WorldWideScience

Sample records for human cells due

  1. Abnormalities in human pluripotent cells due to reprogramming mechanisms.

    Science.gov (United States)

    Ma, Hong; Morey, Robert; O'Neil, Ryan C; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D; Hariharan, Manoj; Nery, Joseph R; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P; Ecker, Joseph R; Laurent, Louise C; Mitalipov, Shoukhrat

    2014-07-10

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.

  2. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    Science.gov (United States)

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  3. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis.

    Science.gov (United States)

    Sun, Hai-Hua; Chen, Bo; Zhu, Qing-Lin; Kong, Hui; Li, Qi-Hong; Gao, Li-Na; Xiao, Min; Chen, Fa-Ming; Yu, Qing

    2014-11-01

    Recently, human dental pulp stem cells (DPSCs) isolated from inflamed dental pulp tissue have been demonstrated to retain some of their pluripotency and regenerative potential. However, the effects of periodontal inflammation due to periodontitis and its progression on the properties of DPSCs within periodontally compromised teeth remain unknown. In this study, DPSCs were isolated from discarded human teeth that were extracted due to aggressive periodontitis (AgP) and divided into three experimental groups (Groups A, B and C) based on the degree of inflammation-induced bone resorption approaching the apex of the tooth root before tooth extraction. DPSCs derived from impacted or non-functional third molars of matched patients were used as a control. Mesenchymal stem cell (MSC)-like characteristics, including colony-forming ability, proliferation, cell cycle, cell surface antigens, multi-lineage differentiation capability and in vivo tissue regeneration potential, were all evaluated in a patient-matched comparison. It was found that STRO-1- and CD146-positive DPSCs can be isolated from human teeth, even in very severe cases of AgP. Periodontal inflammation and its progression had an obvious impact on the characteristics of DPSCs isolated from periodontally affected teeth. Although all the isolated DPSCs in Groups A, B and C showed decreased colony-forming ability and proliferation rate (P biomaterials were transplanted directly into an ectopic transplantation model. However, when cell-seeded scaffolds were placed in the root fragments of human teeth, all the cells formed significant dentin- and pulp-like tissues. The ability of DPSCs to generate dental tissues decreased when the cells were isolated from periodontally compromised teeth (P < 0.05). Again, increased periodontal destruction was not necessarily followed by a decrease in the amount of dentin- and pulp-like tissue formed. These findings provide preliminary evidence that periodontally compromised teeth might

  4. Human brain microvascular endothelial cells resist elongation due to shear stress.

    Science.gov (United States)

    Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C

    2015-05-01

    Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier.

  5. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells.

    Science.gov (United States)

    Winkler, Thomas; Cantilena, Amy; Métais, Jean-Yves; Xu, Xiuli; Nguyen, Anh-Dao; Borate, Bhavesh; Antosiewicz-Bourget, Jessica E; Wolfsberg, Tyra G; Thomson, James A; Dunbar, Cynthia E

    2010-04-01

    Derivation of induced pluripotent stem (iPS) cells requires the expression of defined transcription factors (among Oct3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28) in the targeted cells. Lentiviral or standard retroviral gene transfer remains the most robust and commonly used approach. Low reprogramming frequency overall, and the higher efficiency of derivation utilizing integrating vectors compared to more recent nonviral approaches, suggests that gene activation or disruption via proviral integration sites (IS) may play a role in obtaining the pluripotent phenotype. We provide for the first time an extensive analysis of the lentiviral integration profile in human iPS cells. We identified a total of 78 independent IS in eight recently established iPS cell lines derived from either human fetal fibroblasts or newborn foreskin fibroblasts after lentiviral gene transfer of Oct4, Sox2, Nanog, and Lin28. The number of IS ranged from 5 to 15 IS per individual iPS clone, and 75 IS could be assigned to a unique chromosomal location. The different iPS clones had no IS in common. Expression analysis as well as extensive bioinformatic analysis did not reveal functional concordance of the lentiviral targeted genes between the different clones. Interestingly, in six of the eight iPS clones, some of the IS were found in pairs, integrated into the same chromosomal location within six base pairs of each other or in very close proximity. Our study supports recent reports that efficient reprogramming of human somatic cells is not dependent on insertional activation or deactivation of specific genes or gene classes.

  6. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major

    DEFF Research Database (Denmark)

    ElHassan, A M; Gaafar, A; Theander, T G

    1995-01-01

    keratinocytes and endothelial cells also showed these characteristics, they may also act as APC. By examining tissue samples from skin lesions and draining lymph nodes it was possible to follow the probable route of trafficking of various inflammatory cells between the skin lesion and lymph nodes. Leishmania...

