C28 cell lines to compare and analyze the differentially expressed miRNAs and their gene targets was recently published in the Journal Tumor Biology in 2014. Here we describe in details the contents and quality controls for the miRNA and gene expression data associated with the study that is relevant to this dataset.

  20. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little

    2014-09-01

    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  1. Chondrocytes co-cultured with Stromal Vascular Fraction of adipose tissue present more intense chondrogenic characteristics than with Adipose Stem Cells

    NARCIS (Netherlands)

    Wu, Ling; Prins, H.J.; Leijten, Jeroen Christianus Hermanus; Helder, M.; Evseenko, D.; Moroni, L; van Blitterswijk, Clemens; Lin, Y.; Karperien, Hermanus Bernardus Johannes

    2016-01-01

    Partly replacement of chondrocytes by stem cells has been proposed to improve the performance of autologous chondrocytes implantation (ACI). Our previous studies showed that the increased cartilage production in pellet co-cultures of chondrocytes and mesenchymal stem cells (MSCs) is due to a trophic

  2. [Study on the method of two dimensional polycrylamide gel electrophoresis on rat condylar chondrocyte].

    Science.gov (United States)

    Wu, Tuo-jiang; Li, Huang; Ma, Qiao-lin; Wang, Wen-mei

    2010-08-01

    To investigate the protein profile by two dimensional polycrylamide gel electrophoresis on the rat condylar chondrocyte in vitro. The third-passage chondrocytes were harvested from the mandibular condyles of 2-day-old rats in this study. The protein profile of the rat mandibular condylar chondrocytes was examined by two dimensional polycrylamide gel electrophoresis (2-DE-PAGE). The 2-DE gel maps on different pH gradients were obtained. The result of modified coomassi blue-sliver staining and sliver staining was compared using Pdquest 7.1 image analysis software. The results showed that the good protein profile of the condylar chondrocytes was obtained by standard Bio-Rad manual. The protein was mainly in the field from pH4 to pH7. The 1203±86 protein points were examined on 2-DE gel map by modified coomassi blue-sliver staining, and 1769±97 protein points was examined by sliver staining. The silver staining map showed more distinctly but higher background than modified coomassi blue-sliver staining. The protein profile of the condylar chondrocytes enriches the proteomic database and gives evidence to further proteomic research. The 2-DE map obtained by modified coomassi blue-sliver staining is more suitable for MALDI-TOF mass identification. Supported by National Natural Science Foundation of China (Grant No. C30700963), China Postdoctoral Science Foundation(Grant No.20090461088), Jiangsu Provincial Postdoctoral Science Foundation (Grant No.0802003C) and Nanjing City's Science and Technology Foundation (Grant No.200905011).

  3. Strategies on process engineering of chondrocyte culture for cartilage tissue regeneration.

    Science.gov (United States)

    Mallick, Sarada Prasanna; Rastogi, Amit; Tripathi, Satyavrat; Srivastava, Pradeep

    2017-04-01

    The current work is an attempt to study the strategies for cartilage tissue regeneration using porous scaffold in wavy walled airlift bioreactor (ALBR). Novel chitosan, poly (L-lactide) and hyaluronic acid based composite scaffold were prepared. The scaffolds were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N-hydroxysuccinimide and chondroitin sulfate to obtain interconnected 3D microstructure showing excellent biocompatibility, higher cellular differentiation and increased stability. The surface morphology and porosity of the scaffolds were analyzed using scanning electron microscopy (SEM) and mercury intrusion porosimeter and optimized for chondrocyte regeneration. The study shows that the scaffolds were highly porous with pore size ranging from 48 to 180 µm and the porosities in the range 80-92%. Swelling and in vitro degradation studies were performed for the composite scaffolds; by increasing the chitosan: HA ratio in the composite scaffolds, the swelling property increases and stabilizes after 24 h. There was controlled degradation of composite scaffolds for 4 weeks. The uniform chondrocyte distribution in the scaffold using various growth modes in the shake flask and ALBR was studied by glycosaminoglycans (GAG) quantification, MTT assay and mixing time evaluation. The cell culture studies demonstrated that efficient designing of ALBR increases the cartilage regeneration as compared to using a shake flask. The free chondrocyte microscopy and cell attachment were performed by inverted microscope and SEM, and from the study it was confirmed that the cells uniformly attached to the scaffold. This study focuses on optimizing strategies for the culture of chondrocyte using suitable scaffold for improved cartilage tissue regeneration.

  4. Ectopic bone formation during tissue-engineered cartilage repair using autologous chondrocytes and novel plasma-derived albumin scaffolds.

    Science.gov (United States)

    Robla Costales, David; Junquera, Luis; García Pérez, Eva; Gómez Llames, Sara; Álvarez-Viejo, María; Meana-Infiesta, Álvaro

    2016-10-01

    The aims of this study were twofold: first, to evaluate the production of cartilaginous tissue in vitro and in vivo using a novel plasma-derived scaffold, and second, to test the repair of experimental defects made on ears of New Zealand rabbits (NZr) using this approach. Scaffolds were seeded with chondrocytes and cultured in vitro for 3 months to check in vitro cartilage production. To evaluate in vivo cartilage production, a chondrocyte-seeded scaffold was transplanted subcutaneously to a nude mouse. To check in vivo repair, experimental defects made in the ears of five New Zealand rabbits (NZr) were filled with chondrocyte-seeded scaffolds. In vitro culture produced mature chondrocytes with no extracellular matrix (ECM). Histological examination of redifferentiated in vitro cultures showed differentiated chondrocytes adhered to scaffold pores. Subcutaneous transplantation of these constructs to a nude mouse produced cartilage, confirmed by histological study. Experimental cartilage repair in five NZr showed cartilaginous tissue repairing the defects, mixed with calcified areas of bone formation. It is possible to produce cartilaginous tissue in vivo and to repair experimental auricular defects by means of chondrocyte cultures and the novel plasma-derived scaffold. Further studies are needed to determine the significance of bone formation in the samples. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes.

    Science.gov (United States)

    Wang, Z; Irianto, J; Kazun, S; Wang, W; Knight, M M

    2015-02-01

    Osteoarthritis (OA) is associated with a gradual reduction in the interstitial osmotic pressure within articular cartilage. The aim of this study was to compare the effects of sudden and gradual hypo-osmotic challenge on chondrocyte morphology and biomechanics. Bovine articular chondrocytes were exposed to a reduction in extracellular osmolality from 327 to 153 mOsmol/kg applied either suddenly (osmotic stress, 66% of chondrocytes exhibited an increase in diameter followed by RVD, whilst 25% showed no RVD. By contrast, cells exposed to gradual hypo-osmotic stress exhibited reduced cell swelling without subsequent RVD. There was an increase in the equilibrium modulus for cells exposed to sudden hypo-osmotic stress. However, gradual hypo-osmotic challenge had no effect on cell mechanical properties. This cell stiffening response to sudden hypo-osmotic challenge was abolished when actin organization was disrupted with cytochalasin D or RVD inhibited with REV5901. Both sudden and gradual hypo-osmotic challenge reduced cortical F-actin distribution and caused chromatin decondensation. Sudden hypo-osmotic challenge increases chondrocyte mechanics by activation of RVD and interaction with the actin cytoskeleton. Moreover, the rate of hypo-osmotic challenge is shown to have a profound effect on chondrocyte morphology and biomechanics. This important phenomenon needs to be considered when studying the response of chondrocytes to pathological hypo-osmotic stress. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The trans-well coculture of human synovial mesenchymal stem cells with chondrocytes leads to self-organization, chondrogenic differentiation, and secretion of TGFβ

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Bernstein, Anke

    2016-01-01

    BACKGROUND: Synovial mesenchymal stem cells (SMSC) possess a high chondrogenic differentiation potential, which possibly supports natural and surgically induced healing of cartilage lesions. We hypothesized enhanced chondrogenesis of SMSC caused by the vicinity of chondrocytes (CHDR). METHODS...

  8. Repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Grande, D.A.; Pitman, M.I.; Peterson, L.; Menche, D.; Klein, M.

    1989-01-01

    Using the knee joints of New Zealand White rabbits, a baseline study was made to determine the intrinsic capability of cartilage for healing defects that do not fracture the subchondral plate. A second experiment examined the effect of autologous chondrocytes grown in vitro on the healing rate of these defects. To determine whether any of the reconstituted cartilage resulted from the chondrocyte graft, a third experiment was conducted involving grafts with chondrocytes that had been labeled prior to grafting with a nuclear tracer. Results were evaluated using both qualitative and quantitative light microscopy. Macroscopic results from grafted specimens displayed a marked decrease in synovitis and other degenerative changes. In defects that had received transplants, a significant amount of cartilage was reconstituted (82%) compared to ungrafted controls (18%). Autoradiography on reconstituted cartilage showed that there were labeled cells incorporated into the repair matrix

  9. The role of PTHrP in chondrocyte differentiation

    NARCIS (Netherlands)

    Hoogendam, Jakomijn

    2006-01-01

    Longitudinal growth is the key characteristic that distinguishes children from adults. Growth is regulated in the growth plates, which are layers of cartilage located at the ends of the long bones. The cartilage cells are called chondrocytes and go through a coordinated program of proliferation,

  10. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body.

    Science.gov (United States)

    Yang, Xing; Xie, Lu; Li, Yixue; Wei, Chaochun

    2009-06-29

    Estimating the number of genes in human genome has been long an important problem in computational biology. With the new conception of considering human as a super-organism, it is also interesting to estimate the number of genes in this human super-organism. We presented our estimation of gene numbers in the human gut bacterial community, the largest microbial community inside the human super-organism. We got 552,700 unique genes from 202 complete human gut bacteria genomes. Then, a novel gene counting model was built to check the total number of genes by combining culture-independent sequence data and those complete genomes. 16S rRNAs were used to construct a three-level tree and different counting methods were introduced for the three levels: strain-to-species, species-to-genus, and genus-and-up. The model estimates that the total number of genes is about 9,000,000 after those with identity percentage of 97% or up were merged. By combining completed genomes currently available and culture-independent sequencing data, we built a model to estimate the number of genes in human gut bacterial community. The total number of genes is estimated to be about 9 million. Although this number is huge, we believe it is underestimated. This is an initial step to tackle this gene counting problem for the human super-organism. It will still be an open problem in the near future. The list of genomes used in this paper can be found in the supplementary table.

  11. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics

    DEFF Research Database (Denmark)

    Pestka, Jan M; Schmal, Hagen; Salzmann, Gian

    2011-01-01

    OBJECTIVE: Autologous chondrocyte implantation (ACI) is a well-established therapeutic option for the treatment of cartilage defects of the knee joint. Since information concerning the cellular aspects of ACI is still limited, the aim of the present study was to investigate relevant differences...... between chondrocyte quality after in vitro cultivation and possible correlations with patient-specific factors. DESIGN: Cell quality of 252 consecutive ACI patients was assessed after chondrocyte in vitro expansion by determination of the expression of cartilage relevant surface marker CD44 and cartilage......, aggrecan or collagen type II nor cell density or viability after proliferation seemed to correlate with the grade of joint degeneration, defect aetiology or patient gender. However, chondrocytes harvested from the knee joints of patients at less than 20 years of age showed significantly higher expression...

