WorldWideScience

Sample records for human cells effects

  1. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  2. Vasoprotective effects of human CD34+ cells: towards clinical applications

    Directory of Open Access Journals (Sweden)

    Lerman Amir

    2009-07-01

    Full Text Available Abstract Background The development of cell-based therapeutics for humans requires preclinical testing in animal models. The use of autologous animal products fails to address the efficacy of similar products derived from humans. We used a novel immunodeficient rat carotid injury model in order to determine whether human cells could improve vascular remodelling following acute injury. Methods Human CD34+ cells were separated from peripheral buffy coats using automatic magnetic cell separation. Carotid arterial injury was performed in male Sprague-Dawley nude rats using a 2F Fogarty balloon catheter. Freshly harvested CD34+ cells or saline alone was administered locally for 20 minutes by endoluminal instillation. Structural and functional analysis of the arteries was performed 28 days later. Results Morphometric analysis demonstrated that human CD34+ cell delivery was associated with a significant reduction in intimal formation 4 weeks following balloon injury as compared with saline (I/M ratio 0.79 ± 0.18, and 1.71 ± 0.18 for CD34, and saline-treated vessels, respectively P Conclusion Delivery of human CD34+ cells limits neointima formation and improves arterial reactivity after vascular injury. These studies advance the concept of cell delivery to effect vascular remodeling toward a potential human cellular product.

  3. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  4. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  5. Effects of PVA coated nanoparticles on human immune cells.

    Science.gov (United States)

    Strehl, Cindy; Gaber, Timo; Maurizi, Lionel; Hahne, Martin; Rauch, Roman; Hoff, Paula; Häupl, Thomas; Hofmann-Amtenbrink, Margarethe; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank

    2015-01-01

    Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine.

  6. Effect of propionyl-L-carnitine on human endothelial cells

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Scheffer, M.A.

    1991-01-01

    A possible protective effect of propionyl-L-carnitine on human endothelial cells was studied both under basal culture conditions and in the presence of agents capable of influencing oxidative damage, such as glucose/glucose oxidase and oxidized low-density lipoproteins. Propionyl-L-carnitine had no

  7. Effect of Deep Space Radiation on Human Hematopoietic Cells

    Science.gov (United States)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  8. In vitro effects of trichothecenes on human dendritic cells.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-09-01

    The aim of this work was to study the in vitro effects of trichothecenes on human dendritic cells. Trichothecenes are mycotoxins produced by fungi such as Fusarium, Myrothecium, and Stachybotrys. Two aspects have been explored in this work: the cytotoxicity of trichothecenes on immature dendritic cells to determine IC 50 (inhibition concentration), and the effects of trichothecenes on dendritic cell maturation process. Two mycotoxins (T-2 and DON) known to be immunotoxic have been tested on a model of monocyte-derived dendritic cells culture. Cytotoxic effects of T-2 toxin and DON on immature dendritic cells showed that DON is less potent than T-2 toxin. The exposure to trichothecenes during dendritic cell maturation upon addition of LPS or TNF-alpha markedly inhibited the up-regulation of maturation markers such as CD-86, HLA-DR and CCR7. Features of LPS or TNF-alpha -mediated maturation of dendritic cells, such as IL-10 and IL-12 secretions and endocytosis, were also impaired in response to trichothecenes treatment. These results suggest trichothecenes have adverse effects on dendritic cells and dendritic cell maturation process.

  9. Effect of staurosporine on cycle of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Ke-Zuo Hou; Yun-Peng Liu; Yuan Yuan

    2004-01-01

    AIM: To study the effect of staurosporine (ST) on the cell cycle of human gastriccancer cell lines MGC803 and SGC7901.METHODS: Cell proliferation was evaluated by trypan blue dye exclusion method. Apoptotic morphology was observed under a transmission electron microscope. Changes of cell cycle and apoptotic peaks of cells were determined by flow cytometry. Expression of p21WAFI gene was examined using immunohistochemistry and RT-PCR.RESULTS: The growth of MGC803 and SGC7901 cells was inhibited by ST. The inhibitory concentrations against 50% cells (IC50) at 24 h and 48 h were 54 ng/ml and 23 ng/ml for MlGC803, and 61 ng/ml and 37 ng/ml for SGC7901. Typical apoptotic bodies and apoptotic peaks were observed 24 hafter cells were treated wth ST at a concentration of 200ng/ml. The percentage of cells at G0/G1 phase was decreased and that of cells at G2/M was increased significantly in the group treated wth ST at the concentrations of 40ng/ml,60 ng/ml, 100 ng/ml for 24 h, compared with the control group (P<0.01). The expression levels of p21WAFI gene in both MGC803 and SGC7901 cells were markedly up-regulated after treatment with ST.CONCLUSION: ST can cause arrest of gastric cancer cells at G2/M phase, which may be one of the mechanisms that inhibit cell proliferation and cause apoptosis in these cells.Effect of ST on cells at G2/M phase may be attributed to the up-regulattion of p21WAFI gene.

  10. Effects of stratospheric radiations on human glioblastoma cells.

    Science.gov (United States)

    Cerù, Maria Paola; Amicarelli, Fernanda; Cristiano, Loredana; Colafarina, Sabrina; Aimola, Pierpaolo; Falone, Stefano; Cinque, Benedetta; Ursini, Ornella; Moscardelli, Roberto; Ragni, Pietro

    2005-01-01

    The aim of this work was to evaluate the effect of stratospheric radiations on neural tumour cells. ADF human glioblastoma cells were hosted on a stratospheric balloon within the 2002 biological experiment campaign of the Italian Space Agency. The flight at an average height of 37 km lasted about 24 hrs. Cell morphology, number and viability, cell cycle and apoptosis, some antioxidant enzymes and proteins involved in cell cycle regulation, DNA repair and gene expression were studied. Stratospheric radiations caused a significant decrease in cell number, as well as a block of proliferation, but not apoptosis or necrosis. Radiations also induced activation and induction of some antioxidant enzymes, increase in DNA repair-related proteins (p53 and Proliferating Cell Nuclear Antigen) and variations of the transcription factors Peroxisome Proliferator-Activated Receptors. Morphologically, test cells exhibited more electron dense cytoplasm and less condensed chromatin than controls and modification of their surfaces. Our results indicate that glioblastoma cells, exposed to continuous stratospheric radiations for 24 hrs, show activation of cell cycle check point, decrease of cell number, variations of Peroxisome Proliferator-Activated Receptors and increase of Reactive Oxygen Species-scavenging enzymes.

  11. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  12. Mutagenic effect of cadmium on tetranucleotide repeats in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Slebos, Robbert J.C. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States) and Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)]. E-mail: r.slebos@vanderbilt.edu; Li Ming [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Evjen, Amy N. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Coffa, Jordy [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Shyr, Yu [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)

    2006-12-01

    Cadmium is a human carcinogen that affects cell proliferation, apoptosis and DNA repair processes that are all important to carcinogenesis. We previously demonstrated that cadmium inhibits DNA mismatch repair (MMR) in yeast cells and in human cell-free extracts (H.W. Jin, A.B. Clark, R.J.C. Slebos, H. Al-Refai, J.A. Taylor, T.A. Kunkel, M.A. Resnick, D.A. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 34 (3) (2003) 326-329), but cadmium also inhibits DNA excision repair. For this study, we selected a panel of three hypermutable tetranucleotide markers (MycL1, D7S1482 and DXS981) and studied their suitability as readout for the mutagenic effects of cadmium. We used a clonal derivative of the human fibrosarcoma cell line HT1080 to assess mutation levels in microsatellites after cadmium and/or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) exposure to study effects of cadmium in the presence or absence of base damage. Mutations were measured in clonally expanded cells obtained by limiting dilution after exposure to zero dose, 0.5 {mu}M cadmium, 5 nM MNNG or a combination of 0.5 {mu}M cadmium and 5 nM MNNG. Exposure of HT1080-C1 to cadmium led to statistically significant increases in microsatellite mutations, either with or without concurrent exposure to MNNG. A majority of the observed mutant molecules involved 4-nucleotide shifts consistent with DNA slippage mutations that are normally repaired by MMR. These results provide evidence for the mutagenic effects of low, environmentally relevant levels of cadmium in intact human cells and suggest that inhibition of DNA repair is involved.

  13. Radiation-induced bystander effects in cultured human stem cells.

    Directory of Open Access Journals (Sweden)

    Mykyta V Sokolov

    Full Text Available BACKGROUND: The radiation-induced "bystander effect" (RIBE was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR. RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. METHODOLOGY/PRINCIPAL FINDINGS: Human bone-marrow mesenchymal stem cells (hMSC and embryonic stem cells (hESC were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05. A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05. CONCLUSIONS/SIGNIFICANCE: These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of h

  14. Effect of Melatonin on Human Dental Papilla Cells

    Directory of Open Access Journals (Sweden)

    Ryusuke Tachibana

    2014-09-01

    Full Text Available Melatonin regulates a variety of biological processes, which are the control of circadian rhythms, regulation of seasonal reproductive function and body temperature, free radical scavenging and so on. Our previous studies have shown that various cells exist in human and mouse tooth germs that express the melatonin 1a receptor (Mel1aR. However, little is known about the effects of melatonin on tooth development and growth. The present study was performed to examine the possibility that melatonin might exert its influence on tooth development. DP-805 cells, a human dental papilla cell line, were shown to express Mel1aR. Expression levels of mRNA for Mel1aR in DP-805 cells increased until 3 days after reaching confluence and decreased thereafter. Real-time reverse transcription-polymerase chain reaction showed that melatonin increased the expression of mRNAs for osteopontin (OPN, osteocalcin (OCN, bone sialoprotein (BSP, dentin matrix protein-1 (DMP-1 and dentin sialophosphoprotin (DSPP. Melatonin also enhanced the mineralized matrix formation in DP-805 cell cultures in a dose-dependent manner. These results strongly suggest that melatonin may play a physiological role in tooth development/growth by regulating the cellular function of odontogenic cells in tooth germs.

  15. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  16. Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    Science.gov (United States)

    Sokolov, Mykyta V.; Neumann, Ronald D.

    2010-01-01

    Background The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. Methodology/Principal Findings Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). Conclusions/Significance These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative

  17. Effect of Reishi polysaccharides on human stem/progenitor cells.

    Science.gov (United States)

    Chen, Wan-Yu; Yang, Wen-Bin; Wong, Chi-Huey; Shih, Daniel Tzu-Bi

    2010-12-15

    The polysaccharide fraction of Ganoderma lucidum (F3) was found to benefit our health in many ways by influencing the activity of tissue stem/progenitor cells. In this study, F3 was found to promote the adipose tissue MSCs' aggregation and chondrosphere formation, with the increase of CAM (N-CAM, I-CAM) expressions and autokine (BMP-2, IL-11, and aggrecan) secretions, in an in vitro chondrogenesis assay. In a stem cell expansion culture, it possesses the thrombopoietin (TPO) and GM-CSF like functions to enhance the survival/renewal abilities of primitive hematopoietic stem/progenitor cells (HSCs). F3 was found to promote the dendrite growth of blood mononuclear cells (MNCs) and the expression of cell adhesion molecules in the formation of immature dendritic cells (DC). On the other hand, F3 exhibited inhibitory effects on blood endothelial progenitor (EPC) colony formation, with concomitant reduction of cell surface endoglin (CD105) and vascular endothelial growth factor receptor-3 (VEGFR-3) marker expressions, in the presence of angiogenic factors. A further cytokine array analysis revealed that F3 indeed inhibited the angiogenin synthesis and enhanced IL-1, MCP-1, MIP-1, RANTES, and GRO productions in the blood EPC derivation culture. Collectively, we have demonstrated that the polysaccharide fraction of G. lucidum F3 exhibits cytokine and chemokine like functions which are beneficial to human tissue stem/progenitor cells by modulating their CAM expressions and biological activities. These findings provide us a better the observation that F3 glycopolysaccharides indeed possesses anti-angiogenic and immune-modulating functions and promotes hematopoietic stem/progenitor cell homing for better human tissue protection, reducing disease progression and health.

  18. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  19. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    Science.gov (United States)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P diabetic microangiopathy.

  20. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  1. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  2. Effects of lubiprostone on human uterine smooth muscle cells.

    Science.gov (United States)

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  3. Cytotoxic Effect Of Verapamil On Human Embryonic Kidney Cell Line

    Directory of Open Access Journals (Sweden)

    Jamil L Ahmad

    2015-08-01

    Full Text Available Introduction The link between long term use of verapamil and cancer development has been suggested in literature many years back. However there are numerous controversies surrounding this association with several epidemiological studies in the positive negative and non-association between verapamil and cancer development. Aim To investigate in mechanistic terms the link between chronic use of a calcium channel blocker verapamil and cancer development using human embryonic kidney HEK293 cell line. Method Trypan blue dye exclusion cell counting and 3-amp615314 5-Dimethylthiazol-2-ylamp61533-2 5-diphenyl-tetrazolium bromide MTT assays were used to determine the proliferative as well as cytotoxic effects of verapamil. Results Verapamil had a growth inhibitory rather than proliferative effect on HEK293 cells and the growth inhibition was found to be significant p0.05. Conclusion The long term use of verapamil is associated with cellular growth inhibition and this possibly explained the rationale behind its use as part of combination chemotherapy for some human cancers.

  4. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  5. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  6. Effect of microemulsions on cell viability of human dermal fibroblasts

    Science.gov (United States)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  7. Suppressive effects of tumor cell-derived 5'-deoxy-5'-methylthioadenosine on human T cells.

    Science.gov (United States)

    Henrich, Frederik C; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D; Limm, Katharina; Ritter, Axel P; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J; Bosserhoff, Anja-Katrin; Kreutz, Marina P; Aigner, Michael; Mackensen, Andreas

    2016-08-01

    The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5'-deoxy-5'-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting.

  8. Effect of dioxin on normal and leukemic human hematopoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lambertenghi-Deliliers, G.; Soligo, D. [Univ. degli Studi, Milan (Italy). Dipt. die Ematologia, Ospedale Maggiore Policlinico IRCCS; Fracchiolla, N.S. [Ospedale Maggiore Policlinico IRCCS, Milan (Italy). Dipt. di Ematologia; Servida, F. [Fondazione Matarelli, Milan (Italy); Bertazzi, P.A. [Istituti Clinici di Perfezionamento, Milan (Italy). Dipt. di Medicina del Lavoro

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) arises from chlorination of phenolic substrates or from partial combustion of organic materials in the presence of chlorine sources. TCDD has a large number of biological effects such as long-lasting skin disease, cardiovascular disease, diabete and cancer. TCDD is the prototypical agonist of the aryl hydrocarbon receptor (AhR), a member of the erb-A family that also includes the receptors for steroids, thyroid hormones, peroxisome proliferators and retinoids. When bound to dioxin, the AhR can bind to DNA and alter the expression of some genes including cytokines and growth factors. In this study, we analyzed the effect of escalating doses of TCDD on human CD34{sup +} progenitor cells from the leukapheresis of normal donors stimulated with G-CSF as well as the human myeloid leukemic cell lines HL60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia). The possible specific modulation of gene expression induced by the TCDD exposure was then tested by means of microarray analyses.

  9. Synergism between human tumor necrosis factor and human interferon-alpha: effects on cells in culture.

    Science.gov (United States)

    Orita, K; Ando, S; Kurimoto, M

    1987-08-01

    The cytostatic and cytotoxic effects of highly purified natural human tumor necrosis factor (HuTNF-alpha) and natural human interferon-alpha (HuIFN-alpha) on 23 cell lines were studied in vitro. Natural HuTNF-alpha showed cytostatic and cytotoxic effects on PC-9, KHG-2, HT-1197, KG-1 and L-929 cells, and HuIFN-alpha showed both effects on KHG-2 and Daudi cells. A mixture of HuTNF-alpha and HuIFN-alpha (1:1, by unit) showed cytostatic and cytotoxic effects on HuTNF-alpha- or HuIFN-alpha-resistant cell lines such as KB, KATO-III, HEp-2, P-4788, as well as on HuTNF-alpha- or HuIFN-alpha-susceptible cells. Thus, the combined preparation of HuTNF-alpha and HuIFN-alpha expanded the spectrum of sensitive cells. The dosage of the mixed preparation required to produce 50% inhibition of cell growth was less than 20% of that of HuTNF-alpha or HuIFN-alpha alone. These results indicate that the cytostatic and cytotoxic effects of HuTNF-alpha and HuIFN-alpha are synergistically enhanced when they are administered together.

  10. Synergism between human tumor necrosis factor and human interferon-alpha: effects on cells in culture.

    Directory of Open Access Journals (Sweden)

    Orita,Kunzo

    1987-08-01

    Full Text Available The cytostatic and cytotoxic effects of highly purified natural human tumor necrosis factor (HuTNF-alpha and natural human interferon-alpha (HuIFN-alpha on 23 cell lines were studied in vitro. Natural HuTNF-alpha showed cytostatic and cytotoxic effects on PC-9, KHG-2, HT-1197, KG-1 and L-929 cells, and HuIFN-alpha showed both effects on KHG-2 and Daudi cells. A mixture of HuTNF-alpha and HuIFN-alpha (1:1, by unit showed cytostatic and cytotoxic effects on HuTNF-alpha- or HuIFN-alpha-resistant cell lines such as KB, KATO-III, HEp-2, P-4788, as well as on HuTNF-alpha- or HuIFN-alpha-susceptible cells. Thus, the combined preparation of HuTNF-alpha and HuIFN-alpha expanded the spectrum of sensitive cells. The dosage of the mixed preparation required to produce 50% inhibition of cell growth was less than 20% of that of HuTNF-alpha or HuIFN-alpha alone. These results indicate that the cytostatic and cytotoxic effects of HuTNF-alpha and HuIFN-alpha are synergistically enhanced when they are administered together.

  11. Effect of cell cycle inhibitor p19ARF on senescence of human diploid cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.

  12. Effect of S1P5 on proliferation and migration of human esophageal cancer cells

    OpenAIRE

    Hu, Wei-Min; Li, Li; Jing, Bao-Qian; Zhao, Yong-Sheng; Wang, Chao-Li; Feng, Li; Xie, Yong-En

    2010-01-01

    AIM: To investigate the sphingosine 1-phosphate (S1P) receptor expression profile in human esophageal cancer cells and the effects of S1P5 on proliferation and migration of human esophageal cancer cells.

  13. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  14. Subsets of human natural killer cells and their regulatory effects

    Science.gov (United States)

    Fu, Binqing; Tian, Zhigang; Wei, Haiming

    2014-01-01

    Human natural killer (NK) cells have distinct functions as NKtolerant, NKcytotoxic and NKregulatory cells and can be divided into different subsets based on the relative expression of the surface markers CD27 and CD11b. CD27+ NK cells, which are abundant cytokine producers, are numerically in the minority in human peripheral blood but constitute the large population of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent data suggest that these NK cells may have immunoregulatory properties under certain conditions. In this review, we will focus on these new NK cell subsets and discuss how regulatory NK cells may serve as rheostats or sentinels in controlling inflammation and maintaining immune homeostasis in various organs. PMID:24303897

  15. Effect of anthralin on cell viability in human prostate adenocarcinoma.

    Science.gov (United States)

    Raevskaya, A A; Gorbunova, S L; Savvateeva, M V; Severin, S E; Kirpichnikov, M P

    2012-07-01

    The study revealed the key role of serine protease hepsin activity in transition of in situ prostate adenocarcinoma into the metastasizing form. Inhibition of hepsin activity suppresses the invasive growth of the tumor. Hepsin is an convenient target for pharmacological agents, so the study of its inhibitory mechanisms is a promising avenue in drug development. Assay of proteolytic activity in various tumor cell lines in vitro showed that this activity in prostate adenocarcinoma cells significantly surpasses proteolytic activity in other examined tumor cell lines. Selective cytotoxic action of anthralin, an inhibitor of hepsin activity, on human adenocarcinoma cells was demonstrated in comparison with other tumor cell lines.

  16. Effect of storage media on human periodontal ligament cell apoptosis.

    Science.gov (United States)

    Chamorro, Mónica M; Regan, John D; Opperman, Lynne A; Kramer, Phillip R

    2008-02-01

    The ability of storage media to preserve periodontal ligament (PDL) cell vitality has been previously evaluated. However, the mechanisms by which different storage conditions alter the functional status of PDL cells have not been determined. The purpose of the present study was to investigate, in vitro, the level of programed cell death or apoptosis in a population of PDL cells following storage under different conditions. Primary human PDL cells were plated into 24-well-culture plates and allowed to attach for 24 h. Cells were then exposed for 1 h to milk, Hank's balanced salt solution (HBSS), Soft Wear contact lens solution or Gatorade at room temperature or on ice. Culture medium was used as a negative control. Apoptosis was evaluated at 24, 48, and 72 h after treatment on quadruplicate samples by using the ST 160 ApopTag Fluorescein Direct In Situ Detection Kit. The total number of cells and the total number of apoptotic cells were counted. The results indicated that at 24 and 72 h, PDL treated with Gatorade and the contact lens solution displayed the highest percentages of apoptotic cells when compared with the other treatment groups at room temperature. Overall, cells treated on ice showed significantly lower levels of apoptosis when compared with treatments at room temperature. In conclusion, the results indicated that apoptosis plays a major role in cell death in cells treated with Gatorade and contact lens solutions in comparison to other storage solutions and that storage on ice can inhibit programed cell death.

  17. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Qi-Fu Li; Gao-Liang Ouyang; Xuan-Xian Peng; Shui-Gen Hong

    2003-01-01

    AIM: To investigate the effects of tachyplesin on the cell cycle regulation in human hepatcarcinoma cells.METHODS: Effects of tachyplesin on the cell cycle in human hepatocarcinoma SMMC-7721 cells were assayed with flow cytometry. The protein levels of p53, p16, cyclin D1 and CDK4 were assayed by immunocytochemistry. The mRNA levels of p21WAF1/CIP1 and c-myc genes were examined with in situ hybridization assay.RESULTS: After tachyplesin treatment, the cell cycle arrested at G0/G1 phase, the protein levels of mutant p53, cyclin D1 and CDK4 and the mRNA level of c-myc gene were decreased, whereas the levels of p16 protein and p21wWF1/CIP1 mRNA increased.CONCLUSION: Tachyplesin might arrest the cell at G0/G1 phase by upregulating the levels of p16 protein and p21WAF1/CIP1 mRNA and downregulating the levels of mutant p53, cyclin D1 and CDK4 proteins and c-myc mRNA, and induce the differentiation of human hepatocacinoma cells.

  18. Nanoceria have no genotoxic effect on human lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, Barbara K; Yasseen, Akeel A [School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA (United Kingdom); Li, Yuebin; Schachar, Ronald A; Chen, Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Colhoun, Liza M, E-mail: b.pierscionek@ulster.ac.uk, E-mail: weichen@uta.edu [Centre for Vision and Vascular Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Grosvenor Road, Belfast, BT12 6BA (United Kingdom)

    2010-01-22

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO{sub 2}) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 {mu}g ml{sup -1} of CeO{sub 2} nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  19. Effect of Rat Schwann Cell Secretion on Proliferation and Differentiation of Human Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To investigate the effect of rat Schwann cell secretion on the proliferation and differentiation of human embryonic neural stem cells (NSCs). Methods The samples were divided into three groups. In Group One, NSCs were cultured in DMED/F12 in which Schwann cells had grown for one day. In Group Two, NSCs and Schwann cells were co-cultured. In Group Three, NSCs were cultured in DMEM/F12. The morphology of NSCs was checked and b-tubulin, GalC, hoechst 33342 and GFAP labellings were detected. Results In Group One, all neural spheres were attached to the bottom and differentiated. The majority of them were b-tubulin positive while a few of cells were GFAP or GalC positive. In Group Two, neural spheres remained undifferentiatied and their proliferation was inhibited in places where Schwann cells were robust. In places where there were few Schwann cells, NSCs performed in a similar manner as in Group One. In Group Three, the cell growth state deteriorated day after day. On the 7th day, most NSCs died. Conclusion The secretion of rat Schwann cells has a growth supportive and differentiation-inducing effect on human NSCs.

  20. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells.

    Science.gov (United States)

    Malacrida, Alessio; Maggioni, Daniele; Cassetti, Arianna; Nicolini, Gabriella; Cavaletti, Guido; Miloso, Mariarosaria

    2016-10-01

    Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC.

  1. Effect of Cytokines Secreted by Human Adipose Stromal Cells on Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    LI Bingong; ZENG Qiutang; WANG Hongxiang; MAO Xiaobo

    2006-01-01

    To isolate and culture adipose stromal cells (ASCs), and study the effect of cytokines secreted by ASCs on endothelial cells, human adipose tissue was digested with collagenase type Ⅰ solution and ASCs were derived by culture. The cells surface phenotype was examined by flow cytometry. ELISA was used to detect the secretion of VEGF, HGF, SDF-1 α and RT-PCR was employed to detect the expression of their mRNA. Then the ASC medium was utilized to culture human umbilical vein endothelial cells ECV304. Cells were counted by hemacytometer to determine the proliferation and Annexin V/PI was employed for the examination of the apoptosis rate of ECV304. ASCs were derived by culture and expressed CD34, CD105 while they did not express CD31 or CD45. ASCs secreted cytokines such as VEGF, HGF and SDF-1 α so the ASC medium could stimulate proliferation and counteract apoptosis of endothelial cells (P<0.05). Bcl-2 mRNA was also found to be up-regulated in the endothelial cells. It is concluded that ASCs can secrete cytokines and has significant effect on the proliferation of endothelial cells and apoptosis.

  2. EFFECT OF QUERCETIN ON CULTURED HUMAN VASCULARENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To study the effects of quercetin (Que) on the release of endothelin-1(ET-1) and prosta cylin(PGI2) by normal human vascular endothelial cell(VEC). Methods Radioimmunoassay(RIA) was used to assess the amount of ET-1 and PGI2 produced by VEC. VEC proliferation was assessed by tetrazolium(MTT) assay. Results Que increased the normal VEC proliferation at the concentration of 5, 20, 40, 80, 100μmol/L and increased the pro duction of PGI2 and inhibits the release of ET by the normal VEC at the concentration of 5, 20 and 80μmol/L. Que at the concentration of 5, 20 and 80μmol/L had no direct effect on morphology of the normal VEC. Conclusion Que can stimulate the proliferation of VEC and inhibit the release of ET-1 and increase the formation of PGI2. The data sug gest that Que might be beneficial for the prevention and treatment of vascular endothelial injury-related cardiovascu lar diseases, such as atherosclerosis and thromboembolism diseases.

  3. Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jane CJ Chao; Chia Chou Chu

    2004-01-01

    AIM: To study the effect of Ginkgo biloba extract (EGb 761)containing 22-27% fiavonoids (ginkgo-flavone glycosides)and 5-7% terpenoids (ginkgolides and bilobalides) on cell proliferation and cytotoxicity in human hepatocellular carcinoma (HCC) cells.METHODS: Human HCC cell lines (HepG2 and Hep3B) were incubated with various concentrations (0-1 000 mg/L) of EGb 761 solution. After 24 h incubation, cell proliferation and cytotoxicity were determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and lactate dehydrogenase (LDH)release, respectively. After 48 h incubation, the expression of proliferating cell nuclear antigen (PCNA) and p53 protein was measured by Western blotting.RESULTS: The results showed that EGb 761 (50-1 000 mg/L)significantly suppressed cell proliferation and increased LDH release (P<0.05) in HepG2 and Hep3B cells compared with the control group. The cell proliferation of HepG2 and Hep3B cells treated with EGb 761 (1 000 mg/L) was 45% and 39% of the control group (P<0.05), respectively. LDH release of HepG2 cells without and with EGb 761 (1 000 mg/L) treatment was 6.7% and 37.7%, respectively, and that of Hep3B cells without and with EGb 761 (1 000 mg/L) treatment was 7.2% and 40.3%, respectively. The expression of PCNA and p53 protein in HepG2 cells treated with EGb 761 (1 000 mg/L)was 85% and 174% of the control group, respectively.CONCLUSION: Ginkgobilobaextract significantly can suppress proliferation and increase cytotoxicity in HepG2 and Hep3B cells. Additionally, Ginkgo biloba extract can decrease PCNA and increase p53 expression in HepG2 cells.

  4. Effects of small interfering RNAs targeting fascin on human esophageal squamous cell carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Garcia Jose

    2010-06-01

    Full Text Available Abstract Background Fascin induces membrane protrusions and cell motility. Fascin overexpression was associated with poor prognosis, and its downregulation reduces cell motility and invasiveness in esophageal squamous cell carcinoma (ESCC. Using a stable knockdown cell line, we revealed the effect of fascin on cell growth, cell adhesion and tumor formation. Methods We examined whether fascin is a potential target in ESCC using in vitro and in vivo studies utilizing a specific siRNA. We established a stable transfectant with downregulated fascin from KYSE170 cell line. Results The fascin downregulated cell lines showed a slower growth pattern by 40.3% (p In vivo, the tumor size was significantly smaller in the tumor with fascin knockdown cells than in mock cells by 95% at 30 days after inoculation. Conclusions These findings suggest that fascin overexpression plays a role in tumor growth and progression in ESCC and that cell death caused by its downregulation might be induced by cell adhesion loss. This indicates that targeting fascin pathway could be a novel therapeutic strategy for the human ESCC.

  5. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  6. Effect of lumiracoxib on proliferation and apoptosis of human nonsmall cell lung cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    HAO Ji-qing; LI Qi; XU Shu-ping; SHEN Yu-xian; SUN Gen-yun

    2008-01-01

    Background Lumiracoxib is a highly selective cyclooxygenase-2(COX-2)inhibitor with antiinflammatory,analgesic and antipyretic activities comparable with class specific drugs,but with much improved gastrointestinal safety.No studies have examined lumiracoxib for antitumorigenic activity on human nonsmall cell lung cancer cell lines in vitro or its possible molecular mechanisms.Methods The antiproliferative effect of lumiracoxib alone or combined with docetaxol on A549 and NCI-H460 lines was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Drug-drug interactions were analyzed using the coefficient of drug interaction(CDI)to characterize the interactions as synergism,additivity or antagonism.Morphological changes were observed by acridine orange fluorescent staining.Extent of apoptosis was determined by flow cytometry.Results Lumiracoxib(15-240 μmol/L)has an inhibitory effect on the proliferation of A549 and NCI-H460 celllines in concentration- and time-dependent manners with the IC50 values of 2597 μmol/L and 833 pmol/L,respectively.The synergistic effect was prominent when lumiracoxib(15-240 μmol/L)was combined with docetaxol(0.2-2 μmol/L)(CDI <1).Fluorescent staining showed that lumiracoxib could induce apoptosis in A549 and NCI-H460 cells.Lumiracoxib treatment also caused an increase of the sub-G1 fraction in each cell line and resulted in an increase of G0/G1-phase cells and a decrease of S-phase cells.Conclusions Lumiracoxib had antiproliferative effect on the human nonsmall cell lung cancer cell lines A549 and NCI-H460 and had a significant synergy with docetaxol,which may be related to apoptotic induction and cell cycle arrest.

  7. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  8. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    Science.gov (United States)

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (pbystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  9. Cytotoxic effects of composite dust on human bronchial epithelial cells.

    Science.gov (United States)

    Cokic, Stevan M; Hoet, Peter; Godderis, Lode; Wiemann, Martin; Asbach, Christof; Reichl, Franz X; De Munck, Jan; Van Meerbeek, Bart; Van Landuyt, Kirsten L

    2016-12-01

    Previous research revealed that during routine abrasive procedures like polishing, shaping or removing of composites, high amounts of respirable dust particles (composite dust particles on bronchial epithelium cells. Composite dust of five commercial composites (one nano-composite, two nano-hybrid and two hybrid composites) was generated following a clinically relevant protocol. Polymerized composite samples were cut with a rough diamond bur (grain size 100μm, speed 200,000rpm) and all composite dust was collected in a sterile chamber. Human bronchial epithelial cells (16HBE14o-) were exposed to serially diluted suspensions of composite dust in cell culture medium at concentrations between 1.1 and 3.3mg/ml. After 24h-exposure, cell viability and membrane integrity were assessed by the WST-1 and the LDH leakage assay, respectively. The release of IL-1β and IL-6 was evaluated. The composite dust particles were characterized by transmission electron microscopy and by dynamic and electrophoretic light scattering. Neither membrane damage nor release of IL-1β was detected over the complete concentration range. However, metabolic activity gradually declined for concentrations higher than 660μg/ml and the release of IL-6 was reduced when cells were exposed to the highest concentrations of dust. Composite dust prepared by conventional dental abrasion methods only affected human bronchial epithelial cells in very high concentrations. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Effects of allitridi on cell cycle arrest of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Rui Ma; Li-Ping Shun; Yue-Hua Gong; Yuan Yuan

    2005-01-01

    AIM: To determine the effect of allitridi on cell cycle of human gastric cancer (HGC) cell lines MGC803 and SGC7901 and its possible mechanism.METHODS: Trypan blue dye exclusion was used to evaluate the proliferation, inhibition of cells and damages of these cells were detected with electron microscope.Flow cytometry and cell mitotic index were used to analyze the change of cell cycle, immunohistochemistry, and RT-PCR was used to examine expression of the p21WAF1 gene.RESULTS: MGC803 cell growth was inhibited by allitridi with 24 h IC50 being 6.4 μg/mL. SGC7901 cell growth was also inhibited by allitridi with 24 h IC50 being 7.3 μg/mL.After being treated with allitridi at the concentration of 12 μg/mL for 24 h, cells were found to have direct cytotoxic effects, including broken cellular membrane, swollen and vesiculated mitochondria and rough endoplasmic reticula,and mass lipid droplet. When cells were treated with allitridi at the concentration of 3, 6, and 9 μg/mL for 24 h, the percentage of G0/G1 phase cells was decreased and that of G2/M phase cells was significantly increased (P = 0.002)compared with those in the group. When cells were treated with allitridi at the concentration of 6 μg/mL, cell mitotic index was much higher (P = 0.003) than that of control group, indicating that allitridi could cause gastric cancer cell arrest in M phase. Besides, the expression levels of p21WAF1 gene of MGC803 cells and p21WAF1 gene of SGC7901 cells were remarkably upregulated after treatment.CONCLUSION: Allitridi can cause gastric cancer cell arrest in M phase, and this may be one of the mechanisms for inhibiting cell proliferation. Effect of allitridi on cells in M phas e may be associated with the upregulation of p21WAF1 genes. This study provides experimental data for clinical use of allitridi in the treatment of gastric carcinoma.

  11. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed

    2013-01-01

    INTRODUCTION: Studying cancer tumors' microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor...... cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy....... Changes in gene expression were assessed using Agilent microarray and qRT-PCR. GeneSpring 12.1 and DAVID tools were used for bioinformatic and signaling pathway analyses. Cell migration was assessed using a transwell migration system. SB-431542, PF-573228 and PD98059 were used to inhibit transforming...

  12. [Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts].

    Science.gov (United States)

    Wu, Qi'er; Lyu, Lu; Xin, Haiming; Luo, Liang; Tong, Yalin; Mo, Yongliang; Yue, Yigang

    2016-06-01

    To investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts. (1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post

  13. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun

    2002-01-01

    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  14. Inhibitory effects of 3-bromopyruvate in human nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Zou, Xue; Zhang, Mengxiao; Sun, Yiming; Zhao, Surong; Wei, Yingmei; Zhang, Xudong; Jiang, Chenchen; Liu, Hao

    2015-10-01

    Tumor cells depend on aerobic glycolysis for adenosine triphosphate (ATP) production, which is therefore targeted by therapeutic agents. The compound 3-bromopyruvate (3-BrPA), a strong alkylating agent and hexokinase inhibitor, inhibits tumor cell glycolysis and the production of ATP, causing apoptosis. 3-BrPA induces apoptosis of nasopharyngeal carcinoma (NPC) cell lines HNE1 and CNE-2Z, which may be related to its molecular mechanisms. In the present study, we investigated the effects of 3-BrPA on the viability, reactive oxygen species (ROS), apoptosis and other types of programmed cell death in NPC cells in vitro and in vivo. PI staining showed significant apoptosis in NPC cells accompanied by the overproduction of ROS and downregulation of mitochondrial membrane potential (MMP, ΔΨm) by 3-BrPA. However, the ROS scavenger N-acetyl-L-cysteine (NAC) significantly reduced 3-BrPA-induced apoptosis by decreasing ROS and facilitating the recovery of MMP. We elucidated the molecular mechanisms underlying 3-BrPA activity and found that it caused mitochondrial dysfunction and ROS production, leading to necroptosis of NPC cells. We investigated the effects of the caspase inhibitor z-VAD-fmk, which inhibits apoptosis but promotes death domain receptor (DR)-induced NPC cell necrosis. Necrostatin-1 (Nec-1) inhibits necroptosis, apparently via a DR signaling pathway and thus abrogates the effects of z-VAD‑fmk. In addition, we demonstrated the effective attenuation of 3-BrPA-induced necrotic cell death by Nec-1. Finally, animal studies proved that 3-BrPA exhibited significant antitumor activity in nude mice. The present study is the first demonstration of 3-BrPA-induced non-apoptotic necroptosis and ROS generation in NPC cells and provides potential strategies for developing agents against apoptosis‑resistant cancers.

  15. Effects of cyclooxygenase-2 on human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Yong-Dong Wu; Peng Li; Jun Tu; Ying-Lin Niu; Cai-Min Xu; Shu-Tian Zhang

    2011-01-01

    AIM: To study the relationship between the cyclooxygenase (COX)-2 gene and the proliferation and apoptosis of esophageal squamous carcinoma EC109 cells.METHODS: The techniques of RNA interference (RNAi) and cell transfection, as well as the levels of oncogenicity in nude mice, were used to study the role of COX-2 in the esophageal squamous carcinoma cell (ESCC) line EC109. Following RNAi and transfection, Western blotting analysis was used to determine the expression of the COX-2 protein. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction assay was used to evaluate cell growth, and flow cytometry was used to detect cell apoptosis.RESULTS: Western blotting analysis demonstrated that COX-2 expression was significantly reduced in EC109 cells treated with COX-2-specific short interfering RNA (siRNA) but was increased in EC109 cells transfected with COX-2. Furthermore, COX-2 siRNA treatment inhibited cell proliferation (P < 0.01) and induced apoptosis in EC109 cells, as determined by an MTT assay and by flow cytometry, respectively. In contrast, transfected COX-2 led to increased cell proliferation (P < 0.05) and decreased apoptosis in EC109 cells. In addition, combination treatment of cells with COX-2 siRNA and aspirin had a synergistic effect (P < 0.01). For experiments measuring tumorigenicity, xenograft tumors of a greater volume and weight were found in the COX-2 group compared with other groups (P < 0.05). A large dose of aspirin inhibited tumor growth in nude mice effectively (P < 0.05), and the rate of tumor suppression was 51.8% in the high-dose aspirin group.CONCLUSION: COX-2 plays a very critical role in ESCC carcinogenesis, and COX-2 siRNA combined with aspirin has the potential to be an anticancer therapy for the treatment of ESCC.

  16. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition

    Institute of Scientific and Technical Information of China (English)

    Yan-min ZHAO; Qian ZHOU; Yun XU; Xiao-yu LAI; He HUANG

    2008-01-01

    Aim:To examine the ability of rapamycin to suppress growth and regulate telomerase activity in the human T-cell leukemia cell line Jurkat. Methods:Cell proliferation was assessed after exposure to rapamycin by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were determined by flow cytometry. The proteins important for cell cycle progres-sion and Akt/mammalian target of rapamycin signaling cascade were assessed by Western blotting. Telomerase activity was quantified by telomeric repeat amplication protocol assay. The human telomerase reverse transcriptase (hTERT) mRNA levels were determined by semi-quantitative RT-PCR. Results:Rapamycin inhibited the proliferation of Jurkat, induced G1 phase arrest, unregulated the pro-tein level of p21 as well as p27, and downregulated cyclinD3, phospho-p70s6k, and phospho-s6, but had no effect on apoptosis. Treatment with rapamycin reduced telomerase activity, and reduced hTERT mRNA and protein expression. Conclusion:Rapamycin displayed a potent antileukemic effect in the human T-cell leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through the suppression of telomerase activity, suggesting that rapamycin may have potential clinical implications in the treatment of some leukemias.

  17. Loratadine dysregulates cell cycle progression and enhances the effect of radiation in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Cook John A

    2010-02-01

    Full Text Available Abstract Background The histamine receptor-1 (H1-antagonist, loratadine has been shown to inhibit growth of human colon cancer xenografts in part due to cell cycle arrest in G2/M. Since this is a radiation sensitive phase of the cell cycle, we sought to determine if loratadine modifies radiosensitivity in several human tumor cell lines with emphasis on human colon carcinoma (HT29. Methods Cells were treated with several doses of loratadine at several time points before and after exposure to radiation. Radiation dose modifying factors (DMF were determined using full radiation dose response survival curves. Cell cycle phase was determined by flow cytometry and the expression of the cell cycle-associated proteins Chk1, pChk1ser345, and Cyclin B was analyzed by western blot. Results Loratadine pre-treatment of exponentially growing cells (75 μM, 24 hours increased radiation-induced cytotoxicity yielding a radiation DMF of 1.95. However, treatment of plateau phase cells also yielded a DMF of 1.3 suggesting that mechanisms other than cell cycle arrest also contribute to loratadine-mediated radiation modification. Like irradiation, loratadine initially induced G2/M arrest and activation of the cell-cycle associated protein Chk1 to pChk1ser345, however a subsequent decrease in expression of total Chk1 and Cyclin B correlated with abrogation of the G2/M checkpoint. Analysis of DNA repair enzyme expression and DNA fragmentation revealed a distinct pattern of DNA damage in loratadine-treated cells in addition to enhanced radiation-induced damage. Taken together, these data suggest that the observed effects of loratadine are multifactorial in that loratadine 1 directly damages DNA, 2 activates Chk1 thereby promoting G2/M arrest making cells more susceptible to radiation-induced DNA damage and, 3 downregulates total Chk1 and Cyclin B abrogating the radiation-induced G2/M checkpoint and allowing cells to re-enter the cell cycle despite the persistence of

  18. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  19. Effect of S1P5 on proliferation and migration of human esophageal cancer cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the sphingosine 1phosphate (S1P) receptor expression profile in human esophageal cancer cells and the effects of S1P5 on proliferation and migration of human esophageal cancer cells. METHODS: S1P receptor expression profile in human esophageal squamous cell carcinoma cell line Eca109 was detected by semiquantitative reverse trans cription polymerase chain reaction. Eca109 cells were stably transfected with S1P5EGFP or controlEGFP constructs. The relation between the responses of cell prol...

  20. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    Science.gov (United States)

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  1. Human Periodontal Ligament Derived Progenitor Cells: Effect of STRO-1 Cell Sorting and Wnt3a Treatment on Cell Behavior

    Directory of Open Access Journals (Sweden)

    Xiang-Zhen Yan

    2014-01-01

    Full Text Available Objectives. STRO-1 positive periodontal ligament cells (PDLCs and unsorted PDLCs have demonstrated potential for periodontal regeneration, but the comparison between unsorted cells and the expanded STRO-1 sorted cells has never been reported. Additionally, Wnt3a is involved in cell proliferation thus may benefit in vitro PDLC expansion. The aim was to evaluate the effect of STRO-1 cell sorting and Wnt3a treatment on cell behavior of human PDLCs (hPDLCs. Materials and Methods. STRO-1 positive hPDLCs were sorted and the sorted cells were expanded and compared with their unsorted parental cells. Thereafter, hPDLCs were treated with or without Wnt3a and the cell proliferation, self-renewal, and osteogenic differentiation were evaluated. Results. No differences were measured between the expanded STRO-1-sorted cells and unsorted parental cells in terms of proliferation, CFU, and mineralization capacity. Wnt3a enhanced the proliferation and self-renewal ability of hPDLCs significantly as displayed by higher DNA content values, a shorter cell population doubling time, and higher expression of the self-renewal gene Oct4. Moreover, Wnt3a promoted the expansion of hPDLCs for 5 passages without affecting cell proliferation, CFU, and osteogenic capacity. Conclusions. Expanded STRO-1-sorted hPDLCs showed no superiority compared to their unsorted parental cells. On the other hand, Wnt3a promotes the efficient hPDLC expansion and retains the self-renewal and osteogenic differentiation capacity.

  2. Effect of Lunar Dust Simulant on Human Epithelial Cell Lines

    Science.gov (United States)

    Myers, Nicholas J.; Wallace, William T.; Jeevarajan, Antony S.

    2009-01-01

    The purpose of this project is to assess the potential toxicity of lunar dust to cause the release of pro-inflammatory cytokines by human lung cells. Some of this dust is on the scale of 1-2 micrometers and could enter the lungs when astronauts track dust into the habitat and inhale it. This could be a serious problem as NASA plans on going back to the moon for an extended period of time. Literature shows that quartz, which has a known cytoxicity, can cause acute cases of silicosis within 6 months, and in most cases cause silicosis after 3 years. The activation of lunar dust through impacts creates surface based radicals which, upon contact with water create hydroxl radicals and peroxyl radicals which are very reactive and potentially might even be as cytotoxic as quartz. These radicals could then react with lung cells to produce pro-inflammatory mediators such as interleukin-6 and interleukin-8, and TNF-alpha.

  3. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  4. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  5. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Ho, Yi-Chien; Liu, Chi-Hsien; Chen, Chien-Nan; Duan, Kow-Jen; Lin, Ming-Tse

    2008-11-01

    Xanthohumol is one of the main flavonoids in hop extracts and in beer. Very few investigations of xanthohumol have studied hepatocellular carcinoma. In this study, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were investigated. The IC(50) values of xanthohumol for two hepatocellular carcinoma cell lines and one normal hepatocyte cell line were 108, 166 and 211 microm, respectively. Normal murine hepatocyte cell line had more resistance to xanthohumol than hepatocellular carcinoma cell lines. Besides, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were attributed to apoptosis as indicated in the results of flow cytometry, fluorescent nuclear staining and electrophoresis of oligonucleosomal DNA fragments. Hop xanthohumol was more efficient in the growth inhibition of hepatocellular carcinoma cell lines than the flavonoids silibinin and naringin from thistle and citrus. It was shown for the first time that xanthohumol from hops effectively inhibits proliferation of human hepatocellular carcinoma cells in vitro.

  6. Effect of recombinant erythropoietin on functional activity of cultured human cells.

    Science.gov (United States)

    Emel'yanova, E A; Kosykh, A V; Sukhanov, Yu V; Vorotelyak, E A; Vasil'ev, A V

    2012-08-01

    We studied the effect of recombinant human erythropoietin on functional activity of skin cells in vitro. It was found that erythropoietin stimulated proliferation of mesenchymal and epithelial cells and effectively protected epidermal HaCaT cells from apoptosis. Insignificant effect of erythropoietin on contraction of collagen gel by mesenchymal cells was revealed. These findings suggest that erythropoietin can be a promising component of wound-healing preparations.

  7. Leptin Effects on the Regenerative Capacity of Human Periodontal Cells

    Directory of Open Access Journals (Sweden)

    Marjan Nokhbehsaim

    2014-01-01

    Full Text Available Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactive molecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGFβ1, and VEGFA and transcription (RUNX2 factors as well as matrix molecules (collagen, and periostin and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.

  8. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    Directory of Open Access Journals (Sweden)

    Isheeta Seth

    Full Text Available Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy, and irradiated-cell conditioned media (ICCM was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control, 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001. These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  9. Effect of amlodipine on apoptosis of human breast carcinoma MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To elucidate the effects of amlodipine on the proliferation and apoptosis of human breast carcinoma MDA-MB-231 cells. Methods: Light microscopy was used to determine the effects of amiodipine on cell morphology; Flow cytometry was used to quantitate cells undergoing apoptosis; the expression of a cell cycle-related protein, proliferating cell nuclear antigen (PCNA) and an antiapoptosis protein, Bcl-2 were assessed by immunocytochemistry. Results: Amlodipine concentration of 8.25 Ixmol/L (1/2 of IC50) affected the morphology, decreased the expression of PCNA and Bcl-2 and induced apoptosis of human breast carcinoma MDA-MB-231 cells. Conclusion: The effect of amlodipine on the antiproliferation of human breast carcinoma MDA-MB-231 cells is related to inducement of apoptosis, and the decrease of the expression of Bcl-2 and PCNA may be the possible mechanism for proliferation inhibitory and inducement of apoptosis.

  10. Effect of soy saponin on the growth of human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Cheng-Yu; Tsai; Yue-Hwa; Chen; Yi-Wen; Chien; Wen-Hsuan; Huang; Shyh-Hsiang; Lin

    2010-01-01

    AIM:To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells.METHODS:WiDr human colon cancer cells were treated with 150,300,600 or 1200 ppm of soy saponin to determine the effect on cell growth,cell morphology,alkaline phosphatase(AP) and protein kinase C(PKC) activities,and P53 protein,c-Fos and c-Jun gene expression.RESULTS:Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-Otetradecanol-phorbol-13-acetate-stimulated PKC ...

  11. Genotoxic Effects of Culture Media on Human Pluripotent Stem Cells

    Science.gov (United States)

    Prakash Bangalore, Megha; Adhikarla, Syama; Mukherjee, Odity; Panicker, Mitradas M.

    2017-01-01

    Culture conditions play an important role in regulating the genomic integrity of Human Pluripotent Stem Cells (HPSCs). We report that HPSCs cultured in Essential 8 (E8) and mTeSR, two widely used media for feeder-free culturing of HPSCs, had many fold higher levels of ROS and higher mitochondrial potential than cells cultured in Knockout Serum Replacement containing media (KSR). HPSCs also exhibited increased levels of 8-hydroxyguanosine, phospho-histone-H2a.X and p53, as well as increased sensitivity to γ-irradiation in these two media. HPSCs in E8 and mTeSR had increased incidence of changes in their DNA sequence, indicating genotoxic stress, in addition to changes in nucleolar morphology and number. Addition of antioxidants to E8 and mTeSR provided only partial rescue. Our results suggest that it is essential to determine cellular ROS levels in addition to currently used criteria i.e. pluripotency markers, differentiation into all three germ layers and normal karyotype through multiple passages, in designing culture media. PMID:28176872

  12. Antinociceptive Effect of Intrathecal Microencapsulated Human Pheochromocytoma Cell in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2014-07-01

    Full Text Available Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l lysine-alginate (APA microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  13. In vitro study on effect of germinated wheat on human breast cancer cells

    Science.gov (United States)

    This research investigated the possible anti-cancer effects of germinated wheat flours (GWF) on cell growth and apoptosis of human breast cancer cells. In a series of in vitro experiments, estrogen receptor-positive (MCF-7) and negative (MDA-MB-231) cells were cultured and treated with GWF that wer...

  14. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells

    NARCIS (Netherlands)

    Doorn, Joyce; Peppel, van de Jeroen; Leeuwen, van Johannes P.T.M.; Groen, Nathalie; Blitterswijk, van Clemens A.; Boer, de Jan

    2011-01-01

    Human mesenchymal stromal cells (hMSCs) are able to differentiate into a wide variety of cell types, which makes them an interesting source for tissue engineering applications. On the other hand, these cells also secrete a broad panel of growth factors and cytokines that can exert trophic effects on

  15. Antitumor Effect of Betulinic Acid on Human Acute Leukemia K562 Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    吴秋玲; 何静; 方峻; 洪梅

    2010-01-01

    The effects of betulinic acid (BA), a pentacyclic lupane-type triterpene, on the cell viability, cell cycle and apoptosis in human leukemia K562 cells were investigated. The effects of BA on the growth of K562 cells were studied by MTT assay. Apoptosis was assayed through Annexin V/propidium iodide (PI) double-labeled cytometry. The effects of BA on the cell cycle of K562 cells were studied by a PI method. The expression of Bax and capase-3 was detected by using Western blot. The results showed that BA was ...

  16. Anti-Endometriotic Effects of Pueraria Flower Extract in Human Endometriotic Cells and Mice

    OpenAIRE

    Ji‐Hyun Kim; Jeong‐Hwa Woo; Hye Mi Kim; Myung Sook Oh; Dae Sik Jang; Jung‐Hye Choi

    2017-01-01

    Pueraria flowers have been used as a vegetable and an ingredient for tea and jelly. In this study, we investigated the effects of Pueraria flower extract (PFE) on endometriosis, a common gynaecological disease characterised by local sterile inflammation of peritoneal cavity. PFE suppressed the adhesion of human endometriotic cells 11Z and 12Z to human mesothelial Met5A cells. In addition, PFE significantly inhibited the migration of 11Z and 12Z cells as shown by woundhealing and transwel...

