WorldWideScience

Sample records for human cholesterol synthesis

  1. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry.

    Science.gov (United States)

    Gremaud, G; Piguet, C; Baumgartner, M; Pouteau, E; Decarli, B; Berger, A; Fay, L B

    2001-01-01

    A number of dietary components and drugs are known to inhibit the absorption of dietary and biliary cholesterol, but at the same time can compensate by increasing cholesterol synthesis. It is, therefore, necessary to have a convenient and accurate method to assess both parameters simultaneously. Hence, we validated such a method in humans using on-line gas chromatography(GC)/combustion and GC/pyrolysis/isotope-ratio mass spectrometry (IRMS). Cholesterol absorption was measured using the ratio of [(13)C]cholesterol (injected intravenously) to [(18)O]cholesterol (administered orally). Simultaneously, cholesterol synthesis was measured using the deuterium incorporation method. Our methodology was applied to 12 mildly hypercholesterolemic men that were given a diet providing 2685 +/- 178 Kcal/day (mean +/- SD) and 255 +/- 8 mg cholesterol per day. Cholesterol fractional synthesis rates ranged from 5.0 to 10.5% pool/day and averaged 7.36% +/- 1.78% pool/day (668 +/- 133 mg/day). Cholesterol absorption ranged from 36.5-79.9% with an average value of 50.8 +/- 15.4%. These values are in agreement with already known data obtained with mildly hypercholesterolemic Caucasian males placed on a diet similar to the one used for this study. However, our combined IRMS method has the advantage over existing methods that it enables simultaneous measurement of cholesterol absorption and synthesis in humans, and is therefore an important research tool for studying the impact of dietary treatments on cholesterol parameters.

  2. Steroidal Triterpenes of Cholesterol Synthesis

    Directory of Open Access Journals (Sweden)

    Damjana Rozman

    2013-04-01

    Full Text Available Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24 the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions. A major reason for the standstill of detailed late cholesterol synthesis research was the lack of several steroidal triterpene standards. We aid to this efforts by summarizing commercial and laboratory standards, referring also to chemical syntheses of meiosis-activating sterols.

  3. Progesterone-receptor antagonists and statins decrease de novo cholesterol synthesis and increase apoptosis in rat and human periovulatory granulosa cells in vitro.

    Science.gov (United States)

    Rung, Emilia; Friberg, P Anders; Shao, Ruijin; Larsson, D G Joakim; Nielsen, Eva Ch; Svensson, Per-Arne; Carlsson, Björn; Carlsson, Lena M S; Billig, Håkan

    2005-03-01

    Progesterone-receptor (PR) stimulation promotes survival in rat and human periovulatory granulosa cells. To investigate the mechanisms involved, periovulatory rat granulosa cells were incubated in vitro with or without the PR-antagonist Org 31710. Org 31710 caused the expected increase in apoptosis, and expression profiling using cDNA microarray analysis revealed regulation of several groups of genes with functional and/or metabolic connections. This regulation included decreased expression of genes involved in follicular rupture, increased stress responses, decreased angiogenesis, and decreased cholesterol synthesis. A decreased cholesterol synthesis was verified in experiments with both rat and human periovulatory granulosa cells treated with the PR-antagonists Org 31710 or RU 486 by measuring incorporation of [14C]acetate into cholesterol, cholesterol ester, and progesterone. Correspondingly, specific inhibition of cholesterol synthesis in periovulatory rat granulosa cells using 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (lovastatin, mevastatin, or simvastatin) increased apoptosis, measured as DNA fragmentation and caspase-3/7 activity. The increase in apoptosis caused by simvastatin was reversed by addition of the cholesterol synthesis-intermediary mevalonic acid. These results show that PR antagonists reduce cholesterol synthesis in periovulatory granulosa cells and that cholesterol synthesis is important for granulosa cell survival.

  4. DNA synthesis index: higher for human gallbladders with cholesterol gallstones than with pigment gallstones

    Energy Technology Data Exchange (ETDEWEB)

    Lamote, J.; Putz, P.; Francois, M.; Willems, G.

    1983-09-01

    (/sup 3/H)dThd uptake by the gallbladder epithelium was estimated in 33 patients with cholesterol stones, in 13 patients with pigment stones, and in 12 gallbladders without stones. Proliferative parameters were estimated by autoradiography after in vitro incubation with (/sup 3/H)-dThd. Stones were identified by quantitative infrared spectroscopy. The degree of inflammation of the gallbladder wall was estimated by a histologic scoring method. In the gallbladders containing cholesterol stones the DNA synthesis index (1.39 +/- 0.28%) was higher (P less than .01) than in the gallbladders without stones (0.19 +/- 0.04%). No significant increase in proliferative parameters was found in the gallbladders with pigment stones (0.24 +/- 0.06%). No correlation was found between total stone number, weight or volume, and the DNA synthesis index. No evidence was observed that inflammation could influence the epithelial cell proliferation. Something in the bile of patients with cholesterol stones rather than the physical presence of stones may be the cause of the variations observed.

  5. Regulation of cholesterol synthesis in four colonic adenocarcinoma cell lines.

    Science.gov (United States)

    Cerda, S R; Wilkinson, J; Broitman, S A

    1995-12-01

    Colon tumor cells, unlike normal human fibroblasts, exhibited an uncoupling of low density lipoprotein (LDL)-derived cholesterol from cellular growth, when endogenous cholesterol synthesis was inhibited by mevinolin, a hydroxymethylglutaryl-CoA reductase (HMG-CoAR) competitive inhibitor [Fabricant, M., and Broitman, S.A. (1990) Cancer Res. 50, 632-636]. Further evaluation of cholesterol metabolism was conducted in two undifferentiated (SW480, SW1417) and two differentiated (HT29, CACO2) colonic adenocarcinoma (adeno-CA) cell lines and an untransformed human fibroblast, AG1519A. Cells grown in monolayer culture to near subconfluency were used to assess endogenous cholesterol synthesis by 14C-acetate incorporation, in response to the following treatments in lipoprotein-deficient serum (LPDS)-supplemented minimum essential medium (MEM): LPDS alone, LDL, mevinolin, mevinolin with LDL, and 25-hydroxy-cholesterol (25-OH-CH). Complete fetal bovine serum (FBS)-supplemented MEM was used as control. All colon tumor lines exhibited similarly high endogenous cholesterol synthesis in both FBS and LPDS relative to the fibroblasts which demonstrated low basal levels in FBS and maximal synthesis in LPDS. LDL treatment did not inhibit cholesterol synthesis in colon tumor cells, but suppressed that in the fibroblast by 70%. Sterol repression of cholesterol synthesis mediated by 25-OH-CH occurred in all cells. Mevinolin caused a reduction in cholesterol synthesis in the colonic cancer cell lines, which was not further decreased by concurrent addition of LDL. In contrast, in mevinolin-treated fibroblasts, LDL further inhibited cholesterol synthesis. When the effect of cell density on cholesterol synthesis regulation was evaluated under conditions of sparse density in SW480 and SW147, results indicated that (i) basal rates of cholesterol synthesis were higher, (ii) LDL inhibited cholesterol synthesis more effectively, and (iii) mevinolin or 25-OH-CH had a more pronounced effect than in

  6. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  7. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  8. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan Albert; Tietge, Uwe J.F.; Brufau Dones, Gemma; Groen, Albert K

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins we

  9. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  10. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis.

    Science.gov (United States)

    Song, Kwang-Hoon; Chiang, John Y L

    2006-01-01

    The gene encoding cholesterol 7alpha-hydroxylase (CYP7A1) is tightly regulated to control bile acid synthesis and maintain lipid homeostasis. Recent studies in mice suggest that bile acid synthesis is regulated by the fasted-to-fed cycle, and fasting induces CYP7A1 gene expression in parallel to the induction of peroxisome proliferators-activated receptor gamma co-activator 1alpha (PGC-1alpha) and phosphoenolpyruvate carboxykinase (PEPCK). How glucagon regulates CYP7A1 gene expression in the human liver is not clear. Here we show that glucagon and cyclic adenosine monophosphate (cAMP) strongly repressed CYP7A1 mRNA expression in human primary hepatocytes. Reporter assays confirmed that cAMP and protein kinase A (PKA) inhibited human CYP7A1 gene transcription, in contrast to their stimulation of the PEPCK gene. Mutagenesis analysis identified a PKA-responsive region located within the previously identified HNF4alpha binding site in the human CYP7A1 promoter. Glucagon and cAMP increased HNF4alpha phosphorylation and reduced the amount of HNF4alpha present in CYP7A1 chromatin. Our findings suggest that glucagon inhibited CYP7A1 gene expression via PKA phosphorylation of HNF4alpha, which lost its ability to bind the CYP7A1 gene and resulted in inhibition of human CYP7A1 gene transcription. In conclusion, this study unveils a species difference in nutrient regulation of the human and mouse CYP7A1 gene and suggests a discordant regulation of bile acid synthesis and gluconeogenesis by glucagon in human livers during fasting.

  11. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages.

    Science.gov (United States)

    Dove, Dwayne E; Su, Yan Ru; Swift, Larry L; Linton, MacRae F; Fazio, Sergio

    2006-06-01

    Acyl-coenzyme A:cholesterol acyltransferase (ACAT) esterifies free cholesterol and stores cholesteryl esters in lipid droplets. Macrophage ACAT1 deficiency results in increased atherosclerotic lesion area in hyperlipidemic mice via disrupted cholesterol efflux, increased lipoprotein uptake, accumulation of intracellular vesicles, and accelerated apoptosis. The objective of this study was to determine whether lipid synthesis is affected by ACAT1. The synthesis, esterification, and efflux of new cholesterol were measured in peritoneal macrophages from ACAT1(-/-) mice. Cholesterol synthesis was increased by 134% (p=0.001) in ACAT1(-/-) macrophages compared to wildtype macrophages. Increased synthesis resulted in a proportional increase in the efflux of newly synthesized cholesterol. Although the esterification of new cholesterol was reduced by 93% (pSREBP1a mRNA was increased 6-fold in ACAT1(-/-) macrophages compared to wildtype macrophages, suggesting an up-regulation of cholesterol and fatty acid synthesis in ACAT1(-/-) macrophages. Increased cholesterol synthesis and up-regulation of SREBP in ACAT1(-/-) macrophages suggests that ACAT1 affects the regulation of lipid metabolism in macrophages. This change in cholesterol homeostasis may contribute to the atherogenic potential of ACAT1(-/-) macrophages.

  12. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and b

  13. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and

  14. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  15. Effect of doxazosin on cholesterol synthesis in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    D' Eletto, R.D.; Javitt, N.B.

    1989-01-01

    The effect of doxazosin on cholesterol synthesis was determined by measuring the content of deuterium-enriched cholesterol in rabbit fibroblasts with and without receptors for low-density lipoproteins (LDL) and in hepatoma (Hep G2 cells). Doxazosin, at concentrations of 5-20 mumol/L, increased LDL binding to hepatic cells in a dose-related manner. Also, in these hepatic cells, doxazosin produced dose-related decreases in both newly synthesized cholesterol and cholesterol ester. In rabbit fibroblasts that were LDL receptor negative, de novo cholesterol synthesis was markedly reduced by increasing concentrations of doxazosin. Taken together, these results suggest that doxazosin may have a direct inhibitory effect on cholesterol synthesis independent of the LDL receptor. The inhibition of cholesterol synthesis by doxazosin may cause cells to compensate by upregulating the LDL receptor, thereby increasing the importation of lipoprotein cholesterol and reducing LDL cholesterol in the medium. This hypothesis supports findings in the clinical setting whereby doxazosin has a beneficial effect on the lipid profile, and suggests a useful additional property for this antihypertensive agent.

  16. Effects of saturated and unsaturated fats given with and without dietary cholesterol on hepatic cholesterol synthesis and hepatic lipid metabolism.

    Science.gov (United States)

    Bochenek, W; Rodgers, J B

    1978-01-27

    Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.

  17. Assessment of modes of action and efficacy of plasma cholesterol-lowering drugs : measurement of cholesterol absorption, cholesterol synthesis and bile acid synthesis and turnover using novel stable isotope techniques

    NARCIS (Netherlands)

    Stellaard, Frans; Kuipers, Folkert

    2005-01-01

    Several processes are involved in control of plasma cholesterol levels, e.g., intestinal cholesterol absorption, endogenous cholesterol synthesis and transport and bile acid synthesis. Adaptation of either of these processes allows the body to adapt to changes in dietary cholesterol intake. Disturba

  18. Assessment of modes of action and efficacy of plasma cholesterol-lowering drugs : measurement of cholesterol absorption, cholesterol synthesis and bile acid synthesis and turnover using novel stable isotope techniques

    NARCIS (Netherlands)

    Stellaard, Frans; Kuipers, Folkert

    Several processes are involved in control of plasma cholesterol levels, e.g., intestinal cholesterol absorption, endogenous cholesterol synthesis and transport and bile acid synthesis. Adaptation of either of these processes allows the body to adapt to changes in dietary cholesterol intake.

  19. Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans

    Science.gov (United States)

    2013-01-01

    Background Diets enriched with sphingolipids may improve blood lipid profiles. Studies in animals have shown reductions in cholesterol absorption and alterations in blood lipids after treatment with sphingomyelin (SM). However, minimal information exists on effect of SM on cholesterol absorption and metabolism in humans. The objective was to assess the effect of SM consumption on serum lipid concentrations and cholesterol metabolism in healthy humans. Methods Ten healthy adult males and females completed a randomized crossover study. Subjects consumed controlled diets with or without 1 g/day SM for 14 days separated by at least 4 week washout period. Serum lipid profile and markers of cholesterol metabolism including cholesterol absorption and synthesis were analyzed. Results Serum triglycerides, total, LDL- and VLDL- cholesterol were not affected while HDL cholesterol concentrations were increased (p = 0.043) by SM diet consumption. No change in cholesterol absorption and cholesterol fractional synthesis rate was observed with supplementation of SM compared to control. Intraluminal cholesterol solubilization was also not affected by consumption of SM enriched diet. Conclusions In humans, 1 g/day of dietary SM does not alter the blood lipid profile except for an increased HDL-cholesterol concentration and has no effect on cholesterol absorption, synthesis and intraluminal solubilization compared to control. Trial registration Clinicaltrials.gov # NCT00328211 PMID:23958473

  20. Zebrafish etv7 regulates red blood cell development through the cholesterol synthesis pathway

    Directory of Open Access Journals (Sweden)

    Anita M. Quintana

    2014-02-01

    Full Text Available ETV7 is a human oncoprotein that cooperates with Eμ-MYC to promote pre-B-cell leukemia in mice. It is normally expressed in the bone marrow and fetal liver and is upregulated in primary leukemia, suggesting that it is involved in proper hematopoiesis and leukemogenesis. ETV7 has been deleted in most rodents, but is conserved in all other vertebrates, including the zebrafish, Danio rerio. In this report, we characterize the function of the zebrafish etv7 gene during erythropoiesis. Our results demonstrate that etv7 regulates the expression of the zebrafish lanosterol synthase (lss gene, an essential gene in the cholesterol synthesis pathway. Furthermore, morpholino knockdown of etv7 leads to loss of hemoglobin-containing red blood cells, a phenotype that can be rescued by injection of exogenous cholesterol. We conclude that etv7 is essential for normal red blood cell development through regulation of the lss gene and the cholesterol synthesis pathway.

  1. Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro.

    Science.gov (United States)

    Lammel Lindemann, Jan A; Angajala, Anusha; Engler, David A; Webb, Paul; Ayers, Stephen D

    2014-05-05

    Thyroid hormone (TH) modulates serum cholesterol by acting on TH receptor β1 (TRβ1) in liver to regulate metabolic gene sets. In rodents, one important TH regulated step involves induction of Cyp7a1, an enzyme in the cytochrome P450 family, which enhances cholesterol to bile acid conversion and plays a crucial role in regulation of serum cholesterol levels. Current models suggest, however, that Cyp7a1 has lost the capacity to respond to THs in humans. We were prompted to re-examine TH effects on cholesterol metabolic genes in human liver cells by a recent study of a synthetic TH mimetic which showed that serum cholesterol reductions were accompanied by increases in a marker for bile acid synthesis in humans. Here, we show that TH effects upon cholesterol metabolic genes are almost identical in mouse liver, mouse and human liver primary cells and human hepatocyte cell lines. Moreover, Cyp7a1 is a direct TR target gene that responds to physiologic TR levels through a set of distinct response elements in its promoter. These findings suggest that THs regulate cholesterol to bile acid conversion in similar ways in humans and rodent experimental models and that manipulation of hormone signaling pathways could provide a strategy to enhance Cyp7a1 activity in human patients.

  2. Absence of cholesterol synthesis as contrasted with the presence of fatty acid synthesis in some arthropods

    NARCIS (Netherlands)

    Zandee, D.I.

    1967-01-01

    1. 1. After administration of acetate-1-14C absence of cholesterol synthesis was demonstrated in the lobster Homarus gammarus (L.), the spider Avicularia avicularia (L.) and in the millepede Graphidostreptus tumuliporus (Karsch). 2. 2. However, the animals utilize acetate for the synthesis of fatty

  3. Determination of cholesterol in human biliary calculus by TLC scanning

    Institute of Scientific and Technical Information of China (English)

    Yin Kang Yang; Kai Xiong Qiu; Yu Zhu Zhan; Er Yi Zhan; Hai Ming Yang; Ping Zheng

    2000-01-01

    AIM To study the physico-chemical properties of biliary calculus and the relationship between the calculusformation and the phase change of liquid crystal, providing the best evidence for the biliary calculusprevention and treatment.METHODS The cholesterol contents in thirty one cases of biliary calculus in Kunming were determined bydouble-wave-length TLC scanning with high efficiency silica gel films.RESULTS Under magnifiers, the granular biliary calculus from 31 patients were classified according totheir section structures and colours, as cholesterol cholelith, 25 cases; bilirubin cholelith, 4 cases andcompound cholelith, 2 cases. By TLC scanning, it was found that the content of cholesterol in human biliarycalculus was 71%- 100%, about 80% cholesterol bilestones whose cholesterol content was more than 90%being pure cholesterol bilestones.CONCLUSION Cholesterol bilestone is the main human biliary calculus in Kunming, which was inaccordance with X-ray analysis. Compared with the related reports, it is proved that the proportion ofcholesterol bilestones to biliary calculus is increasing because of the improved life standard and the decreaseof bilirubin bilestones resulted from bile duct ascariasis or bacteria infection in China since 90s, and that theincrease of cholesterol in-take leads to the increase of cholesterol metabolism disorder

  4. Gonadotropin-releasing hormone modulates cholesterol synthesis and steroidogenesis in SH-SY5Y cells.

    Science.gov (United States)

    Rosati, Fabiana; Sturli, Niccolò; Cungi, Maria Chiara; Morello, Matteo; Villanelli, Fabio; Bartolucci, Gianluca; Finocchi, Claudia; Peri, Alessandro; Serio, Mario; Danza, Giovanna

    2011-04-01

    Neurosteroids are involved in Central Nervous System development, brain functionality and neuroprotection but little is known about regulators of their biosynthesis. Recently gonadotropins, Gonadotropin-releasing Hormone (GnRH) and their receptors have been localized in different brain regions, such as hippocampus and cortex. Using human neuronal-like cells we found that GnRH up-regulates the expression of key genes of cholesterol and steroid synthesis when used in a narrow range around 1.0 nM. The expression of Hydroxysterol D24-reductase (seladin-1/DHCR24), that catalyzes the last step of cholesterol biosynthesis, is increased by 50% after 90 min of incubation with GnRH. StAR protein and P450 side chain cleavage (P450scc) are up-regulated by 3.3 times after 90 min and by 3.5 times after 3 h, respectively. GnRH action is mediated by LH and 1.0 nM GnRH enhances the expression of LHβ as well. A two fold increase of cell cholesterol is induced after 90 min of GnRH incubation and 17β-estradiol (E2) production is increased after 24, 48 and 72 h. These data indicate for the first time that GnRH regulates both cholesterol and steroid biosynthesis in human neuronal-like cells and suggest a new physiological role for GnRH in the brain.

  5. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    OpenAIRE

    Jure Ačimovič; Sandeep Goyal; Rok Košir; Marko Goličnik; Martina Perše; Ales Belič; Žiga Urlep; Peter Guengerich, F.; Damjana Rozman

    2016-01-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our m...

  6. Inhibition of in vitro cholesterol synthesis by fatty acids.

    Science.gov (United States)

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  7. Cholesterol sulfate in human physiology: what's it all about?

    Science.gov (United States)

    Strott, Charles A; Higashi, Yuko

    2003-07-01

    Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier. The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.

  8. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    Science.gov (United States)

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F. Peter; Rozman, Damjana

    2016-06-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.

  9. A convenient synthesis of ezetimibe analogs as cholesterol ab sorption inhibitors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A convenient method for the synthesis of ezetimibe analogs as cholesterol absorption inhibitors was described.The key step in the synthesis was the intramolecular ring formation through Mitsunobu reaction.Furthermore,a new series of analogs was designed and synthesized.

  10. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  11. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Directory of Open Access Journals (Sweden)

    Mafu Akier

    2002-01-01

    Full Text Available Abstract Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent.

  12. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Science.gov (United States)

    St-Onge, Marie-Pierre; Farnworth, Edward R; Savard, Tony; Chabot, Denise; Mafu, Akier; Jones, Peter JH

    2002-01-01

    Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p Kefir supplementation resulted in increased fecal bacterial content in the majority of the subjects. Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent. PMID:11825344

  13. Synthesis and characterization of a novel rhodamine labeled cholesterol reporter.

    Science.gov (United States)

    Maiwald, Alexander; Bauer, Olivia; Gimpl, Gerald

    2017-06-01

    We introduce the novel fluorescent cholesterol probe RChol in which a sulforhodamine group is linked to the sixth carbon atom of the steroid backbone of cholesterol. The same position has recently been selected to generate the fluorescent reporter 6-dansyl-cholestanol (DChol) and the photoreactive 6-azi-cholestanol. In comparison with DChol, RChol is brighter, much more photostable, and requires less energy for excitation, i.e. favorable conditions for microscopical imaging. RChol easily incorporates into methyl-β-cyclodextrin forming a water-soluble inclusion complex that acts as an efficient sterol donor for cells and membranes. Like cholesterol, RChol possesses a free 3'OH group, a prerequisite to undergo intracellular esterification. RChol was also able to support the growth of cholesterol auxotrophic cells and can therefore substitute for cholesterol as a major component of the plasma membrane. According to subcellular fractionation, slight amounts of RChol (~12%) were determined in low-density Triton-insoluble fractions whereas the majority of RChol was localized in non-rafts fractions. In phase-separated giant unilamellar vesicles, RChol preferentially partitions in liquid-disordered membrane domains. Intracellular RChol was transferred to extracellular sterol acceptors such as high density lipoproteins in a dose-dependent manner. Unlike DChol, RChol was not delivered to the cholesterol storage pathway. Instead, it translocated to endosomes/lysosomes with some transient contacts to peroxisomes. Thus, RChol is considered as a useful probe to study the endosomal/lysosomal pathway of cholesterol. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2007-01-01

    Full Text Available Abstract Background Platelet-activating factor (PAF is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD. Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. Methods Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. Results PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. Conclusion Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF.

  15. De novo cholesterol synthesis at the crossroads of adaptive response to extracellular stress through SREBP.

    Science.gov (United States)

    Robichon, Céline; Dugail, Isabelle

    2007-02-01

    Cell sterol supply is subjected to tight negative feedback regulation through the SREBP pathway. Upon cholesterol depletion, SREBP transcription factors become activated by cleavage of a membrane bound precursor form, which stimulates the expression of the genes encoding proteins of the cholesterol synthesis pathway. In this paper, we discuss two situations of extracellular stress (hypoxia and heat shock) in which the cholesterol synthesis pathway and SREBPs are directly impacted to generate an adaptive response to cell damage. On one hand, the lack of oxygen in fission yeast Saccharomyces pombe induces a drop in cholesterol synthesis which in turn activates SREBP-mediated transcription. The presence of genes involved in the anaerobic growth program among SREBP target genes in fission yeast, indicates that SREBP behaves as an oxygen sensor, required for adaptive growth in low oxygen. On the other hand, upon heat shock in mammalian cells, SREBP-responsive heat shock proteins have been characterized, which were able to upregulate sterol synthesis by targeting the activity of HMG-CoA reductase, the rate limiting enzyme in this pathway. Although not yet proven, high rates of sterol synthesis can be viewed as an adaptive response to correct structural membrane damage and bilayer fluidification induced by thermal stress. Together these situations illustrate how the highly regulated SREBP pathway for the control of sterol synthesis can be used to achieve cell adaptive responses to extracellular stresses.

  16. Efficacy and safety of a new cholesterol synthesis inhibitor, atorvastatin, in comparison with simvastatin and pravastatin, in subjects with hypercholesterolemia

    NARCIS (Netherlands)

    Wolffenbuttel, B H; Mahla, G; Muller, D; Pentrup, A; Black, D M

    1998-01-01

    BACKGROUND: High levels of total and LDL-cholesterol are associated with an increased risk of atherosclerotic vascular disease. Lowering of serum cholesterol levels by pharmacologic intervention with inhibitors of cholesterol synthesis, the so-called statins, reduces the incidence of cardiovascular

  17. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation.

    Directory of Open Access Journals (Sweden)

    Kristiina Rajamäki

    Full Text Available BACKGROUND: Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL-1beta and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1beta has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway. PRINCIPAL FINDINGS: Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1beta from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1beta was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1beta secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1beta secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization. CONCLUSIONS: The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions.

  18. Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis.

    Directory of Open Access Journals (Sweden)

    Bon Jeong Ku

    Full Text Available The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6 is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+Mig-6(f/f; Mig-6(d/d. Mig-6(d/d mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d mice compared to Mig-6(f/f controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.

  19. A physiologically based in silico kinetic model predicting plasma cholesterol concentrations in humans

    NARCIS (Netherlands)

    Pas, van de N.C.A.; Woutersen, R.A.; Ommen, van B.; Rietjens, I.M.C.M.; Graaf, de A.A.

    2012-01-01

    Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was dire

  20. A physiologically based in silico kinetic model predicting plasma cholesterol concentrations in humans

    NARCIS (Netherlands)

    Pas, N.C.A. van de; Woutersen, R.A.; Ommen, B. van; Rietjens, I.M.C.M.; Graaf, A.A. de

    2012-01-01

    Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was

  1. Squalene mono-oxygenase, a key enzyme in cholesterol synthesis, is stabilized by unsaturated fatty acids.

    Science.gov (United States)

    Stevenson, Julian; Luu, Winnie; Kristiana, Ika; Brown, Andrew J

    2014-08-01

    SM (squalene mono-oxygenase) catalyses the first oxygenation step in cholesterol synthesis, immediately before the formation of the steroid backbone at lanosterol. SM is an important control point in the pathway, and is regulated at the post-translational level by accelerated cholesterol-dependent ubiquitination and proteasomal degradation, which is associated with the accumulation of squalene. Using model cell systems, we report that SM is stabilized by unsaturated fatty acids. Treatment with unsaturated fatty acids such as oleate, but not saturated fatty acids, increased protein levels of SM or SM-N100-GFP (the first 100 amino acids of SM fused to GFP) at the post-translational level and partially overcame cholesterol-dependent degradation, as well as reversing cholesterol-dependent squalene accumulation. Maximum stabilization required activation of fatty acids, but not triacylglycerol or phosphatidylcholine synthesis. The mechanism of oleate-mediated stabilization appeared to occur through reduced ubiquitination by the E3 ubiquitin ligase MARCH6. Stabilization of a cholesterol biosynthetic enzyme by unsaturated fatty acids may help maintain a constant cholesterol/phospholipid ratio.

  2. Cholesterol Synthesis Increased in the MMI-Induced Subclinical Hypothyroidism Mice Model

    Science.gov (United States)

    Zhang, Xiujuan; Chen, Wenbin

    2017-01-01

    Subclinical hypothyroidism (SCH) is defined as increased serum thyroid-stimulating hormone (TSH) concentrations and normal serum thyroid hormone (TH) levels as well as an increased serum cholesterol level, which is an important cause of secondary hypercholesterolemia and cardiovascular diseases. Some studies have demonstrated a direct effect of TSH on cholesterol metabolism via in vivo and in vitro experiments. However, because no suitable SCH model has been established until now, the changes in cholesterol synthesis that occur in SCH patients remain unknown. Here, we establish an SCH mouse model by using long-term low-dose MMI administered in drinking water. Compared with the control group, the MMI-treated mice had elevated circulating TSH levels, but the serum FT3 levels in these mice did not change. Additionally, the TC levels increased in both the serum and liver of the experimental mice. Both the protein expression and activity of hepatic HMGCR, the rate-limiting enzyme for cholesterol synthesis in the liver, increased in these mice. We also found that the SCH mice had decreased phospho-HMGCR and phospho-AMPK expression, while the expression of AMPK showed no change. In conclusion, we established a suitable SCH model in which cholesterol synthesis is increased. PMID:28386276

  3. Phosphorylation regulates activity of 7-dehydrocholesterol reductase (DHCR7), a terminal enzyme of cholesterol synthesis.

    Science.gov (United States)

    Prabhu, Anika V; Luu, Winnie; Sharpe, Laura J; Brown, Andrew J

    2017-01-01

    Cholesterol is essential for survival, but too much or too little can cause disease. Thus, cholesterol levels must be kept within close margins. 7-dehydrocholesterol reductase (DHCR7) is a terminal enzyme of cholesterol synthesis, and is essential for embryonic development. Largely, DHCR7 research is associated with the developmental disease Smith-Lemli-Opitz syndrome, which is caused by mutations in the DHCR7 gene. However, little is known about what regulates DHCR7 activity. Here we provide evidence that phosphorylation plays a role in controlling DHCR7 activity, which may provide a means to divert flux from cholesterol synthesis to vitamin D production. DHCR7 activity was significantly decreased when we used pharmacological inhibitors against two important kinases, AMP-activated protein kinase and protein kinase A. Moreover, mutating a known phosphorylated residue, S14, also decreased DHCR7 activity. Thus, we demonstrate that phosphorylation modulates DHCR7 activity in cells, and contributes to the overall synthesis of cholesterol, and probably vitamin D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dietary cholesterol fails to stimulate the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in transgenic mice.

    Science.gov (United States)

    Agellon, Luis B; Drover, Victor A B; Cheema, Sukhinder K; Gbaguidi, G Franck; Walsh, Annemarie

    2002-06-07

    Dietary cholesterol has been shown to have a stimulatory effect on the murine cholesterol 7alpha-hydroxylase gene (Cyp7a1), but its effect on human cholesterol 7alpha-hydroxylase gene (CYP7A1) expression in vivo is not known. A transgenic mouse strain harboring the human CYP7A1 gene and homozygous for the disrupted murine Cyp7a1 gene was created. Cholesterol feeding increased the expression of the endogenous modified Cyp7a1 allele but failed to stimulate the human CYP7A1 transgene. In transfected hepatoma cells, 25-hydroxycholesterol increased murine Cyp7a1 gene promoter activity, whereas the human CYP7A1 gene promoter was unresponsive. Electrophoretic mobility shift assays demonstrated the interaction of the liver X receptor alpha (LXRalpha): retinoid X receptor (RXR) heterodimer, a transcription factor complex that is activated by oxysterols, with the murine Cyp7a1 gene promoter, whereas no binding to the human CYP7A1 gene promoter was detected. The results demonstrate that the human CYP7A1 gene is not stimulated by dietary cholesterol in the intact animal, and this is attributable to the inability of the CYP7A1 gene promoter to interact with LXRalpha:RXR.

  5. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis.

    Science.gov (United States)

    Gao, Yansong; Zhou, Yulian; Goldstein, Joseph L; Brown, Michael S; Radhakrishnan, Arun

    2017-05-26

    Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Ibupoto, Z.H., E-mail: zafar.hussin.ibupoto@liu.se [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Khun, K. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Liu, X. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, 58183 Linköping Sweden (Sweden); Willander, M. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden)

    2013-10-15

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only Cu-O bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88 ± 0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10 s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. - Highlights: • This study describes the synthesis of bundle of CuO nanowires by hydrothermal method. • CuO nanostructures exhibit good alignment and

  7. A novel role for CRTC2 in hepatic cholesterol synthesis through SREBP-2.

    Science.gov (United States)

    Li, Yujie; Song, Yongfeng; Zhao, Meng; Guo, Yanjing; Yu, Chunxiao; Chen, Wenbin; Shao, Shanshan; Xu, Chao; Zhou, Xinli; Zhao, Lifang; Zhang, Zhenhai; Bo, Tao; Xia, Yu; Proud, Christopher G; Wang, Xuemin; Wang, Li; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Cholesterol synthesis is regulated by the transcription factor sterol regulatory element binding protein 2 (SREBP-2) and its target gene 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), which is the rate-limiting enzyme in cholesterol synthesis. Cyclic adenosine monophosphate-responsive element (CRE) binding protein-regulated transcription coactivator (CRTC) 2 is the master regulator of glucose metabolism. However, the effect of CRTC2 on cholesterol and its potential molecular mechanism remain unclear. Here, we demonstrated that CRTC2 expression and liver cholesterol content were increased in patients with high serum cholesterol levels who underwent resection of liver hemangiomas, as well as in mice fed a 4% cholesterol diet. Mice with adenovirus-mediated CRTC2 overexpression also showed elevated lipid levels in both serum and liver tissues. Intriguingly, hepatic de novo cholesterol synthesis was markedly increased under these conditions. In contrast, CRTC2 ablation in mice fed a 4% cholesterol diet (18 weeks) showed decreased lipid levels in serum and liver tissues compared with those in littermate wild-type mice. The expression of lipogenic genes (SREBP-2 and HMGCR) was consistent with hepatic CRTC2 levels. In vivo imaging showed enhanced adenovirus-mediated HMGCR-luciferase activity in adenovirus-mediated CRTC2 mouse livers; however, the activity was attenuated after mutation of CRE or sterol regulatory element sequences in the HMGCR reporter construct. The effect of CRTC2 on HMGCR in mouse livers was alleviated upon SREBP-2 knockdown. CRTC2 modulated SREBP-2 transcription by CRE binding protein, which recognizes the half-site CRE sequence in the SREBP-2 promoter. CRTC2 reduced the nuclear protein expression of forkhead box O1 and subsequently increased SREBP-2 transcription by binding insulin response element 1, rather than insulin response element 2, in the SREBP-2 promoter. CRTC2 regulates the transcription of SREBP-2 by interfering with the

  8. Synthesis, antimicrobial and cytotoxicity evaluation of new cholesterol congeners

    Science.gov (United States)

    Saad, Hosam Ali; Abdel-Hafez, Shams Hashim

    2015-01-01

    Summary 3β-Azidocholest-5-ene (3) and (3β)-3-(prop-2-yn-1-yloxy)cholest-5-ene (10) were prepared as substrates to synthesize a variety of three-motif pharmacophoric conjugates through CuAAC. Basically, these conjugates included cholesterol and 1,2,3-triazole moieties, while the third, the pharmacophore, was either a chalcone, a lipophilic residue or a carbohydrate tag. These compounds were successfully prepared in good yields and characterized by NMR, MS and IR spectroscopic techniques. Chalcone conjugate 6c showed the best antimicrobial activity, while the lactoside conjugate 27 showed the best cytotoxic effect in vitro. PMID:26664612

  9. Synthesis, antimicrobial and cytotoxicity evaluation of new cholesterol congeners

    Directory of Open Access Journals (Sweden)

    Mohamed Ramadan El Sayed Aly

    2015-10-01

    Full Text Available 3β-Azidocholest-5-ene (3 and (3β-3-(prop-2-yn-1-yloxycholest-5-ene (10 were prepared as substrates to synthesize a variety of three-motif pharmacophoric conjugates through CuAAC. Basically, these conjugates included cholesterol and 1,2,3-triazole moieties, while the third, the pharmacophore, was either a chalcone, a lipophilic residue or a carbohydrate tag. These compounds were successfully prepared in good yields and characterized by NMR, MS and IR spectroscopic techniques. Chalcone conjugate 6c showed the best antimicrobial activity, while the lactoside conjugate 27 showed the best cytotoxic effect in vitro.

  10. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    Science.gov (United States)

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.

  11. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Kortner, Trond M; Björkhem, Ingemar; Krasnov, Aleksei; Timmerhaus, Gerrit; Krogdahl, Åshild

    2014-06-28

    Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.

  12. Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans.

    Science.gov (United States)

    Amiot, Marie Josèphe; Knol, Diny; Cardinault, Nicolas; Nowicki, Marion; Bott, Romain; Antona, Claudine; Borel, Patrick; Bernard, Jean-Paul; Duchateau, Guus; Lairon, Denis

    2011-06-01

    Phytosterols (plant sterols and stanols) can lower intestinal cholesterol absorption, but the complex dynamics of the lipid digestion process in the presence of phytosterol esters (PEs) are not fully understood. We performed a clinical experiment in intubated healthy subjects to study the time course of changes in the distribution of all lipid moieties present in duodenal phases during 4 h of digestion of meals with 3.2 g PE (PE meal) or without (control meal) PE. In vitro experiments under simulated gastrointestinal conditions were also performed. The addition of PE did not alter triglyceride (TG) hydrolysis in the duodenum or subsequent chylomicron TG occurrence in the circulation. In contrast, cholesterol accumulation in the duodenum aqueous phase was markedly reduced in the presence of PE (-32%, P < 0.10). In vitro experiments confirmed that PE reduces cholesterol transfer into the aqueous phase. The addition of PE resulted in a markedly reduced presence of meal-derived hepta-deuterated cholesterol in the circulation, i.e., in chylomicrons (-43%, PE meal vs. control; P < 0.0001) and plasma (-54%, PE meal vs. control; P < 0.0001). The present data show that addition of PE to a meal does not alter TG hydrolysis but displaces cholesterol from the intestinal aqueous phase and lowers chylomicron cholesterol occurrence in humans.

  13. Evaluation of the use of serum lathosterol concentration to assess whole-body cholesterol synthesis in rabbits

    NARCIS (Netherlands)

    Meijer, G.W.; Palen, J.G. van der; Vries, H. de; Kempen, H.J.; Voort, H.A. van der; Zutphen, L.F. van; Beynen, A.C.

    1992-01-01

    Serum lathosterol concentration in rabbits was assessed as a possible indicator of whole-body cholesterol synthesis. In random-bred New Zealand White (NZW) rabbits fed a control diet or a diet containing either cholesterol, simvastatin, or cholestyramine, neither serum lathosterol concentration nor

  14. Mevinolin-induced changes in cholesterol synthesis and protein glycosylation in lymphocytes of hypercholesterolemics

    Energy Technology Data Exchange (ETDEWEB)

    Goel, V.; Premkumar, N.D.; Ramachandran, C.K.; Melnykovych, G.; Dujovne, C.A.

    1987-05-01

    Mevinolin (lovastatin, MVN), a potent competitive inhibitor of HMG CoA reductase (HMGR), has proven to be an effective hypolipidemic agent in patients with non-homozygous primary hypercholesterolemia. Since inhibition of HMGR can also reduce the synthesis of non-sterol mevalonate products such as dolichols, it was of interest to examine the dolichol-mediated cellular reactions in MVN-treated patients. Blood was collected from patients after various durations of MVN therapy. Peripheral lymphocytes were isolated using Ficoll-Paque gradient. The cells were suspended in RPMI-1640 medium and pulsed in the presence of /sup 14/C-2-acetate or /sup 3/H-mannose for 30 min. At the end of incubation the radioactivity recovered in non-saponifiable fraction (/sup 14/C) or TCA precipitable protein (/sup 3/H) was measured. Cholesterol synthesis continued to fall gradually and remained low throughout, in direct correlation with falls in plasma LDL cholesterol levels. Incorporation of mannose into protein fraction was reduced by the 1st month of therapy, remained low until the 7th month and recovered by the 10th month while on MVN. In summary, MVN appears to reduce cholesterol synthesis continuously but its inhibitory effect on glycosylation seems to be overcome after prolonged therapy. This escape effect could result from a rebound increase in HMGR in response to its competitive inhibition by MVN.

  15. Effect of cholesterol feeding and estrogen treatment on synthesis of fatty acids in liver.

    Science.gov (United States)

    Srinivasan, K; Pynadath, T I

    1977-08-01

    The effect of cholesterol feeding and estrogen administration on synthesis of fatty acids in liver mitochondria, microsomes and cytoplasm of male rabbits has been investigated. The synthesis was measured by the incorporation of [1(-14)C] acetyl CoA or [2(-14)C]malonyl CoA into long chain fatty acids under optimal conditions. It was found that atherogenesis markedly decreased the fatty acid synthesis in cytoplasm. The mitochondrial fatty acid synthesis was not affected by the disease. There was a small but measurable decrease in the synthesis of fatty acids in microsomes. Estrogen had no effect on the synthesis of fatty acids in mitochondria or microsomes. But if effectively counteracted, after a short lag period, the decreased synthesis of cytoplasmic fatty acids observed in atherosclerosis. It is possible that liver fatty acid synthetase is one of the enzyme systems through which estrogens exert their atherosclerosis-retarding effect. The decreased cytoplasmic fatty acid synthesis observed in atherosclerosis might account for the low levels of saturated fatty acids reported in liver and plasma lipids of atherosclerotic animals.

  16. Change in cholesterol absorption and synthesis markers in patients with coronary heart disease after combination therapy with simvastatin plus ezetimibe

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; WU Wen-feng; LIU Yang; WANG Qi-hui; WANG Lü-ya; MI Shu-hua

    2013-01-01

    Background Statins and ezetimibe have been reported to change the balance of cholesterol metabolism,but few studies have been performed on Chinese patients.The aim of this study was to evaluate changes in cholesterol metabolism markers in patients with coronary heart disease.Methods Forty-five patients with coronary heart disease were treated with 20 mg/d of simvastatin for four weeks.Subjects were then divided into two different therapy groups according to whether they reached the target values for total cholesterol and low density lipoprotein cholesterol level.Patients who reached the target values remained on simvastatin and those who did not reach the target values took a combination of simvastatin plus 10 mg/d ezetimibe until the 12th week.The concentrations of cholesterol synthesis markers (lathosterol and desmosterol) and absorption markers (campesterol and sitosterol) were measured on the 1st,4th,and 12th week of the study by gas chromatography.Results After treatment with simvastatin for four weeks,the levels of total cholesterol and low density lipoprotein cholesterol decreased significantly compared to levels measured during the 1st week (P <0.05).On the 12th week the levels of total cholesterol and low density lipoprotein cholesterol had decreased significantly (P <0.001) compared to levels during the 4th week.By the 12th week the levels of campesterol and sitosterol in the combination group had decreased significantly (P<0.05) compared with levels measured during the 4th week.Conclusions Coronary heart disease patients with high cholesterol synthesis at baseline might gain a greater benefit from simvastatin treatment.Combination therapy with simvastatin plus ezetimibe in patients with low cholesterol synthesis at baseline might increase the success rate of lipid-lowering through decreasing the absorption of cholesterol.

  17. A putative role of micro RNA in regulation of cholesterol 7α-hydroxylase expression in human hepatocytes[S

    OpenAIRE

    Song, Kwang-Hoon; Li, Tiangang; Owsley, Erika; Chiang, John Y. L.

    2010-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in regulation of bile acid synthesis in the liver. CYP7A1 mRNAs have very short half-lives, and bile acids destabilize CYP7A1 mRNA via the 3′-untranslated region (3′-UTR). However, the underlying mechanism of translational regulation of CYP7A1 mRNA remains unknown. Screening of a human micro RNA (miRNA) microarray has identified five differentially expressed miRNAs in human primary hepatocytes treated with chenodeoxycholic acid, GW4064...

  18. Serum resistin is related to plasma HDL cholesterol and inversely correlated with LDL cholesterol in diabetic and obese humans.

    Science.gov (United States)

    Owecki, Maciej; Nikisch, Elżbieta; Miczke, Anna; Pupek-Musialik, Danuta; Sowiński, Jerzy

    2010-01-01

    Plasma cholesterol, triglycerides and serum resisistin may all be influenced by diabetes and obesity, but their associations remain unclear. Therefore, we put forward a hypothesis that serum lipids might be parallel to resistin, as they all reflect the metabolic status of obese humans. We measured the concentrations of resistin, total cholesterol (TC), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C) and triglycerides (TG) in 134 obese non-diabetic (73 women and 61 men) and 65 obese diabetic (33 women, 32 men) humans, and examined their interrelations. Obesity was defined according to the WHO criterion (BMI, ≥ 30 kg/m²) The presence of diabetes was the only differentiating factor between two groups of frankly obese humans. Non-diabetic vs. diabetic, median and interquartile range, respectively: resistin (ng/mL) 26.08, 16.09 vs. 22.37, 14.54, p=0.736; TC (mmol/L) 5.02, 1.39 vs. 5.16, 1.56, p=0.374; HDL-C (mmol/L): 1.10, 0.41 vs. 1.02, 0.47 pHDL-C, LDL-C, and TG, respectively: in the whole cohort r=-0.1364, p=0.0670, r=0.1514, p=0.0437, r=-0.2573, p=0.0006, r=0.0434, p=0.5597; in non-diabetics: r=-0.2067, p=0.0213, r=0.1023, p=0.2621, r=-0.2399, p=0.0083 and r=0.0288, p=0.7497; in diabetics r=0.0280, p=0.8360, r=0.2267, p=0.0929, r=-0.2933, p=0.0298, r=0.1349, p=0.3127. In diabetic and non-diabetic subjects the atherogenic LDL cholesterol shows an inverse correlation with resistin, whereas the protective anti-atherosclerotic HDL cholesterol is positively correlated with resistin.

  19. Communication—Microelectrode Detection of Cholesterol Efflux from the Human Buccel Mucosa

    Science.gov (United States)

    Yu, Xiaochun; Kelley, Thomas J.; Chiel, Hillel J.; Burgess, James D.

    2016-01-01

    It has previously demonstrated that cholesterol efflux from the cell plasma membrane is increased in a mouse model of cystic fibrosis (CF) compared to a wild-type control. A noninvasive means of characterizing plasma membrane cholesterol efflux at the surface of airway tissue of CF patients is needed to extend the trends found in animal models of CF to the human disease state. Microelectrode-induced cholesterol efflux from the plasma membrane of cells at the surface of tissue is proposed as a strategy to demonstrate increased cholesterol efflux for CF in human subjects. Data demonstrating detection of cholesterol efflux from the human buccal mucosa is reported as proof-of-concept for an in vivo diagnostic assay. PMID:27546897

  20. Validity of animal models for the cholesterol-raising effects of coffee diterpenes in human subjects

    NARCIS (Netherlands)

    Roos, de B.; Sawyer, J.K.; Katan, M.B.; Rudel, L.L.

    1999-01-01

    Cafestol and kahweol, coffee lipids present in unfiltered coffee brews, potently increase LDL-cholesterol concentration in human subjects. We searched for an animal species in which cafestol similarly increases LDL-cholesterol. Such an animal model could be used subsequently as a model to study the

  1. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia.

    Science.gov (United States)

    Dugardin, Camille; Briand, Olivier; Touche, Véronique; Schonewille, Marleen; Moreau, François; Le May, Cédric; Groen, Albert K; Staels, Bart; Lestavel, Sophie

    2017-02-01

    The dyslipidemia associated with type 2 diabetes is a major risk factor for the development of atherosclerosis. Trans-intestinal cholesterol excretion (TICE) has recently been shown to contribute, together with the classical hepatobiliary route, to fecal cholesterol excretion and cholesterol homeostasis. The aim of this study was to develop an in vitro cell model to investigate enterocyte-related processes of TICE. Differentiated Caco-2/TC7 cells were grown on transwells and incubated basolaterally (blood side) with human plasma and apically (luminal side) with lipid micelles. Radioactive and fluorescent cholesterol tracers were used to investigate cholesterol uptake at the basolateral membrane, intracellular distribution and apical excretion. Our results show that cholesterol is taken up at the basolateral membrane, accumulates intracellularly as lipid droplets and undergoes a cholesterol acceptor-facilitated and progressive excretion through the apical membrane of enterocytes. The overall process is abolished at 4 °C, suggesting a biologically active phenomenon. Moreover, this trans-enterocytic retrograde cholesterol transport displays some TICE features like modulation by PCSK9 and an ABCB1 inhibitor. Finally, we highlight the involvement of microtubules in the transport of plasma cholesterol from basolateral to apical pole of enterocytes. The human Caco-2/TC7 cell line appears a good in vitro model to investigate the enterocytic molecular mechanisms of TICE, which may help to identify intestinal molecular targets to enhance reverse cholesterol transport and fight against dyslipidemia.

  2. Where does the interplay between cholesterol absorption and synthesis in the context of statin and/or ezetimibe treatment stand today?

