WorldWideScience

Sample records for human cerebral malaria

  1. Malaria cerebral Cerebral malaria

    Directory of Open Access Journals (Sweden)

    Carlos Hugo Zapata Zapata

    2003-03-01

    Full Text Available La malaria Cerebral (MC es la complicación más frecuente de la malaria por P. falciparum; aproximadamente el 90% de las personas que la han padecido se recuperan completamente sin secuelas neurológicas. Aún no se conoce con claridad su patogénesis pero se han postulado cuatro hipótesis o mecanismos posibles: 1 citoadherencia y secuestro de glóbulos rojos parasitados en la microvasculatura cerebral; 2 formación de rosetas y aglutinación de glóbulos rojos parasitados; 3 producción de citoquinas y activación de segundos mensajeros y, 4 apertura de la barrera hematoencefálica. Sin embargo, queda un interrogante sin resolver aún: ¿qué proceso se lleva a cabo para que el parásito, desde el espacio microvascular, pueda interferir transitoriamente con la función cerebral? Recientemente se ha utilizado el precursor de la proteína b-Amiloide como un marcador de daño neuronal en MC; este precursor será de gran ayuda en futuras investigaciones realizadas en nuestro medio que aporten información para comprender la patogénesis de la MC. Is the most common complication of P. falciparum malaria; nearly 90% of people who have suffered CM can recover without neurological problems. Currently there are four hypotheses that explain pathogenesis of CM: cytoadherence and sequestering of parasitized red blood cells to cerebral capillaries; rosette formation and parasitized red blood cells agglutination; production of cytokines and activation of second messengers and opening of the blood-brain barrier. However the main question remains to be answered; how the host-parasite interaction in the vascular space interferes transiently with cerebral function? Recently, the beta amyloid precursor peptide has been employed as marker of neural injury in CM. It is expected that the beta amyloid precursor peptide will help to understand the pathogenesis of CM in complicated patients of endemic areas of Colombia.

  2. Proteomic Studies on Human and Experimental Cerebral Malaria

    KAUST Repository

    Moussa, Ehab

    2012-07-01

    Cerebral malaria (CM) is a severe neurological complication of malaria infection that results from interrelated pathologies. Despite extensive research efforts, the mechanism of the disease is not completely understood. Clinical studies, postmortem analysis, and animal models have been the main research arenas in CM. In this thesis, shotgun proteomics approach was used to further understand the pathology of human and experimental CM. The mechanism by which CM turns fatal is yet to be identified. A clinical proteomics study was conducted on pooled plasma samples from children with reversible or fatal CM from the Gambia. The results show that depletion of coagulation factors and increased levels of circulating proteasomes are associated with fatal pediatric CM. This data suggests that the ongoing coagulation during CM might be a disseminated intravascular coagulation state that eventually causes depletion of the coagulation factors leading to petechial hemorrhages. In addition, the mechanism(s) by which blood transfusion benefits CM in children was investigated. To that end, the concentration and multimerization pattern of von-willebrand factor, and the concentration of haptoglobin in the plasma of children with CM who received blood transfusions were measured. In addition to clinical studies, experimental cerebral malaria (ECM) in mice has been long used as a model for the disease. A shotgun proteomics workflow was optimized to identify the proteomic signature of the brain tissue of mice with ECM.Because of the utmost importance of membrane proteins in the pathology of the disease, sample fractionation and filter aided sample preparation were used to recover them. The proteomic signature of the brains of mice infected with P. berghei ANKA that developed neurological syndrome, mice infected with P. berghei NK56 that developed severe malaria but without neurological signs, and non-infected mice, were compared to identify CM specific proteins. Among the differentially

  3. Cerebral malaria: susceptibility weighted MRI

    Directory of Open Access Journals (Sweden)

    Vinit Baliyan

    2015-03-01

    Full Text Available Cerebral malaria is one of the fatal complications of Plasmodium falciparum infection. Pathogenesis involves cerebral microangiopathy related to microvascular plugging by infected red blood cells. Conventional imaging with MRI and CT do not reveal anything specific in case of cerebral malaria. Susceptibility weighted imaging, a recent advance in the MRI, is very sensitive to microbleeds related to microangiopathy. Histopathological studies in cerebral malaria have revealed microbleeds in brain parenchyma secondary to microangiopathy. Susceptibility weighted imaging, being exquisitely sensitive to microbleeds may provide additional information and improve the diagnostic accuracy of MRI in cerebral malaria.

  4. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria.

    Directory of Open Access Journals (Sweden)

    Lena Serghides

    2014-03-01

    Full Text Available Cerebral malaria (CM is associated with a high mortality rate, and long-term neurocognitive impairment in approximately one third of survivors. Adjunctive therapies that modify the pathophysiological processes involved in CM may improve outcome over anti-malarial therapy alone. PPARγ agonists have been reported to have immunomodulatory effects in a variety of disease models. Here we report that adjunctive therapy with PPARγ agonists improved survival and long-term neurocognitive outcomes in the Plasmodium berghei ANKA experimental model of CM. Compared to anti-malarial therapy alone, PPARγ adjunctive therapy administered to mice at the onset of CM signs, was associated with reduced endothelial activation, and enhanced expression of the anti-oxidant enzymes SOD-1 and catalase and the neurotrophic factors brain derived neurotrophic factor (BDNF and nerve growth factor (NGF in the brains of infected mice. Two months following infection, mice that were treated with anti-malarials alone demonstrated cognitive dysfunction, while mice that received PPARγ adjunctive therapy were completely protected from neurocognitive impairment and from PbA-infection induced brain atrophy. In humans with P. falciparum malaria, PPARγ therapy was associated with reduced endothelial activation and with induction of neuroprotective pathways, such as BDNF. These findings provide insight into mechanisms conferring improved survival and preventing neurocognitive injury in CM, and support the evaluation of PPARγ agonists in human CM.

  5. Somatosensory discrimination deficits following pediatric cerebral malaria.

    Science.gov (United States)

    Dugbartey, A T; Spellacy, F J; Dugbartey, M T

    1998-09-01

    Pathologic studies of central nervous system damage in human falciparum malaria indicate primary localization in the cerebral white matter. We report a sensory-perceptual investigation of 20 Ghanaian children with a recent history of cerebral malaria who were age-, gender-, and education-matched with 20 healthy control subjects. Somatosensory examinations failed to show any evidence of hemianesthesia, pseudohemianesthesia, or extinction to double simultaneous tactile stimulation. While unilateral upper limb testing revealed intact unimanual tactile roughness discrimination, bimanual tactile discrimination, however, was significantly impaired in the cerebral malaria group. A strong negative correlation (r = -0.72) between coma duration and the bimanual tactile roughness discrimination test was also found. An inefficiency in the integrity of callosal fibers appear to account for our findings, although alternative subcortical mechanisms known to be involved in information transfer across the cerebral hemispheres may be compromised as well.

  6. Recent Experiences with Severe and Cerebral Malaria

    African Journals Online (AJOL)

    1974-06-29

    Jun 29, 1974 ... Malaria admissions. Cerebral malaria ... Cerebral signs. Haemoglobin below 10 g/100 ml (not all tested). Enlarged tender liver or jaundice, or both ... articl~ by H. Smitskamp and F. H. Wolthuis entitled 'New concepts in treatment of malaria with malignant tertian cerebral involvement' which appeared in the ...

  7. Advances in the management of cerebral malaria in adults

    DEFF Research Database (Denmark)

    Mishra, Saroj K; Wiese, Lothar

    2009-01-01

    PURPOSE OF REVIEW: Cerebral malaria continues to be a substantial cause of death and disability worldwide. Although many studies deal with cerebral malaria in children, only very few pertain to adults. Presence of multiorgan failure makes the prognosis poor. Various mechanisms in the pathogenesis...... of cerebral malaria and the role of adjuvant therapy will be discussed. RECENT FINDINGS: Artemisinin-based therapies have improved antiparasitic treatment, but in-hospital mortality still remains high, as do neurological sequelae. Several recent studies have given new insights in the pathophysiology...... of cerebral malaria particularly the role of immune mechanisms in disease progression. Recent findings have identified several potential candidates for adjuvant neuroprotective treatment. Recombinant human erythropoietin has shown beneficial effect in experimental cerebral malaria and will soon enter...

  8. Gluconeogenesis and fasting in cerebral malaria

    NARCIS (Netherlands)

    van Thien, H.; Ackermans, M. T.; Weverling, G. J.; Dang Vinh, T.; Endert, E.; Kager, P. A.; Sauerwein, H. P.

    2004-01-01

    BACKGROUND: In healthy subjects after an overnight fast, glucose production is for approximately 50% derived from glycogenolysis. If the fast is prolonged, glucose production decreases due to a decline in glycogenolysis, while gluconeogenesis remains stable. In cerebral malaria, glucose production

  9. Retinopathy in severe malaria in Ghanaian children - overlap between fundus changes in cerebral and non-cerebral malaria

    DEFF Research Database (Denmark)

    Essuman, Vera A; Ntim-Amponsah, Christine T; Astrup, Birgitte S

    2010-01-01

    diagnostic tool. This study was designed to determine the diagnostic usefulness of retinopathy on ophthalmoscopy in severe malaria syndromes: Cerebral malaria (CM) and non-cerebral severe malaria (non-CM), i.e. malaria with respiratory distress (RD) and malaria with severe anaemia (SA), in Ghanaian children...

  10. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  11. Residual neurologic sequelae after childhood cerebral malaria

    NARCIS (Netherlands)

    van Hensbroek, M. B.; Palmer, A.; Jaffar, S.; Schneider, G.; Kwiatkowski, D.

    1997-01-01

    Cerebral malaria is an important cause of pediatric hospital admissions in the tropics. It commonly leads to neurologic sequelae, but the risk factors for this remain unclear and the long-term outcome unknown. The purpose of this study was to identify the common forms of neurologic sequelae that

  12. Magnetic Resonance Features of Cerebral Malaria

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P.; Sharma, R.; Kumar, S.; Kumar, U. (Dept. of Radiodiagnosis and Dept. of Medicine, All India Institute of Medical Sciences, New Delhi (India))

    2008-06-15

    Background: Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. Purpose: To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. Material and Methods: We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm2, and apparent diffusion coefficient (ADC) maps were obtained. Results: Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. Conclusion: MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients

  13. Magnetic Resonance Features of Cerebral Malaria

    International Nuclear Information System (INIS)

    Yadav, P.; Sharma, R.; Kumar, S.; Kumar, U.

    2008-01-01

    Background: Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. Purpose: To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. Material and Methods: We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm 2 , and apparent diffusion coefficient (ADC) maps were obtained. Results: Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. Conclusion: MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients

  14. Low plasma bicarbonate predicts poor outcome of cerebral malaria ...

    African Journals Online (AJOL)

    Malaria remains a major cause of morbidity and mortality in many sub Saharan countries and cerebral malaria is widely recognised as one of its most fatal forms. We studied the predictive value of routine biochemical laboratory indices in predicting the outcome of cerebral malaria in 50 Nigerian children ages 9 months to 6 ...

  15. Case report Malaria: A cerebral approach | Court | Continuing ...

    African Journals Online (AJOL)

    An increasing number of patients with severe complicated Plasmodium falciparum malaria are presenting to South African hospitals, having travelled through malariaendemic countries from Central and East Africa. This report concerns an immigrant from Pakistan who developed severe cerebral malaria.

  16. A quantitative brain map of experimental cerebral malaria pathology.

    Directory of Open Access Journals (Sweden)

    Patrick Strangward

    2017-03-01

    Full Text Available The murine model of experimental cerebral malaria (ECM has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM. However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.

  17. A quantitative brain map of experimental cerebral malaria pathology.

    Science.gov (United States)

    Strangward, Patrick; Haley, Michael J; Shaw, Tovah N; Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J Brian; Cruickshank, Sheena M; Craig, Alister G; Milner, Danny A; Allan, Stuart M; Couper, Kevin N

    2017-03-01

    The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.

  18. Ophthalmologic identification of cerebral malaria in adults

    Directory of Open Access Journals (Sweden)

    Pedrosa, Catarina Areias

    2015-11-01

    Full Text Available Objective: To report the clinical presentation of malarial retinopathy in an adult, emphasizing the importance of this diagnosis for the clinical suspicion and prognosis of cerebral malaria. Methods: A 39-year-old caucasian man presented with hemolytic anemia, thrombocytopenia, acidemia and acute renal failure, developing severe encephalopathy. The diagnosis of malaria was done and after systemic stabilization, the patient noticed a central scotoma in the left eye. Ophthalmological examination revealed retinal features of malarial retinopathy. Results: At one-month follow-up, the patient had improved his systemic condition and the left eye scotoma had disappeared. Visual acuity was 20/20 in both eyes and on examination almost all lesions had regressed. Conclusion: Malarial retinopathy is a diagnostic factor and a prognosis indicator of severe infection, usually with brain involvement. The knowledge of the ophthalmological features associated with severe malaria, which is more frequent in children but can also occur in adults, becomes imperative in order to reduce the risk of neurologic sequelae and associated mortality.

  19. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Julie Bachmann

    2014-04-01

    Full Text Available Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria.

  20. Lactate transport and receptor actions in cerebral malaria

    DEFF Research Database (Denmark)

    Mariga, Shelton T; Kolko, Miriam; Gjedde, Albert

    2014-01-01

    in order to identify therapeutic targets. Here, we argue that cerebral energy metabolic defects are probable etiological factors in CM pathogenesis, because malaria parasites consume large amounts of glucose metabolized mostly to lactate. Monocarboxylate transporters (MCTs) mediate facilitated transfer...

  1. Estimating sequestered parasite population dynamics in cerebral malaria

    NARCIS (Netherlands)

    Gravenor, M. B.; van Hensbroek, M. B.; Kwiatkowski, D.

    1998-01-01

    Clinical investigation of malaria is hampered by the lack of a method for estimating the number of parasites that are sequestered in the tissues, for it is these parasites that are thought to be crucial to the pathogenesis of life-threatening complications such as cerebral malaria. We present a

  2. Evoked potentials in pediatric cerebral malaria

    Directory of Open Access Journals (Sweden)

    Minal Bhanushali

    2011-12-01

    Full Text Available Cortical evoked potentials (EP provide localized data regarding brain function and may offer prognostic information and insights into the pathologic mechanisms of malariamediated cerebral injury. As part of a prospective cohort study, we obtained somatosensory evoked potentials (SSEPs and brainstem auditory EPs (AEPs within 24 hours of admission on 27 consecutive children admitted with cerebral malaria (CM. Children underwent follow-up for 12 months to determine if they had any long term neurologic sequelae. EPs were obtained in 27 pediatric CM admissions. Two children died. Among survivors followed an average of 514 days, 7/25 (28.0% had at least one adverse neurologic outcome. Only a single subject had absent cortical EPs on admission and this child had a good neurologic outcome. Among pediatric CM survivors, cortical EPs are generally intact and do not predict adverse neurologic outcomes. Further study is needed to determine if alterations in cortical EPs can be used to predict a fatal outcome in CM.

  3. Neuroimaging findings in children with retinopathy-confirmed cerebral malaria

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, Michael J. [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: mjp@rad.msu.edu; Birbeck, Gretchen L. [Michigan State University, International Neurologic and Psychiatric Epidemiology Program, 324 West Fee Hall, East Lansing, MI 48824 (United States)], E-mail: Gretchen.Birbeck@ht.msu.edu; DeMarco, J. Kevin [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: jkd@rad.msu.edu; Kampondeni, Sam D. [University of Malawi, Department of Radiology, Queen Elizabeth Central Hospital, Blantyre (Malawi)], E-mail: kamponde@msu.edu; Beare, Nicholas [St. Paul' s Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP (United Kingdom)], E-mail: nbeare@btinternet.com; Molyneux, Malcolm E. [Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine (Malawi); School of Tropical Medicine, University of Liverpool, Liverpool (United Kingdom)], E-mail: mmolyneux999@google.com; Taylor, Terrie E. [Michigan State University, College of Osteopathic Medicine, B309-B West Fee Hall, East Lansing, MI 48824 (United States); University of Malawi, College of Medicine, Blantyre Malaria Project, Blantyre (Malawi)], E-mail: taylort@msu.edu

    2010-04-15

    Purpose: To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. Materials and methods: In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Results: Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). Conclusions: The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease.

  4. Neuroimaging findings in children with retinopathy-confirmed cerebral malaria

    International Nuclear Information System (INIS)

    Potchen, Michael J.; Birbeck, Gretchen L.; DeMarco, J. Kevin; Kampondeni, Sam D.; Beare, Nicholas; Molyneux, Malcolm E.; Taylor, Terrie E.

    2010-01-01

    Purpose: To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. Materials and methods: In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Results: Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). Conclusions: The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease.

  5. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Directory of Open Access Journals (Sweden)

    Catherine Q Nie

    2009-04-01

    Full Text Available Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  6. Breaking down brain barrier breaches in cerebral malaria

    DEFF Research Database (Denmark)

    Petersen, Jens E V; Lavstsen, Thomas; Craig, Alister

    2016-01-01

    Recent findings have linked brain swelling to death in cerebral malaria (CM). These observations have prompted a number of investigations into the mechanisms of this pathology with the goal of identifying potential therapeutic targets. In this issue of the JCI, Gallego-Delgado and colleagues...

  7. Severe anaemia in childhood cerebral malaria is associated with ...

    African Journals Online (AJOL)

    Background: Severe anaemia in children with cerebral malaria has been associated with respiratory distress secondary to lactic acidosis and/or hypoxia. The ensuing metabolic derangement may further depress the level of consciousness culminating in presentation with profound coma. This association has poorly been ...

  8. Neurological sequelae in survivors of cerebral malaria | Oluwayemi ...

    African Journals Online (AJOL)

    Introduction: Cerebral malaria is a common cause of neurological sequelae and death in childhood. Information on persistent neurological sequelae post hospital discharge and their predisposing factors are scarce. Methods: This is a prospective study describing persisting neurological impairments post discharge among ...

  9. The systemic pathology of cerebral malaria in African children

    Directory of Open Access Journals (Sweden)

    Danny Arnold Milner

    2014-08-01

    Full Text Available Pediatric cerebral malaria carries a high mortality rate in sub-Saharan Africa. We present our systematic analysis of the descriptive and quantitative histopathology of all organs sampled from a series of 103 autopsies performed between 1996 and 2010 in Blantyre, Malawi on pediatric cerebral malaria patients and control patients (without coma, or without malaria infection who were clinically well characterized prior to death. We found brain swelling in all cerebral malaria patients and the majority of controls. The histopathology in patients with sequestration of parasites in the brain demonstrated two patterns: a the classic appearance (i.e., ring hemorrhages, dense sequestration, and extra-erythrocytic pigment which was associated with evidence of systemic activation of coagulation and b the sequestration only appearance associated with shorter duration of illness and higher total burden of parasites in all organs including the spleen. Sequestration of parasites was most intense in the gastrointestinal tract in all parasitemic patients (those with cerebral malarial and those without.

  10. Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral malaria from uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Tangpukdee Noppadon

    2009-12-01

    Full Text Available Abstract Background Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1 and angiopoietin-2 (ANG-2 are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG levels as biomarkers of disease severity in Plasmodium falciparum malaria. Methods The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87 and severe (non-cerebral malaria (SM; n = 36 from uncomplicated malaria (UM; n = 70. Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate. Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM, adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma. Results ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p Conclusions These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.

  11. Evidence from a natural experiment that malaria parasitemia is pathogenic in retinopathy-negative cerebral malaria.

    Science.gov (United States)

    Small, Dylan S; Taylor, Terrie E; Postels, Douglas G; Beare, Nicholas Av; Cheng, Jing; MacCormick, Ian Jc; Seydel, Karl B

    2017-06-07

    Cerebral malaria (CM) can be classified as retinopathy-positive or retinopathy-negative, based on the presence or absence of characteristic retinal features. While malaria parasites are considered central to the pathogenesis of retinopathy-positive CM, their contribution to retinopathy-negative CM is largely unknown. One theory is that malaria parasites are innocent bystanders in retinopathy-negative CM and the etiology of the coma is entirely non-malarial. Because hospitals in malaria-endemic areas often lack diagnostic facilities to identify non-malarial causes of coma, it has not been possible to evaluate the contribution of malaria infection to retinopathy-negative CM. To overcome this barrier, we studied a natural experiment involving genetically inherited traits, and find evidence that malaria parasitemia does contribute to the pathogenesis of retinopathy-negative CM. A lower bound for the fraction of retinopathy-negative CM that would be prevented if malaria parasitemia were to be eliminated is estimated to be 0.93 (95% confidence interval: 0.68, 1).

  12. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...

  13. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Brandi D Freeman

    2016-03-01

    Full Text Available Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.

  14. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Adabayeri, V; Goka, B Q

    1998-01-01

    -back regulation of TNF, stimulates bone-marrow function in vitro and counteracts anaemia in mice. We investigated the associations of these cytokines with malarial anaemia. METHODS: We enrolled 175 African children with malaria into two studies in 1995 and 1996. In the first study, children were classified...... as having severe anaemia (n=10), uncomplicated malaria (n=26), or cerebral anaemia (n=41). In the second study, patients were classified as having cerebral malaria (n=33) or being fully conscious (n=65), and the two groups were subdivided by measured haemoglobin as normal (>110 g/L), moderate anaemia (60...... anaemia was 270 pg/mL (95% CI 152-482) compared with 725 pg/mL (465-1129) in uncomplicated malaria and 966 pg/mL (612-1526) in cerebral malaria (pcerebral...

  15. Plasmodium vivax cerebral malaria complicated with venous sinus thrombosis in Colombia

    Institute of Scientific and Technical Information of China (English)

    Miguel A Pinzn; Juan C Pineda; Fernando Rosso; Masaru Shinchi; Fabio Bonilla-Abada

    2013-01-01

    Complicated malaria is usually due to Plasmodium falciparum. Nevertheless, Plasmodium vivax is infrequently related with life-threatening complications. Few cases have been reported of severe Plasmodium vivax infection, and most of them from Southeast Asia and India. We report the first case of cerebral malaria due to Plasmodium vivax in Latin America, complicated with sagittal sinus thrombosis and confirmed by a molecular method.

  16. Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Brenneis Christian

    2006-11-01

    Full Text Available Abstract Background The mechanisms leading to death and functional impairments due to cerebral malaria (CM are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM so far. The present study investigates the neuropathological features of murine CM by applying SEM. Methods C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. Results Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. Conclusion The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies.

  17. Pattern and predictors of neurological morbidities among childhood cerebral malaria survivors in central Sudan.

    Science.gov (United States)

    Mergani, Adil; Khamis, Ammar H; Fatih Hashim, E L; Gumma, Mohamed; Awadelseed, Bella; Elwali, Nasr Eldin M A; Haboor, Ali Babikir

    2015-09-01

    Cerebral malaria is considered a leading cause of neuro-disability in sub-Saharan Africa among children and about 25% of survivors have long-term neurological and cognitive deficits or epilepsy. Their development was reported to be associated with protracted seizures, deep and prolonged coma. The study was aimed to determine the discharge pattern and to identify potential and informative predictors of neurological sequelae at discharge, complicating childhood cerebral malaria in central Sudan. A cross-sectional prospective study was carried out during malaria transmission seasons from 2000 to 2004 in Wad Medani, Sinnar and Singa hospitals, central Sudan. Children suspected of having cerebral malaria were examined and diagnosed by a Pediatrician for clinical, laboratory findings and any neurological complications. Univariate and multiple regression model analysis were performed to evaluate the association of clinical and laboratory findings with occurrence of neurological complications using the SPSS. Out of 940 examined children, only 409 were diagnosed with cerebral malaria with a mean age of 6.1 ± 3.3 yr. The mortality rate associated with the study was 14.2% (58) and 18.2% (64) of survivors (351) had neurological sequelae. Abnormal posture, either decerebration or decortication, focal convulsion and coma duration of >48 h were significant predictors for surviving from cerebral malaria with a neurological sequelae in children from central Sudan by Univariate analysis. Multiple logistic regression model fitting these variables, revealed 39.6% sensitivity for prediction of childhood cerebral malaria survivors with neurological sequelae (R² = 0.396; p=0.001). Neurological sequelae are common due to childhood cerebral malaria in central Sudan. Their prediction at admission, clinical presentation and laboratory findings may guide clinical intervention and proper management that may decrease morbidity and improve CM consequences.

  18. Clinical profile of cerebral malaria at a secondary care hospital

    Directory of Open Access Journals (Sweden)

    Jency Maria Koshy

    2014-01-01

    Full Text Available Introduction: Cerebral malaria (CM is one of the most common causes for non-traumatic encephalopathy in the world. It affects both the urban and rural population. It is a challenge to treat these patients in a resource limited setting; where majority of these cases present. Materials and Methods: This was a prospective study carried out from September 2005 to December 2006 at Jiwan Jyoti Christian Hospital in Eastern Uttar Pradesh in India. This is a secondary level care with limited resources. We studied the clinical profile, treatment and outcome of all the patients above the age of 14 years diagnosed with CM. Results: There were a total of 53 patients with CM of which 38 (71.7% of them were females. Among them, 35 (66% patients were less than 30 years of age. The clinical features noted were seizure (39.62%, anemia (84.9%, icterus (16.98%, hypotension (13.2%, bleeding (3.7%, hepatomegaly (5.66%, splenomegaly (5.66%, non-cardiogenic pulmonary edema (16.98% and renal dysfunction (37.36%. Co-infection with Plasmodium vivax was present in 13 (24.53% of them. Treatment received included artesunin compounds or quinine. Median time of defervescence was 2 (interquartile range1-3. Complete recovery was achieved in 43 (81% of them. Two (3.7% of them died. Conclusion: CM, once considered to be a fatal disease has shown remarkable improvement in the outcome with the wide availability of artesunin and quinine components. To combat the malaria burden, physicians in resource limited setting should be well trained to manage these patients especially in the endemic areas. The key to management is early diagnosis and initiation of treatment based on a high index of suspicion. Anticipation and early recognition of the various complications are crucial.

  19. Differences in gene transcriptomic pattern of Plasmodium falciparum in children with cerebral malaria and asymptomatic carriers

    DEFF Research Database (Denmark)

    Almelli, Talleh; Nuel, Grégory; Bischoff, Emmanuel

    2014-01-01

    . In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific...... up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between...... and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism...

  20. Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children

    Directory of Open Access Journals (Sweden)

    Tugumisirize Joshua

    2010-04-01

    Full Text Available Abstract Background Cerebral malaria is the most severe neurological complication of falciparum malaria and a leading cause of death and neuro-disability in sub-Saharan Africa. This study aimed to describe functional deficits and behaviour problems in children who survived cerebral malaria with severe neurological sequelae and identify patterns of brain injury. Findings Records of children attending a specialist child neurology clinic in Uganda with severe neurological sequelae following cerebral malaria between January 2007 and December 2008 were examined to describe deficits in gross motor function, speech, vision and hearing, behaviour problems or epilepsy. Deficits were classified according to the time of development and whether their distribution suggested a focal or generalized injury. Any resolution during the observation period was also documented. Thirty children with probable exposure to cerebral malaria attended the clinic. Referral information was inadequate to exclude other diagnoses in 7 children and these were excluded. In the remaining 23 patients, the commonest severe deficits were spastic motor weakness (14, loss of speech (14, hearing deficit (9, behaviour problems (11, epilepsy (12, blindness (12 and severe cognitive impairment (9. Behaviour problems included hyperactivity, impulsiveness and inattentiveness as in attention deficit hyperactivity disorder (ADHD and conduct disorders with aggressive, self injurious or destructive behaviour. Two patterns were observed; a immediate onset deficits present on discharge and b late onset deficits. Some deficits e.g. blindness, resolved within 6 months while others e.g. speech, showed little improvement over the 6-months follow-up. Conclusions In addition to previously described neurological and cognitive sequelae, severe behaviour problems may follow cerebral malaria in children. The observed differences in patterns of sequelae may be due to different pathogenic mechanisms, brain

  1. Differential microRNA expression in experimental cerebral and noncerebral malaria

    DEFF Research Database (Denmark)

    El-Assaad, Fatima; Hempel, Casper; Combes, Valéry

    2011-01-01

    berghei ANKA (PbA), which causes cerebral malaria (CM), or Plasmodium berghei K173 (PbK), which causes severe malaria but without cerebral complications, termed non-CM. The differential expression profiles of selected miRNAs (let-7i, miR-27a, miR-150, miR-126, miR-210, and miR-155) were analyzed in mouse...... acute malaria. To investigate the involvement of let-7i, miR-27a, and miR-150 in CM-resistant mice, we assessed the expression levels in gamma interferon knockout (IFN-¿(-/-)) mice on a C57BL/6 genetic background. The expression of let-7i, miR-27a, and miR-150 was unchanged in both wild-type (WT...... a regulatory role in the pathogenesis of severe malaria....

  2. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  3. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  4. Cytokine response during non-cerebral and cerebral malaria: evidence of a failure to control inflammation as a cause of death in African adults

    Directory of Open Access Journals (Sweden)

    Yakhya Dieye

    2016-05-01

    Full Text Available Background. With 214 million cases and 438,000 deaths in 2015, malaria remains one of the deadliest infectious diseases in tropical countries. Several species of the protozoan Plasmodium cause malaria. However, almost all the fatalities are due to Plasmodium falciparum, a species responsible for the severest cases including cerebral malaria. Immune response to Plasmodium falciparum infection is mediated by the production of pro-inflammatory cytokines, chemokines and growth factors whose actions are crucial for the control of the parasites. Following this response, the induction of anti-inflammatory immune mediators downregulates the inflammation thus preventing its adverse effects such as damages to various organs and death. Methods. We performed a retrospective, nonprobability sampling study using clinical data and sera samples from patients, mainly adults, suffering of non-cerebral or cerebral malaria in Dakar, Sénégal. Healthy individuals residing in the same area were included as controls. We measured the serum levels of 29 biomarkers including growth factors, chemokines, inflammatory and anti-inflammatory cytokines. Results. We found an induction of both pro- and anti-inflammatory immune mediators during malaria. The levels of pro-inflammatory biomarkers were higher in the cerebral malaria than in the non-cerebral malaria patients. In contrast, the concentrations of anti-inflammatory cytokines were comparable in these two groups or lower in CM patients. Additionally, four pro-inflammatory biomarkers were significantly increased in the deceased of cerebral malaria compared to the survivors. Regarding organ damage, kidney failure was significantly associated with death in adults suffering of cerebral malaria. Conclusions. Our results suggest that a poorly controlled inflammatory response determines a bad outcome in African adults suffering of cerebral malaria.

  5. Neurocognitive sequelae of cerebral malaria in adults: a pilot study in Benguela Central Hospital, Angola.

    Science.gov (United States)

    Peixoto, Bruno; Kalei, Isabel

    2013-07-01

    To characterize the neurocognitive sequelae of cerebral malaria (CM) in an adult sample of the city of Benguela, Angola. A neuropsychological assessment was carried out in 22 subjects with prior history of CM ranging from 6 to 12 months after the infection. The obtained results were compared to a control group with no previous history of cerebral malaria. The study was conducted in Benguela Central Hospital, Angola in 2011. CM group obtained lower results on the two last trials of a verbal learning task and on an abstract reasoning test. CM is associated to a slower verbal learning rate and to difficulties in the ability to discriminate and perceive relations between new elements.

  6. CNS hypoxia is more pronounced in murine cerebral than noncerebral malaria and is reversed by erythropoietin

    DEFF Research Database (Denmark)

    Hempel, Casper; Combes, Valery; Hunt, Nicholas Henry

    2011-01-01

    observed in mice without CM, and hypoxia seemed to be confined to neuronal cell somas. PARP-1-deficient mice were not protected against CM, which argues against a role for cytopathic hypoxia. Erythropoietin therapy reversed the development of CM and substantially reduced the degree of neural hypoxia......Cerebral malaria (CM) is associated with high mortality and risk of sequelae, and development of adjunct therapies is hampered by limited knowledge of its pathogenesis. To assess the role of cerebral hypoxia, we used two experimental models of CM, Plasmodium berghei ANKA in CBA and C57BL/6 mice....... These findings demonstrate cerebral hypoxia in malaria, strongly associated with cerebral dysfunction and a possible target for adjunctive therapy....

  7. Inhibition of endothelial activation: a new way to treat cerebral malaria?

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available BACKGROUND: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM, remains incompletely understood. However tumor necrosis factor (TNF is thought to play a key role in the development of this neurological syndrome, as well as lymphotoxin alpha (LT. METHODS AND FINDINGS: Using an in vitro model of CM based on human brain-derived endothelial cells (HBEC-5i, we demonstrate the anti-inflammatory effect of LMP-420, a 2-NH2-6-Cl-9-[(5-dihydroxyboryl-pentyl] purine that is a transcriptional inhibitor of TNF. When added before or concomitantly to TNF, LMP-420 inhibits endothelial cell (EC activation, i.e., the up-regulation of both ICAM-1 and VCAM-1 on HBEC-5i surfaces. Subsequently, LMP-420 abolishes the cytoadherence of ICAM-1-specific Plasmodium falciparum-parasitized red blood cells on these EC. Identical but weaker effects are observed when LMP-420 is added with LT. LMP-420 also causes a dramatic reduction of HBEC-5i vesiculation induced by TNF or LT stimulation, as assessed by microparticle release. CONCLUSION: These data provide evidence for a strong in vitro anti-inflammatory effect of LMP-420 and suggest that targeting host cell pathogenic mechanisms might provide a new therapeutic approach to improving the outcome of CM patients.

  8. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study.

    Science.gov (United States)

    Birbeck, Gretchen L; Molyneux, Malcolm E; Kaplan, Peter W; Seydel, Karl B; Chimalizeni, Yamikani F; Kawaza, Kondwani; Taylor, Terrie E

    2010-12-01

    Cerebral malaria, a disorder characterised by coma, parasitaemia, and no other evident cause of coma, is challenging to diagnose definitively in endemic regions that have high rates of asymptomatic parasitaemia and limited neurodiagnostic facilities. A recently described malaria retinopathy improves diagnostic specificity. We aimed to establish whether retinopathy-positive cerebral malaria is a risk factor for epilepsy or other neurodisabilities. Between 2005 and 2007, we did a prospective cohort study of survivors of cerebral malaria with malaria retinopathy in Blantyre, Malawi. Children with cerebral malaria were identified at the time of their index admission and age-matched to concurrently admitted children without coma or nervous system infection. Initially matching of cases to controls was 1:1 but, in 2006, enrolment criteria for cerebral malaria survivors were revised to limit inclusion to children with cerebral malaria and retinopathy on the basis of indirect ophthalmoscopic examination; matching was then changed to 1:2 and the revised inclusion criteria were applied retrospectively for children enrolled previously. Clinical assessments at discharge and standardised nurse-led follow-up every 3 months thereafter were done to identify children with new seizure disorders or other neurodisabilities. A Kaplan-Meier survival analysis was done for incident epilepsy. 132 children with retinopathy-positive cerebral malaria and 264 age-matched, non-comatose controls were followed up for a median of 495 days (IQR 195-819). 12 of 132 cerebral malaria survivors developed epilepsy versus none of 264 controls (odds ratio [OR] undefined; pepilepsy in children with cerebral malaria were a higher maximum temperature (39·4°C [SD 1·2] vs 38·5°C [1·1]; p=0·01) and acute seizures (11/12 vs 76/120; OR 6·37, 95% CI 1·02-141·2), and male sex was a risk factor for new neurodisabilities (20/28 vs 38/93; OR 3·62, 1·44-9·06). Almost a third of retinopathy-positive cerebral

  9. Glucose production and gluconeogenesis in adults with cerebral malaria

    NARCIS (Netherlands)

    van Thien, H.; Ackermans, M. T.; Dekker, E.; Thanh Chien, V. O.; Le, T.; Endert, E.; Kager, P. A.; Romijn, J. A.; Sauerwein, H. P.

    2001-01-01

    Hypoglycaemia is an important complication in severe malaria, ascribed to an inhibition of gluconeogenesis. However, the only data available suggested that in severe malaria, total glucose production is increased. We measured glucose production and gluconeogenesis after an overnight fast in all

  10. A rapid murine coma and behavior scale for quantitative assessment of murine cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Ryan W Carroll

    Full Text Available BACKGROUND: Cerebral malaria (CM is a neurological syndrome that includes coma and seizures following malaria parasite infection. The pathophysiology is not fully understood and cannot be accounted for by infection alone: patients still succumb to CM, even if the underlying parasite infection has resolved. To that effect, there is no known adjuvant therapy for CM. Current murine CM (MCM models do not allow for rapid clinical identification of affected animals following infection. An animal model that more closely mimics the clinical features of human CM would be helpful in elucidating potential mechanisms of disease pathogenesis and evaluating new adjuvant therapies. METHODOLOGY/PRINCIPAL FINDINGS: A quantitative, rapid murine coma and behavior scale (RMCBS comprised of 10 parameters was developed to assess MCM manifested in C57BL/6 mice infected with Plasmodium berghei ANKA (PbA. Using this method a single mouse can be completely assessed within 3 minutes. The RMCBS enables the operator to follow the evolution of the clinical syndrome, validated here by correlations with intracerebral hemorrhages. It provides a tool by which subjects can be identified as symptomatic prior to the initiation of trial treatment. CONCLUSIONS/SIGNIFICANCE: Since the RMCBS enables an operator to rapidly follow the course of disease, label a subject as affected or not, and correlate the level of illness with neuropathologic injury, it can ultimately be used to guide the initiation of treatment after the onset of cerebral disease (thus emulating the situation in the field. The RMCBS is a tool by which an adjuvant therapy can be objectively assessed.

  11. Effect of vitamin A adjunct therapy for cerebral malaria in children ...

    African Journals Online (AJOL)

    Objective: To determine the effect of vitamin A supplementation on treatment outcome of cerebral malaria Methods: In this randomised double-blind placebo controlled clinical trial we ... Conclusions: Vitamin A as adjunct therapy did not significantly reduce coma duration but there were fewer deaths in the vitamin A arm.

  12. Systemic and cerebral vascular endothelial growth factor levels increase in murine cerebral malaria along with increased Calpain and caspase activity and can be reduced by erythropoietin treatment

    DEFF Research Database (Denmark)

    Hempel, Casper; Hoyer, Nils; Kildemoes, Anna

    2014-01-01

    The pathogenesis of cerebral malaria (CM) includes compromised microvascular perfusion, increased inflammation, cytoadhesion, and endothelial activation. These events cause blood-brain barrier disruption and neuropathology and associations with the vascular endothelial growth factor (VEGF) signal...

  13. Prevalence of malaria and human blood factors among patients in ...

    African Journals Online (AJOL)

    Background: Malaria has been and is still a major protozoan disease affecting the human population. Erythrocyte polymorphisms (mainly in blood groups and genotypes) influence the susceptibility to severe malaria. Aim: This study is aimed at assessing the prevalence malaria in relation to human blood factor and to ...

  14. Multivariate modelling with 1H NMR of pleural effusion in murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Ghosh Soumita

    2011-11-01

    Full Text Available Abstract Background Cerebral malaria is a clinical manifestation of Plasmodium falciparum infection. Although brain damage is the predominant pathophysiological complication of cerebral malaria (CM, respiratory distress, acute lung injury, hydrothorax/pleural effusion are also observed in several cases. Immunological parameters have been assessed in pleural fluid in murine models; however there are no reports of characterization of metabolites present in pleural effusion. Methods 1H NMR of the sera and the pleural effusion of cerebral malaria infected mice were analyzed using principal component analysis, orthogonal partial least square analysis, multiway principal component analysis, and multivariate curve resolution. Results It has been observed that there was 100% occurrence of pleural effusion (PE in the mice affected with CM, as opposed to those are non-cerebral and succumbing to hyperparasitaemia (NCM/HP. An analysis of 1H NMR and SDS-PAGE profile of PE and serum samples of each of the CM mice exhibited a similar profile in terms of constituents. Multivariate analysis on these two classes of biofluids was performed and significant differences were detected in concentrations of metabolites. Glucose, creatine and glutamine contents were high in the PE and lipids being high in the sera. Multivariate curve resolution between sera and pleural effusion showed that changes in PE co-varied with that of serum in CM mice. The increase of glucose in PE is negatively correlated to the glucose in serum in CM as obtained from the result of multiway principal component analysis. Conclusions This study reports for the first time, the characterization of metabolites in pleural effusion formed during murine cerebral malaria. The study indicates that the origin of PE metabolites in murine CM may be the serum. The loss of the components like glucose, glutamine and creatine into the PE may worsen the situation of patients, in conjunction with the enhanced

  15. Cerebral Malaria: An Unusual Cause of Central Diabetes Insipidus

    Directory of Open Access Journals (Sweden)

    Resmi Premji

    2016-01-01

    Full Text Available Central diabetes insipidus is an uncommon feature of malaria. A previously healthy 72-year-old man presented with fever, rigors, and altered mental status after a recent trip to Liberia, a country known for endemic falciparum malaria. Investigations confirmed plasmodium falciparum parasitemia. Within one week after admission, the serum sodium rose to 166 mEq/L and the urine output increased to 7 liters/day. Other labs were notable for a high serum osmolality, low urine osmolality, and low urine specific gravity. The hypernatremia did not respond to hypotonic fluids. Diabetes insipidus was suspected and parenteral desmopressin was started with a prompt decrease in urinary output and improvement in mental status. Additional testing showed normal anterior pituitary hormones. The desmopressin was eventually tapered off with complete resolution of symptoms. Central diabetes insipidus occurred likely as a result of obstruction of the neurohypophyseal microvasculature. Other endocrinopathies that have been reported with malaria include hyponatremia, adrenal insufficiency, hypothyroidism, hypocalcemia, hypophosphatemia, hyper-, and hypoglycemia, but none manifested in our patient. Though diabetes insipidus is a rare complication of malaria, clinicians need to be aware of this manifestation, as failure to do so may lead to fatality particularly if the patient is dehydrated.

  16. Investigation of Hydrogen Sulfide Gas as a Treatment against P. falciparum, Murine Cerebral Malaria, and the Importance of Thiolation State in the Development of Cerebral Malaria

    DEFF Research Database (Denmark)

    Dellavalle, Brian; Staalsoe, Trine; Kurtzhals, Jørgen Anders

    2013-01-01

    Cerebral malaria (CM) is a potentially fatal cerebrovascular disease of complex pathogenesis caused by Plasmodium falciparum. Hydrogen sulfide (HS) is a physiological gas, similar to nitric oxide and carbon monoxide, involved in cellular metabolism, vascular tension, inflammation, and cell death....... HS treatment has shown promising results as a therapy for cardio- and neuro- pathology. This study investigates the effects of fast (NaHS) and slow (GYY4137) HS-releasing drugs on the growth and metabolism of P. falciparum and the development of P. berghei ANKA CM. Moreover, we investigate the role...