  12. Down-regulation of ATF2 in the inhibition of T-2-toxin-induced chondrocyte apoptosis by selenium chondroitin sulfate nanoparticles

    Science.gov (United States)

    Han, Jing; Guo, Xiong

    2013-12-01

    Selenium chondroitin sulfate nanoparticles (SeCS) with a size range of 30-200 nm were obtained in our previous study. Meanwhile, the up-regulated expression of ATF2 mRNA and protein levels could be observed in the cartilage from Kashin-Beck disease (KBD) patients. In this paper, we investigated the inhibition effect of SeCS on T-2-toxin-induced apoptosis of chondrocyte from KBD patients. Here, we found that when the chondrocytes were treated with T-2 toxin, the chondrocyte apoptosis performed in a concentration-dependent manner. The apoptosis of chondrocyte induced by T-2 toxin involved the increased levels of ATF2, JNK and p38 mRNAs and related protein expression. SeCS could partly block the T-2-toxin-induced chondrocyte apoptosis by decreasing the expression of ATF2, JNK and p38 mRNAs and p-JNK, p-38, ATF2 and p-ATF2 proteins. JNK and p38 pathways involved in the apoptosis of chondrocyte induced by T-2 toxin, and SeCS was efficient in the inhibition of chondrocyte apoptosis by T-2 toxin. These results suggested that SeCS had a potential for further prevention and treatment for KBD as well as other selenium deficiency disease.

  13. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  14. Proteoglycon synthesis by articular chondrocytes in agarose culture

    International Nuclear Information System (INIS)

    Sweet, M.B.E.; Grisillo, A.; Coehlo, A.; Schnitzler, C.M.

    1987-01-01

    Articular chondrocytes were isolated from knee joints of full-term bovine foetuses and grown in long-term agarose cultures. At intervals, cultures were labelled with 35 S-[sulphate] or D[6- 3 H] glucosamine. Newly synthesized proteoglycans were extracted with 4 M guanidine HCl and purified by isopycnic density gradient centrifugation or on DEAE cellulose in the presence of 8 M urea. Characterization of the proteoglycans revealed them to be identical in size to those present in the tissue and to be similarly capable of aggregation with hyaluronate. Newly synthesized chondroitin sulphate chains were identical in size, but newly synthesized keratan sulphate chains were somewhat larger than those present in the tissue. The newly synthesized proteoglycans were shown to contain the same range of O-linked oligosaccharides identified in proteoglycans of the Swarm rat chondrosarcoma. Cartilage-specific proteoglycan continued to be synthesized by the chondrocytes for up to 60 days; however, with time, proportionately more of a small non-aggregating proteoglycan appeared

  15. Surface modification of cyclic olefin copolymers for osteochondral defect repair can increase pro-destructive potential of human chondrocytes in vitro

    Czech Academy of Sciences Publication Activity Database

    Polanská, M.; Hulejová, H.; Petrtýl, M.; Bastl, Zdeněk; Spirovová, Ilona; Kruliš, Zdeněk; Horák, Zdeněk; Veigl, D.; Šenolt, L.

    2010-01-01

    Roč. 59, č. 2 (2010), s. 247-253 ISSN 0862-8408 R&D Projects: GA ČR GA106/06/0761 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : osteochondral defects * cycloolefin copolymer * chondrocytes * biocompatibility Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.646, year: 2010

  16. The influence of “Efial” medicine on the chondrocytes functional state

    Directory of Open Access Journals (Sweden)

    N. А. Volkova

    2014-12-01

    Full Text Available Renewal of articular cartilage is a topical issue of modern orthopedics. High frequency of injuries, complexity of clinical diagnosis and subsequent treatment, and also the delay in recovery lead to the development of osteoarthritis, and in some cases, to disability. Articular cartilage belongs to the highly specialized tissues, which is characterized by the lack of blood supply, the low number of cell elements that are placed in the matrix, include collagen, proteoglycans, non-collagenous proteins and water. For the treatment of articular cartilage lesions the medicine which are tissue specific promoters of regeneration are used. The ability of most reparants to stimulate cartilage regeneration combines with other effects, such as: anti-inflammatory, antioxidant and antibacterial. The purpose of administration of these medicines is to stimulate regeneration of tissue in the area of injury. The aim of research was to investigate the effect of “Efial” medicine on functional state of chondrocytes in cultivation conditions. Materials and methods. The chondrocytes were obtained from articular cartilage of rats by enzymatic disaggregation. In all experiments the seeding concentration of chondrocytes was 1.2 x 104 cells/cm2.The "Efial" medicine in concentration of peptides of 0.137 mg/ml was used. Investigated concentration range was 70; 7.6; 1.5; 0.15µg/ml and 75; 15; 1.5 ng/ml. The medicine was added to the cell culture medium when seeding and on the 3rd cultivation day. The control (comparison group was the cultures of chondrocytes which were cultivated under the same conditions without medicine addition. Functional state of chondrocytes under interaction with investigated "Efial" medicine was evaluated by the presence of glycosaminoglycans after Toluidine blue staining (Fluka, Germany and collagen type II (1:200 and FITC-conjugate, Sigma -Aldrich, USA. For statistical study ANOVA and t-Student tests were used with application of Microsoft

  17. Experimental study of tissue-engineered cartilage allograft with RNAi chondrocytes in vivo

    Directory of Open Access Journals (Sweden)

    Wang ZH

    2014-05-01

    Full Text Available Zhenghui Wang,1 Xiaoli Li,2 Xi-Jing He,3 Xianghong Zhang,1 Zhuangqun Yang,4 Min Xu,1 Baojun Wu,1 Junbo Tu,5 Huanan Luo,1 Jing Yan11Department of Otolaryngology – Head and Neck Surgery, 2Department of Dermatology, 3Department of Orthopedics, The Second Hospital, Xi’an Jiaotong University, 4Department of Plastic and Burns Surgery, The First Hospital, Xi’an Jiaotong University, 5Department of Oral and Maxillofacial Plastic Surgery, The Stomatological Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of ChinaPurpose: To determine the effects of RNA interference (RNAi on chondrocyte proliferation, function, and immunological rejection after allogenic tissue-engineered cartilage transplantation within bone matrix gelatin scaffolds.Methods: Seven million rat normal and RNAi chondrocytes were harvested and separately composited with fibrin glue to make the cell suspension, and then transplanted subcutaneously into the back of Sprague Dawley rats after being cultured for 10 days in vitro. Untransplanted animals served as the control group. The allograft and immunological response were examined at 1, 2, 4, 8, and 12 months postoperatively with hematoxylin and eosin histochemical staining, immunohistochemical staining (aggrecan, type II collagen, class I and II major histocompatibility complex, and flow cytometry for peripheral blood cluster of differentiation 4+ (CD4+ and CD8+ T-cells.Results: There was no infection or death in the rats except one, which died in the first week. Compared to the control group, the RNAi group had fewer eukomonocytes infiltrated, which were only distributed around the graft. The ratio of CD4+/CD8+ T-cells in the RNAi group was significantly lower than the normal one (P<0.05. There were many more positively stained chondrocytes and positively stained areas around the cells in the RNAi group, which were not found in the control group.Conclusion: The aggrecanase-1 and aggrecanase-2 RNAi for chondrocytes

  18. MR imaging of autologous chondrocyte implantation of the knee

    Energy Technology Data Exchange (ETDEWEB)

    James, S.L.J.; Connell, D.A.; Saifuddin, A.; Skinner, J.A.; Briggs, T.W.R. [RNOH Stanmore, Department of Radiology, Stanmore, Middlesex (United Kingdom)

    2006-05-15

    Autologous chondrocyte implantation (ACI) is a surgical technique that is increasingly being used in the treatment of full-thickness defects of articular cartilage in the knee. It involves the arthroscopic harvesting and in vitro culture of chondrocytes that are subsequently implanted into a previously identified chondral defect. The aim is to produce a repair tissue that closely resembles hyaline articular cartilage that gradually becomes incorporated, restoring joint congruity. Over the long term, it is hoped that this will prevent the progression of full-thickness articular cartilage defects to osteoarthritis. This article reviews the indications and operative procedure performed in ACI. Magnetic resonance imaging (MRI) sequences that provide optimal visualization of articular cartilage in the post-operative period are discussed. Normal appearances of ACI on MRI are presented along with common complications that are encountered with this technique. (orig.)

  19. IFT88 influences chondrocyte actin organization and biomechanics.

    Science.gov (United States)

    Wang, Z; Wann, A K T; Thompson, C L; Hassen, A; Wang, W; Knight, M M

    2016-03-01

    Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88(orpk)). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. IFT88(orpk) cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88(orpk) cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88(orpk) cells. Following membrane blebbing, IFT88(orpk) cells exhibited slower reformation of the actin cortex. IFT88(orpk) cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells.

    Science.gov (United States)

    Randau, Thomas M; Schildberg, Frank A; Alini, Mauro; Wimmer, Matthias D; Haddouti, El-Mustapha; Gravius, Sascha; Ito, Keita; Stoddart, Martin J

    2013-01-01

    The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal

  1. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index

    Directory of Open Access Journals (Sweden)

    Thomas Branly

    2018-02-01

    Full Text Available Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA, a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform, along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an

  2. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index.

    Science.gov (United States)

    Branly, Thomas; Contentin, Romain; Desancé, Mélanie; Jacquel, Thibaud; Bertoni, Lélia; Jacquet, Sandrine; Mallein-Gerin, Frédéric; Denoix, Jean-Marie; Audigié, Fabrice; Demoor, Magali; Galéra, Philippe

    2018-02-01

    Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs) from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform), along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1 : Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an index of the

  3. Subchondral Bone Plate Thickening Precedes Chondrocyte Apoptosis and Cartilage Degradation in Spontaneous Animal Models of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zaitunnatakhin Zamli

    2014-01-01

    Full Text Available Osteoarthritis (OA is the most common joint disorder characterised by bone remodelling and cartilage degradation and associated with chondrocyte apoptosis. These processes were investigated at 10, 16, 24, and 30 weeks in Dunkin Hartley (DH and Bristol Strain 2 (BS2 guinea pigs that develop OA spontaneously. Both strains had a more pronounced chondrocyte apoptosis, cartilage degradation, and subchondral bone changes in the medial than the lateral side of the tibia, and between strains, the changes were always greater and faster in DH than BS2. In the medial side, a significant increase of chondrocyte apoptosis and cartilage degradation was observed in DH between 24 and 30 weeks of age preceded by a progressive thickening and stiffening of subchondral bone plate (Sbp. The Sbp thickness consistently increased over the 30-week study period but the bone mineral density (BMD of the Sbp gradually decreased after 16 weeks. The absence of these changes in the medial side of BS2 may indicate that the Sbp of DH was undergoing remodelling. Chondrocyte apoptosis was largely confined to the deep zone of articular cartilage and correlated with thickness of the subchondral bone plate suggesting that cartilage degradation and chondrocyte apoptosis may be a consequence of continuous bone remodelling during the development of OA in these animal models of OA.