  7. AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell-cell communication

    Science.gov (United States)

    Guz, Nataliia V.; Patel, Sapan J.; Dokukin, Maxim E.; Clarkson, Bayard; Sokolov, Igor

    2016-12-01

    Biomechanical properties of single cells in vitro or ex vivo and their pericellular interfaces have recently attracted a lot of attention as a potential biophysical (and possibly prognostic) marker of various diseases and cell abnormalities. At the same time, the influence of the cell environment on the biomechanical properties of cells is not well studied. Here we use atomic force microscopy to demonstrate that cell-cell communication can have a profound effect on both cell elasticity and its pericellular coat. A human pre-B p190BCR/ABL acute lymphoblastic leukemia cell line (ALL3) was used in this study. Assuming that cell-cell communication is inversely proportional to the distance between cells, we study ALL3 cells in vitro growing at different cell densities. ALL3 cells demonstrate a clear density dependent behavior. These cells grow very well if started at a relatively high cell density (HD, >2 × 105 cells ml-1) and are poised to grow at low cell density (LD, communication must be taken into account when studying biomechanics of cells, in particular, correlating cell phenotype and its biophysical properties.

  8. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants.

    Science.gov (United States)

    Perkins, Andrew; Xu, Xiangmin; Higgs, Douglas R; Patrinos, George P; Arnaud, Lionel; Bieker, James J; Philipsen, Sjaak

    2016-04-14

    Until recently our approach to analyzing human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, in thalassemia, the globin loci are analyzed. Sequencing has become increasingly accessible, and thus a larger panel of genes can be analyzed and whole exome and/or whole genome sequencing can be used when no variants are found in the candidate genes. By using such approaches in patients with unexplained anemias, we have discovered that a broad range of hitherto unrelated human red cell disorders are caused by variants in KLF1, a master regulator of erythropoiesis, which were previously considered to be extremely rare causes of human genetic disease.

  9. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation.

    Directory of Open Access Journals (Sweden)

    Dale Christiansen

    2008-07-01

    Full Text Available The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3, is believed to be critical for natural killer T (NKT cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope Galalpha(1,3Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S. We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign Galalpha(1,3Gal xenoantigen, with obvious significance in the field of xenotransplantation.

  10. Krüppeling erythropoiesis: An unexpected broad spectrum of human red blood cell disorders due to KLF1 variants

    NARCIS (Netherlands)

    A. Perkins (Andrew); X. Xu (Xiangmin); D. Higgs (Doug); G.P. Patrinos (George P.); L. Arnaud (Lionel); J.J. Bieker (James J.); J.N.J. Philipsen (Sjaak)

    2016-01-01

    textabstractUntil recently our approach to analyzing human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, in thalassemia, the globin loci are analyzed. Sequencing has become increasingly accessible, and thu

  11. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Tanuja Rajah

    Full Text Available The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH with a concomitant increase in reactive oxygen species (ROS levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.

  12. Trans, trans-2,4-decadienal, a product found in cooking oil fumes, induces cell proliferation and cytokine production due to reactive oxygen species in human bronchial epithelial cells.

    Science.gov (United States)

    Chang, Louis W; Lo, Wai-Sze; Lin, Pinpin

    2005-10-01

    Dienaldehydes are by-products of peroxidation of polyunsaturated lipids and commonly found in many foods or food-products. Both National Cancer Institute (NCI) and NTP have expressed great concern on the potential genotoxicity and carcinogenicity of dienaldehydes. Trans, trans-2,4-decadienal (tt-DDE or 2,4-De), a specific type of dienaldehyde, is abundant in heated oils and has been associated with lung adenocarcinoma development in women due to their exposure to oil fumes during cooking. Cultured human bronchial epithelial cells (BEAS-2B cells) were exposed to 0.1 or 1.0 microM tt-DDE for 45 days, and oxidative stress, reactive oxygen species (ROS) production, GSH/GSSG ratio, cell proliferation, and expression of TNFalpha and IL-1beta were measured. The results show that tt-DDE induced oxidative stress, an increase in ROS production, and a decrease in GSH/GSSG ratio (glutathione status) in a dose-dependent manner. Treatment of BEAS-2B cells with 1.0 microM tt-DDE for 45 days increased cell proliferation and the expression and release of pro-inflammatory cytokines TNFalpha and IL-1beta. Cotreatment of BEAS-2B cells with antioxidant N-acetylcysteine prevented tt-DDE-induced cell proliferation and release of cytokines. Therefore, these results suggest that tt-DDE-induced changes may be due to increased ROS production and enhanced oxidative stress. Since increased cell proliferation and the release of TNF-alpha and IL-1beta are believed to be involved in tumor promotion, our results suggest that tt-DDE may play a role in cancer promotion. Previous studies on dienaldehydes have focused on their genotoxic or carcinogenic effects in the gastrointestinal tract; the present study suggests a potential new role of tt-DDE as a tumor promoter in human lung epithelial cells.