    Science.gov (United States)

    Descamps, Olivier S; De Sutter, Johan; Guillaume, Michel; Missault, Luc

    2011-08-01

    The evidence of the different concepts underlying the interplay between cholesterol absorption and synthesis in the context of statin and ezetimibe treatment were reviewed in the light of the eight major trials where cholesterol absorption and synthesis were analyzed on a large scale using the plasma levels of precursors of cholesterol and plant sterols. The only concept supported in all studies is a significant and consistent increase of cholesterol absorption with statin (correlated with the inhibition of synthesis) and of cholesterol synthesis with ezetimibe, whereas in combination, statin and ezetimibe reduce both cholesterol synthesis and absorption. In contrast, most of the other concepts failed to be clearly proven. At baseline, the inverse relationship between cholesterol absorption and synthesis (only examined in two studies) was found to be weak. On statin treatment, four studies showed that the changes in cholesterol synthesis and absorption, contributed less than 9% to the variability in cholesterol response to statin therapy. It has not been consistently demonstrated that good absorbers/bad synthesizers are bad responders to statin (6 studies) and good responders for ezetimibe (3 studies). There is also no clear inverse correlation between LDL reduction on statin treatment and that on ezetimibe treatment. Finally, the original idea from the first pioneer study of Miettinen et al. that, the higher the baseline intestinal ability to absorb cholesterol, the lower the benefit on the clinical cardiovascular outcomes was not reproduced in the PROSPER study. In conclusion, with the exception of a reverse effect of statin and ezetimibe on absorption and synthesis, most ideas supporting the interplay between cholesterol absorption and synthesis lacked consistency between studies. At present, the use of the plasma levels of plant sterols and cholesterol precursors as markers of cholesterol absorption and synthesis is far too limited to definitively solve these

  3. Determination of cholesterol concentration in human milk samples using attenuated total reflectance Fourier transform infrared spectroscopy

    Science.gov (United States)

    Kamelska, A. M.; Pietrzak-Fiećko, R.; Bryl, K.

    2013-03-01

    Results of an inexpensive and rapid evaluation of the cholesterol concentration in human milk using ATR-FTIR techniques are presented. The FTIR spectrum of pure cholesterol was characterized and quantitatively estimated in the region between 2800 and 3200 cm-1. 125 samples at different stages of lactation were analyzed. There were no differences between the cholesterol concentrations in the samples of early (1-3 months), medium (4-6 months), and late (> 6 months) lactation stages ( p = 0.096968). The cholesterol concentration ranged from 4.30 to 21.77 mg/100 cm3. Such a broad range was due to the differences between the samples from different women ( p = 0.000184). The results indicate that ATR-FTIR has potential for rapid estimation of cholesterol concentration in human milk.

  4. Suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis.

    Science.gov (United States)

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Turley, Stephen D

    2017-01-01

    Mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) are the principal cause of Rett syndrome, a progressive neurodevelopmental disorder afflicting 1 in 10,000 to 15,000 females. Studies using hemizygous Mecp2 mouse models have revealed disruptions to some aspects of their lipid metabolism including a partial suppression of cholesterol synthesis in the brains of mature Mecp2 mutants. The present studies investigated whether this suppression is evident from early neonatal life, or becomes manifest at a later stage of development. We measured the rate of cholesterol synthesis, in vivo, in the brains of male Mecp2(-)(/y) and their Mecp2(+/y) littermates at 7, 14, 21, 28, 42 and 56 days of age. Brain weight was consistently lower in the Mecp2(-/y) mice than in their Mecp2(+/y) controls except at 7 days of age. In the 7- and 14-day-old mice there was no genotypic difference in the rate of brain cholesterol synthesis but, from 21 days and later, it was always marginally lower in the Mecp2(-/y) mice than in age-matched Mecp2(+/y) littermates. At no age was a genotypic difference detected in either the rate of fatty acid synthesis or cholesterol concentration in the brain. Cholesterol synthesis rates in the liver and lungs of 56-day-old Mecp2(-/y) mice were normal. The onset of lower rates of brain cholesterol synthesis at about the time closure of the blood brain barrier purportedly occurs might signify a disruption to mechanism(s) that dictate intracellular levels of cholesterol metabolites including oxysterols known to exert a regulatory influence on the cholesterol biosynthetic pathway. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Cholesterol selectively regulates IL-5 induced mitogen activated protein kinase signaling in human eosinophils.

    Directory of Open Access Journals (Sweden)

    Mandy E Burnham

    Full Text Available Eosinophils function contributes to human allergic and autoimmune diseases, many of which currently lack curative treatment. Development of more effective treatments for eosinophil-related diseases requires expanded understanding of eosinophil signaling and biology. Cell signaling requires integration of extracellular signals with intracellular responses, and is organized in part by cholesterol rich membrane microdomains (CRMMs, commonly referred to as lipid rafts. Formation of these organizational membrane domains is in turn dependent upon the amount of available cholesterol, which can fluctuate widely with a variety of disease states. We tested the hypothesis that manipulating membrane cholesterol content in primary human peripheral blood eosinophils (PBEos would selectively alter signaling pathways that depend upon membrane-anchored signaling proteins localized within CRMMs (e.g., mitogen activated protein kinase [MAPK] pathway, while not affecting pathways that signal through soluble proteins, like the Janus Kinase/Signal Transducer and Activator of Transcription [JAK/STAT] pathway. Cholesterol levels were increased or decreased utilizing cholesterol-chelating methyl-β-cyclodextrin (MβCD, which can either extract membrane cholesterol or add exogenous membrane cholesterol depending on whether MβCD is preloaded with cholesterol. Human PBEos were pretreated with MβCD (cholesterol removal or MβCD+Cholesterol (MβCD+Chol; cholesterol delivery; subsequent IL-5-stimulated signaling and physiological endpoints were assessed. MβCD reduced membrane cholesterol in PBEos, and attenuated an IL-5-stimulated p38 and extracellular-regulated kinase 1/2 phosphorylation (p-p38, p-ERK1/2, and an IL-5-dependent increase in interleukin-1β (IL-1β mRNA levels. In contrast, MβCD+Chol treatment elevated PBEos membrane cholesterol levels and basal p-p38, but did not alter IL-5-stimulated phosphorylation of ERK1/2, STAT5, or STAT3. Furthermore, M

  6. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels.

    Science.gov (United States)

    Weingärtner, Oliver; Bogeski, Ivan; Kummerow, Carsten; Schirmer, Stephan H; Husche, Constanze; Vanmierlo, Tim; Wagenpfeil, Gudrun; Hoth, Markus; Böhm, Michael; Lütjohann, Dieter; Laufs, Ulrich

    2017-05-01

    This double-blind, randomized, placebo-controlled, cross-over intervention-study was conducted in healthy volunteers to evaluate the effects of plant sterol ester supplemented margarine on cholesterol, non-cholesterol sterols and oxidative stress in serum and monocytes. Sixteen volunteers, average age 34 years, with no or mild hypercholesterolemia were subjected to a 4 week period of daily intake of 3g plant sterols per day supplied via a supplemented margarine on top of regular eating habits. After a wash-out period of one week, volunteers switched groups. Compared to placebo, a diet supplementation with plant sterols increased serum levels of plant sterols such as campesterol (+0.16±0.19mg/dL, p=0.005) and sitosterol (+0.27±0.18mg/dL, pcholesterol synthesis such as desmosterol (+0.05±0.07mg/dL, p=0.006) as well as lathosterol (+0.11±0.16mg/dL, p=0.012). Cholesterol serum levels, however, were not changed significantly (+18.68±32.6mg/dL, p=0.052). These findings could not be verified in isolated circulating monocytes. Moreover, there was no effect on monocyte activation and no differences with regard to redox state after plant sterol supplemented diet. Therefore, in a population of healthy volunteers with no or mild hypercholesterolemia, consumption of plant sterol ester supplemented margarine results in increased concentrations of plant sterols and cholesterol synthesis markers without affecting total cholesterol in the serum, activation of circulating monocytes or redox state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cholesterol metabolism in Huntington disease.

    Science.gov (United States)

    Karasinska, Joanna M; Hayden, Michael R

    2011-09-06

    The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

  8. 姜黄素对人肝L-02细胞胆固醇合成及转运蛋白表达的影响%Effects of Curcumin on Cholesterol Synthesis and Transport Protein Expression in human L- 02 hepatocyte

    Institute of Scientific and Technical Information of China (English)

    程静屏; 阳学风

    2011-01-01

    Objective To investigate the fatty changed human L -02 hepatocyte under the control of curcumin, to observe the effects of curcumin on cholesterol synthesis and transport. Methods MTF - assay was used to observe the inhibitory effect of curcumin on cell growth of fatty changed human liver L - 02 cells; observed the formation of lipid droplets in the cells under oil red 0 dye. detect the HMG - CoA reductase and caveolin - 1 mRNA's expression and protein expression of the hepatocytes of each group by reverse trancriptase polymerase chaim reaction( RT- PCR) and western blot analysis. Detect the intracellular and extracellular amount of total cholesterol(TC)、free cholesterol(FC) and cholesterol ester(CE) through high performance liquid chromatography (HPLC). Results Curcumin decreased both the formation of the intracellular lipid droplets and intracellular TC and CE of the fatty changed liver cells, while increased the amount of FC in the medium as well concentrationally and duration dependently. What's more, it decreased the HMG - CoA reductase mRNA expression, increased the caveolin - 1 both mRNA expression and protein expression concentrationally dependently at the same time. Conclusions The possible mechanisms of curcumin decreasing the intracellur cholestol are related to upregulation of caveolin - 1 and downregulation of HMG - CoA reductase.%目的 以正常人肝L-02细胞建立的脂肪变性肝细胞模型为研究对象,观察姜黄素对肝细胞胆固醇合成及转运的影响.方法 用MTT法观察姜黄素对脂肪变性人肝L-02细胞模型增殖的影响,用油红O染色定性观察细胞内脂滴形成情况;逆转录-多聚酶链反应(RT-PCR)半定量检测胆固醇合成限速酶HMG-CoA还原酶及转运蛋白Gaveolin-1在mRNA水平的表达;Western-blotting法检测细胞caveolin-1的表达;高效液相色谱法(HPLC)定量检测细胞内外胆固醇各组分含量.结果 姜黄素呈浓度和时间依赖性减少细胞内脂滴数量,降低

  9. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells.

    Science.gov (United States)

    Danielli, Mauro; Capiglioni, Alejo M; Marrone, Julieta; Calamita, Giuseppe; Marinelli, Raúl A

    2017-05-01

    Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mβCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  10. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans : a meta-analysis

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Katan, M.B.

    2001-01-01

    Several epidemiologic studies found no effect of egg consumption on the risk of coronary heart disease. It is possible that the adverse effect of eggs on LDL-cholesterol is offset by their favorable effect on HDL cholesterol. Objective: The objective was to review the effect of dietary cholesterol o

  11. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans : a meta-analysis

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Katan, M.B.

    2001-01-01

    Several epidemiologic studies found no effect of egg consumption on the risk of coronary heart disease. It is possible that the adverse effect of eggs on LDL-cholesterol is offset by their favorable effect on HDL cholesterol. Objective: The objective was to review the effect of dietary cholesterol

  12. Effect of cholesterol and triglycerides levels on the rheological behavior of human blood

    Science.gov (United States)

    Moreno, Leonardo; Calderas, Fausto; Sanchez-Olivares, Guadalupe; Medina-Torres, Luis; Sanchez-Solis, Antonio; Manero, Octavio

    2015-02-01

    Important public health problems worldwide such as obesity, diabetes, hyperlipidemia and coronary diseases are quite common. These problems arise from numerous factors, such as hyper-caloric diets, sedentary habits and other epigenetic factors. With respect to Mexico, the population reference values of total cholesterol in plasma are around 200 mg/dL. However, a large proportion has higher levels than this reference value. In this work, we analyze the rheological properties of human blood obtained from 20 donors, as a function of cholesterol and triglyceride levels, upon a protocol previously approved by the health authorities. Samples with high and low cholesterol and triglyceride levels were selected and analyzed by simple-continuous and linear-oscillatory shear flow. Rheometric properties were measured and related to the structure and composition of human blood. In addition, rheometric data were modeled by using several constitutive equations: Bautista-Manero-Puig (BMP) and the multimodal Maxwell equations to predict the flow behavior of human blood. Finally, a comparison was made among various models, namely, the BMP, Carreau and Quemada equations for simple shear rate flow. An important relationship was found between cholesterol, triglycerides and the structure of human blood. Results show that blood with high cholesterol levels (400 mg/dL) has flow properties fully different (higher viscosity and a more pseudo-plastic behavior) than blood with lower levels of cholesterol (tendency to Newtonian behavior or viscosity plateau at low shear rates).

  13. Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis.

    Science.gov (United States)

    Zerenturk, Eser J; Sharpe, Laura J; Ikonen, Elina; Brown, Andrew J

    2013-10-01

    3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.

  14. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: insights from the PROSPER trial

    Science.gov (United States)

    Matthan, Nirupa R.; Resteghini, Nancy; Robertson, Michele; Ford, Ian; Shepherd, James; Packard, Chris; Buckley, Brendan M.; Jukema, J. Wouter; Lichtenstein, Alice H.; Schaefer, Ernst J.

    2010-01-01

    Cholesterol homeostasis, defined as the balance between absorption and synthesis, influences circulating cholesterol concentrations and subsequent coronary heart disease (CHD) risk. Statin therapy targets the rate-limiting enzyme in cholesterol biosynthesis and is efficacious in lowering CHD events and mortality. Nonetheless, CHD events still occur in some treated patients. To address differences in outcome during pravastatin therapy (40 mg/day), plasma markers of cholesterol synthesis (desmosterol, lathosterol) and fractional cholesterol absorption (campesterol, sitosterol) were measured, baseline and on treatment, in the Prospective Study of Pravastatin in the Elderly at Risk trial participants with (cases, n = 223) and without (controls, n = 257) a CHD event. Pravastatin therapy decreased plasma LDL-cholesterol and triglycerides and increased HDL-cholesterol concentrations to a similar extent in cases and controls. Decreased concentrations of the cholesterol synthesis markers desmosterol (−12% and −11%) and lathosterol (−50% and −56%) and increased concentrations of the cholesterol absorption markers campesterol (48% and 51%) and sitosterol (25% and 26%) were observed on treatment, but the magnitude of change was similar between cases and controls. These data suggest that decreases in cholesterol synthesis in response to pravastatin treatment were accompanied by modest compensatory increases in fractional cholesterol absorption. The magnitude of these alterations were similar between cases and controls and do not explain differences in outcomes with pravastatin treatment. PMID:19578163

  15. Acyl-coenzyme A:cholesterol acyltransferase inhibitor, avasimibe, stimulates bile acid synthesis and cholesterol 7α-hydroxylase in cultured rat hepatocytes and in vivo in the rat

    NARCIS (Netherlands)

    Post, S.M.; Paul Zoeteweij, J.; Bos, M.H.A.; Wit, E.C.M. de; Havinga, R.; Kuipers, F.; Princen, H.M.G.

    1999-01-01

    Acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibitors are currently in clinical development as potential lipid-lowering and antiatherosclerotic agents. We investigated the effect of avasimibe (C1- 1011), a novel ACAT inhibitor, on bile acid synthesis and cholesterol 7α- hydroxylase in cultur

  16. Transintestinal Cholesterol Transport Is Active in Mice and Humans and Controls Ezetimibe-Induced Fecal Neutral Sterol Excretion

    NARCIS (Netherlands)

    Jakulj, Lily; van DIjk, Theo H.; de Boer, Jan Freark; Kootte, Ruud S; Schonewille, Marleen; Paalvast, Yared; Boer, Theo; Bloks, Vincent W; Boverhof, Renze; Nieuwdorp, Max; Beuers, Ulrich H W; Stroes, Erik S G; Groen, Albert K

    2016-01-01

    Except for conversion to bile salts, there is no major cholesterol degradation pathway in mammals. Efficient excretion from the body is therefore a crucial element in cholesterol homeostasis. Yet, the existence and importance of cholesterol degradation pathways in humans is a matter of debate. We qu

  17. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  18. Effect of SIRT1 regulating cholesterol synthesis in repairing retinal ganglion cells after optic nerve injury in rats

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2014-10-01

    Full Text Available AIM: To investigate the repair mechanism associated with cholesterol synthesis regulated by silent information regulator 1(SIRT1in rat model of optic nerve damage. METHODS: Preparation of optic nerve damage in 70 rats was randomly divided into normal group(10 rats, resveratrol treatment group(experimental group 30 ratsand PBS buffer control group(30 rats. The experimental group and control group was further divided into 3 subgroups(each group 10 rats, respectively. After 7, 14, 21d injected resveratrol or PBS, optic nerve injury were observed, then the rats were sacrificed. Retina was segregated; the surviving retinal ganglion cell(RGCswas counted. Dissection of optic nerve, cholesterol content of them were tested; RT-PCR was used to detect mRNA expression of SIRT1, SREBP2 and HMGCR; Western blot assay was used to test the protein expression levels of SIRT1, cholesterol regulatory element binding protein 2(SREBP2and HMGCR. RESULTS: The numbers of RGCs and cholesterol levels of rat model with optic nerve injury decreased significantly(PPPPCONCLUSION: Up-regulating the expression of SIRT1, SREBP2 and down-regulating HMGCR by resveratrol could repair the injury of optic nerve through promoting the synthesis of cholesterol in neurons and retinal ganglion cells in the repair process. SIRT1 may be as a promising new target for treatment on optic nerve damage.

  19. Primary hyperlipidemias in children: effect of plant sterol supplementation on plasma lipids and markers of cholesterol synthesis and absorption.

    Science.gov (United States)

    Guardamagna, O; Abello, F; Baracco, V; Federici, G; Bertucci, P; Mozzi, A; Mannucci, L; Gnasso, A; Cortese, C

    2011-06-01

    Plant sterols lower serum cholesterol concentration. Available data have confirmed the lipid-lowering efficacy in adults, while there is a relative dearth of data in children and almost exclusively restricted to subjects with familial hypercholesterolemia (FH). Aim of the present study was to evaluate the efficacy, tolerability and safety of plant sterol supplementation in children with different forms of primary hyperlipidemias. The effect of plant sterol consumption on plasma lipids was evaluated in 32 children with heterozygous FH, 13 children with Familial Combined Hyperlipidemia (FCH) and 13 children with Undefined Hypercholesterolemia (UH) in a 12-week open-label intervention study using plant sterol-enriched yoghurt. Plasma lipids and apolipoproteins were measured by routine methods. Markers of cholesterol synthesis (lathosterol) and absorption (campesterol and sitosterol) were measured by GC-MS. Tolerability and adherence to recommended regimen was very high. A significant reduction was observed in LDL-cholesterol in the three groups (10.7, 14.2 and 16.0% in FH, FCH and UH, respectively). Lathosterol concentrations were unchanged, reflecting a lack of increased synthesis of cholesterol. Of the two absorption markers, only sitosterol showed a slight but significant increase. Daily consumption of plant sterol dairy products favorably changes lipid profile by reducing LDL-cholesterol. To our knowledge, this is the first report of the use of plant sterols-enriched foods in treating children with primary hyperlipidemia such as FCH and UH, likely to be the most frequent form also in the young age in the western populations.

  20. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1.

    Science.gov (United States)

    Turner, Elizebeth C; Kinsella, B Therese

    2012-11-01

    Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.

  1. Have you got any cholesterol? Adults' views of human nutrition

    Science.gov (United States)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  2. Dietary Karaya Saponin and Rhodobacter capsulatus Exert Hypocholesterolemic Effects by Suppression of Hepatic Cholesterol Synthesis and Promotion of Bile Acid Synthesis in Laying Hens

    Directory of Open Access Journals (Sweden)

    Sadia Afrose

    2010-01-01

    Full Text Available This study was conducted to elucidate the mechanism underlying the hypolipidemic action of karaya saponin or Rhodobacter (R. capsulatus. A total of 40 laying hens (20-week-old were assigned into four dietary treatment groups and fed a basal diet (as a control or basal diets supplemented with either karaya saponin, R. capsulatus, or both for 60 days. The level of serum low-density-lipoprotein cholesterol and the levels of cholesterol and triglycerides in the serum, liver, and egg yolk were reduced by all the supplementations (<.05. Liver bile acid concentration and fecal concentrations of cholesterol, triacylglycerol, and bile acid were simultaneously increased by the supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus (<.05. The supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus suppressed the incorporation of 14C from 1-14C-palmitic acid into the fractions of total lipids, phospholipids, triacylglycerol, and cholesterol in the liver in vitro (<.05. These findings suggest that the hypocholesterolemic effects of karaya saponin and R. capsulatus are caused by the suppression of the cholesterol synthesis and the promotion of cholesterol catabolism in the liver.

  3. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies.

    Science.gov (United States)

    Stellaard, Frans; von Bergmann, Klaus; Sudhop, Thomas; Lütjohann, Dieter

    2017-05-01

    Regulation of cholesterol (Chol) homeostasis is controlled by three main fluxes, i.e. intestinal absorption, de novo synthesis (ChS) and catabolism, predominantly as bile acid synthesis (BAS). High serum total Chol and LDL-Chol concentrations in particular are considered risk factors and markers for the development of atherosclerosis. Pharmaceutical treatments to lower serum Chol have focused on reducing absorption or ChS and increasing BAS. Monitoring of these three parameters is complex involving isotope techniques, cholesterol balance experiments and advanced mass spectrometry based analysis methods. Surrogate markers were explored that require only one single fasting blood sample collection. These markers were validated in specific, mostly physiological conditions and during statin treatment to inhibit ChS. They were also applied under cholesterol absorption restriction, but were not validated in this condition. We retrospectively evaluated the use of serum campesterol (Camp), sitosterol (Sit) and cholestanol (Cholol) as markers for cholesterol absorption, lathosterol (Lath) as marker for ChS and 7α-hydroxycholesterol (7α-OH-Ch) and 27-hydroxycholesterol (27-OH-Ch) as markers for BAS under conditions of Chol absorption restriction. Additionally, their values were corrected for Chol concentration (R_sterol or oxysterols). Thirty-seven healthy male omnivore subjects were studied under treatments with placebo (PLAC), ezetimibe (EZE) to inhibit cholesterol absorption, simvastatin (SIMVA) to reduce cholesterol synthesis and a combination of both (EZE+SIMVA). Results were compared to those obtained in 18 pure vegetarian subjects (vegans) whose dietary Chol intake is extremely low. Relative or fractional Chol absorption (FrChA) was measured with the continuous feeding stable isotope procedure, ChS and BAS with the cholesterol balance method. The daily Chol intake (DICh) was inventoried and the daily Chol absorption (DACh) calculated. Monitoring cholesterol

  4. Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment.

    Science.gov (United States)

    Lee, Steve Seung-Young; Li, Junjie; Tai, Jien Nee; Ratliff, Timothy L; Park, Kinam; Cheng, Ji-Xin

    2015-03-24

    Undesirable side effects remain a significant challenge in cancer chemotherapy. Here we report a strategy for cancer-selective chemotherapy by blocking acyl-CoA cholesterol acyltransferase-1 (ACAT-1)-mediated cholesterol esterification. To efficiently block cholesterol esterification in cancer in vivo, we developed a systemically injectable nanoformulation of avasimibe (a potent ACAT-1 inhibitor), called avasimin. In cell lines of human prostate, pancreatic, lung, and colon cancer, avasimin significantly reduced cholesteryl ester storage in lipid droplets and elevated intracellular free cholesterol levels, which led to apoptosis and suppression of proliferation. In xenograft models of prostate cancer and colon cancer, intravenous administration of avasimin caused the concentration of avasimibe in tumors to be 4-fold higher than the IC50 value. Systemic treatment of avasimin notably suppressed tumor growth in mice and extended the length of survival time. No adverse effects of avasimin to normal cells and organs were observed. Together, this study provides an effective approach for selective cancer chemotherapy by targeting altered cholesterol metabolism of cancer cells.

  5. Heart rate variability, overnight urinary norepinephrine, and plasma cholesterol in apparently healthy human adults.

    Science.gov (United States)

    Thayer, Julian F; Fischer, Joachim E

    2013-01-20

    The aim of this study was to assess the relationship between autonomic nervous system activity as indexed by measures of heart rate variability and overnight urinary norepinephrine, and plasma cholesterol levels in a large sample of working adults. The study population comprised 611 apparently healthy employees of an airplane manufacturing plant in Southern Germany. Heart rate variability was calculated as beat-to-beat intervals over the course of one 24-hour weekday measured with an ambulatory ECG recorder. Overnight urine collection and blood samples were also obtained. We found an inverse association between indices of vagally-mediated heart rate variability and plasma levels of total cholesterol, low density lipoprotein (LDL), and the ratio of LDL to high density lipoprotein (HDL) that remained significant in multivariate models after controlling for relevant covariates including norepinephrine. Urinary norepinephrine was not significantly related to any measure of cholesterol in multivariate models. We report here for the first time, in a large sample of healthy human adults, evidence supporting the hypothesis of a clinically relevant inverse relationship between measures of plasma cholesterol and vagally-mediated heart rate variability after controlling for sympathetic nervous system activity. This suggests an important role for the vagal control of plasma cholesterol levels in cardiovascular disease. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Remnant Cholesterol Elicits Arterial Wall Inflammation and a Multilevel Cellular Immune Response in Humans.

    Science.gov (United States)

    Bernelot Moens, Sophie J; Verweij, Simone L; Schnitzler, Johan G; Stiekema, Lotte C A; Bos, Merijn; Langsted, Anne; Kuijk, Carlijn; Bekkering, Siroon; Voermans, Carlijn; Verberne, Hein J; Nordestgaard, Børge G; Stroes, Erik S G; Kroon, Jeffrey

    2017-05-01

    Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation, circulating monocytes, and bone marrow in patients with familial dysbetalipoproteinemia (FD). Arterial wall inflammation and bone marrow activity were measured using (18)F-FDG PET/CT. Monocyte phenotype was assessed with flow cytometry. The correlation between remnant levels and hematopoietic activity was validated in the CGPS (Copenhagen General Population Study). We found a 1.2-fold increase of (18)F-FDG uptake in the arterial wall in patients with FD (n=17, age 60±8 years, remnant cholesterol: 3.26 [2.07-5.71]) compared with controls (n=17, age 61±8 years, remnant cholesterol 0.29 [0.27-0.40]; Pcholesterol accumulates in human hematopoietic stem and progenitor cells coinciding with myeloid skewing. Patients with FD have increased arterial wall and cellular inflammation. These findings imply an important inflammatory component to the atherogenicity of remnant cholesterol, contributing to the increased cardiovascular disease risk in patients with FD. © 2017 American Heart Association, Inc.

  7. Transintestinal Cholesterol Transport Is Active in Mice and Humans and Controls Ezetimibe-Induced Fecal Neutral Sterol Excretion.

    Science.gov (United States)

    Jakulj, Lily; van Dijk, Theo H; de Boer, Jan Freark; Kootte, Ruud S; Schonewille, Marleen; Paalvast, Yared; Boer, Theo; Bloks, Vincent W; Boverhof, Renze; Nieuwdorp, Max; Beuers, Ulrich H W; Stroes, Erik S G; Groen, Albert K

    2016-12-13

    Except for conversion to bile salts, there is no major cholesterol degradation pathway in mammals. Efficient excretion from the body is therefore a crucial element in cholesterol homeostasis. Yet, the existence and importance of cholesterol degradation pathways in humans is a matter of debate. We quantified cholesterol fluxes in 15 male volunteers using a cholesterol balance approach. Ten participants repeated the protocol after 4 weeks of treatment with ezetimibe, an inhibitor of intestinal and biliary cholesterol absorption. Under basal conditions, about 65% of daily fecal neutral sterol excretion was bile derived, with the remainder being contributed by direct transintestinal cholesterol excretion (TICE). Surprisingly, ezetimibe induced a 4-fold increase in cholesterol elimination via TICE. Mouse studies revealed that most of ezetimibe-induced TICE flux is mediated by the cholesterol transporter Abcg5/Abcg8. In conclusion, TICE is active in humans and may serve as a novel target to stimulate cholesterol elimination in patients at risk for cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Recent advances on virtual human synthesis

    Institute of Scientific and Technical Information of China (English)

    XIA ShiHong; WANG ZhaoQi

    2009-01-01

    Virtual human is a digital representation of the geometric and behavioral property of human beings in the virtual environment generated by computer. The research goal of virtual human synthesis is to gen-erate realistic human body models and natural human motion behavior. This paper introduces the devel-opment of the related researches on these two topics, and some progresses on example based human modeling and motion synthesis, and their applications In Chinese sign language teaching, computer-aided sports training and public safety problem studying. Finally, some hot research topics in virtual human synthesis are presented.

  9. Importance of Evaluating Cell Cholesterol Influx With Efflux in Determining the Impact of Human Serum on Cholesterol Metabolism and Atherosclerosis

    Science.gov (United States)

    Weibel, Ginny L.; Drazul-Schrader, Denise; Shivers, Debra K.; Wade, Alisha N.; Rothblat, George H.; Reilly, Muredach P.; de la Llera-Moya, Margarita

    2014-01-01

    Objective Cholesterol efflux relates to cardiovascular disease but cannot predict cellular cholesterol mass changes. We asked whether influx and net flux assays provide additional insights. Approach and Results Adapt a bidirectional flux assay to cells where efflux has clinical correlates and examine the association of influx, efflux, and net flux to serum triglycerides (TGs). Apolipoprotein B–depleted (high-density lipoprotein-fraction) serum from individuals with unfavorable lipids (median [interquartile range]; high-density lipoprotein-cholesterol=39 [32–42], low-density lipoprotein-cholesterol=109 [97–137], TGs=258 [184–335] mg/dL; n=13) promoted greater ATP-binding cassette transporter A1–mediated [1,2-3H] cholesterol efflux (3.8±0.3%/4 hour versus 1.2±0.4%/4 hour; Pcholesterol=72 [58–88], low-density lipoprotein-cholesterol=111 [97–131], TGs=65 [56–69] mg/dL; n=10). Thus, high TGs associated with more ATP-binding cassette transporter A1 acceptors. Efflux of cholesterol mass (µg free cholesterol/mg cell protein per 8 hour) to serum was also higher (7.06±0.33 versus 5.83±0.48; P=0.04). However, whole sera from individuals with unfavorable lipids promoted more influx (5.14±0.65 versus 2.48±0.85; P=0.02) and lower net release of cholesterol mass (1.93±0.46 versus 3.36±0.47; P=0.04). The pattern differed when mass flux was measured using apolipoprotein B–depleted serum rather than serum. Although individuals with favorable lipids tended to have greater influx than those with unfavorable lipids, efflux to apolipoprotein B–depleted serum was markedly higher (6.81±0.04 versus 2.62±0.14; Pcholesterol mass release despite increased ATP-binding cassette transporter A1–mediated efflux in samples of individuals with high TGs/unfavorable lipids. Conclusions When considering the efficiency of serum specimens to modulate cell cholesterol content, both influx and efflux need to be measured. PMID:24202308

  10. Cholesterol metabolism and colon cancer.

    Science.gov (United States)

    Broitman, S A; Cerda, S; Wilkinson, J

    1993-01-01

    low density lipoprotein to support cellular growth, unlike normal fibroblasts. Diminished low density lipoprotein (LDL) receptor (LDL-R) activity is a significant alteration in a metabolic pathway with such fundamental ties to cellular growth and activation (via mevalonate effects on isoprenylation of G-proteins for example), that it is selected for in the development of certain tumors--among them human colonic carcinomas. It would be expected that such a loss would provide a growth advantage to the tumor cell. Preliminary investigation of this hypothesis has shown that LDL will inhibit the proliferative capacity of certain human colonic adenocarcinomas, and that these cells possess a high rate of cholesterol synthesis relative to fibroblasts.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease.

    Science.gov (United States)

    Lee-Rueckert, Miriam; Escola-Gil, Joan Carles; Kovanen, Petri T

    2016-07-01

    Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.

  12. Synthesis and biological activity of quaternary ammonium salt-type agents containing cholesterol and terpenes.

    Science.gov (United States)

    Novotná, Eva; Waisser, Karel; Kuneš, Jiří; Palát, Karel; Buchta, Vladimír; Stolaříková, Jiřina; Beckert, Rainer; Wsól, Vladimír

    2014-06-01

    New quaternary ammonium salt-type compounds with lipophilic cholesterol and terpene moieties were synthesized. The compounds showed promising antibacterial and antimycobacterial activities. Those compounds containing the cholesterol moiety showed significant activity against Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecium. On the contrary, the antimycobacterial activity increased with the presence of the terpene unit in the molecule.

  13. Mechanosensitive channel activity and F-actin organization in cholesterol-depleted human leukaemia cells.

    Science.gov (United States)

    Morachevskaya, Elena; Sudarikova, Anastasiya; Negulyaev, Yuri

    2007-04-01

    This study focuses on the functional role of cellular cholesterol in the regulation of mechanosensitive cation channels activated by stretch in human leukaemia K562 cells. The patch-clamp method was employed to examine the effect of methyl-beta-cyclodextrin (MbetaCD), a synthetic cholesterol-sequestering agent, on stretch-activated single currents. We found that cholesterol-depleting treatment with MbetaCD resulted in a suppression of the activity of mechanosensitive channels without a change in the unitary conductance. The probability that the channel was open significantly decreased after treatment with MbetaCD. Fluorescent microscopy revealed F-actin reorganization, possibly involving actin assembly, after incubation of the cells with MbetaCD. We suggest that suppression of mechanosensitive channel activation in cholesterol-depleted leukaemia cells is due to F-actin rearrangement, presumably induced by lipid raft destruction. Our observations are consistent with the notion that stretch-activated cation channels in eukaryotic cells are regulated by the membrane-cytoskeleton complex rather than by tension developed purely in the lipid bilayer.

  14. Cholesterol transport by the placenta : Placental liver X receptor activity as a modulator of fetal cholesterol metabolism?

    NARCIS (Netherlands)

    Plosch, T.; van Straten, E. M. E.; Kuipers, F.

    2007-01-01

    Cholesterol is an important sterol in mammals. Defects in cholesterol synthesis or intracellular routing have devastating consequences already in utero: the Smith-Lemli-Opitz syndrome, desmosterolosis and Niemann-Pick C I disease provide examples of severe human inherited diseases caused by mutation

  15. Effect of Recombinant Human Lecithin Cholesterol Acyltransferase Infusion on Lipoprotein Metabolism in Mice

    Science.gov (United States)

    Vaisman, Boris; Auerbach, Bruce; Krause, Brian R.; Homan, Reyn; Stonik, John; Csako, Gyorgy; Shamburek, Robert; Remaley, Alan T.

    2010-01-01

    Lecithin cholesterol acyl transferase (LCAT) deficiency is associated with low high-density lipoprotein (HDL) and the presence of an abnormal lipoprotein called lipoprotein X (Lp-X) that contributes to end-stage renal disease. We examined the possibility of using LCAT an as enzyme replacement therapy agent by testing the infusion of human recombinant (r)LCAT into several mouse models of LCAT deficiency. Infusion of plasma from human LCAT transgenic mice into LCAT-knockout (KO) mice rapidly increased HDL-cholesterol (C) and lowered cholesterol in fractions containing very-low-density lipoprotein (VLDL) and Lp-X. rLCAT was produced in a stably transfected human embryonic kidney 293f cell line and purified to homogeneity, with a specific activity of 1850 nmol/mg/h. Infusion of rLCAT intravenously, subcutaneously, or intramuscularly into human apoA-I transgenic mice showed a nearly identical effect in increasing HDL-C approximately 2-fold. When rLCAT was intravenously injected into LCAT-KO mice, it showed a similar effect as plasma from human LCAT transgenic mice in correcting the abnormal lipoprotein profile, but it had a considerably shorter half-life of approximately 1.23 ± 0.63 versus 8.29 ± 1.82 h for the plasma infusion. rLCAT intravenously injected in LCAT-KO mice crossed with human apolipoprotein (apo)A-I transgenic mice had a half-life of 7.39 ± 2.1 h and increased HDL-C more than 8-fold. rLCAT treatment of LCAT-KO mice was found to increase cholesterol efflux to HDL isolated from mice when added to cells transfected with either ATP-binding cassette (ABC) transporter A1 or ABCG1. In summary, rLCAT treatment rapidly restored the normal lipoprotein phenotype in LCAT-KO mice and increased cholesterol efflux, suggesting the possibility of using rLCAT as an enzyme replacement therapy agent for LCAT deficiency. PMID:20605907

  16. Modelling approach to simulate reductions in LDL cholesterol levels after combined intake of statins and phytosterols/-stanols in humans

    Directory of Open Access Journals (Sweden)

    Eussen Simone RBM

    2011-10-01

    Full Text Available Abstract Background To examine the effects on LDL cholesterol of the combined use of statins and phytosterols/-stanols, in vivo studies and clinical trials are necessary. However, for a better interpretation of the experimental data as well as to possibly predict cholesterol levels given a certain dosing regimen of statins and phytosterols/-stanols a more theoretically based approach is helpful. This study aims to construct a mathematical model to simulate reductions in low-density lipoprotein (LDL cholesterol in persons who combine the use of statins with a high intake of phytosterols/-stanols, e.g. by the use of functional foods. Methods and Results The proposed model includes the cholesterol pool size in the liver and serum levels of very low-density lipoprotein (VLDL cholesterol. Both an additional and a multiplicative effect of phytosterol/-stanol intake on LDL cholesterol reduction were predicted from the model. The additional effect relates to the decrease of dietary cholesterol uptake reduction, the multiplicative effect relates to the decrease in enterohepatic recycling efficiency, causing increased cholesterol elimination through bile. From the model, it was demonstrated that a daily intake of 2 g phytosterols/-stanols reduces LDL cholesterol level by about 8% to 9% on top of the reduction resulting from statin use. The additional decrease in LDL cholesterol caused by phytosterol/-stanol use at the recommended level of 2 g/d appeared to be similar or even greater than the decrease achieved by doubling the statin dose. Conclusion We proposed a simplified mathematical model to simulate the reduction in LDL cholesterol after separate and combined intake of statins and functional foods acting on intestinal (reabsorption of cholesterol or bile acids in humans. In future work, this model can be extended to include more complex (regulatory mechanisms.

  17. Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol.

    Science.gov (United States)

    Alvarez, Monica I; Glover, Luke C; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H; Walton, Eric M; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I; McClean, Colleen M; Chinh, Nguyen Tran; Medina, Marisa W; Tobin, David M; Dunstan, Sarah J; Ko, Dennis C

    2017-09-12

    Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.

  18. Small interfering RNA against transcription factor STAT6 leads to increased cholesterol synthesis in lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Richa Dubey

    Full Text Available STAT6 transcription factor has become a potential molecule for therapeutic intervention because it regulates broad range of cellular processes in a large variety of cell types. Although some target genes and interacting partners of STAT6 have been identified, its exact mechanism of action needs to be elucidated. In this study, we sought to further characterize the molecular interactions, networks, and functions of STAT6 by profiling the mRNA expression of STAT6 silenced human lung cells (NCI-H460 using microarrays. Our analysis revealed 273 differentially expressed genes after STAT6 silencing. Analysis of the gene expression data with Ingenuity Pathway Analysis (IPA software revealed Gene expression, Cell death, Lipid metabolism as the functions associated with highest rated network. Cholesterol biosynthesis was among the most enriched pathways in IPA as well as in PANTHER analysis. These results have been validated by real-time PCR and cholesterol assay using scrambled siRNA as a negative control. Similar findings were also observed with human type II pulmonary alveolar epithelial cells, A549. In the present study we have, for the first time, shown the inverse relationship of STAT6 with the cholesterol biosynthesis in lung cancer cells. The present findings are potentially significant to advance the understanding and design of therapeutics for the pathological conditions where both STAT6 and cholesterol biosynthesis are implicated viz. asthma, atherosclerosis etc.

  19. Metabolism of adrenal cholesterol in man

    Science.gov (United States)

    Borkowski, Abraham; Delcroix, Claude; Levin, Sam

    1972-01-01

    The synthesis of adrenal cholesterol, its esterification and the synthesis of the glucocorticosteroid hormones were studied in vitro on human adrenal tissue. It was found that the synthesis of adrenal cholesterol may normally be small in the zona “fasciculata,” particularly when compared with the synthesis of the glucocorticosteroid hormones, that it is several times higher in the zona “reticularis” where esterified cholesterol is less abundant, and that under ACTH stimulation it increases strikingly and proportionally to the degree of esterified adrenal cholesterol depletion. On the other hand, the relative rate of esterification as well as the concentration of free adrenal cholesterol are remarkably stable: they do not differ according to the adrenal zonation and are unaffected by ACTH. Furthermore, from a qualitative point of view, the relative proportions of Δ1 and Δ2 cholesteryl esters formed in situ are similar to those anticipated from their relative concentrations, suggesting that the characteristic fatty acid distribution of the adrenal cholesteryl esters results from an in situ esterification rather than from a selective uptake of the plasma cholesteryl esters. Besides, the in vitro esterification reveals a propensity to the formation of the most unsaturated cholesteryl esters. Regarding hydrocortisone and corticosterone, their synthesis tends to be more elevated in the zona “fasciculata.” Despite its higher cholesterol concentration the zona “fasciculata” should not therefore be viewed as a quiescent functional complement to the zona “reticularis” and the cortical distribution of glucocorticosteroid hormone synthesis is quite distinct from that of adrenal cholesterol synthesis. PMID:4338120

  20. Cholesterol homeostasis in two commonly used human prostate cancer cell-lines, LNCaP and PC-3.

    Directory of Open Access Journals (Sweden)

    James Robert Krycer

    Full Text Available BACKGROUND: Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2. This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth. METHODOLOGY/PRINCIPAL FINDINGS: After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis. In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels. CONCLUSION/SIGNIFICANCE: Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo.

  1. Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe.

    Science.gov (United States)

    Chuang, Jen-Chieh; Lopez, Adam M; Turley, Stephen D

    2017-07-01

    Esterified cholesterol (EC) and triglycerides, contained within lipoproteins taken up by cells, are hydrolysed by lysosomal acid lipase (LAL) in the late endosomal/lysosomal (E/L) compartment. The resulting unesterified cholesterol (UC) is transported via Niemann-Pick type C2 and C1 into the cytosolic compartment where it enters a putative pool of metabolically active cholesterol that is utilized in accordance with cellular needs. Loss-of-function mutations in LIPA, the gene encoding LAL, result in dramatic increases in tissue concentrations of EC, a hallmark feature of Wolman disease and cholesteryl ester storage disease (CESD). The lysosomal sequestration of EC causes cells to respond to a perceived deficit of sterol by increasing their rate of cholesterol synthesis, particularly in the liver. A similar compensatory response occurs with treatments that disrupt the enterohepatic movement of cholesterol or bile acids. Here we measured rates of cholesterol synthesis in vivo in the liver and small intestine of a mouse model for CESD given the cholesterol absorption inhibitor ezetimibe from weaning until early adulthood. Consistent with previous findings, this treatment significantly reduced the amount of EC sequestered in the liver (from 132.43±7.35 to 70.07±6.04mg/organ) and small intestine (from 2.78±0.21 to 1.34±0.09mg/organ) in the LAL-deficient mice even though their rates of hepatic and intestinal cholesterol synthesis were either comparable to, or exceeded those in matching untreated Lal(-/-) mice. These data reveal the role of intestinal cholesterol absorption in driving the expansion of tissue EC content and disease progression in LAL deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cholesterol-lowering potential in human subjects of fat from pigs fed rapeseed oil.

    Science.gov (United States)

    Sandström, B; Bügel, S; Lauridsen, C; Nielsen, F; Jensen, C; Skibsted, L H

    2000-08-01

    The possibility of achieving blood-lipid-lowering characteristics of pig fat by increasing the content of unsaturated fat in pig feed was evaluated. Three pig feeding regimens were applied: basal feed (no added fat or vitamin E), basal feed + rapeseed oil (60 g/kg feed), and basal feed + rapeseed oil (60 g/kg) + vitamin E (200 mg/kg). Meat and meat products from the three pig groups were incorporated into diets providing 86 g pig fat/10 MJ. The diets were served to twelve healthy human male subjects for 3 weeks each in a randomised crossover design. The diets prepared from pigs fed rapeseed oil had a lower content of saturated fatty acids (approximately 9 v. 11% of energy) and a higher content of polyunsaturated fatty acids (approximately 6 v. 4% of energy) than the diet prepared from pigs fed the basal feed. Diets based on fat from pigs fed the rapeseed oil resulted in significantly lower (approximately 4%, P = 0.019) total serum cholesterol concentration compared with the diet from pigs fed the basal feed. No differences were observed in LDL-, HDL- or VLDL-cholesterol, or in triacylglycerol or VLDL-triacylglycerol concentrations. Addition of vitamin E to the pig feed resulted in only a minor increase in vitamin E content in the human subjects' diet and the vitamin E content was low in all three pig diets. Plasma vitamin E concentration in the human subjects at the end of the period with diets from pigs fed rapeseed oil without vitamin E was significantly lower (P = 0.04) than in the other two diet periods. In conclusion, an increased content of rapeseed oil in pig feed changes the fatty acid composition of the pig fat in a way that has a potential to reduce blood cholesterol concentrations in human subjects. However, intake of pig fat with a higher content of unsaturated fatty acids needs to be matched by a higher dietary intake of vitamin E.

  3. Altered lipid metabolism in apolipoprotein E-deficient mice does not affect cholesterol balance across the liver

    NARCIS (Netherlands)

    Kuipers, F; vanRee, JM; Hofker, MH; Wolters, H; Veld, GI; Havinga, R; Vonk, RJ; Princen, HMG; Havekes, LM

    Adaptation of cholesterol and bile acid synthesis and of biliary cholesterol secretion represent key metabolic responses to maintain cholesterol homeostasis and have been suggested to be influenced by apolipoprotein E (apoE) phenotype in humans, We have investigated hepatic metabolism and secretion

  4. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides.

    Science.gov (United States)

    Qureshi, Rashid Nazir; Kok, Wim Th; Schoenmakers, Peter J

    2009-11-03

    A method based on Asymmetric Flow Field-Flow Fractionation (AF4) was developed to separate different types of lipoproteins from human serum. The emphasis in the method optimization was on the possibilities to characterize the largest lipoprotein fractions (LDL and VLDL), which is usually not possible with the size-exclusion chromatography methods applied in routine analysis. Different channel geometries and flow programs were tested and compared. The use of a short fractionation channel was shown to give less sample dilution at the same fractionation power compared to a conventional, long channel. Different size selectivities were obtained with an exponential decay and a linear cross flow program. The ratio of the UV absorption signal to the light scattering signal was used to validate the relation between retention time and size of the fractionated particles. An experimental setup was developed for the simultaneous determination of the cholesterol and triglycerides distribution over the lipoprotein fractions, based on enzymatic reactions followed by UV detection at 500 nm. Coiled and knitted PTFE tubing reactors were compared. An improved peak sharpness and sensitivity were observed with the knitted tubing reactor. After optimization of the experimental conditions a satisfactory linearity and precision (2-3% rsd for cholesterol and 5-6% rsd for triglycerides) were obtained. Finally, serum samples, a pooled sample from healthy volunteers and samples of sepsis patients, were analyzed with the method developed. Lipoprotein fractionation and cholesterol and triglyceride distributions could be correlated with the clinical background of the samples.

  5. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Rashid Nazir [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands); Kok, Wim Th., E-mail: W.Th.Kok@uva.nl [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands); Schoenmakers, Peter J. [Polymer-Analysis Group, van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam (Netherlands)

    2009-11-03

    A method based on Asymmetric Flow Field-Flow Fractionation (AF4) was developed to separate different types of lipoproteins from human serum. The emphasis in the method optimization was on the possibilities to characterize the largest lipoprotein fractions (LDL and VLDL), which is usually not possible with the size-exclusion chromatography methods applied in routine analysis. Different channel geometries and flow programs were tested and compared. The use of a short fractionation channel was shown to give less sample dilution at the same fractionation power compared to a conventional, long channel. Different size selectivities were obtained with an exponential decay and a linear cross flow program. The ratio of the UV absorption signal to the light scattering signal was used to validate the relation between retention time and size of the fractionated particles. An experimental setup was developed for the simultaneous determination of the cholesterol and triglycerides distribution over the lipoprotein fractions, based on enzymatic reactions followed by UV detection at 500 nm. Coiled and knitted PTFE tubing reactors were compared. An improved peak sharpness and sensitivity were observed with the knitted tubing reactor. After optimization of the experimental conditions a satisfactory linearity and precision (2-3% rsd for cholesterol and 5-6% rsd for triglycerides) were obtained. Finally, serum samples, a pooled sample from healthy volunteers and samples of sepsis patients, were analyzed with the method developed. Lipoprotein fractionation and cholesterol and triglyceride distributions could be correlated with the clinical background of the samples.

  6. Mechanism and physiologic significance of the suppression of cholesterol esterification in human interstitial fluid

    Directory of Open Access Journals (Sweden)

    Norman Eric Miller

    2016-07-01

    Full Text Available Cholesterol esterification in high density lipoproteins (HDLs by lecithin:cholesterol acyltransferase (LCAT promotes unesterified cholesterol (UC transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the endogenous cholesterol esterification rate (ECER in lymph is only five per cent of that in plasma, we have now explored the underlying mechanism. In peripheral lymph from 20 healthy men, LCAT concentration, LCAT activity (assayed using an optimized substrate, and LCAT specific activity averaged respectively 11.8, 10.3, and 84.9 per cent of plasma values. When recombinant human LCAT was added to lymph, the increments in enzyme activity were similar to those when LCAT was added to plasma. Addition of apolipoprotein AI (apo AI, fatty acid-free albumin, Intralipid, or the d<1.006 g/ml plasma fraction had no effect on ECER. During incubation of lymph plus plasma, the ECER was similar to that observed with buffer plus plasma. When lymph was added to heat-inactivated plasma, the ECER was 11-fold greater than with lymph plus buffer. Addition of discoidal proteoliposomes of apo AI and phosphatidycholine (PC to lymph increased ECER ten-fold, while addition of apo AI/PC/UC discs did so by only six-fold. We conclude that the low ECER in lymph is due to a property of the HDLs, seemingly substrate inhibition of LCAT by excess cell-derived UC. This is reversed when lymph enters plasma, consequent upon redistribution of UC from lymph HDLs to plasma lipoproteins.