  17. Effect of Nateglinide and Glibenclamide on Endothelial Cells and Smooth Muscle Cells from Human Coronary Arteries

    Directory of Open Access Journals (Sweden)

    Seeger H

    2004-01-01

    Full Text Available In the present work the effect of nateglinide and glibenclamide, two different substances used for therapy of diabetes mellitus type 2, were investigated on the synthesis of markers of endothelial function and on the proliferation of smooth muscle cells in vitro. As cell models endothelial and smooth muscle cells from human coronary arteries were used. Both substances were tested at concentrations of 0.1, 1 and 10 mmol/l. As markers of endothelial function prostacyclin, endothelin and plasminogen-activator-inhibitor-1 (PAI-1 were tested. Nateglinide and glibenclamide were similarly able to inhibit endothelial endothelin and PAI-1 synthesis, but only at the highest concentration tested. Endothelial prostacyclin synthesis and proliferation of smooth muscle cells were not significantly changed by both substances. These results indicate that both nateglinide and glibenclamide may have potential in reducing negative long-term effects of diabetes such as atherogenesis. Kurzfassung: Effekt von Nateglinid und Glibenclamid auf Endothel- und Muskelzellen humaner Koronararterien. In der vorliegenden Arbeit wurde die Wirkung von Nateglinid und Glibenclamid, zweier unterschiedlicher Substanzen zur Behandlung des Diabetes mellitus Typ 2, auf die Synthese von Markern der Endothelfunktion und auf die Proliferation glatter Muskelzellen untersucht. Als Zellmodell dienten Endothelzellen und glatte Muskelzellen menschlicher Koronararterien. Beide Substanzen wurden in den Konzentrationen 0,1, 1 und 10 mmol/l getestet. Als Marker der Endothelfunktion dienten Prostazyklin, Endothelin und Plasminogen-Aktivator-Inhibitor-1 (PAI-1. Sowohl Nateglinid als auch Glibenclamid konnten die endotheliale Endothelin- und PAI-1-Produktion in ähnlichem Ausmaß senken, allerdings nur in der höchsten Konzentration. Die Prostazyklinsynthese und die Muskelzellproliferation wurden nicht signifikant beeinflußt. Diese Ergebnisse deuten daraufhin, daß sowohl Nateglinid als auch

  18. Biological effects of Echinacea purpurea on human blood cells.

    Science.gov (United States)

    Joksić, Gordana; Petrović, Sandra; Joksić, Ivana; Leskovac, Andreja

    2009-06-01

    The aim of this study was to investigate radioprotective properties of Echinacea purpurea tablets in vivo. We analysed lymphocyte chromosome aberrations (CA), micronuclei (MN), apoptosis of leukocytes and haematological parameters in a group of radiation workers who were identified as carrying dicentric chromosomes in their lymphocytes. All radiation workers were taking two 275 mg Echinacea tablets b.i.d., according to a pharmacist's recommendation. All parameters were analysed before and after the two-week treatment. At the end of the treatment lymphocyte CA frequency dropped significantly, and the number of apoptotic cells increased. The inverse lymphocyte-to-granulocyte ratio at the beginning of the study changed to normal at its end. In conclusion, biological effects observed after administration of Echinacea purpurea preparation suggest that it may be beneficial for the prevention of adverse health effects in workers exposed to ionising radiation.

  19. Effects of PPARγ agonistrosiglitazone on human retinoblastoma cell in vitro and in vivo.

    Science.gov (United States)

    Cao, Xianyong; He, Lin; Li, Yanhua

    2015-01-01

    The aim of the study was to evaluate the antitumor effects of the PPARγ agonist rosiglitazone on the human retinoblastoma. The cell biological behavior was detected, specifically, the effects of rosiglitazone on cell viability and apoptosis of the human retinoblastoma Y79 cells were investigated by MTT assay and Hochest 33258 staining and the migration assay showed that rosiglitazone blocked the invasion and migration of the carcinoma cells through the reconstituted extracellular matrix (Matrigel). The effect of rosiglitazone on NF-κB-dependent reporter gene transcription induced by LPS was analyzed by NF-κB-luciferase assay. Then human retinoblastoma Y79 cells were subcutaneously transplanted in BALB/c nude mice, and the animals were treated with rosiglitazone (20 mg/kg, 40 mg/kg, and 80 mg/kg) to verify its anti-tumor effect in vivo. Rosiglitazone suppressed the viability of Y79 cells dose- and time-dependently and induced apoptosis in Y79 cells in vitro. Molecular biology analysis found that rosiglitazone could modulate the proliferative and apoptosis related signal, reduce NF-κB-dependent reporter gene transcription induced by LPS. Rosiglitazone markedly reduced the growth of Y79 cells transplanted into the mice without causing significant side effects. Our results suggested that rosiglitazone demonstrated antitumor activity against the human retinoblastoma Y79 cells by inhibiting cell growth, inducing apoptosis and inhibiting metastasis and invasion in vitro and delaying tumor growth in vivo.

  20. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  1. Effects of active bufadienolide compounds on human cancer cells and CD4+CD25+Foxp3+ regulatory T cells in mitogen-activated human peripheral blood mononuclear cells.

    Science.gov (United States)

    Yuan, Bo; He, Jing; Kisoh, Keishi; Hayashi, Hideki; Tanaka, Sachiko; Si, Nan; Zhao, Hai-Yu; Hirano, Toshihiko; Bian, Baolin; Takagi, Norio

    2016-09-01

    The growth inhibitory effects of bufadienolide compounds were investigated in two intractable cancer cells, a human glioblastoma cell line U-87 and a pancreatic cancer cell line SW1990. Among four bufadienolide compounds, a dose-dependent cytotoxicity was observed in these cancer cells after treatment with gamabufotalin and arenobufagin. The IC50 values of the two compounds were 3-5 times higher in normal peripheral blood mononuclear cells (PBMCs) than these values for both cancer cell lines. However, similar phenomena were not observed for two other bufadienolide compounds, telocinobufagin and bufalin. These results thus suggest that gamabufotalin and arenobufagin possess selective cytotoxic activity against tumor cells rather than normal cells. Moreover, a clear dose-dependent lactate dehydrogenase (LDH) release, a well-known hallmark of necrosis, was observed in both cancer cells treated with gamabufotalin, suggesting that gamabufotalin-mediated cell death is predominantly associated with a necrosis-like phenotype. Of most importance, treatment with as little as 8 ng/ml of gamabufotalin, even an almost non-toxic concentration to PBMCs, efficiently downregulated the percentages of CD4+CD25+Foxp3+ regulator T (Treg) cells in mitogen-activated PBMCs. Given that Treg cells play a critical role in tumor immunotolerance by suppressing antitumor immunity, these results suggest that gamabufotalin may serve as a promising candidate, as an adjuvant therapeutic agent by manipulating Treg cells to enhance the efficacy of conventional anticancer drugs and lessen their side-effects. These findings provide insights into the clinical application of gamabufotalin for cancer patients with glioblastoma/pancreatic cancer based on its cytocidal effect against tumor cells as well as its depletion of Treg cells.

  2. Effects of sodium cromoglycate and nedocromil sodium on histamine secretion from human lung mast cells.

    Science.gov (United States)

    Leung, K B; Flint, K C; Brostoff, J; Hudspith, B N; Johnson, N M; Lau, H Y; Liu, W L; Pearce, F L

    1988-01-01

    Sodium cromoglycate and nedocromil sodium produced a dose dependent inhibition of histamine secretion from human pulmonary mast cells obtained by bronchoalveolar lavage and by enzymatic dissociation of lung parenchyma. Both compounds were significantly more active against the lavage cells than against the dispersed lung cells, and nedocromil sodium was an order of magnitude more effective than sodium cromoglycate against both cell types. Tachyphylaxis was observed with the parenchymal cells but not with the lavage cells. Nedocromil sodium and sodium cromoglycate also inhibited histamine release from the lavage cells of patients with sarcoidosis and extrinsic asthma. PMID:2462755

  3. The flavonol isorhamnetin exhibits cytotoxic effects on human colon cancer cells.

    Science.gov (United States)

    Jaramillo, Sara; Lopez, Sergio; Varela, Lourdes M; Rodriguez-Arcos, Rocio; Jimenez, Ana; Abia, Rocio; Guillen, Rafael; Muriana, Francisco J G

    2010-10-27

    The aim of this study was to determine whether isorhamnetin, an immediate 3'-O-methylated metabolite of quercetin, affects proliferation, cell death, and the cell cycle of human colon carcinoma (HCT-116) cells. Isorhamnetin was found to be a potent antiproliferative agent in a dose- and time-dependent manner, with an IC50 of 72 μM after 48 h of incubation as estimated by MTT assay. Flow cytometry and fluorescence microscopy analysis showed that isorhamnetin exerted a stimulatory effect on apoptosis and necrosis. Isorhamnetin also increased the number of cells in G2/M phase. Serum deprivation appeared to potentiate the effects of isorhamnetin on cell death and facilitated cell cycle progression to G0/G1 phase. These results suggest that isorhamnetin might mediate inhibition of HCT-116 cell growth through the perturbation of cell cycle progression and are consistent with the notion that G2/M checkpoints could be a conserved target for flavonoids in human colon cancer cells, leading to apoptotic and necrotic death. These antiproliferative, apoptotic, necrotic, and cell cycle effects suggest that isorhamnetin may have clinically significant therapeutic and chemopreventive capabilities. To our knowledge, this is the first report of the effect of isorhamnetin on human colon cancer cells.

  4. Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells.

    Science.gov (United States)

    Benitez-Trinidad, A B; Herrera-Moreno, J F; Vázquez-Estrada, G; Verdín-Betancourt, F A; Sordo, M; Ostrosky-Wegman, P; Bernal-Hernández, Y Y; Medina-Díaz, I M; Barrón-Vivanco, B S; Robledo-Marenco, M L; Salazar, A M; Rojas-García, A E

    2015-06-01

    Temephos is an organophosphorus pesticide that is used in control campaigns against Aedes aegypti mosquitoes, which transmit dengue. In spite of the widespread use of temephos, few studies have examined its genotoxic potential. The aim of this study was to evaluate the cytotoxic, cytostatic and genotoxic effects of temephos in human lymphocytes and hepatoma cells (HepG2). The cytotoxicity was evaluated with simultaneous staining (FDA/EtBr). The cytostatic and genotoxic effects were evaluated using comet assays and the micronucleus technique. We found that temephos was not cytotoxic in either lymphocytes or HepG2 cells. Regarding the cytostatic effect in human lymphocytes, temephos (10 μM) caused a significant decrease in the percentage of binucleated cells and in the nuclear division index as well as an increase in the apoptotic cell frequency, which was not the case for HepG2 cells. The comet assay showed that temephos increased the DNA damage levels in human lymphocytes, but it did not increase the MN frequency. In contrast, in HepG2 cells, temephos increased the tail length, tail moment and MN frequency in HepG2 cells compared to control cells. In conclusion, temephos causes stable DNA damage in HepG2 cells but not in human lymphocytes. These findings suggest the importance of temephos biotransformation in its genotoxic effect.

  5. Effect of radiologic contrast media on cell volume regulatory mechanisms in human red blood cells.

    Science.gov (United States)

    Galtung, Hilde Kanli; Sørlundsengen, Vibeke; Sakariassen, Kjell S; Benestad, Haakon B

    2002-08-01

    The authors performed this study to evaluate cell volume regulation in human red blood cells (RBCs) after incubation in solutions of three contrast media: iohexol (830 mOsm), ioxaglate (520 mOsm), and iodixanol (300 mOsm). Whole blood sampled from six healthy subjects was exposed to Ringer solutions containing 25% or 5% vol/vol iohexol (final osmolality, 440 or 340 mOsm, respectively), ioxaglate (final osmolality, 395 or 335 mOsm, respectively), iodixanol (final osmolality, 330 or 315 mOsm, respectively), or NaCl (control solutions with the same osmolality as that of the contrast media). In some experiments, control RBCs were subjected to a hyposmotic solution (100 mOsm). RBC volumes were obtained with a Coulter counter. The RBCs showed normal regulatory cell shrinkage after hyposmotically induced swelling. All 25% vol/vol contrast material solutions and their control solutions induced RBC shrinkage (range, 6% +/- 1 [standard error] to 22% +/- 3). The same was true for cells exposed to 5% vol/vol contrast material (range, 4% +/- 1 to 7% +/- 1). The shrinkage phase was followed by cell swelling (10% +/- 2 to 20% +/- 2 for 25% contrast material and their control solutions and 8% +/- 1 to 15% +/- 2 for 5% contrast material and their control solutions). No contrast material-exposed RBCs increased their volumes to the level reached with their control solutions. RBCs exposed to hyperosmotic iohexol, ioxaglate, or iodixanol solutions shrank and then swelled. The degree of shrinkage and subsequent swelling could not be explained simply with the osmolality of the test solutions. Physicochemical properties of the contrast media must be involved, putatively affecting electrolyte fluxes over the RBC membrane. Possible targets of these effects are the K+/Cl- symporter, K+ channels, and the Na+/K+/Cl- symporter.

  6. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars.

    Science.gov (United States)

    Chen, Bo; Sun, Hai-Hua; Wang, Han-Guo; Kong, Hui; Chen, Fa-Ming; Yu, Qing

    2012-07-01

    Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) in the large-scale expansion of dental pulp stem cells (DPSCs). However, the biological effects and the optimal concentrations of PL for the proliferation and differentiation of human DPSCs remain unexplored. We isolated and expanded stem cells from the dental pulp of extracted third molars and evaluated the effects of PL on the cells' proliferative capacity and differentiation potential in vitro and in vivo. Before testing, immunocytochemical staining and flow cytometry-based cell sorting showed that the cells derived from human dental pulp contained mesenchymal stem cell populations. Cells were grown on tissue culture plastic or on hydroxyapatite-tricalcium phosphate (HA/TCP) biomaterials and were incubated with either normal or odontogenic/osteogenic media in the presence or absence of various concentrations of human PL for further investigation. The proliferation of DPSCs was significantly increased when the cells were cultured in 5% PL under all testing conditions (P biomaterials and had fully covered the surface of the scaffold with an extensive sheet-like structure 14 d after seeding. In addition, 5% PL showed significantly positive effects on tissue regeneration in two in vivo transplantation models. We conclude that the appropriate concentration of PL enhances the proliferation and mineralized differentiation of human DPSCs both in vitro and in vivo, which supports the use of PL as an alternative to FBS or a nonzoonotic adjuvant for cell culture in future clinical trials. However, the elucidation of the molecular complexity of PL products and the identification of both the essential growth factors that determine the fate of a specific stem cell and the criteria to establish dosing require further investigation.

  7. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    Science.gov (United States)

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  8. Tnhibitory effect of Fuzheng Yiliuyin in combination with chemotherapeutics on human gastric carcinoma cell strain

    Institute of Scientific and Technical Information of China (English)

    Yi Liu; Rui Wang; Gen-Quan Qiu; Ke-Jun Nan; Xi-Cai Sun

    2006-01-01

    AIM: To study the inhibitory effects of Fuzheng Yiliuyin (Decoction for Suppressing Tumors by Strengthening the Body Resistance) in combination with chemotherapeutics on human gastric carcinoma cell strain.METHODS: Fuzheng Yiliuyin (ZY) combined with various kinds of chemotherapeutics was put into two kinds of cultivated human gastric carcinoma cell strains,then its inhibitory effects on human gastric carcinoma cell strains were determind by the MTT method. Flow cytometer was used to assay the apoptosis rate, and the ultrastructure of gastric carcinoma cells was observed under transmission electron microscope.RESULTS: Obvious apoptosis was seen in gastric carcinoma cells after treatment with ZY for 72 h. ZY and chemical drugs had synergistic inhibition effects on the cultivated gastric carcinoma cells, but the effects were different on various cell strains. The inhibitory effects of ZY could be strengthened by cytotoxic action and apoptosis. ZY combined with fluorouracil, etoposide and cisplatin (EFP) chemotherapeutics had better inhibitory effects on SGC-7901, while ZY combined with EFP or with DDP chemotherapeutics had better inhibitory effects than other drugs on MGC-803.CONCLUSION: ZY induces apoptosis and inhibits the growth of gastric carcinoma cells. ZY has the synergistic function of chemotherapeutics.

  9. Suppressive effects of tumor cell-derived 5′-deoxy-5′-methylthioadenosine on human T cells

    Science.gov (United States)

    Henrich, Frederik C.; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D.; Limm, Katharina; Ritter, Axel P.; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Kreutz, Marina P.; Aigner, Michael; Mackensen, Andreas

    2016-01-01

    ABSTRACT The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5′-deoxy-5′-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting. PMID:27622058

  10. EFFECTS OF FRUITS OF BARRINGTONIA RACEMOSA LINN. ON HUMAN POLYMORPHONUCLEAR CELL

    Directory of Open Access Journals (Sweden)

    Sudha Patil

    2014-12-01

    Full Text Available The objective of present study was to investigate Petroleum ether, ethyl acetate and hydroalcoholic extracts of B. racemosa fruits in vitro on human polymorphonuclear (PMN cells to screen their effects on phagocytosis and chemotaxis. Ethyl acetate extract of B. racemosa fruits was found to be a stimulant of PMN cell phagocytosis of Nitroblue tetrazolium (NBT dye and candida albicans. It also stimulated intracellur killing capacity of PMN cells. It was further found to increase the chemotaxis of human PMN cells. While, petroleum ether extract and hydroalcoholic extract were lesser active as far as these activities are concerned.

  11. Antitumoral effects of vasoactive intestinal peptide in human renal cell carcinoma xenografts in athymic nude mice.

    Science.gov (United States)

    Vacas, Eva; Arenas, M Isabel; Muñoz-Moreno, Laura; Bajo, Ana M; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2013-08-01

    We studied antitumor effect of VIP in human renal cell carcinoma (RCC) (A498 cells xenografted in immunosuppressed mice). VIP-treated cells gave resulted in p53 upregulation and decreased nuclear β-catenin translocation and NFκB expression, MMP-2 and MMP-9 activities, VEGF levels and CD-34 expression. VIP led to a more differentiated tubular organization in tumours and less metastatic areas. Thus, VIP inhibits growth of A498-cell tumours acting on the major issues involved in RCC progression such as cell proliferation, microenvironment remodelling, tumour invasion, angiogenesis and metastatic ability. These antitumoral effects of VIP offer new therapeutical possibilities in RCC treatment.

  12. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  13. The effect of aging on human induced pluripotent stem cells

    OpenAIRE

    Sardo, Valentina Lo; Ferguson, William; Erikson, Galina A.; Topol, Eric J; Baldwin, Kristin K; Torkamani, Ali

    2016-01-01

    Induced pluripotent stem cells (iPSCs) are being developed as a source for autologous cell therapies, many of which aim to treat aged patients1?5. To explore the impact of age on iPSC quality, we produced iPSCs from blood cells of 16 donors aged 21?100. We find that while reprogramming resets most of the epigenome, iPSCs retain an epigenetic signature of age that diminishes with passaging. Reprogramming via clonal expansion also exposes somatic mutations present in individual donor cells, whi...

  14. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  15. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO.

    Science.gov (United States)

    Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling

    2017-01-01

    Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug.

  16. Effects of oral iron chelator deferasirox on human malignant lymphoma cells

    Science.gov (United States)

    Choi, Jong Gwon; Kim, Jung-Lim; Park, Joohee; Lee, Soonwook; Park, Seh Jong; Kim, Jun Suk

    2012-01-01

    Background Iron is essential for cell proliferation and viability. It has been reported that iron depletion by a chelator inhibits proliferation of some cancer cells. Deferasirox is a new oral iron chelator, and a few reports have described its effects on lymphoma cells. The goal of this study was to determine the anticancer effects of deferasirox in malignant lymphoma cell lines. Methods Three human malignant lymphoma cell lines (NCI H28:N78, Ramos, and Jiyoye) were treated with deferasirox at final concentrations of 20, 50, or 100 µM. Cell proliferation was evaluated by an MTT assay, and cell cycle and apoptosis were analyzed by flow cytometry. Western blot analysis was performed to determine the relative activity of various apoptotic pathways. The role of caspase in deferasirox-induced apoptosis was investigated using a luminescent assay. Results The MTT assay showed that deferasirox had dose-dependent cytotoxic effects on all 3 cell lines. Cell cycle analysis showed that the sub-G1 portion increased in all 3 cell lines as the concentration of deferasirox increased. Early apoptosis was also confirmed in the treated cells by Annexin V and PI staining. Western blotting showed an increase in the cleavage of PARP, caspase 3/7, and caspase 9 in deferasirox-treated groups. Conclusion We demonstrated that deferasirox, a new oral iron-chelating agent, induced early apoptosis in human malignant lymphoma cells, and this apoptotic effect is dependent on the caspase-3/caspase-9 pathway. PMID:23071474

  17. Effects of inositol hexaphosphate on proliferation of HT-29 human colon carcinoma cell line

    Science.gov (United States)

    Tian, Ying; Song, Yang

    2006-01-01

    AIM: To investigate the effects of inositol hexaphosphate (IP6) on proliferation of HT-29 human colon carcinoma cell line. METHODS: Cells were exposed to various concen-trations (0, 1.8, 3.3, 5.0, 8.0, 13.0 mmol/L) of IP6 for a certain period of time. Its effect on growth of HT-29 cells was measured by MTT assay. The expressions of cell cycle regulators treated with IP6 for 2 d were detected by immunocytochemistry. RESULTS: IP6 inhibited the HT-29 cell growth in a dose- and time-dependent manner. Analysis of cell cycle regulator expression revealed that IP6 reduced the abnormal expression of P53 and PCNA and induced the expression of P21. CONCLUSION: IP6 has potent inhibitory effect on proliferation of HT-29 cells by modulating the expression of special cell cycle regulators. PMID:16830361

  18. Effects of inositol hexaphosphate on proliferation of HT-29 human colon carcinoma cell line

    Institute of Scientific and Technical Information of China (English)

    Ying Tian; Yang Song

    2006-01-01

    AIM: To investigate the effects of inositol hexaphosphate (IP6) on proliferation of HT-29 human colon carcinoma cell line.METHODS: Cells were exposed to various concentrations (0, 1.8, 3.3, 5.0, 8.0, 13.0 mmol/L) of IP6 for a certain period of time. Its effect on growth of HT-29 cells was measured by MTT assay. The expressions of cell cycle regulators treated with IP6 for 2 d were detected by immunocytochemistry.RESULTS: IP6 inhibited the HT-29 cell growth in a dose- and time-dependent manner. Analysis of cell cycle regulator expression revealed that IP6 reduced the abnormal expression of P53 and PCNA and induced the expression of P21.CONCLUSION: IP6 has potent inhibitory effect on proliferation of HT-29 cells by modulating the expression of special cell cycle regulators.

  19. Cytotoxicity and radiosensitization effect of TRA-8 on radioresistant human larynx squamous carcinoma cells.

    Science.gov (United States)

    Wu, F; Hu, Y; Long, J; Zhou, Y J; Zhong, Y H; Liao, Z K; Liu, S Q; Zhou, F X; Zhou, Y F; Xie, C H

    2009-02-01

    TRAIL induces apoptosis in a variety of tumorigenic and transformed cell lines, but not in many normal cells. Recent studies have demonstrated that death receptor 5 (DR5), one of the two death receptors bound by TRAIL, showed expression in most malignantly transformed cells. This study evaluated effects of a monoclonal antibody (TRA-8) to human death receptor 5, combined with ionizing radiation, on radioresistant human larynx squamous carcinoma cell line (Hep-2R). Cells were treated with TRA-8 alone or in combination with radiation, cell viability inhibition was measured by MTT assay, and the induction of apoptosis was determined by Annexin V staining. Radionsensitivity of Hep-2R cells treated with TRA-8 were investigated with long-term clonogenic assays. Regulation of DR5 expression in cells after radiation was analyzed by indirect immunofluorescence using murine TRA-8 in combination with flow cytometry. The results suggested that TRA-8 enhanced radionsensitivity of Hep-2R cells, and that TRA-8 regulated Hep-2R cell cycle arrest at G2/M phase. Irradiation up-regulated the expression of DR5, and when combined with TRA-8 yielded optimal survival benefit. Therefore, TRA-8 can be used in combination with irradiation in radioresistant human larynx squamous carcinoma cells. Monoclonal antibodies such as TRA-8 may play an important role in the development of an effective treatment strategy for patients with radioresistant cancers.

  20. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  1. Effects of Shuanghuangbu on the total protein content and ultrastructure in cultured human periodontal ligament cells

    Institute of Scientific and Technical Information of China (English)

    许彦枝; 邹慧儒; 王小玲; 刘世正; 王永军

    2004-01-01

    Background Successful periodontal regeneration depends on the migration, proliferation and differentiation of periodontal ligament cells in periodontal defects. The total protein content and the ultrastructure demonstrate the metabolizability and activity of periodontal ligament cells. This study was conducted to observe the effects of Shuanghuangbu, a mixture of medicinal herbs, on the total protein content and the ultrastructure of human periodontal ligament cells.Methods Periodontal ligament cells were grown to confluence and then cultured in Dulbecco's modified eagle medium (DMEM) supplemented with Shuanghuangbu over the concentration range of 0 to 1000 μg/ml. The total protein content in cultured cells was determined by using Coommasie brilliant blue technique. Periodontal ligament cells were incubated in 0 and 100 μg/ml Shuanghuangbu decoction for 5 days, then observed through transmission electron microscope.Results The total protein content of human periodontal ligament cells increased in each experiment group added 10-1000 μg/ml Shuanghuangbu respectively, and the effect of 100 μg/ml was excellent. Under the transmission electron microscope, there were more rough endoplasmic reticulums and mitochodrias in the experiment group than those in the control group. Conclusion Shuanghuangbu stimulates the protein synthesis of human periodontal ligament cells and improves human periodontal ligament cells' metabolizability and activity.

  2. Cytotoxic and apoptotic effects of prenylflavonoid artonin B in human acute lymphoblastic leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Chun-chung LEE; Chun-nan LIN; Guey-mei JOW

    2006-01-01

    Aim: To investigate the anticancer effects and molecular mechanism of artonin B on the human acute lymphoblastic leukemia CCRF-CEM cells compared with other prenylflavonoid compounds. Methods: The effects of four prenylflavonoids on the growth of CCRF-CEM and HaCa cells were studied by 3-(4,5)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Apoptosis were detected through Hoechst 33258 staining. The effect of artonin B on the cell cycle of CCRF-CEM cells were studied by propidium iodide method. The change in mitochondrial membrane potential was detected by rohdamine 123 staining. The cytochrome c release and caspase 3 activity were checked by immunoassay kits, respectively. The expression of Bcl-2 family proteins was detected by Western blot. Results: Our data revealed that artonin B strongly induced human CCRF-CEM leukemia cell death in a dose- and time-dependent manner by MTT assay, but not on normal epithelia cells (HaCa cells). Artonin B-induced cell death was considered to be apoptotic by observing the typical apoptotic morphological change by Hoechst 33258 staining. The induction of human CCRF-CEM leukemia cancer cell death was caused by an induction of apoptosis through mitochondrial membrane potential change, cytochrome c release, sub-G1 proportion increase, downregulation of Bcl-2 expression, upregulation of Bax and Bak expression and activation of caspase 3 pathways. Conclusion: These results clearly demonstrated that artonin B is able to inhibit proliferation by induction of hypoploid cells and cell apoptosis. Moreover, the anticancer effects of artonin B were related to mitochondrial pathway and caspase 3 activation in human CCRF-CEM leukemia cells.

  3. Effects of apigenin on cell proliferation of human pancreatic carcinoma cell line BxPC-3 in vitro

    Institute of Scientific and Technical Information of China (English)

    Jiancang Ma; Qiang Li; Jun Zhao; Ying Guo; Qinghua Su; Zongzheng Ji

    2007-01-01

    Objective: To observe the effects of apigenin on cell proliferation of human pancreatic carcinoma cell line BxPC-3 in vitro.Methods :The inhibitive effects of apigenin at different concentrations (0 μmol/L, 100 μmol/L, 200 μmol/L, and 400 μmol/L)on human pancreatic carcinoma cell line BxPC-3 were detected by MTT assays, transmission electron microscope, agarose gel electrophoresis and flow cytometry. The immunohistochemistry was used to detect the expression of Bcl-2 and Bax gene. Results:Apigenin at different concentrations could inhibit the proliferation of human pancreatic carcinoma cell lines BxPC-3, and the inhibitive effect was dose-dependent. The cell cycle of pancreatic carcinoma cells was arrested at G2/M phase. The results of immunohistochemistry showed that the density of apigenin increased, and the expression of Bcl-2 gene was reduced gradually. At the same time the expression of Bax gene was enhanced. Conclusion: Apigenin could inhibit the proliferation of human pancreatic carcinoma cell lines BxPC-3 in vitro. The effect of apoptosis was accompanied with the expression of Bcl-2 decrease and Bax increase.

  4. Dynamic change of Adamalysin 19 (ADAM19) in human placentas and its effects on cell invasion and adhesion in human trophoblastic cells

    Institute of Scientific and Technical Information of China (English)

    SANG; QingXiang; Amy

    2009-01-01

    Human ADAM19 is a recently identified member of the ADAM family.It is highly expressed in human placentas,but its dynamic change and function at the human feto-maternal interface during placentation remain to be elucidated.In this present study,the spatial and temporal expression and cellular localization of ADAM19 in normal human placentas were first demonstrated,and the effects of ADAM19 on trophoblast cell adhesion and invasion were further investigated by using a human choriocarcinoma cell line(JEG-3) as an in vitro model.The data demonstrated that ADAM19 was widely distributed in villous cytotrophoblast cells,syncytiotrophoblast cells,column trophoblasts,and villous capillary endothelial cells during early pregnancy.The mRNA and protein level of ADAM19 in placentas was high at gestational weeks 8-9,but diminished significantly at mid-and term pregnancy.In JEG-3 cells,the overexpression of ADAM19 led to diminished cell invasion,as well as increases in cell adhesiveness and the expression of E-cadherin,with no changes in β-catenin expression observed.These data indicate that ADAM19 may participate in the coordinated regulation of human trophoblast cell behaviors during the process of placentation.

  5. Erythropoietin and the effect of oxygen during proliferation and differentiation of human neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Frech Moritz J

    2010-12-01

    Full Text Available Abstract Background Hypoxia plays a critical role in various cellular mechanisms, including proliferation and differentiation of neural stem and progenitor cells. In the present study, we explored the impact of lowered oxygen on the differentiation potential of human neural progenitor cells, and the role of erythropoietin in the differentiation process. Results In this study we demonstrate that differentiation of human fetal neural progenitor cells under hypoxic conditions results in an increased neurogenesis. In addition, expansion and proliferation under lowered oxygen conditions also increased neuronal differentiation, although proliferation rates were not altered compared to normoxic conditions. Erythropoietin partially mimicked these hypoxic effects, as shown by an increase of the metabolic activity during differentiation and protection of differentiated cells from apoptosis. Conclusion These results provide evidence that hypoxia promotes the differentiation of human fetal neural progenitor cells, and identifies the involvement of erythropoietin during differentiation as well as different cellular mechanisms underlying the induction of differentiation mediated by lowered oxygen levels.

  6. Effect of antisense oligodeoxynucleotide targeting survivin on growth of human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Lantao Xu

    2013-03-01

    Full Text Available Our study investigated the effects of antisense oligodeoxynucleotide targeting survivin on human gastric cancer cells. Human gastric cancer cells were incubated with antisense oligodeoxynucleotide targeting survivin for pre-designed durations, and then the cell growth was observed under light and electronic microscopes. Electrophoresis of fractured DNA fragments was performed to detect the DNA distribution and telomere repeat amplification protocol (TRAP was used for the detection of telomerase activity. Antisense oligodeoxynucleotide targeting survivin could induce the apoptosis of human gastric cancer cells which were characterized by plasma membrane blistering, chromatin condensation, nuclear fragmentation, and formation of apoptotic bodies. Electrophoresis showed characteristic DNA ladder. Flow cytometry revealed hypo-diploid apoptosis peak before G1 phase and the telomerase activity was significantly inhibited. These results demonstrated antisense oligodeoxynucleotide targeting survivin can induce the apoptosis of gastric cancer cells to inhibit their proliferation.

  7. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  8. Effects of garlic oil on tumoragenecity and intercellular communication in human gastric cancer cell line

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Previous studies have demonstrated that garlic oil (GO) and its anti-tumor compound could inhibit DNA and RNA synthesis in human cancer cells.In order to explore the effects of garlic oil on carcinoma cells,a gastric carcinoma cell line,BGC-823 was studied at cellular and molecular levels after garlic oil treatment.Data showed that the cell differentiation and suppression of tumorigenicity were significantly induced in tumor cells after garlic oil treatment.There was a correlation between the cell-cell communication recovery and the increase of p53 and waf1/p21 gene expression in garlic oil-treated cells.This result suggested that tumor suppressor gene waf1/p21 and wt p53 might play an important role in this effect.

  9. Effects of garlic oil on tumoragenecity and intercellular communication in human gastric cancer cell line

    Institute of Scientific and Technical Information of China (English)

    李晓光; 谢锦玉; 李文梅; 季加孚; 崔建涛; 赵敏; 孙梅; 吕有勇

    2000-01-01

    Previous studies have demonstrated that garlic oil (GO) and its anti-tumor compound could inhibit DNA and RNA synthesis in human cancer cells. In order to explore the effects of garlic oil on carcinoma cells, a gastric carcinoma cell line, BGC-823 was studied at cellular and molecular levels after garlic oil treatment. Data showed that the cell differentiation and suppression of tumorigenicity were significantly induced in tumor cells after garlic oil treatment. There was a correlation between the cell-cell communication recovery and the increase of p53 and waf1/p21 gene expression in garlic oil-treated cells. This result suggested that tumor suppressor gene waf1/p21 and wt p53 might play an important role in this effect.

  10. Effects of histamine on growth and apoptosis of human melanoma cells A375

    Institute of Scientific and Technical Information of China (English)

    RAN Li-wei; TAN Sheng-shun; XU Xin-ling; ZHANG Jiang-an; WANG Wan-juan

    2005-01-01

    Objective: To investigate the effects of histamine on growth and apoptosis of human melanoma cells A375. Methods: The effect of histamine on growth of A375 cells in vitro was examined by MTT assay and Trypan blue exclusion assay. Cell cycle analysis, early apoptosis analysis by double staining with Annexin V-FITC and PI, and active caspase-3 analysis by staining FITC-conjugated monoclonal rabbit anti-active caspase-3 antibody were made by flow cytometer. StreptAvidin-Biotin Complex (SABC)immunocytochemical assays were adopted to detect Bax/Bcl-2 protein expressions. Results: Histamine inhibited proliferation of A375 cells in a dose- and time-dependent manner, and altered cell cycle distribution of A375 cells revealing an increase in G0/G1-phase population, a decrease in S-phase population and the inhibition of G1/S switching. Histamine induced apoptosis of A375 cells (P<0. 05), elevated the cells population with detectable active caspase-3 (P<0. 05), increased the number of cells forming Bax and decreased the number of cells forming Bcl-2 significantly (P<0.05). Conclusion: That histamine inhibits cell cycle progress of A375 cells is one of the possible mechanisms of proliferation arrest of A375 cells elicited by histamine. Histamine mediates apoptosis in A375 cells that may be caspase-dependent through mitochondria routine. Histamine with high concentration inhibits growth of A375 cells in vitro by interfering proliferation and inducing apoptosis of cells.

  11. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Science.gov (United States)

    Hansberg-Pastor, Valeria

    2017-01-01

    Progesterone-induced blocking factor (PIBF) is a progesterone (P4) regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM) from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM) blocked this effect. PIBF (100 ng/mL) increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h) and U251 (24 and 48 h) cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells. PMID:28168193

  12. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  13. The effect of aging on human induced pluripotent stem cells

    Science.gov (United States)

    Sardo, Valentina Lo; Ferguson, William; Erikson, Galina A.; Topol, Eric J; Baldwin, Kristin K; Torkamani, Ali

    2017-01-01

    Induced pluripotent stem cells (iPSCs) are being developed as a source for autologous cell therapies, many of which aim to treat aged patients1–5. To explore the impact of age on iPSC quality, we produced iPSCs from blood cells of 16 donors aged 21–100. We find that while reprogramming resets most of the epigenome, iPSCs retain an epigenetic signature of age that diminishes with passaging. Reprogramming via clonal expansion also exposes somatic mutations present in individual donor cells, which are missed by other methods. We find that exomic mutations in iPSCs increase linearly with age and each iPSC line analyzed carries at least one gene-disrupting mutation, of which several have previously been linked to cancer or dysfunction. Unexpectedly, elderly donors (>90 yrs) harbor fewer mutations than predicted and their distribution suggests that blood in elderly donors derives from a contracted progenitor pool. These studies show that harnessing clonal expansion during reprogramming can uncover age-associated processes relevant to the clinical use of iPSCs. PMID:27941802

  14. Fluorescent activated cell sorting: an effective approach to study dendritic cell subsets in human atherosclerotic plaques.

    Science.gov (United States)

    Van Brussel, Ilse; Ammi, Rachid; Rombouts, Miche; Cools, Nathalie; Vercauteren, Sven R; De Roover, Dominique; Hendriks, Jeroen M H; Lauwers, Patrick; Van Schil, Paul E; Schrijvers, Dorien M

    2015-02-01

    Different immune cell types are present within atherosclerotic plaques. Dendritic cells (DC) are of special interest, since they are considered as the 'center of the immuniverse'. Identifying inflammatory DC subtypes within plaques is important for a better understanding of the lesion pathogenesis and pinpoints their contribution to the atherosclerotic process. We have developed a flow cytometry-based method to characterize and isolate different DC subsets (i.e. CD11b(+), Clec9A(+) and CD16(+) conventional (c)DC and CD123(+) plasmacytoid (p)DC) in human atherosclerotic plaques. We revealed a predominance of pro-inflammatory CD11b(+) DC in advanced human lesions, whereas atheroprotective Clec9A(+) DC were almost absent. CD123(+) pDC and CD16(+) DC were also detectable in plaques. Remarkably, plaques from distinct anatomical locations exhibited different cellular compositions: femoral plaques contained less CD11b(+) and Clec9A(+) DC than carotid plaques. Twice as many monocytes/macrophages were observed compared to DC. Moreover, relative amounts of T cells/B cells/NK cells were 6 times as high as DC numbers. For the first time, fluorescent activated cell sorting analysis of DC subsets in human plaques indicated a predominance of CD11b(+) cDC, in comparison with other DC subsets. Isolation of the different subsets will facilitate detailed functional analysis and may have significant implications for tailoring appropriate therapy.

  15. Effects of Roundabout 5 on adhesion, invasion and potential motility of human tongue carcinoma Tb cells

    Institute of Scientific and Technical Information of China (English)

    XIAO Rui; ZHAO yuan; WANG Li-jing; LI Wei-ping

    2011-01-01

    Background Roundabout 5 (R5) is a monoclonal antibody which can neutralize the binding of Roundabout 1 (Robo1)to Slit2. Oral squamous cell carcinoma angiogenesis was significantly inhibited when R5 blocked slit-robo signaling pathway. However, the effect of R5 on the invasion of tongue cancer cells has not been investigated clearly. Methods In this study, we treated human brain metastasis of tongue cancer cell lines (Tb cells) with R5 at different concentrations, and the control Tb cells were treated with 10 mg/ml immunoglobin G 2b (lgG2b). The effect of R5 on the proliferation, adhension, invasion and motility of Tb cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, cell attachment assay on fibronectin (FN), wound assay and chemotaxis assay,respectively. And gelatin-incorporated sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to investigate the activity of matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9). Results R5 had no effect on the proliferation of Tb cells. However, R5 could significantly inhibit the motility, attachment and chemotaxis of Tb cells to FN, and it could also significantly inhibit the activity of MMP2 and MMP9 in Tb cells. Conclusion R5 can inhibit the adhesion, invasion and motility of human tongue carcinoma Tb cells.

  16. Studying the Anti-aging Effect of Human Growth Hormone on Human Fibroblast Cells via Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Nader Chaparzadeh

    2010-01-01

    Full Text Available Objective: In recent years, studies have focused on the telomerase for cancer treatmentby repressing telomerase in cancerous cells or prevent cell aging by activating it in theaged cells. Thus, in these studies natural and synthetic agents have been used to repressor activate telomerase. In this research, we investigated the effects of human growth hormone(hGH on aging via evaluation of telomerase activity.Materials and Methods: Primary human foreskin fibroblast cells were isolated, culturedand treated with different concentrations of hGH. BrdU and MTT cell proliferation assaysand cells number counting. Cell aging was assayed by the senescence sensitivegalactosidase staining method. Telomerase activity was measured with a telomerasePCR ELISA kit.Data were analyzed with SPSS software (one-way ANOVA and univariateANOVA.Results: Our results indicated that cells treated with a lower concentration (0.1, 1 ng/mlof hGH had more green color cells (aged cells. Furthermore, cell proliferation increasedwith increasing hGH concentrations (10 to 100 ng/ml which was significant in comparisonwith untreated control cells. TRAP assay results indicated that telomerase activityincreased with increasing hGH concentration, but there was no significant difference. Additionally,more rapid cell growth and telomerase activity was noted in the absence of H2O2when compared with the presence of H2O2, which was significantly different.Conclusion: Although increasing cell proliferation along with increasing hGH concentrationwas confirmed by all cell proliferation assays, only the cell counting test was statisticallysignificant. Thus, it is inconclusive that hGH (up to 100 ng/ml has an anti-agingeffect. Also, because there was no significant difference in the telomerase activity results(in spite of increasing progress along with increasing hGH concentration we can not certainlyconclude that hGH (up to 100 ng/ml impacts telomerase activity.

  17. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines.

    Science.gov (United States)

    Müller, Alena; Barat, Samarpita; Chen, Xi; Bui, Khac Cuong; Bozko, Przemyslaw; Malek, Nisar P; Plentz, Ruben R

    2016-05-01

    Cholangiocarcinoma (CC) worldwide is the most common biliary malignancy with poor prognostic value and new systemic treatments are desirable. Plant extracts like bromelain and papain, which are cysteine proteases from the fruit pineapple and papaya, are known to have antitumor activities. Therefore, in this study for the first time we investigated the anticancer effect of bromelain and papain in intra- and extrahepatic human CC cell lines. The effect of bromelain and papain on human CC cell growth, migration, invasion and epithelial plasticity was analyzed using cell proliferation, wound healing, invasion and apoptosis assay, as well as western blotting. Bromelain and papain lead to a decrease in the proliferation, invasion and migration of CC cells. Both plant extracts inhibited NFκB/AMPK signalling as well as their downstream signalling proteins such as p-AKT, p-ERK, p-Stat3. Additionally, MMP9 and other epithelial-mesenchymal-transition markers were partially found to be downregulated. Apoptosis was induced after bromelain and papain treatment. Interestingly, bromelain showed an overall more effective inhibition of CC as compared to papain. siRNA mediated silencing of NFκB on CC cells indicated that bromelain and papain have cytotoxic effects on human CC cell lines and bromelain and partially papain in comparison impair tumor growth by NFκB/AMPK signalling. Especially bromelain can evolve as promising, potential therapeutic option that might open new insights for the treatment of human CC.

  18. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    Science.gov (United States)

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    Science.gov (United States)

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin

  20. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Moez Berrich

    Full Text Available Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs, namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host ECs vs feline (reservoir host ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2 in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human

  1. Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells.

    Science.gov (United States)

    Hu, Shijun; Zhao, Ming-Tao; Jahanbani, Fereshteh; Shao, Ning-Yi; Lee, Won Hee; Chen, Haodong; Snyder, Michael P; Wu, Joseph C

    2016-06-02

    Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC-derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC-ECs were recovered with a higher percentage of CD31(+) population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC-ECs maintained a higher CD31(+) population than FB-iPSC-ECs and CPC-iPSC-ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation.

  2. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis

    OpenAIRE

    Lee, Hwan Hee; Lee, Seulki; Lee, Kanghyo; Shin, Yu Su; Kang, Hyojeung; Cho, Hyosun

    2015-01-01

    Background Cordyceps militaris has been used as a traditional medicine in Asian countries for a long time. Different types of Cordyceps extract were reported to have various pharmacological activities including an anti-cancer effect. We investigated the inhibitory effect of Cordyceps militaris ethanol extract on a human colorectal cancer-derived cell line, RKO. Methods RKO cells were treated with various concentrations of nucleosides-enriched ethanol extract of Cordyceps militaris for 48 h an...

  3. Effect of Flavopiridol on Radiation-induced Apoptosis of Human Laryngeal and Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suzy [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kwon, Eun Kyung; Lee, B. S.; Lee, Seung Hee; Park, B. S.; Wu, Hong Gyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-12-15

    Purpose: To investigate the flavopiridol effect on radiation-induced apoptosis and expression of apoptosisrelated genes of human laryngeal and lung cancer cells. Materials and Methods: A human laryngeal cancer cell line, AMC-HN3 and a human lung cancer cell line, NCI-H460, were used in the study. The cells were divided into four groups according to the type of treatment: 1) control groups; 2) cells that were only irradiated; 3) cells treated only with flavopiridol; 4) cells treated with flavopiridol and radiation simultaneously. The cells were irradiated with 10 Gy of X-rays using a 4 MV linear accelerator. Flavopiridol was administered to the media at a concentration of 100 nM for 24 hours. We compared the fraction of apoptotic cells of each group 24 hours after the initiation of treatment. The fraction of apoptotic cells was detected by measurement of the sub-G1 fractions from a flow cytometric analysis. The expression of apoptosis-regulating genes, including cleaved caspase-3, cleaved PARP (poly (ADP-ribose) polymerase), p53, p21, cyclin D1, and phosphorylated Akt (protein kinase B) were analyzed by Western blotting. Results: The sub-G1 fraction of cells was significantly increased in the combination treatment group, as compared to cells exposed to radiation alone or flavopiridol alone. Western blotting also showed an increased expression of cleaved caspase-3 and cleaved PARP expression in cells of the combination treatment group, as compared with cells exposed to radiation alone or flavopiridol alone. Treatment with flavopiridol down regulated cyclin D1 expression of both cell lines but its effect on p53 and p21 expression was different according to each individual cell line. Flavopiridol did not affect the expression of phophorylated Akt in both cell lines. Conclusion: Treatment with flavopiridol increased radiation-induced apoptosis of both the human laryngeal and lung cancer cell lines. Flavopiridol effects on p53 and p21 expression were different according

  4. The role of mitochondria in the radiation-induced bystander effect in human lymphoblastoid cells.

    Science.gov (United States)

    Rajendran, Sountharia; Harrison, Scott H; Thomas, Robert A; Tucker, James D

    2011-02-01

    Cells without intact mitochondrial DNA have been shown to lack the bystander effect, which is an energy-dependent process. We hypothesized that cells harboring mutations in mitochondrial genes responsible for ATP synthesis would show a decreased bystander effect compared to normal cells. Radiation-induced bystander effects were analyzed in two normal and four mitochondrial mutant human lymphoblastoid cells. Medium from previously irradiated cells (conditioned medium) was transferred to unirradiated cells from the respective cell lines and evaluated for the bystander effect using the cytokinesis-block micronucleus assay. Unlike normal cells that were used as a control, mitochondrial mutant cells neither generated nor responded to the bystander signals. The bystander effect was inhibited in normal cells by adding the mitochondrial inhibitors rotenone and oligomycin to the culture medium. Time-controlled blocking of the bystander effect by inhibitors was found to occur either for prolonged exposure to the inhibitor prior to irradiation with an immediate and subsequent removal of the inhibitors or immediate post-application of the inhibitor. Adding the inhibitors just prior to irradiation and removing them immediately after irradiation was uneventful. Fully functional mitochondrial metabolic capability may therefore be essential for the bystander effect.

  5. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3).

    Science.gov (United States)

    Kaplan, Fuat; Teksen, Fulya

    2016-03-01

    In this study, we studied the apoptotic and cytotoxic effects of salinomycin on human ovarian cancer cell line (OVCAR-3) as salinomycin is known as a selectively cancer stem cell killer agent. We used immortal human ovarian epithelial cell line (IHOEC) as control group. Ovarian cancer cells and ovarian epithelial cells were treated by different concentrations of salinomycin such as 0.1, 1, and 40 μM and incubated for 24, 48, and 72 h. Dimethylthiazol (MTT) cell viability assay was performed to determine cell viability and toxicity. On the other hand, the expression levels of some of the apoptosis-related genes, namely anti-apoptotic Bcl-2, apoptotic Bax, and Caspase-3 were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, Caspase-3 protein level was also determined. As a result, we concluded that incubation of human OVCAR-3 by 0.1 μM concentration of salinomycin for 24 h killed 40 % of the cancer cells by activating apoptosis but had no effect on normal cells. The apoptotic Bax gene expression was upregulated but anti-apoptotic Bcl-2 gene expression was downregulated. Active Caspase-3 protein level was increased significantly (p < 0.05).

  6. The Effects of Anti-Hcg Monoclonal Antibodies on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Mirshahi M

    2011-12-01

    Full Text Available Background: Human cancer cell lines express human choriogonadotropin (hCG, its subunits and derivatives, regardless of their origin and type. It appears that hCG is a common phenotype in human cancer cell lines. In this research, the effects of hCG targeting monoclonal antibodies (7D9, T18H7 and T8B12 on human cancer cell lines were evaluated. Methods: Monoclonal antibody secreting hybridomas were proliferated and injected intraperitoneally to Balb/C mice after treatment with pristine. Two weeks later, ascites fluid was collected. Purification of aforementioned antibodies from ascites fluid was performed using G-protein affinity followed by ion exchange chromatography. SDS-PAGE and ELISA confirmed the structure and functional integrity of the purified antibodies, respectively. Two human cancer cell lines "Hela" and "MDA" were treated by the purified antibodies. Three days later, different wells were imaged and the cells counted. Results: SDS-PAGE gel (None-reducing indicated consistency of band migration patterns with control antibodies. ELISA test using hCG antigens indicated that the produced antibodies could detect hCG antigens. Cell lines were cultured and treated with different concentrations of each antibody. Counting and imaging different wells of treated plates, indicated that 7D9 antibody had a more significant (P<0.01 cytotoxic effect on cancer cell lines than the control cells. Conclusion: HCG targeting monoclonal antibodies can be used for targeted cancer therapy, as human cancer cells express hCG gene. 7D9 antibody that exhibits protease activity is a proper candidate for this purpose, as it possesses both antagonistic and enzymatic properties.

  7. Human Wharton's jelly mesenchymal stem cell secretome display antiproliferative effect on leukemia cell line and produce additive cytotoxic effect in combination with doxorubicin.

    Science.gov (United States)

    Hendijani, Fatemeh; Javanmard, Shaghayegh Haghjooy; Sadeghi-aliabadi, Hojjat

    2015-06-01

    Mesenchymal stem cell (MSC) therapy moves toward clinic progressively. Recent evidences establish anticancer effect of mesenchymal stem cells. However multiple factors including type of cancer, MSC source, study design, and animal model play role in final outcome. Wharton's jelly - a newly approved source of MSCs - possesses superiorities to bone marrow as the conventional source; therefore investigation of its medical effects can produce beneficial results. In this survey we examined cytotoxic and proapoptotic effect of human Wharton's jelly MSC secretome on K562 human leukemia cells. MSCs were isolated from human Wharton's jelly of umbilical cord by explant culture method, then characterized according to ISCT criteria (morphology and plastic adherence, surface antigenicity and differentiation potential). MSC secretome was collected and its cytotoxic and proapoptotic effects on K562 cells in combination with doxorubicin were evaluated using BrdU cell proliferation assay and Annexin V-PI staining. Our results showed antiproliferative effect of mesenchymal stem cell secretome on K562 cancer cells, the effect was also added to cytotoxic effect of doxorubicin without induction of drug resistance. Human Wharton's jelly derived mesenchymal stem cells exerted cytotoxic effect on leukemia cells. Addition of that effect to anticancer effect of chemotherapeutic agents can leads to cytotoxic drug dose reduction and diminished side effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells.

    Science.gov (United States)

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; Cho, Sung-Dae

    2016-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing its protein stability whereas other Bcl-2 family members were not altered. In addition, the treatment with pycnogenol led to the production of reactive oxygen species and N-acetyl-l-cysteine almost blocked pycnogenol-induced reactive oxygen species generation. Taken together, these findings suggest that pycnogenol may be a potential candidate for the chemoprevention or chemotherapy of human oral cancer.