  13. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  14. p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal.

    Science.gov (United States)

    Batista, Luis F Z; Roos, Wynand P; Kaina, Bernd; Menck, Carlos F M

    2009-02-01

    The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that it sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct importance of DNA repair is hard to access. Here, it is shown that the induction of photoproducts by UV light (UV-C) significantly induces apoptosis in a p53-mutated glioma background. This is caused by a reduced level of photoproduct repair, resulting in the persistence of DNA lesions in p53-mutated glioma cells. UV-C-induced apoptosis in p53 mutant glioma cells is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results indicate that UV-C-induced apoptosis of p53 mutant glioma cells is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data indicate that unrepaired DNA lesions induce apoptosis in p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that induce the formation of DNA lesions whose global genomic repair is dependent on p53.

  15. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13;14) trisomy 14.

    Science.gov (United States)

    Antonarakis, S E; Blouin, J L; Maher, J; Avramopoulos, D; Thomas, G; Talbot, C C

    1993-06-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. We recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hypercholesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, we have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14. There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed--and subsequent cytogenetic analysis confirmed--that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a "maternal UPD chromosome 14 syndrome" is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes.

  16. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13; 14) trisomy 14

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.; Blouin, J.L.; Maher, J.; Avramopoulos, D.; Thomas, G.; Talbot, C.C. Jr. (Johns Hopkins Univ., Baltimore (United States))

    1993-06-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. The authors recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hyperchloesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, they have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14. There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed -- and subsequent cytogenetic analysis confirmed -- that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a [open quotes]maternal UPD chromosome 14 syndrome[close quotes] is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes. 33 refs., 3 figs., 1 tab.

  17. "Krüppeling" erythropoiesis : An unexpected broad spectrum of human red blood cell disorders due to KLF1 variants unveiled by genomic sequencing

    NARCIS (Netherlands)

    A. Perkins (Andrew); X. Xu (Xiangmin); D.R. Higgs (Douglas); G.P. Patrinos (George); A. Lionel, A. (Arnaud); J. Bieker (James); J.N.J. Philipsen (Sjaak)

    2016-01-01

    textabstractUntil recently our approach to the analysis of human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, analysing the globin loci in cases of thalassemia. As sequencing has become increasingly acces

  18. "Krüppeling" erythropoiesis : An unexpected broad spectrum of human red blood cell disorders due to KLF1 variants unveiled by genomic sequencing

    NARCIS (Netherlands)

    A. Perkins (Andrew); X. Xu (Xiangmin); D.R. Higgs (Douglas); G.P. Patrinos (George); A. Lionel, A. (Arnaud); J. Bieker (James); J.N.J. Philipsen (Sjaak)

    2016-01-01

    textabstractUntil recently our approach to the analysis of human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, analysing the globin loci in cases of thalassemia. As sequencing has become increasingly acces

  19. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13;14) trisomy 14.

    OpenAIRE

    Antonarakis, S E; Blouin, J L; Maher, J; Avramopoulos, D; Thomas, G.; Talbot, C C

    1993-01-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. We recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hypercholesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, we have studied the genotypes of...

  20. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex.

    Science.gov (United States)

    Dutta, Arijit; Eckelmann, Bradley; Adhikari, Sanjay; Ahmed, Kazi Mokim; Sengupta, Shiladitya; Pandey, Arvind; Hegde, Pavana M; Tsai, Miaw-Sheue; Tainer, John A; Weinfeld, Michael; Hegde, Muralidhar L; Mitra, Sankar