  4. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  5. Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis.

    Science.gov (United States)

    Lin, Neng-Yu; Distler, Alfiya; Beyer, Christian; Philipi-Schöbinger, Ariella; Breda, Silvia; Dees, Clara; Stock, Michael; Tomcik, Michal; Niemeier, Andreas; Dell'Accio, Francesco; Gelse, Kolja; Mattson, Mark P; Schett, Georg; Distler, Jörg Hw

    2016-11-01

    Notch ligands and receptors have recently been shown to be differentially expressed in osteoarthritis (OA). We aim to further elucidate the functional role of Notch signalling in OA using Notch1 antisense transgenic (Notch1 AS) mice. Notch and hedgehog signalling were analysed by real-time PCR and immunohistochemistry. Notch-1 AS mice were employed as a model of impaired Notch signalling in vivo. Experimental OA was induced by destabilisation of the medial meniscus (DMM). The extent of cartilage destruction and osteophyte formation was analysed by safranin-O staining with subsequent assessment of the Osteoarthritis Research Society International (OARSI) and Mankin scores and µCT scanning. Collagen X staining was used as a marker of chondrocyte hypertrophy. The role of hairy/enhancer of split 1 (Hes-1) was investigated with knockdown and overexpression experiments. Notch signalling was activated in human and murine OA with increased expression of Jagged1, Notch-1, accumulation of the Notch intracellular domain 1 and increased transcription of Hes-1. Notch1 AS mice showed exacerbated OA with increases in OARSI scores, osteophyte formation, increased subchondral bone plate density, collagen X and osteocalcin expression and elevated levels of Epas1 and ADAM-TS5 mRNA. Inhibition of the Notch pathway induced activation of hedgehog signalling with induction of Gli-1 and Gli-2 and increased transcription of hedgehog target genes. The regulatory effects of Notch signalling on Gli-expression were mimicked by Hes-1. Inhibition of Notch signalling activates hedgehog signalling, enhances chondrocyte hypertrophy and exacerbates experimental OA including osteophyte formation. These data suggest that the activation of the Notch pathway may limit aberrant hedgehog signalling in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering

    Directory of Open Access Journals (Sweden)

    He X

    2015-03-01

    Full Text Available Xiaomin He,1,* Bei Feng,1,2,* Chuanpei Huang,1 Hao Wang,1 Yang Ge,1 Renjie Hu,1 Meng Yin,1 Zhiwei Xu,1 Wei Wang,1 Wei Fu,1,2 Jinghao Zheng1 1Department of Pediatric Cardiothoracic Surgery, 2Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Electrospinning has recently received considerable attention, showing notable potential as a novel method of scaffold fabrication for cartilage engineering. The aim of this study was to use a coculture strategy of chondrocytes combined with electrospun gelatin/polycaprolactone (GT/PCL membranes, instead of pure chondrocytes, to evaluate the formation of cartilaginous tissue. We prepared the GT/PCL membranes, seeded bone marrow stromal cell (BMSC/chondrocyte cocultures (75% BMSCs and 25% chondrocytes in a sandwich model in vitro, and then implanted the constructs subcutaneously into nude mice for 12 weeks. Gross observation, histological and immunohistological evaluation, glycosaminoglycan analyses, Young’s modulus measurement, and immunofluorescence staining were performed postimplantation. We found that the coculture group formed mature cartilage-like tissue, with no statistically significant difference from the chondrocyte group, and labeled BMSCs could differentiate into chondrocyte-like cells under the chondrogenic niche of chondrocytes. This entire strategy indicates that GT/PCL membranes are also a suitable scaffold for stem cell-based cartilage engineering and may provide a potentially clinically feasible approach for cartilage repairs. Keywords: electrospinning, nanocomposite, cartilage tissue engineering, nanomaterials, stem cells

  7. Production of serum amyloid A in equine articular chondrocytes and fibroblast-like synoviocytes treated with proinflammatory cytokines and its effects on the two cell types in culture

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Ladefoged, Søren; Berg, Lise Charlotte

    2016-01-01

    OBJECTIVE: To investigate the role of the major equine acute phase protein serum amyloid A (SAA) in inflammation of equine intraarticular tissues. SAMPLE: Articular chondrocytes and fibroblast-like synoviocytes (FLSs) from 8 horses (4 horses/cell type). PROCEDURES: Chondrocytes and FLSs were...... stimulated in vitro for various periods up to 48 hours with cytokines (recombinant interleukin [IL]-1β, IL-6, tumor necrosis factor-α, or a combination of all 3 [IIT]) or with recombinant SAA. Gene expression of SAA, IL-6, matrix metalloproteinases (MMP)-1 and −3, and cartilage-derived retinoic acid......-sensitive protein were assessed by quantitative real-time PCR assay; SAA protein was evaluated by immunoturbidimetry and denaturing isoelectric focusing and western blotting. RESULTS: All cytokine stimulation protocols increased expression of SAA mRNA and resulted in detectable SAA protein production...

  8. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  9. Regulation of α5 and αV Integrin Expression by GDF-5 and BMP-7 in Chondrocyte Differentiation and Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    David Garciadiego-Cázares

    Full Text Available The Integrin β1 family is the major receptors of the Extracellular matrix (ECM, and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA. In this scenario, integrins modify their pattern expression and regulate chondrocyte differentiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β Superfamily, such as Growth differentiation factor 5 (Gdf-5 and Bone morphogenetic protein 7 (Bmp-7, play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedifferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressed αV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of the α5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh, Gdf-5 and α5 integrin to maintain articular cartilage and prevent

  10. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  11. Molecular characterization and chromosomal assignment of equine cartilage derived retinoic acid sensitive protein (CD-RAP)/melanoma inhibitory activity (MIA)

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Mata, Xavier; Thomsen, Preben Dybdahl

    2008-01-01

    Cartilage-derived retinoic acid sensitive protein (CD-RAP) also known as melanoma inhibitory activity (MIA) has already been established as a marker for chondrocyte differentiation and a number of cancerous condition sin humans. Studies have also shown that CD-RAP/MIA is a potential marker of joint......RNA in articular cartilage and chondrocytes from horses with no signs of joint disease. The expression decreased as the cells dedifferentiated in monolayer culture. We also identified an equine CD-RAP/MIA splioce variant similar to that reported in humans. The CD_RAP/MIA protein was detected in equine synovial...... fluid, serum and culture medium from chondrocyte cultures. In conclusion, CD-RAP/MIA is expressed in equine cartilage and chondrocytes, and the protein can be detected in equine serum, synovial fluid and in culture medium from chondrocyte cultures. The equine gene and resulting protein share great...

  12. Kaempferol Alleviates the Interleukin-1β-Induced Inflammation in Rat Osteoarthritis Chondrocytes via Suppression of NF-κB.

    Science.gov (United States)

    Zhuang, Zhengling; Ye, Guangqun; Huang, Bin

    2017-08-14

    BACKGROUND This study was designed to examine the anti-inflammatory and anti-osteoarthritis (OA) effects of kaempferol in rat articular chondrocytes stimulated with interleukin-1β. MATERIAL AND METHODS Rat articular chondrocytes cultures were treated with interleukin-1β alone or with kaempferol (25, 50, 100, and 200 μM) and interleukin-1β. The effect of kaempferol on chondrocyte cells viability was measured by MTT assay. The effect on prostaglandin E2 (PGE2) and nitric oxide (NO) level were also assessed using the ELISA and Griess reagent, respectively, for kaempferol activity. Moreover, the expression of iNOS, Cox-2 and activation of NF-κB under influence of kaempferol was also assessed by Western blot. RESULTS Kaempferol treatment (up to 100 μM) in a concentration-dependent way caused reduction in the interleukin-1b-stimulated formations of PGE2 and NO. Kaempferol also upregulated the expression of iNOS and Cox-2 in interleukin-1β-stimulated rat OA chondrocytes. Additionally, kaempferol was found to inhibit the IkBa degradation and NF-κB activation in rat chondrocytes stimulated with interleukin-1β. CONCLUSIONS Kaempferol significantly caused reduction in interleukin-1β-stimulated pro-inflammatory mediators in rat OA chondrocytes by inhibiting the NF-κB pathway. These results suggest that kaempferol had significant anti-inflammatory and anti-arthritis effects. Thus, kaempferol, as a novel therapeutic active agent, may prevent, stop, or retard the progression of OA.

  13. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  14. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  15. Diverse roles of integrin receptors in articular cartilage.

    Science.gov (United States)

    Shakibaei, M; Csaki, C; Mobasheri, A

    2008-01-01

    Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.

  16. Is the repair of articular cartilage lesion by costal chondrocyte transplantation donor age-dependent? An experimental study in rabbits.

    Directory of Open Access Journals (Sweden)

    Janusz Popko

    2006-09-01

    Full Text Available The repair of chondral injuries is a very important problem and a subject of many experimental and clinical studies. Different techniques to induce articular cartilage repair are under investigation. In the present study, we have investigated whether the repair of articular cartilage folowing costal chondrocyte transplantation is donor age-dependent. Transplantation of costal chondrocytes from 4- and 24-week old donors, with artificially induced femoral cartilage lesion, was performed on fourteen 20-week-old New Zealand White male rabbits. In the control group, the lesion was left without chondrocyte transplantation. The evaluation of the cartilage repair was performed after 12 weeks of transplantation. We analyzed the macroscopic and histological appearance of the newly formed tissue. Immunohistochemistry was also performed using monoclonal antibodies against rabbit collagen type II. The newly formed tissue had a hyaline-like appearance in most of the lesions after chondrocyte transplantation. Positive immunohistochemical reaction for collagen II was also observed in both groups with transplanted chondrocytes. Cartilage from adult donors required longer isolation time and induced slightly poorer repair. However, hyaline-like cartilage was observed in most specimens from this group, in contrast to the control group, where fibrous connective tissue filled the lesions. Rabbit costal chondrocytes seem to be a potentially useful material for inducing articular cartilage repair and, even more important, they can also be derived from adult, sexually mature animals.

  17. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Li-ke Luo

    2015-01-01

    Full Text Available As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P0.05. The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.

  18. 99mTc-labeled chondroitin sulfate-uptake by chondrocytes and cartilage. Potential agent for osteoarthritis imaging?

    International Nuclear Information System (INIS)

    Sobal, G.; Sinzinger, H.; Menzel, J.