  9. Effect of clarythromycin on the distant metastases of human lung cancer cells in SCID mice.

    Science.gov (United States)

    Parajuli, P; Yano, S; Hanibuchi, M; Nokihara, H; Shinohara, T; Sone, S

    1998-02-01

    Recently, the use of macrolides is suggested to be therapeutically effective in prolonging the survival of patients with inoperable non-small cell lung cancer. The purpose of this study was to examine therapeutic effects of a macrolide, clarythromycin (CAM) on the metastastic developments of two different human non-small cell lung cancers (squamous cell lung carcinoma RERF-LC-AI, and adenocarcinoma PC-14) in severe combined immunodeficient (SCID) mice depleted or undepleted of natural killer (NK) cells, respectively. CAM, injected subcutaneously at doses of 5 and 10 mg/kg body weight/day from day 7 to 41 after i.v. inoculation of human lung cancer cells, was not effective in inhibiting their distant organ metastases in SCID mice. CAM at concentrations of less than 10 micrograms/ml did not have a direct influence on the proliferation of these tumor cells in vitro. Although CAM alone was not effective in augmenting NK activity, it augmented the IL-2-induced killer (LAK) activity against Daudi cells in vitro. These results suggest that CAM alone may not be enough to control the spread of non-small cell lung cancer in the patient with T cell dysfunction.

  10. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells

    Institute of Scientific and Technical Information of China (English)

    Li-Feng Qi; Zi-Rong Xu; Yan Li; Xia Jiang; Xin-Yan Han

    2005-01-01

    AIM: To investigate the effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 in vitro and the possible mechanisms involved.METHODS: Chitosan nanoparticles were characterized by particle size, zeta potential, and morphology. After treatment with various concentrations of chitosan nanoparticles (25, 50, 75, 100 μg/mL) at various time intervals, cell proliferation, ultrastructural changes, DNA fragmentation, mitochondrial membrane potential (MMP),cell cycle phase distribution and apoptotic peaks of MGC803 cells were analyzed by MTT assay, electron microscopy,DNA agarose gel electrophoresis, and flow cytometry.RESULTS: Chitosan nanoparticles exhibited a small particle size as 65 nm and a high surface charge as 52 mV.Chitosan nanoparticles markedly inhibited cell proliferation of MGC803 cells with an IC50 value of 5.3 μg/mL 48 h after treatment. After treatment with chitosan nanoparticles,the typical necrotic cell morphology was observed by electron microscopy, a typical DNA degradation associated with necrosis was determined by DNA agarose electrophoresis.Flow cytometry showed the loss of MMP and occurrence of apoptosis in chitosan nanoparticles-treated cells.CONCLUSION: Chitosan nanoparticles effectively inhibit the proliferation of human gastric carcinoma cell line MGC803 in vitro through multiple mechanisms, and may be a beneficial agent against human carcinoma.

  11. Antitumor Effect of Antisense Ornithine Decarboxylase Adenovirus on Human Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Hui TIAN; Lin LI; Xian-Xi LIU; Yan ZHANG

    2006-01-01

    Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially lung cancer cells. Some chemotherapeutic agents aimed at decreasing ODC gene expression showed inhibitory effects on cancer cells. In this study, we examined the effects of adenoviral transduced antisense ODC on lung cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was used to infect lung cancer cell line A-549. The 3-(4,5-me thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to analyze the effect on cell growth. Expression of ODC and concentration of polyamines in cells were determined by Western blot analysis and high performance liquid chromatography. Terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling was used to analyze cell apoptosis. The expression of ODC in A-549 cells was reduced to 54%, and that of three polyamines was also decreased through the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling showed that rAd-ODC/Ex3as could lead to cell apoptosis, with apoptosis index of 46%. This study suggests that rAd-ODC/Ex3as has an antitumor effect on the human lung cancer cells.

  12. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    Science.gov (United States)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-02-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H2DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly ( p Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant ( p cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  13. Dose-dependent cytotoxic and mutagenic effects of antineoplastic alkylating agents on human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, B.J.S.; Johnson, K.J.; Henner, W.D. (Oregon Health Sciences Univ., Portland (United States))

    1991-01-01

    The alkylating agents in clinical use as antineoplastics are strongly implicated as human carcinogens on the basis of animal studies and human epidemiologic studies. However, there is little quantitative information on the extent to which exposure to these drugs is mutagenic for normal (non-malignant) cells and the extent to which such mutagenicity correlates with cytotoxicity of these agents. Human lymphoblastoid cells (WIL2-NS) were exposed to graded doses of eight antineoplastic alkylating agents. Dose-dependent decreases in survival were used to calculate IC{sub 50}s for each of the drugs tested. The mutagenicity of these agents is correlated strongly with cytotoxicity. These results quantitate the dose-dependent cytotoxic and mutagenic effects of these bifunctional alkylating agents on human cells. All are cytotoxic and mutagenic, although their mutagenic efficiency varies.

  14. Inhibitory effect of substituted dextrans on MCF7 human breast cancer cell growth in vitro.

    Science.gov (United States)

    Morere, J F; Letourneur, D; Planchon, P; Avramoglou, T; Jozefonvicz, J; Israel, L; Crepin, M

    1992-12-01

    Substituted dextrans can reproduce some of the properties of heparin and can thus be used to alter cellular growth. We studied the effect of heparin (H108), dextran (D), carboxymethylbenzylamide dextran (CMDB) and carboxymethylbenzylamide sulfonate dextran (CMDBS) on the growth of human mammary cells of the MCF7 tumor line. The cells were cultured in minimum Eagle's medium containing 2% fetal calf serum without biopolymer, or with increasing concentrations of H108, D, CMDB or CMDBS. Growth curves were accurately based on cell counting using a Coulter counter. Cell distribution in the various phases of the cycle was analyzed by flow cytometry. Dose-dependent growth inhibitory effects (400-4000 micrograms/ml) were observed. The effect on MCF7 tumor cells was most apparent with CMDBS. The percentage of cells in the S phase decreased with preferential blocking in the G0/G1 phase. Pre-clinical studies can be anticipated as there is an absence of in vivo toxicity.

  15. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    Science.gov (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  16. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  17. Effect of chlorophyllin on normothermic storage of human periodontal ligament cells.

    Science.gov (United States)

    Chung, Won-Gyun; Lee, Eun Ju; Lee, Seung-Jong; Lee, Seung-Ae; Kim, Jin

    2004-06-01

    The purpose of the present study was to evaluate whether chlorophyllin could serve as an effective constituent of a storage medium to enhance the human periodontal ligament (PDL) cell viability. Freshly isolated PDL cells from premolars extracted from healthy people were stored at 37 degrees C for 6 h in various solutions: F-medium and Hank's balanced salt solution (HBSS), supplemented with chlorophyllin. From MTT viability assays, the highest cell viability was found in the PDL cells stored in HBSS supplemented with 500 nM chlorophyllin, and the chlorophyllin-treated cells showed a dose-dependent response to concentration. Additionally, the results from flow cytometry showed that 77 to 80% of the PDL cells were in the G0/G1 phases of the cell cycle, which suggested that most were in a stable stage. These result showed that HBSS, supplemented with chlorophyllin, may be a useful solution for preserving the viability of PDL cells.

  18. Effect of Human WEE1 and Stem Cell Factor on Human CD34+ Umbilical Cord Blood Cell Damage Induced by Chemotherapeutic Agents

    Institute of Scientific and Technical Information of China (English)

    Ping LEI; Yong HE; Wenfang SHI; Jilin PENG; Sha WU; Huifen ZHU; Jianguo CHEN; Guanxin SHEN

    2007-01-01

    Myelosuppression is one of the major side-effects of most anticancer drugs. To achieve myeloprotection, one bicistronic vector encoding anti-apoptotic protein human WEE1 (WEE1Hu) and proliferation-stimulating stem cell factor (SCF) was generated. In this study, we selected human umbilical cord blood CD34+ cells as the in vitro model in an attempt to investigate whether WEE1Hu, rather than conventional drug-resistant genes, can be introduced to rescue cells from the damage by chemotherapeutic agents such as cisplatin, adriamycin, mitomycin-c and 5-fluorouracil. Cell viability and cytotoxicity assay,colony-forming units in culture assay and externalization of phospholipid phosphatidylserine analysis showed that the expression of WEE1Hu and SCF in CD34+ cells provided the cells with some protection. These findings suggest that the expression of WEE1Hu and SCF might rescue CD34+ cells from chemotherapyinduced myelosuppression.

  19. Effect of sulindac sulfide on metallohydrolases in the human colon cancer cell line HT-29.

    Science.gov (United States)

    Guillen-Ahlers, Hector; Tan, Jiangning; Castellino, Francis J; Ploplis, Victoria A

    2011-01-01

    Matrix metalloproteinase 7 (MMP7), a metallohydrolase involved in the development of several cancers, is downregulated in the Apc(Min/+) colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases.

  20. Effect of sulindac sulfide on metallohydrolases in the human colon cancer cell line HT-29.

    Directory of Open Access Journals (Sweden)

    Hector Guillen-Ahlers

    Full Text Available Matrix metalloproteinase 7 (MMP7, a metallohydrolase involved in the development of several cancers, is downregulated in the Apc(Min/+ colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases.

  1. Estrogenic effects of fusarielins in human breast cancer cell lines

    DEFF Research Database (Denmark)

    Søndergaard, Teis; Klitgaard, Louise Graabæk; Purup, Stig

    2012-01-01

    The fusarielins are a group of metabolites found in several Aspergillus and Fusarium species that have been reported to have with weak antifungal, antibiotic and cytotoxic effects. This study identifies fusarielin A, F, G and H isolated from Fusarium as mycoestrogens. Mycoestrogens are compounds ...

  2. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Lee, D H; Kang, S K; Lee, R H; Ryu, J M; Park, H Y; Choi, H S; Bae, Y C; Suh, K T; Kim, Y K; Jung, Jin Sup

    2004-01-01

    The peripheral benzodiazepine receptor (PBR) has been known to have many functions such as a role in cell proliferation, cell differentiation, steroidogenesis, calcium flow, cellular respiration, cellular immunity, malignancy, and apoptosis. However, the presence of PBR has not been examined in mesenchymal stem cells. In this study, we demonstrated the expression of PBR in human bone marrow stromal cells (hBMSCs) and human adipose stromal cells (hATSCs) by RT-PCR and immunocytochemistry. To determine the roles of PBR in cellular functions of human mesenchymal stem cells (hMSCs), effects of diazepam, PK11195, and Ro5-4864 were examined. Adipose differentiation of hMSCs was decreased by high concentration of PBR ligands (50 microM), whereas it was increased by low concentrations of PBR ligands (<10 microM). PBR ligands showed a biphasic effect on glycerol-3-phosphate dehydrogenase (GPDH) activity. High concentration of PBR ligands (from 25 to 75 microM) inhibited proliferation of hMSCs. However, clonazepam, which does not have an affinity to PBR, did not affect adipose differentiation and proliferation of hMSCs. The PBR ligands did not induce cell death in hMSCs. PK11195 (50 microM) and Ro5-5864 (50 microM) induced cell cycle arrest in the G(2)/M phase. These results indicate that PBR ligands play roles in adipose differentiation and proliferation of hMSCs.

  3. Effect of proteasome inhibitors on proliferation and apoptosis of human cutaneous melanoma-derived cell lines.

    Science.gov (United States)

    Sorolla, A; Yeramian, A; Dolcet, X; Pérez de Santos, A M; Llobet, D; Schoenenberger, J A; Casanova, J M; Soria, X; Egido, R; Llombart, A; Vilella, R; Matias-Guiu, X; Marti, R M

    2008-03-01

    Cutaneous malignant melanoma is an aggressive type of skin cancer which causes disproportionate mortality in young and middle-aged adults. Once disseminated, melanoma can be considered an incurable disease, highly resistant to standard antineoplastic treatment, such as chemotherapy or radiation therapy. The proteasome represents a novel target for cancer therapy that can potentially be used in melanoma. To assess the effect of four structurally different proteasome inhibitors on human cutaneous melanoma-derived cell lines. Sixteen human cutaneous melanoma-derived cell lines which are original were obtained from patients who were treated by two of the authors. Cells were cultured, exposed to proteasome inhibitors (bortezomib, ALLN, MG-132 and epoxomicin) and then assayed for cell cycle and cell death analyses. Proteasome inhibitors inhibited the in vitro growth of melanoma cells, and this effect was due to a reduction in cell proliferation rate and an induction of both caspase-dependent and caspase-independent cell death. Moreover, release of apoptosis-inducing factor was observed in the presence of the broad-specificity caspase inhibitor BAF (Boc-D-fmk). In addition, the four different proteasome inhibitors induced caspase 2 processing. This study provides information regarding the in vitro effects of proteasome inhibitors on melanoma cell lines, and the molecular mechanisms involved. It also gives support to the future use of such inhibitors in the treatment of patients with melanoma, either administered alone or in combination with other drugs.

  4. Effects of endotoxin on proliferation of human hematopoietic cell precursors

    OpenAIRE

    Rinehart, John J.; Keville, Lisa

    1997-01-01

    In examining the effects of corticosteroids on hematopoiesis in vitro, we observed that results were highly dependent on the lot of commercial fetal calf serum (FCS) utilized. We hypothesized that this variability correlated with the picogram (pg) level of endotoxin contaminating the FCS. Randomly obtained commercial lots of FCS contained 0.39 to 187 pg/ml of lipopolysaccharide (LPS). Standard FCS concentrations in hematopoietic precursor proliferation assays (granulocyte-marcrophage colony f...

  5. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  6. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells.

    Science.gov (United States)

    Halder, Babli; Singh, Shruti; Thakur, Suman S

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells.

  7. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation.

    Science.gov (United States)

    Moore, Craig S; Cui, Qiao-Ling; Warsi, Nebras M; Durafourt, Bryce A; Zorko, Nika; Owen, David R; Antel, Jack P; Bar-Or, Amit

    2015-01-15

    In multiple sclerosis, successful remyelination within the injured CNS is largely dependent on the survival and differentiation of oligodendrocyte progenitor cells. During inflammatory injury, oligodendrocytes and oligodendrocyte progenitor cells within lesion sites are exposed to secreted products derived from both infiltrating immune cell subsets and CNS-resident cells. Such products may be considered either proinflammatory or anti-inflammatory and have the potential to contribute to both injury and repair processes. Within the CNS, astrocytes also contribute significantly to oligodendrocyte biology during development and following inflammatory injury. The overall objective of the current study was to determine how functionally distinct proinflammatory and anti-inflammatory human immune cell subsets, implicated in multiple sclerosis, can directly and/or indirectly (via astrocytes) impact human oligodendrocyte progenitor cell survival and differentiation. Proinflammatory T cell (Th1/Th17) and M1-polarized myeloid cell supernatants had a direct cytotoxic effect on human A2B5(+) neural progenitors, resulting in decreased O4(+) and GalC(+) oligodendrocyte lineage cells. Astrocyte-conditioned media collected from astrocytes pre-exposed to the same proinflammatory supernatants also resulted in decreased oligodendrocyte progenitor cell differentiation without an apparent increase in cell death and was mediated through astrocyte-derived CXCL10, yet this decrease in differentiation was not observed in the more differentiated oligodendrocytes. Th2 and M2 macrophage or microglia supernatants had neither a direct nor an indirect impact on oligodendrocyte progenitor cell differentiation. We conclude that proinflammatory immune cell responses can directly and indirectly (through astrocytes) impact the fate of immature oligodendrocyte-lineage cells, with oligodendrocyte progenitor cells more vulnerable to injury compared with mature oligodendrocytes.

  8. The protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Xue - Fang Chen

    2013-06-01

    Full Text Available AIM: To investigate the protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis. METHODS:Subcultured human lens epithelial cell line, ultraviolet induced cell apoptosis, 20μmol/L resveratrol pretreated cell, the indicators change was observed: rate of apoptosis was detected by flow cytometry and apoptosis-related factors of caspses-3 and caspase-9 were detected by colorimetric detection, ultrastructure changes were observed under transmission electron microscope. RESULTS: Flow cytometry instrument testing found that resveratrol can suppress the apoptosis induced by ultraviolet irradiation, caspses-3 and caspase-9 content in positive control group were significantly higher than that of the negative control group at the same time period, the difference was statistically significant(P<0.05; caspses-3 and caspase-9 content in experimental group were lower than that in the positive control group at the same time, the difference was statistically significant(P<0.05. In addition, the damage of human lens epithelial cells was alleviated with the incubation time of resveratrol elongated. CONCLUSION:Resveratrol may inhibit ultraviolet-induced apoptosis of human lens epithelial cells, it has preventive function against radioactive cataract, and it can provide reliable evidence for pursuing effective medicine to prevent and treat cataract.

  9. Effect of platelet lysate on human cells involved in different phases of wound healing.

    Science.gov (United States)

    Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (pwound healing.

  10. Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Rotiroti Domenicoantonio

    2004-09-01

    Full Text Available Abstract Background Identification of effective systemic antineoplastic drugs against anaplastic thyroid carcinomas has particularly important implications. In fact, the efficacy of the chemotherapeutic agents presently used in these tumours, is strongly limited by their low therapeutic index. Methods In this study gemcitabine was entrapped within a pegylated liposomal delivery system to improve the drug antitumoral activity, thus exploiting the possibility to reduce doses to be administered in cancer therapy. The cytotoxic effects of free or liposome-entrapped gemcitabine was evaluated against a human thyroid tumour cell line. ARO cells, derived from a thyroid anaplastic carcinoma, were exposed to different concentrations of the drug. Liposomes formulations were made up of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-MPEG (8:3:1 molar ratio. Cell viability was assessed by both trypan bleu dye exclusion assay and fluorimetric analysis of cell DNA content. Results A cytotoxic effect of free gemcitabine was present only after 72 h incubation (ARO cell mortality increased of approximately 4 fold over control at 1 μM, 7 fold at 100 μM. When gemcitabine was encapsulated in liposomes, a significant effect was observed by using lower concentrations of the drug (increased cell mortality of 2.4 fold vs. control at 0.3 μM and earlier exposure time (24 h. Conclusion These findings show that, in vitro against human thyroid cancer cells, the gemcitabine incorporation within liposomes enhances the drug cytotoxic effect with respect to free gemcitabine, thus suggesting a more effective drug uptake inside the cells. This may allow the use of new formulations with lower dosages (side effect free for the treatment of anaplastic human thyroid tumours.

  11. Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To study the antitumor effect of matrine in human hepatoma G2 (HepG2) cells and its molecular mechanism involved in antineoplastic activities. METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect viability of HepG2 cells. The effect of matrine on cell cycle was detected by flow cytometry. Annexin-V-FITC/PI double staining assay was used to detect cellular apoptosis. Cellular morphological changes were observed under an inverted phase contrast microscope. ...

  12. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells.

    Science.gov (United States)

    Ince, Akif; Schütze, Norbert; Hendrich, Christian; Jakob, Franz; Eulert, Jochen; Löhr, Jochen F

    2007-03-10

    Infection of total joint replacements is painful, disabling and difficult to treat because of the increasing bacterial resistance against antibiotics. In view of this, antiseptics show limited bacterial tolerance and have a broad-spectrum antimicrobial activity. However, the application of antiseptics to bone is insufficiently studied in literature. Therefore, we investigated the biocompatibility of the antiseptic polyhexanide with bone related cells and asked whether supplementation to bone cement is appropriate in the management of total arthroplasty infections. We performed an in vitro study with immortalised human foetal osteoblast cells (hFOB 1.19) and human endothelial cells (EAhy 926). The cultured cells were exposed to media containing various concentrations of gentamicin (12.5-800 microg/ml) and polyhexanide (0.0006-0.01%) for six hours. We measured the phase-contrast microscopy images, the cell viability, cell number and the alkaline phosphatase activity as a parameter for osteogenic function. The exposure of hFOB and endothelial cells to polyhexanide showed a severe reduction of viability and cell number. Gentamicin did not have negative effects on hFOB and endothelial cell number and viability. The alkaline phosphatase activity of hFOB showed a significant decrease after exposure to polyhexanide and gentamicin. The viability and the cell number of endothelial cells seem more negatively affected by polyhexanide than the parameters of the hFOB-cells. The exposure of human osteoblasts and endothelial cells to polyhexanide at concentrations with questionable antibacterial activity resulted in severe cell damage whereas exposure to high dosed gentamicin did not. These results raise questions as to the feasibility of using antiseptics in bone cement for the treatment of total arthroplasty infections. Further in vivo studies are necessary to show the in vivo relevance of these in vitro findings.

  13. Effect of sodium hypochlorite on human pulp cells: an in vitro study

    Science.gov (United States)

    Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.

    2014-01-01

    Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446

  14. Anti-hepatocarcinoma effects of resveratrol nanoethosomes against human HepG2 cells

    Science.gov (United States)

    Meng, Xiang-Ping; Zhang, Zhen; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Resveratrol (Res) has been widely investigated with its strong anti-tumor activity. However, its low oral bioavailability restricts its wide application. In this study, we prepared resveratrol nanoethosomes (ResN) via ethanol injection method. The in vitro anti-hepatocarcinoma effects of ResN relative to efficacy of bulk Res were evaluated on proliferation and apoptosis of human HepG2 cells. ResN were spherical vesicles and its particle diameter, zeta potential were (115.8 +/- 1.3) nm and (-12.8 +/- 1.9) mV, respectively. ResN exhibited significant inhibitory effects against human HepG2 cells by MTT assay, and the IC50 value was 49.2 μg/ml (105.4 μg/ml of Res bulk solution). By flow cytometry assay, there was an increase in G2/M phase cells treated with ResN. The results demonstrated ResN could effectively block the G2/M phase of HepG2 cells, which can also enhance the inhibitory effect of Res against HepG2 cells.

  15. The effect of arsenic trioxide on human hepatoma cell line BEL-7402 culturedin vitro

    Institute of Scientific and Technical Information of China (English)

    You Lin Yang; Hong Yu Xu; Yuan Yuan Gao; Qiao Li Wu; Guang Qiang Gao

    2000-01-01

    AIM To study the effect of a wide range of concentration of arsenic trioxide on human hepatoma cell lineBEL-7402 and its mechanism.METHODS The BEL-7402 cells were treated with arsenic trioxide (a final concentration of 0.5, 1 and2 μmol/L, respectively) in various durations or for 4 successive days. The cell growth and proliferation wereobserved by cell counting and cell-growth curve. Morphologic changes were studied under electronmicroscopy. Flow cytometry was used to assay cell-DNA distribution and the protein expression of Bcl-2 andBax was detected by immunocytochemical method.RESULTS The cell growth was significantly inhibited by the different concentrations of arsenic trioxide asrevealed by cell counting and cell-growth curve. Arsenic trioxide treatment at 0.5, 1 and 2 μmol/L, resultedin a sub-G1 cell peak. The decreased G0/G1 phase cell and the increased percentage of S phase cell were observed by flow cytometer, suggesting that the inhibiting effect of arsernic trioxide on BEL-7402 cell lay inG0/G1 phase cell. Apoptotis-related morphology, such as intact cell membrane, nucleic condensation,apoptotic body formation, can be seen under the electron microscopy. High protein expression level of Bcl-2and Bax was detected in 1 and 2 μmol/L arsenic trioxide-treated cells, but that of Bax was more significant.Arsenic trioxide treatment at 0.5 μmol/L resulted in higher expression level of Bcl-2 and lower expressionlevel of Bax compared with control (P1<0.01, P2<0.01).CONCLUSION Arsenic trioxide not only inhibited the proliferation but also induced apoptosis of humanhepatoma cell line BEL-7402. The induced-apoptosis effect of 1 and 2 μmol/L arsenic trioxide was relative tothe expression level of Bcl-2 and Bax.

  16. [Effects of niflumic acid on the proliferation of human hepatoma cells].

    Science.gov (United States)

    Tian, Jing; Tao, Ling; Cao, Yun-Xin; Dong, Ling; Hu, Yu-Zhen; Yang, An-Gang; Zhou, Shi-Sheng

    2003-04-25

    The purpose of this work was to investigate the effects of niflumic acid (NFA), a chloride channel blocker, on the proliferation of human hepatoma cell line (HHCC). Cell proliferation was analyzed by cell count and MTT assay. Cell cycle analysis was carried out by flow cytometry. [Ca(2+)](i) was determined by laser scanning confocal system. It was found that NFA decreased significantly the cell number and the MTT optical density (OD) of HHCC cells, and that the OD value was reversed after washout of NFA. Compared with control, NFA blocked cell cycle progression in G(1) phase. Extracellular application of NFA (100 micromol/L) induced a rapid decrease in [Ca(2+)](i). These findings demonstrate that blockage of chloride channels by NFA induces growth arrest of HHCC in G(1) phase, which may be due to the inhibition of Ca(2+)/CaM-dependent signaling pathways.

  17. Tumor growth effects of rapamycin on human biliary tract cancer cells

    Directory of Open Access Journals (Sweden)

    Heuer Matthias

    2012-06-01

    Full Text Available Abstract Background Liver transplantation is an important treatment option for patients with liver-originated tumors including biliary tract carcinomas (BTCs. Post-transplant tumor recurrence remains a limiting factor for long-term survival. The mammalian target of rapamycin-targeting immunosuppressive drug rapamycin could be helpful in lowering BTC recurrence rates. Therein, we investigated the antiproliferative effect of rapamycin on BTC cells and compared it with standard immunosuppressants. Methods We investigated two human BTC cell lines. We performed cell cycle and proliferation analyses after treatment with different doses of rapamycin and the standard immunosuppressants, cyclosporine A and tacrolimus. Results Rapamycin inhibited the growth of two BTC cell lines in vitro. By contrast, an increase in cell growth was observed among the cells treated with the standard immunosuppressants. Conclusions These results support the hypothesis that rapamycin inhibits BTC cell proliferation and thus might be the preferred immunosuppressant for patients after a liver transplantation because of BTC.

  18. In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells

    OpenAIRE

    Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-01-01

    Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells.

  19. Cultured human cells can acquire resistance to the antiproliferative effect of sodium aurothiomalate.

    Science.gov (United States)

    Glennås, A; Rugstad, H E

    1986-05-01

    Cultured human epithelial cells (HE), grown as monolayers, acquired resistance to otherwise lethal concentrations (300 mumol/l, culture medium) of sodium aurothiomalate during five months' exposure to stepwise increased concentrations of the drug. The resistance acquired was shown by exposure to drug concentrations ranging from 25 to 300 mumol/, resulting in 100% of the resistant cells (HeMyo) surviving compared with controls. Only 13% of the sensitive parent cells survived when exposed to 300 mumol/l for four days. The HeMyo cells were also resistant to the antiproliferative effects of equimolar concentrations of thiomalic acid without gold. The cytosolic gold concentration and the association of 199Au with cytosolic proteins after gel filtration were similar in both cell lines after sodium aurothiomalate exposure to the exponentially growing cells. No synthesis of gold binding proteins of metallothionein character was observed in the HEMyo cells. The concentration of free thiomalate in the sonicates and cytosols of the HeMyo cells was decreased to 25-30% of the concentration found in the HE cells. Comparison with previous data for the cytosolic concentration of total thiomalate in the HE cells suggests that most of the cytosolic thiomalate present was free thiomalate. We conclude that the cells can develop resistance to the antiproliferative effect of sodium aurothiomalate, and that the resistance may be due to their capacity to maintain low concentrations of free thiomalate in the sonicates and cytosols. The results support previous findings that sodium aurothiomalate appears to dissociate within cells.

  20. Effects of estrogen on collagen gel contraction by human retinal glial cells

    Institute of Scientific and Technical Information of China (English)

    QIU Qing-hua; CHEN Zhi-Yi; YIN Li-li; ZHENG Zhi; WU Xing-wei

    2012-01-01

    Background There are definite gender differences in patients with macular holes.Menopausal women over 50 years are most affected.We aimed to observe the effect of estrogen on collagen gel contraction by cultured human retinal glial cells.It is speculated that estrogen could strengthen the tensile stress of the macula by maintaining the correct morphology and contraction.Methods Estrogen was used to determine its effects on collagen gel contraction,and its function was measured using morphological changes in cells.Human retinal glial cells were cultured in collagen solution.The cells were then exposed to collagen gels and the degree of contraction of the gel was determined.Results Estrogen at differing concentrations had no effect on the growth of human retinal glial cells.However,after exposed to collagen gel block,less contraction was noted in the estrogen-treated group than in the control group.Conclusions Estrogen can inhibit collagen gel contraction by glial cells.These results suggest a mechanism for macular hole formation,which is observed in menopausal females.

  1. Cytotoxic Effects of Strawberry, Korean Raspberry, and Mulberry Extracts on Human Ovarian Cancer A2780 Cells

    Science.gov (United States)

    Lee, Dahae; Kang, Ki Sung; Lee, Sanghyun; Cho, Eun Ju; Kim, Hyun Young

    2016-01-01

    Reactive oxygen species are tumorigenic by their ability to increase cell proliferation, survival, and cellular migration. The purpose of the present study was to compare the antioxidant activity and cytotoxic effects of 3 berry extracts (strawberry, Korean raspberry, and mulberry) in A2780 human ovarian carcinoma cells. Except for raspberry, the ethyl acetate or methylene chloride fractions of berries containing phenolic compounds exerted dose dependent free radical scavenging activities. In the raspberry fractions, the hexane fraction also exhibited potent antioxidant activity. The cytotoxic effects of berries extracts in A2780 human ovarian carcinoma cells were measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Surprisingly, co-treatment with n-butanol (BuOH) fractions of berries showed stronger cytotoxic effects compared to the other fractions. These findings suggest that potent anticancer molecules are found in the BuOH fractions of berries that have stronger cytotoxic activity than antioxidants. PMID:28078263

  2. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells

    OpenAIRE

    Tchasovnikarova, Iva A.; Timms, Richard T.; Matheson, Nicholas J.; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A.; Lehner, Paul J.

    2015-01-01

    This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aaa7227 Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A non-lethal forward genetic screen in near-haploid KBM7 cells identified the Human Silencing Hub (...

  3. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Gan, L.; Yang, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, R. [School Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xian, Y.; Lu, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  4. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Science.gov (United States)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  5. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells.

    Directory of Open Access Journals (Sweden)

    Opas Traitanon

    Full Text Available The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC and mTOR inhibitor (Sirolimus, SRL on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monitored by flow cytometry. SRL at clinically relevant concentrations (6 ng/ml profoundly inhibited CD19(+ B cell proliferation compared to controls whereas TAC at similar concentrations had a minimal effect. CD27(+ memory B cells were affected more by SRL than naïve CD27- B cells. SRL effectively blocked B cell differentiation into plasma cells (CD19(+CD138(+ and Blimp1(+/Pax5(low cells even at low dose (2 ng/ml, and totally eliminated them at 6 ng/ml. SRL decreased absolute B cell counts, but the residual responding cells acquired an activated phenotype (CD25(+/CD69(+ and increased the expression of HLA-DR. SRL-treated stimulated B cells on a per cell basis were able to enhance the proliferation of allogeneic CD4(+CD25(- T cells and induce a shift toward the Th1 phenotype. Thus, SRL and TAC have different effects on B lymphocytes. These data may provide insights into the clinical use of these two agents in recipients of solid organ transplants.

  6. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  7. Effect of Bisphenol A on steroid production in human granulosa cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Nancy Jiang; Cui Yu-gui; Zhou Wei; Liu Jin-yong; Liu Jia-yin

    2008-01-01

    Objective:To study the effects of environmental estrogen-like chemical bisphenol A(BPA)on ovarian function with the model of the cultured human granulosa cells in vitro.Methods:The granulosa cells from healthy women were collected and cultured in DMEM with 10% heat-inacti-vated fetal bovine serum.BPA,final concentration 10-7 to 10-4 mol/L,was added to the cell-culture medium and treat cells for 48 hours.The levels of estrogen and progesterone in the supernatant of the cultured cells were meas-ured by DELFIA.Total RNA was extracted from the cultured cells.The expression levels of P450 scc and P450 arom mRNA were measured by RT-PCR.Results:The cultured human granulosa cells could express high levels of P450scc and P450arom.The levels of estrogen and progesterone increased after BPA treatment,expression of P450 arom mRNA was reduced significantly at 10-5 to 10-4mol/L of BPA,but the expression of P450 scc mRNA was increased at 10-6 to 10-5 mol/L of BPA.The levels of estrogen and progesterone in the supernatant of the cultured cells were not affected significantly by BPA at the same concentrations incubated for 48 hours.Conclusion:BPA could affect steroid hormone synthesis and transformation in granulosa cells,such as the ex-pression of P450 scc and P450 atom,so it can affect ovarian function.Although we did not find a significant effect of BPA on the final estrogen and progesterone levels in this studying model,noxious effects of BPA on ovarian function may be exist in the human granulose cells.

  8. The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Gao Li

    2010-04-01

    Full Text Available Abstract Objectives Although many nanomaterials are being used in academia, industry and daily life, there is little understanding about the effects of nanoparticles on the reproductive health of vertebral animals, including human beings. An experimental study was therefore performed here to explore the effect of calcium phosphate nanoparticles on both steroid hormone production and apoptosis in human ovarian granulosa cells. Methods Calcium phosphate nanoparticles uptaking was evaluated by transmission electron microscopy (TEM. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, and G2/M phases by flow cytometry. The pattern of cell death (necrosis and apoptosis was analyzed by flow cytometry with annexin V-FITC/PI staining. The expression of mRNAs encoding P450scc, P450arom and StAR were determined by RT-PCR. Progesterone and estradiol levels were measured by radioimmunoassay. Results TEM results confirmed that calcium phosphate nanoparticles could enter into granulosa cells, and distributed in the membranate compartments, including lysosome and mitochondria and intracellular vesicles. The increased percentage of cells in S phase when cultured with nanoparticles indicated that there was an arrest at the checkpoint from phase S-to-G2/M (from 6.28 +/- 1.55% to 11.18 +/- 1.73%, p Conclusion Calcium phosphate nanoparticles interfered with cell cycle of cultured human ovarian granulosa cells thus increasing cell apoptosis. This pilot study suggested that effects of nanoparticles on ovarian function should be extensively investigated.

  9. Effect of Tamarindus indica L. leaves' fluid extract on human blood cells.

    Science.gov (United States)

    Escalona-Arranz, J C; Garcia-Diaz, J; Perez-Rosés, R; De la Vega, J; Rodríguez-Amado, J; Morris-Quevedo, H J

    2014-01-01

    Tamarind leaves are edible; however, their saponin content could be toxic to human blood cells. In this article, the effect of tamarind leaf fluid extract (TFE) on human blood cells was evaluated by using several tests. Results revealed that TFE did not cause significant haemolysis on human red blood cells even at the lowest evaluated concentration (20 mg/mL). Blood protein denaturalisation ratio was consistently lower than in control at TFE concentrations greater than 40 mg/mL. Erythrocyte membrane damage caused by the action of oxidative H2O2 displayed a steady reduction with increasing TFE concentrations. In the reactive oxygen species (ROS) measurement by using flow cytometry assay, leucocyte viability was over 95% at tested concentrations, and a high ROS inhibition was also recorded. Protective behaviour found in TFE should be attributed to its polyphenol content. Thus, tamarind leaves can be regarded as a potential source of interesting phytochemicals.

  10. The inhibitory effect of transthyretin gene on growth of human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    LIUCHAOTING; JINYAO; 等

    1994-01-01

    Transthyretin(TTR) gene was highly expressed in normal liver and it has been found to be deleted in part of DNA samples from human hepatic cancer.Its mRNA expression was suppressed in most hepatoma samples.In order to study the biological effect of TTR gene on the growth of hepatoma cells,a recombinant vector containing TTR cDNA was constructed by pCMV,then it was transfected into hepatoma cell lines SMMC-7721 and Q3.It has been demonstrated that the inhibition of growth rate of TTR cDNA transfected hepatoma cells was about 50% in strength compared with that of the control.This inhibition was further enhanced when the transfected hepatoma cells were treated with all-trans retinoic acid.Hepatoma cells of cell lines PLC/PRF/5,SMMC-7721 and Q3 as well as hepatoma cells SMMC-7721 transfected with pCMV or pCMV-TTR were analyzed for TTR expression by Northern hybridization.The low level of TTR expression was found in both hepatoma cell lines and in SMMC-7721 cells transfected with pCMV alone.However,a remarkable TTR mRNA expression was observed in hepatoma SMMV-7721 cells transfected with pCMV-TTR.It seems possible that TTR gene might be a candidate of cancer suppressor gene for human hepatic cancer.

  11. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing TANG; Hu BI; Jian-qiang FENG; Jian-guo CAO

    2005-01-01

    Aim: To investigate the reversal effects of curcumin on multidrug resistance (MDR)in a resistant human gastric carcinoma cell line. Methods: The cytotoxic effect of vincristine (VCR) was evaluated by MTT assay. The cell apoptosis induced by VCR was determined by propidium iodide (PI)-stained flow cytometry (FCM) and a morphological assay using acridine orange (AO)/ethidium bromide (EB) dual staining. P-glycoprotein (P-gp) function was demonstrated by the accumulation and efflux of rhodamine123 (Rh123) using FCM. The expression of P-gp and the activation of caspase-3 were measured by FCM using fluorescein isothiocyanate (FITC)-conjugated anti-P-gp and anti-cleaved caspase-3 antibodies, respectively.Results: Curcumin, at concentrations of 5 μmol/L, 10 μmol/L, or 20 μmol/L, had no cytotoxic effect on a parent human gastric carcinoma cell line (SGC7901) or its VCR-resistant variant cell line (SGC7901/VCR). The VCR-IC50 value of the SGC7901/VCR cells was 45 times more than that of the SGC7901cells and the SGC7901/VCR cells showed apoptotic resistance to VCR. SGC7901/VCR cells treated with 5μmol/L, 10 μmol/L, or 20 μmol/L curcumin decreased the IC50 value of VCR and promoted VCR-mediated apoptosis in a dose-dependent manner. Curcumin (10μmol/L) increased Rh 123 accumulation and inhibited the efflux of Rh 123 in S GC7901/VCR cells, but did not change the accumulation and efflux of Rh123 in SGC7901cells. P-gp was overexpressed in SGC7901/VCR cells, whereas it was downregulated after a 24-h treatment with curcumin (10 μmol/L). Resistant cells treated with 1μmol/L VCR alone showed 77% lower levels of caspase-3 activation relative to SGC7901 cells, but the activation of caspase-3 in the resistant cell line increased by 44% when cells were treated with VCR in combination with curcumin.Conclusion: Curcumin can reverse the MDR of the human gastric carcinoma SGC7901/VCR cell line. This might be associated with decreased P-gp function and expression, and the promotion of

  12. The Inhibitory Effect of Oridonin on the Growth of Fifteen Human Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Junhui Chen; Shaobin Wang; Dongyang Chen; Guisheng Chang; Qingfeng Xin; Shoujun Yuan; Zhongying Shen

    2007-01-01

    OBJECTIVE To study the inhibitory effect of oridonin on the growth of cancer cells.METHODS Fifteen human cancer cell lines were subjected to various concentrations of oridonin in culture medium.The inhibitory rate of cell growth was measured by the MTT assay.and compared with a negative control and 5-Fu-positive control.RESULTS The 50% inhibiting concentration (IC50) and maximal inhibi tion (Imax) of oridonin shown by studying the growth of the cancer cell lines were as follows:leukemias (HL60 cells:3.9 μg/ml and 73.8%.K562 cells:4.3 μg/ml and 76.2%):esophageal cancers (SHEEC cells:15.4 μg/ml and 99.2%,Eca109 cells:15.1 μg/ml and 84.6%,TE1 cells:4.0 μg/ml and 70.2%):gastric cancers (BGC823 cells:7.6 μg/ml and 98.7%,SGC7901 cells:12.3 μg/ml and 85.7%):colon cancers (HT29 cells:13.6 μg/ml and 97.2%,HCT cells:14.5 μg/ml and 96.5%):liver cancers (Bel7402 cells:15.2 μg/ml and 89.2%,HepG2 cells:7.1 μg/ml and 88.3%):pancreatic cancer (PC3 cells:11.3 μg/ml and 68.4%):lung cancer (A549 cells:18.6 μg/ml and 98.0%):breast cancer (MCF7 cells:18.4 μg/ml and 84.7%):uterine cervix cancer (Hela cells:13.7μg/ml and 98.5%).CONCLUSION Oridonin had a relatively wide anti-tumor spectrum,and a relatively strong inhibitory effect on the growth of the 15 human cancer cells.Inhibitory effects were concentration dependent.

  13. Effects of lysophosphatidic acid on human colon cancer cells and its mechanisms of action

    Institute of Scientific and Technical Information of China (English)

    Hong Sun; Juan Ren; Qing Zhu; Fan-Zhong Kong; Lei Wu; Bo-Rong Pan

    2009-01-01

    AIM: To study the effects of lysophosphatidic acid (LPA) on proliferation, adhesion, migration, and apoptosisin the human colon cancer cell line, SW480, and its mechanisms of action. METHODS: Methyl tetrazolium assay was used to assess cell proliferation. Flow cytometry was employed to detect cell apoptosis. Cell migration was measured by using a Boyden transwell migration chamber. Cell adhesion assay was performed in 96-well plates according to protocol.RESULTS: LPA significantly stimulated SW480 cell proliferation in a dose-dependent and time-dependent manner compared with the control group (P < 0.05) while the mitogen-activated protein kinase (MAPK) inhibitor,PD98059, significantly blocked the LPA stimulation effect on proliferation. LPA also significantly stimulated adhesion and migration of SW480 cells in a dosedependent manner (P < 0.05). Rho kinase inhibitor,Y-27632, significantly inhibited the up-regulatory effect of LPA on adhesion and migration (P < 0.05). LPA significantly protected cells from apoptosis induced by the chemotherapeutic drugs, cisplatin and 5-FU (P < 0.05),but the phosphoinositide 3-kinase (PI3K) inhibitor,LY294002, significantly blocked the protective effect of LPA on apoptosis.CONCLUSION: LPA stimulated proliferation, adhesion,migration of SW480 cells, and protected from apoptosis.The Ras/Raf-MAPK, G12/13-Rho-RhoA and PI3KAKT/ PKB signal pathways may be involved.

  14. Effect of platinum nanoparticles on cell death induced by ultrasound in human lymphoma U937 cells.

    Science.gov (United States)

    Jawaid, Paras; Rehman, Mati Ur; Hassan, Mariame Ali; Zhao, Qing Li; Li, Peng; Miyamoto, Yusei; Misawa, Masaki; Ogawa, Ryohei; Shimizu, Tadamichi; Kondo, Takashi

    2016-07-01

    In this study, we report on the potential use of platinum nanoparticles (Pt-NPs), a superoxide dismutase (SOD)/catalase mimetic antioxidant, in combination with 1MHz ultrasound (US) at an intensity of 0.4 W/cm(2), 10% duty factor, 100 Hz PRF, for 2 min. Apoptosis induction was assessed by DNA fragmentation assay, cell cycle analysis and Annexin V-FITC/PI staining. Cell killing was confirmed by cell counting and microscopic examination. The mitochondrial and Ca(2+)-dependent pathways were investigated. Caspase-8 expression and autophagy-related proteins were detected by spectrophotometry and western blot analysis, respectively. Intracellular reactive oxygen species (ROS) elevation was detected by flow cytometry, while extracellular free radical formation was assessed by electron paramagnetic resonance spin trapping spectrometry. The results showed that Pt-NPs exerted differential effects depending on their internalization. Pt-NPs functioned as potent free radical scavengers when added immediately before sonication while pre-treatment with Pt-NPs suppressed the induction of apoptosis as well as autophagy (AP), and resulted in enhanced cell killing. Dead cells displayed the features of pyknosis. The exact mode of cell death is still unclear. In conclusion, the results indicate that US-induced AP may contribute to cell survival post sonication. To our knowledge this is the first study to discuss autophagy as a pro-survival pathway in the context of US. The combination of Pt-NPs and US might be effective in cancer eradication.

  15. Effects of Thapsigargin on the Proliferation and Survival of Human Rheumatoid Arthritis Synovial Cells

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available A series of experiments have been carried out to investigate the effects of different concentrations of thapsigargin (0, 0.001, 0.1, and 1 μM on the proliferation and survival of human rheumatoid arthritis synovial cells (MH7A. The results showed that thapsigargin can block the cell proliferation in human rheumatoid arthritis synovial cells in a time- and dose-dependent manner. Results of Hoechst staining suggested that thapsigargin may induce cell apoptosis in MH7A cells in a time- and dose-dependent manner, and the percentages of cell death reached 44.6% at thapsigargin concentration of 1 μM treated for 4 days compared to the control. The protein and mRNA levels of cyclin D1 decreased gradually with the increasing of thapsigargin concentration and treatment times. Moreover, the protein levels of mTORC1 downstream indicators pS6K and p4EBP-1 were reduced by thapsigargin treatment at different concentrations and times, which should be responsible for the reduced cyclin D1 expressions. Our results revealed that thapsigargin may effectively impair the cell proliferation and survival of MH7A cells. The present findings will help to understand the molecular mechanism of fibroblast-like synoviocytes proliferations and suggest that thapsigargin is of potential for the clinical treatment of rheumatoid arthritis.

  16. Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells

    Directory of Open Access Journals (Sweden)

    Rosa Adalberto L

    2011-07-01

    Full Text Available Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD, TGF-β1, and the combination of both factors (EMD+TGF-β1 on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP, osteopontin (OPN and alkaline phosphatase (ALP immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.

  17. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation. PMID:26795421

  18. Effects of PDTC on the Proliferation and PCNA Expression of Human Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    HU Jun; LI Guigang

    2006-01-01

    To investigate the effects of pyrrolidine dithiocarbamate (PDTC) on the proliferation and PCNA (proliferating cell nuclear antigen) expression of cultured human retinal pigment epithelium cells, human retinal pigment epithelium cells (RPE) were cultured from normal adults who died accidentally. The effects of PDTC on the proliferation of RPE cells were examined by using methyl thiazlyl tetrazolium (MTT) assay. The effects of PDTC on the PCNA expression of RPE cells were immunohistochemically examined by employing biological image analysis system (BIAS). After treatment with PDTC of various of concentration ranging from 0.062 to 1 g/L for 24 h, or concentrations ranging from 0. 031 to 1 g/L, the proliferation of RPE cells decreased in a dose-dependent manner. After treatment with PDTC of concentration varying from 0. 062 to 1 g/L for 24 h, the PCNA expression was also suppressed in a dose-dependent manner. It is concluded that PDTC can inhibit the proliferation of RPE cells in vitro in a dose-and time-dependent manner, at least in part,by down-regulating the expression of PCNA. PDTC may be used to prevent and treat the proliferative vitreoretinopathy (PVR).

  19. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hye-Yeon Han

    2014-01-01

    Full Text Available Background: The fruit of Kochia scoparia Scharder is widely used as a medicinal ingredient for the treatment of dysuria and skin diseases in China, Japan and Korea. Especially, K. scoparia had been used for breast masses and chest and flank pain. Objective: To investigate the anti-cancer effect of K. scoparia on breast cancer. Materials and Methods: We investigated the anti-cancer effects of K. scoparia, methanol extract (MEKS in vitro. We examined the effects of MEKS on the proliferation rate, cell cycle arrest, reactive oxygen species (ROS generation and activation of apoptosis-associated proteins in MDA-MB-231, human breast cancer cells. Results: MTT assay results demonstrated that MEKS decreased the proliferation rates of MDA-MB-231 cells in a dose-dependent manner with an IC 50 value of 36.2 μg/ml. MEKS at 25 μg/ml significantly increased the sub-G1 DNA contents of MDA-MB-231 cells to 44.7%, versus untreated cells. In addition, MEKS induced apoptosis by increasing the levels of apoptosis-associated proteins such as cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and cleaved Poly (ADP-ribose polymerase (PARP. Conclusion: These results suggest that MEKS inhibits cell proliferation and induces apoptosis in breast cancer cells and that MEKS may have potential chemotherapeutic value for the treatment of human breast cancer.

  20. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  1. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells.

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-22

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  2. Cytotoxic and Genotoxic effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs).

    Science.gov (United States)

    Shakoori, Ar; Ahmad, A

    2013-01-01

    Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs). Cells were exposed to 1-10 μg/ml and 10-100 μg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 μg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.

  3. Cytotoxic and Genotoxic Effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs

    Directory of Open Access Journals (Sweden)

    Shakoori A

    2013-10-01

    Full Text Available Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs. Cells were exposed to 1-10 µg/ml and 10-100 µg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 µg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.

  4. Biological effects of simulated microgravity on human umbilical vein endothelial cell line HUVEC-C

    Science.gov (United States)

    Liu, Ming; Cheng, Zhenlong; Liang, Shujian; Sun, Yeqing

    Microgravity has been reported to have multiple influences on human cells. To investigate the biological effects of simulated microgravity on human endothelial cells, human umbilical vein endothelial cell HUVEC-C was treated with microgravity for 24 hours and restored at 1 g gravity for extra 24 hours (group 1) and 48 hours and restored for 24 hours (group 2). Microgravity was simulated by using a two-dimensionally rotating clinostat, set on 30 rpm. As controls, cells were cultured paralleled at 1 g gravity. Two groups of treated cells and control cells were harvested at 0, 12, 24, 48 and 72 (for group 2 and control only) hours for proliferation, cell cycles, apoptosis, proteome and microarray analysis. The influences of microgravity on cell proliferation were controversial in previous reports, and in our experiment, inhibitory effect was observed at 12 hour, and cell number of the treatment groups presented 9.26% decrease compared with that of control. Cell cycle distribution was analyzed using flow cytometry. The G2/M cell cycle arrest also occurred at 12 hour in both treatment groups, the cell rates at G2/M phase were 24% higher than in control. Effect of simulated microgravity on cell apoptosis was observed only after 48-hour-treatment, resulted in percentage of apoptotic cells increased by 53-67% compared with control. After cells returned to normal conditions for 24 hours, levels of cell proliferation, cell cycle and cell apoptosis in treatment groups were comparable to control. In order to investigate the molecular mechanism, we analyzed the treated cells at proteomic and transcriptomic levels respectively. Two-dimensional electrophoresis showed that after 24- hour-restoration under normal conditions, 189 proteins in control group disappeared and 187 new proteins presented in group 1; 469 proteins disappeared and 291 new proteins presented in group 2. By using microarray, we found that expression levels of 56 genes were up-regulated and 45 down-regulated in

  5. Resveratrol Exerts Dosage and Duration Dependent Effect on Human Mesenchymal Stem Cell Development

    Science.gov (United States)

    Peltz, Lindsay; Gomez, Jessica; Marquez, Maribel; Alencastro, Frances; Atashpanjeh, Negar; Quang, Tara; Bach, Thuy; Zhao, Yuanxiang

    2012-01-01

    Studies in the past have illuminated the potential benefit of resveratrol as an anticancer (pro-apoptosis) and life-extending (pro-survival) compound. However, these two different effects were observed at different concentration ranges. Studies of resveratrol in a wide range of concentrations on the same cell type are lacking, which is necessary to comprehend its diverse and sometimes contradictory cellular effects. In this study, we examined the effects of resveratrol on cell self-renewal and differentiation of human mesenchymal stem cells (hMSCs), a type of adult stem cells that reside in a number of tissues, at concentrations ranging from 0.1 to 10 µM after both short- and long-term exposure. Our results reveal that at 0.1 µM, resveratrol promotes cell self-renewal by inhibiting cellular senescence, whereas at 5 µM or above, resveratrol inhibits cell self-renewal by increasing senescence rate, cell doubling time and S-phase cell cycle arrest. At 1 µM, its effect on cell self-renewal is minimal but after long-term exposure it exerts an inhibitory effect, accompanied with increased senescence rate. At all concentrations, resveratrol promotes osteogenic differentiation in a dosage dependent manner, which is offset by its inhibitory effect on cell self-renewal at high concentrations. On the contrary, resveratrol suppresses adipogenic differentiation during short-term exposure but promotes this process after long-term exposure. Our study implicates that resveratrol is the most beneficial to stem cell development at 0.1 µM and caution should be taken in applying resveratrol as an anticancer therapeutic agent or nutraceutical supplement due to its dosage dependent effect on hMSCs. PMID:22615926

  6. Effects of environmental organochlorine pesticides on human breast cancer: putative involvement on invasive cell ability.

    Science.gov (United States)

    Pestana, Diogo; Teixeira, Diana; Faria, Ana; Domingues, Valentina; Monteiro, Rosário; Calhau, Conceição

    2015-02-01

    Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p'-dichlorodiphenyltrichloroethane (o,p'-DDT), and its metabolites p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p'-DDT, p,p'-DDE, and p,p'-DDD (50-1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology. © 2013 Wiley Periodicals, Inc.