  7. Steroid synthesis by primary human keratinocytes; implications for skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Michael, Anthony E. [Centre for Developmental and Endocrine Signalling, Academic Section of Obstetrics and Gynaecology, Division of Clinical Developmental Sciences, 3rd Floor, Lanesborough Wing, St. George' s, University of London, Cranmer Terrace, Tooting, London SW17 0RE (United Kingdom); Jaulim, Adil [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Bhogal, Ranjit [Life Science, Unilever R and D Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Burrin, Jacky M. [Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ (United Kingdom); Philpott, Michael P. [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom)

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  8. Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling

    Science.gov (United States)

    Urlep, Žiga; Lorbek, Gregor; Perše, Martina; Jeruc, Jera; Juvan, Peter; Matz-Soja, Madlen; Gebhardt, Rolf; Björkhem, Ingemar; Hall, Jason A.; Bonneau, Richard; Littman, Dan R.; Rozman, Damjana

    2017-01-01

    Development of mice with hepatocyte knockout of lanosterol 14α-demethylase (HCyp51‑/‑) from cholesterol synthesis is characterized by the progressive onset of liver injury with ductular reaction and fibrosis. These changes begin during puberty and are generally more aggravated in the knockout females. However, a subgroup of (pre)pubertal knockout mice (runts) exhibits a pronounced male prevalent liver dysfunction characterized by downregulated amino acid metabolism and elevated Casp12. RORC transcriptional activity is diminished in livers of all runt mice, in correlation with the depletion of potential RORC ligands subsequent to CYP51 disruption. Further evidence for this comes from the global analysis that identified a crucial overlap between hepatic Cyp51‑/‑ and Rorc‑/‑ expression profiles. Additionally, the reduction in RORA and RORC transcriptional activity was greater in adult HCyp51‑/‑ females than males, which correlates well with their downregulated amino and fatty acid metabolism. Overall, we identify a global and sex-dependent transcriptional de-regulation due to the block in cholesterol synthesis during development of the Cyp51 knockout mice and provide in vivo evidence that sterol intermediates downstream of lanosterol may regulate the hepatic RORC activity.

  9. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase

    Institute of Scientific and Technical Information of China (English)

    Russell A DeBose-Boyd

    2008-01-01

    3Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate,an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids.The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism.Here,Ⅰwill discuss recent advances that shed light on one mechanism for control of reductase,which involves rapid degradation of the enzyme.Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2.Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78,which initiates ubiquitination of reductase.This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes.Thus,sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).

  10. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Zocher, Michael; Zhang, Cheng; Rasmussen, Søren Gøgsig Faarup;

    2012-01-01

    the kinetic, energetic, and mechanical stability of almost every structural segment at sufficient magnitude to alter the structure and functional relationship of β(2)AR. One exception was the structural core segment of β(2)AR, which establishes multiple ligand binding sites, and its properties were...... to quantify the mechanical strength and flexibility, conformational variability, and kinetic and energetic stability of structural segments stabilizing the human β(2)-adrenergic receptor (β(2)AR) in the absence and presence of the cholesterol analog cholesteryl hemisuccinate (CHS). CHS considerably increased...

  11. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...... suggest that cholesterol matrix formation may play a pathogenic role in atherosclerotic inflammation, and they indicate a mechanism by which bacteria and/or bacterial products may play a role in processes leading to arteriosclerosis....

  12. Cholesterol crystallization in human atherosclerosis is triggered in smooth muscle cells during the transition from fatty streak to fibroatheroma.

    Science.gov (United States)

    Ho-Tin-Noé, Benoît; Vo, Sophie; Bayles, Richard; Ferrière, Stephen; Ladjal, Hayette; Toumi, Sondes; Deschildre, Catherine; Ollivier, Véronique; Michel, Jean-Baptiste

    2017-04-01

    Recent studies have shown that in addition to being major constituents of the atheromatous core, solid cholesterol crystals (CCs) promote atherosclerotic lesion development and rupture by causing mechanical damage and exerting cytotoxic and pro-inflammatory effects. These findings suggest that targeting CCs might represent a therapeutic strategy for plaque stabilization. However, little is known about how cholesterol crystallization is initiated in human atherothrombotic disease. Here, we investigated these mechanisms. We performed a thorough immunohistological analysis of non-embedded, minimally processed human aortic tissues, combining polarized light and fluorescence microscopy. We found that CC formation was initiated during the fatty streak to fibroatheroma transition in tight association with the death of intralesional smooth muscle cells (SMCs). Cholesterol-loaded human SMCs were capable of producing CCs in vitro, a process that was enhanced by type I collagen and by inhibition of autophagy and cholesterol esterification. The fibrous transition, which was characterized by increased type I collagen expression, was associated with changes in the expression of autophagy and cholesterol flux-related genes, including a decrease in the autophagic adapter p62 and an increase in the cholesterol intracellular transporter Niemann-Pick C1. Collagen was identified as a potent inducer of these changes in SMCs. Collagen-induced changes in cholesterol metabolism and autophagy flux in smooth muscle foam cells at the fibrolipid transition likely contribute to initiate cholesterol crystallization in human atherosclerosis. Also, our data are in support of a protective role of autophagy against CC formation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Synthesis, Photophysical Characterization, and Gelation Studies of a Stilbene-Cholesterol Derivative

    Science.gov (United States)

    Geiger, H. Christina; Geiger, David K.; Baldwin, Christine

    2006-01-01

    Organogels are low molar mass organic compounds with the ability to immobilize an incredible quantity of solvent and fibrous aggregation of these compounds formed by noncovalent interaction usually involves hydrogen bonding. For stilbene-cholesterol based gelators, the driving force for molecular aggregation are weak van der Waal interactions…

  14. Familial combined hyperlipidemia is associated with alterations in the cholesterol synthesis pathway

    Science.gov (United States)

    Familial combined hyperlipidemia (FCH) is a common familial lipid disorder characterized by increases in plasma total cholesterol, triglyceride, and apolipoprotein B-100 levels. In light of prior metabolic and genetic research, our purpose was to ascertain whether FCH cases had significant abnormali...

  15. Transitional features in human atherosclerosis. Intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks.

    Science.gov (United States)

    Guyton, J. R.; Klemp, K. F.

    1993-01-01

    The possible transition from a subset of fatty streaks to fibrous plaques in human atherosclerosis has long been postulated, but transitional features in lesions have rarely been demonstrated. We examined human aortic fatty streaks to determine whether significant tendencies toward intimal thickening and toward deep extracellular lipid deposition might be found. To provide accurate ultrastructural assessment of lipid, tissues were processed by new electron microscopic cytochemical techniques. Unilateral fatty streaks exhibited a 60% increase in intimal thickness when compared to contralateral control tissue. Fat droplets in intimal cells accounted for approximately half of the increase; nonfat portions of cells and extracellular matrix accounted for the remainder. Six of 32 fatty streaks (19%) contained cholesterol clefts, which were found in the musculo-elastic (deep) layer of the intima or in the tunica media. Volume fractions occupied by cells in deep intima were reduced when cholesterol clefts were evident, suggesting loss of cells in early core regions. Light and electron microscopy showed structures consistent with lipid-rich core regions in lesions with cholesterol clefts and in a few lesions without cholesterol clefts. The findings of intimal thickening, core region formation, and disappearance of intimal cells constitute new evidence that some fatty streaks are progressive lesions and sites of eventual fibrous plaque development. The findings also suggest that the lipid-rich core region does not originate primarily from the debris of dead foam cells in the superficial intima, but instead arises from lipids accumulating gradually in the extracellular matrix of the deep intima. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:8238260

  16. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    Science.gov (United States)

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  17. Age-associated changes in integral cholesterol and cholesterol sulfate concentrations in human scalp hair and finger nail clippings.

    Science.gov (United States)

    Brosche, T; Dressler, S; Platt, D

    2001-04-01

    In contrast to surface lipids originating from the sebaceous glands, membrane-forming integral lipids occur in keratinized tissues of skin, and skin appendages like fingernail plates or scalp hair. After removal of lipids of sebaceous origin by exhaustive solvent extraction, lyophilizing and hydrolyzing fingernail plate and scalp hair samples, fractions of integral cholesterol (CH) and cholesterol sulfate (CS) were quantified using gas chromatography. We studied these bound lipids and the serum lipids of 70 healthy subjects, aged 20.1 to 92.0 years. We observed higher amounts of CS in hair clippings of men than of women (775+/-241 vs 662+/-239 nmol/g hair, respectively). The highest amounts of CS were found in men with serum LDL-CH > 4.14 mmol/L; this subgroup also showed the highest CH values in fingernail clippings (2293+/-621 nmol/g nail). However, analysis of integral lipids of hair and fingernail plate clippings had little significance in detecting hypercholesterolemia in normal persons. An increase in integral CH levels in fingernail clippings with donor age was noted, independently of variations in serum CH or LDL-CH. This correlation proved to be significant in men (R=0.43), but not in women (R=0.38). In contrast, in women but not in men we found donor age correlated with internal CH of hair samples (R=0.43) and with CS of nail plates (R=-0.59), independently of serum CH or LDL-CH variations. This age-dependent decrease in CS levels might explain the previously observed higher incidence of brittle nails in women. Obviously, the metabolism of internal lipids CH and CS in fingernail and scalp hair differs between genders, and shows age-associated changes.

  18. Simultaneous determination of oxysterols, cholesterol and 25-hydroxy-vitamin D3 in human plasma by LC-UV-MS.

    Directory of Open Access Journals (Sweden)

    Rohini Narayanaswamy

    Full Text Available Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers.A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated.Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S-, 25-, 27-, 7α-hydroxycholesterol (HC and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis.The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and may serve as potential

  19. The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.

    Science.gov (United States)

    Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

    2011-06-01

    Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies.

  20. Putative cholesterol-binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5.

    Science.gov (United States)

    Zhukovsky, Mikhail A; Lee, Po-Hsien; Ott, Albrecht; Helms, Volkhard

    2013-04-01

    Using molecular docking, we identified a cholesterol-binding site in the groove between transmembrane helices 1 and 7 near the inner membrane-water interface of the G protein-coupled receptor CXCR4, a coreceptor for HIV entry into cells. In this docking pose, the amino group of lysine K67 establishes a hydrogen bond with the hydroxyl group of cholesterol, whereas tyrosine Y302 stacks with cholesterol by its aromatic side chain, and a number of residues form hydrophobic contacts with cholesterol. Sequence alignment showed that a similar putative cholesterol-binding site is also present in CCR5, another HIV coreceptor. We suggest that the interaction of cholesterol with these putative cholesterol-binding sites in CXCR4 and CCR5 is responsible for the presence of these receptors in lipid rafts, for the effect of cholesterol on their conformational stability and function, and for the role that cell cholesterol plays in the cell entry of HIV strains that use these membrane proteins as coreceptors. We propose that mutations of residues that are involved in cholesterol binding will make CXCR4 and CCR5 insensitive to membrane cholesterol content. Cholesterol-binding sites in HIV coreceptors are potential targets for steroid drugs that bind to CXCR4 and CCR5 with higher binding affinity than cholesterol, but do not stabilize the native conformation of these proteins.

  1. Synthesis, characterization and antioxidant activities of Schiff bases are of cholesterol

    Directory of Open Access Journals (Sweden)

    Madasamy Kumar

    2017-01-01

    Full Text Available A series of new cholesterol based Schiff base derivatives, namely cholesteryl-n-(4-((E-(4′-cyanobiphenyl-4-yliminomethylphenoxyalkanoate (3a–j have been synthesized and characterized by IR, NMR and mass spectral studies. In vitro antioxidant activities of these compounds were evaluated against super oxide anion radical, nitric oxide radical, DPPH radical and hydrogen peroxide and were compared with standard natural antioxidant, ascorbic acid. Our results reveal that these compounds exhibit excellent radical scavenging activities.

  2. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Rest Richard F

    2006-06-01

    Full Text Available Abstract Background Bacillus anthracis is an animal and human pathogen whose virulence is characterized by lethal and edema toxin, as well as a poly-glutamic acid capsule. In addition to these well characterized toxins, B. anthracis secretes several proteases and phospholipases, and a newly described toxin of the cholesterol-dependent cytolysin (CDC family, Anthrolysin O (ALO. Results In the present studies we show that recombinant ALO (rALO or native ALO, secreted by viable B. anthracis, is lethal to human primary polymorphonuclear leukocytes (PMNs, monocytes, monocyte-derived macrophages (MDMs, lymphocytes, THP-1 monocytic human cell line and ME-180, Detroit 562, and A549 epithelial cells by trypan blue exclusion or lactate dehydrogenase (LDH release viability assays. ALO cytotoxicity is dose and time dependent and susceptibility to ALO-mediated lysis differs between cell types. In addition, the viability of monocytes and hMDMs was assayed in the presence of vegetative Sterne strains 7702 (ALO+, UT231 (ALO-, and a complemented strain expressing ALO, UT231 (pUTE544, and was dependent upon the expression of ALO. Cytotoxicity of rALO is seen as low as 0.070 nM in the absence of serum. All direct cytotoxic activity is inhibited by the addition of cholesterol or serum concentration as low as 10%. Conclusion The lethality of rALO and native ALO on human monocytes, neutrophils, macrophages and lymphocytes supports the idea that ALO may represent a previously unidentified virulence factor of B. anthracis. The study of other factors produced by B. anthracis, along with the major anthrax toxins, will lead to a better understanding of this bacterium's pathogenesis, as well as provide information for the development of antitoxin vaccines for treating and preventing anthrax.

  3. Cholesterol Test

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Cholesterol Share this page: Was this page helpful? Also known as: Blood Cholesterol Formal name: Total Cholesterol Related tests: HDL Cholesterol , ...

  4. What's Cholesterol?

    Science.gov (United States)

    ... los dientes Video: Getting an X-ray What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? Print A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  5. What's Cholesterol?

    Science.gov (United States)

    ... Room? What Happens in the Operating Room? What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? A A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  6. The Effects of Biopolymer Encapsulation on Total Lipids and Cholesterol in Egg Yolk during in Vitro Human Digestion

    Directory of Open Access Journals (Sweden)

    Si-Kyung Lee

    2013-08-01

    Full Text Available The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract.

  7. Synthesis and QSAR Study of Some HDL Cholesterol Increasing Quinazolinone Derivatives

    Directory of Open Access Journals (Sweden)

    M. B. Deshmukh

    2004-01-01

    Full Text Available We describe here an easy and efficient method to obtain S-alkylated derivatives of thio-quinazolinone using different alkylating agents via a solvent-free microwave-assisted method. The alkylated thio quinazolinones were further sequentially condensed with hydrazine hydrate and different aromatic aldehydes to get the hydrazones, which were studied for QSAR. The synthesized compounds were subjected to a prediction of biological activities. A software application (PASS was used for this purpose. The relationship between structure and different biological activities was studied and the different derivatives were recommended for the screening of some specific activities like anti-tuberculosic, anti-mycobacterial and HDL cholesterol increasing activities.

  8. Two-compartment model as a teaching tool for cholesterol homeostasis.

    Science.gov (United States)

    Wrona, Artur; Balbus, Joanna; Hrydziuszko, Olga; Kubica, Krystian

    2015-12-01

    Cholesterol is a vital structural and functional molecule in the human body that is only slightly soluble in water and therefore does not easily travels by itself in the bloodstream. To enable cholesterol's targeted delivery to cells and tissues, it is encapsulated by different fractions of lipoproteins, complex particles containing both proteins and lipids. Maintaining cholesterol homeostasis is a highly regulated process with multiple factors acting at both molecular and tissue levels. Furthermore, to regulate the circulatory transport of cholesterol in lipoproteins, the amount of cholesterol present depends on and is controlled by cholesterol dietary intake, de novo synthesis, usage, and excretion; abnormal and/or unbalanced cholesterol levels have been shown to lead to severe outcomes, e.g., cardiovascular diseases. To investigate cholesterol transport in the circulatory system, we have previously developed a two-compartment mathematical model. Here, we show how this model can be used as a teaching tool for cholesterol homeostasis. Using the model and a hands-on approach, students can familiarize themselves with the basic components and mechanisms behind balanced cholesterol circulatory transport as well as investigate the consequences of and countermeasures to abnormal cholesterol levels. Among others, various treatments of high blood cholesterol levels can be simulated, e.g., with commonly prescribed de novo cholesterol synthesis inhibitors.

  9. Apolipoprotein E competitively inhibits receptor-dependent low density lipoprotein uptake by the liver but has no effect on cholesterol absorption or synthesis in the mouse.

    Science.gov (United States)

    Woollett, L A; Osono, Y; Herz, J; Dietschy, J M

    1995-01-01

    This study examines the question of whether apolipoprotein E (apoE) alters steady-state concentrations of plasma cholesterol carried in low density lipoproteins (LDL-C) by acting as a competitive inhibitor of hepatic LDL uptake or by altering the rate of net cholesterol delivery from the intestinal lumen to the liver. To differentiate between these two possibilities, rates of cholesterol absorption and synthesis and the kinetics of hepatic LDL-C transport were measured in vivo in mice with either normal (apoE+/+) or zero (apoE-/-) levels of circulating apoE. Rates of cholesterol absorption were essentially identical in both genotypes and equaled approximately 44% of the daily dietary load of cholesterol. This finding was consistent with the further observation that the rates of cholesterol synthesis in the liver (approximately 2,000 nmol/h) and extrahepatic tissues (approximately 3,000 nmol/h) were also essentially identical in the two groups of mice. However, the apparent Michaelis constant for receptor-dependent hepatic LDL-C uptake was markedly lower in the apoE-/- mice (44 +/- 4 mg/dl) than in the apoE+/+ animals (329 +/- 77 mg/dl) even though the maximal transport velocity for this uptake process was essentially the same (approximately 400 micrograms/h per g) in the two groups of mice. These studies, therefore, demonstrate that apoE-containing lipoproteins can act as potent competitive inhibitors of hepatic LDL-C transport and so can significantly increase steady-state plasma LDL-C levels. This apolipoprotein plays no role, however, in the regulation of cholesterol absorption, sterol biosynthesis, or hepatic LDL receptor number, at least in the mouse. PMID:8618929

  10. Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels.

    Science.gov (United States)

    Ma, Weilie; Ding, Hang; Gong, Xiaohua; Liu, Zhen; Lin, Yalin; Zhang, Zhizhen; Lin, Guorong

    2015-04-01

    Sterol regulatory element-binding proteins (SREBPs) regulate homeostasis of LDL, HDL and triglycerides. This study was aimed to determine if inhibition of SREBPs by methyl protodioscin (MPD) regulates downstream gene and protein expressions of lipid metabolisms. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. The underlying mechanisms for the effects is that MPD inhibits the transcription of SREBP1c and SREBP2, and decreases levels of microRNA 33a/b hosted in the introns of SREBPs, which leads to reciprocally increase ABCA1 levels. In HepG2 cells, MPD shows the same effects as these observed in THP-1 macrophages. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis. MPD further promotes LDL receptor through reducing the PCSK9 level. Collectively, the study demonstrates that MPD potentially increase HDL cholesterol while reducing LDL cholesterol and triglycerides. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. The activation of cultured keratinocytes by cholesterol depletion during reconstruction of a human epidermis is reminiscent of monolayer cultures.

    Science.gov (United States)

    De Vuyst, Évelyne; Giltaire, Séverine; Lambert de Rouvroit, Catherine; Chrétien, Aline; Salmon, Michel; Poumay, Yves

    2015-05-01

    Transient cholesterol depletion from plasma membranes of human keratinocytes has been shown to reversibly activate signalling pathways in monolayer cultures. Consecutive changes in gene expression have been characterized in such conditions and were interestingly found to be similar to transcriptional changes observed in keratinocytes of atopic dermatitis (AD) patients. As an inflammatory skin disease, AD notably results in altered histology of the epidermis associated with a defective epidermal barrier. To further investigate whether the activation of keratinocytes obtained by cholesterol depletion could be responsible for some epidermal alterations reported in AD, this study was undertaken to analyse cholesterol depletion in stratified cultures of keratinocytes, i.e. a reconstructed human epidermis (RHE). RHE contains heterogeneous populations of keratinocytes, either proliferating or progressively differentiating and stratifying towards the creation of a cornified barrier. Cholesterol depletion induced in this model was found reversible and resulted in activation of signalling pathways similar to those previously identified in monolayers. In addition, selected changes in the expression of several genes suggested that keratinocytes in RHE respond to cholesterol depletion as monolayers. However, preserved histology and barrier function indicate that some additional activation, likely from the immune system, is required to obtain epidermal alterations such as the ones found in AD.

  12. ALTERATION OF CHOLESTEROL SULFATE IN HUMAN SERA DURING THE COURSE OF PREGNANCY

    Institute of Scientific and Technical Information of China (English)

    林蓓; 张淑兰; 岩森正男

    2004-01-01

    Objective To determine the concentrations of cholesterol sulfate (CS) in human sera and placental villi during the course of pregnancy. And to analyze its inhibitory activity on thrombin and further characterize the functional significance of CS. Methods The concentrations of CS were determined by thin-layer chromatography (TLC) on 60 cases of normal pregnant women and 30 cases of normal placental villi. The effect of CS in human sera on the activity of thrombin was analyzed. Results The concentrations of CS in human sera gradually increased from the first to third trimester of gestation with a correlation coefficient of 0.69, and a correlation between the concentration of CS and weeks of gestation (P <0.01 ). CS was also contained in the placental villi, and its concentrations at the second and third trimester of gestations were 4. 7 and 6. 2-fold of that at the first trimester of gestation. CS inhibited the activity of thrombin. Conclusion Placental CS is one of the sources of CS in the serum, probably by shedding. From the observation that CS inhibited the activity of thrombin, the increased expression of CS may play an important role in the regulation of blood coagulation during the course of pregnancy.

  13. Regulation of cholesterol homeostasis.

    Science.gov (United States)

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K

    2013-04-10

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  14. Streptococcal Serum Opacity Factor Increases Hepatocyte Uptake of Human Plasma High Density Lipoprotein-Cholesterol1

    Science.gov (United States)

    Gillard, Baiba K.; Rosales, Corina; Pillai, Biju K.; Lin, Hu Yu; Courtney, Harry S.; Pownall, Henry J.

    2010-01-01

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM), that contains the cholesterol esters (CE) of up to ~400,000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. [3H]CE uptake by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was respectively 2.4 and 4.5 times faster than from control HDL. CERM-[3H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[3H]CE uptake by both receptors. RAP and heparin inhibit CERM-[3H]CE but not HDL-[3H]CE uptake thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase hepatic disposal of plasma cholesterol in a way that is therapeutically useful. PMID:20879789

  15. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit.

    Science.gov (United States)

    Park, Seong-Hwan; Kim, Juil; Yu, Mira; Park, Jae-Hong; Kim, Yong Sik; Moon, Yuseok

    2016-11-18

    Patients with chronic intestinal ulcerative diseases, such as inflammatory bowel disease, tend to exhibit abnormal lipid profiles, which may affect the gut epithelial integrity. We hypothesized that epithelial cholesterol depletion may trigger inflammation-checking machinery via cholesterol sentinel signaling molecules whose disruption in patients may aggravate inflammation and disease progression. In the present study, sterol regulatory element-binding protein 2 (SREBP2) as the cholesterol sentinel was assessed for its involvement in the epithelial inflammatory responses in cholesterol-depleted enterocytes. Patients and experimental animals with intestinal ulcerative injuries showed suppression in epithelial SREBP2. Moreover, SREBP2-deficient enterocytes showed enhanced pro-inflammatory signals in response to inflammatory insults, indicating regulatory roles of SREBP2 in gut epithelial inflammation. However, epithelial cholesterol depletion transiently induced pro-inflammatory chemokine expression regardless of the well known pro-inflammatory nuclear factor-κB signals. In contrast, cholesterol depletion also exerts regulatory actions to maintain epithelial homeostasis against excessive inflammation via SREBP2-associated signals in a negative feedback loop. Mechanistically, SREBP2 and its induced target EGR-1 were positively involved in induction of peroxisome proliferator-activated receptor γ (PPARγ), a representative anti-inflammatory transcription factor. As a crucial target of the SREBP2-EGR-1-PPARγ-associated signaling pathways, the mRNA stabilizer, human antigen R (HuR) was retained in nuclei, leading to reduced stability of pro-inflammatory chemokine transcripts. This mechanistic investigation provides clinical insights into protective roles of the epithelial cholesterol deficiency against excessive inflammatory responses via the SREBP2-HuR circuit, although the deficiency triggers transient pro-inflammatory signals. © 2016 by The American Society for

  16. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Sarkanen, Jertta-Riina; Nykky, Jonna; Siikanen, Jutta; Selinummi, Jyrki; Ylikomi, Timo; Jalonen, Tuula O

    2007-09-01

    Synaptic vesicle formation, vesicle activation and exo/endocytosis in the pre-synaptic area are central steps in neuronal communication. The formation and localization of synaptic vesicles in human SH-SY5Y neuroblastoma cells, differentiated with 12-o-tetradecanoyl-phorbol-13-acetate, dibutyryl cyclic AMP, all-trans-retinoic acid (RA) and cholesterol, was studied by fluorescence microscopy and immunocytochemical methods. RA alone or together with cholesterol, produced significant neurite extension and formation of cell-to-cell contacts. Synaptic vesicle formation was followed by anti-synaptophysin (SypI) and AM1-43 staining. SypI was only weakly detected, mainly in cell somata, before 7 days in vitro, after which it was found in neurites. Depolarization of the differentiated cells with high potassium solution increased the number of fluorescent puncta, as well as SypI and AM1-43 co-localization. In addition to increase in the number of synaptic vesicles, RA and cholesterol also increased the number and distribution of lysosome-associated membrane protein 2 labeled lysosomes. RA-induced Golgi apparatus fragmentation was partly avoided by co-treatment with cholesterol. The SH-SY5Y neuroblastoma cell line, differentiated by RA and cholesterol and with good viability in culture, is a valuable tool for basic studies of neuronal metabolism, specifically as a model for dopaminergic neurons.

  17. About Cholesterol

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More About Cholesterol Updated:Apr 3,2017 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  18. Cholesterol Levels

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/cholesterollevels.html Cholesterol Levels To use the sharing features on this page, please enable JavaScript. What is a Cholesterol Test? Cholesterol is a waxy, fat-like substance ...

  19. Marrubium vulgare extract inhibits human-LDL oxidation and enhances HDL-mediated cholesterol efflux in THP-1 macrophage.

    Science.gov (United States)

    Berrougui, Hicham; Isabelle, Maxim; Cherki, Mounia; Khalil, Abdelouahed

    2006-12-14

    The objective of the present study was to elucidate the beneficial properties of aqueous extracts of Marrubium vulgare (AEM) towards cardiovascular disease by protecting human-LDL against lipid peroxidation and promoting HDL-mediated cholesterol efflux. Human-LDL were oxidised by incubation with CuSO(4) in the presence of increased concentrations of AEM (0-100 microg/ml). LDL lipid peroxidation was evaluated by conjugated diene formation, vitamin E disappearance as well as LDL-electrophoretic mobility. HDL-mediated cholesterol efflux assay was carried out in human THP-1 macrophages. Incubation of LDL with AEM significantly prolonged the lag phase (P=0.014), lowered the progression rate of lipid peroxidation (P=0.004), reduced the disappearance of vitamin E and the electrophoretic mobility in a dose-dependent manner. Also, incubation of HDL with AEM significantly increased HDL-mediated cholesterol efflux from THP-1 macrophages implicating an independent ATP binding cassette A1 (ABCA1) pathways. Our findings suggest that M. vulgare provides a source of natural antioxidants, which inhibit LDL oxidation and enhance reverse cholesterol transport and thus can prevent cardiovascular diseases development. These antioxidant properties increase the anti-atherogenic potential of HDL.

  20. A Cholesterol-Sensitive Regulator of the Androgen Receptor

    Science.gov (United States)

    2010-07-01

    statin drugs do not lower circulating cholesterol in mice and rats , as they do in humans. Choles- terol lowering in rodent tumors will thus depend on...cholesterol synthesis (these drugs are generically termed ‘ statins ’), have been reported to inhibit cancer incidence or progres- sion in some studies. Although...there is much controversy, buttressed by claims and counterclaims, in the various population-based reports of the effects of statins on cancer, recent

  1. "Clicked" bivalent ligands containing curcumin and cholesterol as multifunctional abeta oligomerization inhibitors: design, synthesis, and biological characterization.

    Science.gov (United States)

    Lenhart, James A; Ling, Xiao; Gandhi, Ronak; Guo, Tai L; Gerk, Phillip M; Brunzell, Darlene H; Zhang, Shijun

    2010-08-26

    In our effort to develop multifunctional compounds that cotarget beta-amyloid oligomers (AbetaOs), cell membrane/lipid rafts (CM/LR), and oxidative stress, a series of bivalent multifunctional Abeta oligomerization inhibitors (BMAOIs) containing cholesterol and curcumin were designed, synthesized, and biologically characterized as potential treatments for Alzheimer's disease (AD). The in vitro assay results established that the length of spacer that links cholesterol and curcumin and the attaching position of the spacer on curcumin are important structural determinants for their biological activities. Among the BMAOIs tested, 14 with a 21-atom-spacer was identified to localize to the CM/LR of human neuroblastoma MC65 cells, to inhibit the formation of AbetaOs in MC65 cells, to protect cells from AbetaOs-induced cytotoxicity, and to retain antioxidant properties of curcumin. Furthermore, 14 was confirmed to have the potential to cross the blood-brain barrier (BBB) as demonstrated in a Caco-2 cell model. Collectively, these results strongly encourage further optimization of 14 as a new hit to develop more potent BMAOIs.

  2. Fluorescent probes sensitive to changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during atherosclerosis

    Science.gov (United States)

    Posokhov, Yevgen

    2016-09-01

    Environment-sensitive fluorescent probes were used for the spectroscopic visualization of pathological changes in human platelet membranes during cerebral atherosclerosis. It has been estimated that the ratiometric probes 2-(2‧-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole and 2-phenyl-phenanthr[9,10]oxazole can detect changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during the disease.

  3. Synthesis of photoresponsive cholesterol-based azobenzene organogels: dependence on different spacer lengths

    Directory of Open Access Journals (Sweden)

    Yuchun Ren

    2015-06-01

    Full Text Available A series of azobenzene–cholesterol organogel compounds (M0–M12 with different spacers were designed and synthesized. The molecular structures were confirmed by 1H NMR and 13C NMR spectroscopy. The rapid and reversible photoresponsive properties of the compounds were investigated by UV–vis spectroscopy. Their thermal phase behaviors were studied by DSC. The length of the spacer plays a crucial role in the gelation. Compound M6 is the only one that can gelate in ethanol, isopropanol and 1-butanol and the reversible gel–sol transitions are also investigated. To obtain visual insight into the microstructure of the gels, the typical structures of the xerogels were studied by SEM. Morphologies of the aggregates change from flower-like, network and rod with different sizes. By using IR and XRD characterization, it is found that intermolecular H-bonding, the solvents and van der Waals interaction are the main contributions to the specific superstructure.

  4. Synthesis of photoresponsive cholesterol-based azobenzene organogels: dependence on different spacer lengths

    Science.gov (United States)

    Ren, Yuchun; Zhang, Xiuqing

    2015-01-01

    Summary A series of azobenzene–cholesterol organogel compounds (M 0 –M 12) with different spacers were designed and synthesized. The molecular structures were confirmed by 1H NMR and 13C NMR spectroscopy. The rapid and reversible photoresponsive properties of the compounds were investigated by UV–vis spectroscopy. Their thermal phase behaviors were studied by DSC. The length of the spacer plays a crucial role in the gelation. Compound M 6 is the only one that can gelate in ethanol, isopropanol and 1-butanol and the reversible gel–sol transitions are also investigated. To obtain visual insight into the microstructure of the gels, the typical structures of the xerogels were studied by SEM. Morphologies of the aggregates change from flower-like, network and rod with different sizes. By using IR and XRD characterization, it is found that intermolecular H-bonding, the solvents and van der Waals interaction are the main contributions to the specific superstructure. PMID:26199664

  5. Is Endothelial Nitric Oxide Synthase a Moonlighting Protein Whose Day Job is Cholesterol Sulfate Synthesis? Implications for Cholesterol Transport, Diabetes and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Stephanie Seneff

    2012-12-01

    Full Text Available Theoretical inferences, based on biophysical, biochemical, and biosemiotic considerations, are related here to the pathogenesis of cardiovascular disease, diabetes, and other degenerative conditions. We suggest that the “daytime” job of endothelial nitric oxide synthase (eNOS, when sunlight is available, is to catalyze sulfate production. There is a striking alignment between cell types that produce either cholesterol sulfate or sulfated polysaccharides and those that contain eNOS. The signaling gas, nitric oxide, a well-known product of eNOS, produces pathological effects not shared by hydrogen sulfide, a sulfur-based signaling gas. We propose that sulfate plays an essential role in HDL-A1 cholesterol trafficking and in sulfation of heparan sulfate proteoglycans (HSPGs, both critical to lysosomal recycling (or disposal of cellular debris. HSPGs are also crucial in glucose metabolism, protecting against diabetes, and in maintaining blood colloidal suspension and capillary flow, through systems dependent on water-structuring properties of sulfate, an anionic kosmotrope. When sunlight exposure is insufficient, lipids accumulate in the atheroma in order to supply cholesterol and sulfate to the heart, using a process that depends upon inflammation. The inevitable conclusion is that dietary sulfur and adequate sunlight can help prevent heart disease, diabetes, and other disease conditions.

  6. Internal dosimetry for [4-{sup 14}C]-cholesterol in humans

    Energy Technology Data Exchange (ETDEWEB)

    Marcato, Larissa A.; Mesquita, Carlos H. de, E-mail: chmesqui@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cesar, Thais B., E-mail: tcesar@fcfar.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FCF/UNESP), Araraquara, SP (Brazil). Fac. de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao; Vinagre, Carmen G.C. [Universidade de Sao Paulo (InCor/HCFMUSP), SP (Brazil). Hospital das Clinicas. Instituto do Coracao

    2011-07-01

    This study proposes a biokinetic model for use in the assessment of the internal dose received by human subjects administered orally with [4-{sup 14}C]-cholesterol. The proposed model includes three systemic pools representing the short-term (T1/2 = 1 d), intermediate-term (T1/2 = 16 d) and long-term (T1/2 = 78 d) physiological exchanges and two excretion pathways: urine and feces. This model used the ANACOMP software to estimate radiometric doses with MIRD techniques (Medical Internal Radiation Dose). To validate the model, the profile curve of excretion prediction by the model in the range of seven days was compared with those curves described in literature. No statistical difference was detected (P = 0.416). The estimated effective dose coefficient calculated for the reference man described on ICRP publication 23 was 3.39x10{sup -10} SvBq{sup -1}. The organs that received the highest equivalent dose were the lower large intestine (2.459x10{sup -9} GyBq{sup -1}), upper large intestine (9.023x10{sup -10} GyBq{sup -1}) and small intestine (3.717x10{sup -10} GyBq{sup -1}). (author)

  7. Cholesterol anchored arabinogalactan for asialoglycoprotein receptor targeting: synthesis, characterization, and proof of concept of hepatospecific delivery.

    Science.gov (United States)

    Pathak, Pankaj Omprakash; Nagarsenker, Mangal Shailesh; Barhate, Chandrashekhar Rishikant; Padhye, Sameer Govind; Dhawan, Vivek Vijay; Bhattacharyya, Dibyendu; Viswanathan, C L; Steiniger, Frank; Fahr, Alfred

    2015-05-18

    Asialoglycoprotein receptors (ASGPR) are hepatocyte bound receptors, which exhibit receptor mediated endocytosis (RME) for galactose specific moieties. Arabinogalactan (AG), a liver specific high galactose containing branched polysaccharide was hydrophobized using cholesterol (CHOL) as a lipid anchor via a two step reaction process to yield the novel polysaccharide lipid conjugated ligand (CHOL-AL-AG). CHOL-AL-AG was characterized by Fourier transform infra red (FTIR) spectroscopy, (1)H and (13)C nuclear magnetic spectroscopy (NMR), size exclusion chromatography (SEC) and differential scanning calorimetry (DSC). Conventional liposomes (CL) and surface modified liposomes (SML) containing CHOL-AL-AG were prepared using reverse phase evaporation technique. Effect of CHOL-AL-AG concentration on particle size and zeta potential of SML was evaluated. Surface morphology of CL and SML was studied using cryo-transmission electron microscopy (cryo-TEM). In vitro binding affinity of SML and CL was evaluated using Ricinus communis agglutinin (RCA) assay. Cellular uptake of SML and CL was determined on ASGPR expressing HepG2 cell lines by confocal laser scanning microscopy technique (CLSM). FTIR spectra revealed bands at 1736 cm(-1) and 1664 cm(-1) corresponding to ester and carbamate functional groups, respectively. Signals at δ 0.5-2.5 corresponding to the cholestene ring and δ 3-5.5 corresponding to the carbohydrate backbone were observed in (1)H NMR spectrum of the product. CHOL-AL-AG possessed a mean average molecular weight of 27 KDa as determined by size exclusion chromatography. An endothermic peak at 207 °C was observed in the DSC thermogram of CHOL-AL-AG, which was not observed in thermograms of reactants and intermediate product. Synthesized CHOL-AL-AG was successfully incorporated in liposomes to yield SML. Both CL and SML possessed a mean particle size of ∼ 200 nm with polydispersity index of ∼ 0.25. The zeta potential of CLs was observed to be -17 m

  8. Non-cholesterol Sterols in the Diagnosis and Treatment of Dyslipidemias: A Review.

    Science.gov (United States)

    Baila-Rueda, Lucía; Cenarro, Ana; Civeira, Fernando

    2016-01-01

    Non-cholesterol sterols have been used as markers of cholesterol intestinal absorption and hepatic synthesis, leading to a better understanding of cholesterol homeostasis in humans. This review discusses the main noncholesterol sterols that are clinically useful, different methods to quantify the factors associated with blood concentration, and the potential role of non-cholesterol sterols in the diagnosis and treatment of different types of dyslipidemia. The main indication is the use of non-cholesterol sterols for the diagnosis of rare diseases associated with defects in cholesterol synthesis or anomalies in the absorption and/or elimination of phytosterols. However, other potential uses, including the diagnosis of certain hypercholesterolemias and the individualization of lipid-lowering therapies, are promising as they could help treat a wider population.

  9. Sustained and selective suppression of intestinal cholesterol synthesis by Ro 48-8071, an inhibitor of 2,3-oxidosqualene:lanosterol cyclase, in the BALB/c mouse.

    Science.gov (United States)

    Chuang, Jen-Chieh; Valasek, Mark A; Lopez, Adam M; Posey, Kenneth S; Repa, Joyce J; Turley, Stephen D

    2014-04-01

    The small intestine plays a fundamentally important role in regulating whole body cholesterol balance and plasma lipoprotein composition. This is articulated through the interplay of a constellation of genes that ultimately determines the net amount of chylomicron cholesterol delivered to the liver. Major advances in our insights into regulation of the cholesterol absorption pathway have been made using genetically manipulated mouse models and agents such as ezetimibe. One unresolved question is how a sustained pharmacological inhibition of intestinal cholesterol synthesis in vivo may affect cholesterol handling by the absorptive cells. Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body weight), leads to a rapid and sustained inhibition (>50%) of cholesterol synthesis in the whole small intestine. Sterol synthesis was also reduced in the large intestine and stomach. In contrast, hepatic cholesterol synthesis, while markedly suppressed initially, rebounded to higher than baseline rates within 7 days. Whole body cholesterol synthesis, fractional cholesterol absorption, and fecal neutral and acidic sterol excretion were not consistently changed with Ro 48-8071 treatment. There were no discernible effects of this agent on intestinal histology as determined by H&E staining and the level of Ki67, an index of proliferation. The mRNA expression for multiple genes involved in intestinal cholesterol regulation including NPC1L1 was mostly unchanged although there was a marked rise in the mRNA level for the PXR target genes CYP3A11 and CES2A.

  10. The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Girard

    Full Text Available Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC within the endolysosomal network. The measure of cholesterol esters (CE further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2, 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR, and low-density lipoprotein receptor (LDLR. The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol.

  11. Endocytosis and intracellular traffic of cholesterol-PDMAEMA liposome complexes in human epithelial-like cells.

    Science.gov (United States)

    Szymanowski, F; Hugo, A A; Alves, P; Simões, P N; Gómez-Zavaglia, A; Pérez, Pablo F

    2017-08-01

    Liposomes are generally used as delivery systems, as they are capable of encapsulating a wide variety of molecules (i.e. plasmids, recombinant proteins, therapeutic drugs). However, liposomal drug delivery have to fulfill different requirements, such as the effective internalization by the target cells and avoidance of the degradative activity of the intracellular compartments. The use of polymer lipid complexes (PLCs), by including different polymers in the liposome formulation, could improve internalization and intracellular release of drugs. The aim of the present work is to study the mechanisms of cellular uptaking and the intracellular trafficking of PLCs formed with cholesterol-poly(2-(dimethylamino)ethyl methacrylate) CHO-PDMAEMA and lecithin (LC CHO-PD). Calcein-loaded liposomes were used to determine cellular uptake and intracellular localization by flow cytometry and confocal microscopy. Incorporation of CHO-PDMAEMA to lecithin liposomes enhanced the internalization capacity of PLCs. Internalization of PLCs by human epithelial-like cells (HEK-293) diminished at 4°C, suggesting uptake by endocytosis. PLCs showed no co-localization with acidic compartments after internalization. Experiments with endocytosis inhibitors and co-localization of liposomes and albumin, suggested the caveolae endocytic pathway as the most probable route for intracellular trafficking of PLCs. In this work, we demonstrated an efficient uptake of LC CHO-PDs by human epithelial-like cells (HEK-293) through the non-degradative caveolae endocytic pathway. The mode of internalization and the intracellular fate of liposomes under study, suggest a promising use of LC CHO-PDs as drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Entry Pathways of Herpes Simplex Virus Type 1 into Human Keratinocytes Are Dynamin- and Cholesterol-Dependent

    Science.gov (United States)

    Hsu, Mei-Ju; Rixon, Frazer J.; Knebel-Mörsdorf, Dagmar

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol. PMID:22022400

  13. Entry pathways of herpes simplex virus type 1 into human keratinocytes are dynamin- and cholesterol-dependent.

    Directory of Open Access Journals (Sweden)

    Elena Rahn

    Full Text Available Herpes simplex virus type 1 (HSV-1 can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s. Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol.

  14. High level of deoxycholic acid in human bile does not promote cholesterol gallstone formation

    Institute of Scientific and Technical Information of China (English)

    Ulf Gustafsson; Staffan Sahlin; Curt Einarsson

    2003-01-01

    AIM: To study whether patients with excess deoxycholic acid (DCA) differ from those with normal percentage of DCA with respect to biliary lipid composition and cholesterol saturation of gallbladder bile.METHODS: Bile was collected during operation through puncturing into the gallbladder from 122 cholesterol gallstone patients and 46 gallstone-free subjects undergoing cholecystectomy. Clinical data, biliary lipids, bile acid composition,presence of crystals and nucleation time were analyzed.RESULTS: A subgroup of gallstone patients displayeda higher proportion of DCA in bile than gallstone free subjects.By choosing a cut-off level of the 90th percentile, a group of 13 gallstone patients with high DCA levels (mean 50percent of total bile acids) and a large group of 109 patients with normal DCA levels (mean 21 percent of total bile acids)were obtained. The mean age of the patients with high DCA levels was higher than that of the group with normal levels (mean age: 62 years vs45 years) and so was the mean BMI (28.3 vs. 24.7). Plasma levels of cholesterol and triglycerides were slightly higher in the DCA excess groups compared with those in the normal DCA group. There was no difference in biliary lipid composition, cholesterol saturation, nucleation time or occurrence of cholesterol crystals in bile between patients with high and normal levels of DCA.CONCLUSION: Gallstone patients with excess DCA were of older age and had higher BMI than patients with normal DCA. The two groups of patients did not differ with respect to biliary lipid composition, cholesterol saturation, nucleation time or occurrence of cholesterol crystals. It is concluded that DCA in bile does not seem to contribute to gallstone formation in cholesterol gallstone patients.

  15. Induction of tissue inhibitor of matrix metalloproteinase-2 by cholesterol depletion leads to the conversion of proMMP-2 into active MMP-2 in human dermal fibroblasts.

    Science.gov (United States)

    Kim, Sangmin; Oh, Jang-Hee; Lee, Youngae; Lee, Jeongyoon; Cho, Kwang Hyun; Chung, Jin Ho

    2010-01-31

    Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (>or=200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.

  16. Potency of turmeric (Curcuma longa L. extract and curcumin as anti-obesity by inhibiting the cholesterol and triglycerides synthesis in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Iwan Budiman

    2015-05-01

    Full Text Available Background: Adipocytes accumulate triacylglycerol when excessive food consumption. Adipocyte dysfunction plays an important role in the obesity development. People with a body weight 40 % heavier than the average body weight population at risk of death two times greater than the average body weight. The use of anti-obesity drugs have many side effects, so it is necessary to find the anti-obesity drug with low toxicity. This ex vivo study was conducted to determine the activity of C. longa L. extract in inhibiting triglycerides and cholesterol synthesis and lipid droplet formation on HepG2 cells compared to curcumin. Methods: Anti-obesity activity includes reduced formation of lipid droplet in HepG2 cells can be observed using oil red O staining method. The measurement of triglyceride level was performed according to Randox protocol using Randox TR 210 assay kit. Lipolytic activity by measuring cholesterol levels was performed based on Randox CH 200 kits. Results: This study suggested that the extract of C. longa L. and curcumin have potential anti-obesity compounds. C. longa L. extract have higher activity in inhibiting triglycerides and cholesterol synthesis compared to curcumin with inhibition activities 70.43% and 66.38% respectively in the highest concentration. Conclusion: The C. longa extract posses the anti-adipogenesis potential on inhibiting the synthesis of triglycerides and cholesterol and lipid droplet formation in HepG2 cell as anti-obesity parameters better than curcumin. [Int J Res Med Sci 2015; 3(5.000: 1165-1171

  17. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    Science.gov (United States)

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  18. The selective GABAB antagonist CGP-35348 blocks spike-wave bursts in the cholesterol synthesis rat absence epilepsy model.

    Science.gov (United States)

    Smith, K A; Fisher, R S

    1996-08-12

    Slow IPSPs, which are believed to be involved in generation of the wave of spike-wave epileptiform discharges, are mediated by the GABAB receptor. We therefore examined the effect of the GABAB antagonist, Ciba Geigy Product, CGP-35348, in the cholesterol synthesis inhibitor model of absence epilepsy in rat. Rats received Ayerst-9944 (AY-9944), from 6-45 mg i.p. in the first few weeks of life. By 2 months after AY-9944 administration these rats exhibited recurrent spike-waves and behavioral arrests. In 10 such animals CGP-35348 was administered intraperitoneally in doses of 0 (vehicle), 10, 25 or 100 mg/kg. EEG recordings were obtained via previously implanted bone screws. Technologists blinded to treatment group counted spike-waves over a 4 h period post-injection. The average number of spike-wave burst seconds per 4 h of recording for all dosages and times was 52.4 +/- 81.4 (mean +/- S.D.) s. Mean burst times (seconds) were vehicle = 93.5 +/- 106.5; 10 mg/kg = 69.9 +/- 79.7; 25 mg/kg = 30.8 +/- 46.9; 100 mg/kg = 15.2 +/- 54, a mean 84% reduction at 100 mg/kg (ANOVA regression significant at 0.0001). Spike-waves were suppressed for at least 4 h after injection of CGP-35348. These findings supplement similar findings in other absence models, and support a potential role for GABAB antagonists in treatment of absence seizures.

  19. Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans--a quantitative review.

    Directory of Open Access Journals (Sweden)

    Ingeborg A Brouwer

    Full Text Available BACKGROUND: Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA on blood lipoproteins, and compared these with industrial trans fatty acids. METHODOLOGY/PRINCIPAL FINDINGS: We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95%CI 0.044-0.066 for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95%CI 0.012-0.065 for ruminant trans fatty acids, and 0.043 (95% CI 0.012-0.074 for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids. CONCLUSIONS/SIGNIFICANCE: Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol.

  20. Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing.

    Science.gov (United States)

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2016-08-01

    This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    Science.gov (United States)

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  2. Liposome encapsulated soy lecithin and cholesterol can efficiently replace chicken egg yolk in human semen cryopreservation medium.

    Science.gov (United States)

    Mutalik, Srinivas; Salian, Sujith Raj; Avadhani, Kiran; Menon, Jyothsna; Joshi, Haritima; Hegde, Aswathi Raju; Kumar, Pratap; Kalthur, Guruprasad; Adiga, Satish Kumar

    2014-06-01

    Cryopreservation of spermatozoa plays a significant role in reproductive medicine and fertility preservation. Chicken egg yolk is used as an extender in cryopreservation of human spermatozoa using glycerol egg yolk citrate (GEYC) buffered medium. Even though 50% survival of spermatozoa is generally achieved with this method, the risk of high levels of endotoxins and transmission pathogens from chicken egg yolk is a matter of concern. In the present study we attempted to establish a chemically defined cryopreservation medium which can replace the chicken egg yolk without affecting sperm survival. Ejaculates from 28 men were cryopreserved with GEYC based freezing medium or liposome encapsulated soy lecithin-cholesterol based freezing medium (LFM). The semen samples were subjected to rapid thawing after 14 days of storage in liquid nitrogen. Post-thaw analysis indicated significantly higher post-thaw motility and sperm survival in spermatozoa cryopreserved with LFM compared to conventional GEYC freezing medium. The soy lecithin and cholesterol at the ratio of 80:20 with sucrose showed the highest percentage of post-thaw motility and survival compared to the other compositions. In conclusion, chemically defined cryopreservation medium with liposome encapsulated soy lecithin and cholesterol can effectively replace the chicken egg yolk from human semen cryopreservation medium without compromising post-thaw outcome.