    2002-01-01

    Aim: Chondroitin sulfate (CS) is an endogenous component of cartilage proteoglycan which could monitor osteoarthritic cartilage degradation after radiolabeling. This substance is used in the treatment of human osteoarthritis as a slow acting symptomatic drug (CONDROSULF; Sanova Pharma, Vienna; Ibsa, Switzerland). Material and Methods: Radiolabeling of CS was performed using 99m TcO 4 -/stannous chloride in 0.50 M sodium acetate buffer at pH 5.0. The quality control of the tracer was performed using ITLC-SG chromatography and 0.2 M saline in 10% ethanol as solvent to detect colloid content. Aluminium oxide IB-F TLC-sheets and ethanol as solvent were used to estimate free pertechnetate. For uptake studies cultured human chondrocytes and age-matched cartilage were used. Uptake of the tracer in chondrocytes was studied in monolayer and in suspension cultures at 37 0 C. Uptake was monitored for a total of 120-180 minutes, samples being drawn every 10 minutes. Because the commercially available drug Condrosulf contains calcium stearate as additive to improve the resorption of the drug, we investigated also the uptake with and without additive. Results: The tracer was stable over 6h period after labeling (95% of the radiochemical purity). In plasma the stability was lower amounting to 75%. Viability of chondrocytes after incubation with either CS-preparation was found by trypan blue exclusion to be above 95 %. Uptake of the tracer performed in monolayer ± additives was low and amounted to 0.5%±0.05%, n=6. The cells were saturated already after an incubation interval of 10 minutes. In suspension cultures a maximal uptake of 1.0%±0.1%, n=6 and 5.9%±0.65%, n=6 was found, without and with additives, respectively, the saturation was achieved after 100 min. Thus, not only the resorption of the drug is enhanced by Ca-stearate, but also uptake increases in presence of this additive. Using human rib cartilage the uptake of the tracer was much higher amounting to 4.9%±2.3%, n

  19. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, L A; Kragten, A H M; Dhert, W J A; Saris, D B F; Creemers, L B

    OBJECTIVE: Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. DESIGN: OA chondrocytes were

  20. Phosphodiesterase isoenzyme families in human osteoarthritis chondrocytes – functional importance of phosphodiesterase 4

    Science.gov (United States)

    Tenor, Hermann; Hedbom, Erik; Häuselmann, Hans-Jörg; Schudt, Christian; Hatzelmann, Armin

    2002-01-01

    We studied whether selective inhibitors of cyclic nucleotide hydrolysing phosphodiesterase (PDE) isoenzymes influence IL-1β-induced nitric oxide (NO) release from human articular chondrocytes. In addition, the pattern of PDE isoenzymes contributing to cyclic nucleotide hydrolysis in human chondrocytes was characterized.Chondrocytes were isolated from human osteoarthritic cartilage and cultured in alginate beads. IL-1β-induced chondrocyte products (nitric oxide and prostaglandin E2) were measured in culture supernatants after 48 h incubation time. PDE activities were assessed in chondrocyte lysates. Inducible nitric oxide synthase (iNOS) and PDE4A-D proteins were detected by immunoblotting.The selective PDE4 inhibitors Piclamilast and Roflumilast partially attenuated IL-1β-induced NO production whereas selective inhibitors of PDE2 (EHNA), PDE3 (Motapizone) or PDE5 (Sildenafil) were inactive. Indomethacin reversed the reduction of IL-1β-induced NO by PDE4 inhibitors. It was shown that autocrine prostaglandin E2 (PGE2) enabled PDE4 inhibitors to reduce IL-1β-induced NO in this experimental setting.Major PDE4 and PDE1 activities were identified in chondrocyte lysates whereas only minor activities of PDE2, 3 and 5 were found. IL-1β and cyclic AMP-mimetics upregulated PDE4 activity and this was associated with an augmentation of PDE4B2 protein.Based on the view that nitric oxide contributes to cartilage degradation in osteoarthritis our study suggests that PDE4 inhibitors may have chondroprotective effects. PMID:11834608

  1. Human platelet lysate successfully promotes proliferation and subsequent chondrogenic differentiation of adipose-derived stem cells: a comparison with articular chondrocytes.

    Science.gov (United States)

    Hildner, F; Eder, M J; Hofer, K; Aberl, J; Redl, H; van Griensven, M; Gabriel, C; Peterbauer-Scherb, A

    2015-07-01

    Fetal calf serum (FCS) bears a potential risk for carrying diseases and eliciting immune reactions. Nevertheless, it still represents the gold standard as medium supplement in cell culture. In the present study, human platelet lysate (PL) was tested as an alternative to FCS for the expansion and subsequent chondrogenic differentiation of human adipose-derived stem cells (ASCs). ASCs were expanded with 10% FCS (group F) or 5% PL (group P). Subsequently, three-dimensional (3D) micromass pellets were created and cultured for 5 weeks in chondrogenic differentiation medium. Additionally, the de- and redifferentiation potential of human articular chondrocytes (HACs) was evaluated and compared to ASCs. Both HACs and ASCs cultured with PL showed strongly enhanced proliferation rates. Redifferentiation of HACs was possible for cells expanded up to 3.3 population doublings (PD). At this stage, PL-expanded HACs demonstrated better redifferentiation potential than FCS-expanded cells. ASCs could also be differentiated following extended passaging. Glycosaminoglycan (GAG) quantification and qRT-PCR of 10 cartilage related markers demonstrated a tendency for increased chondrogenic differentiation of PL-expanded ASCs compared to cells expanded with FCS. Histologically, collagen type II but also collagen type X was mainly present in group P. The present study demonstrates that PL strongly induces proliferation of ASCs, while the chondrogenic differentiation potential is retained. HACs also showed enhanced proliferation and even better redifferentiation when previously expanded with PL. This suggests that PL is superior to FCS as a supplement for the expansion of ASCs and HACs, particularly with regard to chondrogenic (re)differentiation. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Kragten, Angela H.M.; Dhert, Wouter J.; Saris, Daniël B.F.; Creemers, Laura B.

    2014-01-01

    Objective Hsa-miR-148a expression is decreased in OA cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. Design OA chondrocytes were transfected with a

  3. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  4. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  5. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation

    DEFF Research Database (Denmark)

    Karsdal, Morten Asser; Sumer, Eren Ufuk; Wulf, Helle

    2007-01-01

    OBJECTIVE: Calcitonin has been suggested to have chondroprotective effects. One signaling pathway of calcitonin is via the second messenger cAMP. We undertook this study to investigate whether increased cAMP levels in chondrocytes would be chondroprotective. METHODS: Cartilage degradation......-dependently inhibited by forskolin and IBMX. The highest concentration of IBMX lowered cytokine-induced release of sGAG by 72%. CONCLUSION: Levels of cAMP in chondrocytes play a key role in controlling catabolic activity. Increased cAMP levels in chondrocytes inhibited MMP expression and activity and consequently...... strongly inhibited cartilage degradation. Specific cAMP modulators in chondrocytes may be potential treatments for cartilage degenerative diseases....

  6. The major basement membrane components localize to the chondrocyte pericellular matrix--a cartilage basement membrane equivalent?

    DEFF Research Database (Denmark)

    Kvist, Alexander J.; Nyström, Alexander; Hultenby, Kjell

    2007-01-01

    In this study, we demonstrate that articular cartilage chondrocytes are surrounded by the defining basement membrane proteins laminin, collagen type IV, nidogen and perlecan, and suggest that these form the functional equivalent of a basement membrane. We found by real-time PCR that mouse...... chondrocytes express these four cardinal components of basement membranes and demonstrated by immunohistochemistry that the proteins are present in bovine and mouse cartilage tissues and are deposited in a thin pericellular structure. Immunoelectron microscopy confirmed high laminin concentration...... becomes less distinct, especially in areas of obvious mechanical attrition. Interestingly, individual laminin subunits were located in different zones of the cartilage, with laminin alpha1 showing preferential localization around a select population of superficial layer chondrocytes. We propose...

  7. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth.

    Science.gov (United States)

    Tajan, Mylène; Pernin-Grandjean, Julie; Beton, Nicolas; Gennero, Isabelle; Capilla, Florence; Neel, Benjamin G; Araki, Toshiyuki; Valet, Philippe; Tauber, Maithé; Salles, Jean-Pierre; Yart, Armelle; Edouard, Thomas

    2018-04-12

    Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins.In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.

  8. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    Science.gov (United States)

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  9. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  10. Human reporter genes: potential use in clinical studies

    International Nuclear Information System (INIS)

    Serganova, Inna; Ponomarev, Vladimir; Blasberg, Ronald

    2007-01-01

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  11. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Paola [Preclinical and Surgical Studies Laboratory, Codivilla Putti Research Institute, Rizzoli Orthopaedic Institute, via di Barbiano, 1/10, 40136 Bologna (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies—Department Rizzoli Research, Innovation, Technology, via di Barbiano, 1/10, 40136 Bologna (Italy); Gioffrè, Michela; Fiorani, Andrea; Panzavolta, Silvia [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy); Gualandi, Chiara [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy); Advanced Mechanics and Materials—Interdepartmental Center for Industrial Research (AMM ICIR), University of Bologna (Italy); Fini, Milena [Preclinical and Surgical Studies Laboratory, Codivilla Putti Research Institute, Rizzoli Orthopaedic Institute, via di Barbiano, 1/10, 40136 Bologna (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies—Department Rizzoli Research, Innovation, Technology, via di Barbiano, 1/10, 40136 Bologna (Italy); Focarete, Maria Letizia, E-mail: marialetizia.focarete@unibo.it [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy); Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR) (Italy); Bigi, Adriana [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna (Italy)

    2014-03-01

    Bio-synthetic scaffolds of interspersed poly(L-lactic acid) (PLLA) and gelatin (GEL) fibers are fabricated by co-electrospinning. Tailored PLLA/GEL compositions are obtained and GEL crosslinking with genipin provides for the maintenance of good fiber morphology. Scaffold tensile mechanical properties are intermediate between those of pure PLLA and GEL and vary as a function of PLLA content. Primary human chondrocytes grown on the scaffolds exhibit good proliferation and increased values of the differentiation parameters, especially for intermediate PLLA/GEL compositions. Mineralization tests enable the deposition of a uniform layer of poorly crystalline apatite onto the scaffolds, suggesting potential applications involving cartilage as well as cartilage–bone interface tissue engineering. - Highlights: • Bio-synthetic scaffolds of PLLA and gelatin are produced by co-electrospinning. • Scaffolds with tailored PLLA–gelatin composition are fabricated. • PLLA/gelatin ratio controls scaffold mechanical properties and mineralization. • Chondrocyte proliferation and differentiation are modulated. • Scaffolds are suitable for cartilage–bone interface tissue engineering.