  17. Glucagon-like peptide-1 analogue, liraglutide, in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Della Valle, Brian William; Hempel, Casper; Staalsoe, Trine

    2016-01-01

    (GLP-1) mimetics have potent neuroprotective effects in animal models of neuropathology associated with ROS/RNS dysfunction. This study investigates the effect of the GLP-1 analogue, liraglutide against the clinical outcome of experimental cerebral malaria (ECM) and Plasmodium falciparum growth....... Furthermore the role of oxidative stress on ECM pathogenesis is evaluated. METHODS: ECM was induced in Plasmodium berghei ANKA-infected C57Bl/6j mice. Infected Balb/c (non-cerebral malaria) and uninfected C57Bl/6j mice were included as controls. Mice were treated twice-daily with vehicle or liraglutide (200...... were quantified. RESULTS: The development and progression of ECM was not affected by liraglutide. Indeed, although ROS/RNS were increased in peripheral organs, ROS/RNS generation was not present in the brain. Interestingly, CREB was activated in the ECM brain and may protect against ROS/RNS stress...

  18. Increased eosinophil activity in acute Plasmodium falciparum infection - association with cerebral malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Reimert, C M; Tette, E

    1998-01-01

    To assess the eosinophil response to Plasmodium falciparum infection a cohort of initially parasite-free Ghanaian children was followed for 3 months. Seven of nine children who acquired an asymptomatic P. falciparum infection showed increase in eosinophil counts, while a decrease was found in seven...... of nine children with symptomatic malaria, and no change was observed in 14 children who remained parasite-free. In a hospital-based study, paediatric patients with cerebral malaria (CM), severe anaemia (SA), or uncomplicated malaria (UM) had uniformly low eosinophil counts during the acute illness...... followed by eosinophilia 30 days after cure. Plasma levels of eosinophil cationic protein (ECP) and eosinophil protein X (EPX) were measured as indicators of eosinophil activation. In spite of the low eosinophil counts, ECP levels were increased on day 0 and significantly higher in patients with CM...

  19. Prevention of murine cerebral malaria by low-dose cyclosporin A.

    Science.gov (United States)

    Grau, G E; Gretener, D; Lambert, P H

    1987-08-01

    The effects of cyclosporin A (CsA) were investigated in an experimental model of cerebral malaria. In this model, Plasmodium berghei ANKA-infected CBA/Ca mice develop a clinically and histologically characterized neurological syndrome which is considered to be the result of immunopathological reactions mediated by L3T4+ T cells. It was shown that CsA displayed a strong protective effect on neurological complications when given at a dose 1 mg/kg/day for 5 consecutive days (Days 4-8), which had no effect on the parasite. Paradoxically, this protection against neurological complications was not seen when parasiticidal doses were used during this limited 5-day period. A similar protective effect was observed with two CsA derivatives, C5-34 and H7-94. The mechanisms by which CsA and the two derivatives could prevent murine cerebral malaria are unknown but can be related to exquisite effects on some lymphocyte functions. In view of these results, it might be conceivable to investigate the benefits of using low doses of CsA in man, in conjunction with the classical antiparasite therapy, for the management of cerebral malaria.

  20. STUDY OF CEREBRAL MALARIA IN PREGNANCY IN A TERTIARY CARE HOSPITAL OF EASTERN ODISHA

    Directory of Open Access Journals (Sweden)

    Bidyut Prava Das

    2017-05-01

    Full Text Available BACKGROUND The present work aimed at the clinical mode of presentation, degree of parasitaemia, complications and prognostic trends of pregnant women in cerebral malaria. Evaluation of mortality in different trimesters, varied complications and comparison with nonpregnant women was done. MATERIALS AND METHODS Thirty three pregnant women with cerebral malaria were studied. Twenty nonpregnant such cases of reproductive age group admitted to Department of Medicine, S.C.B. Medical College, Cuttack, Odisha, were taken as control. The cases were taken in random order. RESULTS Maximum numbers of cases (45.45% were primigravidae in second trimester of pregnancy. They exhibited higher incidence of anaemia and parasitaemia (2-10%, resulting in abortion and premature labour. CONCLUSION All the cases of cerebral malaria were found to be anaemic, but the severity of anaemia was more pronounced in primi (21% as compared to multigravidae (6.4%. High parasitaemia associated with leucocytosis (27.27% resulted in poor prognosis. Hypoglycaemia (15.15%, high level of urea, creatinine and alteration in parameters of liver function test further complicated the scenario leading to multiorgan failure. Recovery in cases of primigravidae was prolonged as compared to multigravidae.

  1. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells

    DEFF Research Database (Denmark)

    Claessens, Antoine; Adams, Yvonne; Ghumra, Ashfaq

    2012-01-01

    Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human...... receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected.......029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria....

  2. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria

    DEFF Research Database (Denmark)

    Lennartz, Frank; Adams, Yvonne; Bengtsson, Anja

    2017-01-01

    Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria...

  3. High prevalence of Plasmodium falciparum malaria among Human ...

    African Journals Online (AJOL)

    Malaria and Human Immunodeficiency Virus (HIV) infections are major public health problems in Sub-Saharan Africa. Their overlapping geographical distribution and co-existence often result into high morbidity and mortality. This study was designed to establish the prevalence of Plasmodium falciparum malaria among HIV ...

  4. Human movement data for malaria control and elimination strategic planning.

    Science.gov (United States)

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-06-18

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  5. Human movement data for malaria control and elimination strategic planning

    Directory of Open Access Journals (Sweden)

    Pindolia Deepa K

    2012-06-01

    Full Text Available Abstract Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i discuss relevant types of HPM across spatial and temporal scales, (ii document where datasets exist to quantify HPM, (iii highlight where data gaps remain and (iv briefly put forward methods for integrating these datasets in a Geographic Information System (GIS framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  6. Health Care Seeking Behavior among Caregivers of Sick Children Who Had Cerebral Malaria in Northwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Edwin E. Eseigbe

    2012-01-01

    Full Text Available Cerebral malaria is a significant cause of childhood morbidity in our region. The challenges of effective management include time and quality of treatment. The study appraised the health care seeking behavior of caregivers of sick children who developed cerebral malaria, in Zaria, northwestern Nigeria. Caregivers indentified were parents 29 (87.9% and grandparents 4 (12.1%. Most of them were in the upper social classes. Health care options utilized before presentation at our facility were formal health facility 24 (72.7%, patent medicine seller 12 (36.4%, home treatment 10 (30.3%, and herbal concoction 6 (18.2% with majority 24 (72.7% using more than one option. Antimalarial therapy was instituted in 25 (75.6% of the cases. Mortality was significantly associated with the use of herbal concoction, treatment at a formal health facility and patent medicine seller, multiple convulsions, age less than 5 years, and noninstitution of antimalarial therapy before presentation. The study showed use of inappropriate health care options by caregivers and highlighted the need to pursue an awareness drive among caregivers on the use of health care options.

  7. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria.

    Science.gov (United States)

    Canavese, Miriam; Spaccapelo, Roberta

    2014-03-01

    Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.

  8. Human malaria in the highlands of Yemen

    Science.gov (United States)

    AL-Mekhlafi, A M; AL-Mekhlafi, H M; Mahdy, M A K; Azazy, A A; Fong, M Y

    2011-01-01

    Between June 2008 and March 2009, a cross-sectional study of human malaria was carried out in four governorates of Yemen, two (Taiz and Hodiedah) representing the country’s highlands and the others (Dhamar and Raymah) the country’s coastal plains/foothills. The main aims were to determine the prevalences of Plasmodium infection among 455 febrile patients presenting for care at participating health facilities and to investigate the potential risk factors for such infection. Malarial infection was detected in 78 (17·1%) of the investigated patients and was more likely to be detected among the febrile patients from the highlands than among those presenting in the coastal plains/foothills (22·6% v.13·9%; χ2 = 10·102; P = 0·018). Binary logistic-regression models identified low household income [odds ratio (OR) = 13·52; 95% confidence interval (CI) = 2·62–69·67; P = 0·002], living in a household with access to a water pump (OR = 4·18; CI = 1·60–10·96; P = 0·004) and living in a household near a stream (OR = 4·43; CI = 1·35–14·56; P = 0·014) as significant risk factors for malarial infection in the highlands. Low household income was the only significant risk factor identified for such infection in the coastal plains and foothills (OR = 8·20; CI = 1·80–37·45; P = 0·007). It is unclear why febrile patients in the highlands of Yemen are much more likely to be found to have malarial infection than their counterparts from the coastal plains and foothills. Although it is possible that malarial transmission is relatively intense in the highlands, it seems more likely that, compared with those who live at lower altitudes, those who live in the highlands are less immune to malaria, and therefore more likely to develop febrile illness following malarial infection. Whatever the cause of the symptomatic malarial infection commonly found in the highlands of Yemen, it is a matter of serious

  9. Vß profiles in African children with acute cerebral or uncomplicated malaria: very focused changes among a remarkable global stability

    DEFF Research Database (Denmark)

    Loizon, Séverine; Boeuf, Philippe; Tetteh, John K A

    2007-01-01

    T cells are thought to play a critical role in cerebral malaria pathogenesis. However, available evidences are restricted to rodent models in which V beta specific T cell expansion has been associated with neurological syndrome suggesting involvement of superantigens or dominant antigens. Using f...

  10. Approach motivation in human cerebral cortex

    OpenAIRE

    Casasanto, Daniel; Brookshire, Geoffrey

    2018-01-01

    Different regions of the human cerebral cortex are specialized for different emotions, but the principles underlying this specialization have remained unknown. According to the sword and shield hypothesis, hemispheric specialization for affective motivation, a basic dimension of human emotion, varies across individuals according to the way they use their hands to perform approach- and avoidance-related actions. In a test of this hypothesis, here we measured approach motivation before and afte...

  11. Minocycline prevents cerebral malaria, confers neuroprotection and increases survivability of mice during Plasmodium berghei ANKA infection.

    Science.gov (United States)

    Apoorv, Thittayil Suresh; Babu, Phanithi Prakash

    2017-02-01

    Cerebral malaria (CM) is a neurological complication arising due to Plasmodium falciparum or Plasmodium vivax infection. Minocycline, a semi-synthetic tetracycline, has been earlier reported to have a neuroprotective role in several neurodegenerative diseases. In this study, we investigated the effect of minocycline treatment on the survivability of mice during experimental cerebral malaria (ECM). The currently accepted mouse model, C57BL/6 mice infected with Plasmodium berghei ANKA, was used for the study. Infected mice were treated with an intra-peritoneal dose of minocycline hydrochloride, 45mg/kg daily for ten days that led to parasite clearance in blood, brain, liver and spleen on 7th day post-infection; and the mice survived until experiment ended (90days) without parasite recrudescence. Evans blue extravasation assay showed that blood-brain barrier integrity was maintained by minocycline. The tumor necrosis factor-alpha protein level and caspase activity, which is related to CM pathogenesis, was significantly reduced in the minocycline-treated group. Fluoro-Jade® C and hematoxylin-eosin staining of the brains of minocycline group revealed a decrease in degenerating neurons and absence of hemorrhages respectively. Minocycline treatment led to decrease in gene expressions of inflammatory mediators like interferon-gamma, CXCL10, CCL5, CCL2; receptors CXCR3 and CCR2; and hence decrease in T-cell-mediated cerebral inflammation. We also proved that this reduction in gene expressions is irrespective of the anti-parasitic property of minocycline. The distinct ability of minocycline to modulate gene expressions of CXCL10 and CXCR3 makes it effective than doxycycline, a tetracycline used as chemoprophylaxis. Our study shows that minocycline is highly effective in conferring neuroprotection during ECM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High plasma levels of soluble intercellular adhesion molecule (ICAM)-1 are associated with cerebral malaria.

    Science.gov (United States)

    Adukpo, Selorme; Kusi, Kwadwo A; Ofori, Michael F; Tetteh, John K A; Amoako-Sakyi, Daniel; Goka, Bamenla Q; Adjei, George O; Edoh, Dominic A; Akanmori, Bartholomew D; Gyan, Ben A; Dodoo, Daniel

    2013-01-01

    Cerebral malaria (CM) is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM)-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA) on parasites to the development of CM. Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM) patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1) levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p0.05). Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups. High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies to parasite expressing non-ICAM-1-binding VSAs were not.

  13. High plasma levels of soluble intercellular adhesion molecule (ICAM-1 are associated with cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Selorme Adukpo

    Full Text Available BACKGROUND: Cerebral malaria (CM is responsible for most of the malaria-related deaths in children in sub-Saharan Africa. Although, not well understood, the pathogenesis of CM involves parasite and host factors which contribute to parasite sequestration through cytoadherence to the vascular endothelium. Cytoadherence to brain microvasculature is believed to involve host endothelial receptor, CD54 or intercellular adhesion molecule (ICAM-1, while other receptors such as CD36 are generally involved in cytoadherence of parasites in other organs. We therefore investigated the contributions of host ICAM-1 expression and levels of antibodies against ICAM-1 binding variant surface antigen (VSA on parasites to the development of CM. METHODOLOGY/PRINCIPAL FINDINGS: Paediatric malaria patients, 0.5 to 13 years were recruited and grouped into CM and uncomplicated malaria (UM patients, based on well defined criteria. Standardized ELISA protocol was used to measure soluble ICAM-1 (sICAM-1 levels from acute plasma samples. Levels of IgG to CD36- or ICAM-1-binding VSA were measured by flow cytometry during acute and convalescent states. Wilcoxon sign rank-test analysis to compare groups revealed association between sICAM-1 levels and CM (p0.05. Median levels of antibodies to CD36-binding VSAs were also comparable between acute and convalescent samples within any patient group. Median levels of antibodies to ICAM-1-binding VSAs were however significantly lower at admission time than during recovery in both groups. CONCLUSIONS/SIGNIFICANCE: High levels of sICAM-1 were associated with CM, and the sICAM-1 levels may reflect expression levels of the membrane bound form. Anti-VSA antibody levels to ICAM-binding parasites was more strongly associated with both UM and CM than antibodies to CD36 binding parasites. Thus, increasing host sICAM-1 levels were associated with CM whilst antibodies to parasite expressing non-ICAM-1-binding VSAs were not.

  14. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    Science.gov (United States)

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  15. Prevalence of human malaria infection in Pakistani areas bordering with Iran

    International Nuclear Information System (INIS)

    Yasinzai, M. I.; Kakarsulemankhel, J. K.

    2013-01-01

    Objective: To study the prevalence of malarial infections in human population of district Panjgur in south-western Pakistan. Methods: The cross-sectional study identified malarial parasites in the blood slides of 6119 suspected malaria patients from July 2006 to June 2008 through passive and active case detection methods. SPSS 11 was used for statistical analysis. Results: Out of 6119 suspected cases of malaria, 2346 (38.3%) were found to be positive for malarial parasite on blood smear slides. Of these, 1868 (79.6%) cases were due to Plasmodium vivax infection, and 478 (20.3%) had P. falciparum. However, seasonal variation was also noted: P. vivax infection was the highest (n=131/144, 90.9%) in November and the lowest (n=83/176, 47.1%) in October. The prevalence was higher (n=1831, 78%) in males. Age-wise, the prevalence of the disease was 81.2% (n=334) and 80% (n=860) for age groups 1-10 years and 11-20 years. No case of P. malaria and P. ovale was detected in the study period. No association was found between types of infection and age groups. Conclusion: Human malaria infection was quite frequent in the study region, which is one of the hottest areas of Balochistan, Pakistan. In clinically-suspected cases of malaria, there was a high slide positivity rate. The high prevalence rate of P. vivax poses a significant health hazard but P. falciparum also may lead to serious complications, including cerebral malaria. (author)

  16. BIOLOGY OF HUMAN MALARIA PLASMODIA INCLUDING PLASMODIUM KNOWLESI

    Directory of Open Access Journals (Sweden)

    Spinello Antinori

    2012-03-01

    Full Text Available Malaria is a vector-borne infection caused by unicellular parasite of the genus Plasmodium. Plasmodia are obligate intracellular parasites that in humans after a clinically silent replication phase in the liver are able to infect and replicate within the erythrocytes. Four species (P.falciparum, P.malariae, P.ovale and P.vivax are traditionally recognized as responsible of natural infection in human beings but the recent upsurge of P.knowlesi malaria in South-East Asia has led clinicians to consider it as the fifth human malaria parasite. Recent studies in wild-living apes in Africa have revealed that P.falciparum, the most deadly form of human malaria, is not only human-host restricted as previously believed and its phylogenetic lineage is much more complex with new species identified in gorilla, bonobo and chimpanzee. Although less impressive, new data on biology of P.malariae, P.ovale and P.vivax are also emerging and will be briefly discussed in this review.

  17. Molecular Factors and Biological Pathways Associated with Malaria Fever and the Pathogenesis of Cerebral Malaria

    Science.gov (United States)

    2007-04-09

    environmental degradation , policies against the use of residual insecticides in house, human migration and probably most importantly the rapid...8. Brandts, C. H., M. Ndjave, W. Graninger, and P. G. Kremsner. 1997. Effect of paracetamol on parasite clearance time in Plasmodium falciparum...label, RNA was degraded by the addition of NaOH, and labeled cDNA was purified and concentrated by ultrafiltration through a vivaspin 500 column

  18. Controlled Human Malaria Infection: Applications, Advances, and Challenges.

    Science.gov (United States)

    Stanisic, Danielle I; McCarthy, James S; Good, Michael F

    2018-01-01

    Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax -specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration. Copyright © 2017 American Society for Microbiology.

  19. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children

    Directory of Open Access Journals (Sweden)

    Wiredu Edwin K

    2007-11-01

    Full Text Available Abstract Background Plasmodium falciparum can cause a diffuse encephalopathy known as cerebral malaria (CM, a major contributor to malaria associated mortality. Despite treatment, mortality due to CM can be as high as 30% while 10% of survivors of the disease may experience short- and long-term neurological complications. The pathogenesis of CM and other forms of severe malaria is multi-factorial and appear to involve cytokine and chemokine homeostasis, inflammation and vascular injury/repair. Identification of prognostic markers that can predict CM severity will enable development of better intervention. Methods Postmortem serum and cerebrospinal fluid (CSF samples were obtained within 2–4 hours of death in Ghanaian children dying of CM, severe malarial anemia (SMA, and non-malarial (NM causes. Serum and CSF levels of 36 different biomarkers (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70, IL-13, IL-15, IL-17, Eotaxin, FGF basic protein, CRP, G-CSF, GM-CSF, IFN-γ, TNF-α, IP-10, MCP-1 (MCAF, MIP-1α, MIP-1β, RANTES, SDF-1α, CXCL11 (I-TAC, Fas-ligand [Fas-L], soluble Fas [sFas], sTNF-R1 (p55, sTNF-R2 (p75, MMP-9, TGF-β1, PDGF bb and VEGF were measured and the results compared between the 3 groups. Results After Bonferroni adjustment for other biomarkers, IP-10 was the only serum biomarker independently associated with CM mortality when compared to SMA and NM deaths. Eight CSF biomarkers (IL-1ra, IL-8, IP-10, PDGFbb, MIP-1β, Fas-L, sTNF-R1, and sTNF-R2 were significantly elevated in CM mortality group when compared to SMA and NM deaths. Additionally, CSF IP-10/PDGFbb median ratio was statistically significantly higher in the CM group compared to SMA and NM groups. Conclusion The parasite-induced local cerebral dysregulation in the production of IP-10, 1L-8, MIP-1β, PDGFbb, IL-1ra, Fas-L, sTNF-R1, and sTNF-R2 may be involved in CM neuropathology, and their immunoassay may have potential utility in predicting

  20. Malaria.

    Science.gov (United States)

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  1. Doxycycline inhibits experimental cerebral malaria by reducing inflammatory immune reactions and tissue-degrading mediators.

    Directory of Open Access Journals (Sweden)

    Kim E Schmidt

    Full Text Available Malaria ranks among the most important infectious diseases worldwide and affects mostly people living in tropical countries. Mechanisms involved in disease progression are still not fully understood and specific treatments that might interfere with cerebral malaria (CM are limited. Here we show that administration of doxycycline (DOX prevented experimental CM (ECM in Plasmodium berghei ANKA (PbA-infected C57BL/6 wildtype (WT mice in an IL-10-independent manner. DOX-treated mice showed an intact blood-brain barrier (BBB and attenuated brain inflammation. Importantly, if WT mice were infected with a 20-fold increased parasite load, they could be still protected from ECM if they received DOX from day 4-6 post infection, despite similar parasitemia compared to control-infected mice that did not receive DOX and developed ECM. Infiltration of T cells and cytotoxic responses were reduced in brains of DOX-treated mice. Analysis of brain tissue by RNA-array revealed reduced expression of chemokines and tumour necrosis factor (TNF in brains of DOX-treated mice. Furthermore, DOX-administration resulted in brains of the mice in reduced expression of matrix metalloproteinase 2 (MMP2 and granzyme B, which are both factors associated with ECM pathology. Systemic interferon gamma production was reduced and activated peripheral T cells accumulated in the spleen in DOX-treated mice. Our results suggest that DOX targeted inflammatory processes in the central nervous system (CNS and prevented ECM by impaired brain access of effector T cells in addition to its anti-parasitic effect, thereby expanding the understanding of molecular events that underlie DOX-mediated therapeutic interventions.

  2. Doxycycline inhibits experimental cerebral malaria by reducing inflammatory immune reactions and tissue-degrading mediators.

    Science.gov (United States)

    Schmidt, Kim E; Kuepper, Janina M; Schumak, Beatrix; Alferink, Judith; Hofmann, Andrea; Howland, Shanshan W; Rénia, Laurent; Limmer, Andreas; Specht, Sabine; Hoerauf, Achim

    2018-01-01

    Malaria ranks among the most important infectious diseases worldwide and affects mostly people living in tropical countries. Mechanisms involved in disease progression are still not fully understood and specific treatments that might interfere with cerebral malaria (CM) are limited. Here we show that administration of doxycycline (DOX) prevented experimental CM (ECM) in Plasmodium berghei ANKA (PbA)-infected C57BL/6 wildtype (WT) mice in an IL-10-independent manner. DOX-treated mice showed an intact blood-brain barrier (BBB) and attenuated brain inflammation. Importantly, if WT mice were infected with a 20-fold increased parasite load, they could be still protected from ECM if they received DOX from day 4-6 post infection, despite similar parasitemia compared to control-infected mice that did not receive DOX and developed ECM. Infiltration of T cells and cytotoxic responses were reduced in brains of DOX-treated mice. Analysis of brain tissue by RNA-array revealed reduced expression of chemokines and tumour necrosis factor (TNF) in brains of DOX-treated mice. Furthermore, DOX-administration resulted in brains of the mice in reduced expression of matrix metalloproteinase 2 (MMP2) and granzyme B, which are both factors associated with ECM pathology. Systemic interferon gamma production was reduced and activated peripheral T cells accumulated in the spleen in DOX-treated mice. Our results suggest that DOX targeted inflammatory processes in the central nervous system (CNS) and prevented ECM by impaired brain access of effector T cells in addition to its anti-parasitic effect, thereby expanding the understanding of molecular events that underlie DOX-mediated therapeutic interventions.

  3. Prevalence and predictors of placental malaria in human ...

    African Journals Online (AJOL)

    2016-02-16

    Feb 16, 2016 ... development of placental malaria in HIV‑positive women (odds ratio: 21.60; 95% ..... Marital status. Single. 6 (5.9). 4 (3.9). Married. 96 (94.1). 98 (96.1) ... χ2=16.65; df=2; P=<0.001. df=Degrees of freedom; HIV=Human.

  4. Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Norinne Lacerda-Queiroz

    Full Text Available Experimental cerebral malaria (ECM is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/- and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia and T cell cytotoxicity (Granzyme B expression in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM.

  5. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  6. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature.

    Directory of Open Access Journals (Sweden)

    Phillip A Swanson

    2016-12-01

    Full Text Available Cerebral malaria (CM is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM, we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs, where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4 therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen

  7. Malaria

    Science.gov (United States)

    ... less than the risk of catching this infection. Chloroquine has been the drug of choice for protecting against malaria. But because of resistance, it is now only suggested for use in areas where Plasmodium vivax , P. oval , and ...

  8. Malaria

    Science.gov (United States)

    ... bites you, the parasite can get into your blood. The parasite lays eggs, which develop into more parasites. They ... cells until you get very sick. Because the parasites live in the blood, malaria can also be spread through other ways. ...

  9. Automated Detection of Malarial Retinopathy in Digital Fundus Images for Improved Diagnosis in Malawian Children with Clinically Defined Cerebral Malaria

    Science.gov (United States)

    Joshi, Vinayak; Agurto, Carla; Barriga, Simon; Nemeth, Sheila; Soliz, Peter; MacCormick, Ian J.; Lewallen, Susan; Taylor, Terrie E.; Harding, Simon P.

    2017-02-01

    Cerebral malaria (CM), a complication of malaria infection, is the cause of the majority of malaria-associated deaths in African children. The standard clinical case definition for CM misclassifies ~25% of patients, but when malarial retinopathy (MR) is added to the clinical case definition, the specificity improves from 61% to 95%. Ocular fundoscopy requires expensive equipment and technical expertise not often available in malaria endemic settings, so we developed an automated software system to analyze retinal color images for MR lesions: retinal whitening, vessel discoloration, and white-centered hemorrhages. The individual lesion detection algorithms were combined using a partial least square classifier to determine the presence or absence of MR. We used a retrospective retinal image dataset of 86 pediatric patients with clinically defined CM (70 with MR and 16 without) to evaluate the algorithm performance. Our goal was to reduce the false positive rate of CM diagnosis, and so the algorithms were tuned at high specificity. This yielded sensitivity/specificity of 95%/100% for the detection of MR overall, and 65%/94% for retinal whitening, 62%/100% for vessel discoloration, and 73%/96% for hemorrhages. This automated system for detecting MR using retinal color images has the potential to improve the accuracy of CM diagnosis.

  10. The relevance of non-human primate and rodent malaria models for humans

    Directory of Open Access Journals (Sweden)

    Riley Eleanor

    2011-02-01

    Full Text Available Abstract At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models. Several speakers took the opportunity to demonstrate the similarities between findings in rodent models and human severe disease, as well as points of difference. The variety of malaria presentations in the different experimental models parallels the wide diversity of human malaria disease and, therefore, might be viewed as a strength. Many of the key features of human malaria can be replicated in a variety of nonhuman primate models, which are very under-utilized. The importance of animal models in the discovery of new anti-malarial drugs was emphasized. The major conclusions of the session were that experimental and human studies should be more closely linked so that they inform each other, and that there should be wider access to relevant clinical material.

  11. Case Report: A Case of Severe Cerebral Malaria Managed with Therapeutic Hypothermia and Other Modalities for Brain Edema.

    Science.gov (United States)

    Gad, AbdAllah; Ali, Sajjad; Zahoor, Talal; Azarov, Nick

    2018-04-01

    Malarial infections are uncommon in the United States and almost all reported cases stem from recent travelers coming from endemic countries. Cerebral malaria (CM) is a severe form of the disease usually affecting children and individuals with limited immunity. Despite proper management, mortality from CM can reach up to 25%, especially when it is associated with brain edema. Inefficient management of the edema may result in brain herniation and death. Uniform guidelines for management of CM-associated brain edema are lacking. In this report, we present a case of CM with associated severe brain edema that was successfully managed using a unique combination of therapeutic hypothermia, hypertonic saline, mannitol, and hyperventilation along with the antimalarial drugs quinidine and doxycycline. Our use of hypothermia was based on its proven benefit for improving neurological outcomes in post-cardiac arrest patients and previous in vitro research, suggesting its potential inhibitory role on malaria growth.

  12. Sympathetic regulation of cerebral blood flow in humans : a review

    NARCIS (Netherlands)

    ter Laan, M.; van Dijk, J. M. C.; Elting, J. W. J.; Staal, M. J.; Absalom, A. R.

    Cerebral blood flow (CBF) is regulated by vasomotor, chemical, metabolic, and neurogenic mechanisms. Even though the innervation of cerebral arteries is quite extensively described and reviewed in the literature, its role in regulation of CBF in humans remains controversial. We believe that

  13. Role of Serum Lactate and Malarial Retinopathy in Prognosis and Outcome of Falciparum and Vivax Cerebral Malaria: A Prospective Cohort Study in Adult Assamese Tribes

    OpenAIRE

    Chaudhari, Kaustubh Suresh; Uttarwar, Sahil Prashant; Tambe, Nikhil Narayan; Sharma, Rohan S; Takalkar, Anant Arunrao

    2016-01-01

    Introduction: There is no comprehensive data or studies relating to clinical presentation and prognosis of cerebral malaria (CM) in the tribal settlements of Assam. High rates of transmission and deaths from complicated malaria guided us to conduct a prospective observational cohort study to evaluate the factors associated with poor outcome and prognosis in patients of CM. Materials and Methods: We admitted 112 patients to the Bandarpara and Damodarpur Tribal Health Centers (THCs) between 201...

  14. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  15. Noninvasive measures of brain edema predict outcome in pediatric cerebral malaria.

    Science.gov (United States)

    Kampondeni, Samuel D; Birbeck, Gretchen L; Seydel, Karl B; Beare, Nicholas A; Glover, Simon J; Hammond, Colleen A; Chilingulo, Cowles A; Taylor, Terrie E; Potchen, Michael J

    2018-01-01

    Increased brain volume (BV) and subsequent herniation are strongly associated with death in pediatric cerebral malaria (PCM), a leading killer of children in developing countries. Accurate noninvasive measures of BV are needed for optimal clinical trial design. Our objectives were to examine the performance of six different magnetic resonance imaging (MRI) BV quantification measures for predicting mortality in PCM and to review the advantages and disadvantages of each method. Receiver operator characteristics were generated from BV measures of MRIs of children admitted to an ongoing research project with PCM between 2009 and 2014. Fatal cases were matched to the next available survivor. A total of 78 MRIs of children aged 5 months to 13 years (mean 4.0 years), of which 45% were males, were included. Areas under the curve (AUC) with 95% confidence interval on measures from the initial MRIs were: Radiologist-derived score = 0.69 (0.58-0.79; P = 0.0037); prepontine cistern anteroposterior (AP) dimension = 0.70 (0.56-0.78; P = 0.0133); SamKam ratio [Rt. parietal lobe height/(prepontine AP dimension + fourth ventricle AP dimension)] = 0.74 (0.63-0.83; P = 0.0002); and global cerebrospinal fluid (CSF) space ascertained by ClearCanvas = 0.67 (0.55-0.77; P = 0.0137). For patients with serial MRIs ( n = 37), the day 2 global CSF space AUC was 0.87 (0.71-0.96; P dimension ≤3 mm; cisternal CSF volume ≤7.5 ml; SamKam ratio ≥6.5; and recovery factor ≤0.75. All noninvasive measures of BV performed well in predicting death and providing a proxy measure for brain volume. Initial MRI assessment may inform future clinical trials for subject selection, risk adjustment, or stratification. Measures of temporal change may be used to stage PCM.

  16. Specific Depletion of Ly6Chi Inflammatory Monocytes Prevents Immunopathology in Experimental Cerebral Malaria

    Science.gov (United States)

    Kuepper, Janina M.; Biswas, Aindrila; Djie-Maletz, Andrea; Limmer, Andreas; van Rooijen, Nico; Mack, Matthias; Hoerauf, Achim; Dunay, Ildiko Rita

    2015-01-01

    Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice leads to experimental cerebral malaria (ECM) that is commonly associated with serious T cell mediated damage. In other parasitic infection models, inflammatory monocytes have been shown to regulate Th1 responses but their role in ECM remains poorly defined, whereas neutrophils are reported to contribute to ECM immune pathology. Making use of the recent development of specific monoclonal antibodies (mAb), we depleted in vivo Ly6Chi inflammatory monocytes (by anti-CCR2), Ly6G+ neutrophils (by anti-Ly6G) or both cell types (by anti-Gr1) during infection with Ovalbumin-transgenic PbA parasites (PbTg). Notably, the application of anti-Gr1 or anti-CCR2 but not anti-Ly6G antibodies into PbTg-infected mice prevented ECM development. In addition, depletion of Ly6Chi inflammatory monocytes but not neutrophils led to decreased IFNγ levels and IFNγ+CD8+ T effector cells in the brain. Importantly, anti-CCR2 mAb injection did not prevent the generation of PbTg-specific T cell responses in the periphery, whereas anti-Gr1 mAb injection strongly diminished T cell frequencies and CTL responses. In conclusion, the specific depletion of Ly6Chi inflammatory monocytes attenuated brain inflammation and immune cell recruitment to the CNS, which prevented ECM following Plasmodium infection, pointing out a substantial role of Ly6C+ monocytes in ECM inflammatory processes. PMID:25884830

  17. Specific depletion of Ly6C(hi) inflammatory monocytes prevents immunopathology in experimental cerebral malaria.

    Science.gov (United States)

    Schumak, Beatrix; Klocke, Katrin; Kuepper, Janina M; Biswas, Aindrila; Djie-Maletz, Andrea; Limmer, Andreas; van Rooijen, Nico; Mack, Matthias; Hoerauf, Achim; Dunay, Ildiko Rita

    2015-01-01

    Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice leads to experimental cerebral malaria (ECM) that is commonly associated with serious T cell mediated damage. In other parasitic infection models, inflammatory monocytes have been shown to regulate Th1 responses but their role in ECM remains poorly defined, whereas neutrophils are reported to contribute to ECM immune pathology. Making use of the recent development of specific monoclonal antibodies (mAb), we depleted in vivo Ly6C(hi) inflammatory monocytes (by anti-CCR2), Ly6G+ neutrophils (by anti-Ly6G) or both cell types (by anti-Gr1) during infection with Ovalbumin-transgenic PbA parasites (PbTg). Notably, the application of anti-Gr1 or anti-CCR2 but not anti-Ly6G antibodies into PbTg-infected mice prevented ECM development. In addition, depletion of Ly6C(hi) inflammatory monocytes but not neutrophils led to decreased IFNγ levels and IFNγ+CD8+ T effector cells in the brain. Importantly, anti-CCR2 mAb injection did not prevent the generation of PbTg-specific T cell responses in the periphery, whereas anti-Gr1 mAb injection strongly diminished T cell frequencies and CTL responses. In conclusion, the specific depletion of Ly6C(hi) inflammatory monocytes attenuated brain inflammation and immune cell recruitment to the CNS, which prevented ECM following Plasmodium infection, pointing out a substantial role of Ly6C+ monocytes in ECM inflammatory processes.

  18. Specific depletion of Ly6C(hi inflammatory monocytes prevents immunopathology in experimental cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Beatrix Schumak

    Full Text Available Plasmodium berghei ANKA (PbA infection of C57BL/6 mice leads to experimental cerebral malaria (ECM that is commonly associated with serious T cell mediated damage. In other parasitic infection models, inflammatory monocytes have been shown to regulate Th1 responses but their role in ECM remains poorly defined, whereas neutrophils are reported to contribute to ECM immune pathology. Making use of the recent development of specific monoclonal antibodies (mAb, we depleted in vivo Ly6C(hi inflammatory monocytes (by anti-CCR2, Ly6G+ neutrophils (by anti-Ly6G or both cell types (by anti-Gr1 during infection with Ovalbumin-transgenic PbA parasites (PbTg. Notably, the application of anti-Gr1 or anti-CCR2 but not anti-Ly6G antibodies into PbTg-infected mice prevented ECM development. In addition, depletion of Ly6C(hi inflammatory monocytes but not neutrophils led to decreased IFNγ levels and IFNγ+CD8+ T effector cells in the brain. Importantly, anti-CCR2 mAb injection did not prevent the generation of PbTg-specific T cell responses in the periphery, whereas anti-Gr1 mAb injection strongly diminished T cell frequencies and CTL responses. In conclusion, the specific depletion of Ly6C(hi inflammatory monocytes attenuated brain inflammation and immune cell recruitment to the CNS, which prevented ECM following Plasmodium infection, pointing out a substantial role of Ly6C+ monocytes in ECM inflammatory processes.

  19. Emergency caesarean delivery in a patient with cerebral malaria-leptospira co infection: Anaesthetic and critical care considerations

    Directory of Open Access Journals (Sweden)

    Sukhen Samanta

    2014-01-01

    Full Text Available Malaria-leptospira co-infection is rarely detected. Emergency surgery in such patients has not been reported. We describe such a case of a 24-year-old primigravida at term pregnancy posted for emergency caesarean delivery who developed pulmonary haemorrhage, acute respiratory distress syndrome, acute kidney injury, and cerebral oedema. Here, we discuss the perioperative management, pain management (with transverse abdominis plane block, intensive care management (special reference to management of pulmonary haemorrhage with intra pulmonary factor VIIa and the role of plasmapheresis in leptospira related jaundice with renal failure.

  20. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  1. X-ray microscopy of human malaria

    International Nuclear Information System (INIS)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-01-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease

  2. malaria

    African Journals Online (AJOL)

    children who presented with malaria symptoms at the same clinic and tested positive or ... phagocytes immunity and induce anti-inflammatory immune response ...... treatment gap, Malawi will be ready to submit a validation request for virtual .... Conclusions. Vaccination and quarantine are the important disease preventive.

  3. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria

    Directory of Open Access Journals (Sweden)

    Taramelli Donatella

    2011-03-01

    Full Text Available Abstract The clinical manifestations of cerebral malaria (CM are well correlated with underlying major pathophysiological events occurring during an acute malaria infection, the most important of which, is the adherence of parasitized erythrocytes to endothelial cells ultimately leading to sequestration and obstruction of brain capillaries. The consequent reduction in blood flow, leads to cerebral hypoxia, localized inflammation and release of neurotoxic molecules and inflammatory cytokines by the endothelium. The pharmacological regulation of these immunopathological processes by immunomodulatory molecules may potentially benefit the management of this severe complication. Adjunctive therapy of CM patients with an appropriate immunomodulatory compound possessing even moderate anti-malarial activity with the capacity to down regulate excess production of proinflammatory cytokines and expression of adhesion molecules, could potentially reverse cytoadherence, improve survival and prevent neurological sequelae. Current major drug discovery programmes are mainly focused on novel parasite targets and mechanisms of action. However, the discovery of compounds targeting the host remains a largely unexplored but attractive area of drug discovery research for the treatment of CM. This review discusses the properties of the plant immune-modifier curcumin and its potential as an adjunctive therapy for the management of this complication.

  4. Malaria

    Science.gov (United States)

    2011-06-01

    dividing and are far more noticeable than the small amount of clear cyto- plasm surrounding them (Figs 10.6a & 10.6b). Mature schizonts contain 8...edema Same as P. vivax 16 10 • Topics on The paThology of proTozoan and invasive arThropod diseases Figure 10.38 Transmission electron micrograph of...mesangiopathic glo- merulonephropathy caused by quartan malaria, deposition of immune complexes may be demonstrated by electron or immunofluorescence microscopy

  5. Human cerebral asymmetries evaluated by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chang Chui, H; Damasio, A R [Iowa Univ., Iowa City (USA)

    1980-10-01

    The handedness of seventy-five persons without evidence of neurological disease, was assessed with a standardised test. An analysis of the CT scans of the same persons was performed to determine (1) presence and lateralisation of frontal and occipital 'petalia', (2) width of frontal and occipital lobes of each hemisphere, (3) direction of straight sinus deviation. Results suggest that handedness and cerebral asymmetries are independent variables. There were no significant differences between right-handers and non-right handers. Also there was no significant differences between strongly left-handed and ambidextrous individuals, nor were there differences between right-handers with or without family history of left-handedness. Irrespective of handedness, left occipital 'petalia' was more common than right (p<0.01), right frontal petalia was more common than left (p<0.01), and straight sinus deviation was more commonly toward the right. The study does not support the concept that cerebral 'symmetry' or 'reverse asymmetry' are associated with left-handedness or ambidexterity. The noted asymmetries are more likely to be direct correlates of cerebral language dominance, than of handedness. Outside forces acting on the bone may also contribute to the asymmetries. CT scan may be of value as a direct predictor of cerebral dominance.

  6. Human cerebral asymmetries evaluated by computed tomography

    International Nuclear Information System (INIS)

    Chang Chui, H.; Damasio, A.R.

    1980-01-01

    The handedness of seventy-five persons without evidence of neurological disease, was assessed with a standardised test. An analysis of the CT scans of the same persons was performed to determine (1) presence and lateralisation of frontal and occipital 'petalia', (2) width of frontal and occipital lobes of each hemisphere, (3) direction of straight sinus deviation. Results suggest that handedness and cerebral asymmetries are independent variables. There were no significant differences between right-handers and non-right handers. Also there was no significant differences between strongly left-handed and ambidextrous individuals, nor were there differences between right-handers with or without family history of left-handedness. Irrespective of handedness, left occipital 'petalia' was more common than right (p<0.01), right frontal petalia was more common than left (p<0.01), and straight sinus deviation was more commonly toward the right. The study does not support the concept that cerebral 'symmetry' or 'reverse asymmetry' are associated with left-handedness or ambidexterity. The noted asymmetries are more likely to be direct correlates of cerebral language dominance, than of handedness. Outside forces acting on the bone may also contribute to the asymmetries. CT scan may be of value as a direct predictor of cerebral dominance. (author)

  7. STATUS HEMATOLOGI PENDERITA MALARIA SEREBRAL

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2009-05-01

    Full Text Available AbstrakMalaria masih merupakan masalah kesehatan masyarakat dunia. Berdasarkan klasifikasi klinis, malaria dibedakan atas malaria berat dan malaria tanpa komplikasi. Malaria serebral merupakan komplikasi terberat dari malaria falsiparum.Telah dilakukan penelitian seksi silang terhadap penderita malaria falciparum yang dirawat inap di Bangsal Penyakit Dalam RS. Perjan. Dr. M. Djamil Padang dari bulan Juni 2002 sampai Juni 2006. Pada penelitian ini didapatkan jumlah sampel sebanyak 60 orang, terdiri dari 16 orang penderita malaria serebral dan 44 orang penderita malaria tanpa komplikasi.Data penelitian menunjukan terdapat perbedaan bermakna nilai hematokrit (p<0,05 dan jumlah leukosit (p<0,05 antara penderita malaria serebral dengan penderita malaria tanpa komplikasi. Dan terdapat korelasi positif antara nilai hemoglobin dengan hematokrit (r=0,864; p<0,05 pada penderita malaria falsiparum.Kata kunci: malaria serebral, malaria tanpa komplikasi, malaria falsiparumAbstract Malaria is still a problem of health of world society. Based on the clinical classification, are distinguished on severe malaria and uncomplicated malaria. Cerebral malaria is the worst complication of falciparum malaria. Cross section of the research done at the Hospital Dr. M. Djamil Padang againts medical record of malaria patients who are hospitalized in the Internal Medicine from June 2002 until June 2004. In this study, a total sample of 60 people, consisting of 16 cerebral malaria and 44 uncomplicated malaria. Data showed there were significant differences for hematocrit values (p <0.05 and total leukocytes values (p <0.05 between cerebral malaria and uncomplicated malaria patients. There is a positive correlation between hemoglobin with hematocrit values (r = 0.864; p <0.05 of falciparum malaria patients. Keywords: cerebral malaria, uncomplicated malaria, falciparum malaria

  8. Metabolic fingerprints of serum, brain, and liver are distinct for mice with cerebral and noncerebral malaria: a ¹H NMR spectroscopy-based metabonomic study.