  7. Anti-Proliferative Effect of Copper Oxide Nanorods Against Human Cervical Carcinoma Cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Nagajyothi, P C; Shim, Jaesool; Kim, Doo Hwan

    2016-09-01

    Metal oxide nanoparticles have been widely investigated for its use in the pharmacological field. The present study was aimed to investigate the cytotoxicity of copper oxide nanorods in human cervical carcinoma cells. The effect of copper oxide nanorods on cell viability was determined by sulforhodamine-B (SRB) assay. The fluorescence and confocal microscopy analyzes showed the cell rounding and nuclear fragmentation following exposure of copper oxide nanorods. Reactive oxygen species (ROS) was increased and could initiate membrane lipid peroxidation, which in turn regulate cytokinetic movements of cells. The messenger RNA (mRNA) expression of p53 and caspase 3 was increased, which further confirms the occurrence of apoptosis at the transcriptional level. Furthermore, caspase-3 enzyme activity was increased, which also confirms the occurrence of apoptosis in tumor cells at the translational level. Taking all our experimental results together, it may suggest that the copper oxide nanorods could be a potential anti-tumor agent to inhibit cancer cell proliferation.

  8. TLR4- and TLR9-dependent effects on cytokines, cell viability, and invasion in human bladder cancer cells.

    Science.gov (United States)

    Olbert, Peter J; Kesch, Claudia; Henrici, Marcus; Subtil, Florentine S; Honacker, Astrid; Hegele, Axel; Hofmann, Rainer; Hänze, Jörg

    2015-03-01

    Adjuvant immunotherapy of bladder cancer by instillation of bacillus Calmette-Guérin (BCG) is highly recommended within certain groups of non-muscle-invasive stages but only partially effective. Toll-like receptors (TLRs) TLR4 and TLR9 likely mediate BCG effects by triggering innate systemic immune cell responses. In addition, TLR4 and TLR9 expressed in bladder cancer cells may contribute to the outcome of BCG treatment. Here, we studied the expression and function of TLR4 and TLR9 in human bladder cancer cell lines. TLR4 and TLR9 messenger RNA and protein levels were determined by real-time reverse transcription polymerase chain reaction and Western blot. Selected cell lines were analyzed with respect to cytokine induction, proliferation, and cell invasion after addition of BCG, TLR4-specific agonist lipopolysaccharide (LPS), or TLR9 agonist (CpG-oligodeoxynucleotide [ODN]). TLR4 and TLR9 were expressed quite heterogeneously in human bladder cancer cells. BCG caused induction of interleukin (IL)-6 or IL-8 in BFTC905 and T24 cells as representatives for TLR4-/TLR9-expressing cells. The study aimed to dissect TLR4- and TLR9-mediated effects. For functional analysis of TLR4 with LPS, we selected T24 and BFTC905 cells with high and undetectable TLR4 levels, respectively. For TLR9 analysis with CpG-ODN, we selected UMUC3 and RT112 cells with high and low TLR9 levels, respectively. Addition of LPS caused significant induction of TNFα and IL-6 messenger RNA in T24 cells but not in BFTC905 cells. Addition of CpG-ODN induced interferon ß (INFß), IL-8, tumor necrosis factor α (TNFα) and the angiogenic factors vascular endothelial growth factor-A and placental growth factor in UMUC3 cells; whereas in RT112 cells, induction of IL-8 and TNFα was noticed. Interestingly, addition of CpG-ODN significantly reduced cell viability and increased cell invasion in UMUC3 and RT112 cells. Our findings demonstrate that bladder cancer cell lines express functional TLR4 and TLR9 with

  9. Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4

    Institute of Scientific and Technical Information of China (English)

    Youn-Jung Kim; Hae-Jeong Park; Seo-Hyun Yoon; Mi-Ja Kim; Kang-Hyun Leem; Joo-Ho Chung; Hye-Kyung Kim

    2005-01-01

    AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4.METHODS: Colorectal cancer cell line, SNU-C4 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum. The cytotoxic effect of OPC was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylt-etrazolium bromide (MTT) assay. To find out the apoptotic cell death, 4, 6-diamidino-2-phenylindole (DAPI) staining,terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, reverse transcriptionpolymerase chain reaction (RT-PCR), and caspase-3 enzyme assay were performed.RESULTS: In this study, cytotoxic effect of OPC on SNUC4 cells appeared in a dose-dependent manner. OPC treatment (100 μg/mL) revealed typical morphological apoptotic features. Additionally OPC treatment (100 μg/mL)increased level of BAX and CASPASE-3, and decreased level of BCL-2 mRNA expression. Caspase-3 enzyme activity was also significantly increased by treatment of OPC (100 μg/mL) compared with control.CONCLUSION: These data indicate that OPC caused cell death by apoptosis through caspase pathways on human colorectal cancer cell line, SNU-C4.

  10. Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells.

    Science.gov (United States)

    Li, Ying; Kang, Zhen-Long; Qiao, Na; Hu, Lian-Mei; Ma, Yong-Jiang; Liang, Xiao-Huan; Liu, Ji-Long; Yang, Zeng-Ming

    2017-05-01

    The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 μM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 μM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.

  11. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells.

    Science.gov (United States)

    Pašukonienė, Vita; Mlynska, Agata; Steponkienė, Simona; Poderys, Vilius; Matulionytė, Marija; Karabanovas, Vitalijus; Statkutė, Urtė; Purvinienė, Rasa; Kraśko, Jan Aleksander; Jagminas, Arūnas; Kurtinaitienė, Marija; Strioga, Marius; Rotomskis, Ričardas

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) emerge as a promising tool for early cancer diagnostics and targeted therapy. However, both toxicity and biological activity of SPIONs should be evaluated in detail. The aim of this study was to synthesize superparamagnetic cobalt ferrite nanoparticles (Co-SPIONs), and to investigate their uptake, toxicity and effects on cancer stem-like properties in human pancreatic cancer cell line MiaPaCa2 and human ovarian cancer cell line A2780. Co-SPIONs were produced by Massart's co-precipitation method. The cells were treated with Co-SPIONs at three different concentrations (0.095, 0.48, and 0.95μg/mL) for 24 and 48h. Cell viability and proliferation were analyzed after treatment. The stem-like properties of cells were assessed by investigating the cell clonogenicity and expression of cancer stem cell-associated markers, including CD24/ESA in A2780 cell line and CD44/ALDH1 in MiaPaCa2 cell line. Magnetically activated cell sorting was used for the separation of magnetically labeled and unlabeled cells. Both cancer cell lines accumulated Co-SPIONs, however differences in response to nanoparticles were observed between MiaPaCa2 and A2780 cell. In particular, A2780 cells were more sensitive to exposition to Co-SPIONs than MiaPaCa2 cells, indicating that a safe concentration of nanoparticles must be estimated individually for a particular cell type. Higher doses of Co-SPIONs decreased both the clonogenicity and ESA marker expression in A2780 cells. Co-SPIONs are not cytotoxic to cancer cells, at least when used at a concentration of up to 0.95μg/mL. Co-SPIONs have a dose-dependent effect on the clonogenic potential and ESA marker expression in A2780 cells. Magnetic detection of low concentrations of Co-SPIONS in cancer cells is a promising tool for further applications of these nanoparticles in cancer diagnosis and treatment; however, extensive research in this field is needed. Copyright © 2014 Lithuanian University of

  12. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Liu, Pengfei; Cai, Jinglei; Dong, Delu; Chen, Yaoyu; Liu, Xiaobo; Wang, Yi; Zhou, Yulai

    2015-01-01

    As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  13. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    Full Text Available As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2 were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  14. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells

    DEFF Research Database (Denmark)

    Høgh, Mette; Tannetta, D; Sargent, I

    2006-01-01

    directly causes the endothelial cell dysfunction of pre-eclampsia. This study investigates the effect of STBM on endothelial cell gene expression. Design Human umbilical vein endothelial cells were cultured in the presence and absence of STBM. At specified time points, total RNA was purified from...... the umbilical cords. Methods Gene expression was screened by Affymetrix GeneChips and confirmed with real-time polymerase chain reaction or enzyme-linked immunosorbent assay. Main outcome measures Fold changes in gene expression levels between treated and control cultures were calculated from the microarray...

  15. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells

    DEFF Research Database (Denmark)

    Høgh, Mette; Tannetta, D; Sargent, I;

    2006-01-01

    directly causes the endothelial cell dysfunction of pre-eclampsia. This study investigates the effect of STBM on endothelial cell gene expression. Design Human umbilical vein endothelial cells were cultured in the presence and absence of STBM. At specified time points, total RNA was purified from...... the umbilical cords. Methods Gene expression was screened by Affymetrix GeneChips and confirmed with real-time polymerase chain reaction or enzyme-linked immunosorbent assay. Main outcome measures Fold changes in gene expression levels between treated and control cultures were calculated from the microarray...

  16. Effects of chitin and its derivatives on human cancer cells lines.

    Science.gov (United States)

    Bouhenna, M; Salah, R; Bakour, R; Drouiche, N; Abdi, N; Grib, H; Lounici, H; Mameri, N

    2015-10-01

    The present study is focused on the effect of chitin derivatives against human cancer cell lines RD and Hep2. As an outcome from this research, chitin was cytotoxic at IC50 = 400 μg/ml and 200 μg/ml against Hep2 cells and RD cells lines, respectively. Irradiated chitin had an IC50 value of 450 μg/ml for Hep2 and an IC50 of 200 μg/ml for RD. The lowest IC50 is attributed to chitosan, 300 μg/ml in Hep2 and 190 μg/ml in RD.

  17. Lethal effect of mononuclear cells derived from human umbilical cord blood differentiating into dendritic cells after in vitro induction of cytokines on neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Zhenghai Qu; Jianxin Zuo; Lirong Sun; Xindong Qu

    2006-01-01

    BACKGROUND: Dendritic cell is the most major antigen presenting cell of organism. It is proved in recent studies that human umbilical cord blood mononuclear cells induced and cultured in vitro by recombinant human granuIocyte-macrophage colony stimulating factor (rhG-MCSF) and recombinant human interleukin-4 (rhlL-4) can generate a great many dendritic cells and promote the lethal effect of T cells on human neuroblastoma, but it is unclear that whether the lethal effect is associated with the most proper concentration of dendritic cells.OBJ ECTIVE: To investigate the lethal effect of human umbilical cord blood mononuclear cells induced in vitro by cytokines differentiating into dendritic cells on human neuroblastoma, and its best concentration range.DESIGN: Open experiment.SETTING: Department of Pediatrics, the Medical School Hospital of Qingdao University.MATERIALS: The study was carried out in the Shandong Provincial Key Laboratory (Laboratory for the Department of Pediatrics of the Medical School Hospital of Qingdao University) during September 2005 to May 2006.Human umbilical cord blood samples were taken from the healthy newborn infants of full-term normal delivery during October to November 2005 in the Medical School Hospital of Qingdao University, and were voluntarily donated by the puerperas. Main instruments: type 3111 CO2 incubator (Forma Scientific, USA), type 550 ELISA Reader (Bio-Rad, USA). Main reagents: neuroblastoma cell line SK-N-SH (Shanghai Institute of Life Science, Chinese Academy of Sciences), RPMI-1640 culture fluid and fetal bovine serum (Hyclone), rhlL-4 (Promega, USA), rhG-MCSF (Harbin Pharmaceutic Group Bioengineering Co. Ltd), rat anti-human CD1a monoclonal antibody and FITC-labeled rabbit anti-rat IgG (Xiehe Stem cell Gene Engineering Co. Ltd).METHODS: ① Human umbilical cord blood mononuclear cells obtained with attachment methods differentiated into human umbilical cord blood dendritic cells, presenting typical morphology of

  18. Effects of eukaryotic expression plasmid encoding human tumstatin gene on endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Ya-pei; XU Chun-xiao; HOU Guo-sheng; XIN Jia-xuan; WANG Wei; LIU Xian-xi

    2010-01-01

    Background Tumstatin is a novel endogenous angiogenesis inhibitor which is widely studied using purified protein.The current study evaluates the antiangiogenic effects of tumstatin-overexpression plasmid in vitro, reveals the mechanism underlying the vascular endothelial cell growth inhibition and searches for a novel method administering tumstatin persistently.Methods The eukaryotic expression plasmid pcDNA-tumstatin encoding tumstatin gene was constructed and transfected to human umbilical vein endothelial cell ECV304 and human renal carcinoma cell ACHN.Expression of tumstatin in the two cell lines was determined by RT-PCR and Western blotting.Vascular endothelial cell proliferation was assessed by CCK-8 assay and cell cycle was analyzed by flow cytometry.To investigate the mechanism by which pcDNA-tumstatin inhibited vascular endothelial cell proliferation in vitro, cyclin D1 protein was detected by Western blotting.Results DNA sequence confirmed that pcDNA-tumstatin was successfully constructed.RT-PCR and Western blotting indicated that tumstatin could express in the two cell lines effectively.After tumstatin gene transfer, ECV304 cell growth was significantly inhibited and the cell cycle was arrested in G1 phase.And Western blotting showed that pcDNA-tumstatin decreased the level of cyclin D1 protein.Conclusions Overexpression of tumstatin mediated by pcDNA 3.1 (+) specially inhibited vascular endothelial cells by arresting vascular endothelial cell in G1 phase resulting from downregulation of cyclin D1 and administration of tumstatin using a gene therapy might be a novel strategy for cancer therapy.

  19. Effect and mechanism of tacrolimus on melanogenesis on A375 human melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Huang Haiyan; Wang Xiaoyan; Ding Xiaolan; Xu Qianxi; Sonia Kay Hwang; Wang Fang; Du Juan

    2014-01-01

    Background Topical tacrolimus has been used for vitiligo as a common treatment option for more than ten years while the underlying mechanism is still uncertain.The aim of this study was to investigate the direct effects of tacrolimus on the melanogenesis and migration on human A375 melanoma cells.The expression of c-KIT mRNA and protein of human A375 cells were also investigated.Methods The cultured A375 human melanoma cells were randomly assigned to control and tacrolimus treatment groups (10,102,103and 104 nmol/L).The cell proliferation was measured with Cell Counting Kit-8 assays.Melanin content was measured with NaOH method.Transwell migration assay was used to measure cell migration.The expression of c-KIT mRNA and protein were measured with real-time fluorescence quantitative polymerase chain reaction and immunohistochemistry respectively.Results The cell proliferation of the 103 and 104 nmol/L tacrolimus groups were significantly lower (0.666±0.062 and 0.496±0.038) as compared with the control (0.841±0.110,P <0.05).The mean melanin content in all groups treated with different concentration of tacrolimus (10,102,103,104 nmol/L) increased compared with the control group (P <0.05).Dosedependent increase in cell migration were seen in all tacrolimus-treated groups (P <0.01).The expression of c-KIT mRNA level in A375 cells exposed to tacrolimus (103and 104 nmol/L) had significantly increased by 3.03-fold and 3.19-fold respectively compared with the control (P <0.05).Conclusions Although tacrolimus had no effects on cell proliferation on A375 human melanoma cells,it could increase the melanin content and cell migration.The expression of c-KIT mRNA and protein increased dose-dependently in tacrolimus-treated groups as compared with the control.Our study demonstrated that tacrolimus could enhance the melanogenesis and cell migration on A375 cells.

  20. Effect of F68 on cryopreservation of mesenchymal stem cells derived from human tooth germ.

    Science.gov (United States)

    Doğan, Ayşegül; Yalvaç, Mehmet Emir; Yılmaz, Aysu; Rizvanov, Albert; Sahin, Fikrettin

    2013-12-01

    The use of stem-cell-based therapies in regenerative medicine and in the treatment of disorders such as Parkinson, Alzheimer's disease, diabetes, spinal cord injuries, and cancer has been shown to be promising. Among all stem cells, mesenchymal stem cells (MSCs) were reported to have anti-apoptotic, immunomodulatory, and angiogenic effects which are attributed to the restorative capacity of these cells. Human tooth germ stem cells (HTGSCs) having mesenchymal stem cell characteristics have been proven to exert high proliferation and differentiation capacity. Unlike bone-marrow-derived MSCs, HTGSCs can be easily isolated, expanded, and cryopreserved, which makes them an alternative stem cell source. Regardless of their sources, the stem cells are exposed to physical and chemical stresses during cryopreservation, hindering their therapeutic capacity. Amelioration of the side effects of cryopreservation on MSCs seems to be a priority in order to maximize the therapeutic efficacy of these cells. In this study, we tested the effect of Pluronic 188 (F68) on HTGSCs during long-term cryopreservation and repeated freezing and defrosting cycles. Our data revealed that F68 has a protective role on survival and differentiation of HTGSCs in long-term cryopreservation.

  1. [Effect of endothelin-1 on the proliferation of human lung adenocarcinoma cell SPC-A1].

    Science.gov (United States)

    Ye, Qianjun; Zhou, Juan; Zhang, Weimin

    2007-02-20

    Endothelin-1 (ET-1) is a potent mitogen involved in tumor cell growth and angiogenesis. The aim of this study is to explore the effect of ET-1 on the proliferation of human lung adenocarcinoma cells SPC-A1. Cell number was measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide] assay. Cell cycle was detected by flow cytometry. ET-1 (1×10⁻¹⁵ -1×10⁻⁸ mol/L) enhanced SPC-A1 cell growth in a dose-dependent manner in vitro, with the greatest effect beginning at 1×10⁻¹¹ mol/L. Effect of ET-1 (1×10⁻¹⁰ mol/L) on the proliferation of SPC-A1 cells was completely blocked by BQ123 (1×10⁻⁷ mol/L), a highly selective endothelin receptor A (ETA) antagonist (P SPC-A1 cells (P SPC-A1 cell cycle. ET-1 enhances SPC-A1 cell proliferation by the activation of ETA receptor. Ca(2+) influx from voltage dependent calcium-channel contributes to this process.

  2. [Effect of 5-aza-2'-deoxycytidine on DAPK gene expression in human HL-60 cells].

    Science.gov (United States)

    Wang, Chun-Yan; Liu, Wen-Jun

    2014-06-01

    This study was aimed to investigate the effect of methylation transferase inhibitor 5-aza-2'-deoxycytidine (5-aza-2dC) of different concentrations on the apoptosis of human acute myeloid leukemia (AML) cell line HL-60 and the expression of DAPK gene in HL-60 cells, as well as to explore the possible anti-AML mechanism of 5-aza-2dC. HL-60 cells were treated by 5-aza-2dC of different concentrations. The effect of 5-aza-2dC on the HL-60 cell morphology was observed by Wright's staining. The effect of 5-aza-2dC on HL-60 cell apoptosis and DAPK mRNA expression was detected by flow cytometry and reverse transcription-polymerize chain reaction (RT-PCR) respectively. The results showed that the 5-aza-2dC induced the apoptosis of HL-60 cells in a concentration-dependent manner; the 5-aza-2dC increased the expression levels of DAPK mRNA in HL-60 cells in a concentration-dependent manner. It is concluded that the apoptosis rate of HL-60 cells and DAPK mRNA expression level displayed a rising trend with 5-aza-2dC concentration increasing. Therefore, DAPK gene may participate in HL-60 cell apoptosis induced by 5-aza-2dC.

  3. The direct effect of estrogen on cell viability and apoptosis in human gastric cancer cells.

    Science.gov (United States)

    Qin, Jian; Liu, Min; Ding, Qianshan; Ji, Xiang; Hao, Yarong; Wu, Xiaomin; Xiong, Jie

    2014-10-01

    Epidemiology researches indicated that gastric cancer is a male-predominant disease; both expression level of estrogen and expression pattern of estrogen receptors (ERs) influence its carcinogenesis. But the direct effect of estrogen on gastric cancer cells is still unclear. This study aimed to explore the direct effect of β-estradiol (E2) on gastric cancer cells. SGC7901 and BGC823 were treated with a serial of concentrations of E2. The survival rates of both the cell lines were significantly reduced, and the reduction of viability was due to apoptosis triggered by E2 treatment. Caspase 3 was activated in response to the increasing E2 concentration in both SGC7901 and BGC823. Cleaved Caspase 3 fragments were detected, and the expression levels of Bcl-2 and Bcl-xL were reduced. Apoptosis was further confirmed by flow cytometry. The expression level of PEG10, an androgen receptor target gene, was reduced during E2 treatment. Both ERα and ERβ were expressed in these cell lines, and the result of bioinformatics analysis of gastric cancer from GEO datasets indicated that the expression levels of both ERα and ERβ were significantly higher in noncancerous gastric tissues than in gastric cancer tissues. Our research indicated that estrogen can reduce cell viability and promote apoptosis in gastric cancer cells directly; ERs expression level is associated with gastric cancer. Our research will help to understand the mechanism of gender disparity in gastric cancer.

  4. Effects of static magnetic field on human umbilical vessel endothelial cell

    Institute of Scientific and Technical Information of China (English)

    LI Fei; XU Ke-wei; WANG Hai-chang; GUO Wen-yi; HAN Yong; LIU Bing; ZHANG Rong-qing

    2007-01-01

    Objective:To investigate the effects of static magnetic field(SMF) on the viability,adhesion molecule expression of human umbilical vessel endothelial cell.Methods:Magnetic flux intensity was 0.1 mT,1 mT,10 mT.Cell viability and proliferation were measured with 3H-TdR and MTT methods; and apoptosis of human umbilical vein endothelial cell (HUVEC) was studied by flow cytometry and transmission electric microscopy.ELISA was used to measure the expression of ICAM-1 and VCAM-1 on endothelium.Results:0.1 mT SMF had no effects on the growth of HUVEC,however,SMF of 1 mT,10 mT attenuated growth of HUVEC.10 mT static magnetic field could induce apoptosis and necrosis of HUVEC.10 mT SMF enhanced the expression of ICAM-1 and VCAM-1 on endothelium.Conclusion:The effect of SMF depends on the intensity of SMF.10 mT SMF has adverse effects on human umbilical vessel endothelial cell.

  5. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    Science.gov (United States)

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.

  6. Effects of Arsenic Trioxide on Human Renal Cell Carcinoma Lines in Vitro

    Institute of Scientific and Technical Information of China (English)

    屈凤莲; 李艳芬; 万云霞; 马建辉; 石卫; 储大同; 孙燕

    2004-01-01

    Objective: To observe the effects of arsenic trioxide (As2O3) on human renal cell carcinoma (RCC) lines in vitro and to explore its possible molecular mechanisms. Methods: The microculture tetrazolium (MTT) assay was used to determine the anti-proliferative effects of As2O3 on human RCC lines. Flow cytometry was performed to investigate the effects of As2O3 on cell cycle and cell apoptosis. The reverse transcription-polymerase chain reaction (RT-PCR) was conducted to detect mRNA expression of Bcl-2, Bax, p53and c-myc. Results: As2O3 inhibited the growth of RCC lines in vitro in a concentration-dependent manner. At the concentrations of 0.5, 1.0, 2.0 and 4.0 μmol/L, the inhibition rates of As2O3 on RCC-WCS cells were 27.60%, 30.09%, 41.03% and 50.77%, respectively. Compared with untreated RCC-WCS, there was significant difference at each concentration (P<0.01). As2O3 induced a G1 phase arrest in RCC-LSL cells,but a G2/M phase arrest in RCC-WCS and RCC-SHK. As2O3 induced cell apoptosis in these cell lines. The mRNA level of p53 and c-myc decreased, but no detectable changes of Bcl-2 and Bax were observed after As2O3 treatmen. Conclusion: As2O3 in therapeutic concentrations inhibited the in vitro growth of RCC lines via cell cycle arrest and apoptosis. One of its possible mechanisms was down-regulation of p53 and c-myc. Our results suggest that As2O3 is probably a new candidate agent for the treatment of human renal carcinoma.

  7. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells.

    Science.gov (United States)

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-01-01

    Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention.

  8. Effects of mifepristone on proliferation of human gastric adenocarcinoma cell line SGC-7901 in vitro

    Institute of Scientific and Technical Information of China (English)

    Da-Qiang Li; Zhi-Biao Wang; Jin Bai; Jie Zhao; Yuan Wang; Kai Hu; Yong-Hong Du

    2004-01-01

    AIM: To explore the effects of mifepristone, a progesterone receptor (PR) antagonist, on the proliferation of human gastric adenocarcinoma cell line SGC-7 901 in vitro and the possible mechanisms involved.METHODS: In situ hybridization was used to detect theexpression of PR mRNA in SGC-7 901 cells. After treatment with various concentrations of mifepristone (2.5, 5, 10,20 μmol/L) at various time intervals, the ultrastructural changes, cell proliferation, cell-cycle phase distribution, and the expression of caspase-3 and Bcl-XL were analyzed using transmission electron microscopy (TEM), tetrazolium blue(MTT) assay, 3H-TdR incorporation, flow cytometry, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Mifepristone markedly induced apoptosis and inhibited cell proliferation of PR- positive SGC-7 901 cells revealed by TEM, MTT assay and 3H-TdR incorporation, in a dose- and time-dependent manner. The inhibitory rate was increased from 8.98% to 51.29%. Flow cytometric analysis showed mifepristone dose-dependently decreased cells in S and G2/M phases, increased cells in Go/G1 phase,reduced the proliferative index from 57.75% to 22.83%. In addition, mifepristone up-regulated the expression of caspase-3, and down- regulated the Bcl-XL expression, dose-dependently.CONCLUSION: Mifepristone effectively inhibited the proliferation of PR-positive human gastric adenocarcinoma cell line SGC-7 901 in vitro through multiple mechanisms, and may be a beneficial agent against human adenocarcinoma.

  9. ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.

    Science.gov (United States)

    Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła

    2015-01-01

    Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.

  10. Comparison of tobacco-containing and tobacco-free waterpipe products: effects on human alveolar cells.

    Science.gov (United States)

    Shihadeh, Alan; Eissenberg, Thomas; Rammah, Mayassa; Salman, Rola; Jaroudi, Ezzat; El-Sabban, Marwan

    2014-04-01

    In recent years, a class of products marketed as "tobacco-free" alternatives for the "health conscious user" has become widely available for waterpipe (hookah, narghile, or shisha) smoking. Their adoption may be in part driven by regulations banning tobacco smoking in public places and by an increasing awareness of the hazards of waterpipe tobacco smoking. Although these products are presented in advertising as a "healthier" choice, very little is known about their health effects. In this study, we compared the effects of smoke generated with tobacco-free and conventional tobacco-derived products on human alveolar cells. Smoke was generated with a smoking machine that precisely mimicked the puffing behavior of 15 experienced waterpipe smokers when they used conventional waterpipe tobacco products of their choice and flavor-matched tobacco-free products. Human alveolar epithelial cells (A549) were treated with particulate matter sampled from the smoke, and the effects on cell cycle, proliferation, and doubling time were measured during the subsequent 72hr. We found that smoke from both types of waterpipe products markedly reduced cell proliferation, caused cell cycle arrest at G0/G1, and increased cell doubling time. There were no significant differences across product in any measure. Tobacco-free and tobacco-based waterpipe products exert substantial and similar deleterious effects on human lung cells. This study adds to the nascent evidence base indicating that except for exposure to nicotine and its derivatives, use of tobacco-free waterpipe products does not present a reduced health risk relative to the use of conventional tobacco-based products.

  11. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ferranda Puig

    Full Text Available Acute lung injury (ALI is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC on mechanical tension and barrier integrity in human alveolar epithelial cells (A549 exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml or vehicle (control. Subsequently, thrombin (50 nM or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  12. Antiproliferative effect of polyphenols and sterols of virgin argan oil on human prostate cancer cell lines.

    Science.gov (United States)

    Bennani, H; Drissi, A; Giton, F; Kheuang, L; Fiet, J; Adlouni, A

    2007-01-01

    The aim of our study has to evaluate the antiproliferative effect of polyphenols and sterols extracted from the virgin argan oil on three human prostatic cell lines (DU145, LNCaP, and PC3). Cytotoxicity, anti-proliferative effects and nuclear morphological changes of cells were analyzed after treatment with sterols and polyphenols. The results were compared to 2-methoxyestradiol (2ME(2)) as positive control. Polyphenols and sterols of virgin argan oil and 2ME(2) exhibited a dose-response cytotoxic effect and antiproliferative action on the three tested cell lines. The antiproliferative effect of polyphenols was similar for the DU145 and LNCaP cell lines; the GI(50) (defined as the concentration inhibiting growth by 50% in comparison with the control) was respectively 73 and 70microg/ml. The antiproliferative effect of sterols was 46 and 60microg/ml as GI(50) for the DU145 and LNCaP cell lines. For the PC3 cell line, the best antiproliferative effect was obtained by argan sterols with GI(50)=43microg/ml. On the other hand, the nuclear morphology analyses have shown an increased proportion of pro-apoptotic of nuclei in LNCaP cell treated with IC(50) of polyphenols or sterols compared to control cells. Our results show for the first time the antiproliferative and pro-apoptotic effects of polyphenols and sterols extracted from virgin argan oil and confirm the antiproliferative and pro-apoptotic effects of 2ME(2) on prostate cancer cell lines. These data suggest that argan oil may be interesting in the development of new strategies for prostate cancer prevention.

  13. Effect of Evodiamine on Inducing Apoptosis of Human Gastric Cancer Cell Line SGC-7901 in Vitro

    Directory of Open Access Journals (Sweden)

    LIU Shao-ping

    2014-09-01

    Full Text Available Objective: To explore the proliferation inhibition and apoptosis-inducing effect of evodiamine in human gastric cancer SGC-7901 cells. Methods: After 48 or 24 h exposure to different concentrations of evodiamine, cell proliferation was analyzed using tetrazolium blue (MTT assay while apoptosis and cell-cycle phase distribution using flow cytometry. Results: In 0.01~30.00 μg/mL range of concentrations, evodiamine inhibited the proliferation of SGC-7901 cells in dose-dependent manner, and the overall mean IC50 was (3.79±0.16 μg/mL; the apoptosis rate was increased from 3.4% to 7.0%, 13.8% and 36.3% at concentrations of 0, 0.5, 1.5 and 30 μg/mL of evodiamine, respectively; the percentage of cells accumulated in G2/M phase was increased from 17.26% to 98.92% in the cells treated with evodiamine for 24 h in 0.01~30.00 μg/mL range of concentrations. Conclusion: Evodiamine can inhibit the proliferation, induce apoptosis in human gastric cancer cell line SGC-7901 in vitro and arrest the cell cycle at the G2/M phase.

  14. [Blocking effect of phytic acid on cell proliferation in human gastric carcinoma].

    Science.gov (United States)

    Wang, Lu; Yang, Zhiping; Cui, Hongbin

    2008-05-01

    To explore the bcl-2 and the bax protein expression, the effect and possible mechanism of phytic acid (IP6) on cell proliferation in human gastric carcinoma. The inhibiting action of IP6 on human gastric carcinoma was examed by MTT assay. The morphological changes of SGC-7901 cells exposed to IP6 was examined by reverse discrepancy microscope. The apoptosis of SGC-7901 cells treated with IP6 was observed by single cell gel electrophoresis. The bax and bcl-2 protein expressions were detected by Western blotting method. MTT assay indicated that the growth of SGC-7901 cells were inhibited by IP6 in dose and time dependent manners. The morphological observation by reverse discrepancy microscope indicated that the growth of cells exposed to IP6 were not well. The DNA damage rates of SGC-7901 cells treated with IP6 were more higher than those of control groups in dose and time dependent manners. The bcl-2 protein expressions treated with IP6 were reduced, and the bax protein expressions treated with IP6 were more than those of control groups in dose and time dependent manners. The proliferation of gastric carcinoma SGC-7901 cells inhibitited by IP6 could be associated with apoptosis of gene bax and bcl-2.

  15. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  16. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    Science.gov (United States)

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  17. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    Institute of Scientific and Technical Information of China (English)

    Tetsuya Shimizu; Takashi Tajiri; Shigeki Yokomuro; Yoshiaki Mizuguchi; Yutaka Kawahigashi; Yasuo Arima; Nobuhiko Taniai; Yasuhiro Mamada; Hiroshi Yoshida; Koho Akimaru

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholangiocarcinoma (ICC).METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells.RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3.CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion.TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1.

  18. Synergistic effect of combining paeonol and cisplatin on apoptotic induction of human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Shu-ping XU; Guo-ping SUN; Yu-xian SHEN; Wan-ten PENG; Hua WANG; Wei WE

    2007-01-01

    Aim: To investigate whether paeonol (Pae) has synergistic effects with cisplatin (CDDP) on the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and SMMC-7721.Methods: The cytotoxic effect of drugs was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. The coefficient of drug interaction was used to analyze the nature of drug interactions. Morphological changes were observed by acridine orange fluo-rescence staining. Cell cycle and the apoptosis rate were detected by flow cytometry. Bcl-2 and Bax expression were assayed by immunohistochemical staining.Results: Pae or CDDP had antiproliferative effect on the 2 cell lines in a dose-dependent manner, with different sensitivities to drugs. More interestingly, a synergistic inhibitory effect on the viability of the 2 cell lines was observed after treatment with a combination of Pae (15.63, 31.25, and 62.5 mg/L) with various concentrations of CDDP. Further study showed typical mor-phological changes of apoptosis if the cells were exposed to the two agents for 24 h. The apoptotic rate of the cells with combination treatment was signifi-candy higher than that of cells treated with Pae or CDDP alone. The expression of Bcl-2 decreased and that of Bax increased in the treated groups, especially in the combination group, with the ratio of Bcl-2/Bax decreasing correspondingly.Additionally, a combination of Pae with CDDP resulted in a stronger S phase arrest, compared with Pae or CDDP alone.Conclusion: Pae, in combination with CDDP, had a significantly synergistic growth-inhibitory and apoptosis-in-ducing effect on the 2 human hepatoma cell lines, which may be useful in hepatoma treatment.

  19. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  20. The Effects of Thermal Preconditioning on Oncogenic and Intraspinal Cord Growth Features of Human Glioma Cells.

    Science.gov (United States)

    Zeng, Xiang; Han, Inbo; Abd-El-Barr, Muhammad; Aljuboori, Zaid; Anderson, Jamie E; Chi, John H; Zafonte, Ross D; Teng, Yang D

    2016-12-13

    The adult rodent spinal cord presents an inhibitory environment for donor cell survival, impeding efficiency for xenograft-based modeling of gliomas. We postulated that mild thermal preconditioning may influence the fate of the implanted tumor cells. To test this hypothesis, high-grade human astrocytoma G55 and U87 cells were cultured under 37C and 38.5C to mimic regular experimental or core body temperatures of rodents, respectively. In vitro, the 38.5C-conditioned cells, relative to 37C, grew slightly faster. Compared to U87 cells, G55 cells demonstrated a greater response to the temperature difference. Hyperthermal culture markedly increased production of Hsp27 in most G55 cells, but only promoted transient expression of cancer stem cell marker CD133 in a small cell subpopulation. We subsequently transplanted G55 cells following 37C or 38.5C culture into the C2 or T10 spinal cord of adult female immunodeficient rats (3 rats/each locus/per temperature; total: 12 rats). Systematic analyses revealed that 38.5C-preconditioned G55 cells grew more malignantly at either C2 or T10 as determined by tumor size, outgrowth profile, resistance to bolus intratumor administration of 5-fluorouracil (0.1 mol), and posttumor survival (p0.05; n=6/group). Therefore, thermal preconditioning of glioma cells may be an effective way to influence the in vitro and in vivo oncological contour of glioma cells. Future studies are needed for assessing the potential oncogenic modifying effect of hyperthermia regimens on glioma cells.

  1. Effects of valsartan on angiotensin II-induced migration of human coronary artery smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Ohmori, K; Nozaki, S; Mizushige, K; Yasunari, K; Kano, H; Minami, M; Yoshikawa, J

    2000-11-01

    The migration as well as proliferation of coronary artery medial smooth muscle cells (SMC) into the intima is proposed to be an important process of intimal thickening in coronary atherosclerosis. In the current study, we examined the effects of the angiotensin type 1 receptor antagonist valsartan on angiotensin II (Ang II)-induced migration of cultured human coronary artery SMC using Boyden's chamber methods. Ang II significantly stimulated human coronary artery SMC migration in a concentration-dependent manner between 10(-6) and 10(-8) mol/l when cells of passage 4 to 6 were used. However, the migration response to Ang II was moderately decreased in cells of passage 10 to 12, and was markedly decreased in cells of passage 15 to 17, compared to that of passage 4 to 6. Ang II-induced migration was blocked by the Ang II type 1 (AT1) receptor antagonist valsartan in a concentration-dependent manner. By contrast, the Ang II type 2 (AT2) receptor antagonist PD 123319 did not affect Ang II-induced migration. Ang II modestly increased the cell number of human coronary artery SMC after a 24-h incubation. This increase in cell numbers was also clearly blocked by valsartan, but not by PD 123319. These results indicate that Ang II stimulates migration as well as proliferation via AT1 receptors in human coronary artery SMC when cells of passage 4 to 6 are used. Valsartan may prevent the progression of coronary atherosclerosis through an inhibition of Ang II-induced migration and proliferation in these cells, although in vivo evidence is lacking.

  2. [Promoting effect of Chlamydia pneumoniae infection on human laryngeal carcinoma HEp-2 cell adhesion and migration].

    Science.gov (United States)

    Zhang, Li-Jun; Hong, Li; Chen, Ning; Shen, Bing-Ling; Deng, Yan-Qiu; Quan, Wei; Wang, Bei-Bei; Zhang, Li-Jun

    2011-01-01

    To explore the effect of Chlamydia pneumoniae (C.pn) infection on human laryngeal carcinoma cell line HEp-2 cell adhesion and migration, to further clarify the role and mechanism of C.pn infection in tumor metastasis. HEp-2 cells were infected with C.pn after the culture and propagation of C.pn. The cytopathic effect was observed by microscopy. Morphological characteristics of C.pn inclusions in HEp-2 cells were examined by fluorescence microscopy and acridine orange staining. The ultrastructural changes of C.pn inclusions in the HEp-2 cells were examined by transmission electron microscopy (TEM). Cell adhesion assay was performed to investigate the effect of C.pn infection on the adhesion of HEp-2 cells to collagen I. Wound-healing assay and transwell assay were performed to explore the effect of C.pn infection on HEp-2 cell migration. At 72 h post-infection, C.pn infected-HEp-2 cells were swollen and partially desquamated. Numerous vacuoles (inclusions) were observed and C.pn inclusions occupied almost the whole cytoplasm of the HEp-2 cells. Grape-like C.pn inclusions were observed in the HEp-2 cells stained with acridine orange under a fluorescence microscope at 72 h after infection. Under TEM, there were more mature pear-shaped elementary bodies, but less larger and round reticulate bodies in the HEp-2 cells infected with C.pn for 72 h. In the cell adhesion assay, the A value in C.pn infection group was 0.669 ± 0.011, significantly higher than that in the control group (0.558 ± 0.005) at 2 h after infection (P HEp-2 cells in the wound-healing assay was significantly longer than that of control cells at 24 h after infection (P HEp-2 cells infected with C.pn for 12 h migrated more than the control cells in the transwell assay (23.40 ± 2.41 vs 10.40 ± 1.67) (P HEp-2 cell adhesion to collagen I and migration of HEp-2 cells, indicating that C.pn infection may play an important role in promoting the metastasis of laryngeal cancer.

  3. Riproximin modulates multiple signaling cascades leading to cytostatic and apoptotic effects in human breast cancer cells.

    Science.gov (United States)

    Pervaiz, Asim; Zepp, Michael; Adwan, Hassan; Berger, Martin R

    2016-01-01

    Riproximin, a type II ribosome-inactivating protein (RIP), has shown significant cytotoxic effects in diverse types of cancer cells. To better understand its therapeutic potential, elaborated investigations on the mechanistic aspects of riproximin deem crucial. In this study, we focused on riproximin-mediated changes in cellular properties and corresponding molecular pathways in breast cancer cells. Cytotoxicity of riproximin was determined by MTT assay, while the clonogenic and migratory effects were determined by colony formation, migration, and scratch assays. Cytostatic and apoptotic effects were studied by flow cytometry and nuclear staining procedures. Alterations at molecular levels were scrutinized by means of microarray and qRT-PCR methodologies. Riproximin induced significant cytotoxic effects in the selected human breast cancer cells MDA-MB-231 and MCF-7. Profound inhibition of migration and colony formation were observed in both cell lines in response to riproximin exposure. Concomitantly, a significant arrest in S phase and nuclear fragmentation were observed as causes for its cytostatic and apoptotic effects, respectively. Genetic profiling revealed pronounced induction of the anticancer cytokine IL24/MDA-7 and ER-stress-related GADD genes. In addition, prominent inhibition of the genes relevant to migration (RHO GTPases), anti-apoptotic activities (BCL family), and cell cycle (cyclins) was also noticed. Riproximin, with its significant antineoplastic effects, modulates multiple cytostatic and apoptotic pathways in breast cancer cells. Results from these investigations highlight the future therapeutic potential of this naturally occurring compound for breast cancer.

  4. THE INHIBITORY EFFECT OF MELATONIN ON THE GROWTH OF HUMAN BLADDER CARCINOMA T24 CELL LINE

    Institute of Scientific and Technical Information of China (English)

    白艳红; 慕慧; 赵晏; 蔡晓宏; 王中秋; 郭瑗

    2004-01-01

    Objective To study the inhibitory effects of melatonin and its inhibitory mechanism on the growth of human bladder carcinoma T24. Methods The inhibitory effects of melatonin with various concentrations on the human bladder carcinoma T24 lines in vitro were determined by MTT assay. The mechanism of the inhibition was observed by flow cytometry (FCM) and transmission electron microscopy (TEM). Results The 30% inhibition concentration (IC30) value was 0.71mmol·L-1 and the 50% inhibition concentration (IC50) value was 1.20mmol·L-1. The population doubling time of T24 cells treated with melatonin at 0.71mmol·L-1 was 43.2 hours, which was significant different from that of 34.6 hours of the control group. Using FCM, we found that the cell percentage increased during the G1 phase, but decreased during the S stage. The degenerated ultra-structure of the cell treated with melatonin was also observed by TEM. Conclusion The results suggest that melatonin can inhibit the growth of human bladder carcinoma T24. The inhibitory effects of melatonin might be the prolonging of the staging from G1 to S in the cell cycle.

  5. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells*

    Science.gov (United States)

    Matheson, Nicholas J.; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A.; Lehner, Paul J.

    2015-01-01

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A non-lethal forward genetic screen in near-haploid KBM7 cells identified the Human Silencing Hub (HUSH), a complex of three poorly-characterised proteins, TASOR, MPP8, and periphilin, which is absent from Drosophila but conserved from fish to humans. Loss of HUSH subunits resulted in decreased H3K9me3 at both endogenous genomic loci and retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. PMID:26022416

  6. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.

    Science.gov (United States)

    Tchasovnikarova, Iva A; Timms, Richard T; Matheson, Nicholas J; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A; Lehner, Paul J

    2015-06-26

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing.

  7. Position-effect variegation revisited: HUSHing up heterochromatin in human cells.

    Science.gov (United States)

    Timms, Richard T; Tchasovnikarova, Iva A; Lehner, Paul J

    2016-04-01

    Much of what we understand about heterochromatin formation in mammals has been extrapolated from forward genetic screens for modifiers of position-effect variegation (PEV) in the fruit fly Drosophila melanogaster. The recent identification of the HUSH (Human Silencing Hub) complex suggests that more recent evolutionary developments contribute to the mechanisms underlying PEV in human cells. Although HUSH-mediated repression also involves heterochromatin spreading through the reading and writing of the repressive H3K9me3 histone modification, clear orthologues of HUSH subunits are not found in Drosophila but are conserved in vertebrates. Here we compare the insights into the mechanisms of PEV derived from genetic screens in the fly, the mouse and in human cells, review what is currently known about the HUSH complex and discuss the implications of HUSH-mediated silencing for viral latency. Future studies will provide mechanistic insight into HUSH complex function and reveal the relationship between HUSH and other epigenetic silencing complexes.

  8. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR.

    Science.gov (United States)

    Borska, Sylwia; Chmielewska, Magdalena; Wysocka, Teresa; Drag-Zalesinska, Malgorzata; Zabel, Maciej; Dziegiel, Piotr

    2012-09-01

    The benefits of plant polyphenols as chemotherapeutic agents are of great interest due to their possible anti-cancerogenic activities. Results available up to now suggest that flavonoid quercetin induces lethal effect in many types of tumours and may sensitize resistant cells to drugs. The aim of our study was to examine the effect of quercetin on human gastric carcinoma cells and to determine mode of its action. Parental EPG85-257P cell line and its daunorubicin-resistant variant EPG85-257RDB were used as cell models. Our data revealed that quercetin exerted antiproliferative impact on studied cells (with IC(50) value of 12 μM after 72 h), mainly through induction of apoptosis. In sensitive cells cytostatic drug and flavonoid had synergistic effects, in EPG85-257RDB cells quercetin acted as a chemosensitizer. Its impact on resistance mechanism involved decrease of P-glycoprotein expression, inhibition of drug transport and downregulation of ABCB1 gene expression. The results demonstrate that quercetin may be considered as a prospective drug to overcome classical resistance in gastric cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of black raspberry extract in inhibiting NFkappa B dependent radioprotection in human breast cancer cells.

    Science.gov (United States)

    Madhusoodhanan, Rakhesh; Natarajan, Mohan; Singh, Jamunarani Veeraraghavan Nisha; Jamgade, Ambarish; Awasthi, Vibhudutta; Anant, Shrikant; Herman, Terence S; Aravindan, Natarajan

    2010-01-01

    Black raspberry extracts (RSE) have been shown to inhibit cancer cell growth and stimulate apoptosis. Also, studies have demonstrated that RSE inhibits transcriptional regulators including NFkappa B. Accordingly, we investigated the effect of RSE in inhibiting radiation (IR) induced NFkappa B mediated radioprotection in breast adenocarcinoma cells. MCF-7 cells were exposed to IR (2Gy), treated with RSE (0.5, 1.0, 2.0 micro g/ml) or treated with RSE (1.0 micro g/ml) followed by IR exposure, and harvested after 1, 3, 6, 24, 48, and 72 h. NFkappa B DNA-binding activity was measured by EMSA and phosphorylated Ikappa Balpha by immunoblotting. Expression of IAP1, IAP2, XIAP and survivin were measured by QPCR and immunoblotting. Cell survival was measured using MTT assay and cell death using Caspase-3/7 activity. Effect of RSE on IR induced MnSOD, TNFalpha, IL-1alpha and MnSOD activity was also determined. RSE inhibited NFkappa B activity in a dose-dependent manner. Also, RSE inhibited IR-induced sustained activation of NFkappa B, and NFkappa B regulated IAP1, IAP2, XIAP, and survivin. In addition, RSE inhibited IR-induced TNFalpha, IL-1alpha, and MnSOD levels and MnSOD activity. RSE suppressed cell survival and enhanced cell death. These results suggest that RSE may act as a potent radiosensitizer by overcoming the effects of NFkappa B mediated radioprotection in human breast cancer cells.

  10. Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Khan AA

    2011-05-01

    Full Text Available Afshan Afsar Khan, Arghya Paul, Sana Abbasi, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering Faculty of Medicine, McGill University Montreal, Québec, CanadaBackground: Research towards the application of nanoparticles as carrier vehicles for the delivery of therapeutic agents is increasingly gaining importance. The angiogenic growth factors, human vascular endothelial growth factor (VEGF and human angiopoietin-1 are known to prevent vascular endothelial cell apoptosis and in fact to stimulate human vascular endothelial cell (HUVEC proliferation. This paper aims to study the combined effect of these bioactive proteins coencapsulated in human serum albumin nanoparticles on HUVECs and to evaluate the potential application of this delivery system towards therapeutic angiogenesis.Methods and results: The angiogenic proteins, human VEGF and human angiopoietin-1, were coencapsulated in albumin nanoparticles for better controlled delivery of the proteins. The application of a nanoparticle system enabled efficient and extended-release kinetics of the proteins. The size of the nanoparticles crosslinked with glutaraldehyde was 101.0 ± 0.9 nm and the zeta potential was found to be -18 ± 2.9 mV. An optimal concentration of glutaraldehyde for the nanoparticle coating process was determined, and this provided stable and less toxic nanoparticles as protein carriers. The results of the study indicate that nanoparticles crosslinked with glutaraldehyde produced nanoparticles with tolerable toxicity which provided efficient and controlled release of the coencapsulated proteins. The nanoparticles were incubated for two weeks to determine the release profiles of the proteins. At the end of the two-week incubation period, it was observed that 49% ± 1.3% of human angiopoietin-1 and 59% ± 2.1% of human VEGF had been released from the nanoparticles. The proliferation and percent apoptosis of the HUVECs in

  11. [Effects of transfection of human epidermal growth factor gene with adenovirus vector on biological characteristics of human epidermal cells].

    Science.gov (United States)

    Yin, Kai; Ma, Li; Shen, Chuan'an; Shang, Yuru; Li, Dawei; Li, Longzhu; Zhao, Dongxu; Cheng, Wenfeng

    2016-05-01

    To investigate the suitable transfection condition of human epidermal cells (hECs) with human epidermal growth factor (EGF) gene by adenovirus vector (Ad-hEGF) and its effects on the biological characteristics of hECs. hECs were isolated from deprecated human fresh prepuce tissue of circumcision by enzyme digestion method and then sub-cultured. hECs of the third passage were used in the following experiments. (1) Cells were divided into non-transfection group and 5, 20, 50, 100, 150, and 200 fold transfection groups according to the random number table (the same grouping method below), with 3 wells in each group. Cells in non-transfection group were not transfected with Ad-hEGF gene, while cells in the latter six groups were transfected with Ad-hEGF gene in multiplicities of infection (MOI) of 5, 20, 50, 100, 150, and 200 respectively. The morphology of the cells was observed with inverted phase contrast microscope, and expression of green fluorescent protein of the cells was observed with inverted fluorescence microscope at transfection hour (TH) 24, 48, and 72. (2) Another three batches of cells were collected, grouped, and treated as above, respectively. Then the transfection rate of Ad-hEGF gene was detected by flow cytometer (n=3), the mass concentration of EGF in culture supernatant of cells was detected by enzyme-linked immunosorbent assay (n=6), and the proliferation activity of cells was detected by cell counting kit 8 (CCK8) and microplate reader (n=6) at TH 24, 48, and 72, respectively. (3) Cells were collected and divided into non-transfection group and transfection group, with 6 wells in each group. Cells in non-transfection group were cultured with culture supernatant of cells without transfection, while cells in transfection group were cultured with culture supernatant of cells which were transfected with Ad-hEGF gene in the optimum MOI (50). CCK8 and microplate reader were used to measure the biological activity of EGF secreted by cells on culture

  12. THE AUTOCRINE REGULATORY EFFECT OF VASOACTIVE INTESTINAL PEPTIDE ON THE GROWTH OF HUMAN PANCREATIC CARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    陈元方; 陈潜; 陆国钧; 范振符; 钟守先

    1994-01-01

    In the present study, the effets of VIP on the growth of two human pancreatic carcinoma cell lines PU-PAH-1 and PANC-1 were determined using tritiated thymidine incorporation, VIP receptors, intracellular cAMP and polyamings were investlsa.ted, The results indicated that VIP at a concentcation of 10-8mol/L to 10-7 mol/L can significantly Stimulate the growth of PU-PAN-1 cells but not PANC-1 cells, This effect is dose-dependent and abolished by VIP receptor antagonist, [4-CI-Phe6 , Leu7] VIP, suggesting VIP receptors in PU-PAN-1 cells maymediate this effect. VIP can markedly elevate the levels of intracellular cAMP and polyammes in PU-PAN-1 cells,indicating that the growth-promoting effect stimulated by VIP may be via a rapid increase in the biosynth~es of cAMP and polyamines. In addition, the VIP-antibody ir2Libited the growth of PU-PAN-1 cells in serum-free culture medium. The results above suggested that VIP has an autoctine regulatory effect on this pancreatic carcinoma cell line(PU-PAN-1).

  13. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Xiumei; Xue, Wei; Yangyang, Yuna; Xu, Derong; Zhao, Yunxue; Lou, Haiyan

    2010-10-05

    This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.

  14. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function

    Science.gov (United States)

    Kanias, Tamir; Triulzi, Darrel; Donadee, Chenell; Barge, Suchitra; Badlam, Jessica; Jain, Shilpa; Belanger, Andrea M.; Kim-Shapiro, Daniel B.