  3. Robotics-based synthesis of human motion

    KAUST Repository

    Khatib, O.

    2009-05-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  4. Robotics-based synthesis of human motion.

    Science.gov (United States)

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  5. Cholesterol (image)

    Science.gov (United States)

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  6. Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain.

    Science.gov (United States)

    Saeed, Ahmed A; Genové, Guillem; Li, Tian; Lütjohann, Dieter; Olin, Maria; Mast, Natalia; Pikuleva, Irina A; Crick, Peter; Wang, Yuqin; Griffiths, William; Betsholtz, Christer; Björkhem, Ingemar

    2014-08-22

    The presence of the blood-brain barrier (BBB) is critical for cholesterol metabolism in the brain, preventing uptake of lipoprotein-bound cholesterol from the circulation. The metabolic consequences of a leaking BBB for cholesterol metabolism have not been studied previously. Here we used a pericyte-deficient mouse model, Pdgfb(ret/ret), shown to have increased permeability of the BBB to a range of low-molecular mass and high-molecular mass tracers. There was a significant accumulation of plant sterols in the brains of the Pdgfb(ret/ret) mice. By dietary treatment with 0.3% deuterium-labeled cholesterol, we could demonstrate a significant flux of cholesterol from the circulation into the brains of the mutant mice roughly corresponding to about half of the measured turnover of cholesterol in the brain. We expected the cholesterol flux into the brain to cause a down-regulation of cholesterol synthesis. Instead, cholesterol synthesis was increased by about 60%. The levels of 24(S)-hydroxycholesterol (24S-OHC) were significantly reduced in the brains of the pericyte-deficient mice but increased in the circulation. After treatment with 1% cholesterol in diet, the difference in cholesterol synthesis between mutants and controls disappeared. The findings are consistent with increased leakage of 24S-OHC from the brain into the circulation in the pericyte-deficient mice. This oxysterol is an efficient suppressor of cholesterol synthesis, and the results are consistent with a regulatory role of 24S-OHC in the brain. To our knowledge, this is the first demonstration that a defective BBB may lead to increased flux of a lipophilic compound out from the brain. The relevance of the findings for the human situation is discussed.

  7. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation.

    Science.gov (United States)

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2016-05-01

    Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.

  8. Cholesterol transport and regulation in the mammary gland.

    Science.gov (United States)

    Ontsouka, Edgar C; Albrecht, Christiane

    2014-03-01

    The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted.

  9. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    Science.gov (United States)

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  10. Effect of chlorpromazine on lipid metabolism in aortas from cholesterol-fed rabbits and normal rats, in vitro: inhibition of sterol esterification and modification of phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bell, F.P.

    1983-06-01

    Chlorpromazine (CPZ), a major tranquilizer, was found to be a potent inhibitor of acylCoA:cholesterol acyltransferase (ACAT, EC 2.3.1.26) in isolated arterial microsomes and in intact arterial tissue from the rat and cholesterol-fed rabbit in vitro. In isolated rabbit arterial microsomes, CPZ resulted in a concentration-dependent inhibition of ACAT with 50% inhibition of (1-14C)oleoylCoA incorporation into (14C)cholesteryl esters occurring at 0.1 mM CPZ. CPZ also effectively inhibited the incorporation of (14C)oleate into triglycerides without affecting incorporation into diglycerides. Additionally, CPZ altered the pattern of arterial phospholipids synthesized from (1-14C)oleate. Incorporation into phosphatidylcholine was depressed while incorporation into phosphatidylinositol was increased. Since diglyceride synthesis appeared to be unaffected by CPZ, a redirection of phosphatidic acid into the CDP-diglyceride pathway of glycerolipid synthesis does not adequately account for the effect of CPZ on arterial phospholipid and triglyceride synthesis in these experiments.

  11. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.

    Science.gov (United States)

    Liu, Ming-Lin; Reilly, Michael P; Casasanto, Peter; McKenzie, Steven E; Williams, Kevin Jon

    2007-02-01

    Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.

  12. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...... levels of endotoxin were needed for TNF-α production equivalent to that of unprimed cells. The pro-inflammatory effect was selective as endotoxin-induced production of other pro-inflammatory cytokines was unaffected while production of anti-inflammatory interleukin-10 was diminished. These findings...

  13. Human aortic fibrolipid lesions. Progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core.

    Science.gov (United States)

    Bocan, T. M.; Guyton, J. R.

    1985-01-01

    The early development of the lipid-rich core and other features of atherosclerotic fibrous plaques has been elucidated by examining discrete, small regions of raised intima in human aorta, which often bear a resemblance to both fatty streaks and fibrous plaques. Approximately one-fourth of small raised lesions (less than 16 sq mm of surface area) contained little or no stainable lipid, while three-fourths had a characteristic appearance, which included a superficial layer of foam cells, a core of noncrystalline and/or crystalline lipid, and a developed or developing collagenous cap. Total intimal volumes of the lipid-containing lesions, termed "fibrolipid lesions," ranged from 3 to 43 microliters, with the majority less than 16 microliters. Core lipid in the smallest lesions was located in the musculoelastic layer of the intima. In larger lesions the core extended luminally into the elastic hyperplastic layer, and cholesterol crystals were found more frequently. Total cholesterol concentration in fibrolipid lesions was similar to that in fatty streaks; however, the ratio of unesterified to total cholesterol was relatively high, similar to that found in fibrous plaques. It is concluded that 1) the formation of a lipid-rich core and cholesterol crystallization are early events in the development of many raised lesions; 2) the consistent association between the superficial layer of foam cells and the deep-lying lipid-rich core raises the possibility of an influence, possibly indirect, of foam-cell lipid metabolism on core formation; and 3) the fibrolipid lesion may represent one stage in a potential transitional morphologic sequence between fatty streak and fibrous plaque. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:4025509

  14. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Science.gov (United States)

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  15. Multivariate calibration for protein, cholesterol and triglycerides in human plasma using short-wave near infrared spectrometry

    Science.gov (United States)

    Bittner, A.; Marbach, R.; Heise, H. M.

    1995-04-01

    Recent progress in spectroscopy and chemometrics have brought the reagentless analysis of blood substrates by near infrared spectroscopy into clinical reach. Results for the in-vitro analysis of several blood substrates in human blood plasma using multivariate calibration by partial-least squares are presented for 125 hospital samples. Whereas the relative meansquared prediction error for total protein (1.4 %) using short wave NIR data is comparable with previous results using conventional NIR spectroscopy, the errors found for total cholesterol (6.5 %) and triglycerides (13.8 %) are nearly a factor of two worse for this study.

  16. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  17. Design of a Fiber Optic Biosensor for Cholesterol Detection in Human Blood

    Science.gov (United States)

    Yunianto, M.; Permata, A. N.; Eka, D.; Ariningrum, D.; Wahyuningsih, S.; Marzuki, A.

    2017-02-01

    A fiber optic sensor is to detect the cholesterol content in blood serum-based biosensor using plastic optical fiber that has been designed. The fiber optic sensor designed with sensing area was a fiber optic grated by 5 scratches then given bending treatment by 5 cm. The first test was by UV-Vis spectrometer with linearity of 0.96. The second test was by light spectrometer with linearity in white LED of 0.94. Optical fiber sensors were made to work well on a range of blood serum concentration of 140 mg/dL to 250 mg/dL.

  18. Good vs. Bad Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Good vs. Bad Cholesterol Updated:Apr 3,2017 Cholesterol can't dissolve ... test . View an animation of cholesterol . LDL (Bad) Cholesterol LDL cholesterol is considered the “bad” cholesterol because ...

  19. Cholesterol and Women's Health

    Science.gov (United States)

    ... cholesterol.” What is dyslipidemia? Having abnormal levels of cholesterol or triglycerides is called dyslipidemia . A common dyslipidemia in the ... the levels of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides. When should my cholesterol levels be measured? Women ...

  20. High Blood Cholesterol

    Science.gov (United States)

    ... version of this page please turn Javascript on. High Blood Cholesterol What is High Blood Cholesterol? What is Cholesterol? Cholesterol is a ... heart disease. If Your Blood Cholesterol Is Too High Too much cholesterol in your blood is called ...

  1. DIETARY FISH OIL-INDUCED CHANGES IN INTRAHEPATIC CHOLESTEROL TRANSPORT AND BILE-ACID SYNTHESIS IN RATS

    NARCIS (Netherlands)

    SMIT, MJ; TEMMERMAN, AM; WOLTERS, H; KUIPERS, F; BEYNEN, AC; VONK, RJ

    Hepatic cholesterol metabolism was studied in rats fed purified diets supplemented (9% wt/wt) with either fish oil (FO) (n-3 fatty acids) or corn oil (CO) (n-6 fatty acids) for 4 wk. Rats were equipped with permanent catheters in heart, bile duct, and duodenum to allow studies under normal feeding

  2. Dual-color bioluminescent assay using infected HepG2 cells sheds new light on Chlamydia pneumoniae and human cytomegalovirus effects on human cholesterol 7α-hydroxylase (CYP7A1) transcription.

    Science.gov (United States)

    Michelini, Elisa; Donati, Manuela; Aldini, Rita; Cevenini, Luca; Mezzanotte, Laura; Nardini, Paola; Foschi, Claudio; Zvi, Ido Ben; Cevenini, Monica; Montagnani, Marco; Marangoni, Antonella; Roda, Aldo; Cevenini, Roberto

    2012-11-01

    Chlamydia pneumoniae and human cytomegalovirus (HCMV) are intracellular pathogens able to infect hepatocytes, causing an increase in serum triglycerides and cholesterol levels due to the production of inflammatory cytokines. We investigated whether these pathogens could interfere with cholesterol metabolism by affecting activity of hepatic cholesterol 7α-hydroxylase (CYP7A1) promoter. CYP7A1 is the rate-limiting enzyme responsible for conversion of cholesterol to bile acids, which represents the main route of cholesterol catabolism. A straightforward dual-reporter bioluminescent assay was developed to simultaneously monitor CYP7A1 transcriptional regulation and cell viability in infected human hepatoblastoma HepG2 cells. C. pneumoniae and HCMV infection significantly decreased CYP7A1 promoter activity in a dose-dependent manner, with maximal inhibitions of 33±10% and 32±4%, respectively, at a multiplicity of infection of 1. To support in vitro experiments, serum cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and glucose levels were also measured in Balb/c mice infected with C. pneumoniae. Serum cholesterol and triglycerides also increased in infected mice compared with controls. Although further investigation is required, this work presents the first experimental evidence that C. pneumoniae and HCMV inhibit CYP7A1 gene transcription in the cultured human hepatoblastoma cell line.

  3. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age.

    Science.gov (United States)

    Trabado, Séverine; Al-Salameh, Abdallah; Croixmarie, Vincent; Masson, Perrine; Corruble, Emmanuelle; Fève, Bruno; Colle, Romain; Ripoll, Laurent; Walther, Bernard; Boursier-Neyret, Claire; Werner, Erwan; Becquemont, Laurent; Chanson, Philippe

    2017-01-01

    Metabolomic approaches are increasingly used to identify new disease biomarkers, yet normal values of many plasma metabolites remain poorly defined. The aim of this study was to define the "normal" metabolome in healthy volunteers. We included 800 French volunteers aged between 18 and 86, equally distributed according to sex, free of any medication and considered healthy on the basis of their medical history, clinical examination and standard laboratory tests. We quantified 185 plasma metabolites, including amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, sphingomyelins and hexose, using tandem mass spectrometry with the Biocrates AbsoluteIDQ p180 kit. Principal components analysis was applied to identify the main factors responsible for metabolome variability and orthogonal projection to latent structures analysis was employed to confirm the observed patterns and identify pattern-related metabolites. We established a plasma metabolite reference dataset for 144/185 metabolites. Total blood cholesterol, gender and age were identified as the principal factors explaining metabolome variability. High total blood cholesterol levels were associated with higher plasma sphingomyelins and phosphatidylcholines concentrations. Compared to women, men had higher concentrations of creatinine, branched-chain amino acids and lysophosphatidylcholines, and lower concentrations of sphingomyelins and phosphatidylcholines. Elderly healthy subjects had higher sphingomyelins and phosphatidylcholines plasma levels than young subjects. We established reference human metabolome values in a large and well-defined population of French healthy volunteers. This study provides an essential baseline for defining the "normal" metabolome and its main sources of variation.

  4. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation.

    Science.gov (United States)

    Fernández, Carlos; Lobo Md, María del Val T; Gómez-Coronado, Diego; Lasunción, Miguel A

    2004-10-15

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14alpha-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells.

  5. Effect of biopolymer encapsulation on the digestibility of lipid and cholesterol oxidation products in beef during in vitro human digestion.

    Science.gov (United States)

    Hur, Sun Jin; Lee, Seung Yuan; Lee, Seung-Jae

    2015-01-01

    In this study, beef patties were encapsulated with 3% chitosan, pectin, onion powder, or green tea powder and the beef patties were then passed through an in vitro human digestion model. The total lipid digestibility was lowest (pencapsulated with chitosan and pectin after digestion in the small intestine. Thiobarbituric acid reactive substance (TBARS) values were significantly lower (pencapsulated with chitosan and pectin, when compared with the control, after digestion in the small intestine. In contrast, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity was highest (pencapsulated with onion powder and green tea powder after digestion in the small intestine. The total cholesterol oxidation product (COP) content was significantly lower (pencapsulated with biopolymers than in the control after digestion in the small intestine.

  6. Extrapituitary growth hormone synthesis in humans.

    Science.gov (United States)

    Pérez-Ibave, Diana Cristina; Rodríguez-Sánchez, Iram Pablo; Garza-Rodríguez, María de Lourdes; Barrera-Saldaña, Hugo Alberto

    2014-01-01

    The gene for pituitary growth hormone (GH-N) in man belongs to a multigene locus located at chromosome 17q24.2, which also harbors four additional genes: one for a placental variant of GH-N (named GH-V) and three of chorionic somatommamotropin (CSH) type. Their tandem arrangement from 5' to 3' is: GH-N, CSH-L, CSH-1, GH-V and CSH-2. GH-N is mainly expressed in the pituitary from birth throughout life, while the remaining genes are expressed in the placenta of pregnant women. Pituitary somatotrophs secrete GH into the bloodstream to act at receptor sites in most tissues. GH participates in the regulation of several complex physiological processes, including growth and metabolism. Recently, the presence of GH has been described in several extrapituitary sites, such as neural, ocular, reproductive, immune, cardiovascular, muscular, dermal and skeletal tissues. It has been proposed that GH has an autocrine action in these tissues. While the body of evidence for its presence is constantly growing, research of its possible function and implications lag behind. In this review we highlight the evidence of extrapituitary synthesis of GH in humans.

  7. Activation of the human complement system by cholesterol-rich and pegylated liposomes - Modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Bunger, R.;

    2006-01-01

    Intravenously infused liposomes may induce cardiopulmonary distress in some human subjects, which is a manifestation of "complement activation-related pseudoallergy." We have now examined liposome-mediated complement activation in human sera with elevated lipoprotein (LDL and HDL) levels, since...... level of S-protein-bound form of the terminal complex (SC5b-9). However, liposome-induced rise of SC5b-9 was significantly suppressed when serum HDL cholesterol levels increased by 30%. Increase of serum LDL to levels similar to that observed in heterozygous familial hypercholesterolemia also suppressed...

  8. Cholesterol Oxidase Binds TLR2 and Modulates Functional Responses of Human Macrophages

    Directory of Open Access Journals (Sweden)

    Katarzyna Bednarska

    2014-01-01

    Full Text Available Cholesterol oxidase (ChoD is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb, but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level, to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2 and complement receptor 3 (CR3 on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by “switching off” TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.

  9. High Blood Cholesterol

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Cholesterol? To understand high blood cholesterol (ko-LES-ter- ... cholesterol from your body. What Is High Blood Cholesterol? High blood cholesterol is a condition in which ...

  10. Recognition and Synthesis of Human Movements by Parametric HMMs

    DEFF Research Database (Denmark)

    Herzog, Dennis; Krüger, Volker

    2009-01-01

    on the recognition and synthesis of human arm movements. Furthermore, we will show in various experiments the use of PHMMs for the control of a humanoid robot by synthesizing movements for relocating objects at arbitrary positions. In vision-based interaction experiments, PHMM are used for the recognition...... of pointing movements, where the recognized parameterization conveys to a robot the important information which object to relocate and where to put it. Finally, we evaluate the accuracy of recognition and synthesis for pointing and grasping arm movements and discuss that the precision of the synthesis......The representation of human movements for recognition and synthesis is important in many application fields such as: surveillance, human-computer interaction, motion capture, and humanoid robots. Hidden Markov models (HMMs) are a common statistical framework in this context, since...

  11. MD-2 binds cholesterol.

    Science.gov (United States)

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  12. Streptococcal serum opacity factor increases the rate of hepatocyte uptake of human plasma high-density lipoprotein cholesterol.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Pillai, Biju K; Lin, Hu Yu; Courtney, Harry S; Pownall, Henry J

    2010-11-16

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.

  13. Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism

    DEFF Research Database (Denmark)

    Kory, Nora; Grond, Susanne; Kamat, Siddhesh S

    2017-01-01

    , such as triacylglycerols and sterol esters, as precursors for membrane components and as reservoirs of metabolic energy. LDAH is reported to hydrolyze cholesterol esters and to be important in macrophage cholesterol ester metabolism. Here, we confirm that LDAH is localized to LDs in several model systems. We generated...... a murine model in which Ldah is disrupted but found no evidence for a major function of LDAH in cholesterol ester or triacylglycerol metabolism in vivo, nor a role in energy or glucose metabolism. Our data suggest that LDAH is not a major cholesterol ester hydrolase, and an alternative metabolic function...

  14. Effects of n-3 polyunsaturated fatty acids high fat diet intervention on the synthesis of hepatic high-density lipoprotein cholesterol in obesity-insulin resistance rats.

    Science.gov (United States)

    Xie, Xianxing; Zhang, Tao; Zhao, Shuang; Li, Wei; Ma, Lanzhi; Ding, Ming; Liu, Yuan

    2016-04-22

    n-3 polyunsaturated fatty acids (PUFA) have previously been demonstrated in association with a reduced risk of chronic diseases, including insulin resistance, cancer and cardiovascular disease. In the present study, we analyzed the effects of n-3 PUFA-rich perilla oil (PO) and fish oil (FO) high fat diet intervention against the synthesis of hepatic high-density lipoprotein cholesterol (HDL-c) in obesity-insulin resistance model rats. In the modeling period, the male SD rats were randomly divided into 2 groups. The rats in the high fat (HF) group were given a high fat pure diet containing 20.62% lard. In the intervention period, the model rats were intervened with purified high-fat diets rich in PO or FO, containing same energy content with high fat pure diet in HF. After the intervention, the protein and mRNA expressions status of the key genes involved in synthesis of hepatic HDL-c were measured for further analytic comparison. The obesity-insulin resistance model rats were characterized by surprisingly high levels of serum triglyceride (TG) and increased body weight (P hepatic adenosine triphosphate (ATP) binding cassette transporter A1 (ABCA1) mRNA (P hepatic apoA-1mRNA expression (P hepatic ABCA1mRNA expression (P obesity-insulin resistance rats.

  15. Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages.

    Science.gov (United States)

    Berrougui, Hicham; Cloutier, Martin; Isabelle, Maxim; Khalil, Abdelouahed

    2006-02-01

    Argan oil is rich in unsaturated fatty acids, tocopherol and phenolic compounds. These protective molecules make further study of its cardiovascular diseases (CVDs) action interesting. Furthermore, no previous study has explored the antioxidant activity of argan oil in comparison with olive oil. The present study was conducted to evaluate the beneficial properties of Virgin argan oil phenolic extracts (VAO-PE) towards CVD by: (A) protecting human (low-density lipoprotein, LDL) against lipid peroxidation and (B) promoting high-density lipoprotein (HDL)-mediated cholesterol efflux. Human LDLs were oxidized by incubation with CuSO(4) in the presence of different concentrations of VAO-PE (0-320mug/ml). LDL lipid peroxidation was evaluated by conjugated diene and MDA formation as well as Vitamin E disappearance. Incubation of LDL with VAO-PE significantly prolonged the lag-phase and lowered the progression rate of lipid peroxidation (Pargan oil provides a source of dietary phenolic antioxidants, which prevent cardiovascular diseases by inhibiting LDL-oxidation and enhancing reverse cholesterol transport. These properties increase the anti-atherogenic potential of HDL.

  16. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bereli, Nilay [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Sener, Guelsu [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara (Turkey); Yavuz, Handan, E-mail: handany@hacettepe.edu.tr [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey)

    2011-07-20

    Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human {beta}-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N',N'-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H{sub 2}O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption-desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity. - Research highlights: {yields} LDL cholesterol is a risk factor in the development of coronary heart diseases. {yields} Antibodies against LDL are used for the selective extracorporeal removal of LDL. {yields} Protein A is used for the oriented immobilization of anti LDL onto PHEMA cryogel. {yields} PHEMA cryogels are biocompatible, exhibit a low pressure drop, lack diffusion

  17. The apo E/apo CIII molar ratio affects removal of cholesterol ester from modified human lipoproteins injected into cebus monkeys.

    Science.gov (United States)

    Stephan, Z F; Gibson, J C; Hayes, K C

    1986-04-14

    The removal of postprandial (PP) and postabsorptive (PA) human LDL and HDL cholesterol was examined in cebus monkeys (Cebus albifrons) following in vitro labelling of these lipoproteins by 3H-cholesterol in the presence or absence of DTNB. The removal of LDL cholesteryl ester was 3.5 and 2 times greater than that of HDL in male and female monkeys, respectively. Incubation with DTNB reduced cholesteryl ester removal by 45 and 52% for LDL and HDL, respectively. Cholesteryl ester from PA lipoproteins was removed 80% faster than that PP particles only when plasma was incubated without DTNB. Cholesterol removal from these lipoproteins was positively (r = 0.941) and significantly (P less than 0.001) correlated with the molar apo E/apo CIII ratio. The data suggest that density of lipoproteins was less important than their apoprotein composition in dictating their removal from circulation.

  18. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Institute of Scientific and Technical Information of China (English)

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet

    2011-01-01

    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  19. Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: A coarse-grained molecular dynamics study

    Science.gov (United States)

    Xu, Weixin; Wei, Guanghong; Su, Haibin; Nordenskiöld, Lars; Mu, Yuguang

    2011-11-01

    Disruption of the cellular membrane by the amyloidogenic peptide, islet amyloid polypeptide (IAPP), has been considered as one of the mechanisms of β-cell death during type 2 diabetes. The N-terminal region (residues 1-19) of the human version of IAPP is suggested to be primarily responsible for the membrane-disrupting effect of the full-length hIAPP peptide. However, the detailed assembly mode of hIAPP1-19 with membrane remains unclear. To gain insight into the interactions of hIAPP1-19 oligomer with the model membrane, we have employed coarse-grained molecular dynamics self-assembly simulations to study the aggregation of hIAPP1-19 fragments in the binary lipid made of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylserine (DPPS) in the presence and absence of different levels of cholesterol content. The membrane-destabilizing effect of hIAPP1-19 is found to be modulated by the presence of cholesterol. In the absence of cholesterol, hIAPP1-19 aggregates prefer to locate inside the bilayer, forming pore-like assemblies. While in the presence of cholesterol molecules, the lipid bilayer becomes more ordered and stiff, and the hIAPP1-19 aggregates are dominantly positioned at the bilayer-water interface. The action of cholesterol may suggest a possible way to maintain the membrane integrity by small molecule interference.

  20. GALNT2 effect on HDL-cholesterol and triglycerides levels in humans: Evidence of pleiotropy?

    Science.gov (United States)

    Di Paola, R; Marucci, A; Trischitta, V

    2017-04-01

    A wide range of studies both in humans and animal models point GALNT2 as a shaper of serum HDL-C and TG levels. Available data in humans indicate that, while under conditions of extreme GALNT2 loss-of-function HDL-C is the main target, a fine-tuning of GALNT2 changes is mostly associated with TG levels. Understanding whether different degrees of GALNT2 change do modulate different serum lipid fractions and, if so, addressing the mechanisms underlying such pleiotropic effects has the potential not only to improve our understanding of HDL-C and TG metabolism, but also to make GALNT2 becoming a target for treating atherogenic dyslipidemia and related clinical events. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  1. The mechanism of lowering cholesterol absorption by calcium studied by using an in vitro digestion model.

    Science.gov (United States)

    Vinarova, Liliya; Vinarov, Zahari; Tcholakova, Slavka; Denkov, Nikolai D; Stoyanov, Simeon; Lips, Alex

    2016-01-01

    Studies in humans show that a calcium-enriched diet leads to lower cholesterol in blood serum. This phenomenon is usually explained in the literature with a reduced cholesterol absorption in the small intestine. Our study aims to clarify the effect of calcium on the solubilisation of cholesterol and fatty acid in the dietary mixed micelles (DMM), viz. on the bioaccessibility of these lipophilic substances in the gut. We use an in vitro digestion model which mimics very closely the intestinal pH-profile and the composition of the intestinal fluids. We quantified the effects of Ca(2+) concentration on the lipid solubilization for fats and oils with different saturated/unsaturated fatty acid (FA) contents. We found that the increase of calcium significantly decreases the solubilization of cholesterol, FA and MG. Most importantly, we observe a clear positive correlation between the amounts of solubilized cholesterol, on one side, and solubilized free fatty acids and monoglycerides, on the other side. The main conclusion is that Ca(2+) ions strongly affect the bioaccessibility of both cholesterol and saturated FA. Therefore, calcium may decrease the serum cholesterol via two complementary mechanisms: (1) fatty acid precipitation by calcium ions reduces the solubilisation capacity of the DMM, thus decreasing the levels of solubilised (bioaccessible) cholesterol; (2) the observed strong decrease of the bioaccessible saturated FA, in its own turn, may suppress the cholesterol synthesis in the liver.

  2. Association analyses of the INSIG2 polymorphism in the obesity and cholesterol levels of Korean populations

    Directory of Open Access Journals (Sweden)

    Shin Hyoung

    2009-09-01

    Full Text Available Abstract Background While INSIG2 has been reported to be associated with BMI in many populations, conflicting results have prevented consensus over its role. In analyses of mice and cell cultures the gene has been found to be involved in the regulation of cholesterol synthesis; however, no relationship has been found with cholesterol metabolism in human epidemiological research. Therefore, this study attempts to assess the effect of rs7566605 near INSIG2 on both obesity- and cholesterol-related traits in Koreans. Methods The rs7566605 polymorphism was genotyped with 2,364 Koreans, and associations with obesity- and cholesterol-related traits were analyzed statistically via an ANOVA or T-test. Results Replication of an association with BMI, WHR, fat mass, fat percent, and abdominal fat area failed, and the C allele of rs7566605 was not associated significantly with total cholesterol, HDL cholesterol, or triglyceride. However, it was found in a meta-analysis of a dominant model that the C allele of rs7566605 appeared to affect the level of the total cholesterol, especially in female subjects. Conclusion We failed to show associations of rs7566605 with cholesterol- and obesity-related phenotypes, although we newly suggest the possible involvement of INSIG2 with the plasma level of the total cholesterol in women.

  3. [Effect of protein-vitamin deficiency on the enzyme activity of lipolysis and the synthesis of cholesterol esters during hypokinesia].

    Science.gov (United States)

    Koshkenbaev, B Kh; Tazhibaev, Sh S; Maksimenko, V B; Sisemalieva, Zh S

    1985-01-01

    Balanced diet during 60-day hypokinesia leads to inhibition of lipoprotein lypase (LPLA) and liver triglyceride lypase (L-TGLA) activity of the rat blood serum. The level of very low density lipoproteins (VLDLP) grows, and suppression of lecithin-cholesteryl-acyltransferase (LCAT) activity is accompanied by reduction of the share of cholesterol derivatives with polyunsaturated fatty acids. Combined effects of protein-vitamin insufficiency and hypokinesia result in parversion of the lipolysis processes, that manifests in prevalence of L-TGLA over LPLA. The levels of VLDLP increase, and growth of LCAT activity is acompanied by the growth of cholesteryl linoleate share and level. Hypokinesia combined with the studied experimental diets was found to lead to increase of the free fatty acid level and to decrease of the blood serum levels of phospholipids and triglycerides.

  4. Synthesis and Properties of Dimesogenic Compounds Containing Cholesterol and 4-(trans-4-n-Alkylcyclohexyl)- benzoic Acid Moieties

    Institute of Scientific and Technical Information of China (English)

    YU, Haibo; HOU, Ruibin; CHEN, Tie; YIN, Bingzhu; MUHAMMAD, Jamil; JEON, Youngja

    2009-01-01

    A series of novel dimesogenic compounds containing cholesterol and 4-(trans-4-n-alkylcyclohexyl)benzoic acid moieties were synthesized. The two mesogenic units of these compounds are linked with ω-oxyalkanoyl spacers of varying lengths. The chemical structure and mesomorphic properties of this series of compounds were characterized by FT-IR, MS, 1H NMR, polarizing optical microscopy (POM) and DSC techniques. The average viscosity and helical twisting power (HTP) in host liquid crystals of selected dimesogenic compounds were also measured. It was found that most of the present novel series of compounds exhibited only cholesteric mesophase with lower phase transition temperatures, and the average viscosity and HTP of selected compounds were similar to or superior to cholesteryl nonylate.

  5. Design, synthesis and preliminary bio-evaluation of glucose-cholesterol derivatives as ligands for brain targeting liposomes

    Institute of Scientific and Technical Information of China (English)

    Fan Lei; Wei Fan; Xian Kun Li; Shan Wang; Li Hai; Yong Wu

    2011-01-01

    A series of glucose-cholesterol derivatives 8a-8e as ligands for brain targeting liposomes were synthesized. The preparation of compound 6 involved temporary protection of glucose with chlorotrimethylsilicane and hexamethyldisilazane followed by selectively hydrolyzed. The known cholesteryl tosylate 1 were coupled to ethylene glycols to afford alcohol 2a-2e. Substitution and deprotection of alcohol 2a-2e furnished the acids 4a-4e, which was condensed with compound 6 to get compounds 7a-7e, and then was deprotected in tetrahydrofuran with TEA to obtain the title compounds. As a model drug, tegafur was entrapped by liposomes coupled with 8b, and preliminary in vivo evaluation shown 8b could enhance the ability of liposomes delivering tegafur across the blood brain barrier.

  6. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Fisker, Niels; Hedtjärn, Maj

    2010-01-01

    -life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non...... using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates....

  7. Fractionation of human serum lipoproteins and simultaneous enzymatic determination of cholesterol and triglycerides

    NARCIS (Netherlands)

    Qureshi, R.N.; Kok, W.T.; Schoenmakers, P.J.

    2009-01-01

    A method based on Asymmetric Flow Field-Flow Fractionation (AF4) was developed to separate different types of lipoproteins from human serum. The emphasis in the method optimization was on the possibilities to characterize the largest lipoprotein fractions (LDL and VLDL), which is usually not

  8. Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation.

    Science.gov (United States)

    Mohammad, Mahmoud A; Haymond, Morey W

    2013-09-15

    Expression of genes for lipid biosynthetic enzymes during initiation of lactation in humans is unknown. Our goal was to study mRNA expression of lipid metabolic enzymes in human mammary epithelial cell (MEC) in conjunction with the measurement of milk fatty acid (FA) composition during secretory activation. Gene expression from mRNA isolated from milk fat globule (MFG) and milk FA composition were measured from 6 h to 42 days postpartum in seven normal women. Over the first 96 h postpartum, daily milk fat output increased severalfold and mirrored expression of genes for all aspects of lipid metabolism and milk FA production, including lipolysis at the MEC membrane, FA uptake from blood, intracellular FA transport, de novo FA synthesis, FA and glycerol activation, FA elongation, FA desaturation, triglyceride synthesis, cholesterol synthesis, and lipid droplet formation. Expression of the gene for a key lipid synthesis regulator, sterol regulatory element-binding transcription factor 1 (SREBF1), increased 2.0-fold by 36 h and remained elevated over the study duration. Expression of genes for estrogen receptor 1, thyroid hormone-responsive protein, and insulin-induced 2 increased progressively to plateau by 96 h. In contrast, mRNA of peroxisome proliferator-activated receptor-γ decreased severalfold. With onset of lactation, increased de novo synthesis of FA was the most prominent change in milk FA composition and mirrored the expression of FA synthesis genes. In conclusion, milk lipid synthesis and secretion in humans is a complex process requiring the orchestration of a wide variety of pathways of which SREBF1 may play a primary role.

  9. Effect of Animal and Industrial Trans Fatty Acids on HDL and LDL Cholesterol Levels in Humans - A Quantitative Review

    NARCIS (Netherlands)

    Brouwer, I.A.; Wanders, A.J.; Katan, M.B.

    2010-01-01

    Background: Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid an

  10. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    Science.gov (United States)

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  11. Cholesterol: Up in Smoke.

    Science.gov (United States)

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  12. Cholesterol and prostate cancer.

    Science.gov (United States)

    Pelton, Kristine; Freeman, Michael R; Solomon, Keith R

    2012-12-01

    Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models, which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations.

  13. Modifying the fatty acid profile of dairy products through feedlot technology lowers plasma cholesterol of humans consuming the products.

    Science.gov (United States)

    Noakes, M; Nestel, P J; Clifton, P M

    1996-01-01

    Intake of milk and butter has been clearly associated with higher coronary heart disease rates in different countries and this is likely to be mediated by the hypercholesterolemic effect of dairy fat. Fat-modified dairy products are an innovation involving a technology in which protected unsaturated lipids are fed to ruminants resulting in milk and tissue lipids with reduced saturated fatty acids. We examined the impact of these novel dairy fats on plasma lipids in a human dietary trial. Thirty-three men and women participated in an 8-wk randomized crossover trial comparing fat-modified with conventional dairy products. The trial consisted of a 2-wk low-fat baseline period followed by two 3-wk intervention phases. During the test periods, the fat-modified products resulted in a significant 0.28-mmol/L (4.3%) lowering of total cholesterol (P dairy products, if applied to populations typical of developed Western countries, represents a potential strategy to lower the risk of coronary heart disease without any appreciable change in customary eating patterns.

  14. Effect of macrophage-derived mouse ApoE, human ApoE3-Leiden, and human ApoE2 (Arg158→Cys) on cholesterol levels and atherosclerosis in ApoE- deficient mice

    NARCIS (Netherlands)

    Eck, M. van; Herijgers, N.; Dijk, K.W. van; Havekes, L.M.; Hofker, M.H.; Groot, P.H.E.; Berkel, T.J.C. van

    2000-01-01

    The effect of monocyte/macrophage-derived wild-type mouse apolipoprotein E (apoE), human apoE3-Leiden, and human apoE2 on serum cholesterol levels and the development of atherosclerosis in apoE-deficient (apoe-/-) mice was investigated by using bone marrow transplantation (BMT). At 4 weeks after

  15. Seladin-1/DHCR24 protects neuroblastoma cells against Aβ toxicity by increasing membrane cholesterol content

    Science.gov (United States)

    Cecchi, C; Rosati, F; Pensalfini, A; Formigli, L; Nosi, D; Liguri, G; Dichiara, F; Morello, M; Danza, G; Pieraccini, G; Peri, A; Serio, M; Stefani, M

    2008-01-01

    The role of brain cholesterol in Alzheimer's disease (AD) is currently a matter of debate. Experimental evidence suggests that reducing circulating and brain cholesterol protects against AD, however recent data indicate that low membrane cholesterol results in neurode-generation and that the cholesterol synthesis catalyst seladin-1 is down-regulated in AD-affected brain regions. We previously reported a significant correlation between resistance to amyloid toxicity and content of membrane cholesterol in differing cultured cell types. Here we provide evidence that Aβ42 pre-fibrillar aggregates accumulate more slowly and in reduced amount at the plasma membrane of human SH-SY5Y neuroblastoma cells overexpressing seladin-1 or treated with PEG-cholesterol than at the membrane of control cells. The accumulation was significantly increased in cholesterol-depleted cells following treatment with the specific seladin-1 inhibitor 5,22E-cholestadien-3-ol or with methyl-β-cyclodextrin. The resistance to amyloid toxicity and the early cytosolic Ca2+ rise following exposure to Aβ42 aggregates were increased and prevented, respectively, by increasing membrane cholesterol whereas the opposite effects were found in cholesterol-depleted cells. These results suggest that seladin-1-dependent cholesterol synthesis reduces membrane-aggregate interaction and cell damage associated to amyloid-induced imbalance of cytosolic Ca2+. Our findings extend recently reported data indicating that seladin-1 overexpression directly enhances the resistance to Aβ toxicity featuring seladin-1/DHCR 24 as a possible new susceptibility gene for sporadic AD. PMID:18194465

  16. Women and Cholesterol

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... 2014. Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  17. HDL Cholesterol Test

    Science.gov (United States)

    ... products and services. Advertising & Sponsorship: Policy | Opportunities HDL Cholesterol Share this page: Was this page helpful? Also ... HDL; HDL-C Formal name: High-density Lipoprotein Cholesterol Related tests: Cholesterol ; LDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  18. Cholesterol IQ Quiz

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  19. Cholesterol and Your Child

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Cholesterol and Your Child KidsHealth > For Parents > Cholesterol and ... child's risk of developing heart disease later. About Cholesterol Cholesterol is a waxy substance produced by the ...

  20. Lifestyle Changes and Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Lifestyle Changes and Cholesterol Updated:Sep 26,2016 As part of a ... to the Terms and Conditions and Privacy Policy Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  1. Common Misconceptions about Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Apr 3,2017 Cholesterol can be both ... misconceptions about cholesterol. Click on each misconception about cholesterol to see the truth: My choices about diet ...

  2. Effect of rye bran on excretion of bile acids, cholesterol, nitrogen, and fat in human subjects with ileostomies.

    Science.gov (United States)

    Zhang, J X; Lundin, E; Hallmans, G; Adlercreutz, H; Andersson, H; Bosaeus, I; Aman, P; Stenling, R; Dahlgren, S

    1994-02-01

    The excretion of bile acids, cholesterol, dry matter, nitrogen, fat, and energy in ileostomy effluent, and plasma lipid concentrations were studied in eight subjects with ileostomies. The subjects consumed a wheat bread-based, low-fiber diet (LFD) for 3 wk and a rye bran bread-based, high-fiber diet (HFD) for 3 wk. The ileal excretion of dry matter, nitrogen, fat, and energy was higher during the HFD period. The daily excretion and the percentage of conjugated bile acids were significantly higher and the percentage of free bile acids lower in the ileostomy effluents during the HFD as compared with the LFD period. No significant difference in the excretion of cholesterol, net cholesterol, sterol, or net sterol was noted between the HFD and LFD periods. No significant differences in plasma concentrations of HDL-, LDL-, and total cholesterol, and apolipoprotein A-I and B were observed between the two 3-wk dietary periods.

  3. Mechanism of Resistance to Dietary Cholesterol

    Directory of Open Access Journals (Sweden)

    Lindsey R. Boone

    2011-01-01

    Full Text Available Background. Alterations in expression of hepatic genes that could contribute to resistance to dietary cholesterol were investigated in Sprague-Dawley rats, which are known to be resistant to the serum cholesterol raising action of dietary cholesterol. Methods. Microarray analysis was used to provide a comprehensive analysis of changes in hepatic gene expression in rats in response to dietary cholesterol. Changes were confirmed by RT-PCR analysis. Western blotting was employed to measure changes in hepatic cholesterol 7α hydroxylase protein. Results. Of the 28,000 genes examined using the Affymetrix rat microarray, relatively few were significantly altered. As expected, decreases were observed for several genes that encode enzymes of the cholesterol biosynthetic pathway. The largest decreases were seen for squalene epoxidase and lanosterol 14α demethylase (CYP 51A1. These changes were confirmed by quantitative RT-PCR. LDL receptor expression was not altered by dietary cholesterol. Critically, the expression of cholesterol 7α hydroxylase, which catalyzes the rate-limiting step in bile acid synthesis, was increased over 4-fold in livers of rats fed diets containing 1% cholesterol. In contrast, mice, which are not resistant to dietary cholesterol, exhibited lower hepatic cholesterol 7α hydroxylase (CYP7A1 protein levels, which were not increased in response to diets containing 2% cholesterol.

  4. Transitional features in human atherosclerosis. Intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks.

    OpenAIRE

    Guyton, J. R.; Klemp, K. F.

    1993-01-01

    The possible transition from a subset of fatty streaks to fibrous plaques in human atherosclerosis has long been postulated, but transitional features in lesions have rarely been demonstrated. We examined human aortic fatty streaks to determine whether significant tendencies toward intimal thickening and toward deep extracellular lipid deposition might be found. To provide accurate ultrastructural assessment of lipid, tissues were processed by new electron microscopic cytochemical techniques....

  5. Transitional features in human atherosclerosis. Intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks.

    OpenAIRE

    Guyton, J. R.; Klemp, K. F.

    1993-01-01

    The possible transition from a subset of fatty streaks to fibrous plaques in human atherosclerosis has long been postulated, but transitional features in lesions have rarely been demonstrated. We examined human aortic fatty streaks to determine whether significant tendencies toward intimal thickening and toward deep extracellular lipid deposition might be found. To provide accurate ultrastructural assessment of lipid, tissues were processed by new electron microscopic cytochemical techniques....

  6. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Lund, Frederik Wendelboe; Röhrl, Clemens

    2016-01-01

    Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy...... is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol......), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences...

  7. Teaching and Learning Children's Human Rights: A Research Synthesis

    Science.gov (United States)

    Brantefors, Lotta; Quennerstedt, Ann

    2016-01-01

    The study presented in this paper is a research synthesis examining how issues relating to the teaching and learning of children's human rights have been approached in educational research. Drawing theoretically on the European Didaktik tradition, the purpose of the paper is to map and synthesise the educational interest in children's rights…

  8. Sulfur in human nutrition - effects beyond protein synthesis

    NARCIS (Netherlands)

    Schaafsma, Gertjan

    2008-01-01

    That sulfur is essential to humans is based on the requirement of S-animo acids for normal growth and maintenance of nitrogen balance and not on the optimization of metabolic proccesses involving the synthesis of non-protein sulphur containing compounds. This paper reviews the significance of sulfur

  9. Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes

    OpenAIRE

    Röhner, Eric; Hoff, Paula; Winkler, Tobias; von Roth, Philipp; Seeger, Jörn Bengt; Perka, Carsten; Matziolis, Georg

    2011-01-01

    The use of local antiseptics is a common method in septic joint surgery. We tested polyhexanide and hydrogen peroxide, two of the most frequently used antiseptics with high efficacy and low toxicity. The purpose of this study was to evaluate the effects of both antiseptics on the extracellular cartilaginous matrix synthesis of human chondrocytes. Chondrocytes were isolated from donated human knee joints, embedded in alginate beads, and incubated for 10 and 30 minutes with polyhexanide (0.04%)...

  10. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  11. Kynurenic acid synthesis by human glioma

    DEFF Research Database (Denmark)

    Vezzani, A; Gramsbergen, J B; Versari, P;

    1990-01-01

    Biopsy material from human gliomas obtained during neurosurgery was used to investigate whether pathological human brain tissue is capable of producing kynurenic acid (KYNA), a natural brain metabolite which can act as an antagonist at excitatory amino acid receptors. Upon in vitro exposure to 40...

  12. Determination of in vivo protein synthesis in human palatine tonsil.

    Science.gov (United States)

    Januszkiewicz, Anna; Klaude, Maria; Loré, Karin; Andersson, Jan; Ringdén, Olle; Rooyackers, Olav; Wernerman, Jan

    2005-02-01

    The palatine tonsils are constantly exposed to ingested or inhaled antigens which, in turn, lead to a permanent activation of tonsillar immune cells, even in a basic physiological state. The aim of the present study was to investigate if the immunological activation of the human palatine tonsil is reflected by a high metabolic activity, as determined by in vivo measurement of protein synthesis. The protein synthesis rate of the tonsil was also compared with that of the circulating T-lymphocytes, the total blood mononuclear cells and the whole population of blood leucocytes. Phenotypic characterization of immune-competent cells in tonsil tissue and blood was performed by flow cytometry. Pinch tonsil biopsies were taken after induction of anaesthesia in healthy adult patients (n=12) scheduled for ear surgery, uvulopalatopharyngoplasty or nose surgery. Protein synthesis was quantitatively determined during a 90-min period by a flooding-dose technique. The in vivo protein synthesis rate in the palatine tonsils was 22.8+/-5.7%/24 h (mean+/-S.D.), whereas protein synthesis in the circulating T-lymphocytes was 10.7+/-3.4%/24 h, in mononuclear cells was 10.8+/-2.8%/24 h and in leucocytes was 3.2+/-1.2%/24 h. CD3+ lymphocytes were the most abundant cell population in the tonsil. The in vivo protein synthesis rate in human tonsils was higher compared with the circulating immune cells. This high metabolic rate may reflect the permanent immunological activity present in human tonsils, although cell phenotypes and activity markers do not explain the differences.

  13. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    Science.gov (United States)

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.

  14. Evaluating computational models of cholesterol metabolism.

    Science.gov (United States)

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K

    2015-10-01

    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of cholesterol synthesis and plasma cholesterol levels is incomplete. One way of addressing the remaining questions is by making use of computational models. Here, we critically evaluate existing computational models of cholesterol metabolism making use of ordinary differential equations and addressed whether they used assumptions and make predictions in line with current knowledge on cholesterol homeostasis. Having studied the results described by the authors, we have also tested their models. This was done primarily by testing the effect of statin treatment in each model. Ten out of eleven models tested have made assumptions in line with current knowledge of cholesterol metabolism. Three out of the ten remaining models made correct predictions, i.e. predicting a decrease in plasma total and LDL cholesterol or increased uptake of LDL upon treatment upon the use of statins. In conclusion, few models on cholesterol metabolism are able to pass a functional test. Apparently most models have not undergone the critical iterative systems biology cycle of validation. We expect modeling of cholesterol metabolism to go through many more model topologies and iterative cycles and welcome the increased understanding of cholesterol metabolism these are likely to bring.

  15. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor t

  16. Greased hedgehogs : new links between hedgehog signaling and cholesterol metabolism

    NARCIS (Netherlands)

    Breitling, Rainer

    2007-01-01

    The close link between signaling by the developmental regulators of the Hedgehog family and cholesterol biochemistry has been known for some time. The morphogen is covalently attached to cholesterol in a peculiar autocatalytic reaction and embryonal disruption of cholesterol synthesis leads to malfo

  17. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor

  18. Patterns of cholesterol metabolism: pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome.

    Science.gov (United States)

    Lupattelli, G; De Vuono, S; Mannarino, E

    2011-09-01

    Investigating cholesterol metabolism, which derives from balancing cholesterol synthesis and absorption, opens new perspectives in the pathogenesis of dyslipidemias and the metabolic syndrome (MS). Cholesterol metabolism is studied by measuring plasma levels of campesterol, sitosterol and cholestanol, that is, plant sterols which are recognised as surrogate cholesterol-absorption markers and lathosterol or squalene, that is, cholesterol precursors, which are considered surrogate cholesterol-synthesis markers. This article presents current knowledge on cholesterol synthesis and absorption, as evaluated by means of cholesterol precursors and plant sterols, and discusses patterns of cholesterol balance in the main forms of primary hyperlipidaemia and MS. Understanding the mechanism(s) underlying these patterns of cholesterol synthesis and absorption will help to predict the response to hypolipidemic treatment, which can then be tailored to ensure the maximum clinical benefit for patients.

  19. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... collagen synthesis can be directly and robustly measured using stable isotope methodology....

  20. Desvenlafaxine prevents white matter injury and improves the decreased phosphorylation of the rate-limiting enzyme of cholesterol synthesis in a chronic mouse model of depression.