    Science.gov (United States)

    Ghosh, Soumita; Sengupta, Arjun; Sharma, Shobhona; Sonawat, Haripalsingh M

    2012-10-05

    Cerebral malaria (CM) is a life-threatening disease in humans caused by Plasmodium falciparum, leading to high mortality. Plasmodium berghei ANKA (PbA) infection in C57Bl/6 mice induces pathologic symptoms similar to that in human CM. However, experimental CM incidence in mice is variable, and there are no known metabolic correlates/fingerprints for the animals that develop CM. Here, we have used (1)H NMR-based metabonomics to investigate the metabolic changes in the mice with CM with respect to the mice that have noncerebral malaria (NCM) of the same batchmates with identical genetic backgrounds and infected simultaneously. The metabolic profile of the infected mice (both CM and NCM) was separately compared with the metabolite profile of uninfected control mice of same genetic background. The objective of this study was to search for metabolic changes/fingerprints of CM and identify the pathways that might be differentially altered in mice that succumbed to CM. The results show that brain, liver, and sera exhibit unique metabolic fingerprints for CM over NCM mice. Some of the major fingerprints are increased level of triglycerides, VLDL-cholesterol in sera of CM mice, and decreased levels of glutamine in the sera concomitant with increased levels of glutamine in the brain of the mice with CM. Moreover, glycerophosphocholine is decreased in both the brain and the liver of animals with CM, and myo-inositol and histamine are increased in the liver of CM mice. The metabolic fingerprints in brain, sera, and liver of mice with CM point toward perturbation in the ammonia detoxification pathway and perturbation in lipid and choline metabolism in CM specifically. The study helps us to understand the severity of CM over NCM and in unrevealing the specific metabolic pathways that are compromised in CM.

  9. The ten-thousand year fever: rethinking human and wild primate malarias

    National Research Council Canada - National Science Library

    Cormier, Loretta A

    2011-01-01

    ... relationships between culture and environment that shape the trajectory of a parasite. She argues against the entrenched distinction between human and non-human malarias, using ethnoprimatology to develop a new understanding of cross-species exchange...

  10. The ten-thousand year fever: rethinking human and wild primate malarias

    National Research Council Canada - National Science Library

    Cormier, Loretta A

    2011-01-01

    "Malaria is one of the oldest recorded diseases in human history, and its 10,000-year relationship to primates can teach us why it will be one of the most serious threats to humanity in the 21st century...

  11. Human skin emanations in the host-seeking behaviour of the malaria mosquito Anopheles gambiae

    NARCIS (Netherlands)

    Braks, M.

    1999-01-01

    Malaria is an infectious disease caused by a parasite ( Plasmodium spp.) that is transmitted between human individuals by mosquitoes, belonging to the order of insects, Diptera, family of Culicidae (mosquitoes) and genus of Anopheles (malaria

  12. Controlled Human Malaria Infection of Tanzanians by Intradermal Injection of Aseptic, Purified, Cryopreserved Plasmodium falciparum Sporozoites

    NARCIS (Netherlands)

    Shekalaghe, S.; Rutaihwa, M.; Billingsley, P.F.; Chemba, M.; Daubenberger, C.A.; James, E.R.; Mpina, M.; Juma, O. Ali; Schindler, T.; Huber, E.; Gunasekera, A.; Manoj, A.; Simon, B.; Saverino, E.; Church, L.W.; Hermsen, C.C.; Sauerwein, R.W.; Plowe, C.; Venkatesan, M.; Sasi, P.; Lweno, O.; Mutani, P.; Hamad, A.; Mohammed, A.; Urassa, A.; Mzee, T.; Padilla, D.; Ruben, A.; Sim, B.K.; Tanner, M.; Abdulla, S.; Hoffman, S.L.

    2014-01-01

    Controlled human malaria infection (CHMI) by mosquito bite has been used to assess anti-malaria interventions in > 1,500 volunteers since development of methods for infecting mosquitoes by feeding on Plasmodium falciparum (Pf) gametocyte cultures. Such CHMIs have never been used in Africa. Aseptic,

  13. Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Dieudonnée Togbe

    Full Text Available BACKGROUND: TNF-related lymphotoxin alpha (LTalpha is essential for the development of Plasmodium berghei ANKA (PbA-induced experimental cerebral malaria (ECM. The pathway involved has been attributed to TNFR2. Here we show a second arm of LTalpha-signaling essential for ECM development through LTbeta-R, receptor of LTalpha1beta2 heterotrimer. METHODOLOGY/PRINCIPAL FINDINGS: LTbetaR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTalphabeta deficient mice. Resistance of LTalphabeta or LTbetaR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin(+ CD8(+ T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTbetaR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM. CONCLUSIONS/SIGNIFICANCE: LTbetaR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTbetaR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM.

  14. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  15. Heritability of the human infectious reservoir of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Yaye Ramatoulaye Lawaly

    Full Text Available BACKGROUND: Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. METHODS AND FINDINGS: We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2-8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site. A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. CONCLUSIONS: The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained.

  16. Cerebrospinal fluid markers to distinguish bacterial meningitis from cerebral malaria in children [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    James M. Njunge

    2017-09-01

    Full Text Available Background. Few hospitals in high malaria endemic countries in Africa have the diagnostic capacity for clinically distinguishing acute bacterial meningitis (ABM from cerebral malaria (CM. As a result, empirical use of antibiotics is necessary. A biochemical marker of ABM would facilitate precise clinical diagnosis and management of these infections and enable rational use of antibiotics. Methods. We used label-free protein quantification by mass spectrometry to identify cerebrospinal fluid (CSF markers that distinguish ABM (n=37 from CM (n=22 in Kenyan children. Fold change (FC and false discovery rates (FDR were used to identify differentially expressed proteins. Subsequently, potential biomarkers were assessed for their ability to discriminate between ABM and CM using receiver operating characteristic (ROC curves. Results. The host CSF proteome response to ABM (Haemophilus influenza and Streptococcus pneumoniae is significantly different to CM. Fifty two proteins were differentially expressed (FDR<0.01, Log FC≥2, of which 83% (43/52 were upregulated in ABM compared to CM. Myeloperoxidase and lactotransferrin were present in 37 (100% and 36 (97% of ABM cases, respectively, but absent in CM (n=22. Area under the ROC curve (AUC, sensitivity, and specificity were assessed for myeloperoxidase (1, 1, and 1; 95% CI, 1-1 and lactotransferrin (0.98, 0.97, and 1; 95% CI, 0.96-1. Conclusion. Myeloperoxidase and lactotransferrin have a high potential to distinguish ABM from CM and thereby improve clinical management. Their validation requires a larger cohort of samples that includes other bacterial aetiologies of ABM.

  17. Analysis of human cerebral functions using positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Shibasaki, Takashi

    1984-01-01

    Positron emission tomography has two major advantages to analyse human cerebral functions in vivo. First, we can see the distribution of a variety of substance in the living (and doing something) human brain. Positron emitters, 11 C, 13 N, 15 O and 18 F, are made by medical cyclotron and are elements of natural substrates or easily tagged to substrate. Second, the distribution of the tracer is calculated to make a quantitative functional map in a reasonable spatial resolution over the entire brain in the same time. Not only cortical areas but also deeper structures show regional cerebral blood flow (rCBF) or local cerebral metabolic rates (LCMRs). Nowadays, PET is put to practical use for determination of mainly rCBF, LCMR for glucose (LCMRsub(glu)), LCMR for oxygen (LCMRsub(o2)) and regional cerebral blood volume (rCBV). There have been many other pilot studies, such as estimation of distribution of given neurotransmitters or modulators in the brain which also confirms the substances' role in the neuronal function, and observation of protein synthesis relating to memory function. (J.P.N.)

  18. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  19. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Albert Lalremruata

    2015-09-01

    Interpretation: This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  20. Plasmodium coatneyi in Rhesus Macaques Replicates the Multisystemic Dysfunction of Severe Malaria in Humans

    Science.gov (United States)

    Cabrera-Mora, Monica; Garcia, AnaPatricia; Orkin, Jack; Strobert, Elizabeth; Barnwell, John W.; Galinski, Mary R.

    2013-01-01

    Severe malaria, a leading cause of mortality among children and nonimmune adults, is a multisystemic disorder characterized by complex clinical syndromes that are mechanistically poorly understood. The interplay of various parasite and host factors is critical in the pathophysiology of severe malaria. However, knowledge regarding the pathophysiological mechanisms and pathways leading to the multisystemic disorders of severe malaria in humans is limited. Here, we systematically investigate infections with Plasmodium coatneyi, a simian malaria parasite that closely mimics the biological characteristics of P. falciparum, and develop baseline data and protocols for studying erythrocyte turnover and severe malaria in greater depth. We show that rhesus macaques (Macaca mulatta) experimentally infected with P. coatneyi develop anemia, coagulopathy, and renal and metabolic dysfunction. The clinical course of acute infections required suppressive antimalaria chemotherapy, fluid support, and whole-blood transfusion, mimicking the standard of care for the management of severe malaria cases in humans. Subsequent infections in the same animals progressed with a mild illness in comparison, suggesting that immunity played a role in reducing the severity of the disease. Our results demonstrate that P. coatneyi infection in rhesus macaques can serve as a highly relevant model to investigate the physiological pathways and molecular mechanisms of malaria pathogenesis in naïve and immune individuals. Together with high-throughput postgenomic technologies, such investigations hold promise for the identification of new clinical interventions and adjunctive therapies. PMID:23509137

  1. Comparison of clinical and parasitological data from controlled human malaria infection trials.

    Directory of Open Access Journals (Sweden)

    Meta Roestenberg

    Full Text Available Exposing healthy human volunteers to Plasmodium falciparum-infected mosquitoes is an accepted tool to evaluate preliminary efficacy of malaria vaccines. To accommodate the demand of the malaria vaccine pipeline, controlled infections are carried out in an increasing number of centers worldwide. We assessed their safety and reproducibility.We reviewed safety and parasitological data from 128 malaria-naïve subjects participating in controlled malaria infection trials conducted at the University of Oxford, UK, and the Radboud University Nijmegen Medical Center, The Netherlands. Results were compared to a report from the US Military Malaria Vaccine Program.We show that controlled human malaria infection trials are safe and demonstrate a consistent safety profile with minor differences in the frequencies of arthralgia, fatigue, chills and fever between institutions. But prepatent periods show significant variation. Detailed analysis of Q-PCR data reveals highly synchronous blood stage parasite growth and multiplication rates.Procedural differences can lead to some variation in safety profile and parasite kinetics between institutions. Further harmonization and standardization of protocols will be useful for wider adoption of these cost-effective small-scale efficacy trials. Nevertheless, parasite growth rates are highly reproducible, illustrating the robustness of controlled infections as a valid tool for malaria vaccine development.

  2. IgE- and IgG mediated severe anaphylactic platelet transfusion reaction in a known case of cerebral malaria

    Directory of Open Access Journals (Sweden)

    B Shanthi

    2013-01-01

    Full Text Available Background: Allergic reactions occur commonly in transfusion practice. However, severe anaphylactic reactions are rare; anti-IgA (IgA: Immunoglobulin A in IgA-deficient patients is one of the well-illustrated and reported causes for such reactions. However, IgE-mediated hypersensitivity reaction through blood component transfusion may be caused in parasitic hyperimmunization for IgG and IgE antibodies. Case Report: We have evaluated here a severe anaphylactic transfusion reaction retrospectively in an 18year-old male, a known case of cerebral malaria, developed after platelet transfusions. The examination and investigations revealed classical signs and symptoms of anaphylaxis along with a significant rise in the serum IgE antibody level and IgG by hemagglutination method. Initial mild allergic reaction was followed by severe anaphylactic reaction after the second transfusion of platelets. Conclusion: Based on these results, screening of patients and donors with mild allergic reactions to IgE antibodies may help in understanding the pathogenesis as well as in planning for preventive desensitization and measures for safe transfusion.

  3. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia.

    Science.gov (United States)

    Gryseels, Charlotte; Durnez, Lies; Gerrets, René; Uk, Sambunny; Suon, Sokha; Set, Srun; Phoeuk, Pisen; Sluydts, Vincent; Heng, Somony; Sochantha, Tho; Coosemans, Marc; Peeters Grietens, Koen

    2015-04-24

    In certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting insecticide-treated nets (LLIN) and indoor residual spraying (IRS). The interplay between heterogeneous human, as well as mosquito behaviour, radically challenges malaria control in such residual transmission contexts. This study examines human behavioural patterns in relation to the vector behaviour. The anthropological research used a sequential mixed-methods study design in which quantitative survey research methods were used to complement findings from qualitative ethnographic research. The qualitative research existed of in-depth interviews and participant observation. For the entomological research, indoor and outdoor human landing collections were performed. All research was conducted in selected villages in Ratanakiri province, Cambodia. Variability in human behaviour resulted in variable exposure to outdoor and early biting vectors: (i) indigenous people were found to commute between farms in the forest, where malaria exposure is higher, and village homes; (ii) the indoor/outdoor biting distinction was less clear in forest housing often completely or partly open to the outside; (iii) reported sleeping times varied according to the context of economic activities, impacting on the proportion of infections that could be accounted for by early or nighttime biting; (iv) protection by LLINs may not be as high as self-reported survey data indicate, as observations showed around 40% (non-treated) market net use while (v) unprotected evening resting and deep forest activities impacted further on the suboptimal use of LLINs. The heterogeneity of human behaviour and the variation of vector densities and biting behaviours may lead to a considerable proportion of exposure occurring during

  4. Pathogenesis of cerebral malformations in human fetuses with meningomyelocele

    Directory of Open Access Journals (Sweden)

    Brouwer Oebele F

    2008-03-01

    Full Text Available Abstract Background Fetal spina bifida aperta (SBA is characterized by a spinal meningomyelocele (MMC and associated with cerebral pathology, such as hydrocephalus and Chiari II malformation. In various animal models, it has been suggested that a loss of ventricular lining (neuroepithelial/ependymal denudation may trigger cerebral pathology. In fetuses with MMC, little is known about neuroepithelial/ependymal denudation and the initiating pathological events. The objective of this study was to investigate whether neuroepithelial/ependymal denudation occurs in human fetuses and neonates with MMC, and if so, whether it is associated with the onset of hydrocephalus. Methods Seven fetuses and 1 neonate (16–40 week gestational age, GA with MMC and 6 fetuses with normal cerebral development (22–41 week GA were included in the study. Identification of fetal MMC and clinical surveillance of fetal head circumference and ventricular width was performed by ultrasound (US. After birth, MMC was confirmed by histology. We characterized hydrocephalus by increased head circumference in association with ventriculomegaly. The median time interval between fetal cerebral ultrasound and fixing tissue for histology was four days. Results At 16 weeks GA, we observed neuroepithelial/ependymal denudation in the aqueduct and telencephalon together with sub-cortical heterotopias in absence of hydrocephalus and/or Chiari II malformation. At 21–34 weeks GA, we observed concurrence of aqueductal neuroepithelial/ependymal denudation and progenitor cell loss with the Chiari II malformation, whereas hydrocephalus was absent. At 37–40 weeks GA, neuroepithelial/ependymal denudation coincided with Chiari II malformation and hydrocephalus. Sub-arachnoidal fibrosis at the convexity was absent in all fetuses but present in the neonate. Conclusion In fetal SBA, neuroepithelial/ependymal denudation in the telencephalon and the aqueduct can occur before Chiari II malformation

  5. Plasmodium falciparum EPCR-binding PfEMP1 expression increases with malaria disease severity and is elevated in retinopathy negative cerebral malaria

    DEFF Research Database (Denmark)

    Shabani, Estela; Hanisch, Benjamin; Opoka, Robert O.

    2017-01-01

    a completely different disease process or a subgroup within the spectrum of CM remains an important question in malaria. In the current study, we use newly designed primer sets with the best coverage to date in a large cohort of children with SM to determine the role of var genes in malaria disease severity...

  6. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  7. The demographics of human and malaria movement and migration patterns in East Africa.

    Science.gov (United States)

    Pindolia, Deepa K; Garcia, Andres J; Huang, Zhuojie; Smith, David L; Alegana, Victor A; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2013-11-05

    The quantification of parasite movements can provide valuable information for control strategy planning across all transmission intensities. Mobile parasite carrying individuals can instigate transmission in receptive areas, spread drug resistant strains and reduce the effectiveness of control strategies. The identification of mobile demographic groups, their routes of travel and how these movements connect differing transmission zones, potentially enables limited resources for interventions to be efficiently targeted over space, time and populations. National population censuses and household surveys provide individual-level migration, travel, and other data relevant for understanding malaria movement patterns. Together with existing spatially referenced malaria data and mathematical models, network analysis techniques were used to quantify the demographics of human and malaria movement patterns in Kenya, Uganda and Tanzania. Movement networks were developed based on connectivity and magnitudes of flow within each country and compared to assess relative differences between regions and demographic groups. Additional malaria-relevant characteristics, such as short-term travel and bed net use, were also examined. Patterns of human and malaria movements varied between demographic groups, within country regions and between countries. Migration rates were highest in 20-30 year olds in all three countries, but when accounting for malaria prevalence, movements in the 10-20 year age group became more important. Different age and sex groups also exhibited substantial variations in terms of the most likely sources, sinks and routes of migration and malaria movement, as well as risk factors for infection, such as short-term travel and bed net use. Census and survey data, together with spatially referenced malaria data, GIS and network analysis tools, can be valuable for identifying, mapping and quantifying regional connectivities and the mobility of different demographic

  8. The importance of human FcgammaRI in mediating protection to malaria.

    Directory of Open Access Journals (Sweden)

    Richard S McIntosh

    2007-05-01

    Full Text Available The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcgammaRI. This important finding documents the capacity of FcgammaRI to mediate potent antimalaria immunity and supports the development of FcgammaRI-directed therapy for human malaria.

  9. MRI in human immunodeficiency virus-associated cerebral vasculitis

    International Nuclear Information System (INIS)

    Berkefeld, J.; Lanfermann, H.

    2000-01-01

    Cerebral ischaemia caused by inflammatory vasculopathies has been described as complication of human immunodeficiency virus (HIV) infection. Imaging studies have shown ischaemic lesions and changes of the vascular lumen, but did not allow demonstration of abnormalities within the vessel wall itself. Two HIV-infected men presented with symptoms of a transient ischaemic attack. Initial MRI of the first showed no infarct; in the second two small lacunar lesions were detected. In both cases, multiplanar 3-mm slice contrast-enhanced T1-weighted images showed aneurysmal dilatation, with thickening and contrast enhancement of the wall of the internal carotid and middle cerebral (MCA) arteries. These findings were interpreted as indicating cerebral vasculitis. In the first patient the vasculopathy progressed to carotid artery occlusion, and he developed an infarct in the MCA territory, but then remained neurologically stable. In the second patient varicella zoster virus (VZV) infection was the probable cause of vasculitis. The clinical deficits and vasculitic MRI changes regressed with antiviral and immunosuppressive therapy. (orig.)

  10. MRI in human immunodeficiency virus-associated cerebral vasculitis

    Energy Technology Data Exchange (ETDEWEB)

    Berkefeld, J.; Lanfermann, H. [Frankfurt Univ. (Germany). Abt. fuer Neuroradiologie; Enzensberger, W. [Klinik fuer Neurologie, Klinikum der Johann Wolfgang Goethe-Univ. Frankfurt am Main (Germany)

    2000-07-01

    Cerebral ischaemia caused by inflammatory vasculopathies has been described as complication of human immunodeficiency virus (HIV) infection. Imaging studies have shown ischaemic lesions and changes of the vascular lumen, but did not allow demonstration of abnormalities within the vessel wall itself. Two HIV-infected men presented with symptoms of a transient ischaemic attack. Initial MRI of the first showed no infarct; in the second two small lacunar lesions were detected. In both cases, multiplanar 3-mm slice contrast-enhanced T1-weighted images showed aneurysmal dilatation, with thickening and contrast enhancement of the wall of the internal carotid and middle cerebral (MCA) arteries. These findings were interpreted as indicating cerebral vasculitis. In the first patient the vasculopathy progressed to carotid artery occlusion, and he developed an infarct in the MCA territory, but then remained neurologically stable. In the second patient varicella zoster virus (VZV) infection was the probable cause of vasculitis. The clinical deficits and vasculitic MRI changes regressed with antiviral and immunosuppressive therapy. (orig.)

  11. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  12. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen as mechanisms involved in protection against experimental cerebral malaria.

    Science.gov (United States)

    Bastos, Marcele F; Kayano, Ana Carolina A V; Silva-Filho, João Luiz; Dos-Santos, João Conrado K; Judice, Carla; Blanco, Yara C; Shryock, Nathaniel; Sercundes, Michelle K; Ortolan, Luana S; Francelin, Carolina; Leite, Juliana A; Oliveira, Rafaella; Elias, Rosa M; Câmara, Niels O S; Lopes, Stefanie C P; Albrecht, Letusa; Farias, Alessandro S; Vicente, Cristina P; Werneck, Claudio C; Giorgio, Selma; Verinaud, Liana; Epiphanio, Sabrina; Marinho, Claudio R F; Lalwani, Pritesh; Amino, Rogerio; Aliberti, Julio; Costa, Fabio T M

    2018-03-20

    Cerebral malaria (CM) is a multifactorial syndrome involving an exacerbated proinflammatory status, endothelial cell activation, coagulopathy, hypoxia, and accumulation of leukocytes and parasites in the brain microvasculature. Despite significant improvements in malaria control, 15% of mortality is still observed in CM cases, and 25% of survivors develop neurologic sequelae for life-even after appropriate antimalarial therapy. A treatment that ameliorates CM clinical signs, resulting in complete healing, is urgently needed. Previously, we showed a hyperbaric oxygen (HBO)-protective effect against experimental CM. Here, we provide molecular evidence that HBO targets brain endothelial cells by decreasing their activation and inhibits parasite and leukocyte accumulation, thus improving cerebral microcirculatory blood flow. HBO treatment increased the expression of aryl hydrocarbon receptor over hypoxia-inducible factor 1-α (HIF-1α), an oxygen-sensitive cytosolic receptor, along with decreased indoleamine 2,3-dioxygenase 1 expression and kynurenine levels. Moreover, ablation of HIF-1α expression in endothelial cells in mice conferred protection against CM and improved survival. We propose that HBO should be pursued as an adjunctive therapy in CM patients to prolong survival and diminish deleterious proinflammatory reaction. Furthermore, our data support the use of HBO in therapeutic strategies to improve outcomes of non-CM disorders affecting the brain.-Bastos, M. F., Kayano, A. C. A. V., Silva-Filho, J. L., Dos-Santos, J. C. K., Judice, C., Blanco, Y. C., Shryock, N., Sercundes, M. K., Ortolan, L. S., Francelin, C., Leite, J. A., Oliveira, R., Elias, R. M., Câmara, N. O. S., Lopes, S. C. P., Albrecht, L., Farias, A. S., Vicente, C. P., Werneck, C. C., Giorgio, S., Verinaud, L., Epiphanio, S., Marinho, C. R. F., Lalwani, P., Amino, R., Aliberti, J., Costa, F. T. M. Inhibition of hypoxia-associated response and kynurenine production in response to hyperbaric oxygen

  13. Malaria overdiagnosis and subsequent overconsumption of antimalarial drugs in Angola: Consequences and effects on human health.

    Science.gov (United States)

    Manguin, Sylvie; Foumane, Vincent; Besnard, Patrick; Fortes, Filomeno; Carnevale, Pierre

    2017-07-01

    Microscopic blood smear examinations done in health centers of Angola demonstrated a large overdiagnosis of malaria cases with an average rate of errors as high as 85%. Overall 83% of patients who received Coartem ® had an inappropriate treatment. Overestimated malaria diagnosis was noticed even when specific symptoms were part of the clinical observation, antimalarial treatments being subsequently given. Then, malaria overdiagnosis has three main consequences, (i) the lack of data reliability is of great concern, impeding epidemiological records and evaluation of the actual influence of operations as scheduled by the National Malaria Control Programme; (ii) the large misuse of antimalarial drug can increase the selective pressure for resistant strain and can make a false consideration of drug resistant P. falciparum crisis; and (iii) the need of strengthening national health centers in term of human, with training in microscopy, and equipment resources to improve malaria diagnosis with a large scale use of rapid diagnostic tests associated with thick blood smears, backed up by a "quality control" developed by the national health authorities. Monitoring of malaria cases was done in three Angolan health centers of Alto Liro (Lobito town) and neighbor villages of Cambambi and Asseque (Benguéla Province) to evaluate the real burden of malaria. Carriers of Plasmodium among patients of newly-borne to 14 years old, with or without fever, were analyzed and compared to presumptive malaria cases diagnosed in these health centers. Presumptive malaria cases were diagnosed six times more than the positive thick blood smears done on the same children. In Alto Liro health center, the percentage of diagnosis error reached 98%, while in Cambambi and Asseque it was of 79% and 78% respectively. The percentage of confirmed malaria cases was significantly higher during the dry (20.2%) than the rainy (13.2%) season. These observations in three peripheral health centers confirmed what

  14. The ten-thousand year fever: rethinking human and wild primate malarias

    National Research Council Canada - National Science Library

    Cormier, Loretta A

    2011-01-01

    .... She also shows how current human-environment interactions, including deforestation and development, create the potential for new forms of malaria to threaten human populations. This book is a model of interdisciplinary integration that will be essential reading in fields from anthropology and biology to public health"--Provided by publisher.

  15. Cytokine expression in malaria-infected non-human primate placentas

    Directory of Open Access Journals (Sweden)

    M.M. Gicheru

    2012-06-01

    Full Text Available Malaria parasites are known to mediate the induction of inflammatory immune responses at the maternal-foetal interface during placental malaria (PM leading to adverse consequences like pre-term deliveries and abortions. Immunological events that take place within the malaria-infected placental micro-environment leading to retarded foetal growth and disruption of pregnancies are among the critical parameters that are still in need of further elucidation. The establishment of more animal models for studying placental malaria can provide novel ways of circumventing problems experienced during placental malaria research in humans such as inaccurate estimation of gestational ages. Using the newly established olive baboon (Papio anubis-Plasmodium knowlesi (P. knowlesi H strain model of placental malaria, experiments were carried out to determine placental cytokine profiles underlying the immunopathogenesis of placental malaria. Four pregnant olive baboons were infected with blood stage P. knowlesi H strain parasites on the one fiftieth day of gestation while four other uninfected pregnant olive baboons were maintained as uninfected controls. After nine days of infection, placentas were extracted from all the eight baboons through cesarean surgery and used for the processing of placental plasma and sera samples for cytokine sandwich enzyme linked immunosorbent assays (ELISA. Results indicated that the occurrence of placental malaria was associated with elevated concentrations of tumour necrosis factor alpha (TNF-α and interleukin 12 (IL-12. Increased levels of IL-4, IL-6 and IL-10 and interferon gamma (IFN-γ levels were detected in uninfected placentas. These findings match previous reports regarding immunity during PM thereby demonstrating the reliability of the olive baboon-P. knowlesi model for use in further studies.

  16. malaria parasitaemia among febrile children infected with human

    African Journals Online (AJOL)

    2014-01-01

    Jan 1, 2014 ... PhD, Department of Behavioural Sciences (Biostat), F. Esamai, MBChB, MMed, MPH, PhD, Department of Child .... The study seeks to answer the question is malaria ... stored on a password-protected study computer for.

  17. Cardiac complication after experimental human malaria infection: a case report

    Directory of Open Access Journals (Sweden)

    Druilhe Pierre

    2009-12-01

    Full Text Available Abstract A 20 year-old healthy female volunteer participated in a clinical Phase I and IIa safety and efficacy trial with candidate malaria vaccine PfLSA-3-rec adjuvanted with aluminium hydroxide. Eleven weeks after the third and last immunization she was experimentally infected by bites of Plasmodium falciparum-infected mosquitoes. When the thick blood smear became positive, at day 11, she was treated with artemether/lumefantrine according to protocol. On day 16 post-infection i.e. two days after completion of treatment, she woke up with retrosternal chest pain. She was diagnosed as acute coronary syndrome and treated accordingly. She recovered quickly and her follow-up was uneventful. Whether the event was related to the study procedures such as the preceding vaccinations, malaria infection or antimalarial drugs remains elusive. However, the relation in time with the experimental malaria infection and apparent absence of an underlying condition makes the infection the most probable trigger. This is in striking contrast, however, with the millions of malaria cases each year and the fact that such complication has never been reported in the literature. The rare occurrence of cardiac events with any of the preceding study procedures may even support a coincidental finding. Apart from acute coronary syndrome, myocarditis can be considered as a final diagnosis, but the true nature and patho-physiological explanation of the event remain unclear.

  18. Circulating Red Cell–derived Microparticles in Human Malaria

    Science.gov (United States)

    Nantakomol, Duangdao; Dondorp, Arjen M.; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E.; White, Nicholas J.; Viriyavejakul, Parnpen; Day, Nicholas P.J.

    2011-01-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell–derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13–4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281–503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127–200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3–166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs. PMID:21282195

  19. Circulating red cell-derived microparticles in human malaria.

    Science.gov (United States)

    Nantakomol, Duangdao; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E; White, Nicholas J; Viriyavejakul, Parnpen; Day, Nicholas P J; Chotivanich, Kesinee

    2011-03-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell-derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13-4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281-503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127-200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3-166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs.

  20. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    Science.gov (United States)

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  1. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    Science.gov (United States)

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  2. Human genetic polymorphisms in the Knops blood group are not associated with a protective advantage against Plasmodium falciparum malaria in Southern Ghana.

    Science.gov (United States)

    Hansson, Helle H; Kurtzhals, Jørgen A; Goka, Bamenla Q; Rodriques, Onike P; Nkrumah, Francis N; Theander, Thor G; Bygbjerg, Ib Christian; Alifrangis, Michael

    2013-11-07

    The complex interactions between the human host and the Plasmodium falciparum parasite and the factors influencing severity of disease are still not fully understood. Human single nucleotide polymorphisms SNPs associated with Knops blood group system; carried by complement receptor 1 may be associated with the pathology of P. falciparum malaria, and susceptibility to disease. The objective of this study was to determine the genotype and haplotype frequencies of the SNPs defining the Knops blood group antigens; Kna/b, McCoya/b, Swain-Langley1/2 and KCAM+/- in Ghanaian patients with malaria and determine possible associations between these polymorphisms and the severity of the disease. Study participants were patients (n = 267) admitted to the emergency room at the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996 and 1997, classified as uncomplicated malaria (n = 89), severe anaemia (n = 57) and cerebral malaria (n = 121) and controls who did not have a detectable Plasmodium infection or were symptomless carriers of the parasite (n = 275). The frequencies were determined using a post-PCR ligation detection reaction-fluorescent microsphere assay, developed to detect the SNPs defining the antigens. Chi-square/Fisher's exact test and logistic regression models were used to analyse the data. As expected, high frequencies of the alleles Kna, McCb, Sl2 and KCAM- were found in the Ghanaian population. Apart from small significant differences between the groups at the Sl locus, no significant allelic or genotypic differences were found between the controls and the disease groups or between the disease groups. The polymorphisms define eight different haplotypes H1(2.4%), H2(9.4%), H3(59.8%), H4(0%), H5(25.2%), H6(0.33%), H7(2.8%) and H8(0%). Investigating these haplotypes, no significant differences between any of the groups were found. The results confirm earlier findings of high frequencies of

  3. MAPK signaling pathway regulates cerebrovascular receptor expression in human cerebral arteries

    DEFF Research Database (Denmark)

    Ansar, Saema; Eftekhari, Sajedeh; Waldsee, Roya

    2013-01-01

    if the upregulation of contractile cerebrovascular receptors after 48 h of organ culture of human cerebral arteries involves MAPK pathways and if it can be prevented by a MEK1/2 inhibitor. Human cerebral arteries were obtained from patients undergoing intracranial tumor surgery. The vessels were divided into ring...

  4. The relevance of non-human primate and rodent malaria models for humans

    OpenAIRE

    Langhorne, Jean; Buffet, Pierre; Galinski, Mary; Good, Michael; Harty, John; Leroy, Didier; Mota, Maria M; Pasini, Erica; Renia, Laurent; Riley, Eleanor; Stins, Monique; Duffy, Patrick

    2011-01-01

    Abstract At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models....

  5. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    OpenAIRE

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contri...

  6. Serum urea and creatinine levels in Nigerian human malaria patients

    African Journals Online (AJOL)

    Serum urea and creatinine levels were determined in malaria patients infected with P. falciparum. Serum urea levels decreased significantly (P<0.05) in both mild (4.10 ±1.10 mmol/L) and moderate (4.40 ±1.40 mmol/L) parasitaemia when compared to control subjects (5.50 ±1.40 mmol/L). On the other hand, serum ...

  7. Cerebral oxygenation is reduced during hyperthermic exercise in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nybo, Lars; Volianitis, S.

    2010-01-01

    Abstract Aim: Cerebral mitochondrial oxygen tension (P(mito)O(2)) is elevated during moderate exercise, while it is reduced when exercise becomes strenuous, reflecting an elevated cerebral metabolic rate for oxygen (CMRO(2)) combined with hyperventilation-induced attenuation of cerebral blood flo...

  8. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  9. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system

    NARCIS (Netherlands)

    Molina-Cruz, A.; Garver, L.S.; Alabaster, A.; Bangiolo, L.; Haile, A.; Winikor, J.; Ortega, C.; Schaijk, B.C.L. van; Sauerwein, R.W.; Taylor-Salmon, E.; Barillas-Mury, C.

    2013-01-01

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P.

  10. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Directory of Open Access Journals (Sweden)

    Francesco Pizzitutti

    Full Text Available Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  11. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F

    2018-01-01

    Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  12. The role of skin microbiota in the attractiveness of humans to the malaria mosquito Anopheles gambiae Giles

    NARCIS (Netherlands)

    Verhulst, N.O.

    2010-01-01

    Malaria is one of the most serious infectious diseases in the world. The African mosquito Anopheles gambiae sensu stricto (henceforth termed An. gambiae) is highly competent for malaria parasites and preferably feeds on humans inside houses, which make it one of the most effective vectors of the

  13. Malaria and human immunodeficiency virus infection as risk factors for anemia in infants in Kisumu, western Kenya

    NARCIS (Netherlands)

    van Eijk, Anna M.; Ayisi, John G.; ter Kuile, Feiko O.; Misore, Ambrose O.; Otieno, Juliana A.; Kolczak, Margarette S.; Kager, Piet A.; Steketee, Richard W.; Nahlen, Bernard L.

    2002-01-01

    The role of maternal and pediatric infection with human immunodeficiency virus type 1 (HIV-1) and malaria as risk factors for anemia was determined in a birth cohort of infants born to mothers participating in a study of the interaction between placental malaria and HIV infection, in Kisumu, Kenya.

  14. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity

    Directory of Open Access Journals (Sweden)

    Kabaria Caroline W

    2008-10-01

    Full Text Available Abstract Background The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP global database of Plasmodium falciparum parasite rate (PfPR surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. Methods First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Results Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed

  15. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip...

  16. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    Science.gov (United States)

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  17. The establishment of a WHO Reference Reagent for anti-malaria (Plasmodium falciparum) human serum.

    Science.gov (United States)

    Bryan, Donna; Silva, Nilupa; Rigsby, Peter; Dougall, Thomas; Corran, Patrick; Bowyer, Paul W; Ho, Mei Mei

    2017-08-05

    At a World Health Organization (WHO) sponsored meeting it was concluded that there is an urgent need for a reference preparation that contains antibodies against malaria antigens in order to support serology studies and vaccine development. It was proposed that this reference would take the form of a lyophilized serum or plasma pool from a malaria-endemic area. In response, an immunoassay standard, comprising defibrinated human plasma has been prepared and evaluated in a collaborative study. A pool of human plasma from a malaria endemic region was collected from 140 single plasma donations selected for reactivity to Plasmodium falciparum apical membrane antigen-1 (AMA-1) and merozoite surface proteins (MSP-1 19 , MSP-1 42 , MSP-2 and MSP-3). This pool was defibrinated, filled and freeze dried into a single batch of ampoules to yield a stable source of naturally occurring antibodies to P. falciparum. The preparation was evaluated by an enzyme-linked immunosorbent assay (ELISA) in a collaborative study with sixteen participants from twelve different countries. This anti-malaria human serum preparation (NIBSC Code: 10/198) was adopted by the WHO Expert Committee on Biological Standardization (ECBS) in October 2014, as the first WHO reference reagent for anti-malaria (Plasmodium falciparum) human serum with an assigned arbitrary unitage of 100 units (U) per ampoule. Analysis of the reference reagent in a collaborative study has demonstrated the benefit of this preparation for the reduction in inter- and intra-laboratory variability in ELISA. Whilst locally sourced pools are regularly use for harmonization both within and between a few laboratories, the presence of a WHO-endorsed reference reagent should enable optimal harmonization of malaria serological assays either by direct use of the reference reagent or calibration of local standards against this WHO reference. The intended uses of this reference reagent, a multivalent preparation, are (1) to allow cross

  18. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip......-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade...

  19. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  20. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture...... and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R(2) = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway...

  1. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Science.gov (United States)

    Biswas, Sumi; Choudhary, Prateek; Elias, Sean C; Miura, Kazutoyo; Milne, Kathryn H; de Cassan, Simone C; Collins, Katharine A; Halstead, Fenella D; Bliss, Carly M; Ewer, Katie J; Osier, Faith H; Hodgson, Susanne H; Duncan, Christopher J A; O'Hara, Geraldine A; Long, Carole A; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases

  2. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Directory of Open Access Journals (Sweden)

    Sumi Biswas

    Full Text Available The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i ChAd63-MVA immunization, ii immunization and CHMI, and iii primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i total IgG responses before and after CHMI, ii responses to allelic variants of MSP1 and AMA1, iii functional growth inhibitory activity (GIA, iv IgG avidity, and v isotype responses (IgG1-4, IgA and IgM. These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other

  3. Labelling malaria-infected human erythrocytes with Tc-99m

    International Nuclear Information System (INIS)

    Garmelius-Larsson, B.; Pettersson, F.; Vogt, A.; Jonsson, C.

    2002-01-01

    Aim: Malaria is an old and a very common disease, especially in undeveloped countries. The malaria parasites infect the erythrocytes and the aim of this work was to label infected cells for future studies of their distribution and life span. Material and Method: With a commercial kit containing stannous fluoride and sodium medronate, which is used to label erythrocytes in vivo, in vitro and in vivo/vitro methods, we labelled the cells by using a modified method and a small volume, 5 - 50 microlitre, of packed cells. The cells were labelled with Tc-99m in the range of 60 - 1500 MBq. The kit was reconstituted with saline and the pH was adjusted to 7.0. The cells were incubated with 1 ml of the kitsolution in 37 0 C for 5 min. The remaining Sn-ions were reduced by adding NaOCl and then the solution was centrifuged.The supernantant was discarded and the Tc-99m was added to the precipitate and incubated 37 0 C for 20 min and then washed 3 times. This labelling procedure was performed on both infected and on non-infected cells. Results: Ten samples of cells have been labelled. The best labelling result was obtained using 7 - 20 MBq per 10 microlitre of packed cells. The labelling efficiency was, on average, 35%. Conclusion: It is possible to label both infected and non-infected cells in very small volumes. The cells were visually inspected in a microscope and were viable after labelling. Furthermore, the cell distribution was traced in vivo in an animal model by a gamma camera

  4. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    Directory of Open Access Journals (Sweden)

    Konstantinos Mitsakakis

    2018-02-01

    Full Text Available Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  5. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    Science.gov (United States)

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  6. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    Science.gov (United States)

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  7. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans

    NARCIS (Netherlands)

    Williams, D; Tijssen, M; van Bruggen, G; Bosch, A; Insola, A; Di Lazzaro, V; Mazzone, P; Oliviero, A; Quartarone, A; Speelman, H; Brown, P

    2002-01-01

    We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from

  8. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  9. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert; Hall, Joanna M.; Rangkuti, Farania; Ho, YungShwen; Almond, Neil M.; Mitchell, Graham Howard; Pain, Arnab; Holder, Anthony A.; Blackman, Michael J.

    2012-01-01

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  10. Attributing Climate Conditions for Stable Malaria Transmission to Human Activity in sub-Saharan Africa

    Science.gov (United States)

    Sheldrake, L.; Mitchell, D.; Allen, M. R.

    2015-12-01

    Temperature and precipitation limit areas of stable malaria transmission, but the effects of climate change on the disease remain controversial. Previously, studies have not separated the influence of anthropogenic climate change and natural variability, despite being an essential step in the attribution of climate change impacts. Ensembles of 2900 simulations of regional climate in sub-Saharan Africa for the year 2013, one representing realistic conditions and the other how climate might have been in the absence of human influence, were used to force a P.falciparium climate suitability model developed by the Mapping Malaria Risk in Africa project. Strongest signals were detected in areas of unstable transmission, indicating their heightened sensitivity to climatic factors. Evidently, impacts of human-induced climate change were unevenly distributed: the probability of conditions being suitable for stable malaria transmission were substantially reduced (increased) in the Sahel (Greater Horn of Africa (GHOA), particularly in the Ethiopian and Kenyan highlands). The length of the transmission season was correspondingly shortened in the Sahel and extended in the GHOA, by 1 to 2 months, including in Kericho (Kenya), where the role of climate change in driving recent malaria occurrence is hotly contested. Human-induced warming was primarily responsible for positive anomalies in the GHOA, while reduced rainfall caused negative anomalies in the Sahel. The latter was associated with anthropogenic impacts on the West African Monsoon, but uncertainty in the RCM's ability to reproduce precipitation trends in the region weakens confidence in the result. That said, outputs correspond well with broad-scale changes in observed endemicity, implying a potentially important contribution of anthropogenic climate change to the malaria burden during the past century. Results support the health-framing of climate risk and help indicate hotspots of climate vulnerability, providing

  11. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  12. Molecular Detection of Plasmodium malariae/Plasmodium brasilianum in Non-Human Primates in Captivity in Costa Rica.

    Science.gov (United States)

    Fuentes-Ramírez, Alicia; Jiménez-Soto, Mauricio; Castro, Ruth; Romero-Zuñiga, Juan José; Dolz, Gaby

    2017-01-01

    One hundred and fifty-two blood samples of non-human primates of thirteen rescue centers in Costa Rica were analyzed to determine the presence of species of Plasmodium using thick blood smears, semi-nested multiplex polymerase chain reaction (SnM-PCR) for species differentiation, cloning and sequencing for confirmation. Using thick blood smears, two samples were determined to contain the Plasmodium malariae parasite, with SnM-PCR, a total of five (3.3%) samples were positive to P. malariae, cloning and sequencing confirmed both smear samples as P. malariae. One sample amplified a larger and conserved region of 18S rDNA for the genus Plasmodium and sequencing confirmed the results obtained microscopically and through SnM-PCR tests. Sequencing and construction of a phylogenetic tree of this sample revealed that the P. malariae/P. brasilianum parasite (GenBank KU999995) found in a howler monkey (Alouatta palliata) is identical to that recently reported in humans in Costa Rica. The SnM-PCR detected P. malariae/P. brasilianum parasite in different non-human primate species in captivity and in various regions of the southern Atlantic and Pacific coast of Costa Rica. The similarity of the sequences of parasites found in humans and a monkey suggests that monkeys may be acting as reservoirs of P.malariae/P. brasilianum, for which reason it is important, to include them in control and eradication programs.