    2015-01-01

    Rationale: A major abnormality that characterizes the red cell “storage lesion” is increased hemolysis and reduced red cell lifespan after infusion. Low levels of intravascular hemolysis after transfusion of aged stored red cells disrupt nitric oxide (NO) bioavailabity, via accelerated NO scavenging reaction with cell-free plasma hemoglobin. The degree of intravascular hemolysis post-transfusion and effects on endothelial-dependent vasodilation responses to acetylcholine have not been fully characterized in humans. Objectives: To evaluate the effects of blood aged to the limits of Food and Drug Administration–approved storage time on the human microcirculation and endothelial function. Methods: Eighteen healthy individuals donated 1 U of leukopheresed red cells, divided and autologously transfused into the forearm brachial artery 5 and 42 days after blood donation. Blood samples were obtained from stored blood bag supernatants and the antecubital vein of the infusion arm. Forearm blood flow measurements were performed using strain-gauge plethysmography during transfusion, followed by testing of endothelium-dependent blood flow with increasing doses of intraarterial acetylcholine. Measurements and Main Results: We demonstrate that aged stored blood has higher levels of arginase-1 and cell-free plasma hemoglobin. Compared with 5-day blood, the transfusion of 42-day packed red cells decreases acetylcholine-dependent forearm blood flows. Intravascular venous levels of arginase-1 and cell-free plasma hemoglobin increase immediately after red cell transfusion, with more significant increases observed after infusion of 42-day-old blood. Conclusions: We demonstrate that the transfusion of blood at the limits of Food and Drug Administration–approved storage has a significant effect on the forearm circulation and impairs endothelial function. Clinical trial registered with www.clinicaltrials.gov (NCT 01137656) PMID:26222884

  16. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells.

    Science.gov (United States)

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells.

  17. Effect of dexamethasone on voltage-gated Na+ channel in cultured human bronchial smooth muscle cells.

    Science.gov (United States)

    Nakajima, Toshiaki; Jo, Taisuke; Meguro, Kentaro; Oonuma, Hitoshi; Ma, Ji; Kubota, Nami; Imuta, Hiroyuki; Takano, Haruhito; Iida, Haruko; Nagase, Takahide; Nagata, Taiji

    2008-06-06

    Voltage-gated Na(+) channel (I(Na)) encoded by SCN9A mRNA is expressed in cultured human bronchial smooth muscle cells. We investigated the effects of dexamethasone on I(Na), by using whole-cell voltage clamp techniques, reverse transcriptase/polymerase chain reaction (RT-PCR), and quantitative real-time RT-PCR. Acute application of dexamethasone (10(-6) M) did not affect I(Na). However, the percentage of the cells with I(Na) was significantly less in cells pretreated with dexamethasone for 48 h, and the current-density of I(Na) adjusted by cell capacitance in cells with I(Na) was also decreased in cells treated with dexamethasone. RT-PCR analysis showed that alpha and beta subunits mRNA of I(Na) mainly consisted of SCN9A and SCN1beta, respectively. Treatment with dexamethasone for 24-48 h inhibited the expression of SCN9A mRNA. The inhibitory effect of dexamethasone was concentration-dependent, and was observed at a concentration higher than 0.1 nM. The effect of dexamethasone on SCN9A mRNA was not blocked by spironolactone, but inhibited by mifepristone. The inhibitory effects of dexamethasone on SCN9A mRNA could not be explained by the changes of the stabilization of mRNA measured by using actinomycin D. These results suggest that dexamethasone inhibited I(Na) encoded by SCN9A mRNA in cultured human bronchial smooth muscle cells by inhibiting the transcription via the glucocorticoid receptor.

  18. Pleiotropic effects of statins in distal human pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Butrous Ghazwan S

    2011-10-01

    Full Text Available Abstract Background Recent clinical data suggest statins have transient but significant effects in patients with pulmonary arterial hypertension. In this study we explored the molecular effects of statins on distal human pulmonary artery smooth muscle cells (PASMCs and their relevance to proliferation and apoptosis in pulmonary arterial hypertension. Methods Primary distal human PASMCs from patients and controls were treated with lipophilic (simvastatin, atorvastatin, mevastatin and fluvastatin, lipophobic (pravastatin and nitric-oxide releasing statins and studied in terms of their DNA synthesis, proliferation, apoptosis, matrix metalloproteinase-9 and endothelin-1 release. Results Treatment of human PASMCs with selected statins inhibited DNA synthesis, proliferation and matrix metalloproteinase-9 production in a concentration-dependent manner. Statins differed in their effectiveness, the rank order of anti-mitogenic potency being simvastatin > atorvastatin > > pravastatin. Nevertheless, a novel nitric oxide-releasing derivative of pravastatin (NCX 6550 was effective. Lipophilic statins, such as simvastatin, also enhanced the anti-proliferative effects of iloprost and sildenafil, promoted apoptosis and inhibited the release of the mitogen and survival factor endothelin-1. These effects were reversed by mevalonate and the isoprenoid intermediate geranylgeranylpyrophosphate and were mimicked by inhibitors of the Rho and Rho-kinase. Conclusions Lipophilic statins exert direct effects on distal human PASMCs and are likely to involve inhibition of Rho GTPase signalling. These findings compliment some of the recently documented effects in patients with pulmonary arterial hypertension.

  19. In vitro evaluation of the effects of yttria-alumina-silica microspheres on human keratinocyte cells.

    Science.gov (United States)

    Radu, T; Chiriac, M T; Popescu, O; Simon, V; Simon, S

    2013-02-01

    The behavior of yttria-alumina-silica spray-dried microspheres was investigated in vitro on a human keratinocyte cell line, first to exclude their cytotoxicity. The HaCaT cells were chosen due to their well-characterized phenotype and their phagocytic ability. Microscopic analysis and cell viability tests showed no negative effect of the microspheres on cells morphology and behavior. Scanning electron microscopy and transmission electron microscopy results evidenced the cellular internalization of the microspheres at 48 h after their incubation with cultured cells. The shape, size distribution, structure, composition, and chemical states of the elements on samples surface were analyzed by SEM, transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, because these properties could influence their internalization by cells. The yttrium distribution on the microspheres surface was indicated by fluorescence microscopy imaging. The microspheres dimension and shape inside the cells was in accordance with their dimension and shape before incubation. The microspheres seemed captured and engulfed by the cells in native form and appeared resistant to degradation over the first 48 h. Most of the analyzed cells took up more microspheres, suggesting that the microspheres were actively phagocytosed by the cells and accumulated within the cytoplasm. X-ray photoelectron spectroscopy results on Al and Si atomic environments denoted Al-O-Si crosslinks, which improve the surface protection to corrosion. Copyright © 2012 Wiley Periodicals, Inc.

  20. Characterisation of the Immunomodulatory Effects of Meningococcal Opa Proteins on Human Peripheral Blood Mononuclear Cells and CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Claire Jones

    Full Text Available Opa proteins are major surface-expressed proteins located in the Neisseria meningitidis outer membrane, and are potential meningococcal vaccine candidates. Although Opa proteins elicit high levels of bactericidal antibodies following immunisation in mice, progress towards human clinical trials has been delayed due to previous findings that Opa inhibits T cell proliferation in some in vitro assays. However, results from previous studies are conflicting, with different Opa preparations and culture conditions being used. We investigated the effects of various Opa+ and Opa- antigens from N. meningitidis strain H44/76 in a range of in vitro conditions using peripheral blood mononuclear cells (PBMCs and purified CD4+ T cells, measuring T cell proliferation by CFSE dilution using flow cytometry. Wild type recombinant and liposomal Opa proteins inhibited CD4+ T cell proliferation after stimulation with IL-2, anti-CD3 and anti-CD28, and these effects were reduced by mutation of the CEACAM1-binding region of Opa. These effects were not observed in culture with ex vivo PBMCs. Opa+ and Opa- OMVs did not consistently exert a stimulatory or inhibitory effect across different culture conditions. These data do not support a hypothesis that Opa proteins would be inhibitory to T cells if given as a vaccine component, and T cell immune responses to OMV vaccines are unlikely to be significantly affected by the presence of Opa proteins.

  1. Noxa enhances the cytotoxic effect of gemcitabine in human ovarian cancer cells.

    Science.gov (United States)

    Cao, Kang; Yang, Jing; Lin, Chao; Wang, Bao-ning; Yang, Yuan; Zhang, Jing; Dai, Jun; Li, Lei; Nie, Chun-lai; Yuan, Zhu; Li, Ming-yuan

    2012-05-01

    Noxa is an important proapoptotic protein in the intrinsic pathway of cell apoptosis. Experiments were carried out to investigate whether Noxa could, therefore, enhance the cytotoxic effect of gemcitabine in human ovarian cancer cell lines (A2780 and COC1). In this study, the combined treatment of Noxa and gemcitabine, in vitro, significantly inhibited the proliferation of A2780 and COC1 cells, as verified by MTT assay, Hoechst staining, and flow cytometric analysis. Moreover, the combination of Noxa and gemcitabine inhibited tumor growth and prolonged the survival of nude mice in vivo. The combined treatment also inhibited the growth of tumor xenografts through the inhibition of proliferation and the induction of apoptosis, as observed in immunohistochemical anti-PCNA staining and TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay. Our data suggest that Noxa exhibited potent proapoptotic activity against human ovarian cancer cells, and the combination of Noxa and gemcitabine showed a more significant cytotoxic effect against ovarian cancer cells in comparison with either of these agents alone. To our knowledge, we have provided the first evidence that Noxa can enhance therapeutic responses of ovarian cancer cells to gemcitabine, and that it could be potentially useful as a chemosensitizer in ovarian cancer therapy.

  2. Cytotoxic Effects of Re-Activated Lunar Dust Stimulant on Human Lung Cells

    Science.gov (United States)

    Upadhyaya, Krishna

    2009-01-01

    Lunar dust has been of significant concern due to various problems observed on the Apollo missions. Reports from astronauts have shown that the dust may have caused eye and nasal irritation as well as possible hay fever like symptoms. As NASA hopes to go to the Moon within the next few years, we hope to understand the possible toxic effects the dust might have. In these studies, we are looking at the effect of "re-activated" lunar dust stimulant on human bronchial cells. A simple grinding analog as a method of simulating micrometeorite crushing on the moon is used to "activate" the dust stimulant, i.e. capable of producing hydroxyl radicals. These radicals could then interact with human cells and may lead to a loss in membrane integrity and cell death. (Castranova, 1994) Cells are exposed to the dust for 6 and 24 hour intervals to assess cytotoxicity. Cytotoxicity is measured by looking at the production of inflammatory cytokines. Cells are exposed to ground and unground stimulant and compared to cytokine production from cells exposed to quartz which have a known toxicity. Here we look at the cytotoxicity of the lunar dust stimulant relative to quartz by measuring the production of inflammatory cytokines.

  3. Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells.

    Science.gov (United States)

    Luo, Zhirong; Li, Dongmei; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; He, Wen-Xi

    2014-04-01

    To investigate the proliferative, migratory and adhesion effect of Biodentine™, a new tricalcium silicate cement formulation, on the human dental pulp stem cells (hDPSCs). The cell cultures of hDPSCs obtained from impacted third molars were treated with Biodentine™ extract at four different concentrations: Biodentine™ 0.02mg/ml (BD 0.02), Biodentine™ 0.2mg/ml (BD 0.2), Biodentine™ 2mg/ml (BD 2) and Biodentine™ 20mg/ml (BD 20). Human dental pulp stem cells proliferation was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) viability analysis at different times. Migration was investigated by microphotographs of wound healing and transwell migration assays. Adhesion assay was performed as well in presence of BD 0.2, BD 2 and blank control, while qRT-PCR (quantitative real-time reverse-transcriptase polymerase chain) was used for further analysis of the mRNA expression of chemokine and adhesion molecules in hDPSCs. Biodentine™ significantly increased proliferation of stem cells at BD 0.2 and BD 2 concentrations while decreased significantly at higher concentration of BD 20. BD 0.2 concentration had a statistically significant increased migration and adhesion abilities. In addition, qRT-PCR results showed that BD 0.2 could have effect on the mRNA expression of chemokines and adhesion molecules in human dental pulp stem cells. The data imply that Biodentine™ is a bioactive and biocompatible material capable of enhancing hDPSCs proliferation, migration and adhesion abilities. Biodentine™ when placed in direct contact with the pulp during pulp exposure can positively influence healing by enhancing the proliferation, migration and adhesion of human dental pulp stem cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of Quercetin on Proliferation and Apoptosis of Human Nasopharyngeal Carcinoma HEN1 Cells

    Institute of Scientific and Technical Information of China (English)

    Feng ZHANG; Yonghua CUI; Pingping CAO

    2008-01-01

    The effect of quercetin (Que) on proliferation and apoptosis of human nasopharyngeal carcinoma HEN1 cells was investigated. Inhibition rate of quercetin on HEN1 was assayed by MTT method, apoptosis by flow cytometry (FCM), and the caspase-3 expression of each group by colorimetry set respectively. Quercetin inhibited HEN1 cells in in a dose-(r=0.709,P<0.01) and time-dependent manner (r=0.703,P<0.01). The ratio of apoptotic and necrosis cells was increased in the cells treated with quercetin. Cell cycle was specificly arrested in G2/M phase. Apoptosis cusp was revealed by FCM. The activity of caspase-3 was significantly up-regulated in 5 groups treated with quecetin as compared with control group (P<0.05). It was concluded that the growth inhibition of quercetin was highly related to cell cycle arrest at the G2/M phase and induction of caspase-dependent apoptosis in human nasopharyngeal carcinoma HEN1 cells.

  5. Anti-Endometriotic Effects of Pueraria Flower Extract in Human Endometriotic Cells and Mice

    Science.gov (United States)

    Kim, Ji-Hyun; Woo, Jeong-Hwa; Kim, Hye Mi; Oh, Myung Sook; Jang, Dae Sik; Choi, Jung-Hye

    2017-01-01

    Pueraria flowers have been used as a vegetable and an ingredient for tea and jelly. In this study, we investigated the effects of Pueraria flower extract (PFE) on endometriosis, a common gynaecological disease characterised by local sterile inflammation of peritoneal cavity. PFE suppressed the adhesion of human endometriotic cells 11Z and 12Z to human mesothelial Met5A cells. In addition, PFE significantly inhibited the migration of 11Z and 12Z cells as shown by wound-healing and transwell migration assays. PFE reduced the protein and mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9 in endometriotic cells. Moreover, extracellular signal-regulated kinase (ERK)1/2 was activated by PFE treatment, and an ERK1/2 inhibitor, PD98059, significantly inhibited PFE-inhibited cell migration in endometriotic cells. Furthermore, PFE significantly suppressed endometriotic lesion formation in a mouse model. These data suggest that Pueraria flower is a potential anti-endometriotic agent for the inhibition of endometriotic cell adhesion, migration, and MMP expression. PMID:28264481

  6. Effect of platelet lysate on human cells involved in different phases of wound healing.

    Directory of Open Access Journals (Sweden)

    Maria Chiara Barsotti

    Full Text Available BACKGROUND: Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization. METHODOLOGY/PRINCIPAL FINDINGS: Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2 and inflammatory response evaluation (NFκB. Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v. Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control, comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. CONCLUSION/SIGNIFICANCE: These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.

  7. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y.

    Science.gov (United States)

    Park, Se-Eun; Kim, Seung; Sapkota, Kumar; Kim, Sung-Jun

    2010-07-01

    Hydrogen peroxide (H2O2) is a major Reactive Oxygen Species (ROS), which has been implicated in many neurodegenerative conditions including Parkinson's disease (PD). Rosmarinus officinalis (R. officinalis) has been reported to have various pharmacological properties including anti-oxidant activity. In this study, we investigated the neuroprotective effects of R. officinalis extract on H2O2-induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that H2O2-induced cytotoxicity in SH-SY5Y cells was suppressed by treatment with R. officinalis. Moreover, R. officinalis was very effective in attenuating the disruption of mitochondrial membrane potential and apoptotic cell death induced by H2O2. R. officinalis extract effectively suppressed the up-regulation of Bax, Bak, Caspase-3 and -9, and down-regulation of Bcl-2. Pretreatment with R. officinalis significantly attenuated the down-regulation of tyrosine hydroxylase (TH), and aromatic amino acid decarboxylase (AADC) gene in SH-SY5Y cells. These findings indicate that R. officinalis is able to protect the neuronal cells against H2O2-induced injury and suggest that R. officinalis might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  8. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    Directory of Open Access Journals (Sweden)

    Pongsavee Malinee

    2009-10-01

    Full Text Available Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. Results It showed that the immune cell proliferation (lymphocyte proliferation was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI. The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Conclusion Borax had effects on immune cell proliferation (lymphocyte proliferation and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  9. The Effect of Prolonged Treatment with Belimumab on B cells in Human SLE

    Science.gov (United States)

    Jacobi, Annett M; Huang, Weiqing; Wang, Tao; Freimuth, William; Sanz, Inaki; Furie, Richard; Mackay, Meggan; Aranow, Cynthia; Diamond, Betty; Davidson, Anne

    2010-01-01

    Objectives To understand the effects of prolonged BLyS inhibition in human SLE. Methods 17 SLE patients enrolled in a clinical trial of belimumab, a BLyS-specific inhibitor, plus standard of care therapy were studied. Phenotypic analysis of lymphocytes was performed using flow cytometry. Circulating antibody-secreting cells were enumerated using ELISpot assay. Serum was analyzed by ELISA using an antibody that recognizes products of the VH4-34 gene. Lymphocyte counts, Ig levels and anti-dsDNA antibody levels were available as part of the clinical trial analyses. Results Samples were collected at days 0, 84, 168, 365, 532 and >730. The total B cell number decreased from baseline starting between days 84–168. This was due to a decrease in naïve and transitional B cells. CD27+/IgD+memory B cells and plasmablasts decreased only after 532 days, whereas CD27+/IgD− memory B cells were not affected, and there were no changes in T cells. Serum IgM levels began to decline between days 84–168, but there were no changes in serum levels of IgG, IgG anti-DNA antibodies or VH4-34 antibodies during the study. SLE patients had more IgM-, IgG-, and autoantibody-producing B cells than normal controls at Day 0. There was only a modest decrease in the frequency of total IgM-producing but not IgG-producing cells at Days 365 and 532, consistent with the phenotypic and serologic data. Conclusions Our data confirm the dependence of newly formed B cells on BLyS for survival in humans. In contrast, memory B cells and plasma cells are less susceptible to selective BLyS inhibition. PMID:20039404

  10. Effects of Antioxidants and Vitamins on the Proliferation of Human Diploid Cells

    Directory of Open Access Journals (Sweden)

    Gaziza Dаnlybaeva

    2014-01-01

    Full Text Available Introduction: Microelements, essential nutrients that are needed in small amounts including minerals such as calcium, zinc, iron and other vitamins (A, B, C, and etc., are macronutrients necessary for a healthy life. The role of micronutrients in vivo is well known, and there are several publications that have examined the effects of micronutrients on genomic stability. Furthermore, a number of vitamins and microelements are substrates and/or cofactors in metabolic pathways, which regulate DNA synthesis and/or repair and gene expression. A deficiency in such nutrients may result in disruption of genomic integrity and alterations in DNA methylation patterns, linking cellular nutrition with change in gene expression. For example, lack of vitamin C is known to cause increased DNA oxidation and chromosomal damage. Vitamin A, as well as other micronutrients, have a protective effect, whereas higher concentrations are associated with increased DNA damage. Ubiquinone (coenzyme Q10 and dihydroquercetin are used in therapy as antioxidant compounds and electron carriers, which reduce lipid peroxidation of cell membranes. However, previous studies indicate that various ubiquinone analogs may cause a divergent effect on oxidative stress and oxidative phosphorylation. The aim of our study was to investigate the effect of vitamins A and C, coenzyme Q10, and dihydroquercetin on the proliferative potential of cultured human embryonic diploid fibroblasts (M-22. Methods: In the first series of experiments, nontoxic concentrations of vitamins for the cells were identified using MTT assay. Results: Vitamins A and C, dihydroquercetin of 1µM, and coenzyme Q10 of 5µM were nontoxic for human skin fibroblasts. In the second series of experiments, cell cultivation was carried out with nontoxic concentrations. A vitamin C concentration of 1µM for 7 consecutive passages increased the proliferation index (PI compared to the control. Thus, the average PI in the

  11. Inhibitory Effects of Fenofibrate on Plasminogen Activator Inhibitor-1 Expression in Human Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    DONG Chunxia; HU Yu; WANG Huafang; SUN Chunyan; WANG Yadan; HE Wenjuan; ZHANG Xiaoping

    2006-01-01

    The effects of fenofibrate on plasminogen activator inhibitor-1 (PAI-1) expression in human umbilical endothelial cell-derived transformed cell line-ECV 304 cells were investigated. ECV 304 cells were incubated with different concentrations of fenofibrate (0, 10, 50, 100 μmol/L) for 24 h. PAI-1 mRNA and protein was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Westernblot respectively. PAI-1 antigenic content of endothelial cells was measured by using ELISA. Fenofibrate could inhibit the PAI-1 mRNA and protein expression and reduce PAI-1 antigenic content dependently. After treatment with fenofibrate (10 μmol/L), the expression levels of PAI-1 mRNA and protein were 0.65±0.05 and 0.96±0.11 respectively, significantly lower than in the control group (0.78±0.03 and 1.21±0.15, respectively, P<0.05). PAI-1 antigenie contents (24.52±8.39) in ECV304 cells treated with 10 μmol/L fenofibrate were significantly lower than those in the control group (6.98±5.12, P<0.05). It was concluded that fenofibrate inhibited the expression of PAI-1 mRNA in ECV304 cells, and reduce the protein expression and the antigenic content of PAI-1, suggesting that fenofibrate may have an antiatherosclerotic effect on endothelial cells by PAI-1 pathway.

  12. The preservative effect of Thai propolis extract on the viability of human periodontal ligament cells.

    Science.gov (United States)

    Prueksakorn, Attaporn; Puasiri, Subin; Ruangsri, Supanigar; Makeudom, Anupong; Sastraruji, Thanapat; Krisanaprakornkit, Suttichai; Chailertvanitkul, Pattama

    2016-12-01

    Tooth avulsion causes an injury to the periodontal ligament (PDL). The success of tooth replantation depends on the quantity and quality of PDL cells. The aim of this study was to examine the preservative and proliferative effects of Thai propolis extract, previously shown to exert anti-inflammatory and antioxidant activities, on human PDL cells. Ninety-six premolars were left to air dry for 30 min and stored in Hank's balanced salt solution (HBSS), milk, or various concentrations of propolis extract from 0.25 to 10 mg ml(-1) for 3 h. PDL cells were isolated by collagenase and trypsin digestion, and their viability was determined by a trypan blue dye exclusion assay. PDL tissues were also scraped off the root surface and cultured to determine cell growth and morphology. The alamarBlue(®) and BrdU assays were performed to determine the cytotoxic and proliferative effects of the extract on cultured PDL cells, respectively. A non-toxic dose of 2.5 mg ml(-1) of propolis extract yielded the greatest percentage of cell viability (78.84 ± 3.34%), which was significantly higher than those of the other concentrations (P milk (71.27 ± 2.79%; P propolis extract at 2.5 mg ml(-1) appears to be the most effective dose for preserving the viability of PDL cells, and this was comparable to HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells.

    Science.gov (United States)

    Friedman, Mendel; Lee, Kap-Rang; Kim, Hyun-Jeong; Lee, In-Seon; Kozukue, Nobuyuke

    2005-07-27

    Methods were devised for the isolation of large amounts of pure alpha-chaconine and alpha-solanine from Dejima potatoes and for the extraction and analysis of total glycoalkaloids from five fresh potato varieties (Dejima, Jowon, Sumi, Toya, and Vora Valley). These compounds were then evaluated in experiments using a tetrazolium microculture (MTT) assay to assess the anticarcinogenic effects of (a) the isolated pure glycoalkaloids separately, (b) artificial mixtures of the two glycoalkaloids, and (c) the total glycoalkaloids isolated from each of the five potato varieties. All samples tested reduced the numbers of the following human cell lines: cervical (HeLa), liver (HepG2), lymphoma (U937), stomach (AGS and KATO III) cancer cells and normal liver (Chang) cells. The results show that (a) the effects of the glycoalkaloids were concentration dependent in the range of 0.1-10 mug/mL (0.117-11.7 nmol/mL); (b) alpha-chaconine was more active than was alpha-solanine; (c) some mixtures exhibited synergistic effects, whereas other produced additive ones; (d) the different cancer cells varied in their susceptibilities to destruction; and (e) the destruction of normal liver cells was generally lower than that of cancer liver cells. The decreases in cell populations were also observed visually by reversed-phase microscopy. The results complement related observations on the anticarcinogenic potential of food ingredients.

  14. Effect of miR-451-mediated regulation of MIF expression on cell proliferation in human colon carcinoma cell line LoVo

    Institute of Scientific and Technical Information of China (English)

    孔帅

    2013-01-01

    Objective To investigate the effect of miR-451-mediated regulation of macrophage migration inhibitory factor(MIF) expression on cell proliferation in human colon carcinoma cell line LoVo.Methods A lentiviral vector

  15. Radiomodifying effect of resveratrol in human rhabdomyosarcoma (RD) cell culture applying the comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Vanessa D.; Rogero, Sizue O.; Vieira, Daniel P.; Okazaki, Kayo; Rogero, Jose R., E-mail: van.biologa@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cruz, Aurea S., E-mail: aurcruz@ial.sp.gov.br [Instituto Adolfo Lutz (IAL-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cancer is considered a worldwide public health problem. Resveratrol is a defense polyphenol, synthesized naturally by a wide variety of plants according to response of ultraviolet radiation (UV) exposition or according to mechanical stress resulting of pathogens or chemical and physical agents. In vines this substance is found in elevated concentration. Thus, resveratrol is present in grape juice and wines, especially red wine. Red wines are the best dietary source of resveratrol.The protective effects performed by resveratrol during the process of cell damage, produced by oxidative effects of free radicals, are anti-inflammatory, anti-platelet and anti-carcinogenic activity, prevent or inhibit degenerative diseases, decrease incidence of cardiovascular diseases. Moreover, resveratrol is considered as a cell radioprotector. On the other hand, in some elevated concentrations resveratrol is considered as a radiosensitizing compound. The aim of this work was study in vitro the radiomodifying effect of resveratrol in human rhabdomyosarcoma (RD) cells applying the comet assay to evaluate the cellular damage and its repair capacity. In this study RD cells culture was irradiated by gamma radiation at 50 Gy and 100 Gy doses and the used resveratrol concentrations was from 15 μM to 60 μM. The protective and radioprotective effects were observed at 15 μM and 30 μM resveratrol concentrations. The resveratrol concentration of 60 μM showed cytotoxic effect to RD tumor cells and with gamma radiation presence this concentration showed no statistically significant radiosensitizing effects. (author)

  16. Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells

    Science.gov (United States)

    DE LA FUENTE, H; PORTALES-PÉREZ, D; BARANDA, L; DÍAZ-BARRIGA, F; SAAVEDRA-ALANÍS, V; LAYSECA, E; GONZÁLEZ-AMARO, R

    2002-01-01

    The aim of this work was to investigate the effect of cadmium, lead and arsenic on the apoptosis of human immune cells. Peripheral blood mononuclear cells (MNC) were incubated with increasing concentrations of these metals and then cellular apoptosis was determined by flow cytometry and by DNA electrophoresis. We found that arsenic induced a significant level of apoptosis at 15 μm after 48h of incubation. Cadmium had a similar effect, but at higher concentrations (65 μm). In addition, cadmium exerted a cytotoxic effect on MNC that seemed to be independent of the induction of apoptosis. In contrast, concentrations of lead as high as 500 μm were nontoxic and did not induce a significant degree of apoptosis. Additional experiments showed that arsenic at concentrations as low as 1·0 μm had a significant pro-apoptotic effect when cells were cultured in the presence of this pollutant for more than 72. Non-T cells were more susceptible than T lymphocytes to the effect of arsenic and cadmium. Interestingly, MNC from children chronically exposed to arsenic showed a high basal rate of apoptosis and a diminished in vitro sensibility to this metalloid. Our results indicate that both arsenic and cadmium are able to induce apoptosis of lymphoid cells, and suggest that this phenomenon may contribute to their immunotoxic effect in vivo. PMID:12100024

  17. Pro‑apoptotic effects of pycnogenol on HT1080 human fibrosarcoma cells.

    Science.gov (United States)

    Harati, Kamran; Slodnik, Pawel; Chromik, Ansgar Michael; Behr, Björn; Goertz, Ole; Hirsch, Tobias; Kapalschinski, Nicolai; Klein-Hitpass, Ludger; Kolbenschlag, Jonas; Uhl, Waldemar; Lehnhardt, Marcus; Daigeler, Adrien

    2015-04-01

    Complete surgical resection with clear margins remains the mainstay of therapy for localised fibrosarcomas. Nevertheless, metastatic fibrosarcomas still represent a therapeutic dilemma. Commonly used chemotherapeutic agents like doxorubicin have proven to be effective in pycnogenol and its constituents on human fibrosarcoma cells (HT1080). Ten healthy subjects (six females, four males, mean age 24.8 ± 6 years) received a single dose of 300 mg pycnogenol orally. Blood plasma samples were obtained before and 6 h after intake of pycnogenol. HT1080 cells were treated with these plasma samples. Additionally, HT1080 were incubated separately with catechin, epicatechin and taxifolin that are known as the main constituents of pycnogenol. Vital, apoptotic and necrotic cells were quantified using flow cytometric analysis. Gene expression was analyzed by RNA microarray. The results showed that single application of taxifolin, catechin and epicatechin reduced cell viability of HT1080 cells only moderately. A single dose of 300 mg pycnogenol given to 10 healthy adults produced plasma samples that led to significant apoptotic cell death ex vivo whereas pycnogenol-negative serum displayed no apoptotic activity. Microarray analysis revealed remarkable expression changes induced by pycnogenol in a variety of genes, which are involved in different apoptotic pathways of cancer cells [Janus kinase 1 (JAK1), DUSP1, RHOA, laminin γ1 (LAMC1), fibronectin 1 (FN1), catenin α1 (CTNNA1), ITGB1]. In conclusion, metabolised pycnogenol induces apoptosis in human fibrosarcoma cells. Pycnogenol exhibits its pro-apoptotic activity as a mixture and is more effective than its main constituents catechin, epicatechin and taxifolin indicating that the metabolised components interact synergistically. These results provide experimental support for in vivo trials assessing the effect of the pine bark extract pycnogenol.

  18. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro.

    Science.gov (United States)

    Tai, Joseph; Cheung, Susan; Wu, Matthew; Hasman, David

    2012-03-15

    Rosemary (Rosmarinus officinalis L.) is a popular culinary/medicinal herb. Recent studies have shown it has pharmacologic activities for cancer chemoprevention and therapy. This study evaluated the antiproliferation activity of rosemary extract (RE) against human ovarian cancer cells, and whether the extract and its three main active ingredients carnosol (CS), carnosic acid (CA) and rosmarinic acid (RA) can enhance the antiproliferation activity of cisplatin (CDDP). Our study showed that RE has significant antiproliferation activity on human ovarian cancer A2780 and its CDDP resistant daughter cell line A2780CP70, with IC(50) (50% inhibitory concentration) estimated at 1/1000 and 1/400 dilutions respectively. RE enhanced the antiproliferation effect with CDDP on both A2780 and A2780CP70 cells. A2780 cells were consistently more sensitive to CS, CA, and RA than A2780CP70 cells between 2.5 and 20μg/ml. CS and RA also showed synergistic antiproliferation effect with CDDP on A2780 cells at some concentrations. RE treated by ultrafiltration, dialysis, and removal of phenolics lost the antiproliferation activity suggested that the activity resides in phenolics with MW<1000Da. Apoptosis array study of A2780 cells treated with RE showed that the expression of a number of genes regulating apoptosis were modulated by the treatment. This study showed that RE inhibited the proliferation of ovarian cancer cell lines by affecting the cell cycle at multiple phases. It induced apoptosis by modifying the expression of multiple genes regulating apoptosis, and holds potential as an adjunct to cancer chemotherapy.

  19. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Directory of Open Access Journals (Sweden)

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  20. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    OpenAIRE

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  1. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29

    Directory of Open Access Journals (Sweden)

    Zhung-Yuan Chen

    2017-01-01

    Full Text Available This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (109 cfu/mL and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups (p < 0.05, which therefore led to the inference that the BCRC17010 strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (109 cfu/mL demonstrated a significant increase in lactate dehydrogenase (LDH activity (p < 0.05, causing harm to the HT-29 cell membrane; further, after an 8-h co-culture with the HT-29 cells, it induced the secretion of nitric oxide (NO from the HT-29 cells. Some lactic acid bacteria (LAB strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro.

  2. Combined effect of heptaplatin and ionizing radiation on human squamous carcinoma cell lines.

    Science.gov (United States)

    Ryu, Mi-Ryeong; Paik, Soon-Young; Chung, Su-Mi

    2005-02-28

    Heptaplatin, cis-malonato [(4R,5R)-4,5-bis (amino-methyl)-2-isopropyl-1,3-dioxolane] platinum(II) (SKI-2053R, Sunpla) is a new platinum derivative with anti-tumor activity comparable to cisplatin on various cancer cell lines. Preclinical studies suggest that it is less nephrotoxic than cisplatin. This study was undertaken to examine the combined effect of heptaplatin and ionizing radiation on two established human squamous carcinoma cell lines (NCI-H520, SQ20B). The cytotoxic activity of heptaplatin was concentration-dependent in both cell lines. When low dose heptaplatin was combined with high dose ionizing radiation, there was an additive cytotoxic effect on NCI-H520 cells (P < 0.05), while a moderate dose of heptaplatin and a low dose of ionizing radiation had an additive cytotoxic effect on the growth of SQ20B cells (P < 0.05). FACS analysis and DAPI staining showed that their additive cytotoxic effects were correlated with the induction of apoptosis. Further studies are warranted using heptaplatin and ionizing radiation in squamous cell carcinoma as a substitute for cisplatin.

  3. Cytotoxic Effect of Thymus caramanicus Jalas on Human Oral Epidermoid Carcinoma KB Cells.

    Science.gov (United States)

    Fekrazad, Reza; Afzali, Mehrad; Pasban-Aliabadi, Hamzeh; Esmaeili-Mahani, Saeed; Aminizadeh, Maryam; Mostafavi, Ali

    2017-01-01

    Identifying new chemotherapeutic agents with fewer side effects is a major concern for scientists today. Thymus caramanicus Jalas (Lamiaceae family) is one of the species of Thymus that grows wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis and cancer. Here was investigated the cytotoxic property of Thymus caramanicus essential oil and extract in human oral epidermoid carcinoma KB cells. Cell viability was measured by MTT and neutral red assays. The cells were exposed to different concentrations of essential oil (0.05-1 µL/mL) and extract (25-150 µg/mL) for 24 h. Doxorubicin was used as anticancer control drug. The data showed that the essential oil (IC50=0.44 µL/mL) and extract (IC50=105 µg/mL) induce potent cytotoxic property. Surprisingly, cytotoxic effects of essential oil and extract of this plant on KB cancer cells were greater than those on normal gingival HGF1-PI1 cell line. In addition, Thymus caramanicus could potentiate the effect of doxorubicin in sub-effective concentrations. The results of the present study indicate that essential oils and extracts of Thymus caramanicus have potential anti-proliferative property on KB cells and can be used as pharmaceutical case study for oral cancer treatments.

  4. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking.

    Directory of Open Access Journals (Sweden)

    Anita Posevitz-Fejfár

    Full Text Available Human biospecimen collection, processing and preservation are rapidly emerging subjects providing essential support to clinical as well as basic researchers. Unlike collection of other biospecimens (e.g. DNA and serum, biobanking of viable immune cells, such as peripheral blood mononuclear cells (PBMC and/or isolated immune cell subsets is still in its infancy. While certain aspects of processing and freezing conditions have been studied in the past years, little is known about the effect of blood transportation on immune cell survival, phenotype and specific functions. However, especially for multicentric and cooperative projects it is vital to precisely know those effects. In this study we investigated the effect of blood shipping and pre-processing delay on immune cell phenotype and function both on cellular and subcellular levels. Peripheral blood was collected from healthy volunteers (n = 9: at a distal location (shipped overnight and in the central laboratory (processed immediately. PBMC were processed in the central laboratory and analyzed post-cryopreservation. We analyzed yield, major immune subset distribution, proliferative capacity of T cells, cytokine pattern and T-cell receptor signal transduction. Results show that overnight transportation of blood samples does not globally compromise T- cell subsets as they largely retain their phenotype and proliferative capacity. However, NK and B cell frequencies, the production of certain PBMC-derived cytokines and IL-6 mediated cytokine signaling pathway are altered due to transportation. Various control experiments have been carried out to compare issues related to shipping versus pre-processing delay on site. Our results suggest the implementation of appropriate controls when using multicenter logistics for blood transportation aiming at subsequent isolation of viable immune cells, e.g. in multicenter clinical trials or studies analyzing immune cells/subsets. One important conclusion might

  5. Effect of Lidamycin on Telomerase Activity in Human Hepatoma BEL-7402 Cells

    Institute of Scientific and Technical Information of China (English)

    RUI-JUAN GAO; YUE-XIN LIANG; DIAN-DONG LI; HONG-YIN ZHANG; YONG-SU ZHEN

    2007-01-01

    Objective To investigate the effect of lidamycin(LDM)on telomerase activity in human hepatoma BEL-7402 cells under the condition of LDM inducing mitotic cell death and senescence.Methods Chromatin condensation was detected by co-staining with Hoechst 33342 and PI.Cell multinucleation was observed by Giemsa staining and genomic DNA was separated by agarose gel electrophoresis.Fluorescent intensity of Rho123 Was determined for mitochondrial membrane potential.MTT assay and SA-β-gal staining were employed to analyze the senescence-like phenotype.The expression of proteins was analyzed by Western blot.Telomerase activity was assayed by telomerase PCR-ELISA.Results Mitotic cell death occurred in LDM-treated cells characterized by unique and atypical chromatin condensation,multinucleation and increased mitochondrial membrane potential.However,no apoptotic bodies or DNA ladders were found.In addition,apoptosis-related proteins remained nearly unaltered.Senescence-like phenotype was identified by increased and elongated size of cells,growth retardation,enhanced SA-β-gal activity and the changes of senescence-related protein expression.Telomerase activity markedly decreased (P<0.01)in LDM-treated hepatoma BEL-7402 cells. Conelusion Mitotic cell death and senescence could be triggered simultaneously or sequentially after exposure of hepatoma BEL-7402 cells to LDM.The decrease in telomerase activity may play a key role in the defective mitosis and aging morphology.Further investigation of detailed mechanism is needed.

  6. Antitumor effects of recombinant human adenovirus-p53 against human cutaneous squamous cell carcinoma in mice.

    Science.gov (United States)

    Li, Yuanchao; He, Wei; Wang, Rupeng; Yang, Libin; Zhou, Chunli; Zhang, Bin

    2016-12-01

    The present study was conducted to identify the anti-tumor effects of rAd/p53, which is a recombinant human serotype 5 adenovirus, in cutaneous squamous cell carcinoma (cSCC). Mouse models of human cSCC were constructed by injecting human cutaneous squamous cell carcinoma cells into both flanks of nude mice. Subsequently, the 75 nude mice with cSCC xenograft tumors were randomly divided into recombinant human serotype 5 adenovirus (rAd)/p53, rAd/p53 + 5-fluorouracil (5-Fu) and 5-Fu groups. One side of the tumors was administered the therapeutic agents as the therapeutic group, whereas the remaining side was treated with medical saline as the control. At 24, 48, 72, 120 and 168 h post-intratumoral injection, alterations in tumor volume, tumor necrosis and the expression of several tumor-associated genes, including Smad4, Brca1 and matrix metalloproteinase (MMP-2), were analyzed. Compared with its control group, the rAd/P53 group exhibited a significantly increased tumor necrosis ratio. In addition, Smad4 and Brca1 expression levels increased significantly at various time points (Pp53 + 5-Fu group, the tumor necrosis ratio, and Smad4 and Brca1 expression levels also significantly increased at various time points (PP53 group. In addition, p53 expression exhibited a positive correlation with the tumor necrosis ratio and Smad4 expression, and showed a negative correlation with MMP-2 gene transcription (Pp53 has a potent anti-tumor effect in cSCC via the promotion of tumor necrosis and regulating the expression of various tumor-associated genes.

  7. Injectable scaffold materials differ in their cell instructive effects on primary human myoblasts

    DEFF Research Database (Denmark)

    Hejbøl, Eva Kildall; Sellathurai, Jeeva; Nair, Prabha Damodaran

    2017-01-01

    a minimally invasive technique. In this study, we examined in vitro the cell instructive effects of three types of injectable scaffolds, fibrin, alginate, and poly(lactic-co-glycolic acid)-based microparticles on primary human myoblasts. The myoblast morphology and progression in the myogenic program differed......, depending on the type of scaffold material. In alginate gel, the cells obtained a round morphology, they ceased to proliferate, and entered quiescence. In the fibrin gels, differentiation was promoted, and myotubes were observed within a few days in culture, while poly(lactic-co-glycolic acid...

  8. No donor age effect of human serum on collagen synthesis signaling and cell proliferation of human tendon fibroblasts

    DEFF Research Database (Denmark)

    Bayer, Monika L; Schjerling, Peter; Biskup, Edyta

    2012-01-01

    The aging process of tendon tissue is associated with decreased collagen content and increased risk for injuries. An essential factor in tendon physiology is transforming growth factor-ß1 (TGF-ß1), which is presumed to be reduced systemically with advanced age. The aim of this study was to invest......The aging process of tendon tissue is associated with decreased collagen content and increased risk for injuries. An essential factor in tendon physiology is transforming growth factor-ß1 (TGF-ß1), which is presumed to be reduced systemically with advanced age. The aim of this study...... was to investigate whether human serum from elderly donors would have an inhibiting effect on the expression of collagen and collagen-related genes as well as on cell proliferative capacity in tendon cells from young individuals. There was no difference in systemic TGF-ß1 levels in serum obtained from young...... and elderly donors, and we found no difference in collagen expression when cells were subjected to human serum from elderly versus young donors. In addition, tendon cell proliferation was similar when culture medium was supplemented with serum of different donor age. These findings suggest that factors...

  9. Effects of Pinus massoniana bark extract on cell proliferation and apoptosis of human hepatoma BEL-7402 cells

    Institute of Scientific and Technical Information of China (English)

    Ying-Yu Cui; Heng Xie; Kang-Biao Qi; Yan-Ming He; Jin-Fa Wang

    2005-01-01

    AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic "DNA ladder"was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.

  10. Neuroprotective effects of germinated brown rice against hydrogen peroxide induced cell death in human SH-SY5Y cells.

    Science.gov (United States)

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  11. In vitro effects on human heart and skeletal cells of the venom from two cubozoans, Chironex fleckeri and Carukia barnesi.

    Science.gov (United States)

    Pereira, Peter; Seymour, Jamie E

    2013-12-15

    Although Chironex fleckeri and Carukia barnesi cause significant human envenomation, research into their effects in human models or human cells has been limited. In this in vitro study we have presented data that shows that although C. fleckeri is highly cytotoxic to human cardiac and skeletal muscle cells, C. barnesi is not cytotoxic at all concentrations tested to both cardiac and skeletal muscles cells. We also demonstrate that in vitro C. fleckeri venom cardiocytotoxic activity is significantly attenuated when heated to 44 °C for 20 min. There is a similar attenuation with skeletal cells at 46 °C.

  12. Distinct effects of EGFR ligands on human mammary epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Chandrani Mukhopadhyay

    Full Text Available Based on gene expression patterns, breast cancers can be divided into subtypes that closely resemble various developmental stages of normal mammary epithelial cells (MECs. Thus, understanding molecular mechanisms of MEC development is expected to provide critical insights into initiation and progression of breast cancer. Epidermal growth factor receptor (EGFR and its ligands play essential roles in normal and pathological mammary gland. Signals through EGFR is required for normal mammary gland development. Ligands for EGFR are over-expressed in a significant proportion of breast cancers, and elevated expression of EGFR is associated with poorer clinical outcome. In the present study, we examined the effect of signals through EGFR on MEC differentiation using the human telomerase reverse transcriptase (hTERT-immortalized human stem/progenitor MECs which express cytokeratin 5 but lack cytokeratin 19 (K5(+K19(- hMECs. As reported previously, these cells can be induced to differentiate into luminal and myoepithelial cells under appropriate culture conditions. K5(+K19(- hMECs acquired distinct cell fates in response to EGFR ligands epidermal growth factor (EGF, amphiregulin (AREG and transforming growth factor alpha (TGFα in differentiation-promoting MEGM medium. Specifically, presence of EGF during in vitro differentiation supported development into both luminal and myoepithelial lineages, whereas cells differentiated only towards luminal lineage when EGF was replaced with AREG. In contrast, substitution with TGFα led to differentiation only into myoepithelial lineage. Chemical inhibition of the MEK-Erk pathway, but not the phosphatidylinositol 3-kinase (PI3K-AKT pathway, interfered with K5(+K19(- hMEC differentiation. The present data validate the utility of the K5(+K19(- hMEC cells for modeling key features of human MEC differentiation. This system should be useful in studying molecular/biochemical mechanisms of human MEC differentiation.

  13. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  14. In Vitro Anticancer Effect of Gedunin on Human Teratocarcinomal (NTERA-2 Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Luxmiga Tharmarajah

    2017-01-01

    Full Text Available Gedunin is one of the major compounds found in the neem tree (Azadirachta indica. In the present study, antiproliferative potential of gedunin was evaluated in human embryonal carcinoma cells (NTERA-2, a cancer stem cell model and peripheral blood mononuclear cells (PBMCs, using Sulforhodamine (SRB and WST-1 assays, respectively. The effects of gedunin on expression of heat shock protein 90 (HSP90, its cochaperone Cdc37, and HSP client proteins (AKT, ErbB2, and HSF1 were evaluated by real-time PCR. Effects of gedunin on apoptosis were evaluated by (a apoptosis associated morphological changes, (b caspase 3/7 expression, (c DNA fragmentation, (d TUNEL assay, and (e real-time PCR of apoptosis related genes (Bax, p53, and survivin. Gedunin showed a promising antiproliferative effect in NTERA-2 cells with IC50 values of 14.59, 8.49, and 6.55 μg/mL at 24, 48, and 72 h after incubations, respectively, while exerting a minimal effect on PBMCs. Expression of HSP90, its client proteins, and survivin was inhibited and Bax and p53 were upregulated by gedunin. Apoptosis related morphological changes, DNA fragmentation, and increased caspase 3/7 activities confirmed the proapoptotic effects of gedunin. Collectively, results indicate that gedunin may be a good drug lead for treatment of chemo and radiotherapy resistant cancer stem cells.

  15. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells

    DEFF Research Database (Denmark)

    Høgh, Mette; Tannetta, D; Sargent, I

    2006-01-01

    the umbilical cords. Methods Gene expression was screened by Affymetrix GeneChips and confirmed with real-time polymerase chain reaction or enzyme-linked immunosorbent assay. Main outcome measures Fold changes in gene expression levels between treated and control cultures were calculated from the microarray...... directly causes the endothelial cell dysfunction of pre-eclampsia. This study investigates the effect of STBM on endothelial cell gene expression. Design Human umbilical vein endothelial cells were cultured in the presence and absence of STBM. At specified time points, total RNA was purified from...... the cultures and analysed on microarrays. Setting A laboratory investigation using placentas obtained from a hospital delivery ward. Sample Placentas from nine healthy women were obtained. STBM vesicles were isolated from the placentas and umbilical vein endothelial cell cultures were established from...

  16. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoung Jun; Lee, Yura [Department of Biomedical Laboratory Science, Daejeon 34824 (Korea, Republic of); Kim, Soon Ae [Department of Pharmacology, School of Medicine, Daejeon 34824 (Korea, Republic of); Kim, Jiyeon, E-mail: yeon@eulji.ac.kr [Department of Biomedical Laboratory Science, Daejeon 34824 (Korea, Republic of)

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation. - Highlights: • Plumbagin induces caspase-dependent apoptosis in T-ALL MOLT-4 cells. • Plumbagin activates phosphorylation of stress-activated protein kinase (SAPK) JNK and p38. • Plumbagin inhibits LPS-mediated NF-κB signaling cascade. • Plumbagin inhibits LPS-mediated transcriptional activity of pro-inflammatory cytokines.

  17. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines.

    Science.gov (United States)

    Hu, Xiaolan; Lin, Shuxin; Yu, Daihua; Qiu, Shuifeng; Zhang, Xianqi; Mei, Ruhuan

    2010-12-01

    Salidroside (p-hydroxyphenethyl-beta-d-glucoside), which is present in all species of the genus Rhodiola, has been reported to have a broad spectrum of pharmacological properties. The present study, for the first time, focused on evaluating the effects of the purified salidroside on the proliferation of various human cancer cell lines derived from different tissues, and further investigating its possible molecular mechanisms. Cell viability assay and [(3)H] thymidine incorporation were used to evaluate the cytotoxic effects of salidroside on cancer cell lines, and flow cytometry analyzed the change of cell cycle distribution induced by salidroside. Western immunoblotting further studied the expression changes of cyclins (cyclin D1 and cyclin B1), cyclin-dependent kinases (CDK4 and Cdc2), and cyclin-dependent kinase inhibitors (p21(Cip1) and p27(Kip1)). The results showed that salidroside inhibited the growth of various human cancer cell lines in concentration- and time-dependent manners, and the sensitivity to salidroside was different in those cancer cell lines. Salidroside could cause G1-phase or G2-phase arrest in different cancer cell lines, meanwhile, salidroside resulted in a decrease of CDK4, cyclin D1, cyclin B1 and Cdc2, and upregulated the levels of p27(Kip1) and p21(Cip1). Taken together, salidroside could inhibit the growth of cancer cells by modulating CDK4-cyclin D1 pathway for G1-phase arrest and/or modulating the Cdc2-cyclin B1 pathway for G2-phase arrest.

  18. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  19. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-10-01

    Full Text Available Zhen Zhang, Xiumei Zhang, Wei Xue, Yuna YangYang, Derong Xu, Yunxue Zhao, Haiyan LouSchool of Medicine, Shandong University, Jinan, Republic of ChinaAbstract: This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05. Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.Keywords: oridonin, nanosuspension, carcinoma of prostate, PC-3 cells, cell cycle, apoptosis

  20. Effects of blue-green algae extracts on the proliferation of human adult stem cells in vitro: a preliminary study.

    Science.gov (United States)

    Shytle, Douglas R; Tan, Jun; Ehrhart, Jared; Smith, Adam J; Sanberg, Cyndy D; Sanberg, Paul R; Anderson, Jerry; Bickford, Paula C

    2010-01-01

    Adult stem cells are known to have a reduced restorative capacity as we age and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We have previously reported that a proprietary nutraceutical formulation, NT-020, promotes proliferation of human hematopoietic stem cells in vitro and protects stem cells from oxidative stress when given chronically to mice in vivo. Because previous reports suggest that the blue green algae, Aphanizomenon flos-aquae (AFA) can modulate immune function in animals, we sought to investigate the effects of AFA on human stem cells in cultures. Two AFA products were used for extraction: AFA whole (AFA-W) and AFA cellular concentrate (AFA-C). Water and ethanol extractions were performed to isolate active compounds for cell culture experiments. For cell proliferation analysis, human bone marrow cells or human CD34+ cells were cultured in 96 well plates and treated for 72 hours with various extracts. An MTT assay was used to estimate cell proliferation. We report here that the addition of an ethanol extract of AFA-cellular concentrate further enhances the stem cell proliferative action of NT-020 when incubated with human adult bone marrow cells or human CD34+ hematopoietic progenitors in culture. Algae extracts alone had only moderate activity in these stem cell proliferation assays. This preliminary study suggests that NT-020 plus the ethanol extract of AFA cellular concentrate may act to promote proliferation of human stem cell populations.