    Science.gov (United States)

    Wang, Junhui; Qiao, Jinping; Zhang, Yanbo; Wang, Hongxing; Zhu, Shenghua; Zhang, Handi; Hartle, Kelly; Guo, Huining; Guo, Wei; He, Jue; Kong, Jiming; Huang, Qingjun; Li, Xin-Min

    2014-10-01

    Serotonin/norepinephrine reuptake inhibitors antidepressants exert their effects by increasing serotonin and norepinephrine in the synaptic cleft. Studies show it takes 2-3 weeks for the mood-enhancing effects, which indicate other mechanisms may underlie their treatment effects. Here, we investigated the role of white matter in treatment and pathogenesis of depression using an unpredictable chronic mild stress (UCMS) mouse model. Desvenlafaxine (DVS) was orally administrated to UCMS mice at the dose of 10 mg/kg/day 1 week before they went through a 7-week stress procedure and lasted for over 8 weeks before the mice were killed. No significant changes were found for protein markers of neurons and astrocytes in UCMS mice. However, myelin and oligodendrocyte-related proteins were significantly reduced in UCMS mice. DVS prevented the stress-induced injury to white matter and the decrease of phosphorylated 5'-AMP-activated protein kinase and 3-hydroxy-3-methyl-glutaryl-CoA reductase protein expression. DVS increased open arm entries in an elevated plus-maze test, sucrose consumption in the sucrose preference test and decreased immobility in tail suspension and forced swimming tests. These findings suggest that stress induces depression-like behaviors and white matter deficits in UCMS mice. DVS may ameliorate the oligodendrocyte dysfunction by affecting cholesterol synthesis, alleviating the depression-like phenotypes in these mice. We examined the possible role of oligodendrocyte and myelin in the pathological changes of depression with an unpredictable chronic mild stress (UCMS) mouse model. Oligodendrocyte-related proteins in the mouse brain were specifically changed during the stress period. The depressive-like behaviors and oligodendrocyte deficits could be prevented by the administration of desvenlafaxine. Oligodendrocyte and myelin may be an essential target of desvenlafaxine for the treatment of depression. © 2014 International Society for Neurochemistry.

  1. Apolipoprotein A4-1/2 polymorphism and response of serum lipids to dietary cholesterol in humans

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Meyboom, S.; Funke, H.; Katan, M.B.

    2000-01-01

    The response of serum lipids to dietary changes is to some extent an innate characteristic. One candidate genetic factor that may affect the response of serum lipids to a change in cholesterol intake is variation in the apolipoprotein A4 gene, known as the APOA4-1/2 or apoA-IVGln360His polymorphism.

  2. Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects.

    Science.gov (United States)

    Pungcharoenkul, Kanit; Thongnopnua, Phensri

    2011-11-01

    The impact of consuming curcuminoids containing curcumin at 500 mg/day and 6 g/day for 7 days on plasma antioxidant capacity and serum cholesterol level were determined by using vitamin E 200 IU/day consumption as a comparison. Group A and group B subjects consumed 500 mg and 6 g curcumin, respectively, but group C subjects consumed vitamin E 200 IU. By using the oxygen radical absorbance capacity (ORAC) assay, it was found that plasma antioxidant capacity of group A rose from a baseline of 13% to 24% on day 1 and day 7, as against a 19-20% increase for group B. Serum cholesterol and triglyceride levels were significantly decreased after curcumin treatment at 500 mg/day. By consuming vitamin E, both ORAC values and plasma α-tocopherol concentrations were significantly increased, but only very slight responses on serum cholesterol or triglyceride levels were observed. It is therefore suggested that curcumin supplement would not be appropriate for healthy people except for reducing serum cholesterol or triglyceride levels. The dosage of a daily curcumin supplement at 500 mg is more effective than 6 g, although vitamin E is also considered to be an effective antioxidant supplement.

  3. Synthesis of Human Haemoglobin by Plants

    Science.gov (United States)

    Onyesom, I.

    2006-01-01

    Haemoglobin, Hb is the red, protein pigment in blood that transports oxygen round the body. Decreased quantity could lead to anaemia, and when the anaemic condition turns severe, blood transfusion becomes inevitable. However, the safety of human source has become questionable in recent times, and this has aroused the interest of scientists to…

  4. Synthesis of human-nature feedbacks

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    2015-09-01

    Full Text Available In today's globalized world, humans and nature are inextricably linked. The coupled human and natural systems (CHANS framework provides a lens with which to understand such complex interactions. One of the central components of the CHANS framework involves examining feedbacks among human and natural systems, which form when effects from one system on another system feed back to affect the first system. Despite developments in understanding feedbacks in single disciplines, interdisciplinary research on CHANS feedbacks to date is scant and often site-specific, a shortcoming that prevents complex coupled systems from being fully understood. The special feature "Exploring Feedbacks in Coupled Human and Natural Systems (CHANS" makes strides to fill this critical gap. Here, as an introduction to the special feature, we provide an overview of CHANS feedbacks. In addition, we synthesize key CHANS feedbacks that emerged in the papers of this special feature across agricultural, forest, and urban landscapes. We also examine emerging themes explored across the papers, including multilevel feedbacks, time lags, and surprises as a result of feedbacks. We conclude with recommendations for future research that can build upon the foundation provided in the special feature.

  5. Synthesis of Human Haemoglobin by Plants

    Science.gov (United States)

    Onyesom, I.

    2006-01-01

    Haemoglobin, Hb is the red, protein pigment in blood that transports oxygen round the body. Decreased quantity could lead to anaemia, and when the anaemic condition turns severe, blood transfusion becomes inevitable. However, the safety of human source has become questionable in recent times, and this has aroused the interest of scientists to…

  6. What Is Cholesterol?

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol Print A A A ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  7. What Is Cholesterol?

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol A A A What's ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  8. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  9. Cholesterol homeostasis: How do cells sense sterol excess?

    Science.gov (United States)

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis.

  10. Cholesterol Facts and Statistics

    Science.gov (United States)

    ... Blood Pressure Salt Million Hearts® WISEWOMAN Program High Cholesterol Facts Recommend on Facebook Tweet Share Compartir As ... the facts about high cholesterol [PDF-281K] . High Cholesterol in the United States 73.5 million adults ( ...

  11. Get Your Cholesterol Checked

    Science.gov (United States)

    ... Checked Print This Topic En español Get Your Cholesterol Checked Browse Sections The Basics Overview Cholesterol Test ... How often do I need to get my cholesterol checked? The general recommendation is to get your ...

  12. Dietary Fat and Cholesterol

    Science.gov (United States)

    ... Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 7 March 2017. + ... saturated fat found in red meat. What is cholesterol? Cholesterol is a fatlike substance that’s found in ...

  13. Causes of High Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Causes of High Cholesterol Updated:Jul 5,2017 If you have high ... and procedures related to heart disease and stroke. Cholesterol • Home • About Cholesterol • HDL, LDL, and Triglycerides • Causes ...

  14. High Blood Cholesterol Prevention

    Science.gov (United States)

    ... Million Hearts® WISEWOMAN Program Prevention and Management of High LDL Cholesterol: What You Can Do Recommend on ... like eating a healthy diet, can help prevent high cholesterol. High low-density lipoprotein (LDL) cholesterol increases ...

  15. Common Misconceptions about Cholesterol

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Jul 5,2017 How ... do you know about cholesterol? Here are some common misconceptions — and the truth. High cholesterol isn’t ...

  16. Cholesterol lowering, low cholesterol, and mortality.

    Science.gov (United States)

    LaRosa, J C

    1993-10-01

    Cholesterol lowering in both primary and secondary prevention has been clearly demonstrated to lower coronary morbidity and, in secondary prevention, to lower coronary mortality as well. Putative dangers of cholesterol lowering remain unproven. Population studies linking low cholesterol to noncoronary mortalities do not demonstrate cause-and-effect relations. In fact, based on current studies, the opposite is more likely to be the case. Neither gender nor age should automatically exclude persons from cholesterol screening. Drug intervention, however, should be used conservatively, particularly in young adults and the elderly. Drugs should be used only after diet and lifestyle interventions have failed. The evidence linking high blood cholesterol to coronary atherosclerosis and cholesterol lowering to its prevention is broad-based and definitive. Concerns about cholesterol lowering and spontaneously low cholesterols should be pursued but should not interfere with the implementation of current public policies to reduce the still heavy burden of atherosclerosis in Western society.

  17. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs

    Directory of Open Access Journals (Sweden)

    Hajjaj H

    2004-02-01

    Full Text Available Abstract Introduction There has been renewed interest in mushroom medicinal properties. We studied cholesterol lowering properties of Ganoderma lucidum (Gl, a renowned medicinal species. Results Organic fractions containing oxygenated lanosterol derivatives inhibited cholesterol synthesis in T9A4 hepatocytes. In hamsters, 5% Gl did not effect LDL; but decreased total cholesterol (TC 9.8%, and HDL 11.2%. Gl (2.5 and 5% had effects on several fecal neutral sterols and bile acids. Both Gl doses reduced hepatic microsomal ex-vivo HMG-CoA reductase activity. In minipigs, 2.5 Gl decreased TC, LDL- and HDL cholesterol 20, 27, and 18%, respectively (P Conclusions Overall, Gl has potential to reduce LDL cholesterol in vivo through various mechanisms. Next steps are to: fully characterize bioactive components in lipid soluble/insoluble fractions; evaluate bioactivity of isolated fractions; and examine human cholesterol lowering properties. Innovative new cholesterol-lowering foods and medicines containing Gl are envisioned.

  18. CYP7A1 A-278C polymorphism affects the response of plasma lipids after dietary cholesterol and cafestol interventions in humans.

    NARCIS (Netherlands)

    Hofman, M.K.; Weggemans, R.M.; Zock, P.L.; Schouten, E.G.; Katan, M.B.; Princen, H.M.G.

    2004-01-01

    The response of plasma lipids to dietary cholesterol and fat varies among individuals. Variations in genes involved in cholesterol metabolism can be important in these interindividual differences. The rate-limiting enzyme in the conversion of cholesterol into bile acids is cholesterol 7-hydroxylase

  19. CYP7A1 A-278C polymorphism affects the response of plasma lipids after dietary cholesterol and cafestol interventions in humans.

    NARCIS (Netherlands)

    Hofman, M.K.; Weggemans, R.M.; Zock, P.L.; Schouten, E.G.; Katan, M.B.; Princen, H.M.G.

    2004-01-01

    The response of plasma lipids to dietary cholesterol and fat varies among individuals. Variations in genes involved in cholesterol metabolism can be important in these interindividual differences. The rate-limiting enzyme in the conversion of cholesterol into bile acids is cholesterol 7-hydroxylase

  20. Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation.

    Science.gov (United States)

    Rosa, Antonella; Melis, M Paola; Deiana, Monica; Atzeri, Angela; Appendino, Giovanni; Corona, Giulia; Incani, Alessandra; Loru, Debora; Dessì, M Assunta

    2008-09-01

    Myrtle (Myrtus communis L.), a culinary spice and flavouring agent for alcoholic beverages widespread in the Mediterranean area and especially in Sardinia, contains the structurally unique oligomeric non-prenylated acylphloroglucinols, semimyrtucommulone and myrtucommulone A, whose antioxidant activity was investigated during the oxidative modification of lipid molecules implicated in the onset of cardiovascular diseases. Both acylphloroglucinols showed powerful antioxidant properties during the thermal (140 degrees C), solvent-free degradation of cholesterol. Moreover, the pre-treatment with semimyrtucommulone and myrtucommulone A significantly preserved LDL from oxidative damage induced by Cu(2+) ions at 2h of oxidation, and showed remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol, inhibiting the increase of their oxidative products (conjugated dienes fatty acids hydroperoxides, 7beta-hydroxycholesterol, and 7-ketocholesterol). Taking into account the widespread culinary use of myrtle leaves, the results of the present work qualify the natural compounds semimyrtucommulone and myrtucommulone A as interesting dietary antioxidants with potential antiatherogenicity.

  1. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige;

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  2. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically......-MS/MS) and GC-tandem MS (GC-MS/MS) have made these techniques an option for human muscle FSR measurements. Human muscle biopsies were freeze dried, cleaned, and hydrolyzed, and the amino acids derivatized using either N-acetyl-n-propyl, phenylisothiocyanate, or N.......89 ± 0.01, P muscle FSR, (2) LC-MS/MS comes quite close and is a good alternative when tissue quantities are too small for GC-C-IRMS, and (3) If GC-MS/MS is to be used, then the HFBA derivative should be used instead...

  3. Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-C(6)]-d-glucose tracer in mice.

    Science.gov (United States)

    Beger, Richard D; Hansen, Deborah K; Schnackenberg, Laura K; Cross, Brandie M; Fatollahi, Javad J; Lagunero, F Tracy; Sarnyai, Zoltan; Boros, Laszlo G

    2009-09-01

    Previous genetic and proteomic studies identified altered activity of various enzymes such as those of fatty acid metabolism and glycogen synthesis after a single toxic dose of valproic acid (VPA) in rats. In this study, we demonstrate the effect of VPA on metabolite synthesis flux rates and the possible use of abnormal (13)C labeled glucose-derived metabolites in plasma or urine as early markers of toxicity. Female CD-1 mice were injected subcutaneously with saline or 600 mg/kg) VPA. Twelve hours later, the mice were injected with an intraperitoneal load of 1 g/kg [U-(13)C]-d-glucose. (13)C isotopomers of glycogen glucose and RNA ribose in liver, kidney and brain tissue, as well as glucose disposal via cholesterol and glucose in the plasma and urine were determined. The levels of all of the positional (13)C isotopomers of glucose were similar in plasma, suggesting that a single VPA dose does not disturb glucose absorption, uptake or hepatic glucose metabolism. Three-hour urine samples showed an increase in the injected tracer indicating a decreased glucose re-absorption via kidney tubules. (13)C labeled glucose deposited as liver glycogen or as ribose of RNA were decreased by VPA treatment; incorporation of (13)C via acetyl-CoA into plasma cholesterol was significantly lower at 60 min. The severe decreases in glucose-derived carbon flux into plasma and kidney-bound cholesterol, liver glycogen and RNA ribose synthesis, as well as decreased glucose re-absorption and an increased disposal via urine all serve as early flux markers of VPA-induced adverse metabolic effects in the host.

  4. Cholesterol testing on a smartphone.

    Science.gov (United States)

    Oncescu, Vlad; Mancuso, Matthew; Erickson, David

    2014-02-21

    Home self-diagnostic tools for blood cholesterol monitoring have been around for over a decade but their widespread adoption has been limited by the relatively high cost of acquiring a quantitative test-strip reader, complicated procedure for operating the device, and inability to easily store and process results. To address this we have developed a smartphone accessory and software application that allows for the quantification of cholesterol levels in blood. Through a series of human trials we demonstrate that the system can accurately quantify total cholesterol levels in blood within 60 s by imaging standard test strips. In addition, we demonstrate how our accessory is optimized to improve measurement sensitivity and reproducibility across different individual smartphones. With the widespread adoption of smartphones and increasingly sophisticated image processing technology, accessories such as the one presented here will allow cholesterol monitoring to become more accurate and widespread, greatly improving preventive care for cardiovascular disease.

  5. Emerging roles of the intestine in control of cholesterol metabolism

    Institute of Scientific and Technical Information of China (English)

    Janine K Kruit; Albert K Groen; Theo J van Berkel; Folkert Kuipers

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis,clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor to high density lipoprotein (HDL; good cholesterol) formation. The liver has a central position in the classical definition of the reverse cholesterol transport pathway by taking up peripheryderived cholesterol from lipoprotein particles followed by conversion into bile acids or its direct secretion into bile for eventual removal via the feces. During the past couple of years, however, an additional important role of the intestine in maintenance of cholesterol homeostasis and regulation of plasma cholesterol levels has become apparent. Firstly, molecular mechanisms of cholesterol absorption have been elucidated and novel pharmacological compounds have been identified that interfere with the process and positively impact plasma cholesterol levels. Secondly, it is now evident that the intestine itself contributes to fecal neutral sterol loss as a cholesterol-secreting organ. Finally, very recent work has unequivocally demonstrated that the intestine contributes significantly to plasma HDL cholesterol levels.Thus, the intestine is a potential target for novel antiatherosclerotic treatment strategies that, in addition to interference with cholesterol absorption, modulate direct cholesterol excretion and plasma HDL cholesterol levels.

  6. Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver injuries in rats fed a high-cholesterol diet.

    Science.gov (United States)

    Hu, Xu; Wang, Tao; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng

    2015-11-01

    Increasing evidence suggests that maintenance of homeostasis between gut microbiota and host plays an important role in human health. Many diseases, such as those affecting the liver, have been linked to imbalances in gut microbial communities. However, it is not clear whether an imbalance in gut microbiota promotes the onset of liver injury or if the imbalance results from the pathological state. In the current study, antibiotics were used to disturb the gut microbiota of both rats fed a high-cholesterol diet and rats fed a normal diet (controls). The prevalence of Bacteroidetes and Firmicutes were reduced, and Proteobacteria was greatly increased in the guts of rats after antibiotic treatment. The antibiotic-induced perturbation of gut microbiota aggravated cholesterol accumulation and liver injury in rats fed a high-cholesterol diet. This may have been due to an increase in intestinal permeability and plasma lipopolysaccharide (LPS), which lead to an increase in LPS absorption and activation of TLR4 signaling, resulting in the synthesis of pro-inflammatory cytokines and chemokines in liver tissues. This study suggests that imbalances in gut microbiota may be a predisposing factor for the onset of metabolic diseases and liver injuries related to cholesterol and high-cholesterol diets. Modulation of gut microbiota could be a novel target for preventing cholesterol-related metabolic disorders.

  7. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes

    DEFF Research Database (Denmark)

    Obsen, Thomas; Faergeman, Nils J; Chung, Soonkyu;

    2012-01-01

    Conjugated linoleic acid (CLA) reduces adiposity in vivo. However, mechanisms mediating these changes are unclear. Therefore, we treated cultures of human adipocytes with trans-10, cis-12 (10,12) CLA, cis-9, trans-11 (9,11) CLA or other trans fatty acids (FA), and measured indices of lipid......]-oleic or [(14)C]-linoleic acids. When using [(14)C]-acetic acid and [(14)C]-pyruvic acid as substrates, 30 μM 10,12 CLA, but not 9,11 CLA, decreased de novo synthesis of triglyceride, free FA, diacylglycerol, cholesterol esters, cardiolipin, phospholipids and ceramides within 3-24 h. Treatment with 30 μM 10......,12 CLA, but not 9,11 CLA, decreased total cellular lipids within 3 days and the ratio of monounsaturated FA (MUFA) to saturated FA, and increased C18:0 acyl-CoA levels within 24 h. Consistent with these data, stearoyl-CoA desaturase (SCD)-1 mRNA and protein levels were down-regulated by 10,12 CLA within...

  8. HDL Cholesterol: How to Boost Your 'Good' Cholesterol

    Science.gov (United States)

    HDL cholesterol: How to boost your 'good' cholesterol Your cholesterol levels are an important measure of heart health. For HDL cholesterol, or "good" cholesterol, higher levels are better. By Mayo Clinic ...

  9. Differential regulation of gene expression by LXRs in response to macrophage cholesterol loading.

    Science.gov (United States)

    Ignatova, Irena D; Angdisen, Jerry; Moran, Erin; Schulman, Ira G

    2013-07-01

    The ability of cells to precisely control gene expression in response to intracellular and extracellular signals plays an important role in both normal physiology and in pathological settings. For instance, the accumulation of excess cholesterol by macrophages initiates a genetic response mediated by the liver X receptors (LXRs)-α (NR1H3) and LXRβ (NR1H2), which facilitates the transport of cholesterol out of cells to high-density lipoprotein particles. Studies using synthetic LXR agonists have also demonstrated that macrophage LXR activation simultaneously induces a second network of genes that promotes fatty acid and triglyceride synthesis that may support the detoxification of excess free cholesterol by storage in the ester form. We now show that treatment of human THP-1 macrophages with endogenous or synthetic LXR ligands stimulates both transcriptional and posttranscriptional pathways that result in the selective recruitment of the LXRα subtype to LXR-regulated promoters. Interestingly, when human or mouse macrophages are loaded with cholesterol under conditions that mimic the development of atherogenic macrophage foam cells, a selective LXR response is generated that induces genes mediating cholesterol transport but does not coordinately regulate genes involved in fatty acid synthesis. The gene-selective response to cholesterol loading occurs, even in the presence of LXRα binding to the promoter of the gene encoding the sterol regulatory element-binding protein-1c, the master transcriptional regulator of fatty acid synthesis. The ability of promoter bound LXRα to recruit RNA polymerase to the sterol regulatory element-binding protein-1c promoter, however, appears to be ligand selective.

  10. Cooking for Lower Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cooking for Lower Cholesterol Updated:Oct 28,2016 A heart-healthy eating ... content was last reviewed on 04/21/2014. Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  11. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates.

    Science.gov (United States)

    Straarup, Ellen Marie; Fisker, Niels; Hedtjärn, Maj; Lindholm, Marie W; Rosenbohm, Christoph; Aarup, Vibeke; Hansen, Henrik Frydenlund; Ørum, Henrik; Hansen, Jens B Rode; Koch, Troels

    2010-11-01

    The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half-life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates.

  12. Suppression of bile acid synthesis by thyroid hormone in primary human hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Ewa Cristine Siljevik Ellis

    2006-01-01

    AIM: It is known that thyroid hormones alter the bile acid metabolism in humans, however the effect on individual enzymes has been difficult to elucidate.This is mainly due to the lack of human liver cell lines producing bile acids. We used cultures of primary human hepatocytes to study the effects of triiodothyronine (T3) on bile acid synthesis.METHODS: Primary hepatocytes were isolated from liver tissue obtained from three different patients undergoing liver resection due to underlying malignancy. The hepatocytes were cultured under serum-free conditions and treated from d 1 to d 5 with culture containing 0.1-1000 nmol/L of T3. Bile acid formation and mRNA levels of key enzymes were analysed.RESULTS: The lowest concentration of T3 decreased cholic acid (CA) formation to 43%-53% of controls and chenodeoxycholic acid (CDCA) to 52%-75% of controls on d 5. The highest dose further decreased CA formation to 16%-48% of controls while CDCA formation remained at 50%-117% of controls. Expression of mRNA levels of cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) dose-dependently decreased.Sterol 27-hydroxylase (CYP27A1) levels also decreased,but not to the same extent.CONCLUSION: T3 dose-dependently decreased total bile acid formation in parallel with decreased expression of CYP7A1 and CYP8B1. CA formation is inhibited to a higher degree than CDCA, resulting in a marked decrease in the CA/CDCA ratio.

  13. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    Science.gov (United States)

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.

  14. Reverse cholesterol transport revisited

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde

    2010-01-01

    Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.

  15. Effect of Theobromine Consumption on Serum Lipoprotein Profiles in Apparently Healthy Humans with Low HDL-Cholesterol Concentrations

    Directory of Open Access Journals (Sweden)

    Doris M. Jacobs

    2017-08-01

    Full Text Available Scope: Theobromine is a major active compound in cocoa with allegedly beneficial effect on high-density-lipoprotein-cholesterol (HDL-CH. We have investigated the effect of theobromine (TB consumption on the concentrations of triglyceride (TG and cholesterol (CH in various lipoprotein (LP subclasses.Methods: In a randomized, double-blind, placebo-controlled, cross-over study, 44 apparently healthy women and men (age: 60 ± 6 years, BMI: 29 ± 3 kg/m2 with low baseline HDL-CH concentrations consumed a drink supplemented with 500 mg/d theobromine for 4 weeks. TG and CH concentrations in 15 LP subclasses were predicted from diffusion-edited 1H NMR spectra of fasting serum.Results: The LP phenotype of the subjects was characterized by low CH concentrations in the large HDL particles and high TG concentrations in large VLDL and chylomicron (CM particles, which clearly differed from a LP phenotype of subjects with normal HDL-CH. TB only reduced CH concentrations in the LDL particles by 3.64 and 6.79%, but had no effect on TG and CH in any of the HDL, VLDL and CM subclasses.Conclusion: TB was not effective on HDL-CH in subjects with a LP phenotype characterized by low HDL-CH and high TG in VLDL.

  16. The N342S MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans

    Science.gov (United States)

    Weissglas-Volkov, Daphna; Calkin, Anna C.; Tusie-Luna, Teresa; Sinsheimer, Janet S.; Zelcer, Noam; Riba, Laura; Tino, Ana Maria Vargas; Ordoñez-Sánchez, Maria Luisa; Cruz-Bautista, Ivette; Aguilar-Salinas, Carlos A.; Tontonoz, Peter; Pajukanta, Päivi

    2011-01-01

    Atherosclerotic cardiovascular disease (ASCVD) affects more than 1 in 3 American adults. Hypercholesterolemia is a major treatable risk factor for ASCVD, yet many individuals fail to reach target levels of LDL-cholesterol (LDL-C) through the use of statins and lifestyle changes. The E3 ubiquitin ligase myosin regulatory light chain–interacting protein (MYLIP; also known as IDOL) is a recently identified regulator of the LDL receptor (LDLR) pathway. Genome-wide association studies (GWASs) in populations of mixed European descent have identified noncoding variants in the MYLIP region as being associated with LDL-C levels, but no underlying functional variants were pinpointed. In order to fine-map actual susceptibility variants, we studied a population demographically distinct from the discovery population to ensure a different pattern of linkage disequilibrium. Our analysis revealed that in a Mexican population, the nonsynonymous SNP rs9370867, which encodes the N342S amino acid substitution, is an underlying functional variant that was associated with high total cholesterol and accounted for one of the previous significant GWAS signals. Functional characterization showed that the Asn-encoding allele was associated with more potent LDLR degradation and decreased LDL uptake. Mutagenesis of residue 342 failed to affect intrinsic MYLIP E3 ligase activity, but it was critical for LDLR targeting. Our findings suggest that modulation of MYLIP activity can affect LDL-C levels and that pharmacologic inhibition of MYLIP activity might be a useful strategy in the treatment of dyslipidemia and ASCVD. PMID:21765216

  17. [Basic mechanisms: absorption and excretion of cholesterol and other sterols].

    Science.gov (United States)

    Cofan Pujol, Montserrat

    2014-01-01

    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  18. Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation.

    Science.gov (United States)

    Funakoshi, Takeshi; Aki, Toshihiko; Tajiri, Masateru; Unuma, Kana; Uemura, Koichi

    2016-11-25

    Aberrant cellular accumulation of cholesterol is associated with neuronal lysosomal storage disorders such as Niemann-Pick disease Type C (NPC). We have shown previously that l-norephedrine (l-Nor), a sympathomimetic amine, induces necrotic cell death associated with massive cytoplasmic vacuolation in SH-SY5Y human neuroblastoma cells. To reveal the molecular mechanism underling necrotic neuronal cell death caused by l-Nor, we examined alterations in the gene expression profile of cells during l-Nor exposure. DNA microarray analysis revealed that the gene levels for cholesterol transport (LDL receptor and NPC2) as well as cholesterol biosynthesis (mevalonate pathway enzymes) are increased after exposure to 3 mm l-Nor for ∼6 h. Concomitant with this observation, the master transcriptional regulator of cholesterol homeostasis, SREBP-2, is activated by l-Nor. The increase in cholesterol uptake as well as biosynthesis is not accompanied by an increase in cholesterol in the plasma membrane, but rather by aberrant accumulation in cytoplasmic compartments. We also found that cell death by l-Nor can be suppressed by nec-1s, an inhibitor of a regulated form of necrosis, necroptosis. Abrogation of SREBP-2 activation by the small molecule inhibitor betulin or by overexpression of dominant-negative SREBP-2 efficiently reduces cell death by l-Nor. The mobilization of cellular cholesterol in the presence of cyclodextrin also suppresses cell death. These results were also observed in primary culture of striatum neurons. Taken together, our results indicate that the excessive uptake as well as synthesis of cholesterol should underlie neuronal cell death by l-Nor exposure, and suggest a possible link between lysosomal cholesterol storage disorders and the regulated form of necrosis in neuronal cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Sex Differences in the Hepatic Cholesterol Sensing Mechanisms in Mice

    Directory of Open Access Journals (Sweden)

    Ingemar Björkhem

    2013-09-01

    Full Text Available Cholesterol is linked to many multifactorial disorders, including different forms of liver disease where development and severity depend on the sex. We performed a detailed analysis of cholesterol and bile acid synthesis pathways at the level of genes and metabolites combined with the expression studies of hepatic cholesterol uptake and transport in female and male mice fed with a high-fat diet with or without cholesterol. Lack of dietary cholesterol led to a stronger response of the sterol sensing mechanism in females, resulting in higher expression of cholesterogenic genes compared to males. With cholesterol in the diet, the genes were down-regulated in both sexes; however, males maintained a more efficient hepatic metabolic flux through the pathway. Females had higher content of hepatic cholesterol but this was likely not due to diminished excretion but rather due to increased synthesis and absorption. Dietary cholesterol and sex were not important for gallbladder bile acids composition. Neither sex up-regulated Cyp7a1 upon cholesterol loading and there was no compensatory up-regulation of Abcg5 or Abcg8 transporters. On the other hand, females had higher expression of the Ldlr and Cd36 genes. These findings explain sexual dimorphism of cholesterol metabolism in response to dietary cholesterol in a high-fat diet in mice, which contributes to understanding the sex-basis of cholesterol-associated liver diseases.

  20. Promotion of classic neutral bile acids synthesis pathway is responsible for cholesterol-lowing effect of Si-miao-yong-an decoction: Application of LC-MS/MS method to determine 6 major bile acids in rat liver and plasma.

    Science.gov (United States)

    Liu, Ziying; Zhang, Yu; Zhang, Ruowen; Gu, Liqiang; Chen, Xiaohui

    2017-02-20

    Si-miao-yong-an decoction (SMYAD), a traditional Chinese medicine formula, significantly reduced plasma TC, LDL-c levels and increased HDL-c level in hyperlipidemia rats. Liver function test and tissue section examination indicated that SMYAD improved liver function and reduced fat accumulation in hyperlipidemia rat liver. A LC-MS/MS method was established and well validated to evaluate major bile acids derived from cholesterol metabolism through the classic neutral pathway and the alternative acidic pathway (cholic acid, chenodeoxycholic acid and their taurine and glycine conjugates) in liver and plasma. Increased total 6 bile acids concentrations in both liver and plasma were observed after oral administration of 12g/kg/d, 24g/kg/d and 36g/kg/d of SMYAD in a dose dependent manner which contributed to eliminate of cholesterol. Cholic acid, taurocholic acid and glycocholic acid act as the main products of bile acid classic neutral synthesis pathway and show sharp increase (p<0.01) after treatment of SMYAD at dosage of 24-36g/kg/d. For liver samples, taurocholic acid level act as the largest growth section, while in plasma samples, cholic acid act as the largest growth section after SMYAD treatment, compared with Model group. By contrast, the main products of alternative acidic pathway (chenodeoxycholic acid and its glycine and taurine conjugates) show no significant increase after treatment of SMYAD. In conclusion, the cholesterol lowing effect of SMYAD may be related with the accelerated transformation of cholesterol into bile acids through the classic neutral pathway.

  1. Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes.

    Science.gov (United States)

    Röhner, Eric; Hoff, Paula; Winkler, Tobias; von Roth, Philipp; Seeger, Jörn Bengt; Perka, Carsten; Matziolis, Georg

    2011-03-01

    The use of local antiseptics is a common method in septic joint surgery. We tested polyhexanide and hydrogen peroxide, two of the most frequently used antiseptics with high efficacy and low toxicity. The purpose of this study was to evaluate the effects of both antiseptics on the extracellular cartilaginous matrix synthesis of human chondrocytes. Chondrocytes were isolated from donated human knee joints, embedded in alginate beads, and incubated for 10 and 30 minutes with polyhexanide (0.04%), hydrogen peroxide (3%), or phosphate-buffered saline (PBS) for control. Cartilaginous matrix production was quantified through light microscopic analysis of Alcian blue staining. Cell number and morphology were detected by histological analysis. Chondrocytes showed a decreased intensity of blue colouring after antiseptic treatment versus PBS. In contrast to that, neither the cell number per view field nor the cell morphology differed between the groups. Polyhexanide has more toxic potential than hydrogen peroxide. Based on the fact that the cell number and morphology was not altered by the substances at the examined concentrations, the lower intensity of Alcian blue staining of treated chondrocytes indicates a decreased cartilage-specific matrix synthesis by polyhexanide more than by hydrogen peroxide and control.

  2. Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans.

    Science.gov (United States)

    Schmelzer, Constance; Niklowitz, Petra; Okun, Jürgen G; Haas, Dorothea; Menke, Thomas; Döring, Frank

    2011-01-01

    Studies in vitro and in mice indicate a role for Coenzyme Q(10) (CoQ(10) ) in gene expression. To determine this function in relationship to physiological readouts, a 2-week supplementation study with the reduced form of CoQ(10) (ubiquinol, Q(10) H(2) , 150 mg/d) was performed in 53 healthy males. Mean CoQ(10) plasma levels increased 4.8-fold after supplementation. Transcriptomic and bioinformatic approaches identified a gene-gene interaction network in CD14-positive monocytes, which functions in inflammation, cell differentiation, and peroxisome proliferator-activated receptor-signaling. These Q(10) H(2) -induced gene expression signatures were also described previously in liver tissues of SAMP1 mice. Biochemical and NMR-based analyses showed a reduction of low density lipoprotein (LDL) cholesterol plasma levels after Q(10) H(2) supplementation. This effect was especially pronounced in atherogenic small dense LDL particles (19-21 nm, 1.045 g/L). In agreement with gene expression signatures, Q(10) H(2) reduces the number of erythrocytes but increases the concentration of reticulocytes. In conclusion, Q(10) H(2) induces characteristic gene expression patterns, which are translated into reduced LDL cholesterol levels and altered parameters of erythropoiesis in humans. Copyright © 2011 Wiley Periodicals, Inc.

  3. Cholesterol, the central lipid of mammalian cells

    NARCIS (Netherlands)

    Maxfield, F. R.; van Meer, G.

    2010-01-01

    Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, invo

  4. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    Science.gov (United States)

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. © 2016 John Wiley & Sons Australia, Ltd.

  5. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  6. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    DEFF Research Database (Denmark)

    Doessing, Simon; Heinemeier, Katja; Holm, Lars;

    2010-01-01

    young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P ...RNA expression and muscle collagen protein synthesis increased by 2.3-fold and 5.8-fold, respectively (P protein synthesis was unaffected by elevation of GH and IGF-I. Moderate exercise did not enhance the effects of GH manipulation. Thus, increased GH availability stimulates...... matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue....

  7. CYCLOSPORINE-A BLOCKS BILE-ACID SYNTHESIS IN CULTURED-HEPATOCYTES BY SPECIFIC-INHIBITION OF CHENODEOXYCHOLIC ACID SYNTHESIS

    NARCIS (Netherlands)

    PRINCEN, HMG; WOLTHERS, BG; VONK, RJ; KUIPERS, F

    1991-01-01

    Bile acid synthesis, determined by conversion of [4-C-14]cholesterol into bile acids in rat and human hepatocytes and by measurement of mass production of bile acids in rat hepatocytes, was dose-dependently decreased by cyclosporin A, with 52% (rat) and 45% (human) inhibition at 10-mu-M. The decreas

  8. Cholesterol testing and results

    Science.gov (United States)

    Cholesterol test results; LDL test results; VLDL test results; HDL test results; Coronary risk profile results; Hyperlipidemia- ... Some cholesterol is considered good and some is considered bad. Different blood tests can be done to measure each ...

  9. Controlling Cholesterol with Statins

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Controlling Cholesterol with Statins Share Tweet Linkedin Pin it More ... not, the following tips can help keep your cholesterol in check: Talk with your healthcare provider about ...

  10. Cholesterol - drug treatment

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000314.htm Cholesterol - drug treatment To use the sharing features on ... treatment; Hardening of the arteries - statin Statins for Cholesterol Statins reduce your risk of heart disease, stroke, ...

  11. Cholesterol and public policy.

    Science.gov (United States)

    LaRosa, J C

    1994-08-01

    Cholesterol lowering in both primary and secondary prevention has been clearly demonstrated to lower coronary morbidity and, in secondary prevention, to lower coronary mortality as well. Putative dangers of cholesterol lowering remain unproven. Population studies linking low cholesterol to noncoronary mortalities do not demonstrate cause-and-effect relations. In fact, based on current studies, the opposite is more likely to be the case. Neither gender nor age should automatically exclude persons from cholesterol screening. Drug intervention, however, should be used conservatively, particularly in young adults and the elderly. Drugs should be used only after diet and lifestyle interventions have failed. The evidence linking high blood cholesterol to coronary atherosclerosis and cholesterol lowering to its prevention is broad-based and definitive. Concerns about cholesterol lowering and spontaneously low cholesterols should be pursued but should not interfere with the implementation of current public policies to reduce the still heavy burden of atherosclerosis in Western society.

  12. High blood cholesterol levels

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000403.htm High blood cholesterol levels To use the sharing features ... stroke, and other problems. The medical term for high blood cholesterol is lipid disorder, hyperlipidemia, or hypercholesterolemia. ...

  13. Dietary regulation of maternal and fetal cholesterol metabolism in the guinea pig.

    Science.gov (United States)

    Yount, N Y; McNamara, D J

    1991-08-20

    Studies to determine the effects of pre-natal interventions on maternal and fetal cholesterol homeostasis were carried out in the guinea pig. Guinea pig dams were fed either non-purified guinea pig diet or diet supplemented with either 1.1% of the bile acid binding resin cholestyramine or 0.25% cholesterol. Whole body rates of endogenous cholesterol synthesis were determined by quantitation of [3H]water incorporation into digitonin precipitable sterols in non-pregnant animals and at 40 and 60 days of gestation in the dam and fetus. Maternal hepatic cholesterol synthesis was reduced 87% by dietary cholesterol and was increased 3.5-fold with cholestyramine feeding. Fetal hepatic and peripheral tissue cholesterol synthesis rates peaked at 40 days gestation when peripheral tissue cholesterol synthesis was 5.7-fold higher and hepatic synthesis 6.2-fold greater than the near adult levels observed at 60 days. Cholesterol synthesis in the fetus was relatively insensitive to dietary manipulations; however, maternal cholestyramine treatment did result in a 1.4-fold increase in fetal carcass cholesterol synthesis at 60 days gestation. These data demonstrate that maternal cholesterogenic systems maintain responsiveness to dietary regulation during pregnancy; whereas fetal cholesterol homeostasis is relatively insensitive to dietary cholesterol throughout gestation yet may respond to induction by maternal cholestyramine treatment during the late gestation period.

  14. An optimized chemical synthesis of human relaxin-2.

    Science.gov (United States)

    Barlos, Kostas K; Gatos, Dimitrios; Vasileiou, Zoe; Barlos, Kleomenis

    2010-04-01

    Human gene 2 relaxin (RLX) is a member of the insulin superfamily and is a multi-functional factor playing a vital role in pregnancy, aging, fibrosis, cardioprotection, vasodilation, inflammation, and angiogenesis. RLX is currently applied in clinical trials to cure among others acute heart failure, fibrosis, and preeclampsia. The synthesis of RLX by chemical methods is difficult because of the insolubility of its B-chain and the required laborious and low yielding site-directed combination of its A (RLXA) and B (RLXB) chains. We report here that oxidation of the Met(25) residue of RLXB improves its solubility, allowing its effective solid-phase synthesis and application in random interchain combination reactions with RLXA. Linear Met(O)(25)-RLX B-chain (RLXBO) reacts with a mixture of isomers of bicyclic A-chain (bcRLXA) giving exclusively the native interchain combination. Applying this method Met(O)(25)-RLX (RLXO) was obtained in 62% yield and was easily converted to RLX in 78% yield, by reduction with ammonium iodide.

  15. Cholesterol oxides inhibit cholesterol esterification by lecithin: cholesterol acyl transferase

    Directory of Open Access Journals (Sweden)

    Eder de Carvalho Pincinato

    2009-09-01

    Full Text Available Cholesterol oxides are atherogenic and can affect the activity of diverse important enzymes for the lipidic metabolism. The effect of 7β-hydroxycholesterol, 7-ketocholesterol, 25-hydroxycholesterol, cholestan-3β,5α,6β-triol,5,6β-epoxycholesterol, 5,6α-epoxycholesterol and 7α-hydroxycholesterol on esterification of cholesterol by lecithin:cholesterol acyl transferase (LCAT, EC 2.3.1.43 and the transfer of esters of cholesterol oxides from high density lipoprotein (HDL to low density lipoproteins (LDL and very low density lipoproteins (VLDL by cholesteryl ester transfer protein (CETP was investigated. HDL enriched with increasing concentrations of cholesterol oxides was incubated with fresh plasma as source of LCAT. Cholesterol and cholesterol oxides esterification was followed by measuring the consumption of respective free sterol and oxysterols. Measurements of cholesterol and cholesterol oxides were done by gas-chromatography. 14C-cholesterol oxides were incorporated into HDL2 and HDL3 subfractions and then incubated with fresh plasma containing LCAT and CETP. The transfer of cholesterol oxide esters was followed by measuring the 14C-cholesterol oxide-derived esters transferred to LDL and VLDL. All the cholesterol oxides studied were esterified by LCAT after incorporation into HDL particles, competing with cholesterol by LCAT. Cholesterol esterification by LCAT was inversely related to the cholesterol oxide concentration. The esterification of 14C-cholesterol oxides was higher in HDL3 and the transfer of the derived esters was greater from HDL2 to LDL and VLDL. The results suggest that cholesterol esterification by LCAT is inhibited in cholesterol oxide-enriched HDL particles. Moreover, the cholesterol oxides-derived esters are efficiently transferred to LDL and VLDL. Therefore, we suggest that cholesterol oxides may exert part of their atherogenic effect by inhibiting cholesterol esterification on the HDL surface and thereby disturbing

  16. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  17. Significant reduction of the antiatherogenic effect of estrogen by long-term inhibition of nitric oxide synthesis in cholesterol-clamped rabbits.

    Science.gov (United States)

    Holm, P; Korsgaard, N; Shalmi, M; Andersen, H L; Hougaard, P; Skouby, S O; Stender, S

    1997-01-01

    The purpose of this study was to investigate whether endothelium-derived nitric oxide (NO) is involved in the plasma lipid-independent antiatherogenic effect of estrogen and levormeloxifene, a partial estrogen receptor agonist. 85 rabbits were ovariectomized and balloon-injured in the middle thoracic aorta. The rabbits were fed a cholesterol-enriched diet supplemented with 17beta-estradiol, levormeloxifene, or placebo, either alone, or together with 160 microg/ml NG-nitro- -arginine methyl ester (-NAME), an NO synthase inhibitor, in their drinking water for 12 wk. Plasma cholesterol was maintained at 25-30 mmol/liter by individualized cholesterol feeding. In the undamaged aorta, the extent of atherosclerosis in the estrogen group was only one-third that in the placebo group. Simultaneous administration of -NAME, however, significantly reduced the antiatherogenic effect of estrogen (P < 0.01). There was no significant difference between the placebo group given -NAME and the group treated with placebo alone. At the previously endothelium-denuded site, estrogen had no effect on atherosclerosis development, whereas -NAME combined with estrogen significantly increased atherogenesis (P < 0.05). The effects of levormeloxifene were almost similar to those of estrogen. Active vascular concentrations of -NAME were demonstrated in an additional study, in which maximal aortic/coronary endothelium-dependent relaxation was significantly inhibited in rabbits given -NAME. Thus, in this study a considerable part of the plasma lipid-independent antiatherogenic effect of estrogen was mediated through its effect on endothelial NO in cholesterol-fed rabbits. The results for levormeloxifene suggest a common mechanism of action for estrogen and partial estrogen receptor agonists on atherogenesis. PMID:9259581

  18. Study of HLA-DR synthesis in cultured human keratinocytes.

    Science.gov (United States)

    Wikner, N E; Huff, J C; Norris, D A; Boyce, S T; Cary, M; Kissinger, M; Weston, W L

    1986-11-01

    Within the normal human epidermis only Langerhans and indeterminate cells express HLA-DR. Human keratinocytes (HK), however, may also express HLA-DR in certain disease states characterized by mononuclear cell infiltrates. Previous studies have shown that HK synthesize HLA-DR in response to stimulation by interferon gamma (INF-gamma). The purposes of this study were to define conditions under which cultured HK might express HLA-DR and to compare the HLA-DR synthesis of HK with that of monocytes. HLA-DR expression by HK as determined by indirect immunofluorescence of HK cultures was absent under standard low calcium conditions and remained absent with the addition of calcium, serum, mitogens, and supernatants from Pam-212 cells containing epidermal thymocyte-activating factor. HLA-DR expression in HK was induced by cocultivation with concanavalin A-stimulated peripheral blood mononuclear cells (PBMC), but not unstimulated PBMC. This effect was time-dependent and directly related to the number of PBMC. HLA-DR expression was also induced in a time- and dose-dependent manner by addition of supernatant from stimulated PBMC (SS) or by addition of recombinant INF-gamma but not by addition of interleukin (IL)-1 or IL-2. Induction by either SS or INF-gamma was blocked by an antiserum to INF-gamma. As determined by a semiquantitative immunoprecipitation technique, HLA-DR synthesis by HK was directly related to INF-gamma concentration. The pattern of HLA-DR peptides produced by HK was similar to that of monocytes, but the relative quantity synthesized was far less than that of monocytes.

  19. Seasonal effects on human striatal presynaptic dopamine synthesis.

    Science.gov (United States)

    Eisenberg, Daniel P; Kohn, Philip D; Baller, Erica B; Bronstein, Joel A; Masdeu, Joseph C; Berman, Karen F

    2010-11-01

    Past studies in rodents have demonstrated circannual variation in central dopaminergic activity as well as a host of compelling interactions between melatonin--a scotoperiod-responsive neurohormone closely tied to seasonal adaptation--and dopamine in the striatum and in midbrain neuronal populations with striatal projections. In humans, seasonal effects have been described for dopaminergic markers in CSF and postmortem brain, and there exists a range of affective, psychotic, and substance abuse disorders that have been associated with both seasonal symptomatic fluctuations and dopamine neurotransmission abnormalities. Together, these data indirectly suggest a potentially crucial link between circannual biorhythms and central dopamine systems. However, seasonal effects on dopamine function in the living, healthy human brain have never been tested. For this study, 86 healthy adults underwent (18)F-DOPA positron emission tomography scanning, each at a different time throughout the year. Striatal regions of interest (ROIs) were evaluated for differences in presynaptic dopamine synthesis, measured by the kinetic rate constant, K(i), between fall-winter and spring-summer scans. Analyses comparing ROI average K(i) values showed significantly greater putamen (18)F-DOPA K(i) in the fall-winter relative to the spring-summer group (p = 0.038). Analyses comparing voxelwise K(i) values confirmed this finding and evidenced intrastriatal localization of seasonal effects to the caudal putamen (p rate corrected), a region that receives dopaminergic input predominantly from the substantia nigra. These data are the first to directly demonstrate a seasonal effect on striatal presynaptic dopamine synthesis and merit future research aimed at elucidating underlying mechanisms and implications for neuropsychiatric disease and new treatment approaches.

  20. Effects of early cholesterol intake on cholesterol 7 alpha hydroxylase (Cyp7a1) expression in piglets receiving sow's breast milk or infant formula until weaning

    Science.gov (United States)

    Unlike breast milk, infant formulas are not rich in cholesterol. To compensate for the dietary loss, hepatic cholesterol synthesis is increased in formula-fed infants. Observational studies have reported significant increases in serum cholesterol and triglycerides in adults that received formula dur...

  1. What Your Cholesterol Levels Mean

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What Your Cholesterol Levels Mean Updated:Apr 3,2017 Keeping your ... content was last reviewed on 04/21/2014. Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  2. Home-Use Tests - Cholesterol

    Science.gov (United States)

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  3. From blood to gut: Direct secretion of cholesterol via transintestinal cholesterol efflux

    Institute of Scientific and Technical Information of China (English)

    Carlos; LJ; Vrins

    2010-01-01

    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol-lowering therapies. By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body. For a long time this removal via the hepatobiliary secretion was considered to be the sole route involved in the RCT. However, observations from early studies in animals and humans already pointed towards the possibility of another route. In t...

  4. [Cholesterol and atherosclerosis. Historical considerations and treatment].

    Science.gov (United States)

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván

    2016-01-01

    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease.

  5. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    Science.gov (United States)

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose.

  6. Coffee Oil Consumption Increases Plasma Levels of 7alpha-Hydroxy-4-cholesten-3-one in Humans

    NARCIS (Netherlands)

    Boekschoten, M.V.; Hofman, M.K.; Buytenhek, R.; Schouten, E.G.; Princen, H.M.G.; Katan, M.B.

    2005-01-01

    Unfiltered coffee brews such as French press and espresso contain a lipid from coffee beans named cafestol that raises serum cholesterol in humans. Cafestol decreases the expression and activity of cholesterol 7-hydroxylase, the rate-limiting enzyme in the classical pathway of bile acid synthesis, i

  7. Overactivation of Intestinal SREBP2 in Mice Increases Serum Cholesterol

    Science.gov (United States)

    Soni, Vinay; Hedroug, Omar; Annaba, Fadi; Dudeja, Amish; Shen, Le; Turner, Jerrold R.; Khramtsova, Ekaterina A.; Saksena, Seema; Dudeja, Pradeep K.; Gill, Ravinder K.; Alrefai, Waddah A.

    2014-01-01

    Sterol Response Element Binding Protein 2 (SREBP2) transcription factor is a master regulator of cholesterol homeostasis. Treatment with statins, inhibitors of cholesterol synthesis, activates intestinal SREBP2, which may hinder their cholesterol-lowering effects. Overactivation of SREBP2 in mouse liver was shown to have no effect on plasma cholesterol. However, the influence of activating intestinal SREBP2 on plasma cholesterol is not known. We have generated a novel transgenic mouse model with intestine specific overexpression of active SREBP2 (ISR2) driven by villin promoter. ISR2 mice showed overexpression of active SREBP2 specifically in the intestine. Microarray analysis of jejunal RNA from ISR2 mice showed a significant increase in genes involved in fatty acid and cholesterol synthesis. Cholesterol and triglyceride (TG) in jejunum and liver (mg/g protein) were significantly increased in ISR2 vs wild type mice. Serum Cholesterol was significantly increased in VLDL and LDL fractions whereas the level of serum triglycerides was decreased in ISR2 vs wild type mice. In conclusion, activation of intestinal SREBP2 alone seems to be sufficient to increase plasma cholesterol, highlighting the essential role of intestine in maintaining cholesterol homeostasis in the body. PMID:24465397

  8. Lipid peroxidation and total cholesterol in HAART-naive patients infected with circulating recombinant forms of human immunodeficiency virus type-1 in Cameroon.