  13. Relative roles of weather variables and change in human population in malaria: comparison over different states of India.

    Directory of Open Access Journals (Sweden)

    Prashant Goswami

    Full Text Available Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance and change in host (human population, in the change in disease load.We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases.For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence.The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India. Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.

  14. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  15. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Pierre Druilhe

    2005-11-01

    Full Text Available Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant.Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation.This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  16. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    and central venous pressure (CVP) on the distribution of cerebral outflow over the internal jugular veins and the vertebral plexus, using a mathematical model. Input to the model was a data set of beat-to-beat cerebral blood flow velocity and CVP measurements in 10 healthy subjects, during baseline rest......Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture...... and a Valsalva manoeuvre in the supine and standing position. The model, consisting of 2 jugular veins, each a chain of 10 units containing nonlinear resistances and capacitors, and a vertebral plexus containing a resistance, showed blood flow mainly through the internal jugular veins in the supine position...

  17. Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates

    NARCIS (Netherlands)

    Gómez-Pérez, Gloria P.; Legarda, Almudena; Muñoz, Jose; Sim, B. Kim Lee; Ballester, María Rosa; Dobaño, Carlota; Moncunill, Gemma; Campo, Joseph J.; Cisteró, Pau; Jimenez, Alfons; Barrios, Diana; Mordmüller, Benjamin; Pardos, Josefina; Navarro, Mireia; Zita, Cecilia Justino; Nhamuave, Carlos Arlindo; García-Basteiro, Alberto L.; Sanz, Ariadna; Aldea, Marta; Manoj, Anita; Gunasekera, Anusha; Billingsley, Peter F.; Aponte, John J.; James, Eric R.; Guinovart, Caterina; Antonijoan, Rosa M.; Kremsner, Peter G.; Hoffman, Stephen L.; Alonso, Pedro L.

    2015-01-01

    Controlled human malaria infection (CHMI) by mosquito bite is a powerful tool for evaluation of vaccines and drugs against Plasmodium falciparum malaria. However, only a small number of research centres have the facilities required to perform such studies. CHMI by needle and syringe could help to

  18. Cerebral carbohydrate cost of physical exertion in humans

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Ogoh, Shigehiko; Dawson, Ellen A

    2004-01-01

    Above a certain level of cerebral activation the brain increases its uptake of glucose more than that of O(2), i.e., the cerebral metabolic ratio of O(2)/(glucose + 12 lactate) decreases. This study quantified such surplus brain uptake of carbohydrate relative to O(2) in eight healthy males who...... to exhaustion (15.8 +/- 1.7 min; P carbohydrate was not substantiated...... and, consequently, exhaustive exercise involves a brain surplus carbohydrate uptake of a magnitude comparable with its glycogen content....

  19. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Dalsgaard, Mads K.; Steensberg, Adam

    2005-01-01

    We evaluated whether peripheral ammonia production during prolonged exercise enhances the uptake and subsequent accumulation of ammonia within the brain. Two studies determined the cerebral uptake of ammonia (arterial and jugular venous blood sampling combined with Kety-Schmidt-determined cerebral...... blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise...... exercise with glucose, and further to 16.1 ± 3.3 µM after the placebo trial (P

  20. The drug sensitivity and transmission dynamics of human malaria on Nias Island, North Sumatra, Indonesia.

    Science.gov (United States)

    Fryauff, D J; Leksana, B; Masbar, S; Wiady, I; Sismadi, P; Susanti, A I; Nagesha, H S; Syafruddin; Atmosoedjono, S; Bangs, M J; Baird, J K

    2002-07-01

    Nias Island, off the north-western coast of Sumatra, Indonesia, was one of the first locations in which chloroquine-resistant Plasmodium vivax malaria was reported. This resistance is of particular concern because its ancient megalithic culture and the outstanding surfing conditions make the island a popular tourist destination. International travel to and from the island could rapidly spread chloroquine-resistant strains of P. vivax across the planet. The threat posed by such strains, locally and internationally, has led to the routine and periodic re-assessment of the efficacy of antimalarial drugs and transmission potential on the island. Active case detection identified malaria in 124 (17%) of 710 local residents whereas passive case detection, at the central health clinic, confirmed malaria in 77 (44%) of 173 cases of presumed 'clinical malaria'. Informed consenting volunteers who had malarial parasitaemias were treated, according to the Indonesian Ministry of Health's recommendations, with sulfadoxine-pyrimethamine (SP) on day 0 (for P. falciparum) or with chloroquine (CQ) on days 0, 1 and 2 (for P. vivax). Each volunteer was then monitored for clinical and parasite response until day 28. Recurrent parasitaemia by day 28 treatment was seen in 29 (83%) of the 35 P. falciparum cases given SP (14, 11 and four cases showing RI, RII and RIII resistance, respectively). Recurrent parasitaemia was also observed, between day 11 and day 21, in six (21%) of the 28 P. vivax cases given CQ. Although the results of quantitative analysis confirmed only low prevalences of CQ-resistant P. vivax malaria, the prevalence of SP resistance among the P. falciparum cases was among the highest seen in Indonesia. When the parasites present in the volunteers with P. falciparum infections were genotyped, mutations associated with pyrimethamine resistance were found at high frequency in the dhfr gene but there was no evidence of selection for sulfadoxine resistance in the dhps gene

  1. Brain mitochondrial function in a murine model of cerebral malaria and the therapeutic effects of rhEPO

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hempel, Casper; Sjövall, Fredrik

    2013-01-01

    and no connection between disease severity and mitochondrial respiratory function. Treatment with rhEPO similarly had no effect on respiratory function. Thus cerebral metabolic dysfunction in CM does not seem to be directly linked to altered mitochondrial respiratory capacity as analyzed in brain homogenates ex...

  2. Role of Serum Lactate and Malarial Retinopathy in Prognosis and Outcome of Falciparum and Vivax Cerebral Malaria: A Prospective Cohort Study in Adult Assamese Tribes.

    Science.gov (United States)

    Chaudhari, Kaustubh Suresh; Uttarwar, Sahil Prashant; Tambe, Nikhil Narayan; Sharma, Rohan S; Takalkar, Anant Arunrao

    2016-01-01

    There is no comprehensive data or studies relating to clinical presentation and prognosis of cerebral malaria (CM) in the tribal settlements of Assam. High rates of transmission and deaths from complicated malaria guided us to conduct a prospective observational cohort study to evaluate the factors associated with poor outcome and prognosis in patients of CM. We admitted 112 patients to the Bandarpara and Damodarpur Tribal Health Centers (THCs) between 2011 and 2013 with a strict diagnosis of CM. We assessed the role of clinical, fundoscopy and laboratory findings (mainly lactic acid) in the immediate outcome in terms of death and recovery, duration of hospitalization, neurocognitive impairment, cranial nerve palsies and focal neurological deficit. The case fatality rate of CM was 33.03% and the prevalence of residual neurological sequelae at discharge was 16.07%. These are significantly higher than the previous studies. The mortality rate and neurological complications rate in patients with retinal whitening was 38.46% and 23.07%, with vessel changes was 25% and 18.75%, with retinal hemorrhage was 55.55% and 11.11% and with hyperlactatemia was 53.85% and 18.46%, respectively. Three patients of papilledema alone died. Our study suggests a strong correlation between hyperlactatemia, retinal changes (whitening, vessel changes and hemorrhage) and depth and duration of coma with longer duration of hospitalization, increased mortality, neurological sequelae and death. Plasmodium vivax mono-infection as a cause of CM has been confirmed. Prognostic evaluation of CM is useful for judicious allocation of resources in the THC.

  3. Role of serum lactate and malarial retinopathy in prognosis and outcome of falciparum and vivax cerebral Malaria: A prospective cohort study in adult assamese tribes

    Directory of Open Access Journals (Sweden)

    Kaustubh Suresh Chaudhari

    2016-01-01

    Full Text Available Introduction: There is no comprehensive data or studies relating to clinical presentation and prognosis of cerebral malaria (CM in the tribal settlements of Assam. High rates of transmission and deaths from complicated malaria guided us to conduct a prospective observational cohort study to evaluate the factors associated with poor outcome and prognosis in patients of CM. Materials and Methods: We admitted 112 patients to the Bandarpara and Damodarpur Tribal Health Centers (THCs between 2011 and 2013 with a strict diagnosis of CM. We assessed the role of clinical, fundoscopy and laboratory findings (mainly lactic acid in the immediate outcome in terms of death and recovery, duration of hospitalization, neurocognitive impairment, cranial nerve palsies and focal neurological deficit. Results: The case fatality rate of CM was 33.03% and the prevalence of residual neurological sequelae at discharge was 16.07%. These are significantly higher than the previous studies. The mortality rate and neurological complications rate in patients with retinal whitening was 38.46% and 23.07%, with vessel changes was 25% and 18.75%, with retinal hemorrhage was 55.55% and 11.11% and with hyperlactatemia was 53.85% and 18.46%, respectively. Three patients of papilledema alone died. Conclusion: Our study suggests a strong correlation between hyperlactatemia, retinal changes (whitening, vessel changes and hemorrhage and depth and duration of coma with longer duration of hospitalization, increased mortality, neurological sequelae and death. Plasmodium vivax mono-infection as a cause of CM has been confirmed. Prognostic evaluation of CM is useful for judicious allocation of resources in the THC.

  4. Altered regulation of Akt signaling with murine cerebral malaria, effects on long-term neuro-cognitive function, restoration with lithium treatment.

    Directory of Open Access Journals (Sweden)

    Minxian Dai

    Full Text Available Neurological and cognitive impairment persist in more than 20% of cerebral malaria (CM patients long after successful anti-parasitic treatment. We recently reported that long term memory and motor coordination deficits are also present in our experimental cerebral malaria model (ECM. We also documented, in a murine model, a lack of obvious pathology or inflammation after parasite elimination, suggesting that the long-term negative neurological outcomes result from potentially reversible biochemical and physiological changes in brains of ECM mice, subsequent to acute ischemic and inflammatory processes. Here, we demonstrate for the first time that acute ECM results in significantly reduced activation of protein kinase B (PKB or Akt leading to decreased Akt phosphorylation and inhibition of the glycogen kinase synthase (GSK3β in the brains of mice infected with Plasmodium berghei ANKA (PbA compared to uninfected controls and to mice infected with the non-neurotrophic P. berghei NK65 (PbN. Though Akt activation improved to control levels after chloroquine treatment in PbA-infected mice, the addition of lithium chloride, a compound which inhibits GSK3β activity and stimulates Akt activation, induced a modest, but significant activation of Akt in the brains of infected mice when compared to uninfected controls treated with chloroquine with and without lithium. In addition, lithium significantly reversed the long-term spatial and visual memory impairment as well as the motor coordination deficits which persisted after successful anti-parasitic treatment. GSK3β inhibition was significantly increased after chloroquine treatment, both in lithium and non-lithium treated PbA-infected mice. These data indicate that acute ECM is associated with abnormalities in cell survival pathways that result in neuronal damage. Regulation of Akt/GSK3β with lithium reduces neuronal degeneration and may have neuroprotective effects in ECM. Aberrant regulation of Akt

  5. Mechanisms regulating regional cerebral activation during dynamic handgrip in humans

    DEFF Research Database (Denmark)

    Williamson, James; Friedman, D B; Mitchell, J H

    1996-01-01

    Dynamic hand movement increases regional cerebral blood flow (rCBF) of the contralateral motor sensory cortex (MS1). This increase is eliminated by regional anesthesia of the working arm, indicating the importance of afferent neural input. The purpose of this study was to determine the specific...

  6. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    Science.gov (United States)

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  7. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Møller, Kirsten; Volianitis, Stefanos

    2002-01-01

    The development of hyperthermia during prolonged exercise in humans is associated with various changes in the brain, but it is not known whether the cerebral metabolism or the global cerebral blood flow (gCBF) is affected. Eight endurance-trained subjects completed two exercise bouts on a cycle...... ergometer. The gCBF and cerebral metabolic rates of oxygen, glucose, and lactate were determined with the Kety-Schmidt technique after 15 min of exercise when core temperature was similar across trials, and at the end of exercise, either when subjects remained normothermic (core temperature = 37.9 degrees C...... with control at the end of exercise (43 +/- 4 vs. 51 +/- 4 ml. 100 g(-1). min(-1); P glucose, and the cerebral metabolic rate was therefore higher at the end...

  8. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available Controlled human malaria infection (CHMI is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf sporozoite (SPZ-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%; 12 of 19 (63% on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8. The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44. Quantitative polymerase chain reaction (qPCR detected parasites an average of 79.8 hours (range 43.8-116.7 before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200. Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis

  9. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  10. In vivo assessment of the human cerebral microcirculation and its glycocalyx: A technical report.

    Science.gov (United States)

    Haeren, R H L; Rijkers, K; Schijns, O E M G; Dings, J; Hoogland, G; van Zandvoort, M A M J; Vink, H; van Overbeeke, J J

    2018-06-01

    The cerebral microcirculation and its glycocalyx, a matrix coating the luminal endothelium, are key regulators of capillary permeability and cerebral blood flow. Microvascular abnormalities are described in several neurological disorders. However, assessment of the cerebral microcirculation and glycocalyx has mainly been performed ex vivo. Here, the technical feasibility of in vivo assessment of the human cerebral microcirculation and its glycocalyx using sidestream dark field (SDF) imaging is discussed. Intraoperative assessment requires the application of a sterile drape covering the camera (slipcover). First, sublingual measurements with and without slipcover were performed in a healthy control to assess the impact of this slipcover. Subsequently, using SDF imaging, the sublingual (reference), cortical, and hippocampal microcirculation and glycocalyx were evaluated in patients who underwent resective brain surgery as treatment for drug-resistant temporal lobe epilepsy. Finally, vessel density, and the perfused boundary region (PBR), a validated gauge of glycocalyx health, were calculated using GlycoCheck © software. The addition of a slipcover affects vessel density and PBR values in a control subject. The cerebral measurements in five patients were more difficult to obtain than the sublingual ones. This was probably at least partly due to the introduction of a sterile slipcover. Results on vessel density and PBR showed similar patterns at all three measurement sites. This is the first report on in vivo assessment of the human cerebrovascular glycocalyx. Assessment of the glycocalyx is an additional application of in vivo imaging of the cerebral microcirculation using SDF technique. This method enables functional analysis of the microcirculation and glycocalyx, however the addition of a sterile slipcover affects the measurements. SDF imaging is a safe, quick, and straightforward technique to evaluate the functional cerebral microcirculation and glycocalyx

  11. Malaria deaths in a rural hospital

    African Journals Online (AJOL)

    An audit of all malaria deaths that occurred at Manguzi Hospital between 1 October 1998 to 30 September 1999 was performed. There were 41 deaths from malaria in this time period, which was many more than for the previous three years. The most common causes of death were cerebral malaria, pulmonary oedema, ...

  12. Evidence for developmental programming of cerebral laterality in humans.

    Directory of Open Access Journals (Sweden)

    Alexander Jones

    2011-02-01

    Full Text Available Adverse fetal environments are associated with depression, reduced cognitive ability and increased stress responsiveness in later life, but underlying mechanisms are unknown. Environmental pressures on the fetus, resulting from variations in placental function and maternal nutrition, health and stress might alter neurodevelopment, promoting the development of some brain regions over others. As asymmetry of cerebral activity, with greater right hemisphere activity, has been associated with psychopathology, we hypothesized that regional specialization during fetal life might be reflected persistently in the relative activity of the cerebral hemispheres. We tested this hypothesis in 140 healthy 8-9 year-old children, using tympanic membrane temperature to assess relative blood flow to the cerebral hemispheres at rest and following psychosocial stress (Trier Social Stress Test for Children. Their birth weight and placental weight had already been measured when their mothers took part in a previous study of pregnancy outcomes. We found that children who had a smaller weight at birth had evidence of greater blood flow to the right hemisphere than to the left hemisphere (r = -.09, P = .29 at rest; r = -.18, P = .04 following stress. This finding was strengthened if the children had a relatively low birth weight for their placental weight (r = -.17, P = .05 at rest; r = -.31, P = .0005 following stress. Our findings suggest that lateralization of cerebral activity is influenced persistently by early developmental experiences, with possible consequences for long-term neurocognitive function.

  13. Effects of midazolam on cerebral blood flow in human volunteers

    International Nuclear Information System (INIS)

    Forster, A.; Juge, O.; Morel, D.

    1982-01-01

    The effects of intravenously administered midazolam on cerebral blood flow were evaluated in eight healthy volunteers using the 133 Xe inhalation technique. Six minutes after an intravenous dose of 0.15 mg/kg midazolam, the cerebral blood flow decreased significantly (P less than 0.001) from a value of 40.6 +/- 3.3 to a value of 27.0 +/- 5.0 ml . 100 g-1 . min-1. Cerebrovascular resistance (CVR) increased from 2.8 +/- 0.2 to 3.9 to 0.6 mmHg/(ml . 100 g-1 . min-1)(P less than 0.001). Mean arterial blood pressure decreased significantly (P less than 0.05) from 117 +/- 8 to 109 +/- 9 mmHg and arterial carbon dioxide tension increased from 33.9 +/- 2.3 to 38.6 +/- 3.2 mmHg (P less than 0.05). Arterial oxygen tension remained stable throughout the study, 484 +/- 95 mmHg before the administration of midazolam and 453 +/- 76 mmHg after. All the subjects slept after the injection of the drug and had anterograde amnesia of 24.5 +/- 5 min. The decrease in mean arterial blood pressure was probably not important since it remained in the physiologic range for cerebral blood flow autoregulation. The increase in arterial carbon dioxide tension observed after the midazolam injection may have partially counteracted the effect of this new benzodiazepine on cerebral blood flow. Our data suggest that midazolam might be a safe agent to use for the induction of anethesia in neurosurgical patients with intracranial hypertension

  14. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...

  15. Amodiaquine analogues containing NO-donor substructures: synthesis and their preliminary evaluation as potential tools in the treatment of cerebral malaria.

    Science.gov (United States)

    Bertinaria, Massimo; Guglielmo, Stefano; Rolando, Barbara; Giorgis, Marta; Aragno, Cristina; Fruttero, Roberta; Gasco, Alberto; Parapini, Silvia; Taramelli, Donatella; Martins, Yuri C; Carvalho, Leonardo J M

    2011-05-01

    The synthesis and physico-chemical properties of novel compounds obtained by conjugation of amodiaquine with moieties containing either furoxan or nitrooxy NO-donor substructures are described. The synthesised compounds were tested in vitro against both the chloroquine sensitive, D10 and the chloroquine resistant, W-2 strains of Plasmodium falciparum (P. falciparum). Most of the compounds showed an antiplasmodial activity comparable to that of the parent drug. By comparing the activities of simple related structures devoid of the ability to release NO, it appears that the contribution of NO to the antiplasmodial action in vitro is marginal. All the compounds were able to relax rat aorta strips with a NO-dependent mechanism, thus showing their capacity to release NO in the vessels. A preliminary in vivo study using Plasmodium berghei ANKA-infected mice showed a trend for prolonged survival of mice with cerebral malaria treated with compound 40, which is potent and fast amodiaquine-derived NO-donor, when compared with amodiaquine alone or with compound 31, a milder NO-donor. The two compounds showed in vivo antiplasmodial activity similar to that of amodiaquine. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Noninvasive MRI measurement of the absolute cerebral blood volume-cerebral blood flow relationship during visual stimulation in healthy humans.

    Science.gov (United States)

    Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd

    2014-09-01

    The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.

  17. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a "fast PCR enzyme". In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the "fast PCR enzyme", with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.

  18. Testing in mice the hypothesis that melanin is protective in malaria infections.

    Directory of Open Access Journals (Sweden)

    Michael Waisberg

    Full Text Available Malaria has had the largest impact of any infectious disease on shaping the human genome, exerting enormous selective pressure on genes that improve survival in severe malaria infections. Modern humans originated in Africa and lost skin melanization as they migrated to temperate regions of the globe. Although it is well documented that loss of melanization improved cutaneous Vitamin D synthesis, melanin plays an evolutionary ancient role in insect immunity to malaria and in some instances melanin has been implicated to play an immunoregulatory role in vertebrates. Thus, we tested the hypothesis that melanization may be protective in malaria infections using mouse models. Congenic C57BL/6 mice that differed only in the gene encoding tyrosinase, a key enzyme in the synthesis of melanin, showed no difference in the clinical course of infection by Plasmodium yoelii 17XL, that causes severe anemia, Plasmodium berghei ANKA, that causes severe cerebral malaria or Plasmodium chabaudi AS that causes uncomplicated chronic disease. Moreover, neither genetic deficiencies in vitamin D synthesis nor vitamin D supplementation had an effect on survival in cerebral malaria. Taken together, these results indicate that neither melanin nor vitamin D production improve survival in severe malaria.

  19. Choosing a Drug to Prevent Malaria

    Science.gov (United States)

    ... Malaria About Malaria FAQs Fast Facts Disease Biology Ecology Human Factors Sickle Cell Mosquitoes Parasites Where Malaria ... medicines, also consider the possibility of drug-drug interactions with other medicines that the person might be ...

  20. mSpray: a mobile phone technology to improve malaria control efforts and monitor human exposure to malaria control pesticides in Limpopo, South Africa.

    Science.gov (United States)

    Eskenazi, Brenda; Quirós-Alcalá, Lesliam; Lipsitt, Jonah M; Wu, Lemuel D; Kruger, Philip; Ntimbane, Tzundzukani; Nawn, John Burns; Bornman, M S Riana; Seto, Edmund

    2014-07-01

    Recent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based "mSpray" app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans

  1. FTIR Imaging of Brain Tissue Reveals Crystalline Creatine Deposits Are an ex Vivo Marker of Localized Ischemia during Murine Cerebral Malaria: General Implications for Disease Neurochemistry

    Science.gov (United States)

    2012-01-01

    Phosphocreatine is a major cellular source of high energy phosphates, which is crucial to maintain cell viability under conditions of impaired metabolic states, such as decreased oxygen and energy availability (i.e., ischemia). Many methods exist for the bulk analysis of phosphocreatine and its dephosphorylated product creatine; however, no method exists to image the distribution of creatine or phosphocreatine at the cellular level. In this study, Fourier transform infrared (FTIR) spectroscopic imaging has revealed the ex vivo development of creatine microdeposits in situ in the brain region most affected by the disease, the cerebellum of cerebral malaria (CM) diseased mice; however, such deposits were also observed at significantly lower levels in the brains of control mice and mice with severe malaria. In addition, the number of deposits was observed to increase in a time-dependent manner during dehydration post tissue cutting. This challenges the hypotheses in recent reports of FTIR spectroscopic imaging where creatine microdeposits found in situ within thin sections from epileptic, Alzheimer’s (AD), and amlyoid lateral sclerosis (ALS) diseased brains were proposed to be disease specific markers and/or postulated to contribute to the brain pathogenesis. As such, a detailed investigation was undertaken, which has established that the creatine microdeposits exist as the highly soluble HCl salt or zwitterion and are an ex-vivo tissue processing artifact and, hence, have no effect on disease pathogenesis. They occur as a result of creatine crystallization during dehydration (i.e., air-drying) of thin sections of brain tissue. As ischemia and decreased aerobic (oxidative metabolism) are common to many brain disorders, regions of elevated creatine-to-phosphocreatine ratio are likely to promote crystal formation during tissue dehydration (due to the lower water solubility of creatine relative to phosphocreatine). The results of this study have demonstrated that

  2. Dissecting human cerebral organoids and fetal neocortex using single-cell RNAseq

    Science.gov (United States)

    Treutlein, Barbara

    Cerebral organoids - three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells - have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  3. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    Science.gov (United States)

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  4. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  5. Duffy blood group system and the malaria adaptation process in humans

    Directory of Open Access Journals (Sweden)

    Gledson Barbosa de Carvalho

    2011-02-01

    Full Text Available Malaria is an acute infectious disease caused by the protozoa of the genus Plasmodium. The antigens of the Duffy Blood Group System, in addition to incompatibilities in transfusions and hemolytic disease of the newborn, are of great interest in medicine due to their association with the invasion of red blood cells by the parasite Plasmodium vivax. For invasions to occur an interaction between the parasites and antigens of the Duffy Blood Group System is necessary. In Caucasians six antigens are produced by the Duffy locus (Fya, Fyb, F3, F4, F5 and F6. It has been observed that Fy(a-b- individuals are resistant to Plasmodium knowlesi and P. vivax infection, because the invasion requires at least one of these antigens. The P. vivax Duffy Binding Protein (PvDBP is functionally important in the invasion process of these parasites in Duffy / DARC positive humans. The proteins or fractions may be considered, therefore, an important and potential inoculum to be used in immunization against malaria.

  6. Incidence of human malaria infection in central areas of balochistan: mastung and khuzdar

    International Nuclear Information System (INIS)

    Yasinzai, M.I.; Kakarsulemankhet, J.K.

    2007-01-01

    To determine the incidence of malarial parasites in human population of Mastung and Khuzdar areas of Pakistan. Malarial parasites were identified in the blood slides of suspected patients of the disease from July, 2004 to June, 2006 in 7852 subjects. Out of 7852 suspected cases of malaria, 2092 (26.64 %) were found to be positive for malarial parasite. In Mastung, out of 3644 suspected cases, 896 (24.58 %) were found to be positive for malarial parasites with 52.67 % (472/896) identified as P. vivax and 47.32 % (424/ 896) as P. falciparum infection. The highest rate of infections (73.13 %) was recorded in August while lowest rate of infection (24.27%) was noted in October. In Khuzdar, out of 4208 suspected cases, 1196 (28.42 %) were found to be positive for malarial parasites with 69.89 % (836/1196) identified as P. vivax. and 30.10 % (360/1196) as P. falciparum infection. The highest rate of infections (84.84%) was recorded in December while the lowest rate of infection (56.06%) was noted in October. There was no case of Plasmodium malaria and P. ovale infection observed in the present study. An over all prevalence rate of 62.52 % of P. vivax was seen. There is no association between types of infection and age of subjects. This high prevalence pose a serious public health threat. (author)

  7. Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s

    NARCIS (Netherlands)

    Verhulst, N.O.; Mukabana, W.R.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae

  8. Differential attractiveness of humans to the African malaria vector Anopheles gambiae Giles : effects of host characteristics and parasite infection

    NARCIS (Netherlands)

    Mukabana, W.R.

    2002-01-01

    The results of a series of studies designed to understand the principal factors that determine the differential attractiveness of humans to the malaria vector Anopheles

  9. The burden of co-infection with human immunodeficiency virus type 1 and malaria in pregnant women in sub-saharan Africa

    NARCIS (Netherlands)

    ter Kuile, Feiko O.; Parise, Monica E.; Verhoeff, Francine H.; Udhayakumar, Venkatachalam; Newman, Robert D.; van Eijk, Anne M.; Rogerson, Stephen J.; Steketee, Richard W.

    2004-01-01

    In sub-Saharan Africa, human immunodeficiency virus (HIV) and malaria are among the leading causes of morbidity during pregnancy. We reviewed available information collected since the first report 15 years ago that HIV impaired the ability of pregnant women to control malaria parasitemia. Results

  10. Cerebrospinal fluid kynurenine and kynurenic acid concentrations are associated with coma duration and long-term neurocognitive impairment in Ugandan children with cerebral malaria.

    Science.gov (United States)

    Holmberg, Dag; Franzén-Röhl, Elisabeth; Idro, Richard; Opoka, Robert O; Bangirana, Paul; Sellgren, Carl M; Wickström, Ronny; Färnert, Anna; Schwieler, Lilly; Engberg, Göran; John, Chandy C

    2017-07-28

    One-fourth of children with cerebral malaria (CM) retain cognitive sequelae up to 2 years after acute disease. The kynurenine pathway of the brain, forming neuroactive metabolites, e.g. the NMDA-receptor antagonist kynurenic acid (KYNA), has been implicated in long-term cognitive dysfunction in other CNS infections. In the present study, the association between the kynurenine pathway and neurologic/cognitive complications in children with CM was investigated. Cerebrospinal fluid (CSF) concentrations of KYNA and its precursor kynurenine in 69 Ugandan children admitted for CM to Mulago Hospital, Kampala, Uganda, between 2008 and 2013 were assessed. CSF kynurenine and KYNA were compared to CSF cytokine levels, acute and long-term neurologic complications, and long-term cognitive impairments. CSF kynurenine and KYNA from eight Swedish children without neurological or infectious disease admitted to Astrid Lindgren's Children's Hospital were quantified and used for comparison. Children with CM had significantly higher CSF concentration of kynurenine and KYNA than Swedish children (P coma duration in children of all ages (P = 0.003 and 0.04, respectively), and CSF kynurenine concentrations were associated with worse overall cognition (P = 0.056) and attention (P = 0.003) at 12-month follow-up in children ≥5 years old. CSF KYNA and kynurenine are elevated in children with CM, indicating an inhibition of glutamatergic and cholinergic signaling. This inhibition may lead acutely to prolonged coma and long-term to impairment of attention and cognition.

  11. Male-female differences in upregulation of vasoconstrictor responses in human cerebral arteries.

    Directory of Open Access Journals (Sweden)

    Hilda Ahnstedt

    Full Text Available BACKGROUND AND PURPOSE: Male-female differences may significantly impact stroke prevention and treatment in men and women, however underlying mechanisms for sexual dimorphism in stroke are not understood. We previously found in males that cerebral ischemia upregulates contractile receptors in cerebral arteries, which is associated with lower blood flow. The present study investigates if cerebral arteries from men and women differ in cerebrovascular receptor upregulation. EXPERIMENTAL APPROACH: Freshly obtained human cerebral arteries were placed in organ culture, an established model for studying receptor upregulation. 5-hydroxtryptamine type 1B (5-HT1B, angiotensin II type 1 (AT1 and endothelin-1 type A and B (ETA and ETB receptors were evaluated using wire myograph for contractile responses, real-time PCR for mRNA and immunohistochemistry for receptor expression. KEY RESULTS: Vascular sensitivity to angiotensin II and endothelin-1 was markedly lower in cultured cerebral arteries from women as compared to men. ETB receptor-mediated contraction occurred in male but not female arteries. Interestingly, there were similar upregulation in mRNA and expression of 5-HT1B, AT1, and ETB receptors and in local expression of Ang II after organ culture. CONCLUSIONS AND IMPLICATIONS: In spite of receptor upregulation after organ culture in both sexes, cerebral arteries from women were significantly less responsive to vasoconstrictors angiotensin II and endothelin-1 as compared to arteries from men. This suggests receptor coupling and/or signal transduction mechanisms involved in cerebrovascular contractility may be suppressed in females. This is the first study to demonstrate sex differences in the vascular function of human brain arteries.

  12. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  13. Dynamic interactions between musical, cardiovascular, and cerebral rhythms in humans.

    Science.gov (United States)

    Bernardi, Luciano; Porta, Cesare; Casucci, Gaia; Balsamo, Rossella; Bernardi, Nicolò F; Fogari, Roberto; Sleight, Peter

    2009-06-30

    Reactions to music are considered subjective, but previous studies suggested that cardiorespiratory variables increase with faster tempo independent of individual preference. We tested whether compositions characterized by variable emphasis could produce parallel instantaneous cardiovascular/respiratory responses and whether these changes mirrored music profiles. Twenty-four young healthy subjects, 12 musicians (choristers) and 12 nonmusician control subjects, listened (in random order) to music with vocal (Puccini's "Turandot") or orchestral (Beethoven's 9th Symphony adagio) progressive crescendos, more uniform emphasis (Bach cantata), 10-second period (ie, similar to Mayer waves) rhythmic phrases (Giuseppe Verdi's arias "Va pensiero" and "Libiam nei lieti calici"), or silence while heart rate, respiration, blood pressures, middle cerebral artery flow velocity, and skin vasomotion were recorded.Common responses were recognized by averaging instantaneous cardiorespiratory responses regressed against changes in music profiles and by coherence analysis during rhythmic phrases. Vocal and orchestral crescendos produced significant (P=0.05 or better) correlations between cardiovascular or respiratory signals and music profile, particularly skin vasoconstriction and blood pressures, proportional to crescendo, in contrast to uniform emphasis, which induced skin vasodilation and reduction in blood pressures. Correlations were significant both in individual and group-averaged signals. Phrases at 10-second periods by Verdi entrained the cardiovascular autonomic variables. No qualitative differences in recorded measurements were seen between musicians and nonmusicians. Music emphasis and rhythmic phrases are tracked consistently by physiological variables. Autonomic responses are synchronized with music, which might therefore convey emotions through autonomic arousal during crescendos or rhythmic phrases.

  14. Human cerebral venous outflow pathway depends on posture and central venous pressure

    Science.gov (United States)

    Gisolf, J; van Lieshout, J J; van Heusden, K; Pott, F; Stok, W J; Karemaker, J M

    2004-01-01

    Internal jugular veins are the major cerebral venous outflow pathway in supine humans. In upright humans the positioning of these veins above heart level causes them to collapse. An alternative cerebral outflow pathway is the vertebral venous plexus. We set out to determine the effect of posture and central venous pressure (CVP) on the distribution of cerebral outflow over the internal jugular veins and the vertebral plexus, using a mathematical model. Input to the model was a data set of beat-to-beat cerebral blood flow velocity and CVP measurements in 10 healthy subjects, during baseline rest and a Valsalva manoeuvre in the supine and standing position. The model, consisting of 2 jugular veins, each a chain of 10 units containing nonlinear resistances and capacitors, and a vertebral plexus containing a resistance, showed blood flow mainly through the internal jugular veins in the supine position, but mainly through the vertebral plexus in the upright position. A Valsalva manoeuvre while standing completely re-opened the jugular veins. Results of ultrasound imaging of the right internal jugular vein cross-sectional area at the level of the laryngeal prominence in six healthy subjects, before and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R2 = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway. The internal jugular veins are collapsed in the standing position and blood is shunted to an alternative venous pathway, but a marked increase in CVP while standing completely re-opens the jugular veins. PMID:15284348

  15. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi

    Science.gov (United States)

    Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio

    2018-01-01

    A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses. PMID:29370297

  16. Human Rights and the Global Fund to Fight AIDS, Tuberculosis and Malaria

    Science.gov (United States)

    Jürgens, Ralf; Lim, Hyeyoung; Timberlake, Susan; Smith, Matthew

    2017-01-01

    Abstract The Global Fund to Fight AIDS, Tuberculosis and Malaria was created to greatly expand access to basic services to address the three diseases in its name. From its beginnings, its governance embodied some human rights principles: civil society is represented on its board, and the country coordination mechanisms that oversee funding requests to the Global Fund include representatives of people affected by the diseases. The Global Fund’s core strategies recognize that the health services it supports would not be effective or cost-effective without efforts to reduce human rights-related barriers to access and utilization of health services, particularly those faced by socially marginalized and criminalized persons. Basic human rights elements were written into Global Fund grant agreements, and various technical support measures encouraged the inclusion in funding requests of programs to reduce human rights-related barriers. A five-year initiative to provide intensive technical and financial support for the scaling up of programs to reduce these barriers in 20 countries is ongoing. PMID:29302175

  17. Entomological aspects and the role of human behaviour in malaria transmission in a highland region of the Republic of Yemen.

    Science.gov (United States)

    Al-Eryani, Samira M A; Kelly-Hope, Louise; Harbach, Ralph E; Briscoe, Andrew G; Barnish, Guy; Azazy, Ahmed; McCall, Philip J

    2016-03-01

    The Republic of Yemen has the highest incidence of malaria in the Arabian Peninsula, yet little is known of its vectors or transmission dynamics. A 24-month study of the vectors and related epidemiological aspects of malaria transmission was conducted in two villages in the Taiz region in 2004-2005. Cross-sectional blood film surveys recorded an overall malaria infection rate of 15.3 % (250/1638), with highest rates exceeding 30 % in one village in May and December 2005. With one exception, Plasmodium malariae, all infections were P. falciparum. Seven Anopheles species were identified among 3407 anophelines collected indoors using light traps (LT) and pyrethrum knockdown catches (PKD): Anopheles arabiensis (86.9 %), An. sergentii (9 %), An. azaniae, An. dthali, An. pretoriensis, An. coustani and An. algeriensis. Sequences for the standard barcode region of the mitochondrial COI gene confirmed the presence of two morphological forms of An. azaniae, the typical form and a previously unrecognized form not immediately identifiable as An. azaniae. ELISA detected Plasmodium sporozoites in 0.9 % of 2921 An. arabiensis (23 P. falciparum, two P. vivax) confirming this species as the primary malaria vector in Yemen. Plasmodium falciparum sporozoites were detected in An. sergentii (2/295) and a single female of An. algeriensis, incriminating both species as malaria vectors for the first time in Yemen. A vector in both wet and dry seasons, An. arabiensis was predominantly anthropophilic (human blood index = 0.86) with an entomological inoculation rate of 1.58 infective bites/person/year. Anopheles sergentii fed on cattle (67.3 %) and humans (48.3; 20.7 % mixed both species), but only 14.7 % were found in PKDs, indicating predominantly exophilic behaviour. A GIS analysis of geographic and socio-economic parameters revealed that An. arabiensis were significantly higher (P < 0.001) in houses with televisions, most likely due to the popular evening habit of viewing television

  18. Malaria burden in irregular migrants returning to Sri Lanka from human smuggling operations in West Africa and implications for a country reaching malaria elimination.

    Science.gov (United States)

    Wickramage, K; Galappaththy, G N L

    2013-05-01

    The number of malaria cases among irregular migrants returning to Sri Lanka has not been investigated. In the first 6 months of 2012 we screened 287 irregular migrants returning from seven West African nations to Sri Lanka for malaria to ascertain the risk of infection during migration. Four men were diagnosed as having malaria: three with Plasmodium falciparum had travelled to Togo and one with P. vivax had travelled to Guinea. The risk of contracting malaria was 14 cases per 1000. Facilitating a safe return with selective screening for at-risk inbound migrants flows is desirable as Sri Lanka advances towards its goal of malaria elimination.

  19. Parasites causing cerebral falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Moussiliou, Azizath; Lavstsen, Thomas

    2017-01-01

    Background: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates the binding and accumulation of infected erythrocytes (IE) to blood vessels and tissues. Specific interactions have been described between PfEMP1 and human endothelial proteins CD36, intercellular adhesion molecule-1...

  20. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe.

    Directory of Open Access Journals (Sweden)

    Susanne H Sheehy

    Full Text Available Controlled human malaria infection (CHMI studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection.We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18. Six participants received 2,500 sporozoites intradermally (ID, six received 2,500 sporozoites intramuscularly (IM and six received 25,000 sporozoites IM.Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test.2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants.ClinicalTrials.gov NCT01465048.

  1. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  2. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  3. Differences in female and male development of the human cerebral cortex from birth to age 16

    OpenAIRE

    Hanlon, Harriet Wehner

    1994-01-01

    This study compares the development of the human cerebral cortex of 224 girls and 284 boys in a series of cross-sectional analyses as measured by EEG coherence on normal children's brains (longisectional design). Correlations of these EEG readings taken from all brain regions between a mean age of 6 months and 16 years yield measures of synaptic communication. Time series of these measures reflect the changing growth patterns across the 16 years. Time series of mean EE...

  4. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    Science.gov (United States)

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  5. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil.

    Science.gov (United States)

    Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb

    2011-08-01

    Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.

  6. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Mathenge Evan

    2006-11-01

    Full Text Available Abstract Background African malaria vectors bite predominantly indoors at night so sleeping under an Insecticide-Treated Net (ITN can greatly reduce malaria risk. Behavioural adaptation by mosquitoes to increasing ITN coverage could allow vector mosquitoes to bite outside of peak sleeping hours and undermine efficacy of this key malaria prevention measure. Methods High coverage with largely untreated nets has been achieved in the Kilombero Valley, southern Tanzania through social marketing programmes. Direct surveys of nightly biting activity by An. gambiae Giles were conducted in the area before (1997 and after (2004 implementation of ITN promotion. A novel analytical model was applied to estimate the effective protection provided by an ITN, based on published experimental hut trials combined with questionnaire surveys of human sleeping behaviour and recorded mosquito biting patterns. Results An. gambiae was predominantly endophagic and nocturnal in both surveys: Approximately 90% and 80% of exposure occurred indoors and during peak sleeping hours, respectively. ITNs consistently conferred >70% protection against exposure to malaria transmission for users relative to non-users. Conclusion As ITN coverage increases, behavioural adaptation by mosquitoes remains a future possibility. The approach described allows comparison of mosquito biting patterns and ITN efficacy at multiple study sites and times. Initial results indicate ITNs remain highly effective and should remain a top-priority intervention. Combined with recently developed transmission models, this approach allows rapid, informative and cost-effective preliminary comparison of diverse control strategies in terms of protection against exposure before more costly and intensive clinical trials.

  7. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation.

    Science.gov (United States)

    Brasil, Patrícia; Zalis, Mariano Gustavo; de Pina-Costa, Anielle; Siqueira, Andre Machado; Júnior, Cesare Bianco; Silva, Sidnei; Areas, André Luiz Lisboa; Pelajo-Machado, Marcelo; de Alvarenga, Denise Anete Madureira; da Silva Santelli, Ana Carolina Faria; Albuquerque, Hermano Gomes; Cravo, Pedro; Santos de Abreu, Filipe Vieira; Peterka, Cassio Leonel; Zanini, Graziela Maria; Suárez Mutis, Martha Cecilia; Pissinatti, Alcides; Lourenço-de-Oliveira, Ricardo; de Brito, Cristiana Ferreira Alves; de Fátima Ferreira-da-Cruz, Maria; Culleton, Richard; Daniel-Ribeiro, Cláudio Tadeu

    2017-10-01

    Malaria was eliminated from southern and southeastern Brazil over 50 years ago. However, an increasing number of autochthonous episodes attributed to Plasmodium vivax have recently been reported from the Atlantic Forest region of Rio de Janeiro state. As the P vivax-like non-human primate malaria parasite species Plasmodium simium is locally enzootic, we performed a molecular epidemiological investigation to determine whether zoonotic malaria transmission is occurring. We examined blood samples from patients presenting with signs or symptoms suggestive of malaria as well as from local howler monkeys by microscopy and PCR. Samples were included from individuals if they had a history of travel to or resided in areas within the Rio de Janeiro Atlantic Forest, but not if they had malaria prophylaxis, blood transfusion or tissue or organ transplantation, or had travelled to known malaria endemic areas in the preceding year. Additionally, we developed a molecular assay based on sequencing of the parasite mitochondrial genome to distinguish between P vivax and P simium, and applied this assay to 33 cases from outbreaks that occurred in 2015, and 2016. A total of 49 autochthonous malaria cases were reported in 2015-16. Most patients were male, with a mean age of 44 years (SD 14·6), and 82% lived in urban areas of Rio de Janeiro state and had visited the Atlantic Forest for leisure or work-related activities. 33 cases were used for mitochondrial DNA sequencing. The assay was successfully performed for 28 samples, and all were shown to be P simium, indicative of zoonotic transmission of this species to human beings in this region. Sequencing of the whole mitochondrial genome of three of these cases showed that P simium is most closely related to P vivax parasites from South America. The malaria outbreaks in this region were caused by P simium, previously considered to be a monkey-specific malaria parasite, related to but distinct from P vivax, and which has never

  8. Plasmodium falciparum CS protein - prime malaria vaccine candidate: definition of the human CTL domain and analysis of its variation

    Directory of Open Access Journals (Sweden)

    Denise L. Doolan

    1992-01-01

    Full Text Available Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL specific for epitopes within the circumsporozoite (CS protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.