    2017-03-17

    Microhomology-mediated end joining (MMEJ), an error-prone pathway for DNA double-strand break (DSB) repair, is implicated in genomic rearrangement and oncogenic transformation; however, its contribution to repair of radiation-induced DSBs has not been characterized. We used recircularization of a linearized plasmid with 3΄-P-blocked termini, mimicking those at X-ray-induced strand breaks, to recapitulate DSB repair via MMEJ or nonhomologous end-joining (NHEJ). Sequence analysis of the circularized plasmids allowed measurement of relative activity of MMEJ versus NHEJ. While we predictably observed NHEJ to be the predominant pathway for DSB repair in our assay, MMEJ was significantly enhanced in preirradiated cells, independent of their radiation-induced arrest in the G2/M phase. MMEJ activation was dependent on XRCC1 phosphorylation by casein kinase 2 (CK2), enhancing XRCC1's interaction with the end resection enzymes MRE11 and CtIP. Both endonuclease and exonuclease activities of MRE11 were required for MMEJ, as has been observed for homology-directed DSB repair (HDR). Furthermore, the XRCC1 co-immunoprecipitate complex (IP) displayed MMEJ activity in vitro, which was significantly elevated after irradiation. Our studies thus suggest that radiation-mediated enhancement of MMEJ in cells surviving radiation therapy may contribute to their radioresistance and could be therapeutically targeted. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Increased levels of regulatory T cells (T(regs)) in human immunodeficiency virus-infected patients after 5 years of highly active anti-retroviral therapy may be due to increased thymic production of naive T(regs)

    DEFF Research Database (Denmark)

    Kolte, L; Gaardbo, J C; Skogstrand, K

    2008-01-01

    (+)human leucocyte antigen D-related) were determined by flow cytometry. Forkhead box P3 mRNA expression and T cell receptor excision circles (T(REC)) content in CD4(+) cells were determined by polymerase chain reaction and cytokines analysed with Luminex technology. Levels of T(regs) were significantly......Summary This study determines levels of regulatory T cells (T(regs)), naive T(regs), immune activation and cytokine patterns in 15 adult human immunodeficiency virus (HIV)-infected patients receiving prolonged highly active anti-retroviral therapy (HAART) who have known thymic output, and explores...

  2. Increased levels of regulatory T cells (Tregs) in human immunodeficiency virus-infected patients after 5 years of highly active anti-retroviral therapy may be due to increased thymic production of naive Tregs

    DEFF Research Database (Denmark)

    Kolte, L.; Gaardbo, J.C.; Skogstrand, Kristin

    2008-01-01

    (+)human leucocyte antigen D-related) were determined by flow cytometry. Forkhead box P3 mRNA expression and T cell receptor excision circles (T(REC)) content in CD4(+) cells were determined by polymerase chain reaction and cytokines analysed with Luminex technology. Levels of T(regs) were significantly......Summary This study determines levels of regulatory T cells (T(regs)), naive T(regs), immune activation and cytokine patterns in 15 adult human immunodeficiency virus (HIV)-infected patients receiving prolonged highly active anti-retroviral therapy (HAART) who have known thymic output, and explores...

  3. Global hotspots of water scarcity impacts due to human interventions

    Science.gov (United States)

    Veldkamp, T.; Wada, Y.; Aerts, J.; Ward, P.; Satoh, Y.; Pokhrel, Y. N.; Masaki, Y.; Doll, P. M.; Ostberg, S.; Oki, T.; Gosling, S.; Liu, J.

    2016-12-01

    Water scarcity is rapidly increasing in many global river basins, due to both local increases in water demand and human interventions affecting stream flow. In a novel multi-model multi-forcing assessment over the period 1971-2010, we examine how several human interventions have affected water scarcity, namely land use change, reservoir operations, and upstream water withdrawals. We show that these human interventions have caused increased water scarcity for 16% of the global population, and decreased water scarcity for 13%, and have contributed to distinct patterns of water scarcity hotspots. We also show that a combination of human interventions and changes in local water demands have led to an increase in the duration of extreme water scarcity events in 30% of the global land area, inhabited by 49% of the global population. Upstream human interventions are the main dominant driver (in 86% of the cases) of negative impacts on downstream fresh water resources and water scarcity. Therefore, adaptation measures should be embedded in integrated river basin management plans, addressing upstream effects on downstream water scarcity.This study is the first in its kind to evaluate how human interventions affected water scarcity conditions as well as the exposure to and persistence of water scarcity events, using an ensemble of five global water impact models (H08, LPJmL, MATSIRO, PCR-GLOBWB, WaterGAP) driven by three global state-of-the art observations-based historical climate data-sets (PGFv2, GSWP3, WFD/WFDEI) and a set of socio-economic proxies (GDP, population density, livestock density, land use and land cover) to model historical demands. A novelty of this research is the use of the HYDE 3.1 - MIRCA dataset for simulating the time-varying effects of changes in irrigation and/or cropland patterns. With the incorporation of a spatially and temporally explicit indicator to describe minimum environmental flow requirements, i.e. the amount of water that ecosystems need