    Directory of Open Access Journals (Sweden)

    Georges Teto

    Full Text Available BACKGROUND: HIV infection has commonly been found to affect lipid profile and antioxidant defense. OBJECTIVES: To determine the effects of Human Immunodeficiency Virus (HIV infection and viral subtype on patient's cholesterol and oxidative stress markers, and determine whether in the absence of Highly Active Antiretroviral Therapy (HAART, these biochemical parameters could be useful in patient's management and monitoring disease progression in Cameroon. For this purpose, we measured total cholesterol (TC, LDL cholesterol (LDLC, HDL cholesterol (HDLC, total antioxidant ability (TAA, lipid peroxidation indices (LPI, and malondialdehyde (MDA in HIV negative persons and HIV positive HAART-naïve patients infected with HIV-1 group M subtypes. METHODS: We measured serum TC, LDLC, HDLC, plasma MDA, and TAA concentrations, and calculated LPI indices in 151 HIV-positive HAART-naïve patients and 134 seronegative controls. We also performed gene sequence analysis on samples from 30 patients to determine the effect of viral genotypes on these biochemical parameters. We also determined the correlation between CD4 cell count and the above biochemical parameters. RESULTS: We obtained the following controls/patients values for TC (1.96±0.54/1. 12±0. 48 g/l, LDLC (0. 67±0. 46/0. 43±0. 36 g/l, HDLC (105. 51±28. 10/46. 54±23. 36 mg/dl TAA (0. 63±0. 17/0. 16±0. 16 mM, MDA (0. 20±0. 07/0. 41±0. 10 µM and LPI (0. 34±0. 14/26. 02±74. 40. In each case, the difference between the controls and patients was statistically significant (p<0.05. There was a positive and statistically significant Pearson correlation between CD4 cell count and HDLC (r = +0.272; p<0.01, TAA (r = +0.199; p<0.05 and a negative and statistically significant Pearson correlation between CD4 cell count and LPI (r = -0.166; p<0.05. Pearson correlation between CD4 cell count and TC, CD4cell count and LDLC was positive but not statistically significant while it was negative but

  9. Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster.

    Science.gov (United States)

    Burke, Katie T; Colvin, Perry L; Myatt, Leslie; Graf, Gregory A; Schroeder, Friedhelm; Woollett, Laura A

    2009-06-01

    The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.

  10. Low cholesterol and violence.

    Science.gov (United States)

    Mufti, R M; Balon, R; Arfken, C L

    1998-02-01

    The association between violent behavior and low serum total cholesterol levels was examined in a psychiatric inpatient population with diverse diagnoses. The study used a case-control design to compare the cholesterol levels of patients in a long-term psychiatric hospital who had a history of seclusion or restraints (N = 20) and those who did not (N = 20). A low cholesterol level was defined as less than 180 mg/dL. A strong association was found between low cholesterol levels and violent behavior (odds ratio = 15.49), an association that was not due to age, race, sex, or diagnosis. The finding was consistent whether mean levels or dichotomized levels of cholesterol were examined. Physical health, cholesterol-lowering medication, current alcohol use, or unusual diets could not explain the results. However, the raw frequency of episodes of seclusion or restraint as an indicator of the frequency of violent behavior was not associated with cholesterol level. Dichotomizing cholesterol levels at 180 mg/dL yielded high sensitivity (90 percent) for predicting violent behavior but at the cost of low specificity (65 percent). The results support the hypothesis that an association exists between low cholesterol and violent behavior among psychiatric patients but argue against using cholesterol level as a screening tool for predicting violent behavior.

  11. Photoinactivation of different human tumor cell lines and sheep red blood cells in vitro by liposome-bound Zn(II) Phthalocyanine: Effects of cholesterol.

    Science.gov (United States)

    de Oliveira, Carlos A; Kohn, Luciana K; Antonio, Márcia A; Carvalho, João E; Moreira, Mirian R; Machado, Antonio E H; Pessine, Francisco B T

    2010-08-02

    The in vitro photoinactivation of human tumor cell lines and sheep red blood cells (SRBC) by Zinc (II) Phthalocyanine (ZnPc) was investigated using unilamellar liposome (LUV) as delivery system, in the presence and absence of cholesterol (CHOL) in the formulation. The presence of CHOL improves the stability of the system showing to be essential for the photodynamic action of ZnPc. LUVs prepared without CHOL did not present any antiproliferative effects neither induced significant photohaemolysis. The presence of ZnPc in the culture medium caused total cell growth inhibition (TGI) only at concentrations higher than 250 micromol dm(-3). For ZnPc in LUV/CHOL (mass ratio=3:1), the mean TGI values for almost all studied cells were around 80 micromol dm(-3), and 14 micromol dm(-3) for human ovarian carcinoma (NIH: OVCAR-3) cells. The cytoplasmic components of OVCAR-3 and SRBC when irradiated in presence of ZnPc in LUV/CHOL were completely destroyed, culminating in cell swelling, lysis and death by necrosis.

  12. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents.

    Science.gov (United States)

    Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B

    2014-09-01

    Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87triglycerides, urea, cholesterol, albumin and total protein in human plasma. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Tissue storage and control of cholesterol metabolism in man on high cholesterol diets.

    Science.gov (United States)

    Quintão, E C; Brumer, S; Stechhahn, K

    1977-03-01

    The possibility of accumulation of tissue cholesterol in human beings submitted to high cholesterol feeding was investigated in liver biopsies and through fecal sterol balance studies. Feeding to 10 individuals 3.1 to 3.4 g/day of cholesterol for 3 weeks raised the mean serum level from 293 to 349 mg/100 ml, namely 19%, whereas the liver cholesterol content was 417 mg/100 g of wet weight. In 10 control cases eating 0.1--0.4 g/day of cholesterol serum cholesterol remained stable throughout the experimental period and the liver cholesterol content was 256 mg/100 g. Difference of liver colesterol level between the two groups was 62%. In 7 patients submitted to two periods of balance investigation on a cholesterol-free synthetic formula diet respectively prior to (PI) and after (PIII) eating the high cholesterol solid food from 4 to 15 weeks (PII), fecal steroid excretion in PIII exceeded PI in 3 patients. Such data are a direct evidence for the existence of an efficient system to release acutely stored cholesterol. In one patient bile acid excretion accounted for the difference between PIII and PI.

  14. Melissa officinalis essential oil reduces plasma triglycerides in human apolipoprotein E2 transgenic mice by inhibiting sterol regulatory element-binding protein-1c-dependent fatty acid synthesis.

    Science.gov (United States)

    Jun, Hee-Jin; Lee, Ji Hae; Jia, Yaoyao; Hoang, Minh-Hien; Byun, Hanna; Kim, Kyoung Heon; Lee, Sung-Joon

    2012-03-01

    We investigated the hypolipidemic effects of Melissa officinalis essential oil (MOEO) in human APOE2 transgenic mice and lipid-loaded HepG2 cells. Plasma TG concentrations were significantly less in APOE2 mice orally administered MOEO (12.5 μg/d) for 2 wk than in the vehicle-treated group. Cellular TG and cholesterol concentrations were also significantly decreased in a dose- (400 and 800 mg/L) and time- (12 and 24 h) dependent manner in HepG2 cells stimulated with MOEO compared with controls. Mouse hepatic transcriptome analysis suggested MOEO feeding altered several lipid metabolic pathways, including bile acid and cholesterol synthesis and fatty acid metabolism. In HepG2 cells, the rate of fatty acid oxidation, as assessed using [1-(14)C]palmitate, was unaltered; however, the rate of fatty acid synthesis quantified with [1-(14)C]acetate was significantly reduced by treatment with 400 and 800 mg/L MOEO compared with untreated controls. This reduction was due to the decreased expression of SREBP-1c and its responsive genes in fatty acid synthesis, including FAS, SCD1, and ACC1. Subsequent chromatin immunoprecipitation analysis further demonstrated that the binding of p300/CBP-associated factor, a coactivator of SREBP-1c, and histone H3 lysine 14 acetylation at the FAS, SCD1, and ACC1 promoters were significantly reduced in the livers of APOE2 mice and HepG2 cells treated with MOEO compared with their controls. Additionally, MOEO stimulation in HepG2 cells induced bile acid synthesis and reduced the nuclear form of SREBP-2, a key transcription factor in hepatic cholesterol synthesis. These findings suggest that the intake of phytochemicals with pleasant scent could have beneficial metabolic effects.

  15. Effects of vitamin C supplementation in human volunteers with a range of cholesterol levels on biomarkers of oxygen radical-generated damage

    NARCIS (Netherlands)

    Anderson, D.; Phillips, B.J.; Yu, T-W.; Edwards, A.J.; Ayesh, R.; Butterworth, K.R.

    2000-01-01

    Twenty-four men and 24 women, all nonsmoking, and maintaining normal dietary habits were assigned to 3 groups of 16. Each group comprising 4 males with "low" cholesterol levels (<6 mmol/L) matched for age and build with 4 males with "high" cholesterol levels (>6 mmol/L) and 8 similarly matched femal

  16. Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?

    Science.gov (United States)

    Gojkovic, Tamara; Vladimirov, Sandra; Spasojevic-Kalimanovska, Vesna; Zeljkovic, Aleksandra; Vekic, Jelena; Kalimanovska-Ostric, Dimitra; Djuricic, Ivana; Sobajic, Sladjana; Jelic-Ivanovic, Zorana

    2017-03-01

    Cholesterol homeostasis disorders may cause dyslipidemia, atherosclerosis progression and coronary artery disease (CAD) development. Evaluation of non-cholesterol sterols (NCSs) as synthesis and absorption markers, and lipoprotein particles quality may indicate the dyslipidemia early development. This study investigates associations of different cholesterol homeostasis patterns with low-density (LDL) and high-density lipoproteins (HDL) subclasses distribution in statin-treated and statin-untreated CAD patients, and potential use of aforementioned markers for CAD treatment optimization. The study included 78 CAD patients (47 statin-untreated and 31 statin-treated) and 31 controls (CG). NCSs concentrations were quantified using gas chromatography- flame ionization detection (GC-FID). Lipoprotein subclasses were separated by gradient gel electrophoresis. In patients, cholesterol-synthesis markers were significantly higher comparing to CG. Cholesterol-synthesis markers were inversely associated with LDL size in all groups. For cholesterol homeostasis estimation, each group was divided to good and/or poor synthetizers and/or absorbers according to desmosterol and β-sitosterol median values. In CG, participants with reduced cholesterol absorption, the relative proportion of small, dense LDL was higher in those with increased cholesterol synthesis compared to those with reduced synthesis (p<0.01). LDL I fraction was significantly higher in poor synthetizers/poor absorbers subgroup compared to poor synthetizers/good absorbers (p<0.01), and good synthetizers/poor absorbers (p<0.01). Statin-treated patients with increased cholesterol absorption had increased proportion of LDL IVB (p<0.05). The results suggest the existence of different lipoprotein abnormalities according to various patterns of cholesterol homeostasis. Desmosterol/β-sitosterol ratio could be used for estimating individual propensity toward dyslipidemia development and direct the future treatment.

  17. Human aortic fibrolipid lesions. Progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core.

    OpenAIRE

    Bocan, T. M.; Guyton, J. R.

    1985-01-01

    The early development of the lipid-rich core and other features of atherosclerotic fibrous plaques has been elucidated by examining discrete, small regions of raised intima in human aorta, which often bear a resemblance to both fatty streaks and fibrous plaques. Approximately one-fourth of small raised lesions (less than 16 sq mm of surface area) contained little or no stainable lipid, while three-fourths had a characteristic appearance, which included a superficial layer of foam cells, a cor...

  18. Human aortic fibrolipid lesions. Progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core.

    OpenAIRE

    Bocan, T. M.; Guyton, J. R.

    1985-01-01

    The early development of the lipid-rich core and other features of atherosclerotic fibrous plaques has been elucidated by examining discrete, small regions of raised intima in human aorta, which often bear a resemblance to both fatty streaks and fibrous plaques. Approximately one-fourth of small raised lesions (less than 16 sq mm of surface area) contained little or no stainable lipid, while three-fourths had a characteristic appearance, which included a superficial layer of foam cells, a cor...

  19. Mathematically modelling the dynamics of cholesterol metabolism and ageing.

    Science.gov (United States)

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2016-07-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the UK. This condition becomes increasingly prevalent during ageing; 34.1% and 29.8% of males and females respectively, over 75 years of age have an underlying cardiovascular problem. The dysregulation of cholesterol metabolism is inextricably correlated with cardiovascular health and for this reason low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) are routinely used as biomarkers of CVD risk. The aim of this work was to use mathematical modelling to explore how cholesterol metabolism is affected by the ageing process. To do this we updated a previously published whole-body mathematical model of cholesterol metabolism to include an additional 96 mechanisms that are fundamental to this biological system. Additional mechanisms were added to cholesterol absorption, cholesterol synthesis, reverse cholesterol transport (RCT), bile acid synthesis, and their enterohepatic circulation. The sensitivity of the model was explored by the use of both local and global parameter scans. In addition, acute cholesterol feeding was used to explore the effectiveness of the regulatory mechanisms which are responsible for maintaining whole-body cholesterol balance. It was found that our model behaves as a hypo-responder to cholesterol feeding, while both the hepatic and intestinal pools of cholesterol increased significantly. The model was also used to explore the effects of ageing in tandem with three different cholesterol ester transfer protein (CETP) genotypes. Ageing in the presence of an atheroprotective CETP genotype, conferring low CETP activity, resulted in a 0.6% increase in LDL-C. In comparison, ageing with a genotype reflective of high CETP activity, resulted in a 1.6% increase in LDL-C. Thus, the model has illustrated the importance of CETP genotypes such as I405V, and their potential role in healthy ageing. Copyright © 2016 Elsevier Ireland Ltd. All

  20. Antitumor effects of the combination of cholesterol reducing drugs.

    Science.gov (United States)

    Issat, Tadeusz; Nowis, Dominika; Bil, Jacek; Winiarska, Magdalena; Jakobisiak, Marek; Golab, Jakub

    2011-07-01

    There are a number of potential mechanisms linking cholesterol homeostasis to processes that are tightly linked with carcinogenesis. Statins, which are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoAR), the rate-limiting enzyme in the mevalonic acid synthesis pathway, exert cytostatic and cytotoxic effects towards tumor cells. It seems that the cytostatic and cytotoxic effects of statins result from blocking protein prenylation, leading to inhibition of isoprenoid compound synthesis. Another compound which affects cholesterol metabolism is the plant alkaloid berberine. The aim of this study was to investigate potential antitumor effects of lovastatin combined with berberine. Combined with berberine, lovastatin appeared to exert potentiated cytostatic and/or cytotoxic effects against human MDA-MB231 breast cancer and murine Panc 02 pancreatic cancer cells. The obtained results indicated that the effect of berberine is not dependent on blocking protein prenylation in cells, and the toxic effect of lovastatin combined with berberine is reversed by addition of the substrates of this pathway to the level brought out by lovastatin alone. Lovastatin-berberine combination caused cell cycle inhibition in G1 phase after 48 h of incubation with drugs. In a Panc 02 pancreatic cancer model in mice, lovastatin-berberine combination slightly, but significantly, slowed down tumor growth. Taking into account the number of patients treated with the investigated drugs one may suppose that the described interactions may be of clinical value.

  1. Methods for Improving Enzymatic Trans-glycosylation for Synthesis of Human Milk Oligosaccharide Biomimetics

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Jers, Carsten; Mikkelsen, Jørn Dalgaard

    2014-01-01

    Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic s...

  2. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development.

    Science.gov (United States)

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami

    2007-06-13

    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development.

  3. Cholesterol suppresses antimicrobial effect of statins

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haeri

    2015-12-01

    Full Text Available Objective(s:Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.

  4. Obesity, cholesterol metabolism, and breast cancer pathogenesis.

    Science.gov (United States)

    McDonnell, Donald P; Park, Sunghee; Goulet, Matthew T; Jasper, Jeff; Wardell, Suzanne E; Chang, Ching-Yi; Norris, John D; Guyton, John R; Nelson, Erik R

    2014-09-15

    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition, significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor in macrophages and possibly other cells, is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. Cancer Res; 74(18); 4976-82. ©2014 AACR. ©2014 American Association for Cancer Research.

  5. Obesity, Cholesterol Metabolism and Breast Cancer Pathogenesis

    Science.gov (United States)

    McDonnell, Donald P.; Park, Sunghee; Goulet, Matthew T.; Jasper, Jeff; Wardell, Suzanne E.; Chang, Ching-yi; Norris, John D.; Guyton, John R.; Nelson, Erik R.

    2014-01-01

    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor (LXR) in macrophages and possibly other cells is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor (ER) agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. PMID:25060521

  6. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Mirko Lanuti

    Full Text Available The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  7. Dietary oleic and palmitic acids modulate the ratio of triacylglycerols to cholesterol in postprandial triacylglycerol-rich lipoproteins in men and cell viability and cycling in human monocytes.

    Science.gov (United States)

    López, Sergio; Bermúdez, Beatriz; Pacheco, Yolanda M; López-Lluch, Guillermo; Moreda, Wenceslao; Villar, José; Abia, Rocío; Muriana, Francisco J G

    2007-09-01

    The postprandial metabolism of dietary fats produces triacylglycerol (TG)-rich lipoproteins (TRL) that could interact with circulating cells. We investigated whether the ratios of oleic:palmitic acid and monounsaturated fatty acids (MUFA):SFA in the diet affect the ratio of TG:cholesterol (CHOL) in postprandial TRL of healthy men. The ability of postprandial TRL at 3 h (early postprandial period) and 5 h (late postprandial period) to affect cell viability and cycle in the THP-1 human monocytic cell line was also determined. In a randomized, crossover experiment, 14 healthy volunteers (Caucasian men) ate meals enriched (50 g/m(2) body surface area) in refined olive oil, high-palmitic sunflower oil, butter, and a mixture of vegetable and fish oils, which had ratios of oleic:palmitic acid (MUFA:SFA) of 6.83 (5.43), 2.36 (2.42), 0.82 (0.48), and 13.81 (7.08), respectively. The ratio of TG:CHOL in postprandial TRL was inversely correlated (r = -0.89 to -0.99) with the ratio of oleic:palmitic acid and with the MUFA:SFA ratio in the dietary fats (P the cell cycle in THP-1 cells.

  8. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    Science.gov (United States)

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  9. Cholesterol - what to ask your doctor

    Science.gov (United States)

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  10. National Cholesterol Education Month

    Centers for Disease Control (CDC) Podcasts

    2009-09-01

    Do you know your cholesterol numbers? Your doctor can do a simple test to check your cholesterol levels and help you make choices that lower your risk for heart disease and stroke.  Created: 9/1/2009 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 9/9/2009.

  11. Measurement of Intestinal and Peripheral Cholesterol Fluxes by a Dual-Tracer Balance Method.

    Science.gov (United States)

    Ronda, Onne A H O; van Dijk, Theo H; Verkade, H J; Groen, Albert K

    2016-12-01

    Long-term elevated plasma cholesterol levels put individuals at risk for developing atherosclerosis. Plasma cholesterol levels are determined by the balance between cholesterol input and output fluxes. Here we describe in detail the methodology to determine the different cholesterol fluxes in mice. The percentage of absorbed cholesterol is calculated from a stable isotope-based double-label method. Cholesterol synthesis is calculated from MIDA after (13) C-acetate enrichment. Cholesterol is removed from the body via the feces. The fecal excretion route is either biliary or non-biliary. The non-biliary route is dominated by trans-intestinal cholesterol efflux, or TICE. Biliary excretion of cholesterol is measured by collecting bile. Non-biliary excretion is calculated by computational modeling. In this article, we describe methods and procedures to measure and calculate dietary intake of cholesterol, fractional cholesterol absorption, fecal neutral sterol output, biliary cholesterol excretion, TICE, cholesterol synthesis, peripheral fluxes, and whole-body cholesterol balance. © 2016 by John Wiley & Sons, Inc.

  12. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    Science.gov (United States)

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  13. Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids

    Directory of Open Access Journals (Sweden)

    Segovia Josefa L

    2010-03-01

    Full Text Available Abstract The alkylphospholipid analog miltefosine (hexadecylphosphocholine is a membrane-directed antitumoral and antileishmanial drug belonging to the alkylphosphocholines, a group of synthetic antiproliferative agents that are promising candidates in anticancer therapy. A variety of mechanisms have been suggested to explain the actions of these compounds, which can induce apoptosis and/or cell growth arrest. In this review, we focus on recent advances in our understanding of the actions of miltefosine and other alkylphospholipids on the human hepatoma HepG2 cell line, with a special emphasis on lipid metabolism. Results obtained in our laboratory indicate that miltefosine displays cytostatic activity and causes apoptosis in HepG2 cells. Likewise, treatment with miltefosine produces an interference with the biosynthesis of phosphatidylcholine via both CDP-choline and phosphatidylethanolamine methylation. With regard to sphingolipid metabolism, miltefosine hinders the formation of sphingomyelin, which promotes intracellular accumulation of ceramide. We have demonstrated for the first time that treatment with miltefosine strongly impedes the esterification of cholesterol and that this effect is accompanied by a considerable increase in the synthesis of cholesterol, which leads to higher levels of cholesterol in the cells. Indeed, miltefosine early impairs cholesterol transport from the plasma membrane to the endoplasmic reticulum, causing a deregulation of cholesterol homeostasis. Similar to miltefosine, other clinically-relevant synthetic alkylphospholipids such as edelfosine, erucylphosphocholine and perifosine show growth inhibitory effects on HepG2 cells. All the tested alkylphospholipids also inhibit the arrival of plasma-membrane cholesterol to the endoplasmic reticulum, which induces a significant cholesterogenic response in these cells, involving an increased gene expression and higher levels of several proteins related to the pathway of

  14. Effects of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in L-02 human hepatic cells via the PPARγ-ABCA1/CYP7A1 pathway.

    Science.gov (United States)

    Lv, Ou; Wang, Lifang; Li, Jianke; Ma, Qianqian; Zhao, Wei

    2016-12-07

    To study the effect of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in human hepatic cells, purified pomegranate peel polyphenols (PPPs), their main component, punicalagin (PC), and the metabolite of PC, pomegranate ellagic acid (PEA), were chosen as the polyphenols to be tested. At the same time the human hepatocyte cell line L-02 was selected as the experimental cell and a model of steatotic L-02 hepatocytes in vitro was constructed in this paper. The results showed that PPPs, PC and PEA in different concentrations could decrease the total cholesterol (TC) content and increase the total bile acid (TBA) content, and so possess a lipid-lowering effect. The order of the lipid-lowering effect from strong to weak is PEA > PPPs > PC. The relative mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), ATP-binding cassette transporter A1 (ABCA1) and cholesterol 7α hydroxylase (CYP7A1) was up-regulated by PPPs, PC and PEA in a dose-dependent manner. The effect on the relative mRNA expression can be listed in descending order as: PEA > PPPs > PC. Similar results were found in a western blot analysis. The PPARγ protein, ABCA1 protein and CYP7A1 protein were up-regulated in L-02 cells treated with the three tested polyphenols. All the results indicated that PPPs, PC and PEA could regulate upstream the expression of PPARγ, ABCA1 and CYP7A1, both at transcript and protein levels, to activate the PPARγ-ABCA1/CYP7A1 cell signaling pathway and enhance cholesterol metabolism in L-02 cells. Therefore, PPPs, as a kind of natural material, may be paid more attention in the prevention and treatment of diseases related to excessive cholesterol accumulation.

  15. What Causes High Blood Cholesterol?

    Science.gov (United States)

    ... the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the cholesterol levels in your blood. You can control some ... but not others. Factors You Can Control Diet Cholesterol is found in foods that come from animal ...

  16. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  17. Cholesterol in the retina: the best is yet to come

    Science.gov (United States)

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  18. In vivo protein synthesis determinations in human immune cells

    OpenAIRE

    Januszkiewicz, Anna

    2005-01-01

    Intact immune responses are essential for defeating severe infections in individual patients. Insufficient function of the immune system contributes to a poor prognosis in these patients, in particular the ICU patients. Nevertheless, the immune system function is not easily monitored and evaluated. The ongoing metabolic activity of immune competent cells is reflected by their in vivo protein synthesis rate. The aim of this thesis was to apply in vivo protein synthesis measur...

  19. Dyslipidemic Diet-Induced Monocyte “Priming” and Dysfunction in Non-Human Primates Is Triggered by Elevated Plasma Cholesterol and Accompanied by Altered Histone Acetylation

    Directory of Open Access Journals (Sweden)

    John D. Short

    2017-08-01

    Full Text Available Monocytes and the recruitment of monocyte-derived macrophages into sites of inflammation play a key role in atherogenesis and other chronic inflammatory diseases linked to cardiometabolic syndrome and obesity. Previous studies from our group have shown that metabolic stress promotes monocyte priming, i.e., enhanced adhesion and accelerated chemotaxis of monocytes in response to chemokines, both in vitro and in dyslipidemic LDLR−/− mice. We also showed that metabolic stress-induced monocyte dysfunction is, at least to a large extent caused by the S-glutathionylation, inactivation, and subsequent degradation of mitogen-activated protein kinase phosphatase 1. Here, we analyzed the effects of a Western-style, dyslipidemic diet (DD, which was composed of high levels of saturated fat, cholesterol, and simple sugars, on monocyte (dysfunction in non-human primates (NHPs. We found that similar to mice, a DD enhances monocyte chemotaxis in NHP within 4 weeks, occurring concordantly with the onset of hypercholesterolemia but prior to changes in triglycerides, blood glucose, monocytosis, or changes in monocyte subset composition. In addition, we identified transitory decreases in the acetylation of histone H3 at the lysine residues 18 and 23 in metabolically primed monocytes, and we found that monocyte priming was correlated with the acetylation of histone H3 at lysine 27 after an 8-week DD regimen. Our data show that metabolic stress promotes monocyte priming and hyper-chemotactic responses in NHP. The histone modifications accompanying monocyte priming in primates suggest a reprogramming of the epigenetic landscape, which may lead to dysregulated responses and functionalities in macrophages derived from primed monocytes that are recruited to sites of inflammation.

  20. Internal dosimetry for [4-{sup 14}C]-cholesterol in humans; Dosimetria interna para o [4-{sup 14}C]-colesterol em humanos

    Energy Technology Data Exchange (ETDEWEB)

    Marcato, Larissa Andreto

    2012-07-01

    The main objective of this work is to provide a biokinetic model in order to estimate the radiometric dose due to intake of [4-{sup 14}C]-cholesterol. The model was validated comparing the values of fecal excretion and absorption described in literature with that predicted by the model. The proposed model achieved good concordance between the results (p = 0.416 for excretion and p = 0.423 for absorption). The coefficients of effective dose (SvBq{sup -1}), equivalent dose (SvBq{sup -1}) and absorbed dose (GyBq{sup -1}) in human organs and tissues were calculated using the MIRD methodology and the compartmental analysis software ANACOMP. The coefficients were estimated for four phantoms: adult with a body mass of 73.3 kg, 15 years old adolescent (56.9 kg), 10 years old child (33.2 kg) and five years old child (19.8 kg). The organ that received the highest absorbed dose for all phantoms was the lower large intestine (LLI). The allometry theory was used to interpolate the coefficient of absorbed dose in the lower large intestine (DLLI) for unknown body mass (m): DLLI (GyBq{sup -1})=161.26 m (kg){sup -1.025}. For the same administered activity, the effective dose coefficient (E) decreases as the body mass increases. On other words, for the same intake activity, individuals with low body mass are exposed to higher doses. The allometry theory was used to interpolate the coefficient effective dose (E) for unknown body mass (m): E(SvB{sup -1})= 171.1 m(kg){sup -1,021}. (author)

  1. Total synthesis of the α-subunit of human glycoprotein hormones: toward fully synthetic homogeneous human follicle-stimulating hormone.

    Science.gov (United States)

    Aussedat, Baptiste; Fasching, Bernhard; Johnston, Eric; Sane, Neeraj; Nagorny, Pavel; Danishefsky, Samuel J

    2012-02-22

    Described herein is the first total chemical synthesis of the unique α-subunit of the human glycoprotein hormone (α-hGPH). Unlike the biologically derived glycoprotein hormones, which are isolated as highly complex mixtures of glycoforms, α-hGPH obtained by chemical synthesis contains discrete homogeneous glycoforms. Two such systems have been prepared. One contains the disaccharide chitobiose at the natural N-glycosylation sites. The other contains dodecamer oligosaccharides at these same sites. The dodecamer sugar is a consensus sequence incorporating the key features associated with human glycoproteins.

  2. From mechanical loading to collagen synthesis, structural changes and function in human tendon

    DEFF Research Database (Denmark)

    Kjær, Michael; Langberg, Henning; Heinemeier, Katja

    2009-01-01

    The adaptive response of connective tissue to loading requires increased synthesis and turnover of matrix proteins, with special emphasis on collagen. Collagen formation and degradation in the tendon increases with both acute and chronic loading, and data suggest that a gender difference exists......, in that females respond less than males with regard to an increase in collagen formation after exercise. It is suggested that estrogen may contribute toward a diminished collagen synthesis response in females. Conversely, the stimulation of collagen synthesis by other growth factors can be shown in both animal...... and human models where insulin-like growth factor 1 (IGF-I) and transforming growth factor-beta-1 (TGF-beta-1) expression increases to accompany or precede an increase in procollagen expression and collagen synthesis. In humans, it can be demonstrated that an increase in the interstitial concentration...

  3. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  4. Regulation of cholesterol homeostasis

    NARCIS (Netherlands)

    van der Wulp, Mariette Y. M.; Verkade, Henkjan J.; Groen, Albert K.

    2013-01-01

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and

  5. Cholesterol and Women's Health

    Science.gov (United States)

    ... can I make to reduce my risk of cardiovascular disease? • Is there medication that can help reduce my cholesterol ... It also helps your body make vitamin D and produces the bile that helps you ...

  6. RNA and protein synthesis in cultured human fibroblasts derived from donors of various ages.

    Science.gov (United States)

    Chen, J J; Brot, N; Weissbach, H

    1980-07-01

    RNA synthesis in human fibroblasts from donors of various ages was studied in fibroblasts made permeable to nucleoside triphosphates with the nonionic detergent Nonidet P40. Cells from donors of 11 years and older showed a 30-40% decline in total RNA synthesis. The decrease in RNA synthesis was primarily due to a lowering of RNA polymerase II activity (alpha-amanitin sensitive). Studies on the incorporation of leucine into protein also showed a 30-40% decrease in cells from older donors.

  7. Cholesterol in unusual places

    Energy Technology Data Exchange (ETDEWEB)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J, E-mail: John.Katsaras@nrc.gc.ca, E-mail: Norbert.Kucerka@nrc.gc.ca

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  8. Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in Caco-2 human enterocyte-like cells.

    Science.gov (United States)

    Atzeri, Angela; Lucas, Ricardo; Incani, Alessandra; Peñalver, Pablo; Zafra-Gómez, Alberto; Melis, M Paola; Pizzala, Roberto; Morales, Juan C; Deiana, Monica

    2016-01-01

    The aim of this study was to investigate the ability of the sulfate metabolites of hydroxytyrosol (HT) and tyrosol (TYR) to act as antioxidants counteracting the pro-oxidant effect of oxidized cholesterol in intestinal cells. For this purpose, we synthesized sulfate metabolites of HT and TYR using a chemical methodology and examined their antioxidant activity in Caco-2 monolayers in comparison with the parent compounds. Exposure to oxidized cholesterol led to ROS production, oxidative damage, as indicated by the MDA increase, a decrease of reduced glutathione concentration and an enhancement of glutathione peroxidase activity. All the tested compounds were able to counteract the oxidizing action of oxidized cholesterol; HT and TYR sulfate metabolites showed an efficiency in protecting intestinal cells comparable to that of the parent compounds, strengthening the assumption that the potential beneficial effect of the parent compounds is retained, although extensive metabolisation occurs, the resulting metabolites being able to exert a biological action themselves.

  9. Tendon collagen synthesis declines with immobilization in elderly humans

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Boesen, Anders P; Reitelseder, Søren

    2017-01-01

    -80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal...... immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only (P collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this...... tendon collagen protein synthesis, while tendon stiffness and modulus are only marginally reduced, and NSAID treatment does not affect this. This indicates that mechanical loading is important for maintenance of tendon collagen turnover and that changes in collagen turnover induced by short...

  10. A church-based cholesterol education program.

    Science.gov (United States)

    Wiist, W H; Flack, J M

    1990-01-01

    The leading cause of death among black people in the United States is coronary heart disease, accounting for about 25 percent of the deaths. The Task Force on Black and Minority Health formed by the Secretary of Health and Human Services in 1985 subsequently recommended increased efforts to reduce risk factors for coronary heart disease in the black population. A stated focus of the National Heart, Lung, and Blood Institute's National Cholesterol Education Program has been that of reaching minority groups. This report describes a pilot cholesterol education program conducted in black churches by trained members of those churches. Cholesterol screening, using a Reflotron, and other coronary heart disease risk factor screening was conducted in six churches with predominantly black members and at a neighborhood library. A total of 348 persons with cholesterol levels of 200 milligrams per deciliter (mg per dl) or higher were identified. At the time of screening, all were provided brief counseling on lowering their cholesterol and were given a copy of the screening results. Half of those identified, all members of one church, were invited to attend a 6-week nutrition education class of 1 hour each week about techniques to lower blood cholesterol. Information about cholesterol was also mailed to them. They were designated as the education group. Persons in the church were trained to teach the classes. A report of the screening results was sent to the personal physicians of the remaining 174 people in other churches who had cholesterol levels of 200 mg per dl or higher. This group served as a usual care comparison group.Six months after the initial screening, members of both groups were invited for followup screening.Among the 75 percent of the education group who returned for followup screening there was a 23.4 mg per dl (10 percent) decrease in the mean cholesterol level. Thirty-six percent of the usual care group returned for followup screening; their mean cholesterol

  11. Targets for Current Pharmacological Therapy in Cholesterol Gallstone Disease

    Science.gov (United States)

    Di Ciaula, Agostino; Wang, David Q.-H.; Wang, Helen H.; Bonfrate, Leonilde; Portincasa, Piero

    2010-01-01

    Summary Gallstone disease is a frequent condition throughout the world and cholesterol stones are the most frequent form in western countries. Current standard treatment of symptomatic gallstone subjects remains laparoscopic cholecystectomy. The selection of patients amenable for non-surgical, medical therapy is of key importance: a careful analysis should consider the natural history of the disease and the overall costs of therapy. Only patients with mild symptoms and small, uncalcified cholesterol gallstones in a functioning gallbladder with a patent cystic duct will be considered for oral litholysis by the hydrophilic ursodeoxycholic acid (UDCA) hopefully leading to cholesterol desaturation of bile and progressive stone dissolution. Recent studies have raised the possibility that cholesterol-lowering agents which inhibit hepatic cholesterol synthesis (statins) or intestinal cholesterol absorption (ezetimibe), or drugs acting on specific nuclear receptors involved in cholesterol and bile acid homeostasis may offer, alone or in combination, additional medical therapeutic tools for treating cholesterol gallstones. Recent perspectives on medical treatment of cholesterol gallstone disease will be discussed in this chapter. PMID:20478485

  12. Cholesterol through the Looking Glass

    Science.gov (United States)

    Kristiana, Ika; Luu, Winnie; Stevenson, Julian; Cartland, Sian; Jessup, Wendy; Belani, Jitendra D.; Rychnovsky, Scott D.; Brown, Andrew J.

    2012-01-01

    How cholesterol is sensed to maintain homeostasis has been explained by direct binding to a specific protein, Scap, or through altering the physical properties of the membrane. The enantiomer of cholesterol (ent-cholesterol) is a valuable tool in distinguishing between these two models because it shares nonspecific membrane effects with native cholesterol (nat-cholesterol), but not specific binding interactions. This is the first study to compare ent- and nat-cholesterol directly on major molecular parameters of cholesterol homeostasis. We found that ent-cholesterol suppressed activation of the master transcriptional regulator of cholesterol metabolism, SREBP-2, almost as effectively as nat-cholesterol. Importantly, ent-cholesterol induced a conformational change in the cholesterol-sensing protein Scap in isolated membranes in vitro, even when steps were taken to eliminate potential confounding effects from endogenous cholesterol. Ent-cholesterol also accelerated proteasomal degradation of the key cholesterol biosynthetic enzyme, squalene monooxygenase. Together, these findings provide compelling evidence that cholesterol maintains its own homeostasis not only via direct protein interactions, but also by altering membrane properties. PMID:22869373

  13. Inhibition of Mevalonate Pathway and Synthesis of the Storage Lipids in Human Liver-Derived and Non-liver Cell Lines by Lippia alba Essential Oils.

    Science.gov (United States)

    Montero-Villegas, Sandra; Polo, Mónica; Galle, Marianela; Rodenak-Kladniew, Boris; Castro, María; Ves-Losada, Ana; Crespo, Rosana; García de Bravo, Margarita

    2017-01-01

    The essential oils (EOs) of Lippia alba, an herb extensively used as a folk medicine in Latin America, are today promoted as an effective means of eliminating problems caused by hyperlipemia. We hypothesized that L.alba EOs inhibited cholesterol and triacylglycerols synthesis and decreased the intracellular depots of those lipids (lipid droplets), mechanisms involving the induction of a hypolipidemic response. Our aim was, therefore, to evaluate the hypolipogenic capability of the EOs of four L. alba chemotypes on liver-derived (HepG2) and non-liver (A549) human cell lines and to identify the potential biochemical targets of those chemotypes, particularly within the mevalonate pathway (MP). [(14)C]Acetate was used as radioactive precursor for assays. Lipid analyses were performed by thin-layer and capillary gas chromatography, lipid droplets analyzed by fluorescence microscopy, and HMGCR levels determined by Western blot. In both cell lines, all four chemotypes exerted hypocholesterogenic effects within a concentration range of 3.2-32 µg/mL. Nonsaponifiable lipids manifested a decrease in incorporation of [(14)C]acetate into squalene, lanosterol, lathosterol, and cholesterol, but not into ubiquinone, thus suggesting an inhibition of enzymes in the MP downstream from farnesyl pyrophosphate. The tagetenone chemotype, the most efficacious hypocholesterogenic L. alba EO, lowered HMGCR protein levels; inhibited triacylglycerols, cholesteryl esters, and phospholipids synthesis; and diminished lipid droplets in size and volume. These results revealed that L. alba EOs inhibited different lipogenic pathways and such lipid-lowering effects could prove essential to prevent cardiovascular diseases.

  14. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling.

    Science.gov (United States)

    York, Autumn G; Williams, Kevin J; Argus, Joseph P; Zhou, Quan D; Brar, Gurpreet; Vergnes, Laurent; Gray, Elizabeth E; Zhen, Anjie; Wu, Nicholas C; Yamada, Douglas H; Cunningham, Cameron R; Tarling, Elizabeth J; Wilks, Moses Q; Casero, David; Gray, David H; Yu, Amy K; Wang, Eric S; Brooks, David G; Sun, Ren; Kitchen, Scott G; Wu, Ting-Ting; Reue, Karen; Stetson, Daniel B; Bensinger, Steven J

    2015-12-17

    Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.

  15. Enzymatic quantification of cholesterol and cholesterol esters from silicone hydrogel contact lenses.

    Science.gov (United States)

    Pucker, Andrew D; Thangavelu, Mirunalni; Nichols, Jason J

    2010-06-01

    The purpose of this work was to develop an enzymatic method of quantification of cholesterol and cholesterol esters derived from contact lenses, both in vitro and ex vivo. Lotrafilcon B (O2 Optix; CIBA Vision, Inc., Duluth, GA) and galyfilcon A (Acuvue Advance; Vistakon, Inc., Jacksonville, FL) silicone hydrogel contact lenses were independently incubated in cholesterol oleate solutions varying in concentrations. After incubation, the lenses were removed and underwent two separate 2:1 chloroform-methanol extractions. After in vitro studies, 10 human subjects wore both lotrafilcon B and galyfilcon A contact lenses for 7 days. The lenses also underwent two separate 2:1 chloroform-methanol extractions. All in vitro and ex vivo samples were quantified with a cholesterol esterase enzymatic reaction. Calibration curves from quantifications of in vitro contact lens samples soaked in successively decreasing concentrations of cholesterol oleate yielded coefficients of determination (R(2)) of 0.99 (lotrafilcon B) and 0.97 (galyfilcon A). For in vitro contact lens samples, galyfilcon A was associated with an average cholesterol oleate extraction of 39.85 +/- 48.65 microg/lens, whereas lotrafilcon B was associated with 5.86 +/- 3.36 microg/lens (P = 0.05) across both extractions and all incubation concentrations. For ex vivo contact lens samples, there was significantly more cholesterol and cholesterol esters deposited on galyfilcon A (5.77 +/- 1.87 microg/lens) than on lotrafilcon B (2.03 +/- 1.62 microg/lens; P = 0.0005). This is an efficient and simple method of quantifying total cholesterol extracted from silicone hydrogel contact lenses and, potentially, the meibum and/or tear film. Certain silicone hydrogel materials demonstrate more affinity for cholesterol and its esters than do others.

  16. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages

    Science.gov (United States)

    Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...

  17. Molecular Cloning of Human Gene(s) Directing the Synthesis of Nervous System Cholinesterases

    Science.gov (United States)

    1987-09-01

    Report No. 4 If MOLECULAR CLONING OF O HUMAN GENE(S) DIRECTING qTHE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASES cc Annual/Final Report 0 N November...62734A I734A875 IAl 451 MOLECULAR CLONING OF HUMAN GEME(S) DIRECTING THE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASE 12. PERSONAL AUTHOR(S) Hermona Soreq...important roles in regulating the pace and mode of function of particular types of synapses. For example, molecular cloning of the nicotinic (44-46) and the

  18. NO-1886 suppresses diet-induced insulin resistance and cholesterol accumulation through STAT5-dependent upregulation of IGF1 and CYP7A1.

    Science.gov (United States)

    Li, Qinkai; Yin, Weidong; Cai, Manbo; Liu, Yi; Hou, Hongjie; Shen, Qingyun; Zhang, Chi; Xiao, Junxia; Hu, Xiaobo; Wu, Qishisan; Funaki, Makoto; Nakaya, Yutaka

    2010-01-01

    Insulin resistance and dyslipidemia are both considered to be risk factors for metabolic syndrome. Low levels of IGF1 are associated with insulin resistance. Elevation of low-density lipoprotein cholesterol (LDL-C) concomitant with depression of high-density lipoprotein cholesterol (HDL-C) increase the risk of obesity and type 2 diabetes mellitus (T2DM). Liver secretes IGF1 and catabolizes cholesterol regulated by the rate-limiting enzyme of bile acid synthesis from cholesterol 7alpha-hydroxylase (CYP7A1). NO-1886, a chemically synthesized lipoprotein lipase activator, suppresses diet-induced insulin resistance with the improvement of HDL-C. The goal of the present study is to evaluate whether NO-1886 upregulates IGF1 and CYP7A1 to benefit glucose and cholesterol metabolism. By using human hepatoma cell lines (HepG2 cells) as an in vitro model, we found that NO-1886 promoted IGF1 secretion and CYP7A1 expression through the activation of signal transducer and activator of transcription 5 (STAT5). Pretreatment of cells with AG 490, the inhibitor of STAT pathway, completely abolished NO-1886-induced IGF1 secretion and CYP7A1 expression. Studies performed in Chinese Bama minipigs pointed out an augmentation of plasma IGF1 elicited by a single dose administration of NO-1886. Long-term supplementation with NO-1886 recovered hyperinsulinemia and low plasma levels of IGF1 suppressed LDL-C and facilitated reverse cholesterol transport by decreasing hepatic cholesterol accumulation through increasing CYP7A1 expression in high-fat/high-sucrose/high-cholesterol diet minipigs. These findings indicate that NO-1886 upregulates IGF1 secretion and CYP7A1 expression to improve insulin resistance and hepatic cholesterol accumulation, which may represent an alternative therapeutic avenue of NO-1886 for T2DM and metabolic syndrome.

  19. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    Science.gov (United States)

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  20. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice

    Directory of Open Access Journals (Sweden)

    Chen Jianliang

    2007-04-01

    Full Text Available Abstract Background Targeted disruption of the murine 3β-hydroxysterol-Δ7-reductase gene (Dhcr7, an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver. Results We generated mice that carried a liver-specific human DHCR7 transgene whose expression was driven by the human apolipoprotein E (ApoE promoter and its associated liver-specific enhancer. These mice were then crossed with Dhcr7+/- mutants to generate Dhcr7-/- mice bearing a human DHCR7 transgene. Robust hepatic transgene expression resulted in significant improvement of cholesterol homeostasis with cholesterol concentrations increasing to 80~90 % of normal levels in liver and lung. Significantly, cholesterol deficiency in brain was not altered. Although late gestational lung sacculation defect reported previously was significantly improved, there was no parallel increase in postnatal survival in the transgenic mutant mice. Conclusion The reconstitution of DHCR7 function selectively in liver induced a significant improvement of cholesterol homeostasis in non-brain tissues, but failed to rescue the neonatal lethality of Dhcr7 null mice. These results provided further evidence that CNS defects caused by Dhcr7 null likely play a major role in the lethal pathogenesis of Dhcr7-/- mice, with the peripheral organs contributing the morbidity.

  1. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis.

    Science.gov (United States)

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-09-08

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  2. Niacin and cholesterol: role in cardiovascular disease (review).

    Science.gov (United States)

    Ganji, Shobha H; Kamanna, Vaijinath S; Kashyap, Moti L

    2003-06-01

    Niacin has been widely used as a pharmacologic agent to regulate abnormalities in plasma lipid and lipoprotein metabolism and in the treatment of atherosclerotic cardiovascular disease. Although the use of niacin in the treatment of dyslipidemia has been reported as early as 1955, only recent studies have yielded an understanding about the cellular and molecular mechanism of action of niacin on lipid and lipoprotein metabolism. In brief, the beneficial effect of niacin to reduce triglycerides and apolipoprotein-B containing lipoproteins (e.g., VLDL and LDL) are mainly through: a) decreasing fatty acid mobilization from adipose tissue triglyceride stores, and b) inhibiting hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL particles. The mechanism of action of niacin to raise HDL is by decreasing the fractional catabolic rate of HDL-apo AI without affecting the synthetic rates. Additionally, niacin selectively increases the plasma levels of Lp-AI (HDL subfraction without apo AII), a cardioprotective subfraction of HDL in patients with low HDL. Using human hepatocytes (Hep G2 cells) as an in vitro model system, recent studies indicate that niacin selectively inhibits the uptake/removal of HDL-apo AI (but not HDL-cholesterol ester) by hepatocytes, thereby increasing the capacity of retained HDL-apo AI to augment cholesterol efflux through reverse cholesterol transport pathway. The studies discussed in this review provide evidence to extend the role of niacin as a lipid-lowering drug beyond its role as a vitamin.

  3. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  4. Brain in human nutrition and variant Creutzfeldt-Jakob disease risk (vCJD): detection of brain in retail liver sausages using cholesterol and neuron specific enolase (NSE) as markers.

    Science.gov (United States)

    Lücker, E; Horlacher, S; Eigenbrodt, E

    2001-08-01

    No information is available about the consumption of brain via meat products. With respect to the new variant of Creutzfeldt-Jakob disease (vCJD) and the presumed food-borne transmission of bovine spongiform encephalopathy (BSE) to humans, a preliminary survey for brain and/or spinal cord (tissues of the central nervous system, CNS) was conducted. We applied a previously developed integrated procedure using cholesterol and neuron specific enolase (NSE) as markers. Quantification of cholesterol had to be backed up by NSE immunochemistry in order to account for low specificity and relatively high variances. Out of 126 high-quality finely graded liver sausages, five samples (4 %) showed positive NSE immunoresponses. In four of these samples a transgression of the normal maximum cholesterol content was obtained. The identification of such a considerable number of CNS-positive sausages indicates that brain consumption is not as rare as previously assumed. Overall, the present integrated method could be successfully applied for the detection of CNS in heat-treated meat products. Its routine application in official food control would deter illegal practice and thus help to control transmissible spongiform encephalopathies.

  5. Hypocholesterolemic effect of physically refined rice bran oil: studies of cholesterol metabolism and early atherosclerosis in hypercholesterolemic hamsters.