  9. Clinical pattern of severe Plasmodium falciparum malaria in Sudan in an area characterized by seasonal and unstable malaria transmission

    DEFF Research Database (Denmark)

    Giha, H A; Elghazali, G; A-Elgadir, T M E

    2005-01-01

    A hospital-based study was carried out in Gedarif town, eastern Sudan, an area of markedly unstable malaria transmission. Among the 2488 diagnosed malaria patients, 4.4% fulfilled the WHO criteria for severe malaria, and seven died of cerebral malaria. The predominant complication was severe mala...

  10. About Malaria

    Science.gov (United States)

    ... Emergency Consultations, and General Public. Contact Us About Malaria Recommend on Facebook Tweet Share Compartir Malaria is ... from sub-Saharan Africa and South Asia. About Malaria Topics FAQs Frequently Asked Question, Incubation period, uncomplicated & ...

  11. Endogenous neurogenesis in the human brain following cerebral infarction.

    Science.gov (United States)

    Minger, Stephen L; Ekonomou, Antigoni; Carta, Eloisa M; Chinoy, Amish; Perry, Robert H; Ballard, Clive G

    2007-01-01

    Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual. Interestingly, a large number of neural stem cells, vascular endothelial growth factor-immunopositive cells and new blood vessels were observed only around the region of infarction, and none in the corresponding brain areas of the healthy control. In addition, an increased number of neural stem cells was observed in the neurogenic region of the lateral ventricle wall. Our results suggest increased endogenous neurogenesis associated with neovascularization and migration of newly-formed cells towards a region of cerebrovascular damage in the adult human brain and highlight possible mechanisms underlying this process.

  12. Cross-population myelination covariance of human cerebral cortex.

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Nanyin

    2017-09-01

    Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  14. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  15. Detection of cerebral NAD+ in humans at 7T.

    Science.gov (United States)

    de Graaf, Robin A; De Feyter, Henk M; Brown, Peter B; Nixon, Terence W; Rothman, Douglas L; Behar, Kevin L

    2017-09-01

    To develop 1 H-based MR detection of nicotinamide adenine dinucleotide (NAD + ) in the human brain at 7T and validate the 1 H results with NAD + detection based on 31 P-MRS. 1 H-MR detection of NAD + was achieved with a one-dimensional double-spin-echo method on a slice parallel to the surface coil transceiver. Perturbation of the water resonance was avoided through the use of frequency-selective excitation. 31 P-MR detection of NAD + was performed with an unlocalized pulse-acquire sequence. Both 1 H- and 31 P-MRS allowed the detection of NAD + signals on every subject in 16 min. Spectral fitting provided an NAD + concentration of 107 ± 28 μM for 1 H-MRS and 367 ± 78 μM and 312 ± 65 μM for 31 P-MRS when uridine diphosphate glucose (UDPG) was excluded and included, respectively, as an overlapping signal. NAD + detection by 1 H-MRS is a simple method that comes at the price of reduced NMR visibility. NAD + detection by 31 P-MRS has near-complete NMR visibility, but it is complicated by spectral overlap with NADH and UDPG. Overall, the 1 H- and 31 P-MR methods both provide exciting opportunities to study NAD + metabolism on human brain in vivo. © 2016 International Society for Magnetic Resonance in Medicine. Magn Reson Med 78:828-835, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise

    DEFF Research Database (Denmark)

    Avnstorp, Magnus B; Rasmussen, Peter; Brassard, Patrice

    2015-01-01

    both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION: Challenging exercise in hypoxia for 30 min affected muscle......Avnstorp, Magnus B., Peter Rasmussen, Patrice Brassard, Thomas Seifert, Morten Overgaard, Peter Krustrup, Niels H. Secher, and Nikolai B. Nordsborg. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 16:000-000, 2015.-Background...... intense exercise is carried out in hypoxia and monitored the influence of muscle metabolism for changes in arterial variables. METHODS: On two separate days, in random order, 30 min cycling exercise was performed in either hypoxia (10% O2) or normoxia at an intensity that was exhaustive in the hypoxic...

  17. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    Science.gov (United States)

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Predictors of childhood severe malaria in a densely populated area ...

    African Journals Online (AJOL)

    Coma, convulsions and unconsciousness were more indicative of cerebral malaria. Hemoglobin and blood glucose levels decreased significantly in severe malaria patients compared with uncomplicated malaria patients or controls (P < 0.001). On the contrary, blood transaminases and CRP levels increased significantly in ...

  19. Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Qiu, Y.T.; Maliepaard, C.A.; Verduyn, W.; Haasnoot, G.W.; Claas, F.H.J.; Mumm, R.; Bouwmeester, H.J.; Takken, W.; Loon, van J.J.A.; Smallegange, R.C.

    2013-01-01

    Chemical cues are considered to be the most important cues for mosquitoes to find their hosts and humans can be ranked for attractiveness to mosquitoes based on the chemical cues they emit. Human leukocyte antigen (HLA) genes are considered to be involved in the regulation of human body odor and may

  20. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  1. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Kei Kitamura

    Full Text Available Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8. PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.

  2. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    Science.gov (United States)

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  3. Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT in acute malaria

    Directory of Open Access Journals (Sweden)

    Woodberry Tonia

    2009-06-01

    Full Text Available Abstract Background The Plasmodium purine salvage enzyme, hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT can protect mice against Plasmodium yoelii pRBC challenge in a T cell-dependent manner and has, therefore, been proposed as a novel vaccine candidate. It is not known whether natural exposure to Plasmodium falciparum stimulates HGXPRT T cell reactivity in humans. Methods PBMC and plasma collected from malaria-exposed Indonesians during infection and 7–28 days after anti-malarial therapy, were assessed for HGXPRT recognition using CFSE proliferation, IFNγ ELISPOT assay and ELISA. Results HGXPRT-specific T cell proliferation was found in 44% of patients during acute infection; in 80% of responders both CD4+ and CD8+ T cell subsets proliferated. Antigen-specific T cell proliferation was largely lost within 28 days of parasite clearance. HGXPRT-specific IFN-γ production was more frequent 28 days after treatment than during acute infection. HGXPRT-specific plasma IgG was undetectable even in individuals exposed to malaria for at least two years. Conclusion The prevalence of acute proliferative and convalescent IFNγ responses to HGXPRT demonstrates cellular immunogenicity in humans. Further studies to determine minimal HGXPRT epitopes, the specificity of responses for Plasmodia and associations with protection are required. Frequent and robust T cell proliferation, high sequence conservation among Plasmodium species and absent IgG responses distinguish HGXPRT from other malaria antigens.

  4. Methodology and application of flow cytometry for investigation of human malaria parasites.

    Science.gov (United States)

    Grimberg, Brian T

    2011-03-31

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-01-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable

  6. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network. © 2011 Elsevier Inc.

  7. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Wildschiødtz, Gordon

    1991-01-01

    on examination of this question. We have now measured CBF and CMRO2 in young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness, deep sleep (stage 3/4), and rapid-eye-movement (REM) sleep as verified by standard polysomnography...... associated with light anesthesia. During REM sleep (dream sleep) CMRO2 was practically the same as in the awake state. Changes in CBF paralleled changes in CMRO2 during both deep and REM sleep.......It could be expected that the various stages of sleep were reflected in variation of the overall level of cerebral activity and thereby in the magnitude of cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). The elusive nature of sleep imposes major methodological restrictions...

  8. Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates

    Science.gov (United States)

    Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.

    2017-02-01

    The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.

  9. Human biting activity, spatial-temporal distribution and malaria vector role of Anopheles calderoni in the southwest of Colombia.

    Science.gov (United States)

    Orjuela, Lorena I; Ahumada, Martha L; Avila, Ivonni; Herrera, Sócrates; Beier, John C; Quiñones, Martha L

    2015-06-24

    Anopheles calderoni was first recognized in Colombia in 2010 as this species had been misidentified as Anopheles punctimacula due to morphological similarities. An. calderoni is considered a malaria vector in Peru and has been found naturally infected with Plasmodium falciparum in Colombia. However, its biting behaviour, population dynamics and epidemiological importance have not been well described for Colombia. To assess the contribution of An. calderoni to malaria transmission and its human biting behaviour and spatial/temporal distribution in the southwest of Colombia, human landing catches (HLC) and larval collections were carried out in a cross-sectional, entomological study in 22 localities between 2011 and 2012, and a longitudinal study was performed in the Boca de Prieta locality in Olaya Herrera municipality between July 2012 and June 2013. All mosquitoes determined as An. calderoni were tested by ELISA to establish infection with Plasmodium spp. Larvae of An. calderoni were found in four localities in 12 out of 244 breeding sites inspected. An. calderoni adults were collected in 14 out of 22 localities during the cross-sectional study and represented 41.3% (459 of 1,111) of the collected adult specimens. Other species found were Anopheles albimanus (54.7%), Anopheles apicimacula (2.1%), Anopheles neivai (1.7%), and Anopheles argyritarsis (0.2%). In the localities that reported the highest malaria Annual Parasite Index (>10/1,000 inhabitants) during the year of sampling, An. calderoni was the predominant species (>90% of the specimens collected). In the longitudinal study, 1,528 An. calderoni were collected by HLC with highest biting rates in February, May and June 2013, periods of high precipitation. In general, the species showed a preference to bite outdoors (p Colombia. Its observed preference for outdoor biting is a major challenge for malaria control.

  10. High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Salanti, Ali

    2015-01-01

    The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range......-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria....

  11. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice.

    Science.gov (United States)

    Nogueira, Raquel Tayar; Sahi, Vincent; Huang, Jing; Tsuji, Moriya

    2017-08-01

    Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  12. Malaria: toxins, cytokines and disease

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bate, C A; Taverne, J

    1995-01-01

    In this review the old concept of severe malaria as a toxic disease is re-examined in the light of recent discoveries in the field of cytokines. Animal studies suggest that the induction of TNF by parasite-derived molecules may be partly responsible for cerebral malaria and anemia, while...... hypoglycaemia may be due to direct effects of similar molecules on glucose metabolism. These molecules appear to be phospholipids and we suggest that when fully characterized they might form the basis of antitoxic therapy for malaria....

  13. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Si, M.

    2007-01-01

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  14. Cerebral imaging and neurodevelopmental outcome after entero- and human parechovirus sepsis in young infants.

    Science.gov (United States)

    de Jong, Eveline P; Holscher, Herma C; Steggerda, Sylke J; Van Klink, Jeanine M M; van Elzakker, Erika P M; Lopriore, Enrico; Walther, Frans J; Brus, Frank

    2017-12-01

    Enterovirus (EV) and human parechovirus (HPeV) are major causes of sepsis-like illness in infants under 90 days of age and have been identified as neurotropic. Studies about acute and long-term neurodevelopment in infants with sepsis-like illness without the need for intensive care are few. This study investigates cerebral imaging and neurodevelopmental outcome following EV and HPeV infection in these infants. We studied infants under 90 days of age who were admitted to a medium care unit with proven EV- or HPeV-induced sepsis-like illness. In addition to standard care, we did a cerebral ultrasound and cerebral magnetic resonance imaging (MRI), as well as neurodevelopmental follow-up at 6 weeks and 6 months and Bayley Scale of Infant and Toddler Development 3rd edition (BSID-III) investigation at 1 year of age. Twenty-six infants, 22 with EV and 4 with HPeV, were analysed. No abnormalities were detected at cerebral imaging. At 1 year of age, two infants had a moderate delay on both the motor and cognitive scale, one on the cognitive scale only and three others on the gross motor scale only. Although our study population, especially the number of HPeV positive infants is small, our study shows that these infants do not seem to develop severe neurodevelopmental delay and neurologic sequelae more often than the normal Dutch population. Follow-up to school age allows for more reliable assessments of developmental outcome and is recommended for further studies to better assess outcome. What is known: • Enterovirus and Human Parechovirus infections are a major cause of sepsis-like illness in young infants. • After intensive care treatment for EV or HPeV infection, white matter abnormalities and neurodevelopmental delay have been described. What is new: • In our 'medium care' population, no abnormalities at cerebral imaging after EV- or HPeV-induced sepsis-like illness have been found. • At 1 year of age, infants who had EV- or HPeV-induced sepsis

  15. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul; Rchiad, ‍ Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.; Holder, Anthony A.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  16. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  17. Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Mauro Ferreira de Azevedo

    Full Text Available Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA at its C-terminus. The tagged protein demonstrated an important modulation of its

  18. Caffeine and human cerebral blood flow: A positron emission tomography study

    International Nuclear Information System (INIS)

    Cameron, O.G.; Modell, J.G.; Hariharan, M.

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p a CO 2 and increased systolic blood pressure significantly; the change in p a CO 2 did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed

  19. Cerebral non-oxidative carbohydrate consumption in humans driven by adrenaline

    DEFF Research Database (Denmark)

    Seifert, Thomas S; Brassard, Patrice; Jørgensen, Thomas B

    2009-01-01

    infusion (P glucose (P neurons an abundant provision......During brain activation, the decrease in the ratio between cerebral oxygen and carbohydrate uptake (6 O(2)/(glucose + (1)/(2) lactate); the oxygen-carbohydrate index, OCI) is attenuated by the non-selective beta-adrenergic receptor antagonist propranolol, whereas OCI remains unaffected by the beta...... kg(-1) min(-1) i.v. for 20 min) on the arterial to internal jugular venous concentration differences (a-v diff) of O(2), glucose and lactate in healthy humans. Adrenaline (n = 10) increased the arterial concentrations of O(2), glucose and lactate (P glucose...

  20. Persistent oscillations and backward bifurcation in a malaria model with varying human and mosquito populations: implications for control.

    Science.gov (United States)

    Ngonghala, Calistus N; Teboh-Ewungkem, Miranda I; Ngwa, Gideon A

    2015-06-01

    We derive and study a deterministic compartmental model for malaria transmission with varying human and mosquito populations. Our model considers disease-related deaths, asymptomatic immune humans who are also infectious, as well as mosquito demography, reproduction and feeding habits. Analysis of the model reveals the existence of a backward bifurcation and persistent limit cycles whose period and size is determined by two threshold parameters: the vectorial basic reproduction number Rm, and the disease basic reproduction number R0, whose size can be reduced by reducing Rm. We conclude that malaria dynamics are indeed oscillatory when the methodology of explicitly incorporating the mosquito's demography, feeding and reproductive patterns is considered in modeling the mosquito population dynamics. A sensitivity analysis reveals important control parameters that can affect the magnitudes of Rm and R0, threshold quantities to be taken into consideration when designing control strategies. Both Rm and the intrinsic period of oscillation are shown to be highly sensitive to the mosquito's birth constant λm and the mosquito's feeding success probability pw. Control of λm can be achieved by spraying, eliminating breeding sites or moving them away from human habitats, while pw can be controlled via the use of mosquito repellant and insecticide-treated bed-nets. The disease threshold parameter R0 is shown to be highly sensitive to pw, and the intrinsic period of oscillation is also sensitive to the rate at which reproducing mosquitoes return to breeding sites. A global sensitivity and uncertainty analysis reveals that the ability of the mosquito to reproduce and uncertainties in the estimations of the rates at which exposed humans become infectious and infectious humans recover from malaria are critical in generating uncertainties in the disease classes.

  1. Physiological activation of the human cerebral cortex during auditory perception and speech revealed by regional increases in cerebral blood flow

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L

    1988-01-01

    by measuring regional cerebral blood flow CBF after intracarotid Xenon-133 injection are reviewed with emphasis on tests involving auditory perception and speech, and approach allowing to visualize Wernicke and Broca's areas and their contralateral homologues in vivo. The completely atraumatic tomographic CBF...

  2. The phosphodiesterase 3 inhibitor cilostazol dilates large cerebral arteries in humans without affecting regional cerebral blood flow

    DEFF Research Database (Denmark)

    Birk, Steffen; Kruuse, Christina Rostrup; Petersen, Kenneth A

    2004-01-01

    in the middle cerebral arteries (VMCA) was measured with transcranial Doppler, and the superficial temporal and radial arteries diameters were measured with ultrasonography. During the 4-hour observation period, there was no effect on systolic blood pressure (P = 0.28), but diastolic blood pressure decreased...

  3. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  4. Reversible suppression of bone marrow response to erythropoietin in Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Rodrigues, O; Addae, M

    1997-01-01

    To study the importance of bone marrow inhibition in the pathogenesis of malarial anaemia, haematological and parasitological parameters were followed in patients with acute malaria. Three patient categories were studied, severe malarial anaemia (SA), cerebral malaria (CM) and uncomplicated malar...

  5. Studying Different Clinical Syndromes Of Paediatric Severe Malaria Using Plasma Proteomics

    KAUST Repository

    Ramaprasad, Abhinay

    2012-01-01

    challenges of studying the severe malaria syndromes using proteomics were the high complexity and variability among the samples. We hypothesized that hepatic injury and nitric oxide play roles in the pathophysiology of cerebral malaria and respiratory

  6. The complexity of the calretinin-expressing progenitors in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Nevena V Radonjic

    2014-08-01

    Full Text Available The complex structure and function of the cerebral cortex critically depend on the balance of excitation and inhibition provided by the pyramidal projection neurons and GABAergic interneurons, respectively. The calretinin-expressing (CalR+ cell is a subtype of GABAergic cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+ interneurons originate in the caudal ganglionic eminence (CGE from Gsx2+ progenitors, but in humans it has been suggested that a subpopulation of CalR+ cells can also be generated in the cortical ventricular/subventricular zone (VZ/SVZ. The progenitors for cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the aim of this study was to identify patterns of expression of the transcription factors (TFs that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions of the fetal human forebrain at midgestation. Next, we established that a subpopulation of cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon (GE as previously reported, but also in the cerebral cortex suggests cortical origin of a subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors with Sonic hedgehog (Shh, an important morphogen in the specification of interneurons, decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together, our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and exogenous regulation of TFs implied in the specification of different subtypes of CalR+ cortical interneurons.

  7. Cerebral gumma mimicking a brain tumor in a human immunodeficiency virus-negative patient: A case report

    International Nuclear Information System (INIS)

    Baek, Hye Jin; Kim, Woo Jin

    2013-01-01

    Syphilis has a broad spectrum of clinical manifestations, and the cerebral gumma is a kind of neurosyphilis which is rare and can be cured by appropriate antibiotic treatments. However, in clinical practices, diagnosis of cerebral syphilitic gumma is often difficult because imaging and laboratory findings revealed elusive results. Herein, we present a rare case of neurosyphilis presenting as cerebral gumma confirmed by histopathological examination, and positive serologic and cerebrospinal fluid analyses. This case report suggests that cerebral gumma should be considered as possible diagnosis for human immunodeficiency virus-negative patients with space-occupying lesion of the brain. And this case also provides importance of clinical suspicions in diagnosing neurosyphilis because syphilis serology is not routinely tested on patients with neurologic symptoms.

  8. Cerebral gumma mimicking a brain tumor in a human immunodeficiency virus-negative patient: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hye Jin; Kim, Woo Jin [Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-09-15

    Syphilis has a broad spectrum of clinical manifestations, and the cerebral gumma is a kind of neurosyphilis which is rare and can be cured by appropriate antibiotic treatments. However, in clinical practices, diagnosis of cerebral syphilitic gumma is often difficult because imaging and laboratory findings revealed elusive results. Herein, we present a rare case of neurosyphilis presenting as cerebral gumma confirmed by histopathological examination, and positive serologic and cerebrospinal fluid analyses. This case report suggests that cerebral gumma should be considered as possible diagnosis for human immunodeficiency virus-negative patients with space-occupying lesion of the brain. And this case also provides importance of clinical suspicions in diagnosing neurosyphilis because syphilis serology is not routinely tested on patients with neurologic symptoms.

  9. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria.

    Science.gov (United States)

    Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G

    2015-03-17

    Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  11. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  12. Suppression of blood monocyte and neutrophil chemotaxis in acute human malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Kharazmi, A; Theander, T G

    1986-01-01

    tested monocyte chemotactic responsiveness in 19 patients with acute primary attack malaria. In addition, the neutrophil chemotaxis was measured in 12 patients. Before the initiation of antimalarial treatment a significant depression of monocyte chemotaxis was observed in approximately half...... of the patients when compared with healthy control subjects. The depression was found in Plasmodium falciparum malaria as well as in P. vivax or P. ovale malaria patients. The defective responsiveness was not receptor specific, since the responses towards casein and zymosan activated serum proved to be equally...... of treatment, and nearly normalized after 7 days (87% of controls). Furthermore, monocyte phagocytic and candidacidal activities were assessed in the same patients on admission and during the follow-up. In contrast to chemotaxis, these functions were normal in all of the patients whenever measured...

  13. Presence of IgE cells in human placenta is independent of malaria infection or chorioamnionitis

    DEFF Research Database (Denmark)

    Rindsjö, E; Hulthén Varli, I; Ofori, M F

    2006-01-01

    We have shown previously that numerous IgE(+) macrophage-like cells are present in the villous stroma of full term placenta and that there was no difference in the amount of IgE(+) cells between allergic and non-allergic mothers. The presence of such an abundant number of IgE(+) cells...... from Ghana with and without malaria parasites. The immunohistochemical staining pattern for IgE looked similar to our previous study, with the IgE located on Hofbauer-like cells. We could not find any difference in the amount or distribution of IgE(+) cells between malaria-infected and non...

  14. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Fisher, James P; Young, Colin N

    2010-01-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral......(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1...... abolished by glycopyrrolate (P important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen....

  15. Cerebral blood flow reduction in Alzheimer's disease: impact of capillary occlusions on mice and humans

    Science.gov (United States)

    Berg, Maxime; Merlo, Adlan; Peyrounette, Myriam; Doyeux, Vincent; Smith, Amy; Cruz-Hernandez, Jean; Bracko, Oliver; Haft-Javaherian, Mohammad; Nishimura, Nozomi; Schaffer, Chris B.; Davit, Yohan; Quintard, Michel; Lorthois, Sylvie

    2017-11-01

    Alzheimer's disease may be the most common form of dementia, yet a satisfactory diagnosis procedure has still to be found. Recent studies suggest that a significant decrease of cerebral blood flow, probably caused by white blood cells stalling small vessels, may be among the earliest biological markers. To assess this hypothesis we derive a blood flow model, validate it against in vitro controlled experiments and in vivo measurements made on mice. We then investigate the influence of capillary occlusions on regional perfusion (sum of all arteriole flowrates feeding the network) of large mice and humans anatomical networks. Consistent with experiments, we observe no threshold effect, so that even a small percentage of occlusions (2-4%) leads to significant blood flow decrease (5-12%). We show that both species share the same linear dependance, suggesting possible translation from mice to human. ERC BrainMicroFlow GA61510, CALMIP HPC (Grant 2017-1541).

  16. Abnormal Responses of the Human Cerebral Microcirculation to Papaverin During Aneurysm Surgery

    NARCIS (Netherlands)

    Pennings, Frederik A.; Albrecht, Kees W.; Muizelaar, J. Paul; Schuurman, P. Richard; Bouma, Gerrit J.

    2009-01-01

    BACKGROUND AND PURPOSE: The role of the cerebral microcirculation in delayed ischemia after subarachnoid hemorrhage remains obscure. To test the hypothesis that cerebral arterioles have a reduced capacity to dilate after subarachnoid hemorrhage, we studied the microvascular responses to papaverine

  17. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    NARCIS (Netherlands)

    Silvestrini, F.; Lasonder, E.; Olivieri, A.; Camarda, G.; Schaijk, B.C.L. van; Sanchez, M.; Younis Younis, S.; Sauerwein, R.W.; Alano, P.

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent

  18. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions

    NARCIS (Netherlands)

    Collins, K.A.; Wang, C.Y.; Adams, M.; Mitchell, H.; Rampton, M.; Elliott, S.; Reuling, I.J.; Bousema, T.; Sauerwein, R.; Chalon, S.; Mohrle, J.J.; McCarthy, J.S.

    2018-01-01

    BACKGROUND: Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here, we describe a new model

  19. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.

    Science.gov (United States)

    Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J

    2012-12-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.

  20. Urban and suburban malaria in Rondônia (Brazilian Western Amazon II: perennial transmissions with high anopheline densities are associated with human environmental changes

    Directory of Open Access Journals (Sweden)

    Luiz Herman Soares Gil

    2007-06-01

    Full Text Available Longitudinal entomological surveys were performed in Vila Candelária and adjacent rural locality of Bate Estaca concomitantly with a clinical epidemiologic malaria survey. Vila Candelária is a riverside periurban neighborhood of Porto Velho, capital of the state of Rondônia in the Brazilian Amazon. High anopheline densities were found accompanying the peak of rainfall, as reported in rural areas of the region. Moreover, several minor peaks of anophelines were recorded between the end of the dry season and the beginning of the next rainy season. These secondary peaks were related to permanent anopheline breeding sites resulting from human activities. Malaria transmission is, therefore, observed all over the year. In Vila Candelária, the risk of malaria infection both indoors and outdoors was calculated as being 2 and 10/infecting bites per year per inhabitant respectively. Urban malaria in riverside areas was associated with two factors: (1 high prevalence of asymptomatic carriers in a stable human population and (2 high anopheline densities related to human environmental changes. This association is probably found in other Amazonian urban and suburban communities. The implementation of control measures should include environmental sanitation and better characterization of the role of asymptomatic carriers in malaria transmission.

  1. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Directory of Open Access Journals (Sweden)

    Thais C de Oliveira

    2017-07-01

    Full Text Available The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax.We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences, Peru (PER, n = 23, Colombia (COL, n = 31, and Mexico (MEX, n = 19.We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4 as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092. Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically

  2. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Science.gov (United States)

    de Oliveira, Thais C; Rodrigues, Priscila T; Menezes, Maria José; Gonçalves-Lopes, Raquel M; Bastos, Melissa S; Lima, Nathália F; Barbosa, Susana; Gerber, Alexandra L; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R; Alves, João Marcelo P; Ferreira, Marcelo U

    2017-07-01

    The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites

  3. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax

    Science.gov (United States)

    de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.

    2017-01-01

    Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between

  4. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  5. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  6. Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering

    International Nuclear Information System (INIS)

    De Felici, M; Felici, R; Ferrero, C; Tartari, A; Gambaccini, M; Finet, S

    2008-01-01

    Myelin is a multi-lamellar membrane surrounding neuronal axons and increasing their conduction velocity. When investigated by small-angle x-ray scattering (SAXS), the lamellar quasi-periodical arrangement of the myelin sheath gives rise to distinct peaks, which allow the determination of its molecular organization and the dimensions of its substructures. In this study we report on the myelin sheath structural determination carried out on a set of human brain tissue samples coming from surgical biopsies of two patients: a man around 60 and a woman nearly 90 years old. The samples were extracted either from white or grey cerebral matter and did not undergo any manipulation or chemical-physical treatment, which could possibly have altered their structure, except dipping them into a formalin solution for their conservation. Analysis of the scattered intensity from white matter of intact human cerebral tissue allowed the evaluation not only of the myelin sheath periodicity but also of its electronic charge density profile. In particular, the thicknesses of the cytoplasm and extracellular regions were established, as well as those of the hydrophilic polar heads and hydrophobic tails of the lipid bilayer. SAXS patterns were measured at several locations on each sample in order to establish the statistical variations of the structural parameters within a single sample and among different samples. This work demonstrates that a detailed structural analysis of the myelin sheath can also be carried out in randomly oriented samples of intact human white matter, which is of importance for studying the aetiology and evolution of the central nervous system pathologies inducing myelin degeneration.

  7. Malaria Research

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Malaria Go to Information for Researchers ► Credit: NIAID Colorized ... for the disease. Why Is the Study of Malaria a Priority for NIAID? Roughly 3.2 billion ...

  8. Malaria in Pregnancy

    Directory of Open Access Journals (Sweden)

    Jesus R. Alvarez

    2005-01-01

    Full Text Available Recently, there has been a resurgence of malaria in densely populated areas of the United States secondary to human migration from endemic areas where factors such as cessation of vector control, vector resistance to insecticides, disease resistance to drugs, environmental changes, political instability, and indifference, have played a role for malaria becoming an overwhelming infection of these tropical underdeveloped countries. It is important for health care providers of gravida to be alert of the disease and its effects on pregnancy.

  9. Caffeine and human cerebral blood flow: A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, O.G.; Modell, J.G.; Hariharan, M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  10. The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Ide, Kojiro; Cai, Yan

    2002-01-01

    During and after maximal exercise there is a 15-30 % decrease in the metabolic uptake ratio (O(2)/[glucose + 1/2 lactate]) and a net lactate uptake by the human brain. This study evaluated if this cerebral metabolic uptake ratio is influenced by the intent to exercise, and whether a change could......, the a-v difference for the amino acids and glycerol did not change significantly, and there was only a minimal increase in the a-v difference for free fatty acids after maximal exercise. After maximal exercise the metabolic uptake ratio of the brain decreased from 6.1 +/- 0.5 (mean +/- S.E.M.) at rest.......2) in the early recovery (n = 10; P brain are increased out of proportion to O(2) when the brain is activated by exhaustive exercise, and that such metabolic changes are influenced by the will to exercise. We speculate that the uptake ratio...

  11. Functional specializations in human cerebral cortex analyzed using the Visible Man surface-based atlas

    Science.gov (United States)

    Drury, H. A.; Van Essen, D. C.

    1997-01-01

    We used surface-based representations to analyze functional specializations in the human cerebral cortex. A computerized reconstruction of the cortical surface of the Visible Man digital atlas was generated and transformed to the Talairach coordinate system. This surface was also flattened and used to establish a surface-based coordinate system that respects the topology of the cortical sheet. The linkage between two-dimensional and three-dimensional representations allows the locations of published neuroimaging activation foci to be stereotaxically projected onto the Visible Man cortical flat map. An analysis of two activation studies related to the hearing and reading of music and of words illustrates how this approach permits the systematic estimation of the degree of functional segregation and of potential functional overlap for different aspects of sensory processing.

  12. Trace elements during primordial plexiform network formation in human cerebral organoids

    Directory of Open Access Journals (Sweden)

    Rafaela C. Sartore

    2017-02-01

    Full Text Available Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.

  13. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

    Directory of Open Access Journals (Sweden)

    Thales Kronenberger

    2014-01-01

    Full Text Available Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines, the aspartate aminotransferase (AspAT, involved in the protein biosynthesis, and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism.

  14. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates.

    Science.gov (United States)

    Padte, Neal N; Boente-Carrera, Mar; Andrews, Chasity D; McManus, Jenny; Grasperge, Brooke F; Gettie, Agegnehu; Coelho-dos-Reis, Jordana G; Li, Xiangming; Wu, Douglass; Bruder, Joseph T; Sedegah, Martha; Patterson, Noelle; Richie, Thomas L; Wong, Chi-Huey; Ho, David D; Vasan, Sandhya; Tsuji, Moriya

    2013-01-01

    A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.

  16. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates.

    Directory of Open Access Journals (Sweden)

    Neal N Padte

    Full Text Available A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer, enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA, consists of two non-replicating recombinant adenoviral (Ad vectors, one expressing the circumsporozoite protein (CSP and another expressing the apical membrane antigen-1 (AMA1 of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.

  17. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  18. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  19. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer

    NARCIS (Netherlands)

    Braks, M.A.H.; Meijerink, J.; Takken, W.

    2001-01-01

    In an olfactometer study on the response of the anthropophilic malaria mosquito Anopheles gambiae s.s. (Diptera, Culicidae) to human sweat it was found that freshly collected sweat, mostly of eccrine origin, was attractive, but that incubated sweat was significantly more attractive than fresh sweat.

  20. Bioinformatics approaches to malaria

    DEFF Research Database (Denmark)

    Hansen, Daniel Aaen

    Malaria is a life threatening disease found in tropical and subtropical regions of the world. Each year it kills 781 000 individuals; most of them are children under the age of five in sub-Saharan Africa. The most severe form of malaria in humans is caused by the parasite Plasmodium falciparum......, which is the subject of the first part of this thesis. The PfEMP1 protein which is encoded by the highly variablevargene family is important in the pathogenesis and immune evasion of malaria parasites. We analyzed and classified these genes based on the upstream sequence in seven......Plasmodium falciparumclones. We show that the amount of nucleotide diversity is just as big within each clone as it is between the clones. DNA methylation is an important epigenetic mark in many eukaryotic species. We are studying DNA methylation in the malaria parasitePlasmodium falciparum. The work is still in progress...

  1. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  2. Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study.

    Science.gov (United States)

    Grigg, Matthew J; Cox, Jonathan; William, Timothy; Jelip, Jenarun; Fornace, Kimberly M; Brock, Patrick M; von Seidlein, Lorenz; Barber, Bridget E; Anstey, Nicholas M; Yeo, Tsin W; Drakeley, Christopher J

    2017-06-09

    The emergence of human malaria due to the monkey parasite Plasmodium knowlesi threatens elimination efforts in southeast Asia. Changes in land use are thought to be driving the rise in reported P knowlesi cases, but the role of individual-level factors is unclear. To address this knowledge gap we assessed human and environmental factors associated with zoonotic knowlesi malaria risk. We did this population-based case-control study over a 2 year period in the state of Sabah in Malaysia. We enrolled cases with microscopy-positive, PCR-confirmed malaria who presented to two primary referral hospitals serving the adjacent districts of Kudat and Kota Marudu. We randomly selected three malaria-negative community controls per case, who were matched by village within 2 weeks of case detection. We obtained questionnaire data on demographics, behaviour, and residential malaria risk factors, and we also assessed glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. We used conditional logistic regression models to evaluate exposure risk between P knowlesi cases and controls, and between P knowlesi and human-only Plasmodium spp malaria cases. From Dec 5, 2012, to Jan 30, 2015, we screened 414 patients and subsequently enrolled 229 cases with P knowlesi malaria mono-infection and 91 cases with other Plasmodium spp infection. We enrolled 953 matched controls, including 683 matched to P knowlesi cases and 270 matched to non- P knowlesi cases. Age 15 years or older (adjusted odds ratio [aOR] 4·16, 95% CI 2·09-8·29, pwork (3·50, CI, 1·34-9·15, p=0·011), sleeping outside (3·61, 1·48-8·85, p=0·0049), travel (2·48, 1·45-4·23, p=0·0010), being aware of the presence of monkeys in the past 4 weeks (3·35, 1·91-5·88, pworking in agricultural areas were at highest risk of knowlesi malaria, although peri-domestic transmission also occurrs. Human behavioural factors associated with P knowlesi transmission could be targeted in future public health interventions. United

  3. Comparison of cerebral metabolism of glucose in normal human and cancer patients

    International Nuclear Information System (INIS)

    Si, M.

    2007-01-01

    Full text: Objective: To determine whether the cerebral metabolism in various regions of the normal human brain differs from those of cancer patients in aging by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples so called 'normal group' (ranging 21 to 88; mean age+/-SD: 50+/-14) and 290 cancer patients called 'cancer group' (ranging 21 to 85; mean age+/-SD: 54+/-14) who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They were selected with: (i) absence of clear focal brain lesions (epilepsy, cerebrovascular diseases etc.); (ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes; (iii) absence of psychiatric disorders and abuse of drugs and alcohol;( iiii) cancer patients were diagnosed definitely of variable cancers except brain cancer or brain metastasis. Both groups were sub grouped into six with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose are matched. All 12 subgroups were compared to the subgroup of normal 31-40 years old called 'control subgroup' (84 samples; mean age+/-SD: 37.15+/- 2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later; their brains were scanned for 10 minutes. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2). The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three dimensional localized by MNI Space utility (MSU) software. Results:1.With increasing of age interval, similar hypometabolic brain areas are detected in both 'normal group' and 'cancer group', they are mainly in the cortical structures such as bilateral prefrontal cortex (BA9), superior temporal gyrus (BA22), parietal cortex (inferior parietal lobule and precuneus(BA40), insula (BA13

  4. Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade

    DEFF Research Database (Denmark)

    Seifert, T.; Rasmussen, P.; Secher, Niels H.

    2009-01-01

    AIM: Beta-blockers reduce exercise capacity by attenuated increase in cardiac output, but it remains unknown whether performance also relates to attenuated cerebral oxygenation. METHODS: Acting as their own controls, eight healthy subjects performed a continuous incremental cycle test to exhaustion...... attenuated the increase in cardiac output of consequence for cerebral perfusion and oxygenation. We suggest that a decrease in cerebral oxygenation limits exercise capacity Udgivelsesdato: 2009/7...... with or without administration of the non-selective beta-blocker propranolol. Changes in cerebral blood flow velocity were measured with transcranial Doppler ultrasound and those in cerebral oxygenation were evaluated using near-infrared spectroscopy and the calculated cerebral mitochondrial oxygen tension...

  5. Antibody reactivities to glutamate-rich peptides of Plasmodium falciparum parasites in humans from areas of different malaria endemicity

    DEFF Research Database (Denmark)

    Jakobsen, P H; Theander, T G; Hviid, L

    1996-01-01

    Synthetic P. falciparum peptides were evaluated as tools in epidemiological investigations of malaria. Plasma IgM and IgG antibody reactivities against synthetic peptides covering sequences of glutamate-rich protein (GLURP) and acidic-basic repeat antigen (ABRA) were measured by ELISA...... in individuals from malaria-endemic areas of Sudan, Indonesia and The Gambia to study antibody responses to these peptides in donors living in areas of different malaria endemicity. IgG and IgM reactivities to the peptides increased with malaria endemicity, although there were no differences in reactivities...... tested were shortlived in most patients. In Gambian children with malaria, IgM reactivities but not IgG antibody reactivities against the ABRA peptide were higher in those with mild malaria than in those with severe malaria. The peptides may be useful in future epidemiological studies, especially...

  6. Relationship between Cnm-positive Streptococcus mutans and cerebral microbleeds in humans.

    Science.gov (United States)

    Miyatani, F; Kuriyama, N; Watanabe, I; Nomura, R; Nakano, K; Matsui, D; Ozaki, E; Koyama, T; Nishigaki, M; Yamamoto, T; Mizuno, T; Tamura, A; Akazawa, K; Takada, A; Takeda, K; Yamada, K; Nakagawa, M; Ihara, M; Kanamura, N; Friedland, R P; Watanabe, Y

    2015-10-01

    Cerebral hemorrhage has been shown to occur in animals experimentally infected with Streptococcus mutans carrying the collagen-binding Cnm gene. However, the relationship between cerebral microbleeds and oral hygiene, with a focus on Cnm gene-positive S. mutans infection, remains unclear. One hundred and thirty-nine subjects participated. The presence or absence of Cnm-positive S. mutans and its collagen-binding activity were investigated using saliva samples, and relationship with cerebral microbleeds detected on MRI investigated, including clinical information and oral parameters. Fifty-one subjects were identified as Cnm-positive S. mutans carriers (36.7%), with cerebral microbleeds being detected in 43 (30.9%). A significantly larger number of subjects carried Cnm-positive S. mutans in the cerebral microbleeds (+) group. S. mutans with Cnm collagen-binding ability was detected in 39 (28.1%) of all subjects, and the adjusted odds ratio for cerebral microbleeds in the Cnm-positive group was 14.4. Regarding the presence of cerebral microbleeds, no significant differences were noted in the number of remaining teeth, dental caries, or in classic arteriosclerosis risk factors. The occurrence of cerebral microbleeds was higher in subjects carrying Cnm-positive S. mutans, indicating that the presence of Cnm-positive S. mutans increases cerebral microbleeds, and is an independent risk for the development of cerebrovascular disorders. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. morphological identification of malaria vectors within anopheles

    African Journals Online (AJOL)

    DR. AMIN

    Africa among the human population. Determination of risk of malaria transmission requires quick and accurate methods of identification of Anopheles mosquitoes especially when targeting vector control. (Maxwell, et al., 2003). Anopheles mosquito transmits malaria. The most important vectors of malaria are members of.

  8. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Mshinda Hassan

    2007-09-01

    Full Text Available Abstract Background Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN is estimated. Methods Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors. Results Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%. More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38% were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa. Conclusion In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.

  9. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    International Nuclear Information System (INIS)

    Keil, Fabian

    2014-01-01

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  10. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Fabian

    2014-03-20

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  11. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings.

    Directory of Open Access Journals (Sweden)

    André Lin Ouédraogo

    2018-05-01

    Full Text Available Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001 but not submicroscopic (p = 0.937 gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the

  12. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Quistorff, Bjørn; Danielsen, Else R

    2003-01-01

    During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio-venous differe......During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio......-venous differences (AV) for O(2), glucose (glc) and lactate (lac) were evaluated in nine healthy subjects at rest and during and after exercise to exhaustion. The cerebrospinal fluid (CSF) was drained through a lumbar puncture immediately after exercise, while control values were obtained from six other healthy.......0 to 0.9 +/- 0.1 mM (P ratio from 6.0 +/- 0.3 to 2.8 +/- 0.2 (P

  13. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    Science.gov (United States)

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  14. Sufentanil does not increase cerebral blood flow in healthy human volunteers

    International Nuclear Information System (INIS)

    Mayer, N.; Weinstabl, C.; Podreka, I.; Spiss, C.K.

    1990-01-01

    The effect of sufentanil on human cerebral blood flow (CBF) was studied in seven unpremedicated, healthy volunteers 31 +/- 3.5 yr of age (mean +/- SD) and either sex. CBF (ml.100 g-1.min-1) was measured noninvasively with the 133Xe clearance technique and a scintillation camera before and after sufentanil 0.5 micrograms/kg administered intravenously. This technique provides values for global blood flow and for gray and white matter blood flow, and from 13 preselected regions in one hemisphere. After the administration of sufentanil, the volunteers were stimulated verbally in order to prevent their loss of consciousness and hypercarbia. Heart rate (HR), arterial pressure, oxyhemoglobin saturation, and end-tidal CO2 ETCO2 were recorded during the measurements. Neither global CBF (46.1 +/- 1.6 control and 43 +/- 1.9 after sufentanil, mean +/- SEM) nor gray (76.5 +/- 3.2 and 70.9 +/- 6.1) or white (22.7 +/- 1.5 and 24.2 +/- 1.6) matter blood flow changed significantly after sufentanil administration. As well, no significant differences in HR (72 +/- 4 control and 79 +/- 4 beats per min after sufentanil) and ETCO2 (39.8 +/- 1.4 and 41.1 +/- 1.1 mmHg) were observed. It is concluded that sufentanil has no significant effect on CBF in healthy human volunteers

  15. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    Science.gov (United States)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P heat-stressed humans.

  16. Cellular and synaptic localization of EAAT2a in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Marcello eMelone

    2011-01-01

    Full Text Available We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a immunoreactivity was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons and ∼2.0% were unidentified. EAAT2a immunoreactivity was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embeddeding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/µm2, respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.