  1. Methoxyflavone derivatives modulate the effect of TRAIL-induced apoptosis in human leukemic cell lines

    Directory of Open Access Journals (Sweden)

    Wudtiwai Benjawan

    2011-12-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL induces apoptosis in various tumor cells, but does not affect normal cells or human leukemic cells, such as MOLT-4 and U937 cells, which are relatively resistant to TRAIL. Three flavonoids extracted from the rhizome of K. parviflora were 5,7-dimethoxyflavone (DMF, 5,7,4'-trimethoxyflavone (TMF and 3,5,7,3',4'-pentamethoxyflavone (PMF, and synthetic flavonoids including 5-methoxyflavone (5-MF and 2'-methoxyflavone (2"-MF were chosen for testing in this study. The aims of this study were to examine whether the treatment of TRAIL-resistant leukemia MOLT-4 and U937 cells, with methoxyflavone derivatives could enhance the apoptotic response and to identify the mechanism involved. Methods The cytotoxic effect of methoxyflavone (MF derivatives in MOLT-4, U937 and peripheral blood mononuclear cells (PBMCs was analyzed by the MTT assay. The induction of apoptosis and the reduction of mitochondrial transmembrane potential (ΔΨm after staining with annexin V FITC and propidium iodide (PI, and 3,3'-dihexyloxacarbocyanine iodide (DiOC6, respectively, were performed using flow cytometry. ROS production was determined by staining with 2',7'-dichlorofluorescin diacetate and processed with a flow cytometer. DR4, DR5, cFLIP, Mcl-1, BAX and Bid expression were demonstrated by immunoblotting. Caspase-8 and -3 activities were determined by using IETD-AFC and DEVD-AFC substrates and the fluorescence intensity was measured. Results All methoxyflavone derivatives were cytotoxic to MOLT-4, U937 cells and PBMCs, except DMF, TMF and PMF were not toxic to PBMCs. All MF derivatives induced human leukemic MOLT-4 cell apoptosis, but not in U937 cells. Percentage of MOLT-4 cells with (ΔΨm was increased when treated with DMF, TMF, PMF, 5-MF and 2'-MF in the presence of TRAIL. 5-MF and 2'-MF enhanced TRAIL-induced apoptosis through the up-regulation of both DRs and the down-regulation of c

  2. Cytotoxic Effect of Coscinium fenestratum on Human Head and Neck Cancer Cell Line (HN31

    Directory of Open Access Journals (Sweden)

    Saranyapin Potikanond

    2015-01-01

    Full Text Available Coscinium fenestratum is widely used as a medicinal plant in many Asian countries. This study aimed to investigate the cytotoxic effect of a crude water extract of C. fenestratum (CF extract compared to 5-fluorouracil (5-FU on human HN31 cell line, a metastatic squamous cell carcinoma of the pharynx. The results revealed that cell morphology visualized under inverted light microscopy was changed from flat with a polygonal appearance to round appearance after CF extract application. The cell viability assay (MTT test showed that the concentration producing 50% growth inhibition (IC50 at 48-hour incubation of CF extract on HN31 was 0.12 mg/mL, while the IC50 of 5-FU was 6.6 mg/mL, indicating that CF extract has a higher potency. However, combining various concentrations of 5-FU and CF extract at IC50 did not show synergistic effect. The CF extract dose dependently increased cell apoptosis determined by Annexin-V and propidium iodide staining. It decreased the phosphorylation of p38 MAPK and pAkt, while it increased the tumor suppressor protein p53. In conclusion, the cytotoxicity of CF extract was associated with the modulation of p38 MAPK, pAkt, and p53 signal molecules, leading to inhibiting cell survival and increasing apoptosis. No synergistic effects of CF extract and 5-FU were observed.

  3. Apoptotic effect and mechanisms of AHPN on human skin malignant melanoma cell A375

    Institute of Scientific and Technical Information of China (English)

    Min Pan; Zhenhui Peng; Shengxiang Xiao; Jianwen Ren; Yan Liu; Xiaoli Li; Zhengxiao Li

    2008-01-01

    Objective: To study apoptotic effects of synthetic retinoic acid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid(AHPN) on human skin malignant melanoma A375 cells in comparison with the natural iigand all-trans-retinoic acid(ATRA) in vitro and the mechanisms related to the actions of AHPN. Methods:MTT assay was used to determine the anti-proliferative effects of AHPN and ATRA on A375 cells. Flow cytometry was performed to investigate the influence of AHPN and ATRA on cell cycle and cell apoptosis. In addition, transfection and luciferase activity assays were employed to explore the mechanisms of how AHPN executes its proapoptotic function. Results:Firstly, AHPN promoted apoptosis and G1 arrest in A375 cells compared with ATRA. Secondly, the activity of NF-kB in A375 cells treated with AHPN increased 2-3 times compared with solvent DMSO treatment. Conelusion:AHPN,in comparison with ATRA, is a more effective alternative for therapy of malignant melanoma. The potentially proapoptotic function of AHPN requires activation of NF-kB.

  4. Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-xin; XUE Shou-ru; DONG Wan-li; Kong Yan

    2009-01-01

    Background Human amniotic epithelial cells (HAECs) are able to secrete biologically active neurotrophins such as brain-derived neurotrophic factor and neurotrophin-3, both of which exhibit trophic activities on dopamine neurons.Previous study showed that when human amniotic epithelial cells were transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-induced Parkinson disease rats, the cells could survive and exert functional effects. The purpose of this study was to investigate the survival and the differentiation of human amniotic epithelial cells after being transplanted into the lateral ventricle of Parkinson's disease (PD) rats, and to investigate the effects of grafts on healing PD in models.Methods The Parkinson's model was made with stereotactic microinjection of 6-hydroxydopamine (6-OHDA) into the striatum of a rat. The PD models were divided into two groups: the HAECs group and the normal saline (NS) group.Some untreated rats were taken as the control. The rotational asymmetry induced by apomorphine of the HAECs group and the NS group were measured post cell transplantation. The expression of nestin and vimentin in grafts were determined by immunohistology. Ten weeks after transplantation the density of tyrosine hydroxylase positive cells in the substantia nigra of the HAECs group, NS group and the untreated group was determined. The differentiation of grafts was determined by TH immunohistology. High performance liquid chromatography (HPLC) was used to determine monoamine neurotransmitter levels in the striatum.Results The rotational asymmetry induced by apomorphine of the HAECs group was ameliorated significantly compared to the NS group two weeks after transplantation (P <0.01). The grafts expressed nestin and vimentin five weeks after transplantation. TH immunohistochemistry indicated that the TH positive cells in the substantia nigra of the HAECs group increased significantly compared to the NS group (P<0.01). Tyrosine hydroxylase (TH) positive

  5. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    Science.gov (United States)

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  6. Defined plant extracts can protect human cells against combined xenobiotic effects

    Directory of Open Access Journals (Sweden)

    Clair Emilie

    2011-01-01

    Full Text Available Abstract Background Pollutants representative of common environmental contaminants induce intracellular toxicity in human cells, which is generally amplified in combinations. We wanted to test the common pathways of intoxication and detoxification in human embryonic and liver cell lines. We used various pollutants such as Roundup residues, Bisphenol-A and Atrazine, and five precise medicinal plant extracts called Circ1, Dig1, Dig2, Sp1, and Uro1 in order to understand whether specific molecular actions took place or not. Methods Kidney and liver are major detoxification organs. We have studied embryonic kidney and hepatic human cell lines E293 and HepG2. The intoxication was induced on the one hand by a formulation of one of the most common herbicides worldwide, Roundup 450 GT+ (glyphosate and specific adjuvants, and on the other hand by a mixture of Bisphenol-A and Atrazine, all found in surface waters, feed and food. The prevention and curative effects of plant extracts were also measured on mitochondrial succinate dehydrogenase activity, on the entry of radiolabelled glyphosate (in Roundup in cells, and on cytochromes P450 1A2 and 3A4 as well as glutathione-S-transferase. Results Clear toxicities of pollutants were observed on both cell lines at very low sub-agricultural dilutions. The prevention of such phenomena took place within 48 h with the plant extracts tested, with success rates ranging between 25-34% for the E293 intoxicated by Roundup, and surprisingly up to 71% for the HepG2. By contrast, after intoxication, no plant extract was capable of restoring E293 viability within 48 h, however, two medicinal plant combinations did restore the Bisphenol-A/Atrazine intoxicated HepG2 up to 24-28%. The analysis of underlying mechanisms revealed that plant extracts were not capable of preventing radiolabelled glyphosate from entering cells; however Dig2 did restore the CYP1A2 activity disrupted by Roundup, and had only a mild preventive effect

  7. Effects of zero magnetic field on the conformation of chromatin in human cells.

    Science.gov (United States)

    Belyaev IYa; Alipov, Y D; Harms-Ringdahl, M

    1997-10-20

    The effects of zero magnetic field on human VH-10 fibroblasts and lymphocytes were studied by the method of anomalous viscosity time dependencies (AVTD). A decrease of about 20% in the AVTD peaks was observed within 40 to 80 min of exposure of fibroblasts. This decrease was transient and disappeared 120 min after beginning of exposure. Similar kinetics for the effect of zero field was observed when cells were exposed 20 min and then kept at an ambient field. A 20% decrease of the AVTD peaks (p field was reproduced in four independent experiments (out of four) with human lymphocytes from the same healthy donor. Contrary to the effects of zero field, irradiation of lymphocytes or fibroblasts with gamma-rays resulted in significant increase of the AVTD peaks immediately after irradiation. We concluded that zero field and gamma-rays caused hypercondensation and decondensation of chromatin, correspondingly. The effect of ethidium bromide served as a positive control and supported this conclusion. The effects of zero field on human lymphocytes were more significant in the beginning of G1-phase than in G0-phase. Thus, human fibroblasts and lymphocytes were shown to respond to zero magnetic field.

  8. Effects of Curcumin on Invasion and Metastasis in the Human Cervical Cancer Cells Caski

    Institute of Scientific and Technical Information of China (English)

    Fang XU; Xiao-ling MU; Jing ZHAO

    2009-01-01

    Objective: To explore the effects of curcumin on invasion and metastasis in the human cervical cancer cells Caski.Methods: Caski cells were treated with 10, 25, 50μmol/L curcumin for 24, 48, 72 h. Proliferation of Caski cells was measured with MTT assay. When treated with 50μmol/L curcumin for 72 h, the expressions of MMP-2, MT1-MMP and NF-κB of cells were detected by Western-blot, and invasion and metastasis of Caski cells were evaluated with transwell chamber.Results: After being treated with 10μmol/L, 25μmol/L, 50μmol/L curcumin for 24, 48 and 72 h, the proliferation of Caski cells was inhibited in a dose-and time-dependent manner. The expression of MMP-2, MT1-MMP and NF-κB were decreased when being treated with 50μmol/L curcumin for 72 h. After treatment with 50μmol/L curcumin, in invasion assay, the number of cells in curcumin treated group to migrate to filter coated with Matrigel was reduced compared with control group(P<0.05). Meanwhile, in migration assay, the number of cells in curcumin treated group to migrate to filter was also decreased compared with control group (P<0.05).Conclusion: Curcumin could affect the invasion and metastasis of the human cervical cancer cells Caski. Inhibiting the expression of MMP-2, MT1-MMP and NF-κB was probably one of its molecular mechanisms.

  9. Effects of inhibition of ubiquitin-proteasome pathway on human primary leukemic cells

    Institute of Scientific and Technical Information of China (English)

    兰雨; 张学敏; 杨平地; 胡美茹; 于鸣; 杨怡; 沈倍奋

    2002-01-01

    Though there were a lot of reports about the totally different responses to the inhibition of ubiquitin-proteasome pathway in different kinds of cell lines, much less has been known about the responses in primary human leukemic cells. In this study, the effects of inhibition of ubiquitin-proteasome pathway on human bone marrow (BM) mononuclear cells (MNCs) obtained from 10 normal persons and 8 leukemia patients were examined. The results showed that the responses obviously varied individually. Among them, BM MNCs in 3 cases of leukemic patients were extremely sensitive, demonstrated by that >90% cells were induced to undergo apoptosis within 24 h, but MNCs in 10 cases of normal persons showed resistance to the inhibition and no apoptosis was observed. Furthermore, Western blots revealed that the Bcl-2 expression was relatively high in the sensitive primary leukemia cells, and especially the cleavage of 26 ku Bcl-2 into a 22 ku fragment occurred during the induction of apoptosis. In contrast, the Bcl-2 expression was either undetectable or detectable but no cleavage of that above was observed in the cells insensitive to the inhibition of the pathway (including BM MNCs in normal persons). Together with the observations on the leukemic cell lines, these findings suggested the correlation of the specific cleavage of Bcl-2 into a shortened fragment with the sensitivity of cells to the inhibition of ubiquitin-proteasome pathway, which provides clues to the further understanding of the mechanisms of that dramatically different responses existing in different kinds of cells to the inhibition of ubiquitin-proteasome pathway.

  10. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells.

    Science.gov (United States)

    Kumar, Ajay; Bhattacharyya, Shalmoli; Rattan, Vidya

    2015-12-01

    Human dental pulp stem cells (hDPSCs) hold great promise as a source of adult stem cells for utilization in regenerative medicine. Successful storage and post thaw recovery of DPSCs without loss of function is a key issue for future clinical application. Most of the cryopreservation methods use controlled rate freezing and vapor phase nitrogen to store stem cells. But these methods are both expensive and laborious. In this study, we isolated DPSCs from a patient undergoing impacted mandibular third molar extraction. We adopted eight different methods of cryopreservation at -80 °C for long term storage of the DPSC aliquots. Various parameters like proliferation, cell death, cell cycle, retention of stemness markers and differentiation potential were studied post cryopreservation period of 1 year. We observed successful recovery of stem cells in every method and a significant difference in proliferation potential and cell death between samples stored by different methods. However, post thaw, all cells retained their stemness markers. All DPSCs stored by different methods were able to differentiate into osteoblast like cells, adipocytes and neural cells. Based on these parameters we concluded that uncontrolled freezing at a temperature of -80 °C is as effective as controlled freezing using ethanol vessels and other cryopreservation methods. To the best of our knowledge, our study provides the first proof of concept that long term storage in uncontrolled freezing of cells at -80 °C in 10 % DMSO does not affect the revival capacity of hDPSCs. This implies that DPSCs may be used successfully for tissue engineering and cell based therapeutics even after long term, uncontrolled cryopreservation.

  11. Effects of salinomycin on human bone marrow-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Scherzed, A; Hackenberg, S; Froelich, K; Rak, K; Technau, A; Radeloff, A; Nöth, U; Koehler, C; Hagen, R; Kleinsasser, N

    2013-04-26

    Various hypotheses on the origin of cancer stem cells (CSCs) exist, including that CSCs develop from transformed human bone marrow mesenchymal stem cells (hBMSC). Since the polyether antibiotic salinomycin selectively kills CSCs, the present study aims to elucidate the effects of salinomycin on normal hBMSC. The immunophenotype of hBMSC after salinomycin exposure was observed by flow cytometry. The multi-differentiation capacity of hBMSC was evaluated by Oil Red O and van Kossa staining. Cytotoxic effects of salinomycin were monitored by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay. Furthermore, spheroid formation and migration capacity were assessed. There were no differences in the immunophenotype and multi-differentiation capacity of hBMSC induced by salinomycin treatment. Cytotoxic effects were observed at concentrations of 30 μM and above. Neither the migration capability nor the ability to form spheroids was affected. Essential functional properties of hBMSC were unaffected by salinomycin. However, dose-dependent cytotoxicity effects could be observed. Overall, low dose salinomycin showed no negative effects on hBMSC. Since mesenchymal stem cells from various sources respond differently, further in vitro studies are needed to clarify the effect of salinomycin on tissue-specific stem cells.

  12. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Yanxi [Department of Biology, Lakehead University, Thunder Bay (Canada); College of Life Science, Shanxi University, Taiyuan (China); Wu, Bo [Department of Biology, Lakehead University, Thunder Bay (Canada); Department of Pathophysiology, Harbin Medical University, Harbin (China); Cao, Qiuhui [Department of Biology, Lakehead University, Thunder Bay (Canada); Wu, Lingyun [Department of Pathophysiology, Harbin Medical University, Harbin (China); Department of Pharmacology, University of Saskatchewan, Saskatoon (Canada); Yang, Guangdong, E-mail: gyang@lakeheadu.ca [The School of Kinesiology, Lakehead University, Thunder Bay (Canada)

    2011-12-15

    Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of

  13. Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells.

    Science.gov (United States)

    Toledano-Magaña, Yanis; Flores-Santos, Leticia; Montes de Oca, Georgina; González-Montiel, Alfonso; Laclette, Juan-Pedro; Carrero, Julio-César

    2015-01-01

    Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC) was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h), followed by the RAW 264.7 cell line (40%), and finally, macrophages derived from mice bone marrow monocytes (98%). Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6), in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro.

  14. Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells

    Directory of Open Access Journals (Sweden)

    Yanis Toledano-Magaña

    2015-01-01

    Full Text Available Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h, followed by the RAW 264.7 cell line (40%, and finally, macrophages derived from mice bone marrow monocytes (98%. Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6, in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro.

  15. Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells

    Science.gov (United States)

    Toledano-Magaña, Yanis; Flores-Santos, Leticia; Montes de Oca, Georgina; González-Montiel, Alfonso; Laclette, Juan-Pedro; Carrero, Julio-César

    2015-01-01

    Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC) was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h), followed by the RAW 264.7 cell line (40%), and finally, macrophages derived from mice bone marrow monocytes (98%). Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6), in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro. PMID:26090385

  16. Effects of Spinach Powder Fat-Soluble Extract on Proliferation of Human Gastric Adenocarcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    HE TAo; HUANG CHENG-YU; CHEN HAl; HOU YUN-HUA

    1999-01-01

    Four kinds of assays were used to study the effect of a fat-soluble extract of spinach powder(SPFE) on the proliferation of human gastric adenocarcinoma cell line (SGC-7901) in vitro.These studies included: ( i ) cell growth assay, ( ii ) colony forming assay, ( iii ) MTT colorimetric assay, and ( iv ) 3H-TdR incorporation assay. The concentrations of SPFE expressed as the level of β-carotene in the medium were 2 × 10-s, 2 × 10-7 and 2 × 10-6 mol/L β-carotene in assays ( i ) ~ ( iii ), but 4 × 10-8, 4 × 10-7 and 4 × 10-6 mol/L β-carotene in assay ( iV ) respectively. The results indicated that SPFE inhibited the proliferation and colony forming ability of SGC-7901 cells. And in MTT assay, SPFE inhibited the viability of SGC-7901 cells, but no inhibitory effect of SPFE was observed on the viability of lymphocytes in peripheral blood of healthy people. Finally, in the 3H-TdR incorporation test, both SPFE and β-carotene showed significant inhibitory effects on DNA synthesis in SGC-7901 cells, but SPFE was more effective than 3-carotene.

  17. Effect of Antibiotics against Mycoplasma sp. on Human Embryonic Stem Cells Undifferentiated Status, Pluripotency, Cell Viability and Growth

    Science.gov (United States)

    Romorini, Leonardo; Riva, Diego Ariel; Blüguermann, Carolina; Videla Richardson, Guillermo Agustin; Scassa, Maria Elida; Sevlever, Gustavo Emilio; Miriuka, Santiago Gabriel

    2013-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal. PMID:23936178

  18. Effects of the antitumoural dequalinium on NB4 and K562 human leukemia cell lines. Mitochondrial implication in cell death.

    Science.gov (United States)

    Galeano, Eva; Nieto, Elena; García-Pérez, Ana Isabel; Delgado, M Dolores; Pinilla, Montserrat; Sancho, Pilar

    2005-10-01

    Dequalinium (DQA) is a delocalized lipophylic cation that selectively targets the mitochondria of carcinoma cells. However, the underlying mechanisms of DQA action are not yet well understood. We have studied the effects of DQA on two different leukemia cell lines: NB4, derived from acute promyelocytic leukemia, and K562, derived from chronic myeloid leukemia. We found that DQA displays differential cytotoxic activity in these cell lines. In NB4 cells, a low DQA concentration (2microM) induces a mixture of apoptosis and necrosis, whereas a high DQA concentration (20microM) induces mainly necrosis. However, K562 cell death was always by necrosis as the cells showed a resistance to apoptosis at all time-periods and DQA concentrations assayed. In both cell lines, the cell death seems to be mediated by alterations of mitochondrial function as evidenced by loss of mitochondrial transmembrane potential, O2*- accumulation and ATP depletion. The current study improves the knowledge on DQA as a novel anticancer agent with a potential application in human acute promyelocytic leukemia chemotherapy.

  19. Selective sensitiveness of mesenchymal stem cells to shock waves leads to anticancer effect in human cancer cell co-cultures.

    Science.gov (United States)

    Foglietta, Federica; Duchi, Serena; Canaparo, Roberto; Varchi, Greta; Lucarelli, Enrico; Dozza, Barbara; Serpe, Loredana

    2017-03-15

    Mesenchymal stem cells (MSC) possess the distinctive feature of homing in on and engrafting into the tumor stroma making their therapeutic applications in cancer treatment very promising. Research into new effectors and external stimuli, which can selectively trigger the release of cytotoxic species from MSC toward the cancer cells, significantly raises their potential. Shock waves (SW) have recently gained recognition for their ability to induce specific biological effects, such as the local generation of cytotoxic reactive oxygen species (ROS) in a non-invasive and tunable manner. We thus investigate whether MSC are able to generate ROS and, in turn, affect cancer cell growth when in co-culture with human glioblastoma (U87) or osteosarcoma (U2OS) cells and exposed to SW. MSC were found to be the cell line that was most sensitive to SW treatment as shown by SW-induced ROS production and cytotoxicity. Notably, U87 and U2OS cancer cell growth was unaffected by SW exposure. However, significant decreases in cancer cell growth, 1.8 fold for U87 and 2.3 fold for U2OS, were observed 24h after the SW treatment of MSC co-cultures with cancer cells. The ROS production induced in MSC by SW exposure was then responsible for lipid peroxidation and cell death in U87 and U2OS cells co-cultured with MSC. This experiment highlights the unique ability of MSC to generate ROS upon SW treatment and induce the cell death of co-cultured cancer cells. SW might therefore be proposed as an innovative tool for MSC-mediated cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of asiaticoside on human umbilical vein endothelial cell apoptosis induced by Aβ1-42.

    Science.gov (United States)

    Zhang, Zhuo; Cai, Pengfei; Zhou, Jie; Liu, Minghua; Jiang, Xian

    2015-01-01

    This study is to investigate the potential role of asiaticoside (AS) in Aβ1-42-induced apoptosis on the human umbilical vein endothelial cell (HUVEC). HUVEC cells were divided into Aβ1-42 group (treated with 50 μM Aβ1-42), AS groups (treated with 50 μM Aβ1-42 and 10 mM, 1 mM, 0.1 mM or 0.01 mM AS), and negative control group (without treatments). Cell proliferation was detected by CCK-8 assay. Apoptosis was analyzed by Hochest33342 staining and flow cytometry. Western Blot was carried out to detect the expression of Bcl-2 and Bax protein. Aβ1-42 treatment inhibited cell proliferation and increased cell apoptosis of HUVEC cells. Interestingly, AS at concentrations of 10 mM, 1 mM, 0.1 mM and 0.01 mM reversed the effects of Aβ1-42 by increasing cell survival rate and reducing apoptosis of HUVEC cells. Furthermore, the expression of Bcl-2 protein was increased whereas the expression of Bax protein was decreased in AS groups. Compared with Aβ1-42 group, the ratio of Bcl-2/Bax was significantly increased in AS groups (P < 0.05). These results suggested that AS may be effective in protecting cells from damage caused by aggregated Aβ1-42. And this effect may be attributed to the increase of Bcl-2 and decrease of Bax under AS treatment.

  1. The pro-adhesive and pro-survival effects of glucocorticoid in human ovarian cancer cells.

    Science.gov (United States)

    Yin, Lijuan; Fang, Fang; Song, Xinglei; Wang, Yan; Huang, Gaoxiang; Su, Jie; Hui, Ning; Lu, Jian

    2016-07-01

    Cell adhesion to extracellular matrix (ECM) is controlled by multiple signaling molecules and intracellular pathways, and is pivotal for survival and growth of cells from most solid tumors. Our previous works demonstrated that dexamethasone (DEX) significantly enhances cell adhesion and cell resistance to chemotherapeutics by increasing the levels of integrin β1, α4, and α5 in human ovarian cancer cells. However, it is unclear whether the components of ECM or other membrane molecules are also involved in the pro-adhesive effect of DEX in ovarian cancer cells. In this study, we demonstrated that the treatment of cells with DEX did not change the expression of collagens (I, III, and IV), laminin, CD44, and its principal ligand hyaluronan (HA), but significantly increased the levels of intracellular and secreted fibronectin (FN). Inhibiting the expression of FN with FN1 siRNA or blocking CD44, another FN receptor, with CD44 blocking antibody significantly attenuated the pro-adhesion of DEX, indicating that upregulation of FN mediates the pro-adhesive effect of DEX by its interaction with CD44 besides integrin β1. Moreover, DEX significantly enhanced cell resistance to the chemotherapeutic agent paclitaxel (PTX) by activating PI-3K-Akt pathway. Finally, we found that DEX also significantly upregulated the expression of MUC1, a transmembrane glycoprotein. Inhibiting the expression of MUC1 with MUC1 siRNA significantly attenuated the DEX-induced effects of pro-adhesion, Akt-activation, and pro-survival. In conclusion, these results provide new data that upregulation of FN and MUC1 by DEX contributes to DEX-induced pro-adhesion and protects ovarian cancer cells from chemotherapy.

  2. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    Science.gov (United States)

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  3. Effects of hypergravity on the expression of multidrug resistance proteins in human melanocytic cells

    Science.gov (United States)

    Lambers, B.; Stieber, C.; Grigorieva, O.; Block, I.; Bromeis, B.; Buravkova, L.; Gerzer, R.; Ivanova, K.

    In humans the skin serves as a barrier against potentially harmful effects of the environment Human melanocytes constitute the principal cells for skin pigmentation by synthesizing the pigment melanin Melanin acts as a scavenger for free radicals that may arise during metabolic stress The melanocytes are also able to secrete a wide range of signal molecules In previous studies we found that normal human melanocytes NHMs and non-metastatic melanoma cells respond to long-time exposure to hypergravity up to 5 g for 24 h with elevated efflux of guanosine 3 5 -cyclic monophosphate cGMP in the presence of phosphodiesterase PDE inhibitors e g 3-isobutyl-1-methylxanthine Cyclic GMP is known to play a signaling role in human melanocyte physiology It controls the signaling activities of nitric oxide NO in relation to melanogenesis as well as in melanocyte-extracellular matrix interactions that may be important for some pathological processes including metastasis The present study investigated the effects of hypergravity on the expression of the multidrug resistance proteins MRP 4 and 5 as highly selective cGMP exporters in non-stimulated and NO-stimulated NHMs and melanoma cells MCs on mRNA levels using semi-quantitative RT-PCR analysis Hypergravity up to 5 g for 24 h was produced by horizontal centrifugal acceleration The NONOate DETA-NO 0 1 mM was used as a direct NO donor for cell stimulation For 5-g experiments the mRNA levels for the highly specific cGMP transporter MRP5 appeared to be

  4. Effects of leptin and neuropeptide Y on function of human ovarian granulosa cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Song Qing; Chen Xiao-yan; Cao Zuan-sun; Mao Wen-jun

    2006-01-01

    Objective: To investigate the effects of leptin and neuropeptide Y on steroidogenesis of human ovarian granulosa cells in vitro. Methods: Human ovarian granulosa cells were isolated from follicular fluid obtained during oocyte retrieval of in vitro fertilization-embryo transfer program and cultured for 2 days with various concentration of leptin(1,10,100 ng/ml) or neuropeptide Y (1×10-6, 1×10-7, 1×10-8 mol/L) alone or both,or with the combination of human chorionic gonadotropin (hCG 0, 20 IU/L). The medium was collected for estradiol (E2) and progesterone (P) measurements. Results: (1)Whether hCG existed or not, the adding of leptin did not alter estradiol and progesterone production by human granulosa cells (P>0.05).(2) Only when the concentration of neuropeptide Y was at 1×10-7mol/L,estradiol level was lower than that in the control (P<0.05).(3) The levels of estradiol in neuropeptide Y (1×10-7mol/L) plus hCG group were significantly higher than those with neuropeptide Y alone(P<0.05). (4) In the absence of hCG, the levels of estradiol in neuropeptide Y (1×10-7mol/L)plus leptin (10 ng/ml) group were significantly higher than those with neuropeptide Y(1×10-7mol/L)alone(P<0.05).Conclusions: (1)Leptin alone produced no direct effect on secretion of E2 and P from granulosa cells in vitro.(2)Neuropeptide Y alone may inhibit the secretion of E2, but the inhibition would probably be blocked with the presentation of hCG.(3)Leptin probably blocked the inhibition of neuropeptide Y on E2 secretion, and this may indicate that there were some coordination between leptin and neuropeptid Y on the level of ovarian function.

  5. Effects of antimetabolites on adenovirus replication in sensitive and resistant human melanoma cell lines.

    Science.gov (United States)

    Musk, P; Stowers, A; Parsons, P G

    1990-02-15

    Methotrexate (MTX), 6-thioguanine (6-TG) and cytosine arabinoside (ara-C) inhibited the replication of adenovirus (viral capacity) more in drug-sensitive than in resistant human melanoma cell lines. By comparison, inhibition of cellular DNA and RNA synthesis after short treatment periods (less than 48 hr) was not a good predictor of cellular sensitivity. MTX, an inhibitor of de novo nucleotide synthesis, was most effective when added to cells just before infection with virus and inhibited viral capacity at doses 10-1000-fold lower than those required to affect cell survival. The MTX-sensitive cell lines, members of a DNA repair deficient group sensitive also to killing by methylating agents (the Mer- phenotype), were not deficient in dihydrofolate reductase but exhibited DNA fragmentation after treatment with MTX for 48 hr. 6-TG and ara-C, inhibitors of purine and pyrimidine salvage, were most inhibitory to viral capacity when added greater than 36 hr before virus infection and were less effective than MTX (doses 5-7-fold and 4-24-fold higher than for cell survival respectively). No correlation was found between MTX sensitivity and sensitivity to 6-TG or ara-C. These results indicate that (i) inhibition of viral capacity is a more comprehensive test of antimetabolite cytotoxicity than inhibition of cellular DNA or RNA synthesis; (ii) the viral capacity assay correctly predicts cellular sensitivity to MTX, 6-TG and ara-C and therefore has potential for application to primary cultures of human tumours; and (iii) MTX-sensitive cell lines and adenovirus replication rely heavily on de novo nucleotide synthesis, which in Mer- cells appears to be linked to a DNA repair defect as yet undefined.

  6. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures.

    Science.gov (United States)

    Croce, Nicoletta; Bernardini, Sergio; Di Cecca, Stefano; Caltagirone, Carlo; Angelucci, Francesco

    2013-07-15

    l-Glutamic acid (l-glutamate) is used to induce excitotoxicity and test neuroprotective compounds in cell cultures. However, because l-glutamate powder is nearly insoluble in water, many manufacturers recommend reconstituting l-glutamate in hydrochloric acid (HCl) prior to successive dilutions. Nevertheless, HCl, even at low concentrations, may alter the pH of the cell culture medium and interfere with cell activity. Thus, the aim of this study was to evaluate whether the reconstitution of l-glutamate powder in HCl alters its capacity to induce neurotoxicity in different human neuroblastoma cell lines. SH-SY5Y, IMR-32 and SK-N-BE(2) cells were exposed to various concentrations of l-glutamate, which was either reconstituted in HCl (1M) or post re-equilibrated to the pH of the culture medium (7.5). After 24 and 48h of incubation, changes in the cell viability of treated versus untreated cells were evaluated. The effect of an identical amount of HCl present in the l-glutamate dilutions on neuroblastoma cell survival was also investigated. Our data showed that the neurotoxicity of glutamate reconstituted in HCl was comparable to that of HCl alone. Moreover, the pH variations induced by glutamate or HCl in the culture medium were similar. When the pH of the glutamate stock solution was re-equilibrated, l-glutamate induced variation in cell viability to a lower extent and after a longer incubation time. This study demonstrated that HCl used to reconstitute l-glutamate powder might alter the effect of glutamate itself in neuroblastoma cell cultures. Thus, this information might be useful to scientists who use l-glutamate to induce excitotoxicity or to test neuroprotective agents.

  7. Antitumour Effects of Isocurcumenol Isolated from Curcuma zedoaria Rhizomes on Human and Murine Cancer Cells

    Science.gov (United States)

    Lakshmi, S.; Padmaja, G.; Remani, P.

    2011-01-01

    Curcuma zedoaria belonging to the family Zingiberaceae has been used in the traditional system of medicine in India and Southwest Asia in treating many human ailments and is found to possess many biological activities. The rationale of the present study was to isolate, identify, and characterize antitumour principles from the rhizomes of Curcuma zedoaria, to assess its cytotoxic effects on human and murine cancer cells, to determine its apoptosis inducing capacity in cancer cells, and to evaluate its tumour reducing properties in in vivo mice models. Isocurcumenol was characterized as the active compound by spectroscopy and was found to inhibit the proliferation of cancer cells without inducing significant toxicity to the normal cells. Fluorescent staining exhibited the morphological features of apoptosis in the compound-treated cancer cells. In vivo tumour reduction studies revealed that a dose of 35.7 mg/kg body weight significantly reduced the ascitic tumour in DLA-challenged mice and increased the lifespan with respect to untreated control mice. PMID:27429805

  8. Effect of transvaginal ultrasound on human chorionic villus cell apoptosis during pregnancy.

    Science.gov (United States)

    Qu, X L; Wang, H T; Zou, J L; Cheng, L; Wang, F; Ma, L L; Li, J

    2015-12-29

    With the advancement of ultrasonic technology in recent years, sonography has become a common medical diagnostic tool, as it has elevated output sonic intensity and elongated exposure time. This study investigates the effect of ultrasound on human chorionic villus cell apoptosis during early pregnancy. Transvaginal ultrasound was performed for a total of 60 women who had undergone induced abortion at our hospital. They were randomly divided into the control, short ultrasound (10 min), and long ultrasound (20 min) groups (N = 20 each). Twenty-four hours after ultrasonic exposure, chorionic villus tissues were extracted during induced abortion, and were tested for cell apoptosis using flow cytometry. Bax and B cell lymphoma-2 (Bcl-2) protein levels were also quantified by immunohistochemistry. We found that the long ultrasound group had significantly higher cell apoptosis rates compared to the short ultrasound group, which in turn had higher rates compared to the control group (P ultrasound groups (P ultrasound groups, however, were downregulated as compared to those in the control group (P < 0.05). It is therefore possible that transvaginal sonography can potentiate the apoptosis of human chorionic villus cells by increasing the Bax/Bcl-2 protein ratio.

  9. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hass Ralf

    2010-07-01

    Full Text Available Abstract Following cultivation of distinct mesenchymal stem cell (MSC populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O2 revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O2. A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O2 to 196 μmol/L at normoxic 21% O2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.

  10. Effect of lead on IL-8 production and cell proliferation in human oral keratinocytes

    Institute of Scientific and Technical Information of China (English)

    Thaweboon Srosiri; Poomsawat Sopee; Thaweboon Boonyanit

    2010-01-01

    Objective:To investigate the effect of lead on the production of IL-8 and cell proliferation in normal human oral keratinocytes (NHKs). Methods: NHKs were prepared as outgrowths from normal human buccal mucosa. The cells were treated with three concentrations of lead glutamate (4.5í10-5M, 4.5í10-6M and 4.5í10-7M). NHKs grown in glutamic acid were used as control. The amounts of IL-8 secreted in the culture supernatants were evaluated at 12 and 24 h using enzyme-linked immunospecific assay (ELISA). Cell proliferation was determined by the MTT colorimetric assay. Three cultures were used for each experiment, and three independent experiments were performed. Analysis of variance and Duncan’s multiple range tests were used for statistical analysis. Results:An elevation of IL-8 in culture supernatants of NHKs treated with lead at all concentrations at 12 and 24 h after exposure in a dose-dependent manner was revealed. A significant increase in cell numbers was observed only at 24 h exposed to 4.5í10-5M lead glutamate. Conclusions: The capacity of NHKs, to secrete IL-8, enhanced by lead glutamate, is demonstrated here. Induction of cell proliferation is revealed only after exposure to high lead concentration. The elevation of secreted IL-8 is a probable initial sign for the acute inflammatory response and may be involved in the pathogenesis of lead stomatitis.

  11. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release.

    Science.gov (United States)

    Kanjevac, Tatjana; Milovanovic, Marija; Volarevic, Vladislav; Lukic, Miodrag L; Arsenijevic, Nebojsa; Markovic, Dejan; Zdravkovic, Nebojsa; Tesic, Zivoslav; Lukic, Aleksandra

    2012-01-01

    Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.

  12. Activated effects of parathyroid hormone-related protein on human hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Fen-Fen Liang

    Full Text Available BACKGROUND & AIMS: After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1, which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC and LX-2 cell lines. METHODS: TGF-β1, alpha-smooth muscle actin (α-SMA, matrix metalloproteinase 2 (MMP-2, and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR after HSCs or LX-2 cells were treated with PTHrP(1-36 or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA of HSC cell culture media. RESULTS: In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. CONCLUSIONS: PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.

  13. Activated effects of parathyroid hormone-related protein on human hepatic stellate cells.

    Science.gov (United States)

    Liang, Fen-Fen; Liu, Cui-Ping; Li, Li-Xuan; Xue, Min-Min; Xie, Fang; Guo, Yu; Bai, Lan

    2013-01-01

    After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP) has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1), which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC) and LX-2 cell lines. TGF-β1, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR) after HSCs or LX-2 cells were treated with PTHrP(1-36) or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA) of HSC cell culture media. In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.

  14. Nitric oxide donor augments antineoplastic effects of arginine deprivation in human melanoma cells.

    Science.gov (United States)

    Mayevska, Oksana; Chen, Oleh; Karatsai, Olena; Bobak, Yaroslav; Barska, Maryna; Lyniv, Liliana; Pavlyk, Iuliia; Rzhepetskyy, Yuriy; Igumentseva, Natalia; Redowicz, Maria Jolanta; Stasyk, Oleh

    2017-06-15

    Anticancer therapy based on recombinant arginine-degrading enzymes has been proposed for the treatment of several types of malignant cells deficient in arginine biosynthesis. One of the predicted side effects of such therapy is restricted bioavailability of nitric oxide as arginine catabolic product. Prolonged NO limitation may lead to unwanted disturbances in NO-dependent vasodilation, cardiovascular and immune systems. This problem can be overcome by co-supplementation with exogenous NO donor. However, NO may potentially counteract anticancer effects of therapy based on arginine deprivation. In this study, we evaluate for the first time the effects of an exogenous NO donor, sodium nitroprusside, on viability and metastatic properties of two human melanoma cell lines SK-MEL-28 and WM793 under arginine-deprived conditions. It was revealed that NO did not rescue melanoma cells from specific effects evoked by arginine deprivation, namely decreased viability and induction of apoptosis, dramatically reduced motility, invasiveness and clonogenic potential. Moreover, sodium nitroprusside co-treatment augmented several of these antineoplastic effects. We report that a combination of NO-donor and arginine deprivation strongly and specifically impaired metastatic behavior of melanoma cells. Thus, sodium nitroprusside can be considered as an adjuvant for the more efficient treatment of malignant melanoma and possibly other tumors with arginine-degrading enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Biodegradable Polymers Influence the Effect of Atorvastatin on Human Coronary Artery Cells.

    Science.gov (United States)

    Strohbach, Anne; Begunk, Robert; Petersen, Svea; Felix, Stephan B; Sternberg, Katrin; Busch, Raila

    2016-01-22

    Drug-eluting stents (DES) have reduced in-stent-restenosis drastically. Yet, the stent surface material directly interacts with cascades of biological processes leading to an activation of cellular defense mechanisms. To prevent adverse clinical implications, to date almost every patient with a coronary artery disease is treated with statins. Besides their clinical benefit, statins exert a number of pleiotropic effects on endothelial cells (ECs). Since maintenance of EC function and reduction of uncontrolled smooth muscle cell (SMC) proliferation represents a challenge for new generation DES, we investigated the effect of atorvastatin (ATOR) on human coronary artery cells grown on biodegradable polymers. Our results show a cell type-dependent effect of ATOR on ECs and SMCs. We observed polymer-dependent changes in IC50 values and an altered ATOR-uptake leading to an attenuation of statin-mediated effects on SMC growth. We conclude that the selected biodegradable polymers negatively influence the anti-proliferative effect of ATOR on SMCs. Hence, the process of developing new polymers for DES coating should involve the characterization of material-related changes in mechanisms of drug actions.

  16. Biodegradable Polymers Influence the Effect of Atorvastatin on Human Coronary Artery Cells

    Directory of Open Access Journals (Sweden)

    Anne Strohbach

    2016-01-01

    Full Text Available Drug-eluting stents (DES have reduced in-stent-restenosis drastically. Yet, the stent surface material directly interacts with cascades of biological processes leading to an activation of cellular defense mechanisms. To prevent adverse clinical implications, to date almost every patient with a coronary artery disease is treated with statins. Besides their clinical benefit, statins exert a number of pleiotropic effects on endothelial cells (ECs. Since maintenance of EC function and reduction of uncontrolled smooth muscle cell (SMC proliferation represents a challenge for new generation DES, we investigated the effect of atorvastatin (ATOR on human coronary artery cells grown on biodegradable polymers. Our results show a cell type-dependent effect of ATOR on ECs and SMCs. We observed polymer-dependent changes in IC50 values and an altered ATOR-uptake leading to an attenuation of statin-mediated effects on SMC growth. We conclude that the selected biodegradable polymers negatively influence the anti-proliferative effect of ATOR on SMCs. Hence, the process of developing new polymers for DES coating should involve the characterization of material-related changes in mechanisms of drug actions.

  17. Effects of Silver Nanoparticles on Human and Rat Embryonic Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Fang eLiu

    2015-04-01

    Full Text Available Silver nano-particles (Ag-NPs are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products will almost certainly increase environmental silver levels, resulting in increased exposures and the potential for increased adverse reactions including neurotoxic effects. In the present study, embryonic neural stem cells (NSCs from human and rat fetuses (gestational day-16 were used to determine whether Ag-NPs are capable of causing developmental neurotoxicity. The NSCs were cultured in serum free medium supplemented with appropriate growth factors. On the eighth day in vitro (DIV 8, the cells were exposed to Ag-NPs at concentrations of 1, 5, 10, and 20 µg/ml for 24 hours. The cultured cells then were characterized by NSC markers including nestin and SOX2 and a variety of assays were utilized to determine the effects of Ag-NPs on NSC proliferation and viability and the underlying mechanisms associated with these effects. The results indicate that mitochondrial viability (MTT metabolism was substantially attenuated and LDH release was increased significantly in a dose-dependent manner. Ag-NPs-induced neurotoxicity was further confirmed by up-regulated Bax protein expression, an increased number of TUNEL-positively stained cells, and elevated reactive oxygen species (ROS. NSC proliferation was also significantly decreased by Ag-NPs. Co-administration of acetyl-L-carnitine, an antioxidant agent, effectively blocked the adverse effects associated with Ag-NP exposure.

  18. Effect of Polypurine Reverse Hoogsteen Hairpins on Relevant Cancer Target Genes in Different Human Cell Lines.

    Science.gov (United States)

    Villalobos, Xenia; Rodríguez, Laura; Solé, Anna; Lliberós, Carolina; Mencia, Núria; Ciudad, Carlos J; Noé, Véronique

    2015-08-01

    We studied the ability of polypurine reverse Hoogsteen hairpins (PPRHs) to silence a variety of relevant cancer-related genes in several human cell lines. PPRHs are hairpins formed by two antiparallel polypurine strands bound by intramolecular Hoogsteen bonds linked by a pentathymidine loop. These hairpins are able to bind to their target DNA sequence through Watson-Crick bonds producing specific silencing of gene expression. We designed PPRHs against the following genes: BCL2, TOP1, mTOR, MDM2, and MYC and tested them for mRNA levels, cytotoxicity, and apoptosis in prostate, pancreas, colon, and breast cancer cell lines. Even though all PPRHs were effective, the most remarkable results were obtained with those against BCL2 and mammalian target of rapamycin (mTOR) in decreasing cell survival and mRNA levels and increasing apoptosis in prostate, colon, and pancreatic cancer cells. In the case of TOP1, MDM2, and MYC, their corresponding PPRHs produced a strong effect in decreasing cell viability and mRNA levels and increasing apoptosis in breast cancer cells. Thus, we confirm that the PPRH technology is broadly useful to silence the expression of cancer-related genes as demonstrated using target genes involved in metabolism (DHFR), proliferation (mTOR), DNA topology (TOP1), lifespan and senescence (telomerase), apoptosis (survivin, BCL2), transcription factors (MYC), and proto-oncogenes (MDM2).

  19. Dual effects of Ginkgo biloba leaf extract on human red blood cells.

    Science.gov (United States)

    He, Jing; Lin, Juan; Li, Jing; Zhang, Jian-Hong; Sun, Xue-Min; Zeng, Cheng-Ming

    2009-02-01

    Extracts from the leaves of Ginkgo biloba have been used in Chinese medicine for thousands of years. Today, various standardized preparations from G. biloba leaf extract have been developed. G. biloba leaf extract, which contains flavonoids and terpenoids as the major biologically active components, has become one of the most popular and commonly used herbal remedies due to its wide spectrum of beneficial effects on health. In this study, we investigated the effects of G. biloba leaf extract on the properties of human red blood cells in the presence and absence of amyloid peptide (Abeta25-35), peroxide and hypotonic stress. The results suggest that G. biloba leaf extract has a dual action, both protective and disruptive, on red blood cells, depending on whether an exogenous stress is present. G. biloba leaf extract has a protective role on red blood cells against Abeta- and hypotonic pressure-induced haemolysis, peroxide-induced lipoperoxidation, as well as glutathione consumption and methaemoglobin formation. On the other hand, G. biloba leaf extract also exhibited damage to red blood cells by increasing cell fragility, changing cellular morphology and inducing glutathione consumption and methaemoglobin formation, especially when applied at high doses. These anti- and pro-oxidative activities of polyphenolic substances are thought to be involved in the dual function of G. biloba leaf extract. The results of this study suggest that high doses of herbal remedies and dietary supplements can be toxic to cells.

  20. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells.

    Science.gov (United States)

    AbdulQader, Sarah Talib; Kannan, Thirumulu Ponnuraj; Rahman, Ismail Ab; Ismail, Hanafi; Mahmood, Zuliani

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2004-07-01

    Full Text Available Abstract Background BAK (Bcl-2 homologous antagonist/killer is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Methods Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53 and MKN-28 (mutant-type p53. RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. Results BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G0/G1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45, or in p53 mutant-type (MKN-28 gastric cancer cells. Conclusions The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies.

  2. Selective cytotoxic effect of 1-O-undecylglycerol in human melanoma cells

    Directory of Open Access Journals (Sweden)

    Marian Hernández-Colina

    2016-04-01

    Full Text Available Context: 1-O-alkylglycerols are ether-linked glycerols derived from shark liver oil and found in small amounts in human milk. Previous studies showed antineoplastic activity for this family of compounds, structurally related to alkylphospholipids, but the activity of linear chain synthetic alkylglycerols in cancer cell lines is less documented. Melanoma is a high incidence cancer, highly resistant to potential treatments. Finding new anti-cancer compounds to improve melanoma prognosis is a relevant research issue. Aims: To study the cytotoxic effect of 1-O-undecylglycerol in primary cultured normal fibroblasts and A375 human melanoma cell line. Methods: Cells were treated with different concentrations of 1-O-undecylglycerol and viability assessed by MTT assay. Morphological changes were visualized by DAPI and acridine orange-ethidium bromide staining. Mitochondrial membrane potential was evaluated, and gene expression of P53 and BcL-2 was semi-quantified. Results: 1-O-undecylglycerol decreased viability of A375 cells and exerted very low cytotoxicity on primary cultured normal fibroblasts. Necrosis appeared in A375 cells but not in fibroblasts, and no apoptotic changes were visualized in DAPI staining experiments. After 24 h fibroblasts and melanoma cells developed mitochondrial potential changes similar to valinomycin. The gene expression of P53 and BcL-2 decreased in treated cells. Conclusions: 1-O-undecylglycerol exhibited selective cytotoxic activity in A375 melanoma cells when compared with primary cultured fibroblast. Its toxicity is mediated by necrosis that may be related with mitochondrial events and decrease in P53 and BcL-2 expression. The results suggest that UDG could be a useful strategy to combine with other chemotherapeutic agents in melanoma treatment.

  3. Effect of phytoncide from trees on human natural killer cell function.

    Science.gov (United States)

    Li, Q; Kobayashi, M; Wakayama, Y; Inagaki, H; Katsumata, M; Hirata, Y; Hirata, K; Shimizu, T; Kawada, T; Park, B J; Ohira, T; Kagawa, T; Miyazaki, Y

    2009-01-01

    We previously reported that the forest environment enhanced human natural killer (NK) cell activity, the number of NK cells, and intracellular anti-cancer proteins in lymphocytes, and that the increased NK activity lasted for more than 7 days after trips to forests both in male and female subjects. To explore the factors in the forest environment that activated human NK cells, in the present study we investigate the effect of essential oils from trees on human immune function in twelve healthy male subjects, age 37-60 years, who stayed at an urban hotel for 3 nights from 7.00 p.m. to 8.00 a.m. Aromatic volatile substances (phytoncides) were produced by vaporizing Chamaecyparis obtusa (hinoki cypress) stem oil with a humidifier in the hotel room during the night stay. Blood samples were taken on the last day and urine samples were analysed every day during the stay. NK activity, the percentages of NK and T cells, and granulysin, perforin, granzyme A/B-expressing lymphocytes in blood, and the concentrations of adrenaline and noradrenaline in urine were measured. Similar control measurements were made before the stay on a normal working day. The concentrations of phytoncides in the hotel room air were measured. Phytoncide exposure significantly increased NK activity and the percentages of NK, perforin, granulysin, and granzyme A/B-expressing cells, and significantly decreased the percentage of T cells, and the concentrations of adrenaline and noradrenaline in urine. Phytoncides, such as alpha-pinene and beta-pinene, were detected in the hotel room air. These findings indicate that phytoncide exposure and decreased stress hormone levels may partially contribute to increased NK activity.

  4. Effects of Long-term Exposure to Hydrogen Sulfide on Human Red Blood Cells

    Directory of Open Access Journals (Sweden)

    A Saeedi

    2015-01-01

    Full Text Available Background: Hydrogen sulfide (H2S exhibits both physiological and toxicological roles in the biological systems. Acute exposure to high levels of H2S is life threatening while long-term exposure to ambient levels of H2S elicits human health effects. Objective: To study the harmful effects of long-term exposure to low levels of H2S on human blood cells. Methods: 110 adult workers from Iran who were occupationally exposed to 0–90 ppb H2S for 1–30 years were studied. The participants aged between 18 and 60 years and were exposed directly or indirectly to sulfur compounds (exposed group. The origin of H2S was natural gas processing plants. A control group consisting of 110 males who were not in contact with H2S was also studied. For all participants, hematological profile including total hemoglobin and red blood cell count and sulfhemoglobin, methemoglobin levels were measured. Results: Among all parameters evaluated in this study the mean methemoglobin and sulfhemoglobin levels were significantly higher among workers who were exposed to sulfur compounds than the control group. Major differences throughout the study period for sulfhemoglobinemia among exposed groups were observed. Conclusion: Long-term exposure to even low levels of H2S in workplaces may have potential harmful effects on human health.

  5. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination.

    Directory of Open Access Journals (Sweden)

    Jasmin Nessler

    Full Text Available For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE, an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS. In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.

  6. Effects of Ranibizumab and Aflibercept on Human Müller Cells and Photoreceptors under Stress Conditions

    Science.gov (United States)

    Shen, Weiyong; Yau, Belinda; Lee, So-Ra; Zhu, Ling; Yam, Michelle; Gillies, Mark C.

    2017-01-01

    Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal non-vascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia. Cell survival was assessed by calcein-AM cell viability assays. Expression of heat shock proteins (Hsp) and redox proteins thioredoxin 1 and 2 (TRX1, TRX2) was studied by Western blots. The production of neurotrophic factors in Müller cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors was measured by enzyme-linked immunosorbent assays. Aflibercept and ranibizumab did not affect the viability of both types of cells. Neither aflibercept nor ranibizumab affected the production of neurotrophic factors or expression of Hsp60 and Hsp90 in Müller cells. However, aflibercept but not ranibizumab affected the expression of Hsp60, Hsp9, TRX1 and TRX2 in photoreceptors. Aflibercept and ranibizumab both inhibited the production of IRBP in photoreceptors, aflibercept more so than ranibizumab. Our data indicates that the potential influence of aflibercept and ranibizumab on photoreceptors should be specifically monitored in clinical studies. PMID:28257068

  7. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Science.gov (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  8. Anti-tumor effects of shikonin derivatives on human medullary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Carina Hasenoehrl

    2017-02-01

    Full Text Available New treatment options are needed for medullary thyroid carcinoma (MTC, a highly metastasizing neuroendocrine tumor that is resistant to standard radiotherapy and chemotherapy. We show that the following shikonin derivatives inhibit cell proliferation and cell viability of the MTC cell line TT: acetylshikonin, β,β-dimethylacrylshikonin, shikonin and a petroleum ether extract of the roots of Onosma paniculata containing several shikonin derivatives. The unsubstituted shikonin derivative was found to be the most effective compound with an IC50 of 1.1 μM. The cell viability of normal human skin fibroblasts, however, was not affected by the tested substances, indicating that shikonin derivatives might be selectively toxic for cancer cells. We further report that migration and invasion of TT cells were inhibited at non-toxic concentrations. Finally, shikonin was tested in vivo using the chick chorioallantoic membrane assay, where it significantly reduced tumor growth by inhibiting cell proliferation and inducing apoptosis. In summary, our results suggest that shikonin derivatives have the potential for the treatment of medullary thyroid carcinomas.