  12. Effects of Bauhinia championii (Benth.) Benth. polysaccharides on the proliferation and cell cycle of chondrocytes.

    Science.gov (United States)

    Cai, Liangliang; Ye, Hongzhi; Yu, Fangrong; Li, Huiting; Chen, Jiashou; Liu, Xianxiang

    2013-05-01

    It has been recently shown that polysaccharides isolated from plants exhibit a number of beneficial therapeutic properties. Bauhinia championii (Benth.) Benth. has been widely used for the clinical treatment of knee osteoarthritis (OA) in China. However, the underlying molecular mechanisms of knee OA treatment have yet to be elucidated. In the present study, we investigated the effects of Bauhinia championii (Benth.) Benth. polysaccharides (BCBPs) on the proliferation and cell cycle of chondrocytes on 4-week-old male Sprague Dawley rats. Immunohistochemical staining was used to identify chondrocytes and an MTT assay was used to evaluate cell viability. Flow cytometry was used for cell cycle analysis. The mRNA and protein expression levels of cyclin D1, CDK4 and CDK6 in chondrocytes were detected using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis, respectively. The data demonstrate that BCBP treatment increased the viability of chondrocytes. In addition, BCBP treatment reduced the cell population in the G0/G1 phase, whereas the cell population was increased in the S phase. Furthermore, BCBP treatment enhanced the expression of cyclin D1, CDK4 and CDK6. These results indicate that BCBP treatment promotes cell proliferation by accelerating the G1/S transition.

  13. Trophic Effects of Mesenchymal Stem Cells in Chondrocyte Co-Cultures are Independent of Culture Conditions and Cell Sources

    NARCIS (Netherlands)

    Wu, Ling; Prins, H.J.; Helder, M.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Earlier, we have shown that the increased cartilage production in pellet co-cultures of chondrocytes and bone marrow-derived mesenchymal stem cells (BM-MSCs) is due to a trophic role of the MSC in stimulating chondrocyte proliferation and matrix production rather than MSCs actively undergoing

  14. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources

    NARCIS (Netherlands)

    Wu, L.; Prins, H.J.; Helder, M.N.; van Blitterswijk, C.A.; Karperien, M.

    2012-01-01

    Earlier, we have shown that the increased cartilage production in pellet co-cultures of chondrocytes and bone marrow-derived mesenchymal stem cells (BM-MSCs) is due to a trophic role of the MSC in stimulating chondrocyte proliferation and matrix production rather than MSCs actively undergoing

  15. Good genes, complementary genes and human mate preferences.

    Science.gov (United States)

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  16. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant.

    Science.gov (United States)

    Bartz, Christoph; Meixner, Miriam; Giesemann, Petra; Roël, Giulietta; Bulwin, Grit-Carsta; Smink, Jeske J

    2016-11-15

    Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don's chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids) that is in clinical use in Germany. Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids before implantation and a higher regeneration potential

  17. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant

    Directory of Open Access Journals (Sweden)

    Christoph Bartz

    2016-11-01

    Full Text Available Abstract Background Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don’s chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids that is in clinical use in Germany. Methods Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. Results After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids

  18. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  19. Different level of population differentiation among human genes.

    Science.gov (United States)

    Wu, Dong-Dong; Zhang, Ya-Ping

    2011-01-14

    During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  20. Homogentisate 1,2 dioxygenase is expressed in human osteoarticular cells: implications in alkaptonuria.

    Science.gov (United States)

    Laschi, Marcella; Tinti, Laura; Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Amato, Loredana; Selvi, Enrico; Spreafico, Adriano; Bernardini, Giulia; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) results from defective homogentisate1,2-dioxygenase (HGD), causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Human normal and AKU osteoarticular cells were tested for HGD gene expression by RT-PCR, mono- and 2D-Western blotting. HGD gene expression was revealed in chondrocytes, synoviocytes, osteoblasts. Furthermore, HGD expression was confirmed by Western blotting, that also revealed the presence of five enzymatic molecular species. Our findings indicate that AKU osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropathy. Copyright © 2011 Wiley Periodicals, Inc.

  1. Genes, Environment, and Human Behavior.

    Science.gov (United States)

    Bloom, Mark V.; Cutter, Mary Ann; Davidson, Ronald; Dougherty, Michael J.; Drexler, Edward; Gelernter, Joel; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Vogler, George P.; Zola, John

    This curriculum module explores genes, environment, and human behavior. This book provides materials to teach about the nature and methods of studying human behavior, raise some of the ethical and public policy dilemmas emerging from the Human Genome Project, and provide professional development for teachers. An extensive Teacher Background…

  2. Effects of non-steroidal anti-inflammatory drugs on cell proliferation and death in cultured epiphyseal-articular chondrocytes of fetal rats

    International Nuclear Information System (INIS)

    Chang, J.-K.; Wu, S.-C.; Wang, G.-J.

    2006-01-01

    Previous reports indicated that non-steroidal anti-inflammatory drugs (NSAIDs) suppress bone repair. Our previous study further found that ketorolac delayed the endochondral bone formation, and the critical effective timing was at the early stage of repair. Furthermore, we found that NSAIDs suppressed proliferation and induced cell death of cultured osteoblasts. In this study, we hypothesized that chondrocytic proliferation and death, which plays an important role at the early stage of endochondral bone formation, might be affected by NSAIDs. Non-selective NSAIDs, indomethacin, ketorolac, diclofenac and piroxicam; cyclooxygenase-2 (COX-2) selective NSAIDs, celecoxib and DFU (an analog of rofecoxib); prostaglandins (PGs), PGE1, PGE2 and PGF2α; and each NSAID plus each PG were tested. The effects of NSAIDs on proliferation, cell cycle kinetics, cytotoxicity and cell death of epiphyseal-articular chondrocytes of fetal rats were examined. The results showed that all the tested NSAIDs, except DFU, inhibited thymidine incorporation of chondrocytes at a concentration range (10 -8 to 10 -4 M) covering the theoretic therapeutic concentrations. Cell cycle was arrested by NSAIDs at the G /G 1 phase. Upon a 24 h treatment, LDH leakage and cell death (both apoptosis and necrosis) were significantly induced by the four non-selective NSAIDs in chondrocyte cultures. However, COX-2 inhibitors revealed non-significant effects on cytotoxicity of chondrocytes except higher concentration of celecoxib (10 -4 M). Replenishments of PGE1, PGE2 or PGF2α could not reverse the effects of NSAIDs on chondrocytic proliferation and cytotoxicity. In this study, we found that therapeutic concentrations of non-selective NSAIDs caused proliferation suppression and cell death of chondrocytes, suggesting these adverse effects may be one of the reasons that NSAIDs delay the endochondral ossification during bone repair found in previous studies. Furthermore, these effects of NSAIDs may act via PG

  3. Mild electrical stimulation with heat stimulation increase heat shock protein 70 in articular chondrocyte.

    Science.gov (United States)

    Hiraoka, Nobuyuki; Arai, Yuji; Takahashi, Kenji A; Mazda, Osam; Kishida, Tsunao; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Morino, Saori; Suico, Mary Ann; Kai, Hirofumi; Kubo, Toshikazu

    2013-06-01

    The objective of this study is to investigate the effects of mild electrical stimulation (MES) and heat stress (HS) on heat shock protein 70 (HSP70), that protects chondrocytes and enhances cartilage matrix metabolism, in chondrocyte and articular cartilage. Rabbit articular chondrocytes were treated with MES and/or HS. The safeness was assessed by LDH assay and morphology. HSP70 protein, ubiquitinated proteins and HSP70 mRNA were examined by Western blotting and real-time PCR. Rat knee joints were treated with MES and/or HS. HSP70 protein, ubiquitinated proteins, HSP70 mRNA and proteoglycan core protein (PG) mRNA in articular cartilage were investigated. In vitro, HS increased HSP70 mRNA and HSP70 protein. MES augmented ubiquitinated protein and HSP70 protein, but not HSP70 mRNA. MES + HS raised HSP70 mRNA and ubiquitinated protein, and significantly increased HSP70 protein. In vivo, HS and MES + HS treatment augmented HSP70 mRNA. HS modestly augmented HSP70 protein. MES + HS significantly increased HSP70 protein and ubiquitinated proteins. PG mRNA was markedly raised by MES + HS. This study demonstrated that MES, in combination with HS, increases HSP70 protein in chondrocytes and articular cartilage, and promotes cartilage matrix metabolism in articular cartilage. MES in combination with HS can be a novel physical therapy for osteoarthritis by inducing HSP70 in articular cartilage. Copyright © 2013 Orthopaedic Research Society.

  4. Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review.

    Science.gov (United States)

    Oussedik, Sam; Tsitskaris, Konstantinos; Parker, David

    2015-04-01

    We performed a systematic review of the treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation to determine the differences in patient outcomes after these procedures. We searched PubMed/Medline, Embase, and The Cochrane Library databases in the period from January 10 through January 20, 2013, and included 34 articles in our qualitative analysis. All studies showed improvement in outcome scores in comparison with baseline values, regardless of the treatment modality. The heterogeneity of the results presented in the studies precluded a meta-analysis. Microfracture appears to be effective in smaller lesions and is usually associated with a greater proportion of fibrocartilage production, which may have an effect on durability and eventual failure. Autologous chondrocyte implantation is an effective treatment that may result in a greater proportion of hyaline-like tissue at the repair site, which may in turn have a beneficial effect on durability and failure; it appears to be effective in larger lesions. Autologous chondrocyte implantation with periosteum has been shown to be associated with symptomatic cartilage hypertrophy more frequently than autologous chondrocyte implantation with collagen membrane. Matrix-associated autologous chondrocyte implantation is technically less challenging than the other techniques available, and in lesions greater than 4 cm(2), it has been shown to be more effective than microfracture. Level IV, systematic review of Level I-IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  5. Effect of stiffness of chitosan-hyaluronic acid dialdehyde hydrogels on the viability and growth of encapsulated chondrocytes.

    Science.gov (United States)

    V Thomas, Lynda; Vg, Rahul; D Nair, Prabha

    2017-11-01

    Substrate elasticity or stiffness can influence the phenotypic and functional characteristics of chondrocytes. This work aimed to study the effect of varying stiffness compositions of a two-component injectable hydrogel based on chitosan (CH) and oxidized hyaluronic acid (HDA) on the growth and functionality of encapsulated chondrocytes. Three different ratios of the gel were prepared (10:1,10:3 and 10:5 CH-HDA) and characterized. The stiffness of the gels was evaluated from the force displacement curves using force spectroscopy AFM analysis. Rabbit articular chondrocytes were harvested and the cells from Passage 2 to 4 were used for the encapsulation study. The viability and ECM production of encapsulated chondrocytes were assessed at 7day, 14day and 28day post culture. The results of the study show that as the ratio of hyaluronic acid dialdehyde component was increased, the stiffness of the gels increased from 130.78±19.83kPa to 181.47±19.77kPa which was also evidenced from the decrease in gelling time. Although there was an increase in the percentage of viable encapsulated cells which also maintained the spherical phenotype in the less stiff gels, decreased expression of ECM markers- Collagen type II and Glycosaminoglycans was observed compared to the stiffer gels. These findings indicate that gel stiffness strongly impacts the chondrocyte microenvironment both in maintenance of phenotypic integrity and ECM production. Copyright © 2017. Published by Elsevier B.V.