  17. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity.

    Directory of Open Access Journals (Sweden)

    Iana Parvanova

    Full Text Available The liver stage of Plasmodium's life cycle is the first, obligatory step in malaria infection. Decreasing the hepatic burden of Plasmodium infection decreases the severity of disease and constitutes a promising strategy for malaria prophylaxis. The efficacy of the gamma-secretase and signal peptide peptidase inhibitor LY411,575 in targeting Plasmodium liver stages was evaluated both in human hepatoma cell lines and in mouse primary hepatocytes. LY411,575 was found to prevent Plasmodium's normal development in the liver, with an IC(50 of approximately 80 nM, without affecting hepatocyte invasion by the parasite. In vivo results with a rodent model of malaria showed that LY411,575 decreases the parasite load in the liver and increases by 55% the resistance of mice to cerebral malaria, one of the most severe malaria-associated syndromes. Our data show that LY411,575 does not exert its effect via the Notch signaling pathway suggesting that it may interfere with Plasmodium development through an inhibition of the parasite's signal peptide peptidase. We therefore propose that selective signal peptide peptidase inhibitors could be potentially used for preventive treatment of malaria in humans.

  18. Biting behaviour of African malaria vectors: 1. where do the main vector species bite on the human body?

    Science.gov (United States)

    Braack, Leo; Hunt, Richard; Koekemoer, Lizette L; Gericke, Anton; Munhenga, Givemore; Haddow, Andrew D; Becker, Piet; Okia, Michael; Kimera, Isaac; Coetzee, Maureen

    2015-02-04

    Malaria control in Africa relies heavily on indoor vector management, primarily indoor residual spraying and insecticide treated bed nets. Little is known about outdoor biting behaviour or even the dynamics of indoor biting and infection risk of sleeping household occupants. In this paper we explore the preferred biting sites on the human body and some of the ramifications regarding infection risk and exposure management. We undertook whole-night human landing catches of Anopheles arabiensis in South Africa and Anopheles gambiae s.s. and Anopheles funestus in Uganda, for seated persons wearing short sleeve shirts, short pants, and bare legs, ankles and feet. Catches were kept separate for different body regions and capture sessions. All An. gambiae s.l. and An. funestus group individuals were identified to species level by PCR. Three of the main vectors of malaria in Africa (An. arabiensis, An. gambiae s.s. and An. funestus) all have a preference for feeding close to ground level, which is manifested as a strong propensity (77.3% - 100%) for biting on lower leg, ankles and feet of people seated either indoors or outdoors, but somewhat randomly along the lower edge of the body in contact with the surface when lying down. If the lower extremities of the legs (below mid-calf level) of seated people are protected and therefore exclude access to this body region, vector mosquitoes do not move higher up the body to feed at alternate body sites, instead resulting in a high (58.5% - 68.8%) reduction in biting intensity by these three species. Protecting the lower limbs of people outdoors at night can achieve a major reduction in biting intensity by malaria vector mosquitoes. Persons sleeping at floor level bear a disproportionate risk of being bitten at night because this is the preferred height for feeding by the primary vector species. Therefore it is critical to protect children sleeping at floor level (bednets; repellent-impregnated blankets or sheets, etc

  19. Malaria in pregnancy: ultrasound studies of fetal growth

    NARCIS (Netherlands)

    Rijken, M.J.

    2012-01-01

    Malaria has been a plague for human mankind. Each year roughly 125 million pregnancies are at risk for malaria infection. This thesis demonstrates the detrimental effects of malaria in pregnancy on the mother and the baby. To determine the effects of malaria in pregnancy on birth outcomes, accurate

  20. Cerebral responses to exercise and the influence of heat stress in human fatigue.

    Science.gov (United States)

    Robertson, Caroline V; Marino, Frank E

    2017-01-01

    There are a number of mechanisms thought to be responsible for the onset of fatigue during exercise-induced hyperthermia. A greater understanding of the way in which fatigue develops during exercise could be gleaned from the studies which have examined the maintenance of cerebral blood flow through the process of cerebral autoregulation. Given that cerebral blood flow is a measure of the cerebral haemodynamics, and might reflect a level of brain activation, it is useful to understand the implications of this response during exercise and in the development of fatigue. It is known that cerebral blood flow is significantly altered under certain conditions such as altitude and exacerbated during exercise induced - hyperthermia. In this brief review we consider the processes of cerebral autoregulation predominantly through the measurement of cerebral blood flow and contrast these responses between exercise undertaken in normothermic versus heat stress conditions in order to draw some conclusions about the role cerebral blood flow might play in determining fatigue. Copyright © 2016. Published by Elsevier Ltd.

  1. Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans

    DEFF Research Database (Denmark)

    Rostrup, Egill; Law, Ian; Pott, Frank

    2002-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive quantification of blood and tissue oxygenation, and may be useful for quantification of cerebral blood volume (CBV) changes. In this study, changes in cerebral oxy- and deoxyhemoglobin were compared to corresponding changes in CBF ...

  2. Male-female differences in upregulation of vasoconstrictor responses in human cerebral arteries

    DEFF Research Database (Denmark)

    Ahnstedt, Hilda; Cao, Lei; Krause, Diana N

    2013-01-01

    Male-female differences may significantly impact stroke prevention and treatment in men and women, however underlying mechanisms for sexual dimorphism in stroke are not understood. We previously found in males that cerebral ischemia upregulates contractile receptors in cerebral arteries, which...

  3. The ¿/d T-cell response to Plasmodium falciparum malaria in a population in which malaria is endemic

    DEFF Research Database (Denmark)

    Hviid, L; Kurtzhals, J A; Dodoo, D

    1996-01-01

    Frequencies and absolute numbers of peripheral gamma/delta T cells have been reported to increase after episodes of Plasmodium falciparum malaria in adults with limited or no previous malaria exposure. In contrast, little is known about the gamma/delta T-cell response to malaria in children from...... areas where malaria is endemic, who bear the burden of malaria-related morbidity and mortality. We investigated the gamma/delta T-cell response in 19 Ghanaian children from an area of hyperendemic, seasonal malaria transmission. The children presented with cerebral malaria (n = 7), severe malarial...... anemia (n = 5), or uncomplicated malaria (n = 7) and were monitored from admission until 4 weeks later. We found no evidence of increased frequencies of gamma/delta T cells in any of the patient groups, whereas one adult expatriate studied in Ghana and three adults admitted to the hospital in Copenhagen...

  4. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    Science.gov (United States)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  5. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    Science.gov (United States)

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  6. The arterial circle of Willis of the mouse helps to decipher secrets of cerebral vascular accidents in the human.

    Science.gov (United States)

    Okuyama, Shinichi; Okuyama, Jun; Okuyama, Junko; Tamatsu, Yuichi; Shimada, Kazuyuki; Hoshi, Hajime; Iwai, Junichi

    2004-01-01

    The human brain represents an elaborate product of hominizing evolution. Likewise, its supporting vasculature may also embody evolutionary consequences. Thus, it is conceivable that the human tendency to develop cerebral vascular accidents (CVAs) might represent a disease of hominization. In a search for hominizing changes on the arterial circle of Willis (hWAC), we attempted an anatomical comparison of the hWAC with that of the mouse (mWAC) by injecting aliquots of resin into the vasculature of the mouse and then creating vascular endocasts of the mWAC. The internal carotid artery of the mouse (mICA) unites with the mWAC midway between the middle cerebral artery (mMCA) and posterior cerebral artery (mPCA). The mWAC does not complete a circle: the mWAC nourishes the anterior portion of the circle which branches out to the olfactory artery (OlfA) and mPCA, along with the mMCA, and the basilar artery (mBA) does not connect to the mPCA. The OlfA is thicker than the mMCA. The relative brain weight of the mouse was 74 g on average for a 60 kg male and 86 g for a 60 kg female, respectively, as compared with 1424 g for a 60 kg man. These findings are consistent with the mouse being a nocturnal carnivore that lives on olfactory information in contrast to the human that lives diurnally and depends on visual and auditory information. In man, the human ICA (hICA) unites with the hWAC at a point where the human middle cerebral artery (hMCA) branches out, and thus, blood from the hICA does not flow through the hWAC but drains into the hMCA directly. The hMCA is thicker than the anterior cerebral artery. The hPCA receives blood from the hBA rather than from the hICA, and thus, the entire hWAC forms a closed circuit. Since the hICA drains directly into the hMCA without flowing a distance through the hWAC, the capacitor and equalizer functions of the WAC will be mitigated so much that the resultant hemodynamic changes would render the hMCA more likely to contribute to CVAs. Thus

  7. Malaria's Missing Number: Calculating the Human Component of R0 by a Within-Host Mechanistic Model of Plasmodium falciparum Infection and Transmission

    OpenAIRE

    Johnston, Geoffrey L.; Smith, David L.; Fidock, David A.

    2013-01-01

    Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic wi...

  8. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.

    Science.gov (United States)

    Smirl, J D; Tzeng, Y C; Monteleone, B J; Ainslie, P N

    2014-06-15

    We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics. Copyright © 2014 the American Physiological Society.

  9. [Cerebral protection].

    Science.gov (United States)

    Cattaneo, A D

    1993-09-01

    Cerebral protection means prevention of cerebral neuronal damage. Severe brain damage extinguishes the very "human" functions such as speech, consciousness, intellectual capacity, and emotional integrity. Many pathologic conditions may inflict injuries to the brain, therefore the protection and salvage of cerebral neuronal function must be the top priorities in the care of critically ill patients. Brain tissue has unusually high energy requirements, its stores of energy metabolites are small and, as a result, the brain is totally dependent on a continuous supply of substrates and oxygen, via the circulation. In complete global ischemia (cardiac arrest) reperfusion is characterized by an immediate reactive hyperemia followed within 20-30 min by a delayed hypoperfusion state. It has been postulated that the latter contributes to the ultimate neurologic outcome. In focal ischemia (stroke) the primary focus of necrosis is encircled by an area (ischemic penumbra) that is underperfused and contains neurotoxic substances such as free radicals, prostaglandins, calcium, and excitatory neurotransmitters. The variety of therapeutic effort that have addressed the question of protecting the brain reflects their limited success. 1) Barbiturates. After an initial enthusiastic endorsement by many clinicians and years of vigorous controversy, it can now be unequivocally stated that there is no place for barbiturate therapy following resuscitation from cardiac arrest. One presumed explanation for this negative statement is that cerebral metabolic suppression by barbiturates (and other anesthetics) is impossible in the absence of an active EEG. Conversely, in the event of incomplete ischemia EEG activity in usually present (albeit altered) and metabolic suppression and hence possibly protection can be induced with barbiturates. Indeed, most of the animal studies led to a number of recommendations for barbiturate therapy in man for incomplete ischemia. 2) Isoflurane. From a cerebral

  10. Insights into deregulated TNF and IL-10 production in malaria

    DEFF Research Database (Denmark)

    Boeuf, Philippe S; Loizon, Séverine; Awandare, Gordon A

    2012-01-01

    the activation status of those cells in SMA patients. METHODS: The IL-10 and TNF production capacity and the activation phenotype of monocytes and T cells were compared in samples collected from 332 Ghanaian children with non-overlapping SMA (n = 108), cerebral malaria (CM) (n = 144) or uncomplicated malaria (UM...

  11. Identification by functional MRI of human cerebral region activated by taste stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, Naoya [Osaka Univ. (Japan). Faculty of Dentistry

    2000-09-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  12. Identification by functional MRI of human cerebral region activated by taste stimulation

    International Nuclear Information System (INIS)

    Kakimoto, Naoya

    2000-01-01

    The purpose of this study was the examination of possible imaging of the primary taste region of human cerebral cortex by functional MRI (fMRI). Subjects were 19-36 years old, healthy adult male and female volunteers given information concerning the purpose, significance and method of the study. MRI equipment was 1.5 T Signa Horizon (GE) with Head Coil. Images were processed by the software FuncTool on the Advantage Windows Workstation (GE). Taste stimulation was done by swab bearing the solution of 4% quinine hydrochloride, 20% sodium chloride or distilled water (control) or by dripping from the syringe of the solutions, 8% tartaric acid or 80% sugar. Preliminary examinations with the swab suggested the possibility of the identification. Further, with use of dripping apparatus, the taste active region was shown to be identified by fMRI and of which area tended to be larger in male than in female: a significant difference was seen for the quinine hydrochloride. As above, the method was suggested to be a diagnostic mean for the taste perception. (K.H.)

  13. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells.

    Science.gov (United States)

    Schirinzi, Gabriella F; Pérez-Pomeda, Ignacio; Sanchís, Josep; Rossini, Cesare; Farré, Marinella; Barceló, Damià

    2017-11-01

    Plastic wastes are among the major inputs of detritus into aquatic ecosystems. Also, during recent years the increasing use of new materials such as nanomaterials (NMs) in industrial and household applications has contributed to the complexity of waste mixtures in aquatic systems. The current effects and the synergism and antagonisms of mixtures of microplastics (MPLs), NMs and organic compounds on the environment and in human health have, to date, not been well understood but instead they are a cause for general concern. The aim of this work is to contribute to a better understanding of the cytotoxicity of NMs and microplastics/nanoplastics (MPLs/NPLs), at cell level in terms of oxidative stress (evaluating Reactive Oxygen Species effect) and cell viability. Firstly, the individual cytotoxicity of metal nanoparticles (NPs) (AgNPs and AuNPs), of metal oxide NPs (ZrO 2 NPs, CeO 2 NPs, TiO 2 NPs, and Al 2 O 3 NPs), carbon nanomaterials (C 60 fullerene, graphene), and MPLs of polyethylene (PE) and polystyrene (PS) has been evaluated in vitro. Two different cellular lines T98G and HeLa, cerebral and epithelial human cells, respectively, were employed. The cells were exposed during 24-48h to different levels of contaminants, from 10ng/mL to 10µg/mL, under the same conditions. Secondly, the synergistic and antagonistic relationships between fullerenes and other organic contaminants, including an organophosphate insecticide (malathion), a surfactant (sodium dodecylbenzenesulfonate) and a plasticiser (diethyl phthalate) were assessed. The obtained results confirm that oxidative stress is one of the mechanisms of cytotoxicity at cell level, as has been observed for both cell lines and contributes to the current knowledge of the effects of NMs and MPLs-NPLs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Malaria Matters

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast gives an overview of malaria, including prevention and treatment, and what CDC is doing to help control and prevent malaria globally.  Created: 4/18/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 4/18/2008.

  15. Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans

    DEFF Research Database (Denmark)

    Jørgensen, L G; Perko, M; Hanel, B

    1992-01-01

    Changes in middle cerebral artery flow velocity (Vmean), measured by transcranial Doppler ultrasound, were used to determine whether increases in mean arterial pressure (MAP) or brain activation enhance cerebral perfusion during exercise. We also evaluated the role of "central command......, they support the hypothesis that cerebral perfusion during exercise reflects an increase in brain activation that is independent of MAP, central command, and muscle metaboreceptors but is likely to depend on influence of mechanoreceptors.......," mechanoreceptors, and/or muscle "metaboreceptors" on cerebral perfusion. Ten healthy subjects performed two levels of dynamic exercise corresponding to a heart rate of 110 (range 89-134) and 148 (129-170) beats/min, respectively, and exhaustive one-legged static knee extension. Measurements were continued during 2...

  16. The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J. Marc C.; Elting, Jan-Willem J.; Fidler, Vaclav; Staal, Michiel J.

    It has been shown that transcutaneous electrical neurostimulation (TENS) reduces sympathetic tone. Spinal cord stimulation (SCS) has proven qualities to improve coronary, peripheral, and cerebral blood circulation. Therefore, we postulate that TENS and SCS affect the autonomic nervous system in

  17. Lack of association of interferon regulatory factor 1 with severe malaria in affected child-parental trio studies across three African populations.

    Directory of Open Access Journals (Sweden)

    Valentina D Mangano

    Full Text Available Interferon Regulatory Factor 1 (IRF-1 is a member of the IRF family of transcription factors, which have key and diverse roles in the gene-regulatory networks of the immune system. IRF-1 has been described as a critical mediator of IFN-gamma signalling and as the major player in driving TH1 type responses. It is therefore likely to be crucial in both innate and adaptive responses against intracellular pathogens such as Plasmodium falciparum. Polymorphisms at the human IRF1 locus have been previously found to be associated with the ability to control P. falciparum infection in populations naturally exposed to malaria. In order to test whether genetic variation at the IRF1 locus also affects the risk of developing severe malaria, we performed a family-based test of association for 18 Single Nucleotide Polymorphisms (SNPs across the gene in three African populations, using genotype data from 961 trios consisting of one affected child and his/her two parents (555 from The Gambia, 204 from Kenya and 202 from Malawi. No significant association with severe malaria or severe malaria subphenotypes (cerebral malaria and severe malaria anaemia was observed for any of the SNPs/haplotypes tested in any of the study populations. Our results offer no evidence that the molecular pathways regulated by the transcription factor IRF-1 are involved in the immune-based pathogenesis of severe malaria.

  18. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans

    DEFF Research Database (Denmark)

    Pauls, Mathilde Mh; Moynihan, Barry; Barrick, Thomas R

    2018-01-01

    , ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5...... inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated...

  19. UTILIZING SPECTRAL TRANSCRANIAL DOPPLER TO CHARACTERIZE CEREBRAL HEMODYNAMICS IN A NON-HUMAN PRIMATE (RHESUS MACAQUE)

    Science.gov (United States)

    2017-05-16

    auto-regulatory mechanisms are activated to preserve cerebral perfusion21, and changes in cerebral blood flow due to hypotension can have permanent...institution. Food and water was restricted for 12 hours prior to surgery. NHPs were sedated with Telazol (3.0mg/kg), pre-medicated with an analgesic...anesthesia and fasting restrictions imposed 12 hours preceding surgical procedure. However, invasive continuous blood pressure monitoring demonstrated

  20. The relationship between cardiac output and dynamic cerebral autoregulation in humans.

    Science.gov (United States)

    Deegan, B M; Devine, E R; Geraghty, M C; Jones, E; Ólaighin, G; Serrador, J M

    2010-11-01

    Cerebral autoregulation adjusts cerebrovascular resistance in the face of changing perfusion pressures to maintain relatively constant flow. Results from several studies suggest that cardiac output may also play a role. We tested the hypothesis that cerebral blood flow would autoregulate independent of changes in cardiac output. Transient systemic hypotension was induced by thigh-cuff deflation in 19 healthy volunteers (7 women) in both supine and seated positions. Mean arterial pressure (Finapres), cerebral blood flow (transcranial Doppler) in the anterior (ACA) and middle cerebral artery (MCA), beat-by-beat cardiac output (echocardiography), and end-tidal Pco(2) were measured. Autoregulation was assessed using the autoregulatory index (ARI) defined by Tiecks et al. (Tiecks FP, Lam AM, Aaslid R, Newell DW. Stroke 26: 1014-1019, 1995). Cerebral autoregulation was better in the supine position in both the ACA [supine ARI: 5.0 ± 0.21 (mean ± SE), seated ARI: 3.9 ± 0.4, P = 0.01] and MCA (supine ARI: 5.0 ± 0.2, seated ARI: 3.8 ± 0.3, P = 0.004). In contrast, cardiac output responses were not different between positions and did not correlate with cerebral blood flow ARIs. In addition, women had better autoregulation in the ACA (P = 0.046), but not the MCA, despite having the same cardiac output response. These data demonstrate cardiac output does not appear to affect the dynamic cerebral autoregulatory response to sudden hypotension in healthy controls, regardless of posture. These results also highlight the importance of considering sex when studying cerebral autoregulation.

  1. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study.

    Directory of Open Access Journals (Sweden)

    Ching-Chung Liang

    Full Text Available Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO. Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment caused less infarction size than those infused after MCAO (post-treatment on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF.

  2. Pengendalian Malaria dalam Upaya Percepatan Pencapaian Target Millennium Development Goals

    Directory of Open Access Journals (Sweden)

    Tri Rini Puji Lestari

    2012-08-01

    health official Malaria Center, and community leaders who observe malaria. Retrieval of data time is 10 – 16 April 2011 by in-depth interviews. It was found that malaria control programs have been implemented by the Departement of Health North Maluku Province, but have not been able to effectively reduce malaria morbidity. This is because malaria control is performed is not comprehensive. Handling is more directed to break the chain transmission to human, their habitats have not been touched up. Key words: Control of malaria, millennium development goals, malaria morbidity

  3. Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report

    Directory of Open Access Journals (Sweden)

    Adem Patricia

    2010-01-01

    Full Text Available Abstract Background Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here. Case presentation A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent. Conclusions The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further

  4. A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Neida K Mita-Mendoza

    Full Text Available BACKGROUND: Inflammatory cytokinemia and systemic activation of the microvascular endothelium are central to the pathogenesis of Plasmodium falciparum malaria. Recently, 'parasite-derived' uric acid (UA was shown to activate human immune cells in vitro, and plasma UA levels were associated with inflammatory cytokine levels and disease severity in Malian children with malaria. Since UA is associated with endothelial inflammation in non-malaria diseases, we hypothesized that elevated UA levels contribute to the endothelial pathology of P. falciparum malaria. METHODOLOGY/PRINCIPAL FINDINGS: We measured levels of UA and soluble forms of intercellular adhesion molecule-1 (sICAM-1, vascular cell adhesion molecule-1 (sVCAM-1, E-selectin (sE-Selectin, thrombomodulin (sTM, tissue factor (sTF and vascular endothelial growth factor (VEGF in the plasma of Malian children aged 0.5-17 years with uncomplicated malaria (UM, n = 487 and non-cerebral severe malaria (NCSM, n = 68. In 69 of these children, we measured these same factors once when they experienced a malaria episode and twice when they were healthy (i.e., before and after the malaria transmission season. We found that levels of UA, sICAM-1, sVCAM-1, sE-Selectin and sTM increase during a malaria episode and return to basal levels at the end of the transmission season (p<0.0001. Plasma levels of UA and these four endothelial biomarkers correlate with parasite density and disease severity. In children with UM, UA levels correlate with parasite density (r = 0.092, p = 0.043, sICAM-1 (r = 0.255, p<0.0001 and sTM (r = 0.175, p = 0.0001 levels. After adjusting for parasite density, UA levels predict sTM levels. CONCLUSIONS/SIGNIFICANCE: Elevated UA levels may contribute to malaria pathogenesis by damaging endothelium and promoting a procoagulant state. The correlation between UA levels and parasite densities suggests that parasitized erythrocytes are one possible source of excess UA. UA-induced shedding of

  5. Conantokin probes of NMDA receptors in normal and Alzheimer disease human cerebral cortex

    International Nuclear Information System (INIS)

    Ragnarsson, L.; Dodd, P.R.; Lewis, R.J.

    2002-01-01

    Full text: The pharmacology of the N-methyl-D-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer disease cases and matched controls. The affinity and density of the [ 3 H]MK-801 binding site were delineated along with the enhancement of [ 3 H]MK-801 binding by glutamate and spermine. Sites with distinct pharmacologies were distributed regionally through the cortex. The differences could not be explained by variations in the parameters of [ 3 H]MK-801 binding; rather, the data suggest that the subunit composition of NMDA receptors may be locally variable. Selective differences were also found between controls and Alzheimer disease cases in certain brain regions. The interactions of human NMDA sites with the Ala(7) and Lys(7) derivatives of conantokin-G (Con-G) were also characterized. Ala(7)-con-G showed the higher affinity of the two peptides, and also defined two distinct binding sites in controls. In distinction to the Ala(7) peptide, Lys(7)- con-G showed preferential binding to receptor sites in Alzheimer disease cf. control brain. Modified conantokins are useful for identifying differences in subunit composition of the NMDA receptors between brain areas. They may also have potential as protective agents against over-excitation mediated by specific NMDA receptors, which might contribute to localized brain damage in Alzheimer disease. For further characterization of the pharmacology of different NMDA receptor subunits, a mammalian expression system has been developed for the analysis of their responses to selected ligands, including conantokins. Copyright (2002) Australian Neuroscience Society

  6. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion

    Science.gov (United States)

    Mitsios, Nick; Saka, Mohamad; Krupinski, Jerzy; Pennucci, Roberta; Sanfeliu, Coral; Wang, Qiuyu; Rubio, Francisco; Gaffney, John; Kumar, Pat; Kumar, Shant; Sullivan, Matthew; Slevin, Mark

    2007-01-01

    Background Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. Results Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. Conclusion Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. PMID:17997827

  7. Towards A Malaria Vaccine?

    Directory of Open Access Journals (Sweden)

    B S GARG

    1990-12-01

    Full Text Available The last few years have seen a marked change in the understanding of malaria mmunology.We have very little knowledge on immunity of Malaria based on experiments in humanbeings due to ethical reasons. Whatsoever our knowledge exists at present is based onexperimentas in mice and monkey. However it is clear that it is sporzoite or merozoitewhich is directly exposed to our immune system in the life cycle of Malaria parasite. On thebasis of human experiments we can draw inference that immunity to malaria is species.specific (on cross immunity, stage specific and strain specific as well acquired in the response to surface antigen and relapsed antigen although the parasite also demonstrates escape machanism to immune system.So the host system kills or elimi nate the parasite by means of (a Antbody to extracell~ular form of parasite with the help of mechanism of Block invasion, Agglutination or opsonization and/or (b Cellular machanism-either by phago-cytosis of parasite or by antibody dependent cellular cytotoxicity ABCC (? or by effects of mediators like tumor necrosis fJ.ctor (TNF in cerebaral malaria or crisis forming factor as found in sudan or by possible role of lysis mechanism.However, inspite of all these theories the parasite has been able to invade the immunesystem by virtue of its intracellular development stage specificity, sequestration in capillaries and also by its unusual characteristics of antigenic diversity and antigenic variation.

  8. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans

    Directory of Open Access Journals (Sweden)

    Farzaneh A Sorond

    2008-04-01

    Full Text Available Farzaneh A Sorond1,2, Lewis A Lipsitz2,4, Norman K Hollenberg3,5, Naomi DL Fisher31Department of Neurology, Stroke Division; 2Institute for Aging Research, Hebrew SeniorLife, Boston, MA; 3Department of Medicine, Endocrine-Hypertension Division; 4Department of Medicine, Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA; 5Department of Radiology, Brigham and Women’s Hospital, Boston, MABackground and Purpose: Cerebral ischemia is a common, morbid condition accompanied by cognitive decline. Recent reports on the vascular health benefits of flavanol-containing foods signify a promising approach to the treatment of cerebral ischemia. Our study was designed to investigate the effects of flavanol-rich cocoa (FRC consumption on cerebral blood flow in older healthy volunteers.Methods: We used transcranial Doppler (TCD ultrasound to measure mean blood flow velocity (MFV in the middle cerebral artery (MCA in thirty-four healthy elderly volunteers (72 ± 6 years in response to the regular intake of FRC or flavanol-poor cocoa (FPC.Results: In response to two weeks of FRC intake, MFV increased by 8% ± 4% at one week (p = 0.01 and 10% ± 4% (p = 0.04 at two weeks. In response to one week of cocoa, significantly more subjects in the FRC as compared with the FPC group had an increase in their MFV (p < 0.05.Conclusions: In summary, we show that dietary intake of FRC is associated with a significant increase in cerebral blood flow velocity in the MCA as measured by TCD. Our data suggest a promising role for regular cocoa flavanol’s consumption in the treatment of cerebrovascular ischemic syndromes, including dementias and stroke.Keywords: cerebral blood flow, flavanol, cocoa, transcranial Doppler ultrasound

  9. Malaria prophylaxis

    African Journals Online (AJOL)

    Malaria D:lay still be contracted despite good cOD:lpliance with ... true that prophylaxis is always better than no prophy- laxis, nor is ... If used during pregnancy, a folic acid supplement ... include folate deficiency, agranulocytosis, illegaloblastic.

  10. Cerebral Anatomy of the Spider Monkey Ateles Geoffroyi Studied Using Magnetic Resonance Imaging. First Report: a Comparative Study with the Human Brain Homo Sapiens

    OpenAIRE

    Chico-Ponce de León, Fernando; Platas-Neri, Diana; Muñoz-Delgado, Jairo; Santillán-Doherty, Ana María; Arenas-Rosas, Rita; Trejo, David; Conde, Rubén; Ojeda-Flores, Rafael; Campos-Romo, Aurelio; Castro-Sierra, Eduardo; Cervantes, Juan José; Braun, Marc

    2009-01-01

    The objective of the present qualitative study was to analyze the morphological aspects of the inner cerebral anatomy of two species of primates, using magnetic resonance images (MRI): spider monkey (A. geoffroyi) and human (H. sapiens), on the basis of a comparative study of the cerebral structures of the two species, focusing upon the brain of the spider monkey and, primarily, its limbic system. In spite of being an endemic Western hemisphere species, a fact which is by its own right intere...

  11. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral...... immersion further increased MCA V(mean) to 122 cm/s ( approximately 88%; both P ... 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P 100% increase in MCA V(mean), largely...

  12. Advances and challenges in malaria vaccine development.

    Science.gov (United States)

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  13. Malaria's missing number: calculating the human component of R0 by a within-host mechanistic model of Plasmodium falciparum infection and transmission.

    Directory of Open Access Journals (Sweden)

    Geoffrey L Johnston

    2013-04-01

    Full Text Available Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population. Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0 . We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of

  14. Predicting Optimal Dihydroartemisinin-Piperaquine Regimens to Prevent Malaria During Pregnancy for Human Immunodeficiency Virus-Infected Women Receiving Efavirenz.

    Science.gov (United States)

    Wallender, Erika; Vucicevic, Katarina; Jagannathan, Prasanna; Huang, Liusheng; Natureeba, Paul; Kakuru, Abel; Muhindo, Mary; Nakalembe, Mirium; Havlir, Diane; Kamya, Moses; Aweeka, Francesca; Dorsey, Grant; Rosenthal, Philip J; Savic, Radojka M

    2018-03-05

    A monthly treatment course of dihydroartemisinin-piperaquine (DHA-PQ) effectively prevents malaria during pregnancy. However, a drug-drug interaction pharmacokinetic (PK) study found that pregnant human immunodeficiency virus (HIV)-infected women receiving efavirenz-based antiretroviral therapy (ART) had markedly reduced piperaquine (PQ) exposure. This suggests the need for alternative DHA-PQ chemoprevention regimens in this population. Eighty-three HIV-infected pregnant women who received monthly DHA-PQ and efavirenz contributed longitudinal PK and corrected QT interval (QTc) (n = 25) data. Population PK and PK-QTc models for PQ were developed to consider the benefits (protective PQ coverage) and risks (QTc prolongation) of alternative DHA-PQ chemoprevention regimens. Protective PQ coverage was defined as maintaining a concentration >10 ng/mL for >95% of the chemoprevention period. PQ clearance was 4540 L/day. With monthly DHA-PQ (2880 mg PQ), 96% of women, respectively. All regimens were safe, with ≤2% of women predicted to have ≥30 msec QTc increase. For HIV-infected pregnant women receiving efavirenz, low daily DHA-PQ dosing was predicted to improve protection against parasitemia and reduce risk of toxicity compared to monthly dosing. NCT02282293. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  16. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  17. RTTN mutations link primary cilia function to organization of the human cerebral cortex

    NARCIS (Netherlands)

    S.K. Kia; E. Verbeek (Elly); M.P. Engelen (Erik); R. Schot (Rachel); R.A. Poot (Raymond); I.F.M. de Coo (René); M. Leguin (Maarten); C.J. Poulton (Cathryn); F. Pourfarzad, F. (Farzin); F.G. Grosveld (Frank); A. Brehm (António); M.C.Y. de Wit (Marie Claire); R. Oegema (Renske); W.B. Dobyns (William); F.W. Verheijen (Frans); G.M.S. Mancini (Grazia)

    2012-01-01

    textabstractPolymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral

  18. On the effect of dihydroergocristin-methansulfonate on human cerebral blood flow in an acute test

    International Nuclear Information System (INIS)

    Kohlmeyer, K.; Blessing, J.

    1978-01-01

    In 20 patients suffering from acute cerebrovascular diseases, cerebral trauma, cerebral atrophy and an apallic syndrome due to heart arrest, studies of regional cerebral blood flow (rCBF) were performed by means of the intracaroticial 133 xenon clearance method using 35 scintillation detectors to test the effect of dihydroegocristin-methansulfonate (DHEC) on the cerebral circulation. 0.6 mg and 0.9 mg, resp., DHEC dissolved in 200 mg levulose 5% were administered by a slow i.v. infusion during 20 min. Taking into consideration both the administered dosage of DHEC and the clinical diagnoses of the material, the results are the following: 0.6 mg DHEC lead to a significant increase of mean hemispheric flow in the average of 10 patients. On the other hand, 0.9 mg DHEC does not effect a significant change of mean hemispheric flow in the average of 10 patients. The highest increase of mean hemispheric flow was observed in the group of cases with cerebrovascular diseases receiving 0.6 mg DHEC. (orig./AJ) [de

  19. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Bailey, Damian M

    2016-01-01

    (-1) ; P = 0·91 versus baseline; P = 0·14 versus LPS]. While our findings support the concept that dynamic cerebral autoregulation is enhanced during the very early stages of sepsis, they remain inconclusive with regard to more advanced stages of disease, because thigh-cuff deflation failed to induce...... (Ps...

  20. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1986-01-01

    Coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) was studied using multiple sequential administrations of 15 O-labeled radiotracers and positron emission tomography. In the resting state an excellent correlation between CBF and CMRO 2 was found when paired measurements of CBF and CMRO 2 from multiple (30-48) brain regions were tested in each of 33 normal subjects. Regional uncoupling of CBF and CMRO 2 was found, however, during neuronal activation induced by somatosensory stimulation. Stimulus-induced focal augmentation of cerebral blood flow (29% mean) far exceeded the concomitant local increase in tissue metabolic rate (mean, 5%), when resting-state and stimulated-state measurements were obtained in each of 9 subjects. Stimulus duration had no significant effect on response magnitude or on the degree of CBF-CMRO 2 uncoupling observed. Dynamic, physiological regulation of CBF by a mechanism (neuronal or biochemical) dependent on neuronal firing per se, but independent of the cerebral metabolic rate of oxygen, is hypothesized

  1. Biphasic Clinical Course Among Kenyan Children With Cerebral ...

    African Journals Online (AJOL)

    Background Cerebral malaria is the most severe neurological complication of Falciparum malaria. It is associated with a significant risk of death and neurological sequelae. A biphasic clinical picture is associated with an even greater risk of neurological sequelae. Objective To examine the incidence and clinical ...

  2. Association of haptoglobin phenotypes with susceptibility to Falciparum Malaria in Sudan

    International Nuclear Information System (INIS)

    Elagib, Atif Abdel Rahman

    1999-09-01

    The predisposing factors for the development of serious and diverse complications caused by falciparum are not very well understood. The search for host molecular markers which the disease presentation and prognosis, is an important issue in malaria research. Along this time line, the haptoglobin phenotype of Sudanese individuals infected with falciparum malaria both complicated and non-complicated, and non-infected controls, from randomly selected individuals were determined. Anti-human Haptoglobin antibodies was radiolabelled with 125 I , using chloramine T-method.Haptoglobin phenotype determination was performed by electrophoresis separation of sera on polyacrylamide gel followed by benzidine staining, which was shown to be time and material saving, and as sensitive as Western blotting. The distribution of the haptoglobin (1-1), (2-1) among 273 uncomplicated falicparm malaria patients, was found to be 60.8%, 29.2% and 6.9%, respectively. The distribution among 208 randomly selected individuals infected with falciparm malaria both controls, from randomly selected individuals were determined. Hyptogolobin phenotype was performed by electrophoresis separation of sera on polyacrylamide gel followed by benzidine staining, which was shown to be time and material saving, and as sensitive as Western blotting. The distribution of the haptoglobin phenotypes (1-1), (2-1) and (2-2) among 273 uncomplicated facilparum malaria patients, was found to be 60.8 % , 29.7 % and 6.9 %, respectively. The distribution among 208 randomly selected healthy controls was 26.0 %, 55.8 % and 18.3 % respectively . The results show that the number of individuals with haptoglobin phentype (1-1) is significantly higher among patients with falcilparum malaria (complicated and complicated) when compared to the controls. However, the controls showed a normal distribution of the phenotypes comparable to available data obtained from similar African populations. Consequently, we suggest that the

  3. Studying Different Clinical Syndromes Of Paediatric Severe Malaria Using Plasma Proteomics

    KAUST Repository

    Ramaprasad, Abhinay

    2012-08-01

    Background- Severe Plasmodium falciparum malaria remains one of the major causes of childhood morbidity and mortality in Africa. Severe malaria manifests itself as three main clinical syndromes-impaired consciousness (cerebral malaria), respiratory distress and severe malarial anaemia. Cerebral malaria and respiratory distress are major contributors to malaria mortality but their pathophysiology remains unclear. Motivation/Objectives- Most children with severe malaria die within the first 24 hours of admission to a hospital because of their pathophysiological conditions. Thus, along with anti-malarial drugs, various adjuvant therapies such as fluid bolus (for hypovolaemia) and anticonvulsants (for seizures) are given to alleviate the sick child’s condition. But these therapies can sometimes have adverse effects. Hence, a clear understanding of severe malaria pathophysiology is essential for making an informed decision regarding adjuvant therapies. Methodology- We used mass spectrometry-based shotgun proteomics to study plasma samples from Gambian children with severe malaria. We compared the proteomic profiles of different severe malaria syndromes and generated hypotheses regarding the underlying disease mechanisms. Results/Conclusions- The main challenges of studying the severe malaria syndromes using proteomics were the high complexity and variability among the samples. We hypothesized that hepatic injury and nitric oxide play roles in the pathophysiology of cerebral malaria and respiratory distress.

  4. Malaria chemotherapy.

    Science.gov (United States)

    Winstanley, Peter; Ward, Stephen

    2006-01-01

    Most malaria control strategies today depend on safe and effective drugs, as they have done for decades. But sensitivity to chloroquine, hitherto the workhorse of malaria chemotherapy, has rapidly declined throughout the tropics since the 1980s, and this drug is now useless in many high-transmission areas. New options for resource-constrained governments are few, and there is growing evidence that the burden from malaria has been increasing, as has malaria mortality in Africa. In this chapter, we have tried to outline the main pharmacological properties of current drugs, and their therapeutic uses and limitations. We have summarised the ways in which these drugs are employed, both in the formal health sector and in self-medication. We have briefly touched on the limitations of current drug development, but have tried to pick out a few promising drugs that are under development. Given that Plasmodium falciparum is the organism that kills, and that has developed multi-drug resistance, we have tended to focus upon it. Similarly, given that around 90% of global mortality from malaria occurs in Africa, there is the tendency to dwell on this continent. We give no apology for placing our emphasis upon the use of antimalarial drugs in endemic populations rather than their use for prophylaxis in travellers.

  5. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Iñigo Angulo-Barturen

    Full Text Available To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/- mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/- mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9 as a reference strain for model development. Pf3D7(0087/N9 caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.

  6. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Science.gov (United States)

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  7. Evaluation of the antiplasmodial and cytotoxicity potentials of husk fiber extracts from Cocos nucifera, a medicinal plant used in Nigeria to treat human malaria.

    Science.gov (United States)

    Adebayo, J O; Santana, A E G; Krettli, A U

    2012-03-01

    Nigeria is an African country where transmission of malaria occurs all year round and where most inhabitants use plants as remedies against parasitic diseases, including malaria. Some of such medicinal plants have their antimalarial efficacies already demonstrated experimentally, active compounds isolated and the mechanism of drug action suggested. Decoction of Cocos nucifera husk is used in the middle belt region of Nigeria as an antimalarial remedy. In our current studies, we tested extracts from husks of four varieties of C. nucifera, all collected in Brazil, where the plant fruit is popularly named 'coco'. The husks of coco mestiço, amarelo, anão and gigante collected in the Northeast of Brazil were used to prepare extracts at the Chemistry Department, Federal University of Alagoas (UFAL), which were then tested for their antiplasmodial activities, cytotoxicities and hemolytic activities in vitro. Only the hexane extract of coco mestiço was active against the blood forms of Plasmodium falciparum human malaria parasite maintained in continuous culture. Most extracts presented selectivity indices of coco mestiço had a selectivity index of 35, meaning that the extract is not toxic. The isolation of the active compounds from coco mestiço husks has not yet been done.

  8. Cerebral blood flow and end-tidal PCO2 during prolonged acetazolamide treatment in humans

    DEFF Research Database (Denmark)

    Friberg, L; Kastrup, J; Rizzi, Dominick Albert

    1990-01-01

    One oral dose of 1,000 mg of acetazolamide caused an acute 38% increase in cerebral blood flow (CBF) in eight healthy volunteers. During the following 10 days the subjects took 1,000 mg acetazolamide daily. CBF normalized within the first 2 days. The drug induced mild hyperventilation, gradually ...... of a transient extracellular acidosis dilating brain arterioles, whereas increased ventilatory drive results from a gradually increasing mild intracellular acidosis in the brain....

  9. Evaluating Controlled Human Malaria Infection in Kenyan Adults with Varying Degrees of Prior Exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection

    Directory of Open Access Journals (Sweden)

    Susanne Helena Hodgson

    2014-12-01

    Full Text Available Background: Controlled human malaria infection (CHMI studies are a vital tool to accelerate vaccine and drug development. As CHMI trials are performed in a controlled environment, they allow unprecedented, detailed evaluation of parasite growth dynamics (PGD and immunological responses. However, CHMI studies have not been routinely performed in malaria-endemic countries or used to investigate mechanisms of naturally-acquired immunity (NAI to Plasmodium falciparum. Methods: We conducted an open-label, randomized CHMI pilot-study using aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge to evaluate safety, infectivity and PGD in Kenyan adults with low to moderate prior exposure to P. falciparum (Pan African Clinical Trial Registry: PACTR20121100033272. Results: All participants developed blood-stage infection confirmed by qPCR. However one volunteer (110 remained asymptomatic and blood-film negative until day 21 post-injection of PfSPZ Challenge. This volunteer had a reduced parasite multiplication rate (PMR (1.3 in comparison to the other 27 volunteers (median 11.1. A significant correlation was seen between PMR and screening anti-schizont ELISA OD (p=0.044, R=-0.384 but not when volunteer 110 was excluded from the analysis (p=0.112, R=-0.313. Conclusions: PfSPZ Challenge is safe and infectious in malaria-endemic populations and could be used to assess the efficacy of malaria vaccines and drugs in African populations. Whilst our findings are limited by sample size, our pilot study has demonstrated for the first time that NAI may impact on PMR post-CHMI in a detectable fashion, an important finding that should be evaluated in further CHMI studies.