    Science.gov (United States)

    Ausman, Lynne M; Rong, Ni; Nicolosi, Robert J

    2005-09-01

    Physically refined rice bran oil containing 2-4% nontriglyceride components as compared to other vegetable oils appears to be associated with lipid lowering and antiinflammatory properties in several rodent, primate and human models. These experiments were designed to investigate possible mechanisms for the hypocholesterolemic effect of the physically refined rice bran oil and to examine its effect on aortic fatty streak formation. In the first experiment, 30 hamsters were fed, for 8 weeks, chow-based diets plus 0.03% added cholesterol and 5% (wt/wt) coconut, canola, or physically refined rice bran oil (COCO, CANOLA or PRBO animal groups, respectively). Both plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly reduced in PRBO but not in CANOLA relative to COCO. PRBO also showed a significant 15-17% reduction in cholesterol absorption and significant 30% increase in neutral sterol (NS) excretion with no effect on bile acid (BA) excretion. Both CANOLA and PRBO showed a significant 300-500% increase in intestinal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and significant (>25%) decrease in hepatic HMG-CoA reductase activities with respect to COCO. In a second experiment, 36 hamsters were fed chow-based diets with 0.05% added cholesterol, 10% coconut oil and 4% additional COCO, CANOLA or PRBO. Relative to COCO and CANOLA, plasma TC and LDL-C were significantly reduced in PRBO. Early atherosclerosis (fatty streak formation) was significantly reduced (48%) only in PRBO, relative to the other two. These results suggest that the lipid lowering found in PRBO is associated with decreased cholesterol absorption, but not hepatic cholesterol synthesis, and that the decrease in fatty streak formation with this oil may be associated with its nontriglyceride components not present in the other two diets.

  6. Cholesterol and myelin biogenesis.

    Science.gov (United States)

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  7. Orbitofrontal cholesterol granuloma.

    Science.gov (United States)

    Chow, L P; McNab, A A

    2005-02-01

    Cholesterol granuloma of the orbital bones is a rare but readily recognisable condition. It is an osteolytic lesion with a granulomatous reaction surrounding cholesterol crystals, old haemorrhage and a fibrous capsule. There is a male preponderance and it usually occurs in young or middle-aged men. It is treatable with drainage and curettage via an orbitotomy, and craniotomy or wide bone removal is almost never required. Six cases of this condition were reviewed to highlight the typical clinical presentation, computed tomography and magnetic resonance results, and surgical management.

  8. Lathosterol to cholesterol ratio in serum predicts cholesterol lowering response to plant sterol consumption in a dual center, randomized, single-blind placebo controlled trial

    Science.gov (United States)

    Benefits of plant sterols (PS) for cholesterol lowering are compromised by large variability in efficacy across individuals. High fractional cholesterol synthesis measured by deuterium incorporation has been associated with non-response to PS consumption; however, prospective studies showing this as...

  9. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Linda Yulianti

    2015-08-01

    Full Text Available Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast. Methods Laboratory experiments were conducted using human dermal fibroblasts (HDF isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. Results Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p<0.05. The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p<0.05. Conclusion Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.

  10. TGFβ1, TNFα, and insulin signaling crosstalk in regulation of the rat cholesterol 7α-hydroxylase gene expression*

    OpenAIRE

    Li, Tiangang; Ma, Huiyan; Chiang, John Y. L.

    2008-01-01

    The TGFβ1/Smad pathway plays a critical role in cholestasis and liver fibrosis. Previous studies show that TGFβ1, TNFα, and insulin inhibit cholesterol 7α-hydroxylase (CYP7A1) gene transcription and bile acid synthesis in human hepatocytes. In this study, we investigated insulin, TGFβ1, and TNFα regulation of rat Cyp7a1 gene transcription. In contrast to inhibition of human CYP7A1 gene transcription, TGFβ1 stimulates rat Cyp7a1 reporter activity. Smad3, FoxO1, and HNF4α synergistically stimul...

  11. Characterization of coagulation factor synthesis in nine human primary cell types

    NARCIS (Netherlands)

    Dashty, Monireh; Akbarkhanzadeh, Vishtaseb; Zeebregts, Clark J.; Spek, C. Arnold; Sijbrands, Eric J.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2012-01-01

    The coagulation/fibrinolysis system is essential for wound healing after vascular injury. According to the standard paradigm, the synthesis of most coagulation factors is restricted to liver, platelets and endothelium. We challenged this interpretation by measuring coagulation factors in nine human

  12. Human keratinocytes produce the complement inhibitor factor H: synthesis is regulated by interferon-gamma.

    NARCIS (Netherlands)

    Timar, K.K.; Pasch, M.C.; Bosch, N.H. van den; Jarva, H.; Junnikkala, S.; Meri, S.; Bos, J.D.; Asghar, S.S.

    2006-01-01

    Locally synthesized complement is believed to play an important role in host defense and inflammation at organ level. In the epidermis, keratinocytes have so far been shown to synthesize two complement components, C3 and factor B. Here, we studied the synthesis of factor H by human keratinocytes. We

  13. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

  14. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    Science.gov (United States)

    Tian, Yu; He, Lei; Shao, Yang; Li, Na

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion. PMID:27642591

  15. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Full Text Available Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD. The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD supplement with perilla oil (POH for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  16. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion.

    Science.gov (United States)

    Chen, Ting; Yuan, Fahu; Wang, Hualin; Tian, Yu; He, Lei; Shao, Yang; Li, Na; Liu, Zhiguo

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  17. Intestinal cholesterol transport: Measuring cholesterol absorption and its reverse

    NARCIS (Netherlands)

    Jakulj, L.

    2013-01-01

    Intestinal cholesterol transport might serve as an attractive future target for cardiovascular disease reduction, provided that underlying molecular mechanisms are more extensively elucidated, combined with improved techniques to measure changes in cholesterol fluxes and their possible anti-atherosc

  18. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    OpenAIRE

    Shan-Shan Liu; Hao-Yan Wang; Jun-Ming Tang; Xiu-Mei Zhou

    2013-01-01

    The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II) on collagen synthesis in hypoxic human lung fibroblast (HLF) cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression levels in human ...

  19. Proximate composition and cholesterol concentrations of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... human nutrition in Africa, Asia and Latin America. They are an important resource for the natives of Southern. Nigeria, who like other indigenous groups, expend much ... times adults variety of winged termites, bees, wasp and ant brood (larvae .... exerts remarkable influence on their lipid and cholesterol.

  20. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaorong [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2011-10-30

    We demonstrate herein a newly developed serum total cholesterol biosensor by using the direct electron transfer of cholesterol oxidase (ChOx), which is based on the immobilization of cholesterol oxidase and cholesterol esterase (ChEt) on potassium-doped multi-walled carbon nanotubes (KMWNTs) modified electrodes. The KMWNTs accelerate the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx and maintaining its bioactivity. As a new platform in cholesterol analysis, the resulting electrode (ChOx/KMWNTs/GCE) exhibits a sensitive response to free cholesterol, with a linear range of 0.050-16.0 {mu}mol L{sup -1} and a detection limit of 5.0 nmol L{sup -1} (S/N = 3). Coimmobilization of ChEt and ChOx (ChEt/ChOx/KMWNTs/GCE) allows the determination of both free cholesterol and esterified cholesterol. The resulting biosensor shows the same linear range of 0.050-16.0 {mu}mol L{sup -1} for free cholesterol and cholesteryl oleate, with the detection limit of 10.0 and 12.0 nmol L{sup -1} (S/N = 3), respectively. The concentrations of total (free and esterified) cholesterol in human serum samples, determined by using the techniques developed in the present study, are in good agreement with those determined by the well-established techniques using the spectrophotometry.

  1. Transintestinal cholesterol efflux

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Brufau, Gemma; Groen, Albert K.

    2010-01-01

    Purpose of review Regulation of cholesterol homeostasis is a complex interplay of a multitude of metabolic pathways situated in different organs. The liver plays a central role and has received most attention of the research community. In this review, we discuss recent progress in the understanding

  2. Regulation of cholesterol homeostasis

    NARCIS (Netherlands)

    van der Wulp, Mariette Y. M.; Verkade, Henkjan J.; Groen, Albert K.

    2013-01-01

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-codin

  3. Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective.

    Science.gov (United States)

    Krycer, James Robert; Brown, Andrew John

    2013-04-01

    Prostate cancer (PCa) is the most common cancer in men in developed countries. Epidemiological studies have associated high blood-cholesterol levels with an increased risk of PCa, whilst cholesterol-lowering drugs (statins) reduce the risk of advanced PCa. Furthermore, normal prostate epithelial cells have an abnormally high cholesterol content, with cholesterol levels increasing further during progression to PCa. In this review, we explore why and how this occurs. Concurrent to this observation, intense efforts have been expended in cardiovascular research to better understand the regulators of cholesterol homeostasis. Here, we apply this knowledge to elucidate the molecular mechanisms driving the accumulation of cholesterol in PCa. For instance, recent evidence from our group and others shows that major signalling players in prostate growth and differentiation, such as androgens and Akt, modulate the key transcriptional regulators of cholesterol homeostasis to enhance cholesterol levels. This includes adjusting central carbon metabolism to sustain greater lipid synthesis. Perturbations in cholesterol homeostasis appear to be maintained even when PCa approaches the advanced, 'castration-resistant' state. Overall, this provides a link between cholesterol accumulation and PCa cell growth. Given there is currently no cure for castration-resistant PCa, could cholesterol metabolism be a novel target for PCa therapy? Overall, this review presents a picture that cholesterol metabolism is important for PCa development: growth-promoting factors stimulate cholesterol accumulation, which in turn presents a possible target for chemotherapy. Consequently, we recommend future investigations, both to better elucidate the mechanisms driving this accumulation and applying it in novel chemotherapeutic strategies.

  4. MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC.

    Science.gov (United States)

    Da, Jingjing; Zhuo, Ming; Qian, Minzhang

    2015-01-01

    Hypercholesterolemia is an important risk factor for atherosclerosis and cholesterol treatment would cause multiple damages, including DNA damage, on endothelial cells. In this work, we have used human umbilical vein endothelial cell line (HUVEC) to explore the mechanism of cholesterol induced damage. We have found that cholesterol treatment on HUVEC could induce the expression of MCPIP1. When given 12.5 mg/L cholesterol on HUVEC, the expression of MCPIP1 starts to increase since 4 hr after treatment and at 24 hr after treatment it could reach to 10 fold of base line level. We hypothesis this induction of MCPIP1 may contribute to the damaging process and we have used siRNA of MCPIP1 in further research. This MCPIP1 siRNA (siMCPIP) could down regulate MCPIP1 by 73.4% and when using this siRNA on HUVECs, we could see the cholesterol induced DNA damage have been reduced. We have detected DNA damage by γH2AX foci formation in nuclear, γH2AX protein level and COMET assay. Compare to cholesterol alone group, siMCPIP group shows much less γH2AX foci formation in nuclear after cholesterol treatment, less γH2AX protein level in cell and also less tail moment detected in COMET assay. We have also seen that using siMCPIP1 could result in less reactive oxygen species (ROS) in cell after cholesterol treatment. We have also seen that using siMCPIP could reduce the protein level of Nox4 and p47(phox), two major regulators in ROS production. These results suggest that MCPIP1 may play an important role in cholesterol induced damage.

  5. Inhibiting Cholesterol Absorption During Lactation Programs Future Intestinal Absorption of Cholesterol in Adult Mice.

    Science.gov (United States)

    Dimova, Lidiya G; de Boer, Jan Freark; Plantinga, Josee; Plösch, Torsten; Hoekstra, Menno; Verkade, Henkjan J; Tietge, Uwe J F

    2017-08-01

    In nematodes, the intestine senses and integrates early life dietary cues that lead to lifelong epigenetic adaptations to a perceived nutritional environment-it is not clear whether this process occurs in mammals. We aimed to establish a mouse model of reduced dietary cholesterol availability from maternal milk and investigate the consequences of decreased milk cholesterol availability, early in life, on the metabolism of cholesterol in adult mice. We blocked intestinal absorption of cholesterol in milk fed to newborn mice by supplementing the food of dams (for 3 weeks between birth and weaning) with ezetimibe, which is secreted into milk. Ezetimibe interacts with the intestinal cholesterol absorption transporter NPC1l1 to block cholesterol uptake into enterocytes. Characterization of these offspring at 24 weeks of age showed a 27% decrease in cholesterol absorption (P cholesterol transporters, in the proximal small intestine. We observed increased histone H3K9me3 methylation at positions -423 to -607 of the proximal Npc1l1 promoter in small intestine tissues from 24-week-old offspring fed ezetimibe during lactation, compared with controls. These findings show that the early postnatal mammalian intestine functions as an environmental sensor of nutritional conditions, responding to conditions such as low cholesterol levels by epigenetic modifications of genes. Further studies are needed to determine how decreased sterol absorption for a defined period might activate epigenetic regulators; the findings of our study might have implications for human infant nutrition and understanding and preventing cardiometabolic disease. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Dairy products and plasma cholesterol levels

    Directory of Open Access Journals (Sweden)

    Lena Ohlsson

    2010-08-01

    Full Text Available Cholesterol synthesized in the body or ingested is an essential lipid component for human survival from our earliest life. Newborns ingest about 3–4 times the amount per body weight through mother's milk compared to the dietary intake of adults. A birth level of 1.7 mmol/L plasma total cholesterol will increase to 4–4.5 mmol/L during the nursing period and continue to increase from adulthood around 40% throughout life. Coronary artery disease and other metabolic disorders are strongly associated with low-density lipoprotein (LDL and high-density lipoprotein (HDL cholesterol as well as triacylglycerol concentration. Milk fat contains a broad range of fatty acids and some have a negative impact on the cholesterol rich lipoproteins. The saturated fatty acids (SFAs, such as palmitic acid (C16:0, myristic acid (C14:0, and lauric acid (C12:0, increase total plasma cholesterol, especially LDL, and constitute 11.3 g/L of bovine milk, which is 44.8% of total fatty acid in milk fat. Replacement of dairy SFA and trans-fatty acids with polyunsaturated fatty acids decreases plasma cholesterol, especially LDL cholesterol, and is associated with a reduced risk of cardiovascular disease. Available data shows different effects on lipoproteins for different dairy products and there is uncertainty as to the impact a reasonable intake amount of dairy items has on cardiovascular risk. The aim of this review is to elucidate the effect of milk components and dairy products on total cholesterol, LDL, HDL, and the LDL/HDL quotients. Based on eight recent randomized controlled trials of parallel or cross-over design and recent reviews it can be concluded that replacement of saturated fat mainly (but not exclusively derived from high-fat dairy products with low-fat dairy products lowers LDL/HDL cholesterol and total/HDL cholesterol ratios. Whey, dairy fractions enriched in polar lipids, and techniques such as fermentation, or fortification of cows feeding can be used

  7. Cholesterol transport in model membranes

    Science.gov (United States)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  8. 决明子降低血清胆固醇机制的探讨%Investigation of mechanism of cassia obtusifolia reaucmg serum cholesterol

    Institute of Scientific and Technical Information of China (English)

    何菊英; 刘松青; 陈泽莲; 唐敏

    2003-01-01

    AIM: To investigate mechanism of cassia obtusifolia reducing terol.METHODS: Liver cell of the rats were cultured in vitro.14C-cholesterol synthesized in liver cells wers measured with Lowry methodand scintillation counting apparatus.RESULTS:Extract of cassia obtusifoliacaninhibit synthesis of 14C-cholesterol but Cassiaside B didn't affectcholesterol syntbesis.CONCLUSION: One of the mechanism of cassia ob-tusifolia reducing blood cholesterol is nihibiting synthesis of cholesterol tosome extent,while casiaside B reducing is not by inhibiting synthesis of cholesterol.

  9. AmlamaxTM in the management of dyslipidemia in humans

    Directory of Open Access Journals (Sweden)

    Antony B

    2008-01-01

    Full Text Available Hypercholesterolemia is the major cause of cardiovascular diseases leading to myocardial infarctions leading to considerable morbidity and mortality. During the past decade a group of molecules referred to as statins such as simvastatin, atrovastatin have been tried with great success in reducing total cholesterol. These molecules act by inhibiting the HMG CoA reductase enzyme thereby interfering with the synthesis of cholesterol. But statins reduce all the cholesterol including HDL cholesterol. Long term drug vigilance activity has revealed serious side effects of tendinopathy and related musculoskeletal disorders in some of the subjects. In an effort to manage hypercholesterolemia without serious side effects in a natural way we had tried the use of Amlamax TM a reconstituted, purified, standardized dried extract of amla ( Emblica officinalis containing 30% ellagitannins with other hydrolysable tannins on humans. We report the hitherto unobserved significant elevation of HDL cholesterol by the administration of Amlamax TM

  10. Cholesterol excretion and colon cancer.

    Science.gov (United States)

    Broitman, S A

    1981-09-01

    Populations consuming diets high in fat and cholesterol exhibit a greater incidence of colon cancer than those consuming less fat and cholesterol. Lowering elevated serum cholesterol levels experimentally or clinically is associated with increased large-bowel tumorigenesis. Thus, cholesterol lost to the gut, either dietary or endogenously synthesized, appears to have a role in large-bowel cancer. Whether the effect(s) is mediated by increases in fecal bile acid excretion or some other mechanism is not clear.

  11. CHOBIMALT: a cholesterol-based detergent.

    Science.gov (United States)

    Howell, Stanley C; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M; Sanders, Charles R

    2010-11-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3−4 μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210±30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1.

  12. Cholesterol Interactions with Fatty Acids and DMPC Phospholipids of Liver Membranes

    Directory of Open Access Journals (Sweden)

    Prateek Shukla

    2016-12-01

    Full Text Available Cholesterol and fatty acidsis important subject in liver to different model of regulation for realizing the evolution of vertebrates. The major solubility of cholesterol in bilayers of glycerol-phospholipids is between 65 and 50 mole%,relevant on the bilayerof lipid membrane but they cannot alone form multi layered structures. Livers from the transgenic rat showed increases in mRNAs encoding various enzymes of cholesterol synthesis, the LDL’s receptor and fatty acid synthesis. Based on our previous works we have modeled and simulated various molecules of that Cholesterol in binding to membrane. A number of computational chemistry studies carried out to understand of the cholesterol parallel to fatty acid synthesis (FAS for preventing the fatty liver disease.In this work ELF, LOL, ECP, electrical properties such as electron densities, energy densities, and potential energy densities, eta index forsome of the fatty acidshave been calculated.

  13. Lipoproteins, cholesterol homeostasis and cardiac health

    Directory of Open Access Journals (Sweden)

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang

    2009-01-01

    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  14. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity.

    Science.gov (United States)

    Straniero, S; Rosqvist, F; Edholm, D; Ahlström, H; Kullberg, J; Sundbom, M; Risérus, U; Rudling, M

    2017-05-01

    Bile acid (BA) synthesis is regulated by BA signalling in the liver and by fibroblast growth factor 19 (FGF19), synthesized and released from the intestine. In morbid obesity, faecal excretion and hepatic synthesis of BAs and cholesterol are strongly induced and caloric restriction reduces their faecal excretion considerably. We hypothesized that the high intestinal food mass in morbidly obese subjects promotes faecal excretion of BAs and cholesterol, thereby creating a shortage of both BAs and cholesterol in the liver. Ten morbidly obese women (BMI 42 ± 2.6 kg m(-2) ) were monitored on days 0, 3, 7, 14 and 28 after beginning a low-calorie diet (800-1100 kcal day(-1) ). Serum was collected and liver size and fat content determined. Synthesis of BAs and cholesterol was evaluated from serum markers, and the serum levels of lipoproteins, BAs, proprotein convertase subtilisin/kexin type 9 (PCSK9), insulin, glucose and FGF19 were monitored. Fifty-four nonobese women (BMI cholesterol and serum levels of BAs and PCSK9 were elevated in the obese group compared to controls. Already after 3 days on a low-calorie diet, BA and cholesterol synthesis and serum BA and PCSK9 levels normalized, whereas LDL cholesterol increased. FGF19 and triglyceride levels were unchanged, and liver volume was reduced by 10%. The results suggest that hepatic BAs and cholesterol are deficient in morbid obesity. Caloric restriction rapidly counteracts these deficiencies, normalizing BA and cholesterol synthesis and circulating PCSK9 levels, indicating that overproduction of cholesterol in enlarged peripheral tissues cannot explain this phenotype. We propose that excessive food intake promotes faecal loss of BAs and cholesterol contributing to their hepatic deficiencies. © 2017 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  15. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    Science.gov (United States)

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.

  16. Retracted: Advances in the physiological and pathological implications of cholesterol.

    Science.gov (United States)

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2013-11-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  17. How to Get Your Cholesterol Tested

    Science.gov (United States)

    ... Thromboembolism Aortic Aneurysm More How To Get Your Cholesterol Tested Updated:Apr 3,2017 Cholesterol plays a ... factors for heart disease and stroke . How is cholesterol tested? A cholesterol screening measures your level of ...

  18. The Guinea Pig as a Model for Sporadic Alzheimer's Disease (AD: The Impact of Cholesterol Intake on Expression of AD-Related Genes.

    Directory of Open Access Journals (Sweden)

    Mathew J Sharman

    Full Text Available We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer's disease (AD, both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Aβ peptide sequence identical to human Aβ. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (β-secretase transcription and down-regulation of ADAM10 (α-secretase transcription which should increase release of Aβ from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases γ-secretase activity and Aβ synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Aβ concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes.

  19. Autoradiographic detection of HPRT variants of human lymphocytes resistant to RNA synthesis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jones, I.M.; Zetterberg, G.; Strout, C.L.; Carrano, A.V.

    1985-01-01

    The feasibility of using RNA synthesis in freshly isolated, human peripheral blood lymphocytes to detect 6-thioguanine (TG)- and 8-azaguanine (AG)-resistant variants in an autoradiographic assay similar to that of Strauss and Albertini (1979) has been evaluated. In phytohemagglutinin (PHA)-stimulated cultures RNA synthesis and HPRT activity began well in advance of DNA synthesis and increased in parallel during the first 44 h of culture. Introduction of TG or AG with PHA at the beginning of culture completely inhibited DNA synthesis during the first 44 h and reduced RNA synthesis to low levels within 24 h. When TG or AG was added after cells had been in culture for 38 h, DNA synthesis was reduced quickly while RNA synthesis was inhibited more slowly. An autoradiographic assay is described in which freshly isolated lymphocytes are cultured with PHA for 24 h, with or without TG or AG, then labeled with (/sup 3/H)uridine for 1 h. TG-resistant and AG-resistant variant frequencies for 2 normal individuals and a Lesch-Nyhan individual were determined with this assay. The variant frequencies for the normal individuals ranged from 0.46 to 10.6 x 10/sup -5/ depending upon the selective conditions used. All the Lesch-Nyhan cells were resistant to 0.2 ..mu..M-2 mM AG; some were sensitive to 0.2 mM TG and most were sensitive to 2.0 mM TG. 24 references, 3 figures, 1 table.

  20. Cholesterol crystal embolism (atheroembolism)

    Science.gov (United States)

    VENTURELLI, CHIARA; JEANNIN, GUIDO; SOTTINI, LAURA; DALLERA, NADIA; SCOLARI, FRANCESCO

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome. PMID:21977265

  1. Hypocholesterolemic Effects of Lactic Acid-Fermented Soymilk on Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Mitsuru Fukuda

    2012-09-01

    Full Text Available The effect of fermented soymilk on rats fed a high cholesterol diet was investigated to clarify the cholesterol-lowering function. Male Sprague-Dawley rats aged 7 weeks were fed a control diet (1% cholesterol, high cholesterol diet, high cholesterol diet containing 11.7% fermented soymilk diet (5% soy protein as final concentration, F-5, or high cholesterol diet containing 23.4% fermented soymilk diet (10% soy protein as final concentration, F-10 for 5 weeks. The liver weight and fat mass were decreased by the ingestion of fermented soymilk. The hepatic triglyceride and cholesterol levels in the F-5 and F-10 groups were significantly lowered compared to those in the control group. The plasma total cholesterol level of the F-10 group was significantly decreased. The expression of SREBP-2, a cholesterol synthesis-related gene, was significantly decreased in liver of the F-5 group, but the expression of CYP7a1, a cholesterol catabolism-related gene, was significantly increased. These results suggest that fermented soymilk can modulate the cholesterol metabolism in rats fed a high cholesterol diet.

  2. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol.

    Science.gov (United States)

    Tosheska Trajkovska, Katerina; Topuzovska, Sonja

    2017-08-01

    A key to effective treatment of cardiovascular disease is to understand the body's complex lipoprotein transport system. Reverse cholesterol transport (RCT) is the process of cholesterol movement from the extrahepatic tissues back to the liver. Lipoproteins containing apoA-I [highdensity lipoprotein (HDL)] are key mediators in RCT, whereas non-high-density lipoproteins (non-HDL, lipoproteins containing apoB) are involved in the lipid delivery pathway. HDL particles are heterogeneous; they differ in proportion of proteins and lipids, size, shape, and charge. HDL heterogeneity is the result of the activity of several factors that assemble and remodel HDL particles in plasma: ATP-binding cassette transporter A1 (ABCA1), lecithin cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), hepatic lipase (HL), phospholipid transfer protein (PLTP), endothelial lipase (EL), and scavenger receptor class B type I (SR-BI). The RCT pathway consists of the following steps: 1. Cholesterol efflux from peripheral tissues to plasma, 2. LCAT-mediated esterification of cholesterol and remodeling of HDL particles, 3. direct pathway of HDL cholesterol delivery to the liver, and 4. indirect pathway of HDL cholesterol delivery to the liver via CETP-mediated transfer There are several established strategies for raising HDL cholesterol in humans, such as lifestyle changes; use of drugs including fibrates, statins, and niacin; and new therapeutic approaches. The therapeutic approaches include CETP inhibition, peroxisome proliferator-activated receptor (PPAR) agonists, synthetic farnesoid X receptor agonists, and gene therapy. Results of clinical trials should be awaited before further clinical management of atherosclerotic cardiovascular disease.

  3. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle

    NARCIS (Netherlands)

    Vliet, A.K. van; Nègre-Arrariou, P.; Thiel, G.C.F. van; Bolhuis, P.A.; Cohen, L.H.

    1996-01-01

    Lovastatin, simvastatin, and pravastatin are fairly strong inhibitors of sterol synthesis in human myoblasts in culture. Lovastatin and simvastatin have IC50 values of 19 ± 6 nM and 4.0 ± 2.3 nM, respectively. Pravastatin is a weaker inhibitor of sterol synthesis (IC50 value of 110 ± 38 nM). Through

  4. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  5. Synthesis and biological activities of some human gastrin analogs.

    Science.gov (United States)

    Lima-Leite, A C; Fulcrand, P; Galleyrand, J C; Berge, G; Aumelas, A; Bali, J P; Castel, J; Martinez, J

    1996-10-01

    The synthesis of analogs of the C-terminal tridecapeptide of gastrin is described. These pseudopeptide analogs were obtained either by replacing the C-terminal phenylalanine amide with 2-phenylethylalcohol or with 2-phenylethylamine, or by replacing the peptide bond between Trp and Leu, or between Leu and Asp with an aminomethylene (CH2NH). The ability of these compounds to stimulate gastric acid secretion in anesthetized rats and to inhibit binding of labeled CCK-8 to isolated cells from rabbit fundic mucosa was tested. [desPhe13, Leu11]-HG-12-I-beta-phenylethylester 33, [desPhe13, Leu11]-HG-12-II-beta-phenylethylester 38, [desPhe13, Leu11]-HG-12-I-beta-phenylethylamide 32, and [desPhe13, Leu11]-HG-12-II-beta-phenylethylamide 37 acted as gastrin receptor antagonists, while [Trp10-psi(CH2NH)-Leu11]-HG-13-I 31 and [Trp10-psi(CH2NH)-Leu11]-HG-13-II 36 acted as agonists. Unexpectedly, [Leu11-psi(CH2NH)-Asp12]-HG-13-I 30 and [Leu11-psi (CH2NH)-Asp12]-HG-13-II 35 were almost devoid of affinity for the gastrin receptor.

  6. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  7. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    Science.gov (United States)

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing......, but the effect of local IGF-I administration on tendon collagen synthesis in human has not been studied. The purpose of this study was to study whether local injections of IGF-I would have a stimulating effect on tendon collagen synthesis. Twelve healthy nonsmoking men [age 62 ± 1 years (mean ± SEM), BMI 27 ± 1......] participated. Two injections of either human recombinant IGF-I (0.1 mL Increlex©) or saline (control) into each patellar tendon were performed 24-h apart, respectively. Tendon collagen fractional synthesis rate (FSR) was measured by stable isotope technique in the hours after the second injection...

  9. De novo synthesis of milk triglycerides in humans

    Science.gov (United States)

    Mammary gland (MG) de novo lipogenesis contributes significantly to milk fat in animals but little is known in humans. Objective: To test the hypothesis that the incorporation of 13C carbons from [U-13C]glucose into fatty acids (FA) and glycerol in triglycerides (TG) will be greater: 1) in milk tha...

  10. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Florian Wrensch

    2014-09-01

    Full Text Available The interferon-inducible transmembrane (IFITM proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs.

  11. 烟酸对人脐内皮细胞损伤的保护作用%Protective Effect of Niacin on Human Umbilical Vein Endothelial Cells Injury Induced by Cholesterol in Vitro

    Institute of Scientific and Technical Information of China (English)

    罗舜菁; 汪志宇; 刘成梅; 陈臣; 王文飞; 姚景宇; 高江宇

    2011-01-01

    To investigate protective effect of niacin on human umbilical vein endothelial cells ( HUVECs) , which injury treated by cholesterol. Use inverted microscope observation cells form, the growth rate of cells was detected by MTT (3-(4,5-dimethylthiazo l-2-yl)-2,5-diphenylte trazolium bromide) methods. With the increase of cholesterol concentration, the value of MTT was significantly reduced (P <0.05). Niacin significantly improved the growth of cells with dose dependent (P <0. 05). Cholesterol could induce injury for HUVECS, while niacin may prevent HUVECS from the injury.%研究了烟酸对胆固醇处理的人脐静脉内皮细胞(HUVECs)损伤的保护作用.使用倒置显微镜观察细胞形态,四甲基偶氮唑蓝(MTT)比色法测定HUVECs存活率.结果表明:随着胆固醇浓度的增加,用MTT比色法测得的吸光度逐渐降低,HUVECs存活率显著降低(P<0.05).烟酸呈剂量依赖性的显著改善胆固醇诱导所致下降的HUVECs存活率(P<0.05).胆固醇可以诱导内皮细胞损伤,烟酸对胆固醇诱导的人脐静脉内皮细胞损伤具有保护作用.

  12. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells.

    Science.gov (United States)

    Ríos-Marco, Pablo; Martín-Fernández, Mario; Soria-Bretones, Isabel; Ríos, Antonio; Carrasco, María P; Marco, Carmen

    2013-08-01

    Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.

  13. A Synthesis of Human-related Avian Mortality in Canada

    Directory of Open Access Journals (Sweden)

    Anna M. Calvert

    2013-12-01

    Full Text Available Many human activities in Canada kill wild birds, yet the relative magnitude of mortality from different sources and the consequent effects on bird populations have not been systematically evaluated. We synthesize recent estimates of avian mortality in Canada from a range of industrial and other human activities, to provide context for the estimates from individual sources presented in this special feature. We assessed the geographic, seasonal, and taxonomic variation in the magnitude of national-scale mortality and in population-level effects on species or groups across Canada, by combining these estimates into a stochastic model of stage-specific mortality. The range of estimates of avian mortality from each source covers several orders of magnitude, and, numerically, landbirds were the most affected group. In total, we estimate that approximately 269 million birds and 2 million nests are destroyed annually in Canada, the equivalent of over 186 million breeding individuals. Combined, cat predation and collisions with windows, vehicles, and transmission lines caused > 95% of all mortality; the highest industrial causes of mortality were the electrical power and agriculture sectors. Other mortality sources such as fisheries bycatch can have important local or species-specific impacts, but are relatively small at a national scale. Mortality rates differed across species and families within major bird groups, highlighting that mortality is not simply proportional to abundance. We also found that mortality is not evenly spread across the country; the largest mortality sources are coincident with human population distribution, while industrial sources are concentrated in southern Ontario, Alberta, and southwestern British Columbia. Many species are therefore likely to be vulnerable to cumulative effects of multiple human-related impacts. This assessment also confirms the high uncertainty in estimating human-related avian mortality in terms of species

  14. Effects of consumption of probiotics and prebiotics on serum lipid levels in humans.

    Science.gov (United States)

    Pereira, Dora I A; Gibson, Glenn R

    2002-01-01

    The objective of this article is to review existing studies concerning the effects of probiotics and prebiotics on serum cholesterol concentrations, with particular attention on the possible mechanisms of their action. Although not without exception, results from animal and human studies suggest a moderate cholesterol-lowering action of dairy products fermented with appropriate strain(s) of lactic acid bacteria and bifidobacteria. Mechanistically, probiotic bacteria ferment food-derived indigestible carbohydrates to produce short-chain fatty acids in the gut, which can then cause a decrease in the systemic levels of blood lipids by inhibiting hepatic cholesterol synthesis and/or redistributing cholesterol from plasma to the liver. Furthermore, some bacteria may interfere with cholesterol absorption from the gut by deconjugating bile salts and therefore affecting the metabolism of cholesterol, or by directly assimilating cholesterol. For prebiotic substances, the majority of studies have been done with the fructooligosaccharides inulin and oligofructose, and although convincing lipid-lowering effects have been observed in animals, high dose levels had to be used. Reports in humans are few in number. In studies conducted in normal-lipidemic subjects, two reported no effect of inulin or oligofructose on serum lipids, whereas two others reported a significant reduction in serum triglycerides (19 and 27%, respectively) with more modest changes in serum total and LDL cholesterol. At present, data suggest that in hyperlipidemic subjects, any effects that do occur result primarily in reductions in cholesterol, whereas in normal lipidemic subjects, effects on serum triglycerides are the dominant feature.

  15. Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis

    National Research Council Canada - National Science Library

    Lu, Jun; Zheng, Yuan-lin; Wu, Dong-mei; Sun, Dong-xu; Shan, Qun; Fan, Shao-hua

    2006-01-01

    ... of its ability to chelate copper ions [7–9] . Cholesterol plays a central role in the development and maintenance of the brain and nervous system [10,11] . Human brain makes up only 2% of the body’s weight, yet contains nearly 25% of its cholesterol. But more evidences have implicated a role of cholesterol in AD [11] . According to the cholesterol-Alzheimer’...

  16. Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism.

    Science.gov (United States)

    Hoekstra, Menno; Van Berkel, Theo-Jc; Van Eck, Miranda

    2010-12-21

    Scavenger receptor class B type I (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepatocytes, which identifies SR-BI as a multi-purpose player in lipid uptake from the blood circulation into hepatocytes in mice. In adrenocortical cells, SR-BI mediates the selective uptake of HDL-cholesteryl esters, which is efficiently coupled to the synthesis of glucocorticoids (i.e. corticosterone). SR-BI knockout mice suffer from adrenal glucocorticoid insufficiency, which suggests that functional SR-BI protein is necessary for optimal adrenal steroidogenesis in mice. SR-BI in macrophages plays a dual role in cholesterol metabolism as it is able to take up cholesterol associated with HDL and apoB-containing lipoproteins and can possibly facilitate cholesterol efflux to HDL. Absence of SR-BI is associated with thrombocytopenia and altered thrombosis susceptibility, which suggests a novel role for SR-BI in regulating platelet number and function in mice. Transgenic expression of cholesteryl ester transfer protein in humanized SR-BI knockout mice normalizes hepatic delivery of HDL-cholesteryl esters. However, other pathologies associated with SR-BI deficiency, i.e. increased atherosclerosis susceptibility, adrenal glucocorticoid insufficiency, and impaired platelet function are not normalized, which suggests an important role for SR-BI in cholesterol and steroid metabolism in man. In conclusion, generation of SR-BI knockout mice has significantly contributed to our knowledge of the physiological role of SR-BI. Studies using these mice have identified SR-BI as a

  17. Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans

    DEFF Research Database (Denmark)

    Langberg, Henning; Skovgaard, D; Petersen, L J;

    1999-01-01

    1. Physical activity is known to increase type I collagen synthesis measured as the concentration of biomarkers in plasma. By the use of microdialysis catheters with a very high molecular mass cut-off value (3000 kDa) we aimed to determine local type I collagen synthesis and degradation...... in the peritendinous region by measuring interstitial concentrations of a collagen propeptide (PICP; 100 kDa) and a collagen degradation product (ICTP; 9 kDa) as well as an inflammatory mediator (PGE2). 2. Seven trained human runners were studied before and after (2 and 72 h) 3 h of running (36 km). Two microdialysis...... catheters were placed in the peritendinous space ventral to the Achilles' tendon under ultrasound guidance and perfused with a Ringer-acetate solution containing 3H-labelled human type IV collagen and [15-3H(N)]PGE2 for in vivo recovery determination. Relative recovery was 37-59 % (range of the s...

  18. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis.

    Science.gov (United States)

    Venteicher, Andrew S; Abreu, Eladio B; Meng, Zhaojing; McCann, Kelly E; Terns, Rebecca M; Veenstra, Timothy D; Terns, Michael P; Artandi, Steven E

    2009-01-30

    Telomerase is a ribonucleoprotein (RNP) complex that synthesizes telomere repeats in tissue progenitor cells and cancer cells. Active human telomerase consists of at least three principal subunits, including the telomerase reverse transcriptase, the telomerase RNA (TERC), and dyskerin. Here, we identify a holoenzyme subunit, TCAB1 (telomerase Cajal body protein 1), that is notably enriched in Cajal bodies, nuclear sites of RNP processing that are important for telomerase function. TCAB1 associates with active telomerase enzyme, established telomerase components, and small Cajal body RNAs that are involved in modifying splicing RNAs. Depletion of TCAB1 by using RNA interference prevents TERC from associating with Cajal bodies, disrupts telomerase-telomere association, and abrogates telomere synthesis by telomerase. Thus, TCAB1 controls telomerase trafficking and is required for telomere synthesis in human cancer cells.

  19. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice.

    Science.gov (United States)

    Zhu, Ru-Gang; Sun, Yan-Di; Hou, Yu-Ting; Fan, Jun-Gang; Chen, Gang; Li, Tuo-Ping

    2017-06-25

    Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Francesca Cordella

    2014-03-01

    and experimental trials on an arm-hand robotic system. The obtained results have shown the effectiveness of the extracted indicators to reduce the non-linear optimization problem complexity and lead to the synthesis of a grasping posture able to replicate the human behaviour while ensuring grasp stability. The experimental results have also highlighted the limitations of the adopted robotic platform (mainly due to the mechanical structure to achieve the optimal grasp configuration.

  1. Face Synthesis (FASY) System for Generation of a Face Image from Human Description

    CERN Document Server

    Halder, Santanu; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    This paper aims at generating a new face based on the human like description using a new concept. The FASY (FAce SYnthesis) System is a Face Database Retrieval and new Face generation System that is under development. One of its main features is the generation of the requested face when it is not found in the existing database, which allows a continuous growing of the database also.

  2. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety.

    Science.gov (United States)

    Iwai, Ichiro; Han, HongMei; den Hollander, Lianne; Svensson, Stina; Ofverstedt, Lars-Göran; Anwar, Jamshed; Brewer, Jonathan; Bloksgaard, Maria; Laloeuf, Aurelie; Nosek, Daniel; Masich, Sergej; Bagatolli, Luis A; Skoglund, Ulf; Norlén, Lars

    2012-09-01

    The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skin's surface layer--the stratum corneum. Here we report on the determination of the molecular organization of the skin's lipid matrix in situ, in its near-native state, using a methodological approach combining very high magnification cryo-electron microscopy (EM) of vitreous skin section defocus series, molecular modeling, and EM simulation. The lipids are organized in an arrangement not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skin's low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin barrier's robustness toward hydration and dehydration, environmental temperature and pressure changes, stretching, compression, bending, and shearing.

  3. The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety

    DEFF Research Database (Denmark)

    Iwai, Ichiro; Han, Hongmei; Hollander, Lianne den

    2012-01-01

    The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skin's surface layer-the stratum corneum. Here we report on the determination...... of the molecular organization of the skin's lipid matrix in situ, in its near-native state, using a methodological approach combining very high magnification cryo-electron microscopy (EM) of vitreous skin section defocus series, molecular modeling, and EM simulation. The lipids are organized in an arrangement...... not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skin's low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin...

  4. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    Science.gov (United States)

    Le Guével, Xavier; Daum, Nicole; Schneider, Marc

    2011-07-01

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals (polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight® Plus tests show no cytotoxicity of these labelled proteins in cells (1 µg ml - 1-1 mg ml - 1). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  5. Mice expressing the human CYP7A1 gene in the mouse CYP7A1 knock-out background lack induction of CYP7A1 expression by cholesterol feeding and have increased hypercholesterolemia when fed a high fat diet.

    Science.gov (United States)

    Chen, Jean Y; Levy-Wilson, Beatriz; Goodart, Sheryl; Cooper, Allen D

    2002-11-08

    Cholesterol 7alpha-hydroxylase (CYP7A1) catalyzes the rate-limiting step in the pathway responsible for the formation of the majority of bile acids. Transcription of the gene is regulated by the size of the bile acid pool and dietary and hormonal factors. The farnesoid X receptor and the liver X receptor (LXR) are responsible for regulation by bile acids and cholesterol, respectively. To study the effects of dietary cholesterol and fat upon expression of the human CYP7A1 gene, mice were generated by crossing transgenic mice carrying the human CYP7A1 gene with mice that were homozygous knock-outs (CYP7A1(-/-)). The mice (mCYP7A1(-/-)/hCYP7A1) expressed the human gene at much higher levels than did the transgenics bred in the wild-type background. A diet containing 1% cholic acid reduced the expression of the human gene in mCYP7A1(-/-)/hCYP7A1 mice to undetectable levels. Cholestyramine (5%) increased the level of expression of the human gene and the mouse gene. Thus, farnesoid X receptor-mediated regulation was preserved. A diet containing 2% cholesterol increased expression of the mouse gene in wild-type mice, but it did not affect expression of the human gene in mCYP7A1(-/-)/hCYP7A1 mice. None of the diets altered the serum cholesterol or triglyceride levels in these mice; 1% cholic acid caused a redistribution of cholesterol from the high density lipoprotein to the low density lipoprotein density in the humanized mice but not in wild-type mice. A diet containing 30% saturated fat and 2% cholesterol caused a decrease in CYP7A1 levels in mCYP7A1(-/-)/hCYP7A1 mice. The serum cholesterol levels rose in all mice fed this diet. The increase was greater in the mCYP7A1(-/-)/hCYP7A1 mice. Together, these data suggest that the lack of an LXR element in the region from -56 to -49 of the human CYP7A1 promoter may account for some of the differences in response to diets between humans and rodents.

  6. New conception concerning the dynamical state of cholesterol in rat; Conception nouvelle concernant l'etat dynamyque du cholesterol chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-03-15

    It presents the study of the cholesterol metabolism in rats. This thesis has been divided in three chapters. In a first part, it will discuss about the dynamic state of biological constituents in organism and in particular the dynamic state of cholesterol. This matter will be considered, firstly under its theoretical aspect and secondly under an experimental point of view with isotopic techniques. The current data on the dynamic state of cholesterol will allow to identify the essential points which are the subject of this research. In particular, the full understanding of the different cholesterol origins (diet, biosynthesis or formation of cholesterol from degradation or transformation of precursors as acetate or butyric acid for example) and the different cholesterol disappearance way (excretion, destruction, transformation or esters formation) is necessary to further research. In a second part, the experimental techniques and methods are described. A brief presentation of the methods for the study of the cholesterol transport and synthesis will be given as well as the experimental conditions and in particular the animal diet and cholesterol ingestion, the administration of acetate and {gamma}-phenyl {alpha}-aminobutyric. The different preparations of the {sup 14}C labelled cholesterol are also described as well as the extraction and measuring of the specific {sup 14}C radioactivity in the animal tissues extract, carbon dioxide gas and sodium acetate. Finally, the results will be given and discussed according to the way of intake: a radioactive cholesterol ingestion or an acetate intraperitoneal injection. (M.P.)

  7. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. METHODOLOGY/PRINCIPAL FINDINGS: Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol. CONCLUSION/SIGNIFICANCE: Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway

  8. Apoprotein E phenotype determines serum cholesterol in infants during both high-cholesterol breast feeding and low-cholesterol formula feeding.

    Science.gov (United States)

    Kallio, M J; Salmenperä, L; Siimes, M A; Perheentupa, J; Gylling, H; Miettinen, T A

    1997-04-01

    Our objective was to establish the role of the apoprotein (apo) E phenotype in determining serum cholesterol levels in infants fed exclusively on high-fat, high-cholesterol human milk and in those fed a low-cholesterol, high-unsaturated fat formula. The total and lipoprotein cholesterol, apoB, and triglyceride concentrations in serum were quantified and related to the apoE phenotype in 151 infants at birth and at 2, 6, 9, and 12 months of age. Forty-four had the E3/4 or 4/4 phenotype (E4 group), 94 had the E3/3 phenotype (E3 group), and 13 had the E2/3 or 2/4 phenotype (E2 group). In cord blood, cholesterol concentrations tended to be higher in the E4 than in the E2 group. With exclusive breast-feeding, the concentrations rose significantly faster and higher in the E4 group than in the E3 group or, especially, the E2 group. The values (mmol/L, mean +/- SEM) were 1.6 +/- 0.15, 1.5 +/- 0.05, 1.4 +/- 0.1 (P = n.s.) at birth; 4.2 +/- 0.1, 3.8 +/- 0.08, 3.4 +/- 0.2 (P HDL, HDL2, and HDL3 cholesterol concentrations did not depend on the apoE phenotype. Among infants fed high-fat, high-cholesterol human milk, the total and LDL-cholesterol concentrations and the LDL apoB concentration of those with the apoE phenotype 4/4 or 3/4 rose faster and to higher levels than in other infants. Among formula-fed infants, receiving a low-cholesterol, high-unsaturated fat diet, the differences between the apoE groups were smaller.

  9. Fluorimetric determination of cholesterol in hypercholesterolemia serum

    Science.gov (United States)

    Lan, Xiufeng; Liu, Jiangang; Liu, Ying; Luo, Xiaosen; Lu, Jian; Ni, Xiaowu

    2005-01-01

    With the increase of people"s living standard and the changes of living form, the number of people who suffer from hypercholesterolemia is increasing. It is not only harmful to heart and blood vessel, but also leading to obstruction of cognition. The conventional blood detection technology has weakness such as complex operation, long detecting period, and bad visibility. In order to develop a new detection method that can checkout hypercholesterolemia conveniently, spectroscopy of cholesterol in hypercholesterolemia serum is obtained by the multifunctional grating spectrograph. The experiment results indicate that, under the excitation of light-emitting diode (LED) with the wavelength at 407 nm, the serum from normal human and the hypercholesterolemia serum emit different fluorescence spectra. The former can emit one fluorescence region with the peak locating at 516 nm while the latter can emit two more regions with peaks locating at 560 nm and 588 nm. Moreover, the fluorescence intensity of serum is non-linear increasing with the concentration of cholesterol increases when the concentration of cholesterol is lower than 13.8 mmol/L, and then, with the concentration of cholesterol increase, the fluorescence intensity decreases. However, the fluorescence intensity is still much higher than that of serum from normal human. Conclusions can be educed from the experiments: the intensity and the shape of fluorescence spectra of hypercholesterolemia serum are different of those of normal serum, from which the cholesterol abnormal in blood can be judged. The consequences in this paper may offer an experimental reference for the diagnosis of the hypercholesterolemia.

  10. The digital origin of human language--a synthesis.

    Science.gov (United States)

    Noll, Hans

    2003-05-01

    The fact that all languages known are digital poses the question of their origin. The answer developed here treats language as the interface of information theory and molecular development by showing previously unrecognized isomorphisms between the analog and digital features of language and life at the molecular level. Human language is a special case of signal transduction and hence is subject to the coding aspects of Shannon's theorems and the analog aspects of pattern recognition, each represented by genotype and phenotype. Digital language acquisition is late in evolution and postnatal development and requires a neural reorganization by a mechanism of somatic network programming in response to the environment. Such a mechanism would solve the Chomsky conundrum of how children can learn any language without knowing rules of grammar too numerous to be encoded genotypically.

  11. Characterization of placental cholesterol transport

    DEFF Research Database (Denmark)

    Lindegaard, Marie L; Wassif, Christopher A; Vaisman, Boris

    2008-01-01

    Patients with Smith-Lemli-Opitz syndrome (SLOS) are born with multiple congenital abnormalities. Postnatal cholesterol supplementation is provided; however, it cannot correct developmental malformations due to in utero cholesterol deficit. Increased transport of cholesterol from maternal to fetal...... circulation might attenuate congenital malformations. The cholesterol transporters Abca1, Abcg1, and Sr-b1 are present in placenta; however, their potential role in placental transport remains undetermined. In mice, expression analyses showed that Abca1 and Abcg1 transcripts increased 2-3-fold between...... embryonic days 13.5 and 18.5 in placental tissue; whereas, Sr-b1 expression decreased. To examine the functional role of Abca1, Abcg1 and Sr-b1 we measured the maternal-fetal transfer of (14)C-cholesterol in corresponding mutant embryos. Disruption of either Abca1 or Sr-b1 decreased cholesterol transfer...