  9. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Directory of Open Access Journals (Sweden)

    Witkowski Colette

    2009-01-01

    Full Text Available Abstract Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS and sodium dodecylbenzene sulfonate (SDBS are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood–brain barrier to the brain and the central nervous system.

  10. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2016-02-01

    Full Text Available Background: Tetrahydrocurcumin (THC, an active metabolite of curcumin, has been reported to have similar biological effects to curcumin, but the mechanism of the antitumor activity of THC is still unclear. Methods: The present study was to investigate the antitumor effects and mechanism of THC in human breast cancer MCF-7 cells using the methods of MTT assay, LDH assay, flow cytometry analysis, and western blot assay. Results: THC was found to have markedly cytotoxic effect and antiproliferative activity against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 107.8 μM. Flow cytometry analysis revealed that THC mediated the cell-cycle arrest at G0/G1 phase, and 32.8% of MCF-7 cells entered the early phase of apoptosis at 100 μM for 24 h. THC also dose-dependently led to apoptosis in MCF-7 cells via the mitochondrial pathway, as evidenced by the activation of caspase-3 and caspase-9, the elevation of intracellular ROS, a decrease in Bcl-2 and PARP expression, and an increase in Bax expression. Meanwhile, cytochrome C was released to cytosol and the loss of mitochondria membrane potential (Δψm was observed after THC treatment. Conclusion: THC is an excellent source of chemopreventive agents in the treatment of breast cancer and has excellent potential to be explored as antitumor precursor compound.

  11. Proapoptotic effects of new pentabromobenzylisothiouronium salts in a human prostate adenocarcinoma cell line.

    Science.gov (United States)

    Koronkiewicz, Mirosława; Kazimierczuk, Zygmunt; Szarpak, Kinga; Chilmonczyk, Zdzisław

    2012-01-01

    Prostate cancer is the second most common cancer in elderly men worldwide and its incidence rate is rising continuously. Agents capable of inducing apoptosis in prostate cancer cells seem a promising approach to treat this malignancy. In this study we describe the synthesis of a number of novel N- and N,N'-substituted S-2,3,4,5,6-pentabromobenzylisothiouronium bromides and their activity against the human prostate adenocarcinoma PC3 cell line. All the compounds produced changes in mitochondrial transmembrane potential and cell cycle progression, showed a cytostatic effect and induced apoptosis in the tested cancer line in a concentration- and time-dependent manner. The most effective compounds ZKK-3, ZKK-9 and ZKK-13 produced, at 20 microM concentration, apoptosis in 42, 46, and 66% of the cells, respectively, after 48 h incubation. Two selected S-2,3,4,5,6-pentabromobenzylisothiouronium bromides (ZKK-3, ZKK-9) showed also a synergic proapoptotic effect with the new casein kinase II inhibitor 2-(4-methylpiperazin-1-yl)-4,5,6,7-tetrabromo-1H-benzimidazole (TBIPIP) in the PC3 cell line.

  12. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    Science.gov (United States)

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.

  13. Immunomodulative effects of mesenchymal stem cells derived from human embryonic stem cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhou TAN; Zhong-yuan SU; Rong-rong WU; Bin GU; Yu-kan LIU; Xiao-li ZHAO; Ming ZHANG

    2011-01-01

    Objective: Human embryonic stem cells(hESCs)have recently been reported as an unlimited source of mesenchymal stem cells(MSCs).The present study not only provides an identical and clinically compliant MSC source derived from hESCs(hESC-MSCs),but also describes the immunomodulative effects of hESC-MSCs in vitro and in vivo for a carbon tetrachloride(CCl4)-induced liver inflammation model.Methods: Undifferentiated hESCs were treated with Rho-associated kinase(ROCK)inhibitor and induced to fibroblast-looking cells.These cells were tested for their surface markers and multilineage differentiation capability.Further more,we analyzed their immune characteristics by mixed lymphocyte reactions(MLRs)and animal experiments.Results: hESC-MSCs show a homogenous fibroblastic morphology that resembles bone marrow-derived MSCs(BM-MSCs).The cell markers and differentiation potential of hESC-MSCs are also similar to those of BM-MSCs.Unlike their original cells,hESC-MSCs possess poor immunogenicity and can survive and be engrafted into a xenogenic immunocompetent environment.Conclusions: The hESC-MSCs demonstrate strong inhibitory effects on lymphocyte proliferation in vitro and anti-inflammatory infiltration properties in vivo.This study offers information essential to the applications of hESC-MSC-based therapies and evidence for the therapeutic mechanisms of action.

  14. In Vitro Cytotoxic Effects of Cuscuta chinensis Whole Extract on Human Acute Lymphoblastic Leukemia Cell Line

    Directory of Open Access Journals (Sweden)

    Fatemeh Zeraati

    2010-12-01

    Full Text Available Background: One of the major paths for drug development isthe study of bioactivities of natural products. Therefore, theaim of this study was to compare the cytotoxic effects ofaqueous extract of whole Cuscuta chinensis Lam., which is atraditional medicinal herb commonly used in Iran and otheroriental countries, on the human caucasian acute lymphoblasticleukemia (CCRF-CEM and another human lymphocyte,Jurkat (JM cell lines.Methods: In vitro cytotoxic screening with various concentrations(0, 0.1, 1, 10, 25 and 50 μg/ml of the extract wasperformed using microscope and methyl tetrazolium bromidetest (MTT.Results: The minimum effective concentration of the plantextract was 1 μg/ml, and increasing the dose to 10 μg/mlinduced increasingly stronger effects. The inhibitory concentration50% (IC50 of the extract against CCRF wasabout 3 μg/ml in 24 hours and 2.5 μg/ml in 48 hrs. In contrast,the extract did not have cytotoxic effect for the JMcells at these doses.Conclusion: The findings of the present study suggest that C.chinensis is toxic against CCRF-CEM and JM tumor cells.Whether or not such effects can be employed for the treatmentof such tumors must await future studies.Iran J Med Sci 2010; 35(4: 310-314.

  15. Effect of antisense human telomerase RNA on malignant behaviors of gastric carcinoma cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    YANG Jin-liang; FANG Dian-chun; YANG Shi-ming; LUO Yuan-hui; LUO Kun-lun; LU Rong; LIU Wei-wen

    2001-01-01

    Objective: To study the effects of antisense human telomerase RNA (ahTR) transfection on the malignant behaviors of gastric carcinoma cell line SGC-7901 and its potential role in gene therapy for tumor. Methods: An antisense hTR eukaryotic expression vector containing the sequence of template region of telomere repeats was transfected into gastric carcinoma cell line SGC-7901 with liposome DOTAP. The expressions of hTR RNA and antisense hTR RNA were observed with RT-PCR, telomerase activity with PCR-ELISA. Telomere length was measured with Southern blot. Cell morphology and cellular proliferation capacity were studied with MTT assay. Cell cycle distribution and apoptotic state were observed with flow cytometry. Efficiency of clone formation in soft agar and tumorigencity in nude mice were examined and evaluated in ahTR-transfected 7901 cells, and plasmid pCL-neo transfected 7901 cells and parental 7901 cells served as control. Results: An antisense hTR eukaryotic expression vector was transfected into 7901 cells successfully. The telomerase activity in ahTR-transfected 7901 cells was decreased from 100% to about 25%, and telomere length in the cells shortened from 4.08 kb to 3.35 kb at 60 population doublings (PDs). Compared with parental 7901 and pCL-neo transfected 7901 cells, ahTR-transfected 7901 cells displayed some morphological changes, including decreased cell atypia and nucleus/cytoplasm ratio under light microscope. Furthermore, ahTR-transfected 7901 cells displayed growth inhibition, decreased invasive capacity in Borden's chamber invasive model, increased G0/G1 phase rate and apoptotic rate, and restored contact inhibition and density inhibition. Surprisingly, ahTR-transfected 7901 cells lost their capacity of clone formation in soft agar and carcinogensis in nude mice. Conclusion: Antisense hTR transfection can induce 7901 cell differentiation and reverse its malignant phenotype. This study provides an exciting approach for cancer therapy through the

  16. Human Muscle Progenitor Cells Displayed Immunosuppressive Effect through Galectin-1 and Semaphorin-3A

    Directory of Open Access Journals (Sweden)

    Séverine Lecourt

    2012-01-01

    Full Text Available In human skeletal muscle, myoblasts represent the main population of myogenic progenitors. We previously showed that, beside their myogenic differentiation capacities, myoblasts also differentiate towards osteogenic and chondrogenic lineages, some properties generally considered being hallmarks of mesenchymal stem cells (MSCs. MSCs are also characterized by their immunosuppressive potential, through cell-cell contacts and soluble factors, including prostaglandin E-2 (PGE-2, transforming growth factor-β1 (TGF-β1, interleukine-10, or indoleamine 2,3-dioxygenase. We and others also reported that Galectin-1 (Gal-1 and Semaphorin-3A (Sema-3A were involved in MSCs-mediated immunosuppression. Here, we show that human myoblasts induce a significant and dose-dependant proliferation inhibition, independently of PGE-2 and TGF-β1. Our experiments revealed that myoblasts, in culture or in situ in human muscles, expressed and secreted Gal-1 and Sema-3A. Furthermore, myoblasts immunosuppressive functions were reverted by using blocking antibodies against Gal-1 or Sema-3A. Together, these results demonstrate an unsuspected immunosuppressive effect of myoblasts that may open new therapeutic perspectives.

  17. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

    Science.gov (United States)

    Chamorro, Eva; Bonnin-Arias, Cristina; Pérez-Carrasco, María Jesús; Muñoz de Luna, Javier; Vázquez, Daniel; Sánchez-Ramos, Celia

    2013-01-01

    Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.

  18. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    Science.gov (United States)

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul

    2011-12-01

    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology.

  19. Human Serum Albumin (HSA) Suppresses the Effects of Glycerol Monolaurate (GML) on Human T Cell Activation and Function

    Science.gov (United States)

    Zhang, Michael S.; Houtman, Jon C. D.

    2016-01-01

    Glycerol monolaurate (GML) is a monoglyceride with well characterized anti-microbial properties. Because of these properties, GML is widely used in food, cosmetics, and personal care products and currently being tested as a therapeutic for menstrual associated toxic shock syndrome, superficial wound infections, and HIV transmission. Recently, we have described that GML potently suppresses select T cell receptor (TCR)-induced signaling events, leading to reduced human T cell effector functions. However, how soluble host factors present in the blood and at sites of infection affect GML-mediated human T cell suppression is unknown. In this study, we have characterized how human serum albumin (HSA) affects GML-induced inhibition of human T cells. We found that HSA and other serum albumins bind to 12 carbon acyl side chain of GML at low micromolar affinities and restores the TCR-induced formation of LAT, PLC-γ1, and AKT microclusters at the plasma membrane. Additionally, HSA reverses GML mediated inhibition of AKT phosphorylation and partially restores cytokine production in GML treated cells. Our data reveal that HSA, one of the most abundant proteins in the human serum and at sites of infections, potently reverses the suppression of human T cells by GML. This suggests that GML-driven human T cell suppression depends upon the local tissue environment, with albumin concentration being a major determinant of GML function. PMID:27764189

  20. Therapeutic Effects of Human Multilineage-Differentiating Stress Enduring (MUSE) Cell Transplantation into Infarct Brain of Mice

    OpenAIRE

    Tomohiro Yamauchi; Yasumasa Kuroda; Takahiro Morita; Hideo Shichinohe; Kiyohiro Houkin; Mari Dezawa; Satoshi Kuroda

    2015-01-01

    Objective Bone marrow stromal cells (BMSCs) are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse) cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke. Methods Human BMSCs were se...

  1. Chiral effects in adrenocorticolytic action of o,p'-DDD (mitotane) in human adrenal cells.

    Science.gov (United States)

    Asp, V; Cantillana, T; Bergman, A; Brandt, I

    2010-03-01

    Adrenocortical carcinoma (ACC) is a rare malignant disease with poor prognosis. The main pharmacological choice, o,p'-DDD (mitotane), produces severe adverse effects. Since o,p'-DDD is a chiral molecule and stereoisomers frequently possess different pharmacokinetic and/or pharmacodynamic properties, we isolated the two o,p'-DDD enantiomers, (R)-(+)-o,p'-DDD and (S)-(-)-o,p'-DDD, and determined their absolute structures. The effects of each enantiomer on cell viability and on cortisol and dehydroepiandrosterone (DHEA) secretion in the human adrenocortical cell line H295R were assessed. We also assayed the o,p'-DDD racemate and the m,p'- and p,p'-isomers. The results show small but statistically significant differences in activity of the o,p'-DDD enantiomers for all parameters tested. The three DDD isomers were equally potent in decreasing cell viability, but p,p'-DDD affected hormone secretion slightly less than the o,p'- and m,p'-isomers. The small chiral differences in direct effects on target cells alone do not warrant single enantiomer administration, but might reach importance in conjunction with possible stereochemical effects on pharmacokinetic processes in vivo.

  2. The Effect of Low Level Laser Irradiation on Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hossein Baharvand

    2005-01-01

    Full Text Available Introduction: Different effects of low level laser irradiation (LLLI on various cell types have already been demonstrated. However, its effects on embryonic stem cells have not yet been shown. The present study evaluates the morphological and immunocytochemical effects of LLLI on human embryonic stem cell (hESC colonies. Material and Methods: Equal-sized pieces of hESC line (Royan H1 were irradiated with a single dose of 830-nm Ga-Al-As diode laser (3, 5, and 8 jcm-2, 30mW and cultured on mouse embryonic fibroblasts. The morphology of the colonies was evaluated qualitatively by observation under an inverted microscope (grades A, B, C, and D exhibited 0-30%, 30-50%, 50-80%, and 80-100% differentiation, respectively. The stemness area was assessed by expression of surface antigens using anti-Tra-1-60 and anti-Tra-1-81. Results: Our data demonstrated a dose-dependent stimulatory effect of LLLI on hESC differentiation. Two doses of 5 and 8jcm-2 induced statistically significant differentiation (grades C and D. Conclusions: These data showed that LLLI influenced hESC differentiation, which might be used for cell therapy after transplantation

  3. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells.

    Science.gov (United States)

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed.

  4. trans,trans-2,4-decadienal: cytotoxicity and effect on glutathione level in human erythroleukemia (HEL) cells.

    Science.gov (United States)

    Nappez, C; Battu, S; Beneytout, J L

    1996-01-19

    The effects of trans,trans-2,4-decadienal (DDE), an isomer of a lipid peroxidation product were investigated on the human erythroleukemia cell line (HEL TIB 180). DDE strongly inhibits cell growth and affects cell viability without any differentiating effects. DDE treatment of HEL cells leads to a marked variation of the cellular glutathione level (GSH) and is involved in the beginning of DNA fragmentation.

  5. Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Khanitta Srimuangwong; Chainarong Tocharus; Pornphrom Yoysungnoen Chintana; Apichart Suksamrarn; Jiraporn Tocharus

    2012-01-01

    AIM:To investigate the ability of hexahydrocurcumin (HHC) to enhance 5-fluorouracil (5-FU) in inhibiting the growth of HT-29 cells by focusing on cyclooxygenase (COX)-2 expression.METHODS:Antiproliferative effects of HHC and 5-FU,alone and in combination,on growth of HT-29 human colon cancer cells were assessed using 5-diphenyltetrazolium bromide (MTT) reduction assay.In combination treatment,low doses of 5-FU were used combined with various concentrations of HHC to minimize the toxicity and side effects of 5-FU.The therapeutic effects of these drugs on down-regulation of COX-2 mRNA and protein expression were examined using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting analysis.RESULTS:MTT reduction assay indicated that HHC alone markedly decreased the viability of HT-29 human colon cancer cells compared to control.Semi-quantitative RT-PCR analysis indicated that HHC is a selective COX-2 inhibitor.This finding was supported by the observation that HHC significantly down-regulates COX-2 mRNA expression compared to the control (control:100.05% ± 0.03% vs HHC:61.01% ± 0.35%,P < 0.05)but does not alter COX-1 mRNA.In combined treatment,addition of HHC to a low dose of 5-FU exerts a synergistic effect against the growth of HT-29 cells by markedly reducing cell viability to a greater degree than monotherapy.Semi-quantitative RT-PCR indicated that 5-FU at the concentration of 5 μmol/L in combination with HHC at the concentration of 25 μmol/L significantly down-regulates COX-2 mRNA expression when compared with values in cells treated with 5-FU or HHC alone (HHC + 5-FU:31.93% ± 5.69%,5-FU:100.66%± 4.52% vs HHC:61.01% ± 0.35%,P < 0.05).CONCLUSION:HHC together with 5-FU exerts a synergistic effect and may prove chemotherapeutically useful in treating human colon cancer.

  6. Effect of Genistein on vasculogenic mimicry formation by human uveal melanoma cells

    Directory of Open Access Journals (Sweden)

    Gu Haijuan

    2009-09-01

    Full Text Available Abstract Background Vasculogenic mimicry (VM was increasingly recognized as a form of aggressive melanoma acquiring blood supply. Genistein had attracted much attention as a potential anticancer agent. Therefore, we examined the effect of Genistein on VM in human uveal melanoma cells. Methods VM structure was detected by periodic acid-Schiff (PAS staining for uveal melanoma C918 cells cultured on the three-dimensional type I collagen gels after exposed to Genistein. We used reverse transcription polymerase chain reaction (RT-PCR and Western Blot analysis to examine the effect of Genistein on vascular endothelial cadherin (VE-cadherin mRNA and protein expression. The nude mice models of human uveal melanoma C918 cells were established to assess the number of VM using immunohistochemical and PAS double-staining. Results Genistein inhibited the survival of C918 cells in vitro. The ectopic model study showed that VM in tumor tissue sections were significantly reduced by Genistein in vivo. In vitro, the VM structure was found in control, 25 and 50 μM Genistein-treatment groups but not in 100 and 200 μM. RT-PCR and Western Blot showed that 100 and 200 μM concentration of Genistein could significantly decrease VE-cadherin mRNA and protein expression of C918 cells compared with control (P 0.05. Conclusion Genistein inhibits VM formation of uveal melanoma cells in vivo and in vitro. One possible underlying molecular mechanism by which Genistein could inhibit VM formation of uveal melanoma is related to down-regulation of VE-cadherin.

  7. Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles.

    Science.gov (United States)

    Baulig, Augustin; Sourdeval, Matthieu; Meyer, Martine; Marano, Francelyne; Baeza-Squiban, Armelle

    2003-01-01

    Epidemiological studies have associated the increase of respiratory disorders with high levels of ambient particulate matter (PM) levels although the underlying biological mechanisms are unclear. PM are a complex mixture of particles with different origins but in urban areas, they mainly contain soots from transport like Diesel exhaust particles (DEP). In order to determine whether PM biological effects can be explained by the presence of DEP, the effects of urban PM, DEP and carbon black particles (CB) were compared on a human bronchial epithelial cell line (16-HBE14o-). Two types of PM were used : reference material (RPM) and PM with an aerodynamic diameter particles. However, DEP and to a lower extent PM inhibited cell proliferation, induced the release of a pro-inflammatory cytokine, GM-CSF, and generated a pro-oxidant state as shown by the increased intracellular peroxides production. By contrast, CB never induced such effects. Nevertheless CB are more endocytosed than DEP whereas PM are the less endocytosed particles. In conclusion, PM induced to a lower extent the same biological effects than DEP in 16-HBE cells suggesting that particle characteristics should be thoroughly considered in order to clearly correlate adverse effects of PM to their composition and to clarify the role of DEP in PM effects.

  8. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ibrahim Turan

    2017-02-01

    Full Text Available Background: Morus nigra L. belongs to the family Moraceae and is frequently used in traditional medicine. Numerous studies have investigated the antiproliferative effects of various extracts of different Morus species, but studies involving the in vitro cytotoxic effect of M. nigra extract are very limited. The purpose of this study was to evaluate the phenolic composition and antioxidant activity of dimethyl sulfoxide extract of M. nigra (DEM and to investigate, for the first time, the probable cytotoxic effect in human prostate adenocarcinoma (PC-3 cells together with the mechanism involved. Methods: Total polyphenolic contents (TPC, ferric reducing antioxidant power (FRAP and phenolic compounds of DEM were evaluated using spectrophotometric procedures and HPLC. The cytotoxic effect of DEM on PC-3 cells was revealed using the MTT assay. Mechanisms involved in the cytotoxic effect of DEM on PC-3 cells were then investigated in terms of apoptosis, mitochondrial membrane potential and cell cycle using flow cytometry, while caspase activity was investigated using luminometric analysis. Results: TPC and FRAP values were 20.7 ± 0.3 mg gallic acid equivalents and 48.8 ± 1.6 mg trolox equivalents per g sample, respectively. Ascorbic acid and chlorogenic acid were the major phenolic compounds detected at HPLC analysis. DEM arrested the cell cycle of PC-3 cells at the G1 phase, induced apoptosis via increased caspase activity and reduced mitochondrial membrane potential. Conclusions: Our results indicate that M. nigra may be a novel candidate for the development of new natural product based therapeutic agents against prostate cancer.

  9. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells.

    Science.gov (United States)

    Turan, Ibrahim; Demir, Selim; Kilinc, Kagan; Burnaz, Nesibe Arslan; Yaman, Serap Ozer; Akbulut, Kubra; Mentese, Ahmet; Aliyazicioglu, Yuksel; Deger, Orhan

    2017-02-01

    Background: Morus nigra L. belongs to the family Moraceae and is frequently used in traditional medicine. Numerous studies have investigated the antiproliferative effects of various extracts of different Morus species, but studies involving the in vitro cytotoxic effect of M. nigra extract are very limited. The purpose of this study was to evaluate the phenolic composition and antioxidant activity of dimethyl sulfoxide extract of M. nigra (DEM) and to investigate, for the first time, the probable cytotoxic effect in human prostate adenocarcinoma (PC-3) cells together with the mechanism involved. Methods: Total polyphenolic contents (TPC), ferric reducing antioxidant power (FRAP) and phenolic compounds of DEM were evaluated using spectrophotometric procedures and HPLC. The cytotoxic effect of DEM on PC-3 cells was revealed using the MTT assay. Mechanisms involved in the cytotoxic effect of DEM on PC-3 cells were then investigated in terms of apoptosis, mitochondrial membrane potential and cell cycle using flow cytometry, while caspase activity was investigated using luminometric analysis. Results: TPC and FRAP values were 20.7 ± 0.3 mg gallic acid equivalents and 48.8 ± 1.6 mg trolox equivalents per g sample, respectively. Ascorbic acid and chlorogenic acid were the major phenolic compounds detected at HPLC analysis. DEM arrested the cell cycle of PC-3 cells at the G1 phase, induced apoptosis via increased caspase activity and reduced mitochondrial membrane potential. Conclusions: Our results indicate that M. nigra may be a novel candidate for the development of new natural product based therapeutic agents against prostate cancer.

  10. hIL-15 gene-modified human natural killer cells (NKL-IL15) augments the anti-human hepatocellular carcinoma effect in vivo.

    Science.gov (United States)

    Jiang, Wen; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2014-07-01

    Genetic modification of NK cells may provide new possibilities for developing effective cancer immunotherapy by improving NK cell function and specificity. We previously established human interleukin-15 (hIL-15) gene-modified NKL cells (NKL-IL15) and demonstrated their therapeutic efficiency against human hepatocellular carcinoma (HCC) in vitro. To further assess the applicability of NKL-IL15 cells in adoptive cellular immunotherapy, we further investigated their natural cytotoxicity against HCC in vivo in the present study. NKL-IL15 cells exhibited strong inhibition on the growth of transplanted human HCC tumors in xenograft nude mouse models. Further investigation showed that NKL-IL15 cells expressed much higher levels of cytolysis-related molecules, including NKp80, TRAIL, granzyme B, IFN-γ, and TNF-α, than parental NKL cells in response to HCC stimulation. Moreover, soluble mediators secreted by NKL-IL15 cells decreased HCC cell proliferation; in particular, NKL-IL15-derived TNF-α and IFN-γ induced higher NKG2D ligand expression on target cells and resulted in the increased susceptibility of HCCs to NKL-mediated cytolysis. These results show that hIL-15 gene-modified human NK cells can augment the anti-tumor effect of NK cells on human HCC in vivo and suggest their promising applicability as a new candidate for adoptive immunotherapy against HCCs in the future. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells.

    Science.gov (United States)

    Eiró, Noemí; Sendon-Lago, Juan; Seoane, Samuel; Bermúdez, María A; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J

    2014-11-15

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy.

  12. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    Science.gov (United States)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  13. Effects of ELF magnetic fields on protein expression profile of human breast cancer cell MCF7

    Institute of Scientific and Technical Information of China (English)

    LI Han; ZENG Qunli; WENG Yu; LU Deqiang; JIANG Huai; XU Zhengping

    2005-01-01

    Extremely Low Frequency Magnetic Fields (ELF MF) has been considered as a "possible human carcinogen" by International Agency for Research on Cancer (IARC) while credible mechanisms of its carcinogenicity remain unknown. In this study, a proteomics approach was employed to investigate the changes of protein expression profile induced by ELF MF in human breast cancer cell line MCF7, in order to determine ELF MF-responsive proteins. MCF7 cells were exposed to 50 Hz, 0.4 mT ELF MF for 24 h and the changes of protein profile were examined using two dimensional electrophoresis. Up to 6 spots have been statistically significantly altered (their expression levels were changed at least 5 fold up or down) compared with sham-exposed group. 19 ones were only detected in exposure group while 19 ones were missing. Three proteins were identified by LC-IT Tandem MS as RNA binding protein regulatory subunit、Proteasome subunit beta type 7 precursor and Translationally Controlled Tumor Protein. Our finding showed that 50 Hz, 0.4 mT ELF MF alternates the protein profile of MCF7 cell and may affect many physiological functions of normal cell and 2-DE coupled with MS is a promising approach to elucidating cellular effects of electromagnetic fields.

  14. The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells

    Directory of Open Access Journals (Sweden)

    YOUSEF eNAMI

    2015-11-01

    Full Text Available Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, AGS, HT-29, and MCF-7. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.

  15. Antioxidant and genoprotective effects of spent coffee extracts in human cells.

    Science.gov (United States)

    Bravo, Jimena; Arbillaga, Leire; de Peña, M Paz; Cid, Concepcion

    2013-10-01

    Spent coffee has been shown as a good source of hydrophilic antioxidant compounds. The ability of two spent coffee extracts rich in caffeoylquinic acids, mainly dicaffeoylquinic acids, and caffeine (Arabica filter and Robusta espresso) to protect against oxidation and DNA damage in human cells (HeLa) was evaluated at short (2 h) and long (24 h) exposure times. Cell viability (MTT) was not affected by spent coffee extracts (>80%) up to 1000 μg/mL after 2 h. Both spent coffee extracts significantly reduced the increase of ROS level and DNA strand breaks (29-73% protection by comet assay) induced by H₂O₂. Pretreatment of cells with robusta spent coffee extract also decreased Ro photosensitizer-induced oxidative DNA damage after 24 h exposure. The higher effectiveness of Robusta spent coffee extract, with less caffeoylquinic acids and melanoidins, might be due to other antioxidant compounds, such as caffeine and other Maillard reaction products. This work evidences the potential antioxidant and genoprotective properties of spent coffee in human cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Effect of Prolonged Culture of Chromosomally Abnormal Human Embryos on The Rate of Diploid Cells

    Directory of Open Access Journals (Sweden)

    Masood Bazrgar

    2016-12-01

    Full Text Available Background: A decrease in aneuploidy rate following a prolonged co-culture of human blastocysts has been reported. As co-culture is not routinely used in assisted reproductive technology, the present study aimed to evaluate the effect of the prolonged single culture on the rate of diploid cells in human embryos with aneuploidies. Materials and Methods: In this cohort study, we used fluorescence in situ hybridization (FISH to reanalyze surplus blastocysts undergoing preimplantation genetic diagnosis (PGD on day 3 postfertilization. They were randomly studied on days 6 or 7 following fertilization. Results: Of the 30 analyzed blastocysts, mosaicism was observed in 26(86.6%, while 2(6.7% were diploid, and 2(6.7% were triploid. Of those with mosaicism, 23(88.5% were determined to be diploid-aneuploid and 3(11.5% were aneuploid mosaic. The total frequency of embryos with more than 50% diploid cells was 33.3% that was lower on day 7 in comparison with the related value on day 6 (P<0.05; however, there were no differences when the embryos were classified according to maternal age, blastocyst developmental stage, total cell number on day 3, and embryo quality. Conclusion: Although mosaicism is frequently observed in blastocysts, the prolonged single culture of blastocysts does not seem to increase the rate of normal cells.

  17. The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells.

    Science.gov (United States)

    Ye, X; Krohn, R L; Liu, W; Joshi, S S; Kuszynski, C A; McGinn, T R; Bagchi, M; Preuss, H G; Stohs, S J; Bagchi, D

    1999-06-01

    Grape seed proanthocyanidins are natural antioxidants which possess a broad spectrum of chemoprotective properties against free radicals and oxidative stress. In this study, we have assessed the cytotoxicity of a novel IH636 grape seed proanthocyanidin extract (GSPE) against MCF-7 human breast cancer cells, A-427 human lung cancer cells, CRL-1739 human gastric adenocarcinoma cells and K562 chronic myelogenous leukemic cells at 25 and 50 mg/lit concentrations for 0-72 h using cytomorphology and MTT cytotoxicity assay. In addition, we compared the effects on normal human gastric mucosal cells and normal J774A.1 murine macrophage cells with the effects on the cancer cell lines. Concentration- and time-dependent cytotoxic effects of GSPE were observed on the MCF-7 breast cancer, A-427 lung cancer and gastric adenocarcinoma cells. Following incubation of the MCF-7 cells with 25 mg/lit of the GSPE approximately 6.5, 30 and 43% inhibitions in cell growth were observed at 24, 48 and 72 h of incubation, respectively, while incubation of the MCF-7 cells with 50 mg/lit of the GSPE resulted in 11, 35 and 47% inhibition in cell growth at these same points, respectively. Similar results were observed in the A-427 and gastric adenocarcinoma cells. GSPE exhibited no cytotoxicity toward the neoplastic K562 myelogenous leukemic cells. However, GSPE enhanced the growth and viability of the normal human gastric mucosal cells and J774A.1 murine macrophage cells. These data demonstrate that GSPE exhibited cytotoxicity towards some cancer cells, while enhancing the growth and viability of the normal cells which were examined.

  18. Apoptotic effects of non-edible parts of Punica granatum on human multiple myeloma cells.

    Science.gov (United States)

    Kiraz, Yağmur; Neergheen-Bhujun, Vidushi S; Rummun, Nawraj; Baran, Yusuf

    2016-02-01

    Multiple myeloma is of great concern since existing therapies are unable to cure this clinical condition. Alternative therapeutic approaches are mandatory, and the use of plant extracts is considered interesting. Punica granatum and its derived products were suggested as potential anticancer agents due to the presence of bioactive compounds. Thus, polypenolic-rich extracts of the non-edible parts of P. granatum were investigated for their antiproliferative and apoptotic effects on U266 multiple myeloma cells. We demonstrated that there were dose-dependent decreases in the proliferation of U266 cells in response to P. granatum extracts. Also, exposure to the extracts triggered apoptosis with significant increases in loss of mitochondrial membrane potential in U266 cells exposed to the leaves and stem extracts, while the flower extract resulted in slight increases in loss of MMP. These results were confirmed by Annexin-V analysis. These results documented the cytotoxic and apoptotic effects of P. granatum extracts on human U266 multiple myeloma cells via disruption of mitochondrial membrane potential and increasing cell cycle arrest. The data suggest that the extracts can be envisaged in cancer chemoprevention and call for further exploration into the potential application of these plant parts.

  19. Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells

    Directory of Open Access Journals (Sweden)

    Zhimin Fu

    2016-01-01

    Full Text Available We aimed to explore the effects of raloxifene (RAL on the proliferation and apoptosis of human aortic valve interstitial cells (AVICs. Different concentrations of RAL were used to act on AVICs. MTS kit is used to test the effects of different concentrations of RAL on the proliferation of AVICs. Cell cycle and apoptosis test used flow cytometry after seven-day treatment. The relative expression levels of caspase-3 and caspase-8 are tested with RT-qPCR and Western blot. The results of MTS testing revealed that the absorbance value (OD value of the cells in the concentration groups of 10 and 100 nmol/L RAL at a wavelength of 490 nm at five, seven, and nine days significantly decreased compared with that in the control group. Meanwhile, the results of flow cytometry of the cells collected after seven days showed that the ratio of the S stage and the cell apoptosis rate of AVICs can be significantly reduced by RAL in the concentration groups of 10 and 100 nmol/L. The mRNA and protein expressions of caspase-3 and caspase-8 were significantly decreased compared with those in the control group. This study laid the foundation for further treatment of aortic valve disease by using RAL.

  20. Effects of Krill Oil on serum lipids of hyperlipidemic rats and human SW480 cells

    Directory of Open Access Journals (Sweden)

    Qian Wen-Bin

    2008-08-01

    Full Text Available Abstract Background Cardiovascular disease (CVD and colon cancer incidence are known to be closely related to dietary factors. This article evaluated effects of krill oil (KO on serum lipids of hyperlipidemia rats and human colon cancer cells (SW480. Serum lipids of rats fed with high fat diet (HFD and different doses of KO were measured by automatic analyzer. Effect of KO on viability of cells was determined by methyl thiazolyl tetrazolium (MTT assay. Results Except for higher dose group, body weights decreased significantly. Total cholesterol (TC, LDL-cholesterol (LDL-C of all dose groups, Triglycerides (TG of low and mid dose groups descended significantly, while there were no significant differences of HDL-cholesterol (HDL-C, compared with control group. Treatment of colon cancer cells with KO also resulted in time-dependent inhibition of cell growth. Conclusion Our findings indicated that the consumption of KO may provide benefits to control serum lipid levels in certain diseases and inhibit growth of colon cancer cells. Therefore, KO may be a good candidate for development as a functional food and nutraceutical.

  1. The Immuno-Regulatory Effects of Schisandra chinensis and Its Constituents on Human Monocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Mei-Hsien Lee

    2011-06-01

    Full Text Available Many diseases occur when the immune system is weakened. Intracellular signals activate immuno-responsive cells to produce cytokines that modulate the immune response. Schisandra chinensis has been used traditionally to treat general fatigue, neurasthenia, and spontaneous sweating. In the present study, the effect of constituents of S. chinensis on cytokine release by human monocytic leukemia cells (THP-1 was tested using microparticle-based flow cytometric analysis. Two major lignans, schizandrin (Sch and gomisin A (Gom A, were identified and shown to induce interleukin (IL-8, macrophage inflammatory protein-1β (MIP-1β, and granulocyte-macrophage-colony stimulating factor (GM-CSF release by THP-1 cells. By reverse transcription polymerase chain reaction (RT-PCR or quantitative real-time PCR, there was a dose-dependent increase of IL-8, MIP-1β and GM-CSF mRNA levels. Thus, Sch and Gom A from S. chinensis enhance cytokine release by THP-1 cells and this effect occurs through mRNA upregulation. Upregulation of MIP-1β and GM-CSF in particular may have clinical applications. Therefore, S. chinensis may be therapeutically beneficial by promoting humoral and cell-mediated immune responses.

  2. Effects of Tibolone Metabolites on Human Endometrial Cell Lines in Co-Culture

    Science.gov (United States)

    Barbier, Claire; Kloosterboer, Helenius J.; Kaufman, David G.

    2010-01-01

    In human endometrium, cell proliferation is regulated by ovarian steroids through heterotypic interactions between stromal and epithelial cells populating this tissue. We tested the proliferative effects of tibolone and its metabolites using endometrial co-cultures that mimic the normal proliferative response to hormones. We found that both the Δ4-tibolone metabolite and the pure progestin ORG2058 counteract estradiol-driven epithelial cell proliferation. Surprisingly, the estrogen receptor binding 3-hydroxyl-metabolites of tibolone also counteracted estradiol-driven proliferation. Inhibition of proliferation by 3β-OH-tibolone was abrogated by low doses of the progesterone receptor antagonist mifepristone, This suggests that 3β-OH-tibolone is converted to a progestagenic metabolite. We found that the stromal cells used in the co-cultures express high levels of the ketosteroid dehydrogenase, AKR1C2, which is able to oxidize 3β-OH-tibolone back to tibolone. Thus the unexpected progestagenic effect of 3β-OH-tibolone in these co-cultures may be due to metabolic activity present in the stromal cells of the co-cultures. PMID:18212357

  3. Inhibitory Effects of Ginsenoside Rb1 on Apoptosis Caused by HSV-1 in Human Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Liang; Bin Wang; Dong-Meng Qian; Ling Li; Zhi-Hao Wang; Ming Hu; Xu-Xia Song

    2012-01-01

    To investigate the inhibitory effects of Ginsenoside Rb1 (GRb1) on apoptosis caused by Herpes Simplex Virus-1 (HSV-1) in Human Glioma Cells (U251),U251 cells were infected by HSV-1 at a multiplicity of infection of 5 and GRb1,GRb1+HSV-1,HSV-1 and control groups.MTT and cell apoptosis assays were used to detect the inhibitory effects of GRbl on the apoptosis of U251 cells that caused by HSV-1 infection for various concentrations of drug and virus treatments by MTT assay.We found that in the 400 μg/mL GRbl and 400 μg/mL GRbl+HSV-1 groups,MTT values were higher than control group at all times (P<0.05).Moreover,the apoptosis rate in the 400 μg/mL GRb1+HSV-1 group was lower than the HSV-1 group (P<0.05).These results confirmed that,at appropriate concentrations,GRb 1 could inhibit nerve cell apoptosis in HSV-1 infections.

  4. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Gabriela Vilema-Enríquez

    2016-01-01

    Full Text Available Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS from which hydrogen peroxide (H2O2 is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy.

  5. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    AbdulQader, Sarah Talib [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad (Iraq); Kannan, Thirumulu Ponnuraj, E-mail: kannan@usm.my [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Rahman, Ismail Ab [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ismail, Hanafi [School of Materials and Minerals Resource Engineering, Universiti Sains Malaysia, 14300 Penang (Malaysia); Mahmood, Zuliani [School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-01

    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300 μm and 65% porosity were prepared from phosphoric acid (H{sub 2}PO{sub 4}) and calcium carbonate (CaCO{sub 3}) sintered at 1000 °C for 2 h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration. - Highlights: • BCPs of different HA/β-TCP ratios influence cell microenvironment. • BCP20 decreases cell viability of HDPCs as compared to BCP50 and BCP80. • HDPCs cultured with BCP20 express highest ALP activity. • HDPCs cultured with BCP20 up-regulate BSP, DMP-1 and DSPP gene expressions. • BCP20 can support HDPC differentiation for dentin tissue regeneration.

  6. S-CMC-Lys protective effects on human respiratory cells during oxidative stress.

    Science.gov (United States)

    Garavaglia, Maria Lisa; Bononi, Elena; Dossena, Silvia; Mondini, Anna; Bazzini, Claudia; Lanata, Luigi; Balsamo, Rossella; Bagnasco, Michela; Conese, Massimo; Bottà, Guido; Paulmichl, Markus; Meyer, Giuliano

    2008-01-01

    The mucoactive drug S-carbocysteine lysine salt monohydrate (S-CMC-Lys) stimulates glutathione (GSH) efflux from respiratory cells. Since GSH is one of the most important redox regulatory mechanisms, the aim of this study was to evaluate the S-CMC-Lys effects on GSH efflux and intracellular concentration during an oxidative stress induced by the hydroxyl radical (xOH). Experiments were performed on cultured human respiratory WI-26VA4 cells by means of patch-clamp experiments in whole-cell configuration and of fluorimetric analyses at confocal microscope. xOH exposure induced an irreversible inhibition of the GSH and chloride currents that was prevented if the cells were incubated with S-CMC-Lys. In this instance, the currents were inhibited by the specific blocker CFTR(inh)-172. CFT1-C2 cells, which lack a functional CFTR channel, were not responsive to S-CMC-Lys, but the stimulatory effect of the drug was restored in LCFSN-infected CFT1 cells, functionally corrected to express CFTR. Fluorimetric measurements performed on the S-CMC-Lys-incubated cells revealed a significant increase of the GSH concentration that was completely hindered after oxidative stress and abolished by CFTR(inh)-172. The cellular content of reactive oxygen species was significantly lower in the S-CMC-Lys-treated cells either before or after xOH exposure. As a conclusion, S-CMC-Lys could exert a protective function during oxidative stress, therefore preventing or reducing the ROS-mediated inflammatory response. Copyright 2008 S. Karger AG, Basel.

  7. Proteomic analysis of the effect of iptakalim on human pulmonary arterial smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Mingxia YANG; Zhengxia LIU; Shu ZHANG; Yu JING; Shijiang ZHANG; Weiping XIE; Lei MA; Changliang ZHU; Hong WANG

    2009-01-01

    Aim:To investigate the anti-proliferative effect of iptakalim (Ipt),a newly selective KATP channel opener,in endothelin-1 (ET-1)-induced human pulmonary arterial smooth muscle cells (PASMCs) using proteomic analysis.Methods: Human PASMCs were incubated with ET-1 (10-8 mol/L) and ETA (10-8 mol/L) plus iptaklim (10-5 mol/L) for 24 h.Analysis via 2-DE gel electrophoresis and MALDI-TOF-MS was employed to display the different protein profiles of whole-cell protein from cultures of control,ET-1 treatment alone,and treatment with ET-1 and iptaklim combined.Real time RT-PCR and Western blot analysis were used to confirm the proteomic analysis.Results: When iptakalim inhibited the proliferative effect of ET-1 in human PASMCs by opening the KATP channels,the expression of different groups of cellular proteins was changed,including cytoskeleton-associated proteins,plasma mem-brane proteins and receptors,chaperone proteins,ion transport-associated proteins,and glycolytic and metabolism-associ-ated proteins.We found that iptakalim could inhibit the proliferation of human PASMCs partly by affecting the expression of Hsp60,vimentin,nucleoporin P54 (NUP54) and Bcl-XL by opening the KATP channel.Conclusion: The data suggest that a wide range of signaling pathways may be involved in abolishing ET-1-induced prolif-eration of human PASMCs following iptakalim treatment.

  8. Effects of antioxidants on homocysteine thiolactone-induced apoptosis in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Weijun GU; Juming LU; Guoqing YANG; Qinghua GUO; Baoan WANG; Yiming MU; Changyu PAN

    2006-01-01

    Background and objectives Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Homocysteine thiolactone (HcyT), one of the homocysteine metabolites in vivo, is toxic both in vivo and in vitro. The aim of this study was to investigate the effect of HcyT on apoptotic damage in human umbilical vein endothelial cells (HUVECs) and the role of antioxidants in the reduction of HcyT-induced apoptosis. Methods HUVECs were cultured in DMEM supplemented with 20% heat inactivated fetal bovine serum cell cultures were maintained in a humidified 5% CO2 atmosphere at 37 ℃. Cytotoxicity was determined by MTT assay,which consists of hypodiploid cells with propidium iodide labeling and intracellular reactive oxygen species levels using 2',7'-dichlorofluorescein diacetate as the probe by flow cytometry. Results HcyT (250-2000μM) induced HUVECs apoptosis in a time- and concentration-dependent manner. Reactive oxygen species levels rose in response to increasing HcyT concentrations at 24-h incubation.The reduction of cell apoptosis by N-acetylcysteine, vitamin E, or pyrrolidine dithiocarbamate, occurred simultaneously with a significant decrease in intracellular reactive oxygen species levels. Conclusion HcyT exerts its cytotoxic effects on endothelial cells through an apoptotic mechanism involving cellular reactive oxygen species production. The capacity of N-acetylcysteine, vitamin E, and pyrrolidine dithiocarbamate to scavenge HcyT-induced cellular reactive oxygen species correlates well with their efficiency to protect against HcyT-promoted apoptotic damage. The protective effect of pyrrolidine dithiocarbamate on cell apoptosis indicates HcyT-generated hydrogen peroxide may provoke cell apoptosis via activating nuclear factor-kappa binding protein.

  9. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells

    Science.gov (United States)

    Muniyan, Sakthivel; D’Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G.; Bu, Xiu R.; Batra, Surinder K.; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents. PMID:26121643

  10. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Matthew A Ingersoll

    Full Text Available Prostate cancer (PCa is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.

  11. Anti-Proliferative Effects of Siegesbeckia orientalis Ethanol Extract on Human Endometrial RL-95 Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2014-12-01

    Full Text Available Endometrial cancer is a common malignancy of the female genital tract. This study demonstrates that Siegesbeckia orientalis ethanol extract (SOE significantly inhibited the proliferation of RL95-2 human endometrial cancer cells. Treating RL95-2 cells with SOE caused cell arrest in the G2/M phase and induced apoptosis of RL95-2 cells by up-regulating Bad, Bak and Bax protein expression and down-regulation of Bcl-2 and Bcl-xL protein expression. Treatment with SOE increased protein expression of caspase-3, -8 and -9 dose-dependently, indicating that apoptosis was through the intrinsic and extrinsic apoptotic pathways. Moreover, SOE was also effective against A549 (lung cancer, Hep G2 (hepatoma, FaDu (pharynx squamous cancer, MDA-MB-231 (breast cancer, and especially on LNCaP (prostate cancer cell lines. In total, 10 constituents of SOE were identified by Gas chromatography-mass analysis. Caryophyllene oxide and caryophyllene are largely responsible for most cytotoxic activity of SOE against RL95-2 cells. Overall, this study suggests that SOE is a promising anticancer agent for treating endometrial cancer.

  12. Cytotoxic effects induced by combination of heliantriol B2 and dequalinium against human leukemic cell lines.

    Science.gov (United States)

    Gurovic, M Soledad Vela; Lanza, A María Díaz; Adánez, María del Carmen Boyano; Omaña, M Cristina Estañ; Gómez, Irene Gañán; Murray, A Paula; López, Pilar Sancho

    2011-04-01

    Natural occurring compounds are considered an important source of antitumoral agents. In the present study, the cytotoxic potential of three pentacyclic triterpenes isolated from Chuquiraga erinacea (Asteraceae), against the human leukemic cell lines NB4 and K562 was assessed. Heliantriol B2 (HB2) showed the highest cytotoxic activity after 24 h treatment showing IC(50) values of 1.98 ± 0.12 µm and 3.52 ± 0.14 µm for NB4 and K562 cells, respectively. This activity was higher than that of the reference compound dequalinium (DQA). Apoptosis and necrosis induced by HB2 in both NB4 and K562 cell lines were analysed by Annexin V/PI labeling. Mitochondrial alterations including reactive oxygen species (ROS) production and mitochondrial transmembrane potential (ΔΨm) were also tested. The results demonstrated that HB2 induced cell death by apoptosis and necrosis and showed enhanced cytotoxic effects in combination with DQA. Besides, HB2 induced ROS overproduction in NB4 cells and a slight decrease of ΔΨm. Consequently, our findings prompt further studies on the HB2 mechanism of action and its selectivity to tumor cells in order to assess the potential of HB2 as an agent for cancer treatment.

  13. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy

    Science.gov (United States)

    Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M.

    2012-06-01

    Micro-Raman technique can be particularly useful to investigate the chemical changes induced in structure, protein, nucleic acid, lipid, and carbohydrate contents of cells. The aim of this work is to inspect the possibility to employ Raman microspectroscopy to detect biochemical modifications in human mammary epithelial cells after exposure to different Xray doses. The samples consisted of cells cultured on polylysine-coated glass coverslips. After the exposition, control and treated cells were washed in phosphate-buffered saline (PBS) and then fixed in paraformaldehyde 3.7%. They were examined using a confocal micro-Raman system equipped with a He-Ne laser (λ = 632.8 nm; power on the sample= 3.5mW). Differences in the intensity ratio of specific Raman vibrational markers commonly assigned to phenylalanine and tyrosine amino acids (at 1000, 1030, 1618 cm-1), DNA bases (787, 1090, 1305 cm-1), and amide III (1237, and 1265 cm-1) with respect a reference peak (the one of lipids at 1450 cm-1) were evidenced between control and exposed cells. These differences may be indicative of damage in exposed cells as the fragmentation of individual amino acids and DNA bases, crosslink effects in molecular structure of DNA and protein conformational change that especially tend to "unwind" the protein due to the breaking of hydrogen bonds between peptide chains.

  14. Anti-proliferative effects of Siegesbeckia orientalis ethanol extract on human endometrial RL-95 cancer cells.

    Science.gov (United States)

    Chang, Chi-Chang; Hsu, Hsia-Fen; Huang, Kuo-Hung; Wu, Jing-Mei; Kuo, Shyh-Ming; Ling, Xue-Hua; Houng, Jer-Yiing

    2014-12-01

    Endometrial cancer is a common malignancy of the female genital tract. This study demonstrates that Siegesbeckia orientalis ethanol extract (SOE) significantly inhibited the proliferation of RL95-2 human endometrial cancer cells. Treating RL95-2 cells with SOE caused cell arrest in the G2/M phase and induced apoptosis of RL95-2 cells by up-regulating Bad, Bak and Bax protein expression and down-regulation of Bcl-2 and Bcl-xL protein expression. Treatment with SOE increased protein expression of caspase-3, -8 and -9 dose-dependently, indicating that apoptosis was through the intrinsic and extrinsic apoptotic pathways. Moreover, SOE was also effective against A549 (lung cancer), Hep G2 (hepatoma), FaDu (pharynx squamous cancer), MDA-MB-231 (breast cancer), and especially on LNCaP (prostate cancer) cell lines. In total, 10 constituents of SOE were identified by Gas chromatography-mass analysis. Caryophyllene oxide and caryophyllene are largely responsible for most cytotoxic activity of SOE against RL95-2 cells. Overall, this study suggests that SOE is a promising anticancer agent for treating endometrial cancer.

  15. Phosphodiesterase type 4 expression and anti-proliferative effects in human pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Afzal Saliha

    2006-01-01

    Full Text Available Abstract Background Pulmonary arterial hypertension is a proliferative vascular disease, characterized by aberrant regulation of smooth muscle cell proliferation and apoptosis in distal pulmonary arteries. Prostacyclin (PGI2 analogues have anti-proliferative effects on distal human pulmonary artery smooth muscle cells (PASMCs, which are dependent on intracellular cAMP stimulation. We therefore sought to investigate the involvement of the main cAMP-specific enzymes, phosphodiesterase type 4 (PDE4, responsible for cAMP hydrolysis. Methods Distal human PASMCs were derived from pulmonary arteries by explant culture (n = 14, passage 3–12. Responses to platelet-derived growth factor-BB (5–10 ng/ml, serum, PGI2 analogues (cicaprost, iloprost and PDE4 inhibitors (roflumilast, rolipram, cilomilast were determined by measuring cAMP phosphodiesterase activity, intracellular cAMP levels, DNA synthesis, apoptosis (as measured by DNA fragmentation and nuclear condensation and matrix metalloproteinase-2 and -9 (MMP-2, MMP-9 production. Results Expression of all four PDE4A-D genes was detected in PASMC isolates. PDE4 contributed to the main proportion (35.9 ± 2.3%, n = 5 of cAMP-specific hydrolytic activity demonstrated in PASMCs, compared to PDE3 (21.5 ± 2.5%, PDE2 (15.8 ± 3.4% or PDE1 activity (14.5 ± 4.2%. Intracellular cAMP levels were increased by PGI2 analogues and further elevated in cells co-treated with roflumilast, rolipram and cilomilast. DNA synthesis was attenuated by 1 μM roflumilast (49 ± 6% inhibition, rolipram (37 ± 6% and cilomilast (30 ± 4% and, in the presence of 5 nM cicaprost, these compounds exhibited EC50 values of 4.4 (2.6–6.1 nM (Mean and 95% confidence interval, 59 (36–83 nM and 97 (66–130 nM respectively. Roflumilast attenuated cell proliferation and gelatinase (MMP-2 and MMP-9 production and promoted the anti-proliferative effects of PGI2 analogues. The cAMP activators iloprost and forskolin also induced apoptosis

  16. Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation

    Directory of Open Access Journals (Sweden)

    Dehelean Cristina A

    2012-11-01

    Full Text Available Abstract Background Pentacyclic triterpenes, mainly betulin and betulinic acid, are valuable anticancer agents found in the bark of birch tree. This study evaluates birch bark extracts for the active principles composition. Results New improved extraction methods were applied on the bark of Betula pendula in order to reach the maximum content in active principles. Extracts were analyzed by HPLC-MS, Raman, SERS and 13C NMR spectroscopy which revealed a very high yield of betulin (over 90%. Growth inhibiting effects were measured in vitro on four malignant human cell lines: A431 (skin epidermoid carcinoma, A2780 (ovarian carcinoma, HeLa (cervix adenocarcinoma and MCF7 (breast adenocarcinoma, by means of MTT assay. All of the prepared bark extracts exerted a pronounced antiproliferative effect against human cancer cell lines. In vivo studies involved the anti-inflammatory effect of birch extracts on TPA-induced model of inflammation in mice. Conclusions The research revealed the efficacy of the extraction procedures as well as the antiproliferative and anti-inflammatory effects of birch extracts.