  6. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  7. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  8. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  9. Chitosan-Graft-Polyethylenimine/DNA Nanoparticles as Novel Non-Viral Gene Delivery Vectors Targeting Osteoarthritis

    Science.gov (United States)

    Lv, Lulu; Zhao, Huiqing

    2014-01-01

    The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes. PMID:24392152

  10. MicroRNA-140 Provides Robustness to the Regulation of Hypertrophic Chondrocyte Differentiation by the PTHrP-HDAC4 Pathway.

    Science.gov (United States)

    Papaioannou, Garyfallia; Mirzamohammadi, Fatemeh; Lisse, Thomas S; Nishimori, Shigeki; Wein, Marc N; Kobayashi, Tatsuya

    2015-06-01

    Growth plate chondrocytes go through multiple differentiation steps and eventually become hypertrophic chondrocytes. The parathyroid hormone (PTH)-related peptide (PTHrP) signaling pathway plays a central role in regulation of hypertrophic differentiation, at least in part, through enhancing activity of histone deacetylase 4 (HDAC4), a negative regulator of MEF2 transcription factors that drive hypertrophy. We have previously shown that loss of the chondrocyte-specific microRNA (miRNA), miR-140, alters chondrocyte differentiation including mild acceleration of hypertrophic differentiation. Here, we provide evidence that miR-140 interacts with the PTHrP-HDAC4 pathway to control chondrocyte differentiation. Heterozygosity of PTHrP or HDAC4 substantially impaired animal growth in miR-140 deficiency, whereas these mutations had no effect in the presence of miR-140. miR-140-deficient chondrocytes showed increased MEF2C expression with normal levels of total and phosphorylated HDAC4, indicating that the miR-140 pathway merges with the PTHrP-HDAC4 pathway at the level of MEF2C. miR-140 negatively regulated p38 mitogen-activated protein kinase (MAPK) signaling, and inhibition of p38 MAPK signaling reduced MEF2C expression. These results demonstrate that miR-140 ensures the robustness of the PTHrP/HDAC4 regulatory system by suppressing MEF2C-inducing stimuli. © 2014 American Society for Bone and Mineral Research © 2015 American Society for Bone and Mineral Research. © 2014 American Society for Bone and Mineral Research.

  11. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  12. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  13. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by

  14. Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle.

    Science.gov (United States)

    Feldmann, Eva-Maria; Sundberg, J F; Bobbili, B; Schwarz, S; Gatenholm, P; Rotter, N

    2013-11-01

    In this study, we investigated the effects of human primary chondrocytes, derived from routine septorhino- and otoplasties on a novel nondegradable biomaterial. This biomaterial, porous bacterial nanocellulose, is produced by Gluconacetobacter xylinus. Porosity is generated by paraffin beads embedded during the fermentation process. Human primary chondrocytes were able to adhere to bacterial nanocellulose and produce cartilaginous matrix proteins such as aggrecan (after 14 days) and collagen type II (after 21 days) in the presence of differentiation medium. Cells were located within the pores and in a dense cell layer covering the surface of the biomaterial. Cells were able to re-differentiate, as cell shape and extra cellular matrix gene expression showed a chondrogenic phenotype in three-dimensional bacterial nanocellulose culture. Collagen type I and versican expression decreased during three-dimensional culture. Variations in pore sizes of 150-300 µm and 300-500 µm did not influence cartilaginous extra cellular matrix synthesis. Varying seeding densities from 9.95 × 10(2) to 1.99 × 10(3) cells/mm(2) and 3.98 × 10(3) cells/mm(2) did not result in differences in quality of extra cellular matrix neo-synthesis. Our results demonstrated that both nasal and auricular chondrocytes are equally suitable to synthesize new extra cellular matrix on bacterial nanocellulose. Therefore, we propose both cell sources in combination with bacterial nanocellulose as promising candidates for the special needs of auricular reconstruction.

  15. Hydroxychloroquine induces inhibition of collagen type II and oligomeric matrix protein COMP expression in chondrocytes

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-06-01

    Full Text Available The aim of this study was to investigate the effect of hydroxychloroquine on the level of collagen type II and oligomeric matrix protein COMP expression in chondrocytes of knee osteoarthritis. The rate of growth in cartilage cells was analyzed using MTT assay whereas the Col-2 and COMP expression levels were detected by RT-PCR and Western blotting analyses. For the determination of MMP-13 expression, ELISA test was used. The results revealed no significant change in the rate of cartilage cell proliferation in hydroxychloroquine-treated compared to untreated cells. Hydroxychloro-quine treatment exhibited concentration- and time-dependent effect on the inhibition of collagen type II and COMP expression in chondrocytes. However, its treatment caused a significant enhancement in the expression levels of MMP-13 compared to the untreated cells. Therefore, hydroxychloro-quine promotes expression of MMP-13 and reduces collagen type II and COMP expression levels in chondrocytes without any significant change in the growth of cells.

  16. Subchondral Bone Plate Thickening Precedes Chondrocyte Apoptosis and Cartilage Degradation in Spontaneous Animal Models of Osteoarthritis

    OpenAIRE

    Zamli, Zaitunnatakhin; Robson Brown, Kate; Tarlton, John F.; Adams, Mike A.; Torlot, Georgina E.; Cartwright, Charlie; Cook, William A.; Vassilevskaja, Kristiina; Sharif, Mohammed

    2014-01-01

    Osteoarthritis (OA) is the most common joint disorder characterised by bone remodelling and cartilage degradation and associated with chondrocyte apoptosis. These processes were investigated at 10, 16, 24, and 30 weeks in Dunkin Hartley (DH) and Bristol Strain 2 (BS2) guinea pigs that develop OA spontaneously. Both strains had a more pronounced chondrocyte apoptosis, cartilage degradation, and subchondral bone changes in the medial than the lateral side of the tibia, and between strains, the ...

  17. Statins do not inhibit the FGFR signaling in chondrocytes

    Czech Academy of Sciences Publication Activity Database

    Fafílek, B.; Hampl, Marek; Říčánková, N.; Veselá, Iva; Bálek, L.; Kunová Bosáková, M.; Gudernová, I.; Vařecha, M.; Buchtová, Marcela; Krejčí, P.

    2017-01-01

    Roč. 25, č. 9 (2017), s. 1522-1530 ISSN 1063-4584 R&D Projects: GA ČR(CZ) GA14-31540S Grant - others:GA MŠk(CZ) LH12004 Institutional support: RVO:67985904 Keywords : statins * FGF signaling * chondrocytes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 4.742, year: 2016

  18. Structure and chromosomal localization of the human lymphotoxin gene

    International Nuclear Information System (INIS)

    Nedwin, G.E.; Jarrett-Nedwin, J.; Smith, D.H.; Naylor, S.L.; Sakaguchi, A.Y.; Goeddel, D.V.; Gray, P.W.

    1987-01-01

    The authors have isolated, sequenced, and determined the chromosomal localization of the gene encoding human lymphotoxin (LT). The single copy gene was isolated from a human genomic library using a /sup 32/P-labeled 116 bp synthetic DNA fragment whose sequence was based on the NH/sub 2/-terminal amino acid sequence of LT. The gene spans 3 kb of DNA and is interrupted by three intervening sequences. The LT gene is located on human chromosome 6, as determined by Southern blot analysis of human-murine hybrid DNA. Putative transcriptional control regions and areas of homology with the promoters of interferon and other genes are identified

  19. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2014-01-01

    Full Text Available Cartilage extracellular matrix (ECM is composed primarily of the network type II collagen (COLII and an interlocking mesh of fibrous proteins and proteoglycans (PGs, hyaluronic acid (HA, and chondroitin sulfate (CS. Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO signal, protein kinase C (PKC, and retinoic acid (RA signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.

  20. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is an ideal method in mammary gland bioreactor research. For this purpose, a gene targeting vector was constructed to targeting the human lysozyme gene on bovine αs1-casein gene locus. In this case, the ...

  1. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y.; Shimazu, A.; Nakashima, K.; Suzuki, F.; Jikko, A.; Iwamoto, M. (Osaka Univ. (Japan))

    1990-07-01

    The effects of PTH and calcitonin (CT) on the expression of mineralization-related phenotypes by chondrocytes were examined. In cultures of pelleted growth-plate chondrocytes. PTH caused 60-90% decreases in alkaline phosphatase activity, the incorporation of {sup 45}Ca into insoluble material, and the calcium content during the post-mitotic stage. These effects of PTH were dose-dependent and reversible. In contrast, CT increased alkaline phosphatase activity, {sup 45}Ca incorporation into insoluble material, and the calcium content by 1.4- to 1.8-fold. These observations suggest that PTH directly inhibits the expression of the mineralization-related phenotypes by growth-plate chondrocytes, and that CT has the opposite effects.

  2. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    International Nuclear Information System (INIS)

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito; Ooshima, Takashi; Hamada, Shigeyuki; Nakagawa, Ichiro

    2008-01-01

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assay revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis

  3. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines

    International Nuclear Information System (INIS)

    Thirunavukkarasu, Kannan; Pei, Yong; Moore, Terry L.; Wang, He; Yu, Xiao-peng; Geiser, Andrew G.; Chandrasekhar, Srinivasan

    2006-01-01

    ADAMTS-4 (aggrecanase-1) is a metalloprotease that plays a role in aggrecan degradation in the cartilage extracellular matrix. In order to understand the regulation of ADAMTS-4 gene expression we have cloned and characterized a functional 4.5 kb human ADAMTS-4 promoter. Sequence analysis of the promoter revealed the presence of putative binding sites for nuclear factor of activated T cells (NFAT) and Runx family of transcription factors that are known to regulate chondrocyte maturation and differentiation. Using promoter-reporter assays and mRNA analysis we have analyzed the role of chondrocyte-expressed transcription factors NFATp and Runx2 and have shown that ADAMTS-4 is a potential downstream target of these two factors. Our results suggest that inhibition of the expression/function of NFATp and/or Runx2 may enable us to modulate aggrecan degradation in normal physiology and/or in degenerative joint diseases. The ADAMTS-4 promoter would serve as a valuable mechanistic tool to better understand the regulation of ADAMTS-4 expression by signaling pathways that modulate cartilage matrix breakdown

  4. Biomarkers and genes predictive of disease predisposition and ...

    African Journals Online (AJOL)

    articular bone. Progression may be cyclical ... at the bone-cartilage interface in skeletal remains from .... produced by immune and structural cells, ... Human chondrocyte glycoprotein 39. Cartilage .... the expression of multiple protein-. Not only ...

  5. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation.