  10. The history of 20th century malaria control in Peru.

    Science.gov (United States)

    Griffing, Sean M; Gamboa, Dionicia; Udhayakumar, Venkatachalam

    2013-08-30

    Malaria has been part of Peruvian life since at least the 1500s. While Peru gave the world quinine, one of the first treatments for malaria, its history is pockmarked with endemic malaria and occasional epidemics. In this review, major increases in Peruvian malaria incidence over the past hundred years are described, as well as the human factors that have facilitated these events, and concerted private and governmental efforts to control malaria. Political support for malaria control has varied and unexpected events like vector and parasite resistance have adversely impacted morbidity and mortality. Though the ready availability of novel insecticides like DDT and efficacious medications reduced malaria to very low levels for a decade after the post eradication era, malaria reemerged as an important modern day challenge to Peruvian public health. Its reemergence sparked collaboration between domestic and international partners towards the elimination of malaria in Peru.

  11. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans.

    Science.gov (United States)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-04-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P breath hold diverts blood toward the brain with a >100% increase in MCA V(mean), largely because Pa(CO(2)) increases, but the increase in MCA V(mean) becomes larger when combined with facial immersion in cold water independent of Pa(CO(2)).

  12. Malaria Surveillance - United States, 2015.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M; Tan, Kathrine R

    2018-05-04

    Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. This report summarizes confirmed malaria cases in persons with onset of illness in 2015 and summarizes trends in previous years. Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. CDC received reports of 1,517 confirmed malaria cases, including one congenital case, with an onset of symptoms in 2015 among persons who received their diagnoses in the United States. Although the number of

  13. Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique.

    Science.gov (United States)

    Plucinski, Mateusz M; Candrinho, Baltazar; Chambe, Geraldo; Muchanga, João; Muguande, Olinda; Matsinhe, Graça; Mathe, Guidion; Rogier, Eric; Doyle, Timothy; Zulliger, Rose; Colborn, James; Saifodine, Abu; Lammie, Patrick; Priest, Jeffrey W

    2018-02-01

    Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy against Plasmodium falciparum malaria. However, its impact on the three other main species of human malaria and lymphatic filariasis (LF), which share the same vectors in many co-endemic areas, is not as well characterized. The recent development of multiplex antibody detection provides the opportunity for simultaneous evaluation of the impact of control measures on the burden of multiple diseases. Two cross-sectional household surveys at baseline and one year after a LLIN distribution campaign were implemented in Mecubúri and Nacala-a-Velha Districts in Nampula Province, Mozambique. Both districts were known to be endemic for LF; both received mass drug administration (MDA) with antifilarial drugs during the evaluation period. Access to and use of LLINs was recorded, and household members were tested with P. falciparum rapid diagnostic tests (RDTs). Dried blood spots were collected and analyzed for presence of antibodies to three P. falciparum antigens, P. vivax MSP-119, P. ovale MSP-119, P. malariae MSP-119, and three LF antigens. Seroconversion rates were calculated and the association between LLIN use and post-campaign seropositivity was estimated using multivariate regression. The campaign covered 68% (95% CI: 58-77) of the population in Nacala-a-Velha and 46% (37-56) in Mecubúri. There was no statistically significant change in P. falciparum RDT positivity between the two surveys. Population seropositivity at baseline ranged from 31-81% for the P. falciparum antigens, 3-4% for P. vivax MSP-119, 41-43% for P. ovale MSP-119, 46-56% for P. malariae MSP-119, and 37-76% for the LF antigens. The seroconversion rate to the LF Bm33 antigen decreased significantly in both districts. The seroconversion rate to P. malariae MSP-119 and the LF Wb123 and Bm14 antigens each decreased significantly in one of the two districts. Community LLIN use was associated with a decreased risk

  14. The study of regional cerebral glucose metabolic change in human being normal aging process by using PET scanner

    International Nuclear Information System (INIS)

    Si Mingjue; Huang Gang

    2008-01-01

    Objective: With the technique development, PET has been more and more applied in brain function research. The aim of this study was to investigate the tendency of regional cerebral glucose metabolism changes in human being normal aging process by using 18 F-fluorodeoxyglucose (FDG) PET/CT and statistical parametric mapping (SPM) software. Methods: 18 F-FDG PET/CT brain imaging data acquired from 252 healthy normal subjects (age ranging: 21 to 88 years old) were divided into 6 groups according to their age: 21-30, 31-40, 41-50, 51-60, 61-70, 71-88. All 5 groups with age ≥31 years old were compared to the control group of 21-30 years old, and pixel-by-pixel t-statistic analysis was applied using the SPM2. The hypo-metabolic areas were identified by MNI space utility (MSU) software and the voxel value of each brain areas were calculated (P 60 years old showed significant metabolic decreases with aging mainly involved bilateral frontal lobe (pre-motto cortex, dorsolateral prefrontal cortex, frontal pole), temporal lobe (temporal pole), insula, anterior cingulate cortex and cerebellum. The most significant metabolic decrease area with aging was the frontal lobe , followed by the anterior cingulate cortex, temporal lobe, insula and cerebellum at predominance right hemisphere (P<0.0001). Parietal lobe, parahippocampal gyrus, basal ganglia and thalamus remain metabolically unchanged with advancing aging. Conclusions: Cerebral metabolic function decrease with normal aging shows an inconstant and unsymmetrical process. The regional cerebral metabolic decrease much more significantly in older than 60 years old healthy volunteers, mainly involving bilateral frontal lobe, temporal lobe, insula, anterior cingulate cortex and cerebellum at right predominance hemisphere. (authors)

  15. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria?

    Science.gov (United States)

    Quispe, Antonio M; Pozo, Edwar; Guerrero, Edith; Durand, Salomón; Baldeviano, G Christian; Edgel, Kimberly A; Graf, Paul C F; Lescano, Andres G

    2014-07-01

    Severe malaria caused by Plasmodium vivax is no longer considered rare. To describe its clinical features, we performed a retrospective case control study in the subregion of Luciano Castillo Colonna, Piura, Peru, an area with nearly exclusive vivax malaria transmission. Severe cases and the subset of critically ill cases were compared with a random set of uncomplicated malaria cases (1:4). Between 2008 and 2009, 6,502 malaria cases were reported, including 106 hospitalized cases, 81 of which fit the World Health Organization definition for severe malaria. Of these 81 individuals, 28 individuals were critically ill (0.4%, 95% confidence interval = 0.2-0.6%) with severe anemia (57%), shock (25%), lung injury (21%), acute renal failure (14%), or cerebral malaria (11%). Two potentially malaria-related deaths occurred. Compared with uncomplicated cases, individuals critically ill were older (38 versus 26 years old, P < 0.001), but similar in other regards. Severe vivax malaria monoinfection with critical illness is more common than previously thought. © The American Society of Tropical Medicine and Hygiene.

  16. Challenges for malaria elimination in Brazil.

    Science.gov (United States)

    Ferreira, Marcelo U; Castro, Marcia C

    2016-05-20

    Brazil currently contributes 42 % of all malaria cases reported in the Latin America and the Caribbean, a region where major progress towards malaria elimination has been achieved in recent years. In 2014, malaria burden in Brazil (143,910 microscopically confirmed cases and 41 malaria-related deaths) has reached its lowest levels in 35 years, Plasmodium falciparum is highly focal, and the geographic boundary of transmission has considerably shrunk. Transmission in Brazil remains entrenched in the Amazon Basin, which accounts for 99.5 % of the country's malaria burden. This paper reviews major lessons learned from past and current malaria control policies in Brazil. A comprehensive discussion of the scientific and logistic challenges that may impact malaria elimination efforts in the country is presented in light of the launching of the Plan for Elimination of Malaria in Brazil in November 2015. Challenges for malaria elimination addressed include the high prevalence of symptomless and submicroscopic infections, emerging anti-malarial drug resistance in P. falciparum and Plasmodium vivax and the lack of safe anti-relapse drugs, the largely neglected burden of malaria in pregnancy, the need for better vector control strategies where Anopheles mosquitoes present a highly variable biting behaviour, human movement, the need for effective surveillance and tools to identify foci of infection in areas with low transmission, and the effects of environmental changes and climatic variability in transmission. Control actions launched in Brazil and results to come are likely to influence control programs in other countries in the Americas.

  17. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  18. Determinants of variant surface antigen antibody response in severe Plasmodium falciparum malaria in an area of low and unstable malaria transmission

    DEFF Research Database (Denmark)

    A-Elgadir, T M E; Theander, T G; Elghazali, G

    2006-01-01

    The variant surface antigens (VSA) of infected erythrocytes are important pathogenic markers, a set of variants (VSA(SM)), were assumed to be associated with severe malaria (SM), while SM constitutes clinically diverse forms, such as, severe malarial anemia (SMA) and cerebral malaria (CM). This s...

  19. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  20. Kompliceret malaria

    DEFF Research Database (Denmark)

    Rønn, A M; Bygbjerg, Ib Christian; Jacobsen, E

    1989-01-01

    An increasing number of cases of malaria, imported to Denmark, are caused by Plasmodium falciparum and severe and complicated cases are more often seen. In the Department of Infectious Diseases, Rigshospitalet, 23 out of 32 cases, hospitalized from 1.1-30.6.1988, i.e. 72%, were caused by P...

  1. The role of vitamin D in malaria.

    Science.gov (United States)

    Lương, Khanh Vinh Quốc; Nguyễn, Lan Thi Hoàng

    2015-01-15

    An abnormal calcium-parathyroid hormone (PTH)-vitamin D axis has been reported in patients with malaria infection. A role for vitamin D in malaria has been suggested by many studies. Genetic studies have identified numerous factors that link vitamin D to malaria, including human leukocyte antigen genes, toll-like receptors, heme oxygenase-1, angiopoietin-2, cytotoxic T lymphocyte antigen-4, nucleotide-binding oligomerization domain-like receptors, and Bcl-2. Vitamin D has also been implicated in malaria via its effects on the Bacillus Calmette-Guerin (BCG) vaccine, matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, reactive oxidative species, and nitric oxide synthase. Vitamin D may be important in malaria; therefore, additional research on its role in malaria is needed.

  2. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches? - A Review

    Directory of Open Access Journals (Sweden)

    José Bento Pereira Lima

    2014-08-01

    Full Text Available Distribution, abundance, feeding behaviour, host preference, parity status and human-biting and infection rates are among the medical entomological parameters evaluated when determining the vector capacity of mosquito species. To evaluate these parameters, mosquitoes must be collected using an appropriate method. Malaria is primarily transmitted by anthropophilic and synanthropic anophelines. Thus, collection methods must result in the identification of the anthropophilic species and efficiently evaluate the parameters involved in malaria transmission dynamics. Consequently, human landing catches would be the most appropriate method if not for their inherent risk. The choice of alternative anopheline collection methods, such as traps, must consider their effectiveness in reproducing the efficiency of human attraction. Collection methods lure mosquitoes by using a mixture of olfactory, visual and thermal cues. Here, we reviewed, classified and compared the efficiency of anopheline collection methods, with an emphasis on Neotropical anthropophilic species, especially Anopheles darlingi, in distinct malaria epidemiological conditions in Brazil.

  3. Estimation of human body concentrations of DDT from indoor residual spraying for malaria control

    International Nuclear Information System (INIS)

    Gyalpo, Tenzing; Fritsche, Lukas; Bouwman, Henk; Bornman, Riana; Scheringer, Martin; Hungerbühler, Konrad

    2012-01-01

    Inhabitants of dwellings treated with DDT for indoor residual spraying show high DDT levels in blood and breast milk. This is of concern since mothers transfer lipid-soluble contaminants such as DDT via breastfeeding to their children. Focusing on DDT use in South Africa, we employ a pharmacokinetic model to estimate DDT levels in human lipid tissue over the lifetime of an individual to determine the amount of DDT transferred to children during breastfeeding, and to identify the dominant DDT uptake routes. In particular, the effects of breastfeeding duration, parity, and mother's age on DDT concentrations of mother and infant are investigated. Model results show that primiparous mothers have greater DDT concentrations than multiparous mothers, which causes higher DDT exposure of first-born children. DDT in the body mainly originates from diet. Generally, our modeled DDT levels reproduce levels found in South African biomonitoring data within a factor of 3. - Highlights: ► Comparison of one-compartment pharmacokinetic model with biomonitoring data. ► Pre- and postnatal exposure of infants depends on breastfeeding duration and parity. ► Dietary exposure of DDT is the dominant uptake route in South Africa. ► Elimination half-lives of DDT and DDE are shorter in children than in adults. - Model predictions of a one-compartment pharmacokinetic model confirm the trends of DDT found in human samples of inhabitants living in DDT-treated dwellings.

  4. The effect of the benzodiazepine antagonist flumazenil on regional cerebral blood flow in human volunteers

    DEFF Research Database (Denmark)

    Wolf, J; Friberg, L; Jensen, J

    1990-01-01

    computerized tomography, SPECT, immediately before, and 5 and 35 min after intravenous injection of flumazenil 1.0 mg or placebo. In addition, mean arterial blood pressures or PaCO2, rCBF were analysed for changes in various regions of interest (RoI). No alterations were found either in the global CBF or in r......CBF in RoI after flumazenil injection. The results showed that a clinically active dose of flumazenil did not directly affect the cerebral circulation in the normal brain and indicated absence of significant intrinsic activity of the drug....

  5. Reduction in serum sphingosine 1-phosphate concentration in malaria.

    Directory of Open Access Journals (Sweden)

    Chuchard Punsawad

    Full Text Available Sphingosine 1-phosphate (S1P is a lipid mediator formed by the metabolism of sphingomyelin which is involved in the endothelial permeability and inflammation. Although the plasma S1P concentration is reportedly decreased in patients with cerebral malaria, the role of S1P in malaria is still unclear. The purpose of this study was to examine the impact of malaria on circulating S1P concentration and its relationship with clinical data in malaria patients. Serum S1P levels were measured in 29 patients with P. vivax, 30 patients with uncomplicated P. falciparum, and 13 patients with complicated P. falciparum malaria on admission and on day 7, compared with healthy subjects (n = 18 as control group. The lowest level of serum S1P concentration was found in the complicated P. falciparum malaria group, compared with P. vivax, uncomplicated P. falciparum patients and healthy controls (all p < 0.001. In addition, serum S1P level was positively correlated with platelet count, hemoglobin and hematocrit levels in malaria patients. In conclusions, low levels of S1P are associated with the severity of malaria, and are correlated with thrombocytopenia and anemia. These findings highlight a role of S1P in the severity of malaria and support the use of S1P and its analogue as a novel adjuvant therapy for malaria complications.

  6. Hysteresis in simulations of malaria transmission

    Science.gov (United States)

    Yamana, Teresa K.; Qiu, Xin; Eltahir, Elfatih A. B.

    2017-10-01

    Malaria transmission is a complex system and in many parts of the world is closely related to climate conditions. However, studies on environmental determinants of malaria generally consider only concurrent climate conditions and ignore the historical or initial conditions of the system. Here, we demonstrate the concept of hysteresis in malaria transmission, defined as non-uniqueness of the relationship between malaria prevalence and concurrent climate conditions. We show the dependence of simulated malaria transmission on initial prevalence and the initial level of human immunity in the population. Using realistic time series of environmental variables, we quantify the effect of hysteresis in a modeled population. In a set of numerical experiments using HYDREMATS, a field-tested mechanistic model of malaria transmission, the simulated maximum malaria prevalence depends on both the initial prevalence and the initial level of human immunity in the population. We found the effects of initial conditions to be of comparable magnitude to the effects of interannual variability in environmental conditions in determining malaria prevalence. The memory associated with this hysteresis effect is longer in high transmission settings than in low transmission settings. Our results show that efforts to simulate and forecast malaria transmission must consider the exposure history of a location as well as the concurrent environmental drivers.

  7. Malaria and Tropical Travel

    Centers for Disease Control (CDC) Podcasts

    Malaria is a serious mosquito-borne disease that can lead to death. This podcast discusses malaria risk when traveling to tropical areas, as well as how to protect yourself and your family from malaria infection.

  8. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria....... The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from......, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...

  9. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research.

    Science.gov (United States)

    Riccio, Evelyn K P; Pratt-Riccio, Lilian R; Bianco-Júnior, Cesare; Sanchez, Violette; Totino, Paulo R R; Carvalho, Leonardo J M; Daniel-Ribeiro, Cláudio Tadeu

    2015-04-18

    The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus. Blood samples were obtained from nineteen uninfected Saimiri. Peripheral blood mononuclear cells (PBMC) from these animals and splenocytes from one splenectomized animal were cultured for 6, 12, 18, 24, 48, 72 and 96 hrs in the presence of phorbol-12-myristate-13-acetate and ionomycin. The cytokine levels in the supernatant were detected using human and NHP cytometric bead array Th1/Th2 cytokine kits, the Bio-Plex Pro Human Cytokine Th1/Th2 Assay, enzyme-linked immunosorbent assay, enzyme-linked immunospot assays and intracellular cytokine secretion assays. Cytokine gene expression was examined through TaqMan® Gene Expression Real-Time PCR using predesigned human gene-specific primers and probes or primers and probes designed based on published S. sciureus cytokine sequences. The use of five assays based on monoclonal antibodies specific for human cytokines facilitated the detection of IL-2, IL-4 and/or IFN-γ. TaqMan array plates facilitated the detection of 12 of the 28 cytokines assayed. However, only seven cytokines (IL-1A, IL-2, IL-10, IL-12B, IL-17, IFN-β, and TNF) presented relative expression levels of at least 70% of the gene expression observed in human PBMC. The use of primers and probes specific for S. sciureus cytokines facilitated the detection of transcripts that showed relative expression below the threshold of 70%. The most efficient evaluation of cytokine gene expression, in PBMC and splenocytes, was observed

  10. Antibody reactivities to glutamate-rich peptides of Plasmodium falciparum parasites in humans from areas of different malaria endemicity

    DEFF Research Database (Denmark)

    Jakobsen, P.H.; Theander, T.G.; Hvid, L

    1996-01-01

    Synthetic P. falciparum peptides were evaluated as tools in epidemiological investigations of malaria. Plasma IgM and IgG antibody reactivities against synthetic peptides covering sequences of glutamate-rich protein (GLURP) and acidic-basic repeat antigen (ABRA) were measured by ELISA...

  11. Magnetic resonance imaging of human cerebral infarction: Enhancement with Gd-DTPA

    Energy Technology Data Exchange (ETDEWEB)

    Imakita, S.; Nishimura, T.; Naito, H.; Yamada, N.; Yamamoto, K.; Takamiya, M.; Yamada, Y.; Sakashita, Y.; Minamikawa, J.; Kikuchi, H.

    1987-09-01

    Five patients (1 female and 4 males) with cerebral infarction of 4 h to 27 months duration were studied 9 times with magnetic resonance (MR) using Gd-DTPA. Spinecho (SE) MR images (MRI) were obtained before and after the administration of Gd-DTPA, and correlative CT scans were performed on the same day. In 2 cases, 4 h and 27 months after the ictus, there was no enhancement with Gd-DTPA. There was faint enhancement in 2 cases with cerebral infarction of about 24 h duration and obvious enhancement in all cases in the subacute stage. Compared with enhanced CT, MR using Gd-DTPA demonstrated more obvious enhancement of infarcted areas. MR enhancement using Gd-DTPA showed a gradual increase and the accumulated Gd-DTPA in infarcted areas slowly diffused to the periphery. MR enhancement with Gd-DTPA is similar to that of enhanced CT, but may be more sensitive in the detection of blood brain barrier breakdown.

  12. Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.

    Science.gov (United States)

    Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar

    2018-07-01

    The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.

  13. Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Moran [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Liberman, Gilad; Vitinshtein, Faina; Aizenstein, Orna [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Nadav, Guy [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Faculty of Engineering, Tel Aviv (Israel); Blumenthal, Deborah T.; Bokstein, Felix [Tel Aviv Sourasky Medical Center, Neuro-Oncology Service, Tel Aviv (Israel); Bashat, Dafna Ben [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv (Israel)

    2015-07-15

    Cerebral blood volume (CBV) is an important parameter for the assessment of brain tumors, usually obtained using dynamic susceptibility contrast (DSC) MRI. However, this method often suffers from low spatial resolution and high sensitivity to susceptibility artifacts and usually does not take into account the effect of tissue permeability. The plasma volume (v{sub p}) can also be extracted from dynamic contrast enhancement (DCE) MRI. The aim of this study was to investigate whether DCE can be used for the measurement of cerebral blood volume in place of DSC for the assessment of patients with brain tumors. Twenty-eight subjects (17 healthy subjects and 11 patients with glioblastoma) were scanned using DCE and DSC. v{sub p} and CBV values were measured and compared in different brain components in healthy subjects and in the tumor area in patients. Significant high correlations were detected between v{sub p} and CBV in healthy subjects in the different brain components; white matter, gray matter, and arteries, correlating with the known increased tissue vascularity, and within the tumor area in patients. This work proposes the use of DCE as an alternative method to DSC for the assessment of blood volume, given the advantages of its higher spatial resolution, its lower sensitivity to susceptibility artifacts, and its ability to provide additional information regarding tissue permeability. (orig.)

  14. Use of chloroquine in uncomplicated falciparum malaria ...

    African Journals Online (AJOL)

    Use of chloroquine in uncomplicated falciparum malaria chemotherapy: The past, the present and the future. ... regions. It was initially highly effective against the four Plasmodium species (P. falciparum, P. malaria, P. ovale and P. vivax) infecting human. It is also effective against gametocytes except those of P. falciparum.

  15. The sick placenta - the role of malaria

    NARCIS (Netherlands)

    Brabin, B. J.; Romagosa, C.; Abdelgalil, S.; Menéndez, C.; Verhoeff, F. H.; McGready, R.; Fletcher, K. A.; Owens, S.; D'Alessandro, U.; Nosten, F.; Fischer, P. R.; Ordi, J.

    2004-01-01

    The human placenta is an ideal site for the accumulation of Plasmodium falciparum malaria parasites, and as a consequence serious health problems arise for the mother and her baby. The pathogenesis of placental malaria is only partially understood, but it is clear that it leads to a distinct

  16. A Feast of Malaria Parasite Genomes.

    Science.gov (United States)

    Carlton, Jane M; Sullivan, Steven A

    2017-03-08

    The Plasmodium genus has evolved over time and across hosts, complexifying our understanding of malaria. In a recent Nature paper, Rutledge et al. (2017) describe the genome sequences of three major human malaria parasite species, providing insight into Plasmodium evolution and raising the question of how many species there are. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  18. Prevalence of malaria parasites and Hepatitis-B virus in patients ...

    African Journals Online (AJOL)

    Malaria and Hepatitis-B virus (HBV) remain a threat to human health in many developing nations. Many regions with high malaria prevalence are also endemic for other infectious diseases which may predispose them to more of the malaria infection. Using thin and thick film preparations, malaria parasites were detected, ...

  19. Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation

    DEFF Research Database (Denmark)

    Bailey, Damian M; Rasmussen, Peter; Evans, Kevin A

    2018-01-01

    This study examined to what extent the human cerebral and femoral circulation contribute to free radical formation during basal and exercise-induced responses to hypoxia. Healthy participants (5♂, 5♀) were randomly assigned single-blinded to normoxic (21% O2) and hypoxic (10% O2) trials...... hypoxia (P free radical-mediated lipid peroxidation subsequent to inadequate antioxidant defense. This was pronounced during exercise across the femoral circulation in proportion to the increase in local O2 uptake (r = -0.397 to -0.459, P = 0.037 to 0...... with measurements taken at rest and 30min after cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled from the brachial artery (a), internal jugular and femoral veins (v) for non-enzymatic antioxidants (HPLC), ascorbate radical (A...

  20. Regional cerebral blood flow and oxygen consumption during normal human sleep

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ken [Toho Univ., Tokyo (Japan). School of Medicine

    1989-09-01

    Regional cerebral blood flow (rCBF), regional oxygen extraction fraction (rCEF) and regional cerebral metabolic rate for oxygen (rCMRO{sub 2}) were measured using the continuous inhalation technique for {sup 15}O with positron emission tomography (PET) during both wakefulness and sleep. Ten paid volunteers, with a mean age of 21.6 yrs., were deprived of sleep for a period of approximately 20 hours, and the experiments were performed mostly in the morning. {sup 15}O activity of both whole blood and the plasma, pixel count of PET, total arterial blood oxygen content were used for analysis of rCBF, rOEF and rCMRO{sub 2}. PET scannings were carried out mostly during the very light non-rapid eye movement (NREM) sleep, i.e. stage 1 and/or 2, and wakefulness. About 10 minutes after the start of continuous inhalation of {sup 15}O gas, the {sup 15}O activity of the brain was found to be in a steady-state condition. During this steady-state condition, PET scannings were performed for about 10 minutes. Regions of interest, square in shape and having an area of 2.8 cm{sup 3}, were set in each cortex on PET images of a horizontal cross-section of the brain, set at 45 mm above the orbitomeatal line. The rCBF and rCMRO{sub 2} were analysed in 5 of 10 male subjects during both wakefulness and NREM sleep, and only 3 were done during three sleep stages, including REM sleep. Levels of rCBF and rCMRO{sub 2} were found to be decreased in NREM sleep, and the decreasing rates were calculated at 10.2% and 7.6% from the level of wakefulness, respectively. There was no significant difference in the mean value of rOEF between wakefulness and NREM sleep. There were no significant regional differences found in the rate of decrease among the frontal, temporal and occipital cortices. It was considered that the decrease of rCBF and rCMRO{sub 2} during NREM sleep suggested a decrease of the activity levels in the cerebral functions. (author).

  1. Regional cerebral blood flow and oxygen consumption during normal human sleep

    International Nuclear Information System (INIS)

    Takahashi, Ken

    1989-01-01

    Regional cerebral blood flow (rCBF), regional oxygen extraction fraction (rCEF) and regional cerebral metabolic rate for oxygen (rCMRO 2 ) were measured using the continuous inhalation technique for 15 O with positron emission tomography (PET) during both wakefulness and sleep. Ten paid volunteers, with a mean age of 21.6 yrs., were deprived of sleep for a period of approximately 20 hours, and the experiments were performed mostly in the morning. 15 O activity of both whole blood and the plasma, pixel count of PET, total arterial blood oxygen content were used for analysis of rCBF, rOEF and rCMRO 2 . PET scannings were carried out mostly during the very light non-rapid eye movement (NREM) sleep, i.e. stage 1 and/or 2, and wakefulness. About 10 minutes after the start of continuous inhalation of 15 O gas, the 15 O activity of the brain was found to be in a steady-state condition. During this steady-state condition, PET scannings were performed for about 10 minutes. Regions of interest, square in shape and having an area of 2.8 cm 3 , were set in each cortex on PET images of a horizontal cross-section of the brain, set at 45 mm above the orbitomeatal line. The rCBF and rCMRO 2 were analysed in 5 of 10 male subjects during both wakefulness and NREM sleep, and only 3 were done during three sleep stages, including REM sleep. Levels of rCBF and rCMRO 2 were found to be decreased in NREM sleep, and the decreasing rates were calculated at 10.2% and 7.6% from the level of wakefulness, respectively. There was no significant difference in the mean value of rOEF between wakefulness and NREM sleep. There were no significant regional differences found in the rate of decrease among the frontal, temporal and occipital cortices. It was considered that the decrease of rCBF and rCMRO 2 during NREM sleep suggested a decrease of the activity levels in the cerebral functions. (author)

  2. Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Shinichiro Teramoto

    Full Text Available Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27 is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27 from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27, which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.

  3. Heritability of malaria in Africa.

    Directory of Open Access Journals (Sweden)

    Margaret J Mackinnon

    2005-12-01

    Full Text Available While many individual genes have been identified that confer protection against malaria, the overall impact of host genetics on malarial risk remains unknown.We have used pedigree-based genetic variance component analysis to determine the relative contributions of genetic and other factors to the variability in incidence of malaria and other infectious diseases in two cohorts of children living on the coast of Kenya. In the first, we monitored the incidence of mild clinical malaria and other febrile diseases through active surveillance of 640 children 10 y old or younger, living in 77 different households for an average of 2.7 y. In the second, we recorded hospital admissions with malaria and other infectious diseases in a birth cohort of 2,914 children for an average of 4.1 y. Mean annual incidence rates for mild and hospital-admitted malaria were 1.6 and 0.054 episodes per person per year, respectively. Twenty-four percent and 25% of the total variation in these outcomes was explained by additively acting host genes, and household explained a further 29% and 14%, respectively. The haemoglobin S gene explained only 2% of the total variation. For nonmalarial infections, additive genetics explained 39% and 13% of the variability in fevers and hospital-admitted infections, while household explained a further 9% and 30%, respectively.Genetic and unidentified household factors each accounted for around one quarter of the total variability in malaria incidence in our study population. The genetic effect was well beyond that explained by the anticipated effects of the haemoglobinopathies alone, suggesting the existence of many protective genes, each individually resulting in small population effects. While studying these genes may well provide insights into pathogenesis and resistance in human malaria, identifying and tackling the household effects must be the more efficient route to reducing the burden of disease in malaria-endemic areas.

  4. Heritability of Malaria in Africa.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: While many individual genes have been identified that confer protection against malaria, the overall impact of host genetics on malarial risk remains unknown. METHODS AND FINDINGS: We have used pedigree-based genetic variance component analysis to determine the relative contributions of genetic and other factors to the variability in incidence of malaria and other infectious diseases in two cohorts of children living on the coast of Kenya. In the first, we monitored the incidence of mild clinical malaria and other febrile diseases through active surveillance of 640 children 10 y old or younger, living in 77 different households for an average of 2.7 y. In the second, we recorded hospital admissions with malaria and other infectious diseases in a birth cohort of 2,914 children for an average of 4.1 y. Mean annual incidence rates for mild and hospital-admitted malaria were 1.6 and 0.054 episodes per person per year, respectively. Twenty-four percent and 25% of the total variation in these outcomes was explained by additively acting host genes, and household explained a further 29% and 14%, respectively. The haemoglobin S gene explained only 2% of the total variation. For nonmalarial infections, additive genetics explained 39% and 13% of the variability in fevers and hospital-admitted infections, while household explained a further 9% and 30%, respectively. CONCLUSION: Genetic and unidentified household factors each accounted for around one quarter of the total variability in malaria incidence in our study population. The genetic effect was well beyond that explained by the anticipated effects of the haemoglobinopathies alone, suggesting the existence of many protective genes, each individually resulting in small population effects. While studying these genes may well provide insights into pathogenesis and resistance in human malaria, identifying and tackling the household effects must be the more efficient route to reducing the burden

  5. Anopheles (Kerteszia cruzii (DIPTERA: CULICIDAE IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    Directory of Open Access Journals (Sweden)

    Karin Kirchgatter

    2014-09-01

    Full Text Available Anopheles (Kerteszia cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker. cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  6. Anopheles (Kerteszia) cruzii (Diptera: Culicidae) in peridomiciliary area during asymptomatic malaria transmission in the Atlantic Forest: molecular identification of blood-meal sources indicates humans as primary intermediate hosts.

    Science.gov (United States)

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  7. Rapid reemergence of T cells into peripheral circulation following treatment of severe and uncomplicated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Hviid, L; Kurtzhals, J A; Goka, B Q

    1997-01-01

    Frequencies and absolute numbers of peripheral T-cell subsets were monitored closely following acute Plasmodium falciparum malaria in 22 Ghanaian children from an area of hyperendemicity for seasonal malaria transmission. The children presented with cerebral or uncomplicated malaria (CM or UM, re...

  8. Cerebral Palsy

    Science.gov (United States)

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  9. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  10. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr.; Gillin, J.C.

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  11. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P...... breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P ... 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P breath hold diverts blood toward the brain with a >100% increase in MCA V(mean), largely...

  12. The effects of activation procedures on regional cerebral blood flow in humans

    International Nuclear Information System (INIS)

    Rozenfeld, D.; Wolfson, L.I.

    1981-01-01

    Regional cerebral blood flow (r-CBF) can be measured using 133XE and collimated detectors. The radionuclide can be administered either by inhalation or intracarotid injection. Comparison of blood flow determinations at rest and during performance of an activity identifies those brain regions that become active during the performance of the activity. Relatively specific patterns of r-CBF are observed during hand movements, sensory stimulation, eye movements, speech, listening, and reading. Regional CBF changes during reasoning and memorization are less specific and less well characterized. It is clear that brain lesions affect r-CBF responses to various activities, but this effect has not been well correlated with functional deficits or recovery of function. Regional CBF measurement gives information about brain activity and the functional response to experimental manipulation. This approach may well add to our understanding of normal, as well as pathologic, brain functioning

  13. In vivo analysis of the human superficial cerebral venous anatomy by using 3D-MRI

    International Nuclear Information System (INIS)

    Fujinaga, Yasunari

    1997-01-01

    The purpose of this study is to show the reliability of three dimensional magnetic resonance imaging (3D-MRI), and to classify the drainage patterns of the superficial cerebral veins. At first, toothpicks were stuck into fixed brain surface of a dog. To examine the best methods for making 3D-MRI, the 3D-MRI, including the diameter of the holes, of the dog's brain were analyzed in four threshold values. The holes on the 3D-MRI appeared smaller than their actual size due to the partial volume effect. The low threshold showed more errors than the higher. This result showed it was necessary to display the good 3D-MRI to refer the original MR images. Next, the 3D-MRI of clinical patients who had brain tumors were correlated with operative findings especially in relation to the lesions and brain surface, vessels, ventricles. The relation between the lesions and brain surface, vessels were displayed well, but there were some problems with inadequate ventricular display. Finally, anatomical study using 3D-MRI was performed, because 3D-MRI could display the relation between the brain surface and the superficial cerebral veins in the basic studies. The third study demonstrated that the transverse frontal vein was found in 15%, vein of Trolard ran in front of the central sulcus in 91.5% and several anastomosing veins were frequently observed. These studies showed the progress of technology in bringing about a lot of new information by using 3D-MRI. (author)

  14. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium

    Directory of Open Access Journals (Sweden)

    Christina Faust

    2015-12-01

    Full Text Available Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi, in Southeast Asia highlights the permeability of species barriers in Plasmodium. Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence–absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.

  15. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension*

    DEFF Research Database (Denmark)

    Brassard, Patrice; Kim, Yu-Sok; van Lieshout, Johannes

    2012-01-01

    OBJECTIVE:: The administration of endotoxin to healthy humans reduces cerebral blood flow but its influence on dynamic cerebral autoregulation remains unknown. We considered that a reduction in arterial carbon dioxide tension would attenuate cerebral perfusion and improve dynamic cerebral autoreg...

  16. Short communication: Cerebral Malaria Complicated by Blindness ...

    African Journals Online (AJOL)

    grade intermittent fever associated with multiple convulsions and prolonged coma. He regained consciousness after 12 days of treatment with intravenous quinine but was found to have blindness, sensory‑neural deafness and extrapyramidal ...

  17. Hidden burden of malaria in Indian women

    Directory of Open Access Journals (Sweden)

    Sharma Vinod P

    2009-12-01

    Full Text Available Abstract Malaria is endemic in India with an estimated 70-100 million cases each year (1.6-1.8 million reported by NVBDCP; of this 50-55% are Plasmodium vivax and 45-50% Plasmodium falciparum. A recent study on malaria in pregnancy reported from undivided Madhya Pradesh state (includes Chhattisgarh state, that an estimated over 220,000 pregnant women contract malaria infection each year. Malaria in pregnancy caused- abortions 34.5%; stillbirths 9%; and maternal deaths 0.45%. Bulk of this tragic outcome can be averted by following the Roll Back Malaria/WHO recommendations of the use of malaria prevention i.e. indoor residual spraying (IRS/insecticide-treated bed nets (ITN preferably long-lasting treated bed nets (LLIN; intermittent preventive therapy (IPT; early diagnosis, prompt and complete treatment using microscopic/malaria rapid diagnostics test (RDT and case management. High incidence in pregnancy has arisen because of malaria surveillance lacking coverage, lack of age and sex wise data, staff shortages, and intermittent preventive treatment (IPT applicable in high transmission states/pockets is not included in the national drug policy- an essential component of fighting malaria in pregnancy in African settings. Inadequate surveillance and gross under-reporting has been highlighted time and again for over three decades. As a result the huge problem of malaria in pregnancy reported occasionally by researchers has remained hidden. Malaria in pregnancy may quicken severity in patients with drug resistant parasites, anaemia, endemic poverty, and malnutrition. There is, therefore, urgent need to streamline malaria control strategies to make a difference in tackling this grim scenario in human health.

  18. Un caso de infeccion humana por cisticerco racemoso cerebral de localizacion parenquimatosa en Valdivia, Chile A case of human cerebral infection by parenchymal racemose cysticercus in Valdivia, Chile

    Directory of Open Access Journals (Sweden)

    Eduardo Ortega

    1991-06-01

    Full Text Available Se presenta un caso clínico de infección por cisticerco racemoso cerebral de localización parenquimatosa en un paciente de la ciudad de Valdivia (Chile cuyo diagnóstico definitivo se efectuó a través del estudio morfológico del parásito. Se discute brevemente la escasa frecuencia de la localización parenquimatosa del cisticerco racemoso, así como su diagnóstico diferencial con otros estados larvarios de cestodos que desarrollan en el sistema nervioso.A clinical case of cerebral infection by parenchymal racemose cysticercus, diagnosed by means of morphological characteristics in a patient of Valdivia city is described. The rare frequency of parenquimal location of racemose cysticercus as well as its differential diagnosis with other larval stages of cestodes that develop in the brain and its treatment are discussed.

  19. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  20. Role of viruses in Kenyan children presenting with acute encephalopathy in a malaria-endemic area

    NARCIS (Netherlands)

    Schubart, Christian D.; Mturi, Neema; Beld, Marcel G. H. M.; Wertheim, Pauline M.; Newton, Charles R. J. C.

    2006-01-01

    In malaria-endemic areas, it is difficult to differentiate between cerebral malaria (CM), bacterial meningitis, and viral encephalitis. We examined the cerebrospinal fluid of 49 children who fulfilled the World Health Organization's (WHO) definition of CM and in 47 encephalopathic children, without

  1. Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans

    Directory of Open Access Journals (Sweden)

    Hamilton Gavin

    2008-04-01

    Full Text Available Abstract Background This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and glycerophosphorylethanolamine, which can be measured from the 31-phosphorus neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder. Methods Samples of alveolar air were obtained from eight patients and ethane was analyzed and quantified by gas chromatography and mass spectrometry (m/z = 30. Cerebral 31-phosphorus spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 × 70 × 70 mm3 voxel. The quantification of the 31-phosphorus signals using prior knowledge was carried out in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad component present in the 31-phosphorus spectra. Results The ethane and phosphodiester levels, expressed as a percentage of the total 31-phosphorus signal, were positively and significantly correlated (rs = 0.714, p Conclusion Our results support the hypothesis that the measurement of exhaled ethane levels indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3 polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be more convenient than determining the area of the 31-phosphorus neurospectroscopy phosphodiester peak.

  2. Cerebral microangiopathies

    International Nuclear Information System (INIS)

    Linn, Jennifer

    2011-01-01

    Cerebral microangiopathies are a very heterogenous group of diseases characterized by pathological changes of the small cerebral vessels. They account for 20 - 30 % of all ischemic strokes. Degenerative microangiopathy and sporadic cerebral amyloid angiography represent the typical acquired cerebral microangiopathies, which are found in over 90 % of cases. Besides, a wide variety of rare, hereditary microangiopathy exists, as e.g. CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), Fabrys disease and MELAS syndrome (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes). (orig.)

  3. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Directory of Open Access Journals (Sweden)

    Okara Robi M

    2010-12-01

    Full Text Available Abstract Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex* is provided for Africa: Anopheles (Cellia arabiensis, An. (Cel. funestus*, An. (Cel. gambiae, An. (Cel. melas, An. (Cel. merus, An. (Cel. moucheti and An. (Cel. nili*, and in the European and Middle Eastern Region: An. (Anopheles atroparvus

  4. Study Impact of Gas Delivery Systems on Imaging Studies of Human Cerebral Blood Flow

    International Nuclear Information System (INIS)

    Cain, J.R.; Parkes, L.M.; Jackson, A.; Parkes, L.M.; Eadsforth, P.; Beards, S.C.

    2013-01-01

    To compare a semiopen breathing circuit with a non-rebreathing (Hudson mask) for MRI experiments involving gas delivery. Methods and Materials. Cerebral blood flow (CBF) was measured by quantitative phase contrast angiography of the internal carotid and basilar arteries in 18 volunteers (20-31 years). In 8 subjects, gases were delivered via a standard non-re breathing (Hudson mask). In 10 subjects, gases were delivered using a modified “Mapleson A” semiopen anesthetic gas circuit and mouthpiece. All subjects were given 100% O 2 , medical air, and carbogen gas (95% O 2 and 5% CO 2 ) delivered at 15 L/min in a random order. Results. The Hudson mask group showed significant increases in CBF in response to increased FiCO 2 compared to air (+9.8%). A small nonsignificant reduction in CBF (-2.4%) was seen in response to increased inspired concentrations of oxygen (FiO 2 ). The Mapleson A group showed significantly larger changes in CBF in response to both increased inspired concentrations of carbon dioxide (FiCO 2 ) (+32.2%, Ρ<0.05) and FiO 2 (-14.6%, Ρ<0.01). Conclusions. The use of an anaesthetic gas delivery circuit avoids entrainment of room air and re breathing effects that may otherwise adversely affect the experimental results.

  5. The Dynamic cerebral autoregulatory adaptive response to noradrenaline is attenuated during systemic inflammation in humans

    DEFF Research Database (Denmark)

    Berg, Ronan M. G.; Plovsing, Ronni R.; Bailey, Damian M.

    2015-01-01

    Vasopressor support is used widely for maintaining vital organ perfusion pressure in septic shock, with implications for dynamic cerebral autoregulation (dCA). This study investigated whether a noradrenaline-induced steady state increase in mean arterial blood pressure (MAP) would enhance d......, noradrenaline administration was associated with a decrease in gain (1.18 (1.12-1.35) vs 0.93 (0.87-0.97) cm/mmHg per s; P vs 0.94 (0.81-1.10) radians; P = 0.58). After LPS, noradrenaline administration changed neither gain (0.91 (0.85-1.01) vs 0.87 (0.......81-0.97) cm/mmHg per s; P = 0.46) nor phase (1.10 (1.04-1.30) vs 1.37 (1.23-1.51) radians; P = 0.64). The improvement of dCA to a steady state increase in MAP is attenuated during an LPS-induced systemic inflammatory response. This may suggest that vasopressor treatment with noradrenaline offers no additional...

  6. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Essack Zaynab

    2010-03-01

    Full Text Available Abstract Background Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. Methods In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Results Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. Conclusion The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  7. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa.

    Science.gov (United States)

    Mamotte, Nicole; Wassenaar, Douglas; Koen, Jennifer; Essack, Zaynab

    2010-03-09

    Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB) and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  8. NNDSS - Table II. Legionellosis to Malaria

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Legionellosis to Malaria - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  9. NNDSS - Table II. Legionellosis to Malaria

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Legionellosis to Malaria - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  10. Using Hematology Data from Malaria Vaccine Research Trials in Humans and Rhesus Macaques (Macaca mulatta) To Guide Volume Limits for Blood Withdrawal.