  17. The apoptosis effect of hispolon from Phellinus linteus (Berkeley & Curtis) Teng on human epidermoid KB cells.

    Science.gov (United States)

    Chen, Wei; He, Fei-Yu; Li, Yong-Quan

    2006-04-21

    Phellinus linteus (Berkeley & Curtis) Teng, a well-known fungus of the genus Phellinus in the family of Hymenochaetaceae, is being increasingly used to treat a wide variety of disease processes such as oral ulcer, gastroenteric disorder, inflammation, lymphatic disease, and various cancers. However, the mechanism underlying its anti-oral cancer effect is poorly understood. In the present study, we prepared the ethanol extract of Phellinus linteus as a crude drug, and then obtained the active component hispolon by bioassay-guided isolation. Hispolon showed a dose-dependent inhibition of human epidermoid KB cell proliferation with IC50 of 4.62+/-0.16 microg/ml. Furthermore, it was revealed that hispolon could induce human epidermoid KB cell apoptosis with the characteristic of a DNA ladder, and with a significant increase of sub-G1. This process was accompanied by the collapse of mitochondrial membrane potential, the release of cytochrome c and the activation of Caspase-3. These results demonstrated that hispolon induced the death of KB cells through a mitochondria mediated apoptotic pathway. We propose that Phellinus linteus and its effective components could be used as an anti-oral cancer drug for future studies.

  18. Radioprotective effects of dimethyl sulfoxide in the artificial skin reconstructed with cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Ha; Choi, Karp Shik [College of Dentistry, Kyungpook National University, Daegu (Korea, Republic of); Song, In Hwan [Department of Anatomy, College of Medicine, Yeungnam University, Daegu (Korea, Republic of)

    2002-03-15

    To evaluate cultured human artificial skin as an experimental model for studying radiation effects in vitro. The skin was constructed by culturing keratinocytes over collagen lattice which made by culturing fibroblasts. Two groups were irradiated to gamma rays at single dose of 25 Gy with or without 3.5% of DMSO. Ultrastructures were investigated by electron microscopy after irradiation. The number of epidermal layers and expression of cytokeratin (CK) 14 and 10 were also seem by light microscopy. At 2 days after irradiation in experimental group without DMSO, necrotic cells were rarely found in the spinosal layer and undercornified cells were visible in the horney layer. Similar findings were also found in experimental group with DMSO but in mild form. The number of epidermal layers in experimental group without DMSO were significantly fewer than other group. CK 14 expressed in all the layer excluding horney layer but CK 10 expressed over 3-4 basal layers. Such patterns of CK expression were similar to all groups. It is suggested that structures of the keratinocytes and epidermal formation could be disturbed by irradiation in artificial skin and that DMSO can protect these damages. Therefore this work could be used as an organotypic experimental model in vitro using human cells for studying radiation effect in skin. Furthermore structural findings provided in this study could be used as useful basic data in further study using this model.

  19. Human Umbilical Cord Wharton's Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation.

    Science.gov (United States)

    Lin, Hao Daniel; Fong, Chui-Yee; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2016-09-01

    Several groups have reported that human umbilical cord Wharton's jelly stem cells (hWJSCs) possess unique tumoricidal properties against many cancers. However, the exact mechanisms as to how hWJSCs inhibit tumor growth are not known. Recent evidence suggests that exposure of cancer cells to high hydrogen peroxide (H2 O2 ) levels from H2 O2 -releasing drugs causes their death. We therefore explored whether the tumoricidal effect of hWJSCs on lymphoma cells was mediated via H2 O2 . We first exposed lymphoma cells to six different molecular weight cut-off (MWCO) concentrates of hWJSC-conditioned medium (hWJSC-CM) (3, 5, 10, 30, 50, 100 kDa) for 48 h. Since, the 3 kDa-MWCO concentrate showed the greatest cell inhibition we then investigated whether the tumoricidal effect of the specific 3 kDa-MWCO concentrate on two different lymphoma cell lines (Ramos and Toledo) was mediated via accumulation of H2 O2 . We used a battery of assays (MTT, propidium iodide, mitochondria membrane potential, apoptosis, cell cycle, oxidative stress enzymes, hydrogen peroxide, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation) to test this mechanism. The hWJSC-CM-3 kDa MWCO concentrate significantly decreased cell viability and mitochondrial membrane potential and increased cell death and apoptosis in both lymphoma cell lines. There were significant increases in superoxide dismutase with concomitant decreases in glutathione peroxidase, catalase, and thioredoxin peroxidase activities. H2 O2 levels, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation were also significantly increased in both lymphoma cell lines. The results suggested that the hWJSC-CM-3 kDa MWCO concentrate regulates cellular H2 O2 leading to a tumoricidal effect and may thus be a promising anti-lymphoma agent. J. Cell. Biochem. 117: 2045-2055, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    Science.gov (United States)

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  1. Effects of different cytokines on proliferation and apoptosis of pleural mesothelial cells in human Mycobacterium tuberculosis infection

    Institute of Scientific and Technical Information of China (English)

    熊亮

    2013-01-01

    Objective To investigate the effects of different cytokines (IL-22,IL-17,IFN-γ) on proliferation and apoptosis of human pleural mesothelial cells (PMC) during Mycobacterium tuberculosis infection.Methods The

  2. Inhibitory effects of PIN1 antisense gene on the proliferation of human osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To evaluate the inhibitory effects of PIN1 antisense gene on the proliferation of human osteosarcoma cells. Methods: Different doses of antisense PIN1 gene (0,20,50,100,200,250μl) were transfected into osteosarcoma MG-63 cells. The cells and the culture supernatants before and after transfection were collected. The cell growth curve was made using MTT method. The cell growth cycle and apoptosis were detected by FCM. The expression of PIN1 was detected by Western blot. The expression of PIN1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). Results: MTT and FCM assays indicated that the transfection of antisense PIN1 gene could inhibit proliferation of MG-63 cells and lead to cell apoptosis. Western-blot assays revealed the MG-63 cells transfected with antisense PIN1 gene had weaker expression than those without transfection with antisense PIN1 gene, and the band intensity was negatively related with doses. The cells transfected with different doses of gene (0,20,50,100,200,250 μl) had different absorbance rate(0.854 ± 0.136,0. 866 ± 0. 138,0. 732 ± 0. 154, 0. 611 ± 0. 121,0. 547 ± 0. 109,0. 398 ± 0. 113,0. 320 ± 0. 151 ), with significant difference assessed by F and q test ( P < 0.05). The absorbance rate of PINI mRNA was 0. 983 ± 0.125,0.988 ± 0.127, 0.915 ± 0.157,0.786 ± 0.125,0.608 ± 0.124,0.433 ± 0.130,0.410 ± 0. 158 respectively ( P < 0.05). Conclusion: The expression of PINlmRNA in MG-63 cells could be inhibited by antisense PIN1 gene, and then the expression of PIN1 was reduced and depressed, and so the proliferation of human osteosarcoma cells MG-63 was inhibited.

  3. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Fan, Sairong; Zhang, Junfeng; Nie, Wenjian; Zhou, Wenyuan; Jin, Liqin; Chen, Xiaoming; Lu, Jianxin

    2017-04-01

    Sargassum fusiforme (Harv.) Setchel, a kind of brown algae, has been applied as a therapeutic for thousands of years. This study was designed to investigate the antitumor effects of the polysaccharide (SFPS) from S. fusiform in liver cancer. The mice inoculated with HepG2 cells were orally administrated with SFPS at the doses of 100, 200 and 400 mg/kg body weight for 28 days. The products from peritoneal macrophages and serum in HepG2-bearing mice were measured. The effect of SFPS-induced cell apoptosis was measured by flow cytometry. Meanwhile, the expression levels of Bax and Bcl-2 were detected. Furthermore, the cytotoxicity of SFPS was evaluated by CCK-8 assay. Results showed that SFPS significantly inhibited growth of human HepG2 cell-transplanted tumor in nude mice, and remarkably increased serum TNF-α, IL-1, NO and IgM levels in HepG2-bearing mice. SFPS also promoted the cytokines (IL-1 and TNF-α) secreted by peritoneal macrophages in HepG2-bearing mice. SFPS exerted a stimulatory effect on apoptosis of HepG2 cells, increased the expression of Bax, and decreased the expression of Bcl-2. The results indicated that SFPS has anti-tumor and immunomodulatory activities at the high concentration, and it could be used as a potential chemopreventative and/or adjuvant chemotherapeutic agent in liver cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Immunoregulatory effects of freeze injured whole tumour cells on human dendritic cells using an in vitro cryotherapy model.

    Science.gov (United States)

    Ismail, Mohamed; Morgan, Richard; Harrington, Kevin; Davies, John; Pandha, Hardev

    2010-12-01

    Tumour cryotherapy has been described as both immunostimulatory and immunoinhibitory in previous studies. However, previous studies have not accurately reproduced the precise conditions of current clinical cryotherapy. The objective of this study is to assess the immunological effects of cryotreated whole tumour cells on dendritic cells (DC) maturation and function using an in vitro model. Prostate cancer cells were cooled using Endocare cryo-system to mimic temperatures achieved during clinical cryotherapy. Human DC were prepared from cluster of differentiation (CD) 14 monocytes and matured with lipopolysaccharide (LPS). Cryotreated cancer cells were added to DC on day 3. On day 7, DC were harvested and phenotyped. Cytokine gene expression was assessed using real time quantitative polymerase chain reaction (RT-PCR). Functional activity of DC was assessed in allogenic mixed lymphocyte reaction (MLR) and the molecular changes using gene microarray technology. There was statistically significant upregulation of costimulatory molecules and maturation markers (CD86, CD83, CD80 and CL II) in DC loaded with cryotreated whole tumour cells compared to both control DC and DC matured with LPS (P cells are exposed to sub-lethal temperature.

  5. Effect of bile salts and bile acids on human gastric mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yinxue Song; Jun Gong

    2008-01-01

    Objective:To explore the effect of bile salt and bile acid on cultured eternalized human gastric mucosa epithelium GES-1 cells.Methods:Cultured eternalized human gastric mucosa epithelium GES-1 cells were treated with media containing 6 different kinds of bile salts and 3 different kinds of bile acids and their mixture with different concentrations: GCDC(glycochenodeoxycholate), GDC (glycodeoxycholate), GC(glycocholate), TCDC(taurochenodeoxycholate), TDC(taurodeoxycholate), TC (taurocholate), LCA (lithocholicacid), CA(cholic acid), DCA(deoxycholic acid)(50 μ mol/L,250 μ mol/L,500 μ mol/L, 1000 μ mol/L), DY(mixture of bile salts) and DS(mixture of bile acids)(250 μ mol/L,500 μ mol/L,1000 μ mol/L,1500 μ mol/L, 2000 μ mol/L), in comparison with thecontrol group(in normal media without bile salts and bile acids).Cell proliferation was assessed by MTT(3-[4,5-Dimethylthiaolyl]-2,5- diphenyl-tetrazolium bromide) assay for 72 hours with different concentrations and the apoptotic cells were assayed by flow cytometry (FCM) with Annex V-FITC conjugated with propidium iodide(PI) staining for 24 hours with different concentrations(1500,2000 μ mol/L).Results:There was no significant difference in morphology and cell proliferation in GC group after 24-72 h.Low concentration(50 μ mol/L) of GCDC, GDC, TCDC, TDC and TC accelerated gastric epithelial cell growth in a dosage-time dependent manner.At middle concentration (250-500 μ mol/L), it showed positive effect after 24-48 h, while negative effect after 72 h.At high concentration(1000 μ tool/L), it accelerated gastric epithelial cell growth after 24h and show consistent inhibition even leading to necrosis after 48-72 h.LCA and CA showed a positive effect on the concentration of 50 μ mol/L after 24-72 h, while 250-1000 It mol/L showed a trend towards apoptosis after 24-72 h.At 50-500 μ mol/L, DCA showed proliferation after 24 h and apoptosis after 48-72 h, but showed necrosis after 24-72 h at 1000 μ moiFL.DY and DS

  6. Effects of dendritic cells from cord blood CD34+ cells on human hepatocarcinoma cell line BEL-7402 in vitro and in SCID mice

    Institute of Scientific and Technical Information of China (English)

    Zhong-Jing Su; Hai-Bin Chen; Jin-Kun Zhang; Lan Xu

    2005-01-01

    AIM: To develop a cancer vaccine of dendritic cells derived from human cord blood CD34+ cells and to investigate its cytotoxicity on human hepatocarcinoma cells in vitro and in sever combined immunodeficiency (SCTD) mice.METHODS: Lymphocytes from cord blood or peripheral blood were primed by DCs, which were derived from cord blood and pulsed with whole tumor cell lysates. Nonradiative neutral red uptake assay was adopted to detect the cytotoxicity of primed lymphocytes on human hepatocarcinoma cell line BEL-7402 in vitro. The anti-tumor effect of primed lymphocytes in vivo was detected in SCID mice, including therapeutic effect and vaccination effect.RESULTS: The cytotoxicity of DC vaccine primed lymphocytes from cord blood or peripheral blood on human hepatocarcinoma cell line BEL-7402 was significantly higher than that of unprimed lymphocytes in vitro (44.09% vs 14.69%,47.92% vs 19.44%, P<0.01). There was no significant difference between the cytotoxicity of primed lymphocytes from cord blood and peripheral blood (P>0.05). The tumor growth rate and tumor size were smaller in SCID mice treated or vaccinated with primed lymphocytes than those with unprimed lymphocytes. SCID mice vaccinated with primed lymphocytes had a lower tumor incidence (80%vs 100%, P<0.05) and delayed tumor latent period compared with mice vaccinated with unprimed lymphocytes (11 d vs 7 d, P<0.01).CONCLUSION: Vaccine of cord blood derived-DCs has an inhibitory activity on growth of human hepatocarcinoma cells in vitro and in SCID mice. The results also implicate the potential role of cord blood derived-DC vaccine in clinical tumor immunotherapy.

  7. Neuroprotective effect of secreted factors from human adipose stem cells in a rat stroke model.

    Science.gov (United States)

    Seo, Han Gil; Yi, Youbin; Oh, Byung-Mo; Paik, Nam-Jong

    2017-09-26

    Objectives Recent evidence shows that stem cells exert neuroprotective effect through the secretion of immune modulatory, neurotrophic factors. We aimed to assess the neuroprotective effect of selected recombinant factors (RFs) detected in human adipose stem cell (hASC)-conditioned medium (CM), in a rat ischemic stroke model. Methods Ischemic stroke was induced in Sprague-Dawley rats using 2 h transient middle cerebral artery occlusion (MCAO). One hour after reperfusion, the vehicle (Dulbecco's modified Eagle medium; DMEM), concentrated CM, and selected RFs mixed with DMEM were administered intracerebroventricularly to each group (N = 14, 15, and 16, respectively). Rats were sacrificed 24 h after MCAO. Results IL-6, VEGF, HGF, and BDNF were detected in hASC-CM. At 24 h post-MCAO, the CM and RF groups both showed significantly better sensorimotor neurological test scores than the control group. The infarct volume was significantly lower in both the CM and RF groups than in the control group. The number of TUNEL-positive apoptotic cells was reduced, whereas HSP70 expression was enhanced in the peri-infarct area in both the CM and RF groups. Moreover, hASC-CM and RFs reduced IκB phosphorylation and influenced bcl-2 and bax protein expression. Conclusions Our results suggest that RFs, selected from hASC-CM, may exert a neuroprotective effect in an ischemic stroke rat model that is comparable to the neuroprotective effect of full hASC-CM. The therapeutic effects of the RFs may be mediated by an anti-inflammatory mechanism and cell apoptosis inhibition. Hence, treatment with RFs can be considered a feasible substitute for stem cell therapy after stroke.

  8. Inhibitory effect of endostatin expressed by human liver carcinoma SMMC7721 on endothelial Cell proliferation in vitro

    Institute of Scientific and Technical Information of China (English)

    Xuan Wang; Fu-Kun Liu; Xi Li; Jai-Sou Li; Gen-Xin Xu

    2002-01-01

    AIM: To constnuct a stable transfectant of human livercarcinoma cell line SMMC7721 that could secret humanencicstatin and to explore the effect of human encostatinexpressed by the transfectant on enciotheliai cell proliferation.METHODS: Recombinant retroviral plasmid pLncx-Endocontaining the eDNA for human endoslsin gene togetherwith mt albumin signal peptide was engineered andtransferred into SMMC7721 cell by lipofectamine. Afterselection with G418, endcotatin-transfected SMMC7721 ceiiswere chosen and expanded. Immunohistochemical stainingand Western blot were used to detect the expression ofhuman endosatin in transfected SMMC7721 cells and itsmedium. The conditioned medium of endostatin-transfectedand control SMMC7721 cells were collected to cultivate withhuman umbilical vein endothelial cells for 72 hours. Theinhibitory effect of endoststin, expressed by transfectedSMMC7721 cells, on endothelial proliferation in vitro wasobserved by using Mn assay.RESULTS: A 550 bp specific fragment of endostatin gene wasdetected from the PCR product of endostatin-transfeclsdSMMC7721 cells. Immunohistochemistry and Western blotanalysis confirmed the expression and secretion of foreighhuman endostatin protein by endoslstin-transfeclsdSMMC7721 cells. In vitro endothelial proliferation assayshowed that 72 hours after cultivation with human umbilicalvein endothelial cells, the optical density (OD) in groupusing the medium from endostatin-transfected SMMC7721cells was 0.51 ±0.06, lower than that from RPMI 1640 group(0.98 ± 0.09) or that from control plasmid pLncx-transfeotedSMMC7721 cells (0. 88 ± 0. 11). The inhibitory rate formedium from endostatin-transfeclsd SMMC7721 cells was 48%, significantly higher than that from empty plasmid plncx-transfected SMMC7721 cells (10.2 %, P< 0.01).CONCLUSION: Human endoslstin can he stably expressedby SMMC7721 cell tran sferred with human endoslsin geneand its product can significantly inhibit the proliferation ofhuman umbilical vein

  9. Effect of methoxychlor on Ca2+ handling and viability in OC2 human oral cancer cells.

    Science.gov (United States)

    Tseng, Li-Ling; Shu, Su-Shung; Kuo, Chun-Chi; Chou, Chiang-Ting; Hsieh, Yao-Dung; Chu, Sau-Tung; Chi, Chao-Chuan; Liang, Wei-Zhe; Ho, Chin-Man; Jan, Chung-Ren

    2011-05-01

    The effect of the insecticide methoxychlor on the physiology of oral cells is unknown. This study aimed to explore the effect of methoxychlor on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) in human oral cancer cells (OC2) by using the Ca(2+)-sensitive fluorescent dye fura-2. Methoxychlor at 5-20 μM increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by 70% by removing extracellular Ca(2+). Methoxychlor-induced Ca(2+) entry was not affected by nifedipine, econazole, SK&F96365 and protein kinase C modulators but was inhibited by the phospholipase A2 inhibitor aristolochic acid. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished methoxychlor-induced [Ca(2+)](i) rise. Incubation with methoxychlor also inhibited thapsigargin- or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter methoxychlor-induced [Ca(2+)](i) rise. At 5-20 μM, methoxychlor killed cells in a concentration-dependent manner. The cytotoxic effect of methoxychlor was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM). Annexin V-FITC data suggest that methoxychlor (10 and 20 μM) evoked apoptosis in a concentration-dependent manner. Together, in human OC2, methoxychlor induced a [Ca(2+)](i) rise probably by inducing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via phospholipase A(2)-sensitive channels. Methoxychlor induced cell death that may involve apoptosis.

  10. IMMUNE MODULATORY EFFECTS of HUMAN CHORIONIC GONADOTROPIN on DENDRITIC CELLS SUPPORTING FETAL SURVIVAL in MURINE PREGNANCY

    Directory of Open Access Journals (Sweden)

    Dominique Dauven

    2016-11-01

    Full Text Available Dendritic cells (DCs are critically involved in the determination of immunity versus tolerance. Hence, DCs are key regulators of immune responses either favoring or disfavoring fetal survival. Several factors were proposed to modulate DC phenotype and function during preg-nancy. Here, we studied whether the pregnancy hormone human Chorionic Gonadotropin (hCG is involved in DC regulation.In vitro, bone-marrow-derived DCs (BMDCs were stimulated in the presence or absence of urine-purified (uhCG or recombinant hCG (rhCG preparations. Subsequently, BMDC matu-ration was assessed. Cytokine secretion of activated BMDCs and their capability to enforce TH1, TH2, TH17 or Treg cell differentiation was determined after rhCG treatment. Moreover, the in vivo potential of hCG-modulated BMDCs to influence pregnancy outcome, Treg cell number and local cytokine expression was evaluated after adoptive transfer in a murine abor-tion-prone model before and after conception. Both hCG preparations impaired the maturation process of BMDCs. rhCG treatment did nei-ther alter cytokine secretion by BMDCs nor their ability to drive TH1, TH2 or TH17 differen-tiation. rhCG-treated BMDCs augmented the number of Treg cells within the T cell popula-tion. Adoptive transfer of rhCG-treated BMDCs after conception did not influence pregnancy outcome. However, transfer of hCG-treated BMDCs prior to mating had a protective effect on pregnancy. This positive effect was accompanied by increased Treg cell numbers and decidual IL-10 and TGF-β expression. Our results unveil the importance of hCG in retaining DCs in a tolerogenic state, thereby promoting Treg cell increment and supporting fetal survival.

  11. Immune Modulatory Effects of Human Chorionic Gonadotropin on Dendritic Cells Supporting Fetal Survival in Murine Pregnancy

    Science.gov (United States)

    Dauven, Dominique; Ehrentraut, Stefanie; Langwisch, Stefanie; Zenclussen, Ana Claudia; Schumacher, Anne

    2016-01-01

    Dendritic cells (DCs) are critically involved in the determination of immunity vs. tolerance. Hence, DCs are key regulators of immune responses either favoring or disfavoring fetal survival. Several factors were proposed to modulate DC phenotype and function during pregnancy. Here, we studied whether the pregnancy hormone human chorionic gonadotropin (hCG) is involved in DC regulation. In vitro, bone marrow-derived DCs (BMDCs) were stimulated in the presence or absence of urine-purified or recombinant hCG (rhCG) preparations. Subsequently, BMDC maturation was assessed. Cytokine secretion of activated BMDCs and their capability to enforce TH1, TH2, TH17, or Treg cell differentiation was determined after rhCG treatment. Moreover, the in vivo potential of hCG-modulated BMDCs to influence pregnancy outcome, Treg cell number, and local cytokine expression was evaluated after adoptive transfer in a murine abortion-prone model before and after conception. Both hCG preparations impaired the maturation process of BMDCs. rhCG treatment did neither alter cytokine secretion by BMDCs nor their ability to drive TH1, TH2, or TH17 differentiation. rhCG-treated BMDCs augmented the number of Treg cells within the T cell population. Adoptive transfer of rhCG-treated BMDCs after conception did not influence pregnancy outcome. However, transfer of hCG-treated BMDCs prior to mating had a protective effect on pregnancy. This positive effect was accompanied by increased Treg cell numbers and decidual IL-10 and TGF-β expression. Our results unveil the importance of hCG in retaining DCs in a tolerogenic state, thereby promoting Treg cell increment and supporting fetal survival. PMID:27895621

  12. Effects of dichlorobenzene on acetylcholine receptors in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Yan, Ren-Ming; Chiung, Yin-Mei; Pan, Chien-Yuan; Liu, Jenn-Hwa; Liu, Pei-Shan

    2008-11-20

    para-Dichlorobenzene (DCB), a deodorant and an industrial chemical, is a highly volatile compound and is known to be an indoor air contaminant. Because of its widespread use and volatility, the toxicity of DCB presents a concern to industrial workers and public. Some toxic aspects of DCB have already been focused but its effects on neuronal signal transduction have been hitherto unknown. The effects of DCB on the cytosolic calcium homeostasis are investigated in human neuroblastoma SH-SY5Y cells in this study. DCB, above 200 microM, was found to induce a rise in cytosolic calcium concentration that could not be counteracted by nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (mAChR) antagonists but was partially inhibited by thapsigargin. To understand the actions of DCB on the acetylcholine receptors, we investigated its effects on the changes of cytosolic calcium concentration following nicotinic AChR stimulation with epibatidine and muscarinic AChR stimulation with methacholine in human neuroblastoma SH-SY5Y cells. DCB inhibited the cytosolic calcium concentration rise induced by epibatidine and methacholine with respective IC(50)s of 34 and 294 microM. The inhibitions of DCB were not the same as thapsigargin's inhibition. In the electrophysiological observations, DCB blocked the influx currents induced by epibatidine. Our findings suggest that DCB interferes with the functional activities of AChR, including its coupling influx currents and cytosolic calcium elevations.

  13. Effect of budesonide and azelastine on histamine signaling regulation in human nasal epithelial cells.

    Science.gov (United States)

    Liu, Shao-Cheng; Lin, Chun-Shu; Chen, Shyi-Gen; Chu, Yueng-Hsiang; Lee, Fei-Peng; Lu, Hsuan-Hsuan; Wang, Hsing-Won

    2017-02-01

    Both glucocorticoids and H1-antihistamines are widely used on patients with airway diseases. However, their direct effects on airway epithelial cells are not fully explored. Therefore, we use the primary culture of human nasal epithelial cells (HNEpC) to delineate in vitro mucosal responses to above two drugs. HNEpC cells were cultured with/without budesonide and azelastine. The growth rate at each group was recorded and measured as population double time (PDT). The histamine1-receptor (H1R), muscarinic1-receptor (M1R) and M3R were measured using immunocytochemistry and western blotting after 7-days treatment. Then, we used histamine and methacholine to stimulate the mucus secretion from HNEpC and observed the MUC5AC expression in culture supernatants. Concentration-dependent treatment-induced inhibition of HNEpC growth rate was observed. Cells incubated with azelastine proliferated significantly slower than that with budesonide and the combined use of those drugs led to significant PDT prolong. The immunocytochemistry showed the H1R, M1R and M3R were obviously located in the cell membrane without apparent difference after treatment. However, western blotting showed that budesonide can significantly up-regulate the H1R, M1R and M3R level while azelastine had opposite effects. Histamine and methacholine stimulated MUC5AC secretion was greater in cells treated with budesonide but was lesser in those treated with azelastine, as compared to controls. Our data suggest that both budesonide and azelastine can significantly inhibit HNEpC proliferation, and therefore, be helpful in against airway remodeling. Long-term use of budesonide might amplify histamine signaling and result in airway hyperreactivity to stimulants by enhancing H1R, M1R and M3R expression while azelastine can oppose this effect. Therefore, combined use of those two drugs in patients with chronic inflammatory airway diseases may be an ideal option.

  14. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells.

    Directory of Open Access Journals (Sweden)

    Rosyana V Albuquerque

    Full Text Available Dapsone (DDS hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV on DDS hydroxylamine (DDS-NHOH mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET, but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT activity and reactive oxygen species (ROS generation, but did not alter superoxide dismutase (SOD activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.

  15. EFFECT OF ADENOVIRUS-MEDIATED p53 GENE TRANSFER ON APOPTOSIS AND RADIOSENSITIVITY OF HUMAN GASTRIC CARCINOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张珊文; 肖绍文; 吕有勇

    2003-01-01

    Objective: To evaluate the effect of adenovirus- mediated p53 gene (Adp53) on apoptosis and radiosensitivity of human gastric carcinoma cell lines. Methods: Recombinant adenovirus expressing wild-type p53 gene was transferred into four human gastric carcinoma cell lines with different p53 genetic status. p53 protein expression was detected by immunohistochemistry assay and western blot assay. Cell survival was assessed using a clonogenic assay. TUNEL assay was used in determination of apoptosis. Four human gastric carcinoma cells infected with Adp53 were irradiated with 4Gy and cell cycle distribution and Sub-G1 peak were assayed by flow cytometry. Results: G2/M arrest, apoptosis and inhibition of tumor cell proliferation were induced by infection at Adp53 at 100 MOI which caused high transfer rate of wild-type p53 and strong expression of p53 protein in four human gastric carcinoma cells. The radio-enhancement ratio of Adp53 at 4Gy were 3.0 for W cell, 3.6 for M cell, 2.2 for neo cell and 2.5 for 823 cell in vitro. Conclusion: This study demonstrated that Adp53 transfer increased cellular apoptosis and radiosensitivity of human gastric carcinoma cell lines in vitro independently on cellular intrinsic p53 status thus supporting the combination of p53 gene therapy with radiotherapy in clinical trials.

  16. Inhibitory effect of berberine on human skin squamous cell carcinoma A431 cells.

    Science.gov (United States)

    Li, D X; Zhang, J; Zhang, Y; Zhao, P W; Yang, L M

    2015-09-08

    Berberine (BBR) is a natural alkaloid with significant anti-tumor activity against many types of cancer cells. In this study, we investigated the molecular mechanisms employed by BBR to repress the proliferation and growth of skin squamous cell carcinoma A431 cells. Berberine was reported to inhibit the proliferation of A431 cells in a dose- and time-dependent manner and was observed to induce a series of biochemical events, including the loss of mitochondrial membrane potential, release of cytochrome-c to cytosol, induction of proteins of the Bcl-2 family and caspases, and the cleavage of poly(ADP)-ribose polymerase. This suggested its ability to induce apoptosis. The results of a wound healing test revealed that berberine inhibited the migration of A431 cells. Ezrin was transfected into A431 cells by RNA interference. The level of expression of Ezrin in the transfected A431 cells was observed to decrease with berberine treatment, which suggested that berberine might inhibit the invasion of A431 cells through Ezrin. The results of this study demonstrated that berberine could potentially inhibit proliferation, induce apoptosis, and inhibit the invasion of A431 cells.

  17. In vitro toxicological effects of estrogenic mycotoxins on human placental cells: Structure activity relationships

    Energy Technology Data Exchange (ETDEWEB)

    Prouillac, Caroline, E-mail: c.prouillac@vetagro-sup.fr [Université Lyon, US/C 1233 INRA VetAgroSup, Métabolisme et Toxicologie Comparée des Xénobiotiques, 1 avenue Bourgelat, BP 83, 69280 Marcy l' Etoile (France); Koraichi, Farah; Videmann, Bernadette; Mazallon, Michelle [Université Lyon, US/C 1233 INRA VetAgroSup, Métabolisme et Toxicologie Comparée des Xénobiotiques, 1 avenue Bourgelat, BP 83, 69280 Marcy l' Etoile (France); Rodriguez, Frédéric; Baltas, Michel [Université Paul Sabatier, SPCMIB-UMR5068, Laboratoire de Synthèse et de Physicochimie des Molécules d' Intérêt Biologique, 118 route de Narbonne, 31062 TOULOUSE cedex 9 (France); Lecoeur, Sylvaine [Université Lyon, US/C 1233 INRA VetAgroSup, Métabolisme et Toxicologie Comparée des Xénobiotiques, 1 avenue Bourgelat, BP 83, 69280 Marcy l' Etoile (France)

    2012-03-15

    Zearalenone (ZEN) is a non-steroid estrogen mycotoxin produced by numerous strains of Fusarium which commonly contaminate cereals. After oral administration, ZEN is reduced via intestinal and hepatic metabolism to α- and β-zearalenol (αZEL and βZEL). These reduced metabolites possess estrogenic properties, αZEL showing the highest affinity for ERs. ZEN and reduced metabolites cause hormonal effects in animals, such as abnormalities in the development of the reproductive tract and mammary gland in female offspring, suggesting a fetal exposure to these contaminants. In our previous work, we have suggested the potential impact of ZEN on placental cells considering this organ as a potential target of xenobiotics. In this work, we first compared the in vitro effects of αZEL and βΖΕL on cell differentiation to their parental molecule on human trophoblast (BeWo cells). Secondly, we investigated their molecular mechanisms of action by investigating the expression of main differentiation biomarkers and the implication of nuclear receptor by docking prediction. Conversely to ZEN, reduced metabolites did not induce trophoblast differentiation. They also induced significant changes in ABC transporter expression by potential interaction with nuclear receptors (LXR, PXR, PR) that could modify the transport function of placental cells. Finally, the mechanism of ZEN differentiation induction seemed not to involve nuclear receptor commonly involved in the differentiation process (PPARγ). Our results demonstrated that in spite of structure similarities between ZEN, αZEL and βZEL, toxicological effects and toxicity mechanisms were significantly different for the three molecules. -- Highlights: ► ZEN and metabolites have differential effect on trophoblast differentiation. ► ZEN and metabolites have differential effect on ABC transporter expression. ► ZEN and metabolites effects involved nuclear receptors interaction.

  18. Analysis of the erythroid differentiation effect of flavonoid apigenin on K562 human chronic leukemia cells.

    Science.gov (United States)

    Isoda, Hiroko; Motojima, Hideko; Onaga, Shoko; Samet, Imen; Villareal, Myra O; Han, Junkyu

    2014-09-05

    The erythroid differentiation-inducing effect of apigenin and its derivatives on human chronic myeloid leukemia K562 has been reported but the functional group in its structure responsible for the effect has not yet been elucidated. Here, we determined the moiety responsible for the erythroid differentiation induction effect of apigenin by using different flavonoids to represent the functional groups in its structure. In addition, we compared apigenin and apigetrin, a flavonoid similar in structure to apigenin except for the glycoside in its structure. Morphological changes as well as expressions of specific markers in K562 cells treated with apigenin were compared with those treated with apigetrin, flavone, 7-hydroxyflavone, chrysin, luteolin, or naringenin. The anti-proliferative and erythroid differentiation-inducing effect of apigenin and the five flavonoids were then investigated and their effects on the α, β, and γ globin genes expressions were compared using real-time PCR. Results of the comparison between apigenin and apigetrin revealed that the glycoside part of apigetrin does not have a role in the induction of cell differentiation. Based on glycophorin A expression, the potency of the other flavonoids for induction of differentiation, was: apigenin>chrysin>flavone/7-hydroxyflavone>luteolin/naringenin. Results of the analysis of the relationship between the structure and function of the flavonoids suggest that the apigenin-induced K562 cell differentiation was due to the 2-3 double bond and hydroxyl groups in its structure. This is the first study that identified the specific functional group in apigenin that impact the erythroid differentiation effect in K562 cells.

  19. Nutrigenomics in human peripheral blood mononuclear cells : the effects of fatty acids on gene expression profiles of human circulating cells as assessed in human intervention studies

    NARCIS (Netherlands)

    Bouwens, M.

    2009-01-01

    Research on the effects of nutrition on the function and health of organs in the human body, such as liver and intestine, is difficult, because for this research organ tissue is needed. Since nutrition research is usually performed in healthy volunteers, this tissue is difficult to obtain. However,

  20. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    Science.gov (United States)

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  1. In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture.

    Science.gov (United States)

    Wang, He; Wang, Jing J; Sanderson, Barbara J S

    2013-01-01

    The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.

  2. Anti-proliferative effect of Melissa officinalis on human colon cancer cell line.

    Science.gov (United States)

    Encalada, Manuel Alejandro; Hoyos, Kelly Melissa; Rehecho, Sheyla; Berasategi, Izaskun; de Ciriano, Mikel García-Íñiguez; Ansorena, Diana; Astiasarán, Iciar; Navarro-Blasco, Iñigo; Cavero, Rita Yolanda; Calvo, María Isabel

    2011-11-01

    Melissa officinalis L. (Lamiaceae) is consumed as a traditional herbal tea in the Mediterranean region. The cytotoxic effect of the 50% ethanolic and aqueous extract, determined by the MTT and NR assays, was evaluated in vitro on Human Colon Cancer Cell Line (HCT-116), using Triton 10% as positive control. The 50% ethanolic extract showed significant differences after 72 h of treatment, reducing cell proliferation to values close to 40%, even the lowest dose tested (5 μg/ml). In the MTT assay, the same extract caused the lowest cell viability with 13% at a concentration of 1,000 μg/ml after 72 h of treatment, being a value lower than Triton 10%. The antioxidant activity was also confirmed evaluating the capacity of the extracts to scavenge ABTS and DPPH radicals, and IC(50) values were highly correlated with the total phenolic and flavonoid content. Bioassay guided fractionation led to the isolation of an anti-proliferative compound, rosmarinic acid. Its structural elucidation was performed by HPLC/DAD/ESI/MS analysis. High dose of rosmarinic acid (1,000 μg/ml) was clearly cytotoxic against HCT-116 cells, with a significant decrease in cell number since the earliest time point (24 h).

  3. Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling.

    Science.gov (United States)

    Han, Yong-Seok; Lee, Jun Hee; Lee, Sang Hun

    2015-05-01

    We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

  4. Effect of VEGF on Neural Differentiation of Human Embryonic Stem Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Shujie JIAO; Huifang XU; Jie XU; Yanqiang ZHAN; Suming ZHANG

    2009-01-01

    The effects of vascular endothelial growth factor (VEGF) on neural differentiation of human embryonic stem cells (hESCs) in vitro and the possible mechanism were observed. The hESCs lines,TJMU1 and TJMU2, were established and stored by our laboratory, hESCs differentiated into neuronal cells through embryonic body formation. In this induction process, hESCs were divided into three groups: group A, routine induction; group B, routine induction+10 ng/mL VEGF; group C, routine in-duction+10 ng/mL VEGF+10 ng/mL VEGFR2/Fc. OCT4, Nestin and GFAP in each group were de-tected by RT-PCR, and the cells expressing Nestin and GFAP were counted by immunofluorescence.The percentage of Nestin positive cells in group B was significantly higher than in groups A and C,while the percentage of GFAP positive cells in group B was significantly lower than in groups A and C (P0.05). It was concluded that VEGF, via VEGFR2, stimulated the neural differentiation of hESCs in vitro.

  5. Cryptomphalus aspersa Mollusc Egg Extract Promotes Regenerative Effects in Human Dermal Papilla Stem Cells

    Directory of Open Access Journals (Sweden)

    María Teresa Alameda

    2017-02-01

    Full Text Available The aim of this study was to test, by an in vitro approach, whether a natural extract derived from eggs of the mollusc Cryptomphalus aspersa (e-CAF that seems to present regenerative properties, can enhance the mobilization of human hair dermal papilla cells (HHDPCs and play a role on tissue repair and regeneration. We have tested HHDPCs proliferation by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium-bromide (MTT assay; cell migration by using a wound healing assay, as well as the modulation of the expression of cytoskeletal (F-actin and vimentin and cell adhesion to the extracellular matrix (ECM (vinculin and P-FAK proteins. We also explored whether e-CAF could lead HHDPCs to keratinocytes and/or fibroblasts by evaluating the expression of specific markers. We have compared these e-CAF effects with those induced by TGFβ1, implicated in regulation of cell proliferation and migration. e-CAF promotes proliferation and migration of HDDPCs cells in a time- and dose-dependent manner; it also increases the migratory behavior and the expression of adhesion molecules. These results support the fact that e-CAF could play a role on skin regeneration and be used for the prevention or repair of damaged tissue, either due to external causes or as a result of cutaneous aging.

  6. Effect of melamine on [Ca(2+)]i and viability in PC3 human prostate cancer cells.

    Science.gov (United States)

    Yu, Chia-Cheng; Chou, Chiang-Ting; Sun, Te-Kung; Liang, Wei-Zhe; Cheng, Jin-Shiung; Chang, Hong-Tai; Wang, Jue-Long; Tseng, Hui-Wen; Kuo, Chun-Chi; Chen, Fu-An; Kuo, Daih-Huang; Shieh, Pochuen; Jan, Chung-Ren

    2014-11-01

    Melamine is thought to be an endocrine disrupter that affects physiology in cells. This study examined the effect of melamine on cytosolic free Ca(2+) concentrations ([Ca(2+)]i) and viability in PC3 human prostate cancer cells. Melamine evoked [Ca(2+)]i rises concentration-dependently. Melamine-evoked Ca(2+) entry was inhibited by nifedipine, econazole, SKF96365, GF109203X and phorbol 12-myristate 13 acetate. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin inhibited melamine-evoked [Ca(2+)]i rise. Conversely, treatment with melamine abolished thapsigargin-evoked [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 did not alter melamine-evoked [Ca(2+)]i rise. Melamine at 500-800μM decreased cell viability, which was not reversed by pretreatment with the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, our data suggest that in PC3 cells, melamine induced [Ca(2+)]i rises by evoking phospholipase C-independent Ca(2+) release from the endoplasmic reticulum, and Ca(2+) entry via protein kinase C-regulated store-operated Ca(2+) entry. Melamine also caused Ca(2+)-independent cell death.

  7. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells.

    Science.gov (United States)

    Calvello, Rosa; Aresta, Antonella; Trapani, Adriana; Zambonin, Carlo; Cianciulli, Antonia; Salvatore, Rosaria; Clodoveo, Maria Lisa; Corbo, Filomena; Franchini, Carlo; Panaro, Maria Antonietta

    2016-11-01

    In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms.

  8. The effect of bovine milk lactoferrin on human breast cancer cell lines.

    Science.gov (United States)

    Duarte, D C; Nicolau, A; Teixeira, J A; Rodrigues, L R

    2011-01-01

    The evidence that biologically active food components are key environmental factors affecting the incidence of many chronic diseases is overwhelming. However, the full extent of such components in our diet is unknown, as is our understanding of their mechanisms of action. Beyond the interaction of these food components with the gut and intestinal immune functions, whey proteins such as lactoferrin are being tested as anticancer agents. Lactoferrin is an iron-binding protein that has been reported to inhibit several types of cancer. In the present work, the effects of bovine milk lactoferrin on human breast cancer HS578T and T47D cells were studied. The cells were either untreated or treated with lactoferrin concentrations ranging from 0.125 to 125 μM. Lactoferrin decreased the cell viability of HS578T and T47D by 47 and 54%, respectively, and increased apoptosis about 2-fold for both cell lines. Proliferation rates decreased by 40.3 and 63.9% for HS578T and T47D, respectively. For the T47D line, cell migration decreased in the presence of the protein. Although the mechanisms of action are not fully known, the results gathered in this work suggest that lactoferrin interferes with some of the most important steps involved in cancer development.

  9. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells

    Science.gov (United States)

    Jiang, Chun-Ping; Ding, Hui; Shi, Da-Hua; Wang, Yu-Rong; Li, Er-Guang; Wu, Jun-Hua

    2012-01-01

    AIM: To investigate the effects of tectorigenin on human hepatocellular carcinoma (HCC) HepG2 cells. METHODS: Tectorigenin, one of the main components of rhizome of Iris tectorum, was prepared by simple methods, such as extraction, filtration, concentration, precipitation and recrystallization. HepG2 cells were incubated with tectorigenin at different concentrations, and their viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was detected by morphological observation of nuclear change, agarose gel electrophoresis of DNA ladder, and flow cytometry with Hoechst 33342, Annexin V-EGFP and propidium iodide staining. Generation of reactive oxygen species was quantified using DCFH-DA. Intracellular Ca2+ was monitored by Fura 2-AM. Mitochondrial membrane potential was monitored using Rhodamine 123. Release of cytochrome c from mitochondria to cytosol was detected by Western blotting. Activities of caspase-3, -8 and -9 were investigated by Caspase Activity Assay Kit. RESULTS: The viability of HepG2 cells treated by tectorigenin decreased in a concentration- and time-dependent manner. The concentration that reduced the number of viable HepG2 cells by 50% (IC50) after 12, 24 and 48 h of incubation was 35.72 mg/L, 21.19 mg/L and 11.06 mg/L, respectively. However, treatment with tectorigenin at 20 mg/L resulted in a very slight cytotoxicity to L02 cells after incubation for 12, 24 or 48 h. Tectorigenin at a concentration of 20 mg/L greatly inhibited the viability of HepG2 cells and induced the condensation of chromatin and fragmentation of nuclei. Tectorigenin induced apoptosis of HepG2 cells in a time- and dose-dependent manner. Compared with the viability rate, induction of apoptosis was the main mechanism of the anti-proliferation effect of tectorigenin in HepG2 cells. Furthermore, tectorigenin-induced apoptosis of HepG2 cells was associated with the generation of reactive oxygen species, increased intracellular [Ca2+]i

  10. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; ZHENG Xue-fang; WANG Yong-li

    2009-01-01

    Background Breast cancer is one of the most common malignancies in women and is highly resistant to chemotherapy. Due to its high tumour selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism has been proposed as a specific anticancer agent. The present study determined the effect of 3-BrPA on proliferation, cell cycle and apoptosis in the human breast cancer MCF-7 cell line and other antitumour mechanisms. Methods MCF-7 cells were treated with various concentrations of 3-BrPA for 1-4 days, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Marked morphological changes in MCF-7 cells after treatment with 3-BrPA were observed using transmission electron microscopy. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. Immunohistochemistry was used to indicate the changes in the expression of Bcl-2, c-Myc, and mutant p53. Results 3-BrPA (25 μg/ml) significantly inhibited the proliferation of MCF-7 cells in a time-dependent manner. The MCF-7 cells exposed to 3-BrPA showed the typical morphological characteristics of apoptosis, including karyopycnosis, nuclear condensation and oversize cytoplasmic particles. In addition, flow cytometric assay also showed more apoptotic cells after 3-BrPA stimulation. The cells at the GO and G1 phases were dramatically decreased while cells at the S and G2/M phases were increased in response to 3-BrPA treatment after 48 hours. Furthermore, 3-BrPA stimulation decreased the expressions of Bcl-2, c-Myc and mutant p53, which were strongly associated with the programmed cell death signal transduction pathway. Conclusion 3-BrPA inhibits proliferation, induces S phase and G2/M phase arrest, and promotes apoptosis in MCF-7 cells, which processes might be mediated by the downregulation of the expressions of Bcl-2, c-Myc and mutant p53.

  11. The Effect of Levonorgestrel on Fibrinolytic Factors in Human Endometrial Endothelial Cells.

    Science.gov (United States)

    Pakrashi, Tarita; Taylor, Joelle E; Nelson, Ashley; Archer, David F; Jacot, Terry

    2016-11-01

    The levonorgestrel-releasing intrauterine system is considered a highly effective treatment of heavy menstrual bleeding (HMB). While LNG has established effects on the stromal and glandular compartments of the endometrial tissue, its effect on the endometrial endothelial cells has not been investigated. We examined whether LNG regulates fibrinolytic factors, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) secreted by human endometrial endothelial cells (HEECs) and determined the steroid receptor through which LNG exerts its effect on the endothelium. The HEECs were treated with LNG or progesterone and levels of tPA and plasminogen activator inhibitor 1 (PAI-1) measured. The HEECs were specifically examined for the presence of androgen receptors through Western blot. Levonorgestrel ± flutamide were added to HEECs and the levels of tPA and uPA were examined. An enzyme-linked immunosorbent assay performed on culture media confirmed a statistically significant decrease in tPA levels in cells treated with LNG (77.80% ± 8.0% of control; n = 5, P < .05 vs control) but not progesterone. The androgen receptor (110 kDa) was detected in HEEC lysates. The decrease in tPA was blocked by the addition of flutamide (101.3% ± 16% of control), a classic nonsteroidal androgen receptor blocker. There was no change in uPA or PAI-1 levels in cells treated with LNG. Levonorgestrel decreases tPA levels through the androgen receptor in HEECs. Thus, LNG inhibits tPA secretion by the endometrial endothelial cell. This response suggests reduction in HMB with LNG-IUS could reflect an LNG-mediated promotion of hemostasis. © The Author(s) 2016.

  12. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells

    Science.gov (United States)

    Cha, Jae Hoon; Kim, Woo Kyoung; Ha, Ae Wha; Kim, Myung Hwan

    2017-01-01

    BACKGROUND/OBJECTIVES Although the antioxidative effects of lycopene are generally known, the molecular mechanisms underlying the anti-inflammatory properties of lycopene are not fully elucidated. This study aimed to examine the role and mechanism of lycopene as an inhibitor of inflammation. METHODS/MATERIALS Lipopolysaccharide (LPS)-stimulated SW 480 human colorectal cancer cells were treated with 0, 10, 20, and 30 µM lycopene. The MTT assay was performed to determine the effects of lycopene on cell proliferation. Western blotting was performed to observe the expression of inflammation-related proteins, including nuclear factor-kappa B (NF-κB), inhibitor kappa B (IκB), mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (p38 MAP kinase). Real-time polymerase chain reaction was performed to investigate the mRNA expression of tumor necrosis factor α (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Concentrations of nitric oxide (NO) and prostaglandin E2 (PGE2) were determined via enzyme-linked immunosorbent assays. RESULTS In cells treated with lycopene and LPS, the mRNA expression of TNF-α, IL-1β, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner (P cancer cells.

  13. Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line.

    Science.gov (United States)

    Yuan, Li; Wang, Yutang; Wang, Jing; Xiao, Haifang; Liu, Xuebo

    2014-03-03

    Metal nanomaterial could effectively decrease tumour resistance to anti-cancer drugs. In this paper, we have explored the synergistic effect and mechanisms of zinc oxide nanoparticles (ZnO Nps) and isoorientin (ISO) on cytotoxicity in human hepatoma (HepG2) cells. The results showed that ZnO Nps could exert dose- and time-dependent cytotoxicity in HepG2 cells, and the combining treatment resulted in a greater cytotoxicity than single treatment. ZnO Nps could synergistically potentiate ISO to induce apoptosis through resulting in mitochondrial dysfunction, inhibiting the phosphorylation of Akt and ERK1/2, and enhancing the phosphorylation of JNK and P38. Additionally, ZnO Nps were uptaked by cells through endocytic pathway and it enhanced the cellular uptake of ISO, while no significant injury was found in normal liver cells after the combined treatment. These results suggest that the combination of metal nanoparticle with anti-cancer drugs may provide a promising alternative for novel cancer treatments.

  14. Combined Effects of Nonylphenol and Bisphenol A on the Human Prostate Epithelial Cell Line RWPE-1

    Directory of Open Access Journals (Sweden)

    Weidong Gan

    2015-04-01

    Full Text Available The xenoestrogens nonylphenol (NP and bisphenol A (BPA are regarded as endocrine disrupting chemicals (EDCs which have widespread occurrence in our daily life. In the present study, the purpose was to analyze the combined effects of NP and BPA on the human prostate epithelial cell line RWPE-1 using two mathematical models based on the Loewe additivity (LA theory and the Bliss independence (BI theory. RWPE-1 cells were treated with NP (0.01–100 µM and BPA (1–5000 µM in either a single or a combined format. A cell viability assay and lactate dehydrogenase (LDH leakage rate assay were employed as endpoints. As predicted by the two models and based on the cell viability assay, significant synergism between NP and BPA were observed. However, based on the LDH assay, the trends were reversed. Given that environmental contaminants are frequently encountered simultaneously, these data indicated that there were potential interactions between NP and BPA, and the combined effects of the chemical mixture might be stronger than the additive values of individual chemicals combined, which should be taken into consideration for the risk assessment of EDCs.

  15. Effects and Interactions of Prostaglandins and Interferon-γ on Steroidogenesis of Human Luteal Cells

    Institute of Scientific and Technical Information of China (English)

    王寒正; 沈维维; 孙志达; 张翔; 龚岳亭

    1996-01-01

    Previous work from our laboratory has demonstrated that T lymphocyte-derived cytokine, interferon-gamma (IFN-γ) may play a role in human luteal regression by inhibiting luteal progesterone production. Prostaglandin F2a has been known as an important luteolytic factor in a wide range of mammalian species. It was of interest to investigate the effects of IFN-γ on prostaglandin synthesis and their possible interaction with the inhibition on human luteal steroidogenesis. Human luteal cells were cultured for four days in the presence or absence of IFN-γ. Simultaneously, the productions of progesterone, prostaglandin F2a ( PGF