    Science.gov (United States)

    Minina, E; Wenzel, H M; Kreschel, C; Karp, S; Gaffield, W; McMahon, A P; Vortkamp, A

    2001-11-01

    During endochondral ossification, two secreted signals, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP), have been shown to form a negative feedback loop regulating the onset of hypertrophic differentiation of chondrocytes. Bone morphogenetic proteins (BMPs), another family of secreted factors regulating bone formation, have been implicated as potential interactors of the Ihh/PTHrP feedback loop. To analyze the relationship between the two signaling pathways, we used an organ culture system for limb explants of mouse and chick embryos. We manipulated chondrocyte differentiation by supplementing these cultures either with BMP2, PTHrP and Sonic hedgehog as activators or with Noggin and cyclopamine as inhibitors of the BMP and Ihh/PTHrP signaling systems. Overexpression of Ihh in the cartilage elements of transgenic mice results in an upregulation of PTHrP expression and a delayed onset of hypertrophic differentiation. Noggin treatment of limbs from these mice did not antagonize the effects of Ihh overexpression. Conversely, the promotion of chondrocyte maturation induced by cyclopamine, which blocks Ihh signaling, could not be rescued with BMP2. Thus BMP signaling does not act as a secondary signal of Ihh to induce PTHrP expression or to delay the onset of hypertrophic differentiation. Similar results were obtained using cultures of chick limbs. We further investigated the role of BMP signaling in regulating proliferation and hypertrophic differentiation of chondrocytes and identified three functions of BMP signaling in this process. First we found that maintaining a normal proliferation rate requires BMP and Ihh signaling acting in parallel. We further identified a role for BMP signaling in modulating the expression of IHH: Finally, the application of Noggin to mouse limb explants resulted in advanced differentiation of terminally hypertrophic cells, implicating BMP signaling in delaying the process of hypertrophic differentiation itself. This

  6. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    Science.gov (United States)

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.

  7. Bioluminescence imaging of chondrocytes in rabbits by intraarticular injection of D-luciferin

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Kim, Sung Mi; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of); Oh, Suk Jung; Kang, Han Saem; Kim, Kwang Yoon [ECOBIO INC., Gwangju (Korea, Republic of); Kim, Young Ho [College of Natural Science, Chosun University, Gwangju (Korea, Republic of)

    2007-02-15

    Luciferase is one of the most commonly used reporter enzymes in the field of in vivo optical imaging. D-luciferin, the substrate for firefly luciferase has very high cost that allows this kind of experiment limited to small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in the articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase (Fluc). Chondrocytes expressing Fluc were injected or implanted in the left knee joint. The rabbits underwent optical imaging studies after local injection of D-luciferin at 1, 5, 7, 9 days after cellular administration. We sought whether optimal imaging signals was could be by a cooled CCD camera after local injection of D-luciferin. Imaging signal was not observed from the left knee joint after intraperitoneal injection of D-luciferin (15 mg/kg), whereas it was observed after intraarticular injection. Photon intensity from the left knee joint of rabbits was compared between cell injected and implanted groups after intraarticular injection of D-luciferin. During the period of imaging studies, photon intensity of the cell implanted group was 5-10 times higher than that of the cell injected group. We successfully imaged chondrocytes expressing Fluc after intraarticular injection of D-luciferin. This technique may be further applied to develop new drugs for knee joint disease.

  8. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  9. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Science.gov (United States)

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production. © 2013 Wiley Periodicals, Inc.

  10. Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts.

    Directory of Open Access Journals (Sweden)

    Fabrizio Vincenzi

    Full Text Available Adenosine receptors (ARs have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2, an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint

  11. Identification and characterization of human GUKH2 gene in silico.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2004-04-01

    Drosophila Guanylate-kinase holder (Gukh) is an adaptor molecule bridging Discs large (Dlg) and Scribble (Scrib), which are implicated in the establishment and maintenance of epithelial polarity. Here, we searched for human homologs of Drosophila gukh by using bioinformatics, and identified GUKH1 and GUKH2 genes. GUKH1 was identical to Nance-Horan syndrome (NHS) gene, while GUKH2 was a novel gene. FLJ35425 (AK092744.1), DKFZp686P1949 (BX647246.1) and KIAA1357 (AB037778.1) cDNAs were derived from human GUKH2 gene. Nucleotide sequence of GUKH2 cDNA was determined by assembling 5'-part of FLJ35425 cDNA and entire region of DKFZp686P1949 cDNA. Human GUKH2 gene consists of 8 exons. Exon 5 (132 bp) of GUKH2 gene was spliced out in GUKH2 cDNA due to alternative splicing. GUKH2-REPS1 locus at human chromosome 6q24.1 and GUKH1-REPS2 locus at human chromosome Xp22.22-p22.13 are paralogous regions within the human genome. Mouse Gukh2 and zebrafish gukh2 genes were also identified. N-terminal part of human GUKH2, mouse Gukh2 and zebrafish gukh2 proteins were completely divergent from human GUKH1 protein. Human GUKH2 and GUKH1, consisting of eight GUKH homology (GKH1-GKH8) domains and Proline-rich domain, showed 28.5% total-amino-acid identity. GKH1, GKH4, GKH5, GKH7 and GKH8 domains were conserved among human GUKH1, human GUKH2 and Drosophila Gukh. Because human homologs of Drosophila dlg (DLG1-DLG7) as well as human homologs of Drosophila scrib (SCRIB, ERBB2IP and Densin-180) are cancer-associated genes, human homologs of Drosophila gukh (GUKH1 and GUKH2) are predicted cancer-associated genes.

  12. Age-Related Alterations in Signaling Pathways in Articular Chondrocytes: Implications for the Pathogenesis and Progression of Osteoarthritis - A Mini-Review.

    Science.gov (United States)

    van der Kraan, Peter; Matta, Csaba; Mobasheri, Ali

    2017-01-01

    Musculoskeletal conditions are a major burden on individuals, healthcare systems, and social care systems throughout the world, with indirect costs having a predominant economic impact. Aging is a major contributing factor to the development and progression of arthritic and musculoskeletal diseases. Indeed, aging and inflammation (often referred to as 'inflammaging') are critical risk factors for the development of osteoarthritis (OA), which is one of the most common forms of joint disease. The term 'chondrosenescence' has recently been introduced to define the age-dependent deterioration of chondrocyte function and how it undermines cartilage function in OA. An important component of chondrosenescence is the age-related deregulation of subcellular signaling pathways in chondrocytes. This mini-review discusses the role of age-related alterations in chondrocyte signaling pathways. We focus our attention on two major areas: age-dependent alterations in transforming growth factor-β signaling and changes in protein kinase and phosphoprotein phosphatase activities in aging chondrocytes. A better understanding of the basic signaling mechanisms underlying aging in chondrocytes is likely to facilitate the development of new therapeutic and preventive strategies for OA and a range of other age-related osteoarticular disorders. © 2016 The Author(s) Published by S. Karger AG, Basel.

  13. Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes

    DEFF Research Database (Denmark)

    Sondergaard, B C; Wulf, H; Henriksen, K

    2006-01-01

    OBJECTIVE: Calcitonin was recently reported to counter progression of cartilage degradation in an experimental model of osteoarthritis, and the effects were primarily suggested to be mediated by inhibition of subchondral bone resorption. We investigated direct effects of calcitonin on chondrocytes...... by assessing expression of the receptor and pharmacological effects on collagen type II degradation under ex vivo and in vivo conditions. METHODS: Localization of the calcitonin receptor on articular chondrocytes was investigated by immunohistochemistry, and the expression by reverse transcriptase polymerase.......0001-1 microM]. In vivo, cartilage degradation was investigated in ovariectomized (OVX) rats administered with oral calcitonin [2 mg/kg calcitonin] for 9 weeks. RESULTS: The calcitonin receptor was identified in articular chondrocytes by immunohistochemistry and RT-PCR. Calcitonin concentration...

  14. Differentiation of chondrocytes and scleroblasts during dorsal fin skeletogenesis in flounder larvae.

    Science.gov (United States)

    Suzuki, Tohru; Haga, Yutaka; Takeuchi, Toshio; Uji, Susumu; Hashimoto, Hisashi; Kurokawa, Tadahide

    2003-01-01

    In teleosts, the embryonic fin fold consists of a peridermis, an underlying epidermis and a small number of mesenchymal cells. Beginning from such a simple structure, the fin skeletons, including the proximal and distal radials and lepidotrichia (finrays), develop in the dorsal fin fold at the larval stage. Their process of skeletogenesis and embryonic origin are unclear. Using flounder larvae, we report the differentiation process for chondrocytes and scleroblasts prior to fin skeletogenesis and the effects of retinoic acid (RA) on it. In early larvae, the mesenchymal cells grow between the epidermis and spinal cord to form a line of periodical condensations, which are proximal radial primordia, to produce chondrocytes. The prescleroblasts, which ossify the proximal radial cartilages, differentiate in the mesenchymal cells remaining between the cartilages. Then, mesenchymal condensations occur between the distal ends of the proximal radials, forming distal radial primordia, to produce chondrocytes. Simultaneously, condensations occur between the distal radial primordia and peridermis, which are lepidotrichia primordia, to produce prescleroblasts. Exogenous RA specifically inhibits the mesenchymal condensation prior to the proximal radial formation together with the down-regulation of sonic hedgehog (shh) and patched (pta) expression, resulting in the loss of proximal radials. Thus, it was indicated that differentiation of the precursor cells of radials and lepidotrichia begins in the proximal part of the fin fold and that the initial mesenchymal condensation prior to the proximal radial formation is highly susceptible to the effects of RA. Lepidotrichia formation does not occur where proximal radials are absent, indicating that lepidotrichia differentiation requires interaction with the radial cartilages. To examine the suggestion that neural crest cells contribute to the medial fin skeletons, we localized the HNK-1 positive cells in flounder embryos and slug and

  15. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  16. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  17. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and igf-1 gene transfer on articular cartilage defects in rabbits.

    Directory of Open Access Journals (Sweden)

    Ronglan Zhao

    Full Text Available Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS. In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra combined with insulin-like growth factor-1 (IGF-1 in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.

  18. Glutaredoxin 1 (GRX1) inhibits oxidative stress and apoptosis of chondrocytes by regulating CREB/HO-1 in osteoarthritis.

    Science.gov (United States)

    Sun, Jie; Wei, Xuelei; Lu, Yandong; Cui, Meng; Li, Fangguo; Lu, Jie; Liu, Yunjiao; Zhang, Xi

    2017-10-01

    GRX1 (glutaredoxin1), a sulfhydryl disulfide oxidoreductase, is involved in many cellular processes, including anti-oxidation, anti-apoptosis, and regulation of cell differentiation. However, the role of GRX1 in the oxidative stress and apoptosis of osteoarthritis chondrocytes remains unclear, prompting the current study. Protein and mRNA expressions were measured by Western blot and RT-qPCR. Oxidative stress was detected by the measurement of MDA and SOD contents. Cells apoptosis were detected by Annexin V-FITC/PI and caspase-3 activity assays. We found that the mRNA and protein expressions of GRX1 were significantly down-regulated in osteoarthritis tissues and cells. GRX1 overexpression increased the mRNA and protein expression of CREB and HO-1. Meanwhile, GRX1 overexpression inhibited oxidative stress and apoptosis in osteoarthritis chondrocytes. Furthermore, we found that GRX1 overexpression regulated HO-1 by increasing CREB, and that HO-1 regulated oxidative stress and apoptosis in osteoarthritis chondrocytes. Thus, GRX1 overexpression constrains oxidative stress and apoptosis in osteoarthritis chondrocytes by regulating CREB/HO-1, providing a novel insight into the molecular mechanism and potential treatment of osteoarthritis. Copyright © 2017. Published by Elsevier Ltd.