  12. Photobiomodulation on the proliferation and collagen synthesis of normal human skin fibroblast cells

    Science.gov (United States)

    Cheng, Lei; Liu, Timon Cheng-Yi; Chi, Jin-Quan; Li, Yan; Jin, Hua

    2006-01-01

    Background and Objective: Cultured normal human skin fibroblast cells (HSFs) were once used to study the mechanism of the effects of low intensity He-Ne laser irradiation (LHNL) on wound healing. The proliferation and collagen synthesis of HFSs were modulated by LHNL in different papers, respectively, and both of them are studied in this paper. Study Design/Materials and Methods: The dosage was studied for the same radiation time 300s. The proliferation and collagen synthesis were measured by 3-[4,5-Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and the spectrophotometric method for the determination of hydroxyproline, respectively. Results: The dose zones were called dose 1, dose 2 and dose 3 from low dose on so that HSF proliferation was inhibited in dose 1 (16, 24 mJ/cm2), and promoted in dose 2 (298, 503, 597mJ/cm2), and the collagen synthesis was inhibited in dose 2 (401, 526 mJ/cm2), and promoted in dose 3 (714, 926, 1539, 1727mJ/cm2), which supports our biological model of photobiomodulation. It was found there is the linear relationship of the effect with dose with dose in each dose zone. Conclusions: The photobiomodulation on the proliferation and collagen synthesis of HSFs might be linearly dose-dependent in limited dosage with radiation time kept constant, which provides a foundation to discuss photobiomodulation on wound healing.

  13. Specific activation of human interleukin-5 depends on de novo synthesis of an AP-1 complex.

    Science.gov (United States)

    Schwenger, Gretchen T F; Kok, Chee Choy; Arthaningtyas, Estri; Thomas, Marc A; Sanderson, Colin J; Mordvinov, Viatcheslav A

    2002-12-06

    It is clear from the biology of eosinophilia that a specific regulatory mechanism must exist. Because interleukin-5 (IL5) is the key regulatory cytokine, it follows that a gene-specific control of IL5 expression must exist that differs even from closely related cytokines such as IL4. Two features of IL5 induction make it unique compared with other cytokines; first, induction by cyclic adenosine monophosphate (cAMP), which inhibits other T-cell-derived cytokines, and second, sensitivity to protein synthesis inhibitors, which have no effect on other cytokines. This study has utilized the activation of different transcription factors by different stimuli in a human T-cell line to study the role of conserved lymphokine element 0 (CLE0) in the specific induction of IL5. In unstimulated cells the ubiquitous Oct-1 binds to CLE0. Stimulation induces de novo synthesis of the AP-1 members JunD and Fra-2, which bind to CLE0. The amount of IL5 produced correlates with the production of the AP-1 complex, suggesting a key role in IL5 expression. The formation of the AP-1 complex is essential, but the rate-limiting step is the synthesis of AP-1, especially Fra-2. This provides an explanation for the sensitivity of IL5 to protein synthesis inhibitors and a mechanism for the specific induction of IL5 compared with other cytokines.

  14. Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells.

    Science.gov (United States)

    Wiczk, Aleksandra; Hofman, Dagmara; Konopa, Grażyna; Herman-Antosiewicz, Anna

    2012-08-01

    Sulforaphane (SFN) is a compound derived from cruciferous plants. Its anticancer properties have been demonstrated both, in cancer cell lines as well as tumors in animal models. It has been shown that SFN inhibits cell proliferation, induces apoptosis, autophagy, and sensitizes cancer cells to therapies. As induction of catabolic processes is often related to perturbation in protein synthesis we aimed to investigate the impact of SFN on this process in PC-3 human prostate cancer cells. In the present study we show that SFN inhibits protein synthesis in PC-3 cells in a dose- and time-dependent manner which is accompanied by a decreased phosphorylation of mTOR substrates. Translation inhibition is independent of mitochondria-derived ROS as it is observed in PC-3 derivatives devoid of functional mitochondrial respiratory chain (Rho0 cells). Although SFN affects mitochondria and slightly decreases glycolysis, the ATP level is maintained on the level characteristic for control cells. Inhibition of protein synthesis might be a protective response of prostate cancer cells to save energy. However, translation inhibition contributes to the death of PC-3 cells due to decreased level of a short-lived protein, survivin. Overexpression of this anti-apoptotic factor protects PC-3 cells against SFN cytotoxicity. Protein synthesis inhibition by SFN is not restricted to prostate cancer cells as we observed similar effect in SKBR-3 breast cancer cell line. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics.

    Science.gov (United States)

    Zeuner, Birgitte; Jers, Carsten; Mikkelsen, Jørn Dalgaard; Meyer, Anne S

    2014-10-08

    Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter optimization to promote "reverse" catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches and data available concerning optimization of enzymatic trans-glycosylation for novel synthesis of complex bioactive carbohydrates using sialidases, α-l-fucosidases, and β-galactosidases as examples. The use of an adequately high acceptor/donor ratio, reaction time control, continuous product removal, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity to trans-sialidase action has been established. However, the protein engineering route currently requires significant research efforts in each case because the structure-function relationship of the enzymes is presently poorly understood.

  16. Cholesterol Embolism: An Overlooked Diagnosis

    Directory of Open Access Journals (Sweden)

    Sinem Nihal ESATOĞLU

    2012-01-01

    Full Text Available Acute renal failure following angiography is usually due to radiocontrast nephropathy; however, cholesterol embolism should be kept in mind when making the differential diagnosis. Cholesterol embolism is a multisystem disease, usually seen in elderly men who have severe atherosclerosis. In this case report, we describe a patient with cholesterol embolism who had a typical clinical history of progressive renal failure. We hope that this case report will emphasize the importance of this overlooked syndrome.

  17. Cholesterol Metabolism and Prostate Cancer Lethality.

    Science.gov (United States)

    Stopsack, Konrad H; Gerke, Travis A; Sinnott, Jennifer A; Penney, Kathryn L; Tyekucheva, Svitlana; Sesso, Howard D; Andersson, Swen-Olof; Andrén, Ove; Cerhan, James R; Giovannucci, Edward L; Mucci, Lorelei A; Rider, Jennifer R

    2016-08-15

    Cholesterol metabolism has been implicated in prostate cancer pathogenesis. Here, we assessed the association of intratumoral mRNA expression of cholesterol synthesis enzymes, transporters, and regulators in tumor specimen at diagnosis and lethal prostate cancer, defined as mortality or metastases from prostate cancer in contrast to nonlethal disease without evidence of metastases after at least 8 years of follow-up. We analyzed the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (n = 249) and the Physicians' Health Study (n = 153) as well as expectantly managed patients in the Swedish Watchful Waiting Study (n = 338). The expression of squalene monooxygenase (SQLE) was associated with lethal cancer in all three cohorts. Men with high SQLE expression (>1 standard deviation above the mean) were 8.3 times (95% confidence interval, 3.5 to 19.7) more likely to have lethal cancer despite therapy compared with men with the mean level of SQLE expression. Absolute SQLE expression was associated with lethal cancer independently from Gleason grade and stage, as was a SQLE expression ratio in tumor versus surrounding benign prostate tissue. Higher SQLE expression was tightly associated with increased histologic markers of angiogenesis. Collectively, this study establishes the prognostic value of intratumoral cholesterol synthesis as measured via SQLE, its second rate-limiting enzyme. SQLE expression at cancer diagnosis is prognostic for lethal prostate cancer both after curative-intent prostatectomy and in a watchful waiting setting, possibly by facilitating micrometastatic disease. Cancer Res; 76(16); 4785-90. ©2016 AACR.

  18. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Le Guevel, Xavier; Schneider, Marc [Pharmaceutical Nanotechnology, Saarland University, Saarbruecken (Germany); Daum, Nicole, E-mail: Marc.Schneider@mx.uni-saarland.de [Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbruecken (Germany)

    2011-07-08

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals (<2 nm) are stabilized in the protein via sulfur groups and have a high fluorescence emission in the near infrared region (QY = 4.3%; {lambda}{sub em} = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight Plus tests show no cytotoxicity of these labelled proteins in cells (1 {mu}g ml{sup -1}-1 mg ml{sup -1}). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  19. [The real measurement of non-HDL-cholesterol: Atherogenic cholesterol].

    Science.gov (United States)

    Millán, Jesús; Hernández-Mijares, Antonio; Ascaso, Juan F; Blasco, Mariano; Brea, Angel; Díaz, Ángel; González-Santos, Pedro; Mantilla, Teresa; Pedro-Botet, Juan; Pintó, Xavier

    Lowe density lipoproteins (LDL) are the causal agent of cardiovascular diseases. In practice, we identify LDL with cholesterol transported in LDL (cLDL). So, cLDL has become the major target for cardiovascular prevention. Howewer, we have progressive evidences about the role of triglycerides rich lipoproteins, particularly those very low density lipoprotein (VLDL) in promotion and progression of atherosclerosis, that leads cholesterol in VLDL and its remanents as a potential therapeutic target. This feature is particularly important and of a great magnitude, in patients with hypertiglyceridemia. We can to considere, that the non-HDL cholesterol -cLDL+cVLDL+c-remmants+Lp(a)- is the real measurement of atherogenic cholesterol. In addition, non-HDL-cholesterol do not show any variations between postprandial states. In fact, non-HDL-cholesterol should be an excellent marker of atherogenic cholesterol, and an major therapeutic target in patients with atherogenic dyslipidaemia. According with different clinical trials and with the epidemiological and mendelian studies, in patients with high cardiovascular risk, optimal level of cLDL will be under 70mg/dl, and under 100 ng/dl for non-HDL-cholesterol; and in high risk patients, 100mg/dl and 130mg/dl, respectively. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  20. Mechanical loading and the synthesis of 1,25(OH)2D in primary human osteoblasts.

    Science.gov (United States)

    van der Meijden, K; Bakker, A D; van Essen, H W; Heijboer, A C; Schulten, E A J M; Lips, P; Bravenboer, N

    2016-02-01

    The metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D) is synthesized from its precursor 25-hydroxyvitamin D (25(OH)D) by human osteoblasts leading to stimulation of osteoblast differentiation in an autocrine or paracrine way. Osteoblast differentiation is also stimulated by mechanical loading through activation of various responses in bone cells such as nitric oxide signaling. Whether mechanical loading affects osteoblast differentiation through an enhanced synthesis of 1,25(OH)2D by human osteoblasts is still unknown. We hypothesized that mechanical loading stimulates the synthesis of 1,25(OH)2D from 25(OH)D in primary human osteoblasts. Since the responsiveness of bone to mechanical stimuli can be altered by various endocrine factors, we also investigated whether 1,25(OH)2D or 25(OH)D affect the response of primary human osteoblasts to mechanical loading. Primary human osteoblasts were pre-incubated in medium with/without 25(OH)D3 (400 nM) or 1,25(OH)2D3 (100 nM) for 24h and subjected to mechanical loading by pulsatile fluid flow (PFF). The response of osteoblasts to PFF was quantified by measuring nitric oxide, and by PCR analysis. The effect of PFF on the synthesis of 1,25(OH)2D3 was determined by subjecting osteoblasts to PFF followed by 24h post-incubation in medium with/without 25(OH)D3 (400 nM). We showed that 1,25(OH)2D3 reduced the PFF-induced NO response in primary human osteoblasts. 25(OH)D3 did not significantly alter the NO response of primary human osteoblasts to PFF, but 25(OH)D3 increased osteocalcin and RANKL mRNA levels, similar to 1,25(OH)2D3. PFF did not increase 1,25(OH)2D3 amounts in our model, even though PFF did increase CYP27B1 mRNA levels and reduced VDR mRNA levels. CYP24 mRNA levels were not affected by PFF, but were strongly increased by both 25(OH)D3 and 1,25(OH)2D3. In conclusion, 1,25(OH)2D3 may affect the response of primary human osteoblasts to mechanical stimuli, at least with respect to NO production. Mechanical stimuli may affect

  1. An exploratory study on the driving method of speech synthesis based on the human eye reading imaging data

    Science.gov (United States)

    Gao, Pei-pei; Liu, Feng

    2016-10-01

    With the development of information technology and artificial intelligence, speech synthesis plays a significant role in the fields of Human-Computer Interaction Techniques. However, the main problem of current speech synthesis techniques is lacking of naturalness and expressiveness so that it is not yet close to the standard of natural language. Another problem is that the human-computer interaction based on the speech synthesis is too monotonous to realize mechanism of user subjective drive. This thesis introduces the historical development of speech synthesis and summarizes the general process of this technique. It is pointed out that prosody generation module is an important part in the process of speech synthesis. On the basis of further research, using eye activity rules when reading to control and drive prosody generation was introduced as a new human-computer interaction method to enrich the synthetic form. In this article, the present situation of speech synthesis technology is reviewed in detail. Based on the premise of eye gaze data extraction, using eye movement signal in real-time driving, a speech synthesis method which can express the real speech rhythm of the speaker is proposed. That is, when reader is watching corpora with its eyes in silent reading, capture the reading information such as the eye gaze duration per prosodic unit, and establish a hierarchical prosodic pattern of duration model to determine the duration parameters of synthesized speech. At last, after the analysis, the feasibility of the above method is verified.

  2. Food combinations for cholesterol lowering.

    Science.gov (United States)

    Harland, Janice I

    2012-12-01

    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  3. Intramembrane aspartic acid in SCAP protein governs cholesterol-induced conformational change

    Science.gov (United States)

    Feramisco, Jamison D.; Radhakrishnan, Arun; Ikeda, Yukio; Reitz, Julian; Brown, Michael S.; Goldstein, Joseph L.

    2005-01-01

    The polytopic membrane protein SCAP transports sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi, thereby activating cholesterol synthesis. Cholesterol accumulation in the ER membranes changes SCAP to an alternate conformation in which it binds ER retention proteins called Insigs, thereby terminating cholesterol synthesis. Here, we show that the conserved Asp-428 in the sixth transmembrane helix of SCAP is essential for SCAP's dissociation from Insigs. In transfected hamster cells, mutant SCAP in which Asp-428 is replaced by alanine (D428A) remained in an Insig-binding conformation when cells were depleted of sterols. As a result, mutant SCAP failed to dissociate from Insigs, and it failed to carry SREBPs to the Golgi. These data identify an important functional residue in SCAP, and they provide genetic evidence that the conformation of SCAP dictates the rate of cholesterol synthesis in animal cells. PMID:15728349

  4. Xylosyltransferase-I regulates glycosaminoglycan synthesis during the pathogenic process of human osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Narayanan Venkatesan

    Full Text Available Loss of glycosaminoglycan (GAG chains of proteoglycans (PGs is an early event of osteoarthritis (OA resulting in cartilage degradation that has been previously demonstrated in both huma and experimental OA models. However, the mechanism of GAG loss and the role of xylosyltransferase-I (XT-I that initiates GAG biosynthesis onto PG molecules in the pathogenic process of human OA are unknown. In this study, we have characterized XT-I expression and activity together with GAG synthesis in human OA cartilage obtained from different regions of the same joint, defined as "normal", "late-stage" or adjacent to "late-stage". The results showed that GAG synthesis and content increased in cartilage from areas flanking OA lesions compared to cartilage from macroscopically "normal" unaffected regions, while decreased in "late-stage" OA cartilage lesions. This increase in anabolic state was associated with a marked upregulation of XT-I expression and activity in cartilage "next to lesion" while a decrease in the "late-stage" OA cartilage. Importantly, XT-I inhibition by shRNA or forced-expression with a pCMV-XT-I construct correlated with the modulation of GAG anabolism in human cartilage explants. The observation that XT-I gene expression was down-regulated by IL-1β and up-regulated by TGF-β1 indicates that these cytokines may play a role in regulating GAG content in human OA. Noteworthy, expression of IL-1β receptor (IL-1R1 was down-regulated whereas that of TGF-β1 was up-regulated in early OA cartilage. Theses observations may account for upregulation of XT-I and sustained GAG synthesis prior to the development of cartilage lesions during the pathogenic process of OA.

  5. Xylosyltransferase-I regulates glycosaminoglycan synthesis during the pathogenic process of human osteoarthritis.

    Science.gov (United States)

    Venkatesan, Narayanan; Barré, Lydia; Bourhim, Mustapha; Magdalou, Jacques; Mainard, Didier; Netter, Patrick; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2012-01-01

    Loss of glycosaminoglycan (GAG) chains of proteoglycans (PGs) is an early event of osteoarthritis (OA) resulting in cartilage degradation that has been previously demonstrated in both huma and experimental OA models. However, the mechanism of GAG loss and the role of xylosyltransferase-I (XT-I) that initiates GAG biosynthesis onto PG molecules in the pathogenic process of human OA are unknown. In this study, we have characterized XT-I expression and activity together with GAG synthesis in human OA cartilage obtained from different regions of the same joint, defined as "normal", "late-stage" or adjacent to "late-stage". The results showed that GAG synthesis and content increased in cartilage from areas flanking OA lesions compared to cartilage from macroscopically "normal" unaffected regions, while decreased in "late-stage" OA cartilage lesions. This increase in anabolic state was associated with a marked upregulation of XT-I expression and activity in cartilage "next to lesion" while a decrease in the "late-stage" OA cartilage. Importantly, XT-I inhibition by shRNA or forced-expression with a pCMV-XT-I construct correlated with the modulation of GAG anabolism in human cartilage explants. The observation that XT-I gene expression was down-regulated by IL-1β and up-regulated by TGF-β1 indicates that these cytokines may play a role in regulating GAG content in human OA. Noteworthy, expression of IL-1β receptor (IL-1R1) was down-regulated whereas that of TGF-β1 was up-regulated in early OA cartilage. Theses observations may account for upregulation of XT-I and sustained GAG synthesis prior to the development of cartilage lesions during the pathogenic process of OA.

  6. The effect of human milk on DNA synthesis of neonatal rat hepatocytes in primary culture.

    Science.gov (United States)

    Kohno, Y; Shiraki, K; Mura, T

    1991-03-01

    We studied the effect of human milk on DNA synthesis of neonatal hepatocytes to elucidate the physiologic role of human milk in growth of the liver. Neonatal hepatocytes were isolated from 5-d-old rats and cultured in serum-free medium. Human milk stimulated DNA synthesis of these hepatocytes in a concentration-dependent manner. The stimulatory activity of 7.5% (vol/vol) human milk plus 0.1 mumol/L insulin was five times that of control and was almost the same as that of 20 micrograms/L human epidermal growth factor (hEGF) plus insulin. The effect of human milk was additive with treatment with hEGF and insulin. The milk associated with prolonged jaundice of infants was significantly more active than the milk that was not associated with jaundice, although the concentration of hEGF was not different between the two types of milk. The mitogenic activity of milk was heat-labile, inactivated by DTT and stable after treatment with trypsin. Three peaks of the activity were detected in milk by gel filtration and the fraction containing proteins of molecular weight between 36,000 and 76,000 showed the highest activity. Anti-hEGF antibody did not inhibit this activity completely. These results suggested the presence of mitogens other than hEGF or a more active form of hEGF in human milk. The milk associated with breast-milk jaundice exerts a different influence on cell growth and may affect maturation of the liver function related to bilirubin metabolism. The mitogenic activity of milk might be important for growth and development of the liver in infants.

  7. Reverse cholesterol transport: From classical view to new insights

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde

    2010-01-01

    Cholesterol is of vital importance for the human body. It is a constituent for most biological membranes, it is needed for the formation of bile salts, and it is the pre- cursor for steroid hormones and vitamin D. However, the presence of excess cholesterol in cells, and in particular in macrophages in the arterial vessel wall, might be harmful. The accumulation of cholesterol in arteries can lead to atherosclerosis, and in turn, to other cardiovascular diseases. The route that is primarily thought to be re...

  8. Hepatic HNF4α Is Essential for Maintaining Triglyceride and Cholesterol Homeostasis

    Science.gov (United States)

    Yin, Liya; Ma, Huiyan; Ge, Xuemei; Edwards, Peter A.; Zhang, Yanqiao

    2010-01-01

    Objective Loss-of-function mutations in human hepatocyte nuclear factor 4α (HNF4α) are associated with maturity-onset diabetes of the young and lipid disorders. However, the mechanisms underlying the lipid disorders are poorly understood. In this report, we determined the effect of acute loss or augmentation of hepatic HNF4α function on lipid homeostasis. Methods and Results We generated adenovirus expressing LacZ (Ad-shLacZ) or small hairpin RNA of Hnf4α (Ad-shHnf4α). Tail vain injection of C57BL/6J mice with Ad-shHnf4α reduced hepatic Hnf4α expression and resulted in striking phenotypes including the development of fatty liver and a >80% decrease in plasma levels of triglycerides, total cholesterol and HDL-C. These latter changes were associated with reduced hepatic lipogenesis and impaired VLDL secretion. Deficiency in hepatic Hnf4α did not affect intestinal cholesterol absorption despite decreased expression of genes involved in bile acid synthesis. Consistent with the loss-of-function data, over-expression of Hnf4α induced numerous genes involved in lipid metabolism in isolated primary hepatocytes. Interestingly, many of these HNF4α-regulated genes were not induced in wild-type mice that over-expressed hepatic Hnf4α. Due to selective gene regulation, mice over-expressing hepatic Hnf4α had unchanged plasma triglyceride levels and decreased plasma cholesterol levels. Conclusions Loss of hepatic HNF4α results in severe lipid disorder as a result of dysregulation of multiple genes involved in lipid metabolism. In contrast, augmentation of hepatic HNF4α activity lowers plasma cholesterol levels but has no effect on plasma triglyceride levels due to selective gene regulation. Our data indicate that hepatic HNF4α is essential for controlling the basal expression of numerous genes involved in lipid metabolism and is indispensable for maintaining normal lipid homeostasis. PMID:21071704

  9. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    Science.gov (United States)

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis.

  10. HDL Cholesterol Efflux Capacity: Cardiovascular Risk Factor and Potential Therapeutic Target.

    Science.gov (United States)

    Bhatt, Anish; Rohatgi, Anand

    2016-01-01

    Low high-density lipoprotein cholesterol (HDL-C) levels are associated with incident cardiovascular events; however, many therapies targeting increases in HDL-C have failed to show consistent clinical benefit. Thus, focus has recently shifted toward measuring high-density lipoprotein (HDL) function. HDL is the key mediator of reverse cholesterol transport, the process of cholesterol extraction from foam cells, and eventual excretion into the biliary system. Cholesterol efflux from peripheral macrophages to HDL particles has been associated with atherosclerosis in both animals and humans. We review the mechanism of cholesterol efflux and the emerging evidence on the association between cholesterol efflux capacity and cardiovascular disease in human studies. We also focus on the completed and ongoing trials of novel therapies targeting different aspects of HDL cholesterol efflux.

  11. HDL (Good), LDL (Bad) Cholesterol and Triglycerides

    Science.gov (United States)

    ... Thromboembolism Aortic Aneurysm More HDL (Good), LDL (Bad) Cholesterol and Triglycerides Updated:Jul 5,2017 Cholesterol isn’t just ... Your Cholesterol Score Explained What Are High Blood Cholesterol and Triglycerides? How Can I Improve My Cholesterol? | Spanish What ...

  12. What Do My Cholesterol Levels Mean?

    Science.gov (United States)

    ... results: total cholesterol, LDL (“bad”) and HDL (“good”) cholesterol, and triglycerides (blood fats). What should my total cholesterol level ... I Improve My Cholesterol? What Are High Blood Cholesterol and Triglycerides? What Is High Blood Pressure? How Can I ...

  13. Prevention and Treatment of High Cholesterol (Hyperlipidemia)

    Science.gov (United States)

    ... too many lipids (fats) in it, i.e., cholesterol and triglycerides. In hypercholesterolemia, there’s too much LDL (bad) cholesterol ... Your Cholesterol Score Explained What Are High Blood Cholesterol and Triglycerides? How Can I Improve My Cholesterol? | Spanish What ...

  14. Role of cholesterol 7alpha-hydroxylase (CYP7A1) in nutrigenetics and pharmacogenetics of cholesterol lowering.

    Science.gov (United States)

    Hubacek, Jaroslav A; Bobkova, Dagmar

    2006-01-01

    The relationship between dietary composition/cholesterol-lowering therapy and final plasma lipid levels is to some extent genetically determined. It is clear that these responses are under polygenic control, with multiple variants in many genes participating in the total effect (and with each gene contributing a relatively small effect). Using different experimental approaches, several candidate genes have been analyzed to date.Interesting and consistent results have been published recently regarding the A-204C promoter variant in the cholesterol 7alpha-hydroxylase (CYP7A1) gene. CYP7A1 is a rate-limiting enzyme in bile acid synthesis and therefore plays an important role in maintaining cholesterol homeostasis. CYP7A1-204CC homozygotes have the greatest decrease in total cholesterol level in response to dietary changes in different types of dietary intervention studies. In contrast, one study has reported that the effect of statins in lowering low-density lipoprotein (LDL)-cholesterol levels was slightly greater in -204AA homozygotes. The CYP7A1 A-204C variant accounts for a significant proportion of the genetic predisposition of the response of plasma cholesterol levels.

  15. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells.

    Science.gov (United States)

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-09-09

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD.

  16. HDL cholesterol: atherosclerosis and beyond

    NARCIS (Netherlands)

    Bochem, A.E.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western world. Myocardial infarction and stroke are the result of a compromised blood flow which may result from cholesterol accumulation in the vessel wall due to high plasma levels of LDL cholesterol. High plasma levels of HDL

  17. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Nyffenegger, Christian; Mikkelsen, Jørn Dalgaard;

    2016-01-01

    T; Gal-β(1,4)-GlcNAc-β(1,3)-Gal-β(1,4)-Glc). In order to reduce reaction times and be able to work at temperatures, which are less welcoming to microbial growth, the current study investigates the possibility of using thermostable β-galactosidases for synthesis of LNnT and N-acetyllactosamine (Lac......NAc, resulting in 5-6 times higher reaction yields and significantly shorter reaction times.......Human milk oligosaccharides (HMOs) designate a unique family of bioactive lactose-based molecules present in human breast milk. Using lactose as a cheap donor, some β-galactosidases (EC 3.2.1.23) can catalyze transgalactosylation to form the human milk oligosaccharide lacto- N-neotetraose (LNn...

  18. The response of the prostate to circulating cholesterol: activating transcription factor 3 (ATF3 as a prominent node in a cholesterol-sensing network.

    Directory of Open Access Journals (Sweden)

    Jayoung Kim

    Full Text Available Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1 ventral prostate from male mice with chronically elevated circulating cholesterol and (2 human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.

  19. Cholesterol and hematopoietic stem cells: inflammatory mediators of atherosclerosis.

    Science.gov (United States)

    Lang, Jennifer K; Cimato, Thomas R

    2014-05-01

    Atherosclerosis causing heart attack and stroke is the leading cause of death in the modern world. Therapy for end-stage atherosclerotic disease using CD34(+) hematopoietic cells has shown promise in human clinical trials, and the in vivo function of hematopoietic and progenitor cells in atherogenesis is becoming apparent. Inflammation plays a central role in the pathogenesis of atherosclerosis. Cholesterol is a modifiable risk factor in atherosclerosis, but in many patients cholesterol levels are only mildly elevated. Those with high cholesterol levels often have elevated circulating monocyte and neutrophil counts. How cholesterol affects inflammatory cell levels was not well understood. Recent findings have provided new insight into the interaction among hematopoietic stem cells, cholesterol, and atherosclerosis. In mice, high cholesterol levels or inactivation of cholesterol efflux transporters have multiple effects on hematopoietic stem cells (HSPCs), including promoting their mobilization into the bloodstream, increasing proliferation, and differentiating HSPCs to the inflammatory monocytes and neutrophils that participate in atherosclerosis. Increased levels of interleukin-23 (IL-23) stimulate IL-17 production, resulting in granulocyte colony-stimulating factor (G-CSF) secretion, which subsequently leads to HSPC release into the bloodstream. Collectively, these findings clearly link elevated cholesterol levels to increased circulating HSPC levels and differentiation to inflammatory cells that participate in atherosclerosis. Seminal questions remain to be answered to understand how cholesterol affects HSPC-mobilizing cytokines and the role they play in atherosclerosis. Translation of findings in animal models to human subjects may include HSPCs as new targets for therapy to prevent or regress atherosclerosis in patients.

  20. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones

    Directory of Open Access Journals (Sweden)

    Azhar Salman

    2010-06-01

    Full Text Available Abstract Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1 de novo synthesis in the endoplasmic reticulum (ER; 2 the mobilization of cholesteryl esters (CEs stored in lipid droplets through cholesteryl ester hydrolase; 3 plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4 in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A is localized and where the conversion of cholesterol to

  1. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Hansen, Mette; Boesen, A; Holm, L

    2012-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing......, but the effect of local IGF-I administration on tendon collagen synthesis in human has not been studied. The purpose of this study was to study whether local injections of IGF-I would have a stimulating effect on tendon collagen synthesis. Twelve healthy nonsmoking men [age 62 ± 1 years (mean ± SEM), BMI 27 ± 1......] participated. Two injections of either human recombinant IGF-I (0.1 mL Increlex©) or saline (control) into each patellar tendon were performed 24-h apart, respectively. Tendon collagen fractional synthesis rate (FSR) was measured by stable isotope technique in the hours after the second injection...

  2. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  3. Cholesterol acceptor capacity is preserved by different mechanisms in preterm and term fetuses.

    Science.gov (United States)

    Pecks, Ulrich; Mohaupt, Markus G; Hütten, Matthias C; Maass, Nicolai; Rath, Werner; Escher, Geneviève

    2014-02-01

    Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

  4. How cholesterol interacts with proteins and lipids during its intracellular transport.

    Science.gov (United States)

    Wüstner, Daniel; Solanko, Katarzyna

    2015-09-01

    Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions. Similarly, membrane lipids and their physico-chemical properties directly affect cholesterol partitioning and thereby contribute to the highly heterogeneous intracellular cholesterol distribution. Movement of cholesterol in cells is mediated by vesicle trafficking along the endocytic and secretory pathways as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics in membranes and explain how such models are related to sterol flux between organelles. An overview of various sterol-transfer proteins is given, and the physico-chemical principles of their function in non-vesicular sterol transport are explained. We also discuss selected experimental approaches for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how specific protein-lipid and protein-protein interactions help overcoming the extremely low water solubility of cholesterol, thereby controlling intracellular cholesterol movement. This article is part of a Special Issue entitled: Lipid-protein interactions.

  5. Effects of beta interferon on human fibroblasts at different population doubling levels. Proliferation, cell volume, thymidine uptake, and DNA synthesis

    OpenAIRE

    1984-01-01

    Cellular aging had no effect on the ability of beta interferon to increase cell volume and population doubling time in 76-109 cells, a line of human skin fibroblasts. However, DNA synthesis in cells at high population doubling levels (PDL 55-70) was inhibited after 72 h of beta interferon treatment (1,000 U/ml) while no inhibition of DNA synthesis was observed in cells at middle population doubling levels (PDL 30-40).

  6. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Olesen, Jens L

    2003-01-01

    Mechanical loading of tissue is known to influence local collagen synthesis, and microdialysis studies indicate that mechanical loading of human tendon during exercise elevates tendinous type I collagen production. Transforming growth factor-beta1 (TGF-beta1), a potent stimulator of type I collag...... to exercise, suggest a role for TGF-beta1 in mechanical regulation of local collagen type I synthesis in tendon-related connective tissue in vivo....

  7. Top Five Lifestyle Changes to Reduce Cholesterol

    Science.gov (United States)

    Top 5 lifestyle changes to improve your cholesterol Lifestyle changes can help reduce cholesterol, keep you off cholesterol-lowering medications or enhance the effect of your medications. Here are five lifestyle ...

  8. Understand Your Risk for High Cholesterol

    Science.gov (United States)

    ... Aortic Aneurysm More Understand Your Risk for High Cholesterol Updated:Apr 1,2016 LDL (bad) cholesterol is ... content was last reviewed on 04/21/2014. Cholesterol Guidelines: Putting the pieces together Myth vs. Truth – ...

  9. Estimations of cholesterol, triglycerides and fractionation of ...

    African Journals Online (AJOL)

    Estimations of cholesterol, triglycerides and fractionation of lipoproteins in serum samples of some Nigerian female subjects. ... low density lipoprotein-cholesterol (LDL-C) and very low density lipoprotein-cholesterol (VLDL-C) ... Article Metrics.

  10. Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis.

    Science.gov (United States)

    Chatzidaki-Livanis, Maria; Weinacht, Katja G; Comstock, Laurie E

    2010-06-29

    Bacteroides is an abundant genus of bacteria of the human intestinal microbiota. Bacteroides species synthesize a large number of capsular polysaccharides (PS), a biological property not shared with closely related oral species, suggesting importance for intestinal survival. Bacteroides fragilis, for example, synthesizes eight capsular polysaccharides per strain, each of which phase varies via inversion of the promoters located upstream of seven of the eight polysaccharide biosynthesis operons. In a single cell, many of these polysaccharide loci promoters can be simultaneously oriented on for transcription of the downstream biosynthesis operons. Here, we demonstrate that despite the promoter orientations, concomitant transcription of multiple polysaccharide loci within a cell is inhibited. The proteins encoded by the second gene of each of these eight loci, collectively designated the UpxZ proteins, inhibit the synthesis of heterologous polysaccharides. These unique proteins interfere with the ability of UpxY proteins encoded by other polysaccharide loci to function in transcriptional antitermination of their respective operon. The eight UpxZs have different inhibitory spectra, thus establishing a hierarchical regulatory network for polysaccharide synthesis. Limitation of concurrent polysaccharide synthesis strongly suggests that these bacteria evolved this property as an evasion-type mechanism to avoid killing by polysaccharide-targeting factors in the ecosystem.

  11. Helium-neon laser irradiation enhances DNA synthesis in a human neuroblastoma cell line

    Science.gov (United States)

    Condon, Michael R.; Gump, Frank; Wu, Wen-hsien

    1993-07-01

    To gain further insight into the mechanism of cell photostimulation by laser light ((lambda) equals 632.8 nm), DNA synthesis was measured in the human neuroblastoma cell line BE(2)-C. Cells were irradiated at high density to establish the characteristics of cellular energy into S- phase in response to laser stimulation. BE(2)-C cells after release from a quiescent, growth arrested state exhibited increased incorporation of isotope 12 hours after replating at subconfluent density in the presence of 2.5% fetal bovine serum (FBS) and [3H] thymidine. In contrast, cells replated under the same conditions, but stimulated with 15% FBS exhibited a time lag of approximately 16 hours in apparent DNA synthesis. These results were not corroborated by flow cytometry. Laser irradiation did not affect the fraction of cells entering S-phase. It therefore appears that the stimulatory effect of He-Ne laser irradiation on BE(2)-C cells is to enhance DNA synthesis while not altering the G1-S transition rate.

  12. Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis.

    Science.gov (United States)

    Schweiger, M; Hennig, K; Lerner, F; Niere, M; Hirsch-Kauffmann, M; Specht, T; Weise, C; Oei, S L; Ziegler, M

    2001-03-09

    Nicotinamide mononucleotide adenylyl transferase (NMNAT) is an essential enzyme in all organisms, because it catalyzes a key step of NAD synthesis. However, little is known about the structure and regulation of this enzyme. In this study we established the primary structure of human NMNAT. The human sequence represents the first report of the primary structure of this enzyme for an organism higher than yeast. The enzyme was purified from human placenta and internal peptide sequences determined. Analysis of human DNA sequence data then permitted the cloning of a cDNA encoding this enzyme. Recombinant NMNAT exhibited catalytic properties similar to the originally purified enzyme. Human NMNAT (molecular weight 31932) consists of 279 amino acids and exhibits substantial structural differences to the enzymes from lower organisms. A putative nuclear localization signal was confirmed by immunofluorescence studies. NMNAT strongly inhibited recombinant human poly(ADP-ribose) polymerase 1, however, NMNAT was not modified by poly(ADP-ribose). NMNAT appears to be a substrate of nuclear kinases and contains at least three potential phosphorylation sites. Endogenous and recombinant NMNAT were phosphorylated in nuclear extracts in the presence of [gamma-(32)P]ATP. We propose that NMNAT's activity or interaction with nuclear proteins are likely to be modulated by phosphorylation.

  13. Cholesterol Metabolism and Weight Reduction in Subjects with Mild Obstructive Sleep Apnoea: A Randomised, Controlled Study

    Directory of Open Access Journals (Sweden)

    Maarit Hallikainen

    2013-01-01

    Full Text Available To evaluate whether parameters of obstructive sleep apnoea (OSA associate with cholesterol metabolism before and after weight reduction, 42 middle-aged overweight subjects with mild OSA were randomised to intensive lifestyle intervention (N=23 or to control group (N=18 with routine lifestyle counselling only. Cholesterol metabolism was evaluated with serum noncholesterol sterol ratios to cholesterol, surrogate markers of cholesterol absorption (cholestanol and plant sterols and synthesis (cholestenol, desmosterol, and lathosterol at baseline and after 1-year intervention. At baseline, arterial oxygen saturation (SaO2 was associated with serum campesterol (P<0.05 and inversely with desmosterol ratios (P<0.001 independently of gender, BMI, and homeostasis model assessment index of insulin resistance (HOMA-IR. Apnoea-hypopnoea index (AHI was not associated with cholesterol metabolism. Weight reduction significantly increased SaO2and serum cholestanol and decreased AHI and serum cholestenol ratios. In the groups combined, the changes in AHI were inversely associated with changes of cholestanol and positively with cholestenol ratios independent of gender and the changes of BMI and HOMA-IR (P<0.05. In conclusion, mild OSA seemed to be associated with cholesterol metabolism independent of BMI and HOMA-IR. Weight reduction increased the markers of cholesterol absorption and decreased those of cholesterol synthesis in the overweight subjects with mild OSA.

  14. Inhibition of Cholesterol Esterification Influences Cytokine Exspression in Lypopolisaccharide-activated P388D1 Macrophages

    Directory of Open Access Journals (Sweden)

    Rosa Rita Bonatesta

    2007-01-01

    Full Text Available Several in vivo and in vitro studies have demonstrated the involvement of infectious agents in the development of atherosclerosis. However, the mechanisms by which micro-organisms induce and/or aggravate atherosclerosis, are so far unclear. Accumulation of cholesterol esters and lipid laden cell formation are hallmark of the atherogenesis, however, the possible relationship between cholesterol esterification and the signal-transducing component of LPS recognition complex inducing cytokine secretion has not been yet investigated. In the present study, we investigated the effect of mevinolin, the ACAT inhibitor, Sandoz 58035, and plasma from statin-treated hypercholesterolemic patients on cholesterol metabolism and cytokine expression in LPS activated P388D1 macrophages. In P388D1 macrophages cholesterol synthesis and uptake, as well as cholesterol ester synthesis, were unchanged following LPS-activation. When cells were grown in presence of serum from patients under statin therapy, cholesterol esterification was lower compared to cells grown with plasma from healthy subjects, independently from the type of statin used. This effect was accompanied by inhibition of IL-1β expression in LPS activated cells. The ACAT inhibitor, Sandoz 58035, which completely blocked cholesterol esterification in normal and LPS-activated macrophages, prevented IL-1β and IL-6 over-expression in LPS activated cells. Although preliminary, these data point to a possible relationship between cholesterol esterification and cytokine production in macrophages, prospecting new possible mechanisms by which microbial or inflammatory agents may induce and/or accelerate the atherosclerotic process.

  15. Cyclosporin A Decreases Human Macrophage Interleukin-6 Synthesis at Post-Transcriptional Level

    Directory of Open Access Journals (Sweden)

    Juan E. Losa García

    1999-01-01

    Full Text Available In addition to its well-established effect on T cells, cyclosporin A (CsA also inhibits inflammatory cytokine production by macrophages. However, little is known about the mechanism of action of CsA on macrophage cytokine production. We measured the effect of CsA on basal and phorbol-myristate-acetate (PMA-stimulated production of interleukin-6 using the human monocyte cell line U937 differentiated with dimethylsulfoxide (DMSO. Interleukin-6 levels were measured in supernatant and cell lysates using specific enzyme-linked immunosorbent assays. We found that CsA decreases not only IL-6 release but also cytokine synthesis. The concentration of CsA used did not affect either cell viability or proliferation. Three possibilities may be advanced to explain the CsA-due decrease in IL-6 production by macrophages: (a inhibition of the synthesis of an early common regulatory protein, (b inhibition of cytokine gene transcription, or (c modulation of post-transcriptional events. The first possibility was tested by measuring the effect of cycloheximide on the experimental system during the first 3 hours of culture. Although cycloheximide decreased total cytokine synthesis, the pattern of cytokine modulation by CsA persisted. These data suggest that CsA-mediated macrophage cytokine inhibition is not mediated by an early common regulatory protein. To further explore the inhibition mechanism, we measured IL-6 mRNA levels by Northern blot. IL-6 mRNA levels were unaffected by CsA both in resting and PMA-stimulated cells. We conclude that in human macrophages CsA diminishes IL-6 production at post-transcriptional level.

  16. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome.

    Science.gov (United States)

    Baranovskiy, Andrey G; Babayeva, Nigar D; Zhang, Yinbo; Gu, Jianyou; Suwa, Yoshiaki; Pavlov, Youri I; Tahirov, Tahir H

    2016-05-06

    The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.

  17. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    Directory of Open Access Journals (Sweden)

    Stefan Kippenberger

    Full Text Available Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids.

  18. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    Science.gov (United States)

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids.

  19. Alternative to decrease cholesterol in sheep milk cheeses.

    Science.gov (United States)

    Gómez-Cortés, P; Viturro, E; Juárez, M; de la Fuente, M A

    2015-12-01

    The presence of cholesterol in foods is of nutritional interest because high levels of this molecule in human plasma are associated with an increasing risk of cardiovascular disease and nowadays consumers are demanding healthier products. The goal of this experiment was to diminish the cholesterol content of Manchego, the most popular Spanish cheese manufactured from ewes milk. For this purpose three bulk milks coming from dairy ewe fed with 0 (Control), 3 and 6% of linseed supplement on their diet were used. Nine cheeses (3 per bulk milk) were manufactured and ripened for 3 months. Cholesterol of ewes milk cheese from 6% to 12% linseed supplemented diets decreased by 9.6% and 16.1% respectively, therefore supplying a healthier profile. In a second experiment, different sources of unsaturated fatty acids (rich in oleic, linoleic and α-linolenic acids) were supplemented to dairy ewes and no significant differences were found on cheese cholesterol levels.

  20. Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells

    Science.gov (United States)

    Mazumder, B.; Mukhopadhyay, C. K.; Prok, A.; Cathcart, M. K.; Fox, P. L.

    1997-01-01

    Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.

  1. Stanol esters attenuate the aggravating effect of dietary cholesterol on atherosclerosis in homozygous Watanabe rabbits

    DEFF Research Database (Denmark)

    Schrøder, Malene; Husche, Constanze; Pilegaard, Kirsten

    2009-01-01

    Plant stanols are marketed as natural means to lower blood cholesterol in humans; hence the effect on combined familial hyperlipidemia is not known. The objective was to investigate the effect of stanol esters on blood lipids and aortic atherosclerosis in homozygous WHHL rabbits challenged...... with dietary cholesterol. A total of 36 rabbits, 6 weeks of age, with initial plasma cholesterol of 22.5 mmol/L were assigned to two treatment groups fed a standard rabbit chow with 1 g/kg cholesterol or this diet added 34 g/kg stanol ester, respectively, for 16 weeks. Plasma cholesterol was measured initially...... and at termination, also in lipoproteins. Aortic atherosclerosis was evaluated as cholesterol content and area covered by plaque. Plasma cholesterol was not significantly different between the groups at termination (35.7 mmol/L vs. 35.5 mmol/L). A significant increase in LDL was seen (13.1 mmol/L vs. 16.5 mmol...

  2. Octopus Manganese Porphyrin with Polyglycol Chains as a Catalyst for the β-Selective Epoxidation of Cholesterol Derivatives

    Institute of Scientific and Technical Information of China (English)

    Run Hua LI; Yuan Cong ZHAO; Jiang WU; Jing Song YOU; Xiao Qi YU

    2004-01-01

    Synthesis of a novel octopus porphyrin with polyglycol chains 1a was achieved.The catalytic activity of 1a's manganese complex for the epoxidation of cholesterol derivatives with PhIO give a satisfactory conversion and regioselectivity.

  3. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    Science.gov (United States)

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  4. Cholesterol granuloma associated with otitis media and leptomeningitis in a cat due to a Streptococcus canis infection.

    Science.gov (United States)

    Van der Heyden, Sara; Butaye, Patrick; Roels, Stefan

    2013-01-01

    Cholesterol granuloma in the middle ear is a pathological condition often associated with otitis media in humans. Cholesterol granulomas in cats are rarely described. To our knowledge, this is the first report of middle ear cholesterol granuloma in a cat, associated with otitis media and leptomeningitis due to a Streptococcus canis septicemia.

  5. Cholesterol granuloma associated with otitis media and leptomeningitis in a cat due to a Streptococcus canis infection

    OpenAIRE

    Van der Heyden, Sara; Butaye, Patrick; Roels, Stefan

    2013-01-01

    Cholesterol granuloma in the middle ear is a pathological condition often associated with otitis media in humans. Cholesterol granulomas in cats are rarely described. To our knowledge, this is the first report of middle ear cholesterol granuloma in a cat, associated with otitis media and leptomeningitis due to a Streptococcus canis septicemia.

  6. Americans' Cholesterol Levels Keep Falling

    Science.gov (United States)

    ... and 2013-2014, the CDC reported. Dr. David Friedman is chief of heart failure services at Long ... for cholesterol treatment, all seem to be working," Friedman said. The study was published online Nov. 30 ...

  7. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1.

    Science.gov (United States)

    Wudiri, George A; Nicola, Anthony V

    2017-07-15

    Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24(-/-) fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSV(des)) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSV(chol) and HSV(des) were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24(-/-) fibroblasts released ∼1 log less infectious HSV(des) and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSV(chol)) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle.IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the

  8. Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages.

    Science.gov (United States)

    Rinne, Petteri; Rami, Martina; Nuutinen, Salla; Santovito, Donato; van der Vorst, Emiel P C; Guillamat-Prats, Raquel; Lyytikäinen, Leo-Pekka; Raitoharju, Emma; Oksala, Niku; Ring, Larisa; Cai, Minying; Hruby, Victor J; Lehtimäki, Terho; Weber, Christian; Steffens, Sabine

    2017-07-04

    The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse

  9. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies.

    Science.gov (United States)

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K

    2013-08-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol %. With spin-labeled cholesterol analogues, it was shown that the CBDs begin to form at ~50 mol % cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol % cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that the formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol % is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol % cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals.

  10. Cholesterol Worships a New Idol

    Institute of Scientific and Technical Information of China (English)

    Ira G. Schulman

    2009-01-01

    The growing worldwide epidemic of cardiovascular disease suggests that new therapeutic strategies are needed to complement statins in the lowering of cholesterol levels. In a recent paper in Science, Tontonoz and colleagues have identified Idol as a protein that can control cholesterol levels by regulating the stability of the low-density lipoprotein receptor; inhibiting the activity of Idol could provide novel approaches for the treatment of cardiovascular disease.

  11. A relation between high-density-lipoprotein cholesterol and bile cholesterol saturation.

    OpenAIRE

    Thornton, J R; Heaton, K W; Macfarlane, D.G.

    1981-01-01

    The association of cholesterol gall stones with coronary artery disease is controversial. To investigate this possible relation at the biochemical level, bile cholesterol saturation and the plasma concentrations of triglycerides, total cholesterol, and high-density-lipoprotein cholesterol (HDL cholesterol) were measured in 25 healthy, middle-aged women. Bile cholesterol saturation index was negatively correlated with HDL cholesterol. It was positively correlated with plasma triglycerides and ...

  12. Cholesterol and benign prostate disease.

    Science.gov (United States)

    Freeman, Michael R; Solomon, Keith R

    2011-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association between BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemia, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept.

  13. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages

    OpenAIRE

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacologi...

  14. Niacin to Boost Your HDL "Good" Cholesterol

    Science.gov (United States)

    Niacin can boost 'good' cholesterol Niacin is a B vitamin that may raise your HDL ("good") cholesterol. But side effects might outweigh benefits for most ... been used to increase high-density lipoprotein (HDL) cholesterol — the "good" cholesterol that helps remove low-density ...

  15. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase.

    Science.gov (United States)

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S

    2016-05-01

    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40°C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4°C.

  16. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    Science.gov (United States)

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  17. The usefulness of total cholesterol and high density lipoprotein ...

    African Journals Online (AJOL)

    The usefulness of total cholesterol and high density lipoprotein - cholesterol ratio in ... cholesterol and/or highdensity lipoprotein cholesterol/total cholesterol ratios in the interpretation of lipid profile result in clinical practice. ... Article Metrics.

  18. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  19. Glutamine and citrulline concentrations reflect nitric oxide synthesis in the human nervous system.

    Science.gov (United States)

    Pérez-Neri, I; Ramírez-Bermúdez, J; Ojeda-López, C; Montes, S; Soto-Hernández, J L; Ríos, C

    2017-08-31

    Although citrulline is produced by nitric oxide (NO) synthase upon activation of the NMDA glutamate receptor, nitrite and nitrate (NOx) concentration is considered the best marker of NO synthesis, as citrulline is also metabolised by other enzymes. This study analyses the correlation between human cerebrospinal fluid NOx and citrulline concentrations in order to determine the extent to which citrulline reflects NO synthesis and glutamatergic neurotransmission. Participants were patients with acute neurological diseases undergoing lumbar puncture (n=240). NOx and amino acid concentrations were determined by HPLC. NOx concentrations did not vary significantly where infection (p=0,110) or inflammation (p=0,349) were present. Multiple regression analysis showed that NOx concentration was correlated with glutamine (r=-0,319, p<0,001) and citrulline concentrations (r=0,293, p=0,005) but not with the citrulline/arginine ratio (r=-0,160, p=0,173). ANCOVA confirmed that NOx concentration was correlated with citrulline concentration (F=7,6, p=0,007) but not with the citrulline/arginine ratio (F=2,2, p=0,136), or presence of infection (F=1,8, p=0,173) or inf