    Science.gov (United States)

    Hegge, Sara R; Hickey, Bradley W; Mcgrath, Shannon M; Stewart, V Ann

    2016-12-01

    Guidelines on safe volume limits for blood collection from research participants in both humans and laboratory animals vary widely between institutions. The main adverse event that may be encountered in large blood volume withdrawal is iron-deficiency anemia. Monitoring various parameters in a standard blood panel may help to prevent this outcome. To this end, we analyzed the Hgb and MCV values from 43 humans and 46 macaques in malaria vaccine research trials. Although the percentage of blood volume removed was greater for macaques than humans, macaques demonstrated an overall increase of MCV over time, indicating the ability to respond appropriately to frequent volume withdrawals. In contrast, humans showed a consistent declining trend in MCV. These declines in human MCV and Hgb were significant from the beginning to end of the study despite withdrawals that were smaller than recommended volume limits. Limiting the volume withdrawn to no more than 12.5% seemed to be sufficient for macaques, and at 14% or more individual animals tended to fail to respond appropriately to large-volume blood loss, as demonstrated by a decrease in MCV. The overall positive erythropoietic response seen in macaques was likely due to the controlled, iron-fortified diet they received. The lack of erythropoietic response in the human subjects may warrant iron supplementation or reconsideration of current blood volume withdrawal guidelines.

  11. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  12. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  13. Functional cerebral lateralization and dual-task efficiency-testing the function of human brain lateralization using fTCD

    NARCIS (Netherlands)

    Lust, J. M.; Geuze, R. H.; Groothuis, A. G. G.; Bouma, A.; Bouma, J.M.

    2011-01-01

    It has been hypothesized that functional cerebral lateralization enhances cognitive performance. Evidence was found in birds and fish. Our study aimed to test this hypothesis by analyzing the relationship between cerebral lateralization and both single-task performance and dual-task efficiency in

  14. Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex

    International Nuclear Information System (INIS)

    John, D.; Fox, I.V.

    1986-01-01

    The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM

  15. Fonsecaea pedrosoi cerebral phaeohyphomycosis ("chromoblastomycosis": first human culture-proven case reported in Brazil Feohifomicose cerebral ("cromoblastomicose" por Fonsecaea pedrosoi: primeiro caso demonstrado por cultura do fungo no Brasil

    Directory of Open Access Journals (Sweden)

    José Paulo S. Nóbrega

    2003-08-01

    Full Text Available Cerebral phaeohyphomycosis ("chromoblastomycosis" is a rare intracranial lesion. We report the first human culture-proven case of brain abscesses due to Fonsecaea pedrosoi in Brazil. The patient, a 28 year-old immunocompetent white male, had ocular manifestations and a hypertensive intracranial syndrome. Magnetic resonance imaging (MRI of the brain revealed a main tumoral mass involving the right temporo-occipital area and another smaller apparently healed lesion at the left occipital lobe. A cerebral biopsy was performed and the pathological report was cerebral chromoblastomycosis. The main lesion was enucleated surgically and culture of the necrotic and suppurative mass grew a fungus identified as Fonsecaea pedrosoi. The patient had received a knife wound sixteen years prior to his hospitalization and, more recently, manifested a pulmonary granulomatous lesion in the right lung with a single non-pigmented form of a fungus present. It was speculated that the fungus might have gained entrance to the host through the skin lesion, although a primary respiratory lesion was not excluded. The patient was discharged from the hospital still with ocular manifestations and on antimycotic therapy and was followed for eight months without disease recurrence. Few months after he had complications of the previous neuro-surgery and died. A complete autopsy was performed and no residual fungal disease was found.A Feohifomicose cerebral ("cromoblastomicose" é uma lesão rara. Apresentamos o primeiro caso desta entidade com cultura do abscesso cerebral, devido a Fonsecaea pedrosoi. O paciente, um homem de 28 anos de idade, imunocompetente, apresentou manifestações oculares e síndrome de hipertensão intracraniana. Imagens de ressonância magnética (MRI cerebral mostraram massa tumoral envolvendo a área temporo-occipital direita e outra lesão menor, possivelmente cicatricial, no lobo occipital esquerdo. Biopsia cerebral mostrou cromoblastomicose cerebral

  16. HUBUNGAN ANOPHELES BARBIROSTRIS DENGAN MALARIA

    Directory of Open Access Journals (Sweden)

    Krisna Iryani

    2013-03-01

    Full Text Available Malaria is a disease caused by intercellular obligate protozoa genus of Plasmodium which is a parasite carried by female Anopheles mosquito. One of them is Anopheles barbirostris. Research in several places already proved that Anopheles barbirostris acts as a vector of malaria. One case that occurred in Cineam district, Tasikmalaya regency showed that Anopheles barbirostris is suspected as vector of malaria. This is proven through a research on the relationship between Anopheles barbirostris with malaria. Data was taken from the larvae and adult mosquitoes captured around Cineam village, Tasikmalaya. The observation was done in the open field and laboratory. Data and identification by pictorial key for female Anopheles showed that the population of Anopheles barbirostris was always a dominant population compared to another Anopheles species. Because of the breeding ponds and the resting places were around the village, it is suspected that they mainly bit humans. The result of the observation in laboratory showed the life cycle of Anopheles barbirostris are around 20-27 days, and the longevity of 20 days. Morphological identification of Anopheles barbirostris by pictorial key for female Anopheles showed that there is no any significant difference. This research showed that Anopheles barbirostris was suspected as vector of malaria in Cineam village, Tasikmalaya.

  17. Phase contrast MR imaging measurements of blood flow in healthy human cerebral vessel segments

    International Nuclear Information System (INIS)

    MacDonald, Matthew Ethan; Frayne, Richard

    2015-01-01

    Phase contrast (PC) magnetic resonance imaging was used to obtain velocity measurements in 30 healthy subjects to provide an assessment of hemodynamic parameters in cerebral vessels. We expect a lower coefficient-of-variation (COV) of the volume flow rate (VFR) compared to peak velocity (v_p_e_a_k) measurements and the COV to increase in smaller caliber arteries compared to large arteries.PC velocity maps were processed to calculate v_p_e_a_k and VFR in 26 vessel segments. The mean, standard deviation and COV, of v_p_e_a_k and VFR in each segment were calculated. A bootstrap-style analysis was used to determine the minimum number of subjects required to accurately represent the population. Significance of v_p_e_a_k and VFR asymmetry was assessed in 10 vessel pairs.The bootstrap analysis suggested that averaging more than 20 subjects would give consistent results. When averaged over the subjects, v_p_e_a_k and VFR ranged from 5.2 ± 7.1 cm s"−"1, 0.41 ± 0.58 ml s"−"1 (in the anterior communicating artery; mean ± standard deviation) to 73 ± 23 cm s"−"1, 7.6 ± 1.7 ml s"−"1 (in the left internal carotid artery), respectively. A tendency for VFR to be higher in the left hemisphere was observed in 88.8% of artery pairs, while the VFR in the right transverse sinus was larger. The VFR COV was larger than v_p_e_a_k COV in 57.7% of segments, while smaller vessels had higher COV.Significance and potential impact: VFR COV was not generally higher than v_p_e_a_k COV. COV was higher in smaller vessels as expected. These summarized values provide a base against which v_p_e_a_k and VFR in various disease states can be compared. (paper)

  18. The vertical dispersión of Anopheles (Kerteszia cruzi in a forest in southern Brazil suggests that human cases of malaria of simian origin might be expected

    Directory of Open Access Journals (Sweden)

    Leonidas M. Deane

    1984-12-01

    Full Text Available By staining females of Anopheles cruzi with fluorescent coloured powders in a forest in the State of Santa Catarina, we showed that they move from canopy to ground and vice-versa to feed. This suggests that in areas where this mosquito is a vector of human and simian malarias sporadic infections of man with monkey plasmodia might be expected.Pintando fêmeas de Anopheles cruzi com pós fluorescentes coloridos, numa floresta de Santa Catarina, mostramos que elas movimentam-se da copa ao solo e vice-versa para se alimentar de sangue. Isso sugere que em áreas onde esse mosquito for tansmissor das malárias humana e simiana pode-se esperar que ocorram infecções humanas esporádicas por plasmódios de macacos.

  19. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  20. Expression and Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-3 (MSP-3 for Detection of Human Malaria.

    Directory of Open Access Journals (Sweden)

    Jeremy Ryan De Silva

    Full Text Available Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61% and ELISA (100%. Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49. In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.

  1. Is the development of falciparum malaria in the human host limited by the availability of uninfected erythrocytes?

    Directory of Open Access Journals (Sweden)

    Hoshen M B

    2002-12-01

    Full Text Available Abstract Background The development and propagation of malaria parasites in their vertebrate host is a complex process in which various host and parasite factors are involved. Sometimes the evolution of parasitaemia seems to be quelled by parasite load. In order to understand the typical dynamics of evolution of parasitaemia, various mathematical models have been developed. The basic premise ingrained in most models is that the availability of uninfected red blood cells (RBC in which the parasite develops is a limiting factor in the propagation of the parasite population. Presentation of the hypothesis We would like to propose that except in extreme cases of severe malaria, there is no limitation in the supply of uninfected RBC for the increase of parasite population. Testing the hypothesis In this analysis we examine the biological attributes of the parasite-infected RBC such as cytoadherence and rosette formation, and the rheological properties of infected RBC, and evaluate their effects on blood flow and clogging of capillaries. We argue that there should be no restriction in the availability of uninfected RBC in patients. Implication of the hypothesis There is no justification for the insertion of RBC supply as a factor in mathematical models that describe the evolution of parasitaemia in the infected host. Indeed, more recent models, that have not inserted this factor, successfully describe the evolution of parasitaemia in the infected host.

  2. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: The role for KDR and MMP-9

    International Nuclear Information System (INIS)

    Yao, Jianhua S.; Zhai Wenwu; Young, William L.; Yang Guoyuan

    2006-01-01

    Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression

  3. Application of carbon-11 labelled nicotine in the measurement of human cerebral blood flow and other physiological parameters

    International Nuclear Information System (INIS)

    Yokoi, Fuji; Hayashi, Tokishi; Iio, Masaaki; Hara, Toshihiko

    1993-01-01

    Using positron emission tomography (PET), we measured the regional cerebral blood flow (rCBF) in five normal human subjects after intravenous injection of carbon-11 labelled (R)nicotine. The rCBF of the same subjects was measured by PET using the C 15 O 2 inhalation steady-state method. The distribution of 11 C activity in the brain after injection of 11 C-(R)nicotine was almost equivalent to the CBF image obtaines with C 15 O 2 inhalation steady-state method. The kinetics of 11 C-(R)nicotine in the brain was analysed using a two-compartment model consisting of vascular and brain tissue compartments. The rCBF values obtained with 11 C-(R)nicotine were higher than with C 15 O 2 gas. It is possible that the relatively long fixed distribution of 11 C-(R)nicotine with a short uptake period allows stimulation studies by measurement of CBF to be performed with better photon flux and a longer imaging time than are possible with H 2 15 O. (orig.)

  4. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1984-01-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H 2 ( 15 )O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H 2 ( 15 )O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2( 15 )O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism

  5. Forecasting Malaria in the Western Amazon

    Science.gov (United States)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  6. Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18.

    Science.gov (United States)

    DeFelipe, Javier; Ballesteros-Yáñez, Inmaculada; Inda, Maria Carmen; Muñoz, Alberto

    2006-01-01

    The detailed microanatomical study of the human cerebral cortex began in 1899 with the experiments of Santiago Ramón y Cajal, who applied the Golgi method to define the structure of the visual, motor, auditory and olfactory cortex. In the first article of this series, he described a special type of interneuron in the visual cortex capable of exerting its influence in the vertical dimension. These neurons are now more commonly referred to as double-bouquet cells (DBCs). The DBCs are readily distinguished owing to their characteristic axons that give rise to tightly interwoven bundles of long, vertically oriented axonal collaterals resembling a horsetail (DBC horsetail). Nevertheless, the most striking characteristic of these neurons is that they are so numerous and regularly distributed that the DBC horsetails form a microcolumnar structure. In addition, DBCs establish hundreds of inhibitory synapses within a very narrow column of cortical tissue. These features have generated considerable interest in DBCs over recent years, principally among those researchers interested in the analysis of cortical circuits. In the present chapter, we shall discuss the morphology, synaptic connections and neurochemical features of DBCs that have been defined through the study of these cells in different cortical areas and species. We will mainly consider the immunocytochemical studies of DBCs that have been carried out in the visual cortex (areas 17 and 18) of human and macaque monkey. We will see that there are important differences in the morphology, number and distribution of DBC horsetails between areas 17 and 18 in the primate. This suggests important differences in the microcolumnar organization between these areas, the functional significance of which awaits detailed correlative physiological and microanatomical studies.

  7. Steady-state cerebral glucose concentrations and transport in the human brain

    OpenAIRE

    Gruetter, R.; Ugurbil, K.; Seaquist, E. R.

    1998-01-01

    Understanding the mechanism of brain glucose transport across the blood- brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport nave been generally described using standard Michaelis-Menten kinetics. These models predict that the steady- state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K(t). In experiments wh...

  8. Neuropeptide Y-immunoreactive neurons in the cerebral cortex of humans and other haplorrhine primates

    Science.gov (United States)

    Raghanti, Mary Ann; Conley, Tiffini; Sudduth, Jessica; Erwin, Joseph M.; Stimpson, Cheryl D.; Hof, Patrick R.; Sherwood, Chet C.

    2012-01-01

    We examined the distribution of neurons immunoreactive for neuropeptide Y (NPY) in the posterior part of the superior temporal cortex (Brodmann's area 22 or area Tpt) of humans and nonhuman haplorrhine primates. NPY has been implicated in learning and memory and the density of NPY-expressing cortical neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and Alzheimer's disease. Due to the role that NPY plays in both cognition and neurodegenerative diseases, we tested the hypothesis that the density of cortical and interstitial neurons expressing NPY was increased in humans relative to other primate species. The study sample included great apes (chimpanzee and gorilla), Old World monkeys (pigtailed macaque, moor macaque, and baboon) and New World monkeys (squirrel monkey and capuchin). Stereologic methods were used to estimate the density of NPY-immunoreactive (-ir) neurons in layers I-VI of area Tpt and the subjacent white matter. Adjacent Nissl-stained sections were used to calculate local densities of all neurons. The ratio of NPY-ir neurons to total neurons within area Tpt and the total density of NPY-ir neurons within the white matter were compared among species. Overall, NPY-ir neurons represented only an average of 0.006% of the total neuron population. While there were significant differences among species, phylogenetic trends in NPY-ir neuron distributions were not observed and humans did not differ from other primates. However, variation among species warrants further investigation into the distribution of this neuromodulator system. PMID:23042407

  9. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans

    Science.gov (United States)

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R.; Öz, Gülin

    2015-01-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of 13C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the 13C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness. PMID:24676563

  10. Cerebral vasculitis

    International Nuclear Information System (INIS)

    Greenan, T.J.; Grossman, R.I.

    1990-01-01

    This paper reviews retrospectively MR, CT, and angiographic findings in patients with cerebral vasculitis in order to understand the strengths and weaknesses of the various imaging modalities, as well as the spectrum of imaging abnormalities in this disease entity. Studies were retrospectively reviewed in 12 patients with cerebral vasculitis proved by means of angiography and/or brain biopsy

  11. Clinical Manifestations, Treatment, and Outcome of Hospitalized Patients with Plasmodium vivax Malaria in Two Indian States: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Jagjit Singh

    2013-01-01

    Full Text Available This was a retrospective study done on 110 patients hospitalized with P. vivax malaria in three medical college hospitals, one in the union territory of Chandigarh and the other two in Gujarat, that is, Ahmedabad and Surat. The clinical presentation, treatment, and outcome were recorded. As per WHO criteria for severity, 19 of 110 patients had severe disease—six patients had clinical jaundice with hepatic dysfunction, three patients had severe anemia, three had spontaneous bleeding, two had acute respiratory distress syndrome, and one had cerebral malaria, hyperparasitemia, renal failure, circulatory collapse, and metabolic acidosis. All patients with severe P. vivax malaria survived, but one child with cerebral malaria had neurological sequelae. There was wide variation in the antimalarial treatment received at the three centres. Plasmodium vivax malaria can no longer be considered a benign condition. WHO guidelines for treatment of P. vivax malaria need to be reinforced.

  12. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    Science.gov (United States)

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  13. C-terminal truncations in human 3 '-5 ' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy

    NARCIS (Netherlands)

    Richards, Anna; van den Maagdenberg, Arn M. J. M.; Jen, Joanna C.; Kavanagh, David; Bertram, Paula; Spitzer, Dirk; Liszewski, M. Kathryn; Barilla-LaBarca, Maria-Louise; Terwindt, Gisela M.; Kasai, Yumi; McLellan, Mike; Grand, Mark Gilbert; Vanmolkot, Kaate R. J.; de Vries, Boukje; Wan, Jijun; Kane, Michael J.; Mamsa, Hafsa; Schaefer, Ruth; Stam, Anine H.; Haan, Joost; Paulus, T. V. M. de Jong; Storimans, Caroline W.; van Schooneveld, Mary J.; Oosterhuis, Jendo A.; Gschwendter, Andreas; Dichgans, Martin; Kotschet, Katya E.; Hodgkinson, Suzanne; Hardy, Todd A.; Delatycki, Martin B.; Hajj-Ali, Rula A.; Kothari, Parul H.; Nelson, Stanley F.; Frants, Rune R.; Baloh, Robert W.; Ferrari, Michel D.; Atkinson, John P.

    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease

  14. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa

    Directory of Open Access Journals (Sweden)

    Petrarca Vincenzo

    2011-07-01

    Full Text Available Abstract Background The Anopheles gambiae gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector A. gambiae. However, malaria transmission in tropical Africa is sustained by three main vectors (A. gambiae, Anopheles arabiensis and Anopheles funestus and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the A. gambiae species complex whereas the A. funestus homologue, fSG6, is more divergent (80% identity with gSG6. The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6. Methods The A. funestus SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large A. gambiae prevalence (>75%. Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed. Results According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level. Conclusions Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission

  15. Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia

    Science.gov (United States)

    William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.

    2013-01-01

    Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830

  16. Ethical dilemmas in malaria vector research in Africa: Making the ...

    African Journals Online (AJOL)

    Malaria vector research presents several dilemmas relating to the various ways in which humans are used in the malaria vector research enterprise. A review of the past and present practices reveals much about the prevailing attitudes and assumptions with regard to the ethical conduct of research involving humans.

  17. Malaria Treatment (United States)

    Science.gov (United States)

    ... Providers, Emergency Consultations, and General Public. Contact Us Malaria Treatment (United States) Recommend on Facebook Tweet Share Compartir Treatment of Malaria: Guidelines For Clinicians (United States) Download PDF version ...

  18. Malaria and Travelers

    Science.gov (United States)

    ... Providers, Emergency Consultations, and General Public. Contact Us Malaria and Travelers for U.S. Residents Recommend on Facebook ... may be at risk for infection. Determine if malaria transmission occurs at the destinations Obtain a detailed ...

  19. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  20. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Akanmori, B D; Kurtzhals, J A; Goka, B Q

    2000-01-01

    The pathogenesis of two of the most severe complications of Plasmodium falciparum malaria, cerebral malaria (CM) and severe malarial anaemia (SA) both appear to involve dysregulation of the immune system. We have measured plasma levels of TNF and its two receptors in Ghanaian children with strict...

  1. Malaria vaccine offers hope. International / Africa.

    Science.gov (United States)

    1995-03-13

    Colombian professor Manuel Patarroyo developed a new malaria vaccine (SPF66). In February 1995, WHO and the Colombian government agreed to establish a manufacturing plant in Colombia for mass production of SPF66. This vaccine is likely to be available to persons in Africa, where 90% of all annual global cases live. In fact, Africa witnesses one million of 1.5 million annual malaria cases. Many children die from malaria. An extensive clinical trial of the SPF66 vaccine in Colombia achieved a 22-77% protection rate. The young and the very old had the high protection rates. A series of human clinical trials in the Gambia and Tanzania indicate that SPF66 produces a strong immune response against malaria without any harmful side effects. The results of field tests in the Gambia and Thailand and of trials in Colombia are expected in 1995. If the vaccine could reduce the incidence of malaria by just 50%, the lives of as many as 500,000 African children could be saved. SPF66 contains a combination of synthetic peptides (=or 2 amino acids). Mass production would make it affordable (estimated $5/injection). At least five other malaria vaccines hold promise and are ready for human testing in endemic countries. SPF66 is approximately three years ahead of all other promising malaria vaccines. 20 more vaccines are in the development stage. The large scale production of SPF66 in Colombia could begin within three years. Professor Patarroyo has financed his 12-year-old research himself because he wants to protect the lives of persons in developing countries. In 1992, the Congo's president petitioned the international community at the WHO summit in Amsterdam to join the fight against malaria since it is now in a position to defeat malaria since it finished the cold war.

  2. Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans.

    Science.gov (United States)

    Fujii, Naoto; Tsuji, Bun; Honda, Yasushi; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-09-01

    Hyperthermia induces hyperventilation and cerebral hypoperfusion in resting humans. We tested the hypothesis that short-term exercise-heat acclimation would alleviate those effects. Twenty healthy male subjects were divided into two groups that performed exercise training in the heat (TR-HEAT, n = 10) or cold (TR-COLD, n = 10). Before and after the training, the subjects in both groups participated in passive-heat tests at rest. Training was performed at 37°C (TR-HEAT) or 10°C (TR-COLD) and entailed four 20-min bouts of cycling at 50% peak oxygen uptake separated by 10-min recoveries daily for 6 consecutive days. After TR-HEAT, esophageal temperature was lowered when measured before and during passive heating, as was the esophageal temperature threshold for cutaneous active vasodilation, whereas plasma volume was increased (all P heat acclimation were not all induced by TR-COLD (all P > 0.05). TR-HEAT had no significant effect on passive heating-induced increases in minute ventilation, even when evaluated as the esophageal temperature threshold for increases in minute ventilation and the slope relating minute ventilation to esophageal temperature (all P > 0.05). By contrast, TR-HEAT attenuated the passive heating-induced reduction in the cerebral vascular conductance index (middle cerebral artery mean blood velocity/mean arterial pressure) (all P heating (all P > 0.05). These data suggest that in resting heated humans, short-term heat acclimation achieved through moderate-intensity exercise training (i.e., 50% peak oxygen uptake) in the heat does not influence hyperthermia-induced hyperventilation, but it does potentially attenuate cerebral hypoperfusion. Copyright © 2015 the American Physiological Society.

  3. Third harmonic generation imaging of intact human cerebral organoids to assess key components of early neurogenesis in Rett Syndrome (Conference Presentation)

    Science.gov (United States)

    Yildirim, Murat; Feldman, Danielle; Wang, Tianyu; Ouzounov, Dimitre G.; Chou, Stephanie; Swaney, Justin; Chung, Kwanghun; Xu, Chris; So, Peter T. C.; Sur, Mriganka

    2017-02-01

    Rett Syndrome (RTT) is a pervasive, X-linked neurodevelopmental disorder that predominantly affects girls. It is mostly caused by a sporadic mutation in the gene encoding methyl CpG-binding protein 2 (MeCP2).The clinical features of RTT are most commonly reported to emerge between the ages of 6-18 months and implicating RTT as a disorder of postnatal development. However, a variety of recent evidence from our lab and others demonstrates that RTT phenotypes are present at the earliest stages of brain development including neurogenesis, migration, and patterning in addition to stages of synaptic and circuit development and plasticity. We have used RTT patient-derived induced pluripotent stem cells to generate 3D human cerebral organoids that can serve as a model for human neurogenesis in vitro. We aim to expand on our existing findings in order to determine aberrancies at individual stages of neurogenesis by performing structural and immunocytochemical staining in isogenic control and MeCP2-deficient organoids. In addition, we aim to use Third Harmonic Generation (THG) microscopy as a label-free, nondestructive 3D tissue visualization method in order to gain a complete understanding of the structural complexity that underlies human neurogenesis. As a proof of concept, we have performed THG imaging in healthy intact human cerebral organoids cleared with SWITCH. We acquired an intrinsic THG signal with the following laser configurations: 400 kHz repetition rate, 65 fs pulse width laser at 1350 nm wavelength. In these THG images, nuclei are clearly delineated and cross sections demonstrate the depth penetration capacity (< 1mm) that extends throughout the organoid. Imaging control and MeCP2-deficient human cerebral organoids in 2D sections reveals structural and protein expression-based alterations that we expect will be clearly elucidated via both THG and three-photon fluorescence microscopy.

  4. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons.

    Directory of Open Access Journals (Sweden)

    Kimberly D Siegmund

    Full Text Available The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's or lack thereof (schizophrenia--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.

  5. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development

    Directory of Open Access Journals (Sweden)

    Mariella eErrede

    2014-10-01

    Full Text Available This study was conducted on human developing brain by laser confocal and transmission electron microscopy to make a detailed analysis of important features of blood-brain barrier microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The blood-brain barrier status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration and before cortex lamination, with blood-brain barrier-endothelial cell markers, namely tight junction proteins (occludin and claudin-5 and influx and efflux transporters (Glut-1 and P-glycoprotein, the latter supporting evidence for functional effectiveness of the fetal blood-brain barrier. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analysed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43 were utilized as markers of radial glia cells, CD105 (endoglin as a marker of angiogenically activated endothelial cells, and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial fibres in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical vessel-specific RG fibre swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of radial glial varicosities reveals colocalization of CXCL12 with connexin Cx43, which is possibly implicated in vessel-specific chemokine signalling.

  6. (−-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Jieliang

    2012-07-01

    Full Text Available Abstract Background (−-Epigallocatechin gallate (EGCG is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS induces inflammatory cytokine production and impairs blood–brain barrier (BBB integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs and BBB permeability. Methods The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2 was determined by quantitative real time PCR (qRT-PCR and ELISA. Intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule (VCAM in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin and immunofluorescence staining (Claudin 5 and ZO-1. The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER. NF-kB activation was measured by luciferase assay. Results EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5 in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG. Conclusions Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

  7. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment

    Directory of Open Access Journals (Sweden)

    Che Zhang MD

    2015-03-01

    Full Text Available Background. Cerebral palsy (CP is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88. Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  8. Patient-tailored multimodal neuroimaging, visualization and quantification of human intra-cerebral hemorrhage

    Science.gov (United States)

    Goh, Sheng-Yang M.; Irimia, Andrei; Vespa, Paul M.; Van Horn, John D.

    2016-03-01

    In traumatic brain injury (TBI) and intracerebral hemorrhage (ICH), the heterogeneity of lesion sizes and types necessitates a variety of imaging modalities to acquire a comprehensive perspective on injury extent. Although it is advantageous to combine imaging modalities and to leverage their complementary benefits, there are difficulties in integrating information across imaging types. Thus, it is important that efforts be dedicated to the creation and sustained refinement of resources for multimodal data integration. Here, we propose a novel approach to the integration of neuroimaging data acquired from human patients with TBI/ICH using various modalities; we also demonstrate the integrated use of multimodal magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data for TBI analysis based on both visual observations and quantitative metrics. 3D models of healthy-appearing tissues and TBIrelated pathology are generated, both of which are derived from multimodal imaging data. MRI volumes acquired using FLAIR, SWI, and T2 GRE are used to segment pathology. Healthy tissues are segmented using user-supervised tools, and results are visualized using a novel graphical approach called a `connectogram', where brain connectivity information is depicted within a circle of radially aligned elements. Inter-region connectivity and its strength are represented by links of variable opacities drawn between regions, where opacity reflects the percentage longitudinal change in brain connectivity density. Our method for integrating, analyzing and visualizing structural brain changes due to TBI and ICH can promote knowledge extraction and enhance the understanding of mechanisms underlying recovery.

  9. Malaria Surveillance - United States, 2014.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M

    2017-05-26

    Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. This report summarizes cases in persons with onset of illness in 2014 and trends during previous years. Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System, National Notifiable Diseases Surveillance System, or direct CDC consultations. CDC conducts antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. Data from these reporting systems serve as the basis for this report. CDC received reports of 1,724 confirmed malaria cases, including one congenital case and two cryptic cases, with onset of symptoms in 2014 among persons in the United States. The number of confirmed cases in 2014 is consistent with the number of confirmed cases reported in 2013 (n = 1,741; this number has been updated from a previous publication to account for delayed reporting for persons with symptom onset occurring in late 2013). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 66.1%, 13.3%, 5.2%, and 2.7% of cases, respectively

  10. Transformation of the rodent malaria parasite Plasmodium chabaudi

    OpenAIRE

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-01-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. this protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, sing...

  11. The influence of tobacco smoking on the relationship between pressure and flow in the middle cerebral artery in humans.

    Science.gov (United States)

    Peebles, Karen C; Horsman, Helen; Tzeng, Yu-Chieh

    2013-01-01

    Cigarette smoking is associated with an increased risk of stroke but the mechanism is unclear. The study examined whether acute and chronic cigarette smoking alters the dynamic relationship between blood pressure and cerebral blood flow. We hypothesised that acute and chronic smoking would result in a cerebral circulation that was less capable of buffering against dynamic fluctuations in blood pressure. Further, these changes would be accompanied by a reduction in baroreflex sensitivity, which is reduced after smoking (acute smoking). We recruited 17 non-smokers and 15 habitual smokers (13 ± 5 pack years). Continuous measurements of mean cerebral blood flow velocity (transcranial Doppler ultrasound), blood pressure (finger photoplethysmography) and heart rate enabled transfer function analysis of the dynamic relationship between pressure and flow (gain, normalised gain, phase and coherence) and baroreflex sensitivity during supine rest before and after smoking a single cigarette (acute smoking). There were no between-group differences in gain, phase or coherence before acute smoking. However, both groups showed a reduction in gain and coherence, associated with a reduction in baroreflex sensitivity, and increase in phase after acute smoking. Contrary to our hypothesis, these findings suggest that in the face of a reduction in baroreflex sensitivity acute smoking may potentially improve the ability of the cerebral circulation to buffer against changes in blood pressure. However, chronic smoking did not alter the dynamic relationship between blood pressure and cerebral blood flow velocity. These results have implications on understanding mechanisms for attenuating stroke risk.

  12. Malaria in Children.

    Science.gov (United States)

    Cohee, Lauren M; Laufer, Miriam K

    2017-08-01

    Malaria is a leading cause of morbidity and mortality in endemic areas, leading to an estimated 438,000 deaths in 2015. Malaria is also an important health threat to travelers to endemic countries and should be considered in evaluation of any traveler returning from a malaria-endemic area who develops fever. Considering the diagnosis of malaria in patients with potential exposure is critical. Prompt provision of effective treatment limits the complications of malaria and can be life-saving. Understanding Plasmodium species variation, epidemiology, and drug-resistance patterns in the geographic area where infection was acquired is important for determining treatment choices. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian

    2010-10-01

    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.

  14. Malaria in the Greater Mekong Subregion: Heterogeneity and Complexity

    Science.gov (United States)

    Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Cao, Yaming; Chen, Bin; Chen, Xiaoguang; Fan, Qi; Fang, Qiang; Jongwutiwes, Somchai; Parker, Daniel; Sirichaisinthop, Jeeraphat; Kyaw, Myat Phone; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Xu, Jianwei; Zheng, Bin; Zhong, Daibin; Zhou, Guofa

    2011-01-01

    The Greater Mekong Subregion (GMS), comprised of six countries including Cambodia, China's Yunnan Province, Lao PDR, Myanmar (Burma), Thailand and Vietnam, is one of the most threatening foci of malaria. Since the initiation of the WHO's Mekong Malaria Program a decade ago, malaria situation in the GMS has greatly improved, reflected in the continuous decline in annual malaria incidence and deaths. However, as many nations are moving towards malaria elimination, the GMS nations still face great challenges. Malaria epidemiology in this region exhibits enormous geographical heterogeneity with Myanmar and Cambodia remaining high-burden countries. Within each country, malaria distribution is also patchy, exemplified by ‘border malaria’ and ‘forest malaria’ with high transmission occurring along international borders and in forests or forest fringes, respectively. ‘Border malaria’ is extremely difficult to monitor, and frequent malaria introductions by migratory human populations constitute a major threat to neighboring, malaria-eliminating countries. Therefore, coordination between neighboring countries is essential for malaria elimination from the entire region. In addition to these operational difficulties, malaria control in the GMS also encounters several technological challenges. Contemporary malaria control measures rely heavily on effective chemotherapy and insecticide control of vector mosquitoes. However, the spread of multidrug resistance and potential emergence of artemisinin resistance in Plasmodium falciparum make resistance management a high priority in the GMS. This situation is further worsened by the circulation of counterfeit and substandard artemisinin-related drugs. In most endemic areas of the GMS, P. falciparum and P. vivax coexist, and in recent malaria control history, P. vivax has demonstrated remarkable resilience to control measures. Deployment of the only registered drug (primaquine) for the radical cure of vivax malaria is

  15. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  16. Malaria transmission in Tripura: Disease distribution & determinants.

    Science.gov (United States)

    Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K

    2015-12-01

    Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to

  17. Epidemiology of Plasmodium vivax Malaria in Peru.

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E; Moreno, Marta; Lescano, Andres G; Sanchez, Juan F; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2016-12-28

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s-2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005-2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine-primaquine for P. vivax Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. © The American Society of Tropical Medicine and Hygiene.

  18. Epidemiology of Plasmodium vivax Malaria in Peru

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E.; Moreno, Marta; Lescano, Andres G.; Sanchez, Juan F.; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.

    2016-01-01

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. PMID:27799639

  19. Simultaneous presence of DDT and pyrethroid residues in human breast milk from a malaria endemic area in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Bouwman, H. [School for Environmental Sciences and Development, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom 2520 (South Africa)]. E-mail: drkhb@puk.ac.za; Sereda, B. [Agricultural Research Council, Plant Protection Research Institute, Private Bag X134 Queenswood, Pretoria 0121 (South Africa); Meinhardt, H.M. [South African Bureau of Standards, Testing and Conformity Services (Pty) Ltd, Private Bag X191, Pretoria 0001 (South Africa)

    2006-12-15

    DDT and pyrethroids were determined in 152 breast-milk samples from three towns in KwaZulu-Natal, South Africa, one of which had no need for DDT for malaria control. All compounds were found present in breast milk. Primiparae from one town had the highest mean {sigma}DDT whole milk levels (238.23 {mu}g/l), and multiparae from the same town had the highest means for permethrin (14.51 {mu}g/l), cyfluthrin (41.74 {mu}g/l), cypermethrin (4.24 {mu}g/l), deltamethrin (8.39 {mu}g/l), and {sigma}pyrethroid (31.5 {mu}g/l), most likely derived from agriculture. The ADI for DDT was only exceeded by infants from one town, but the ADI for pyrethroids was not exceeded. Since the ADI for DDT was recently reduced from 20 to 10 {mu}g/kg/bw, we suggest that this aspect be treated with concern. We therefore raise a concern based on toxicant interactions, due to the presence of four different pyrethroids and DDT. Breastfeeding however, remains safe under prevailing conditions. - The simultaneous presence of DDT and pyrethroid residues in breast milk raises the question of infant exposure and safety.

  20. Malaria og graviditet

    DEFF Research Database (Denmark)

    Hoffmann, A L; Rønn, A M; Langhoff-Roos, J

    1992-01-01

    In regions where malaria is endemism, the disease is a recognised cause of complications of pregnancy such as spontaneous abortion, premature delivery, intrauterine growth retardation and foetal death. Malaria is seldom seen in pregnant women in Denmark but, during the past two years, the authors...... the patients but also their practitioners were unaware that malaria can occur several years after exposure. Three out of the four patients had employed malaria prophylaxis. As resistance to malarial prophylactics in current use is increasing steadily, chemoprophylaxis should be supplemented by mechanical...... protection against malaria and insect repellents. As a rule, malaria is treated with chloroquine. In cases of Falciparum malaria in whom chloroquine resistance is suspected, treatment with mefloquine may be employed although this should only be employed in cases of dire necessity in pregnant patients during...

  1. Disturbances in the cerebral perfusion of human immune deficiency virus-1 seropositive asymptomatic subjects: A quantitative tomography study of 18 cases

    International Nuclear Information System (INIS)

    Tran Dinh, Y.R.; Mamo, H.; Cervoni, J.; Caulin, C.; Saimot, A.C.

    1990-01-01

    Quantitative measurements of cerebral blood flow (CBF) by xenon-133 ( 133 Xe) tomography, together with magnetic resonance imaging (MRI), electroencephalography (EEG), psychometric tests, and laboratory analyses were performed on 18 human immunodeficiency virus 1 (HIV-1) seropositive asymptomatic subjects. Abnormalities of cerebral perfusion were observed in 16 cases (88%). These abnormalities were particularly frequent in the frontal regions (77% of cases). MRI demonstrated leucoencephalopathy in only two cases. EEG showed only induced diffuse abnormalities in two cases. Psychometric tests showed restricted moderate disturbances in 55% of patients. These disturbances mostly concerned those sectors involved in cognitive functions and memorization. These results indicate that quantitative measurements of CBF by 133 Xe-SPECT is capable of detecting abnormalities of cerebral perfusion at a very early stage (Phase II) of HIV-1 infection. These abnormalities are indications of disturbances resulting from unidentified metabolic or vascular lesions. This technique appears to be superior to MRI at this stage of the disease's development. It could provide objective information leading to earlier treatment, and prove useful in evaluating potential antiviral chemotherapy

  2. Changes in Cerebral Blood Flow during an Alteration in Glycemic State in a Large Non-human Primate (Papio hamadryas sp.).

    Science.gov (United States)

    Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S

    2017-01-01

    Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.

  3. A new prognostic index - leucocyte infiltration - in human cerebral infarcts by 99Tcm-HMPAO-labelled white blood cell brain SPECT

    International Nuclear Information System (INIS)

    Kao, C.H.; Wang, P.Y.; Wang, Y.L.; Chang, L.; Wang, S.J.; Yeh, S.H.

    1991-01-01

    Twenty-six patients with acute cerebral infarction were imaged by 99 Tc m -hexamethylpropylene-amine oxime (HMPAO)-labelled white blood cell brain (Tc-WBC) single photon emission computed tomography (SPECT). The regions of interest were equally placed in the whole hemispheres of both sides with summation of all transaxial slices in the Tc-WBC SPECT. The asymmetric indices (AI) were calculated as 200 [|(right -left)|/(right + left)]. Grouping of patients with cerebral infarction was based on activities of daily living (ADL) at outcome. The results showed that the poor outcome patient group had a higher AI of Tc-WBC than that of the other patients (13.0 ± 3.0 S.E.M. versus 5.4 ± 1.0 S.E.M., and P < 0.05 by Wilcoxon rank sum test). In conclusion, the Tc-WBC SPECT may be considered as a new prognostic index to predict patient outcome in human cerebral ischaemic infarctions consistent with newly established ischaemic injury theories. (author)

  4. Severe and uncomplicated falciparum malaria in children from three regions and three ethnic groups in Cameroon: prospective study

    Directory of Open Access Journals (Sweden)

    Achidi Eric A

    2012-06-01

    Full Text Available Abstract Background To identify the factors that account for differences in clinical outcomes of malaria as well as its relationship with ethnicity, transmission intensity and parasite density. Methods A prospective study was conducted in nine health facilities in the Centre, Littoral and South West regions of Cameroon, and in three ethnic groups; the Bantu, Semi-Bantu and Foulbe. Children aged one month to 13 years, with diagnosis suggestive of malaria, were recruited and characterized using the WHO definition for severe and uncomplicated malaria. Malaria parasitaemia was determined by light microscopy, haematological analysis using an automated haematology analyser and glucose level by colorimetric technique. Results Of the febrile children screened, 971 of the febrile children screened fulfilled the inclusion criteria for specific malaria clinical phenotypes. Forty-nine (9.2% children had cerebral malaria, a feature that was similar across age groups, ethnicity and gender but lower (P P P = 0.009 and Foulbe (P = 0.026 counterparts in the Centre region. The overall study case fatality was 4.8 (47/755, with cerebral malaria being the only significant risk factor associated with death. Severe anaemia, though a common and major clinical presentation, was not significantly associated with risk of death. Conclusion About half of the acutely febrile children presented with severe malaria, the majority being cases of severe malaria anaemia, followed by respiratory distress and cerebral malaria. The latter two were less prevalent in the Centre region compared to the other regions. Cerebral malaria and hyperpyrexia were the only significant risk factors associated with death.

  5. A Glycolipid Adjuvant, 7DW8-5, Enhances CD8+ T Cell Responses Induced by an Adenovirus-Vectored Malaria Vaccine in Non-Human Primates

    OpenAIRE

    Padte, Neal N.; Boente-Carrera, Mar; Andrews, Chasity D.; McManus, Jenny; Grasperge, Brooke F.; Gettie, Agegnehu; Coelho-dos-Reis, Jordana G.; Li, Xiangming; Wu, Douglass; Bruder, Joseph T.; Sedegah, Martha; Patterson, Noelle; Richie, Thomas L.; Wong, Chi-Huey; Ho, David D.

    2013-01-01

    A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent ad...

  6. Specific proliferative response of human lymphocytes to purified soluble antigens from Plasmodium falciparum in vitro cultures and to antigens from malaria patients' sera

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Jepsen, S; Theander, T G

    1985-01-01

    Antigens of Plasmodium falciparum, in supernatants of in vitro cultures of the parasite were affinity purified on columns prepared with the IgG fraction of the serum of an immune individual. The purified antigens induced proliferation of lymphocytes from persons who had recently had malaria....... The responses were strongest with lymphocytes from individuals infected with falciparum and ovale malaria; vivax malaria infections induced a lower level of response and lymphocytes of unsensitized individuals were little affected. Lymphocytes from unsensitized individuals did not respond to the affinity...

  7. Malaria in South Asia: Prevalence and control

    Science.gov (United States)

    Kumar, Ashwani; Chery, Laura; Biswas, Chinmoy; Dubhashi, Nagesh; Dutta, Prafulla; Dua, Virendra Kumar; Kacchap, Mridula; Kakati, Sanjeeb; Khandeparkar, Anar; Kour, Dalip; Mahajanj, Satish N.; Maji, Ardhendu; Majumder, Partha; Mohanta, Jagadish; Mohapatra, Pradyumna K.; Narayanasamy, Krishnamoorthy; Roy, Krishnangshu; Shastri, Jayanthi; Valecha, Neena; Vikash, Rana; Wani, Reena; White, John; Rathod, Pradipsinh K

    2013-01-01

    The “Malaria Evolution in South Asia” (MESA) program project is an International Center of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. This US–India collaborative program will study the origin of genetic diversity of malaria parasites and their selection on the Indian subcontinent. This knowledge should contribute to a better understanding of unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. In this first of two reviews, we highlight malaria prevalence in India. In particular, we draw attention to variations in distribution of different human-parasites and different vectors, variation in drug resistance traits, and multiple forms of clinical presentations. Uneven malaria severity in India is often attributed to large discrepancies in health care accessibility as well as human migrations within the country and across neighboring borders. Poor access to health care goes hand in hand with poor reporting from some of the same areas, combining to possibly distort disease prevalence and death from malaria in some parts of India. Corrections are underway in the form of increased resources for disease control, greater engagement of village-level health workers for early diagnosis and treatment, and possibly new public–private partnerships activities accompanying traditional national