  19. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli.

    Directory of Open Access Journals (Sweden)

    Rene Olivares-Navarrete

    Full Text Available Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffness <10 MPa. Like chondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1 in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process.

  20. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  1. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  2. Matrix-induced autologous chondrocyte implantation for a large chondral defect in a professional football player: a case report

    Directory of Open Access Journals (Sweden)

    Beyzadeoglu Tahsin

    2012-06-01

    Full Text Available Abstract Introduction Matrix-assisted autologous chondrocyte implantation is a well-known procedure for the treatment of cartilage defects, which aims to establish a regenerative milieu and restore hyaline cartilage. However, much less is known about third-generation autologous chondrocyte implantation application in high-level athletes. We report on the two-year follow-up outcome after matrix-assisted autologous chondrocyte implantation to treat a large cartilage lesion of the lateral femoral condyle in a male Caucasian professional football player. Case presentation A 27-year-old male Caucasian professional football player was previously treated for cartilage problems of his left knee with two failed microfracture procedures resulting in a 9 cm2 Outerbridge Grade 4 chondral lesion at his lateral femoral condyle. Preoperative Tegner-Lysholm and Brittberg-Peterson scores were 64 and 58, and by the second year they were 91 and 6. An evaluation with magnetic resonance imaging demonstrated filling of the defect with the signal intensity of the repair tissue resembling healthy cartilage. Second-look arthroscopy revealed robust, smooth cartilage covering his lateral femoral condyle. He returned to his former competitive level without restrictions or complaints one year after the procedure. Conclusions This case illustrates that robust cartilage tissue can be obtained with a matrix-assisted autologous chondrocyte implantation procedure even after two failed microfracture procedures in a large (9 cm2 cartilage defect. To the best of our knowledge, this is the first case report on the application of the third-generation cell therapy treatment technique, matrix-assisted autologous chondrocyte implantation, in a professional football player.

  3. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture

    NARCIS (Netherlands)

    Pleumeekers, M.M.; Nimeskern, L.M.; Koevoet, J. L.M.; Karperien, M.; Stok, K.S.; van Osch, G.J.V.M.

    2018-01-01

    Aims Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus

  4. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  5. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  6. Demonstration of variation in chondrocyte activity in different zones of articular cartilage: an assessment of the value of in-situ hybridization.

    Science.gov (United States)

    Marles, P J; Hoyland, J A; Parkinson, R; Freemont, A J

    1991-04-01

    Several methods have been described for investigating chondrocyte metabolism in vitro. In this study, in-situ hybridization (ISH) using an oligonucleotide probe (i.e. a poly-d(T) probe) to detect total messenger RNA (mRNA) in cartilage explants has been compared with radiosulphate and radioleucine uptake studies in an attempt to assess the value of ISH in investigating chondrocyte metabolism. The relative results of the three parameters indicate qualitative similarities in cells in the intermediate, deep and calcified zones but differences in the superficial zone. The relative levels of mRNA and leucine and sulphate uptake in the midzone areas could be construed as indicating that the bulk of cellular activity was directed towards the synthesis of proteoglycans. A similar relation between the three parameters, but at a lower level, was seen in chondrocytes in the calcified zone demonstrating that these cells are viable and biosynthetic. Both quantitative and qualitative differences between the three methods were observed in the superficial chondrocytes regarding the amount of mRNA compared to sulphate and leucine uptake. The results suggest that ISH can detect differences in the amount of mRNA present in chondrocytes in differing zones of cartilage and, like the radioleucine and radiosulphate studies, particularly emphasizes their functional heterogeneity.

  7. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    genes in circulating and resident human immune cells can be studied in mice after the transplantation and engraft- ment of human hemato- lymphoid immune...Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Bio...normal wound repair and regeneration, we hypothesize that the preponderance of human-specific genes expressed in human inflammatory cells is commensurate

  8. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  9. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  10. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  11. De novo origin of human protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Dong-Dong Wu

    2011-11-01

    Full Text Available The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA-seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.

  12. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  13. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering.

    Science.gov (United States)

    Moussavi-Harami, Farid; Duwayri, Yazan; Martin, James A; Moussavi-Harami, Farshid; Buckwalter, Joseph A

    2004-01-01

    Primary isolates of chondrocytes and mesenchymal stem cells are often insufficient for cell-based autologous grafting procedures, necessitating in vitro expansion of cell populations. However, the potential for expansion is limited by cellular senescence, a form of irreversible cell cycle arrest regulated by intrinsic and extrinsic factors. Intrinsic mechanisms common to most somatic cells enforce senescence at the so-called "Hayflick limit" of 60 population doublings. Termed "replicative senescence", this mechanism prevents cellular immortalization and suppresses oncogenesis. Although it is possible to overcome the Hayflick limit by genetically modifying cells, such manipulations are regarded as prohibitively dangerous in the context of tissue engineering. On the other hand, senescence associated with extrinsic factors, often called "stress-induced" senescence, can be avoided simply by modifying culture conditions. Because stress-induced senescence is "premature" in the sense that it can halt growth well before the Hayflick limit is reached, growth potential can be significantly enhanced by minimizing culture related stress. Standard culture techniques were originally developed to optimize the growth of fibroblasts but these conditions are inherently stressful to many other cell types. In particular, the 21% oxygen levels used in standard incubators, though well tolerated by fibroblasts, appear to induce oxidative stress in other cells. We reasoned that chondrocytes and MSCs, which are adapted to relatively low oxygen levels in vivo, might be sensitive to this form of stress. To test this hypothesis we compared the growth of MSC and chondrocyte strains in 21% and 5% oxygen. We found that incubation in 21% oxygen significantly attenuated growth and was associated with increased oxidant production. These findings indicated that sub-optimal standard culture conditions sharply limited the expansion of MSC and chondrocyte populations and suggest that cultures for

  14. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    Directory of Open Access Journals (Sweden)

    Clark Taane G

    2010-04-01

    Full Text Available Abstract Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%. Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes

  15. A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology

    Directory of Open Access Journals (Sweden)

    MY Loqman

    2010-05-01

    Full Text Available The remarkable increase in chondrocyte volume is a major determinant in the longitudinal growth of mammalian bones. To permit a detailed morphological study of hypertrophic chondrocytes using standard histological techniques, the preservation of normal chondrocyte morphology is essential. We noticed that during fixation of growth plates with conventional fixative solutions, there was a marked morphological (shrinkage artifact, and we postulated that this arose from the hyper-osmotic nature of these solutions. To test this, we fixed proximal tibia growth plates of 7-day-old rat bones in either (a paraformaldehyde (PFA; 4%, (b glutaraldehyde (GA; 2% with PFA (2% with ruthenium hexamine trichloride (RHT; 0.7%, (c GA (2% with RHT (0.7%, or (d GA (1.3% with RHT (0.5% and osmolarity adjusted to a ‘physiological’ level of ~280mOsm. Using conventional histological methods, confocal microscopy, and image analysis on fluorescently-labelled fixed and living chondrocytes, we then quantified the extent of cell shrinkage and volume change. Our data showed that the high osmolarity of conventional fixatives caused a shrinkage artefact to chondrocytes. This was particularly evident when whole bones were fixed, but could be markedly reduced if bones were sagittally bisected prior to fixation. The shrinkage artefact could be avoided by adjusting the osmolarity of the fixatives to the osmotic pressure of normal extracellular fluids (~280mOsm. These results emphasize the importance of fixative osmolarity, in order to accurately preserve the normal volume/morphology of cells within tissues.

  16. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins

    Energy Technology Data Exchange (ETDEWEB)

    Kamau Chapman, Sarah W. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland); Hassa, Paul O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland); European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Koch-Schneidemann, Sabine; Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann-Amtenbrink, Margarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Steitz, Benedikt; Petri-Fink, Alke; Hofmann, Heinrich [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland)], E-mail: hottiger@vetbio.uzh.ch

    2008-04-15

    Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.

  17. Translational selection in human: More pronounced in housekeeping genes

    KAUST Repository

    Ma, Lina

    2014-07-10

    Background: Translational selection is a ubiquitous and significant mechanism to regulate protein expression in prokaryotes and unicellular eukaryotes. Recent evidence has shown that translational selection is weakly operative in highly expressed genes in human and other vertebrates. However, it remains unclear whether translational selection acts differentially on human genes depending on their expression patterns.Results: Here we report that human housekeeping (HK) genes that are strictly defined as genes that are expressed ubiquitously and consistently in most or all tissues, are under stronger translational selection.Conclusions: These observations clearly show that translational selection is also closely associated with expression pattern. Our results suggest that human HK genes are more efficiently and/or accurately translated into proteins, which will inevitably open up a new understanding of HK genes and the regulation of gene expression.Reviewers: This article was reviewed by Yuan Yuan, Baylor College of Medicine; Han Liang, University of Texas MD Anderson Cancer Center (nominated by Dr Laura Landweber) Eugene Koonin, NCBI, NLM, NIH, United States of America Sandor Pongor, International Centre for Genetic Engineering and biotechnology (ICGEB), Italy. © 2014 Ma et al.; licensee BioMed Central Ltd.

  18. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is ... case, the expression of human lysozyme could be regulated by the endogenous cis-element of αs1- casein gene in .... Mouse mammary epithelial C127 cells (Cell Bank, Chinese. Academy of ...

  19. Characterization of human cardiac myosin heavy chain genes

    International Nuclear Information System (INIS)

    Yamauchi-Takihara, K.; Sole, M.J.; Liew, J.; Ing, D.; Liew, C.C.

    1989-01-01

    The authors have isolated and analyzed the structure of the genes coding for the α and β forms of the human cardiac myosin heavy chain (MYHC). Detailed analysis of four overlapping MYHC genomic clones shows that the α-MYHC and β-MYHC genes constitute a total length of 51 kilobases and are tandemly linked. The β-MYHC-encoding gene, predominantly expressed in the normal human ventricle and also in slow-twitch skeletal muscle, is located 4.5 kilobases upstream of the α-MYHC-encoding gene, which is predominantly expressed in normal human atrium. The authors have determined the nucleotide sequences of the β form of the MYHC gene, which is 100% homologous to the cardiac MYHC cDNA clone (pHMC3). It is unlikely that the divergence of a few nucleotide sequences from the cardiac β-MYHC cDNA clone (pHMC3) reported in a MYHC cDNA clone (PSMHCZ) from skeletal muscle is due to a splicing mechanism. This finding suggests that the same β form of the cardiac MYHC gene is expressed in both ventricular and slow-twitch skeletal muscle. The promoter regions of both α- and β-MYHC genes, as well as the first four coding regions in the respective genes, have also been sequenced. The sequences in the 5'-flanking region of the α- and β-MYHC-encoding genes diverge extensively from one another, suggesting that expression of the α- and β-MYHC genes is independently regulated

  20. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation

    Science.gov (United States)

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation. PMID:26098911