  4. IMMUNORESPONSES OF HUMANIZED SCID MICE TO HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    陈力真; 王树蕙; 张云; 王世真

    1996-01-01

    HuPBL-SCID mice were used to explore how they would response to human ttmoor cells of 801/MLC.Living 801/MLC cells appeared to be fetal to the the mice due to the production of human TNF. The huP-BL-SCID rniee did not generate any noticeable amotmt of specific human immunoglobttlin either by single immunization with living 801/MLC cells or by repeated immunization with irradiated 801/MLC cells. Our preliminary experiments with huPBL-SCID mice showed that such chimeras would he a very useful models for tumor immunological researches.

  5. Precocious puberty due to human chorionic gonadotropin secreting germinoma

    Directory of Open Access Journals (Sweden)

    Daiane J Nascimento

    2012-01-01

    Full Text Available This study aims to report a rare case of precocious puberty (PP due to a human chorionic gonadotropin (hCG-producing germinoma located in the suprasellar region. A 10-year-old male patient presented with sexual precocity, headache, drowsiness, loss of appetite, and papilledema. Significant acceleration of bone age in relation to chronological age, high serum total testosterone levels, and hypopituitarism (unresponsiveness to stimulation test were observed. Magnetic resonance imaging (MRI of the brain showed a large suprasellar tumor and triventricular dilatation. High hCG levels were found in both blood and cerebrospinal fluid. Hormone replacement therapy and transcranial surgery associated with radiotherapy were performed, with complete regression of sexual characteristics and normal laboratory tests post-operatively. Clinical and laboratory findings, in addition to MRI scans, led to the diagnosis of an hCG-producing tumor and PP, which represents a rare report in the literature.

  6. Increased levels of regulatory T cells (Tregs) in human immunodeficiency virus-infected patients after 5 years of highly active anti-retroviral therapy may be due to increased thymic production of naive Tregs

    DEFF Research Database (Denmark)

    Kolte, L.; Gaardbo, J.C.; Skogstrand, K.;

    2009-01-01

    This study determines levels of regulatory T cells (T(regs)), naive T(regs), immune activation and cytokine patterns in 15 adult human immunodeficiency virus (HIV)-infected patients receiving prolonged highly active anti-retroviral therapy (HAART) who have known thymic output, and explores if naive...

  7. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein.

    OpenAIRE

    Navab, M; Imes, S S; Hama, S Y; Hough, G P; Ross, L.A.; Bork, R W; Valente, A. J.; Berliner, J A; Drinkwater, D C; Laks, H

    1991-01-01

    Incubation of cocultures of human aortic endothelial (HAEC) and smooth muscle cells (HASMC) with LDL in the presence of 5-10% human serum resulted in a 7.2-fold induction of mRNA for monocyte chemotactic protein 1 (MCP-1), a 2.5-fold increase in the levels of MCP-1 protein in the coculture supernatants, and a 7.1-fold increase in the transmigration of monocytes into the subendothelial space of the cocultures. Monocyte migration was inhibited by 91% by antibody to MCP-1. Media collected from t...

  8. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  9. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  10. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  11. Investigation of Solar Cells Power Degradation Due to Electrostatic Discharge

    Directory of Open Access Journals (Sweden)

    Hossein Fayazi

    2014-07-01

    Full Text Available Satellites are surrounded with protons, electrons and heavy charged particles. Space radiation impact on satellite sub-systems cause several anomalies which are important problem for satellite designers. Until recently, the majority of spacecraft primary power systems used solar arrays and rechargeable batteries to supply 28 V. For low-inclination spacecraft, 28 V systems have not been observed to arc. As the power requirements for spacecraft increased, however, high-voltage solar arrays were baselined to minimize total mass and increase power production efficiency. With the advent of 100 V systems in the late 1980s, arcing began to be observed on a number of spacecraft. The mechanism proposed in this paper, described electrical and physical degradation of solar cells due to electrostatic discharge anomalies on satellites. The cell was characterized again after arcing to determine the change in efficiency. This paper details the process for designing the circuit to create the arcing, and the different setups used to degrade the cells electrically and physically. It also describes the final setups to be used in space laboratory. This model is designed using Matlab and SPENVIS. Identification and simulation this mechanism is an important step in solar array design for space application

  12. Pulmonary Lymphangitic Carcinomatosis due to Renal Cell Carcinoma.

    Science.gov (United States)

    Guddati, Achuta K; Marak, Creticus P

    2012-05-01

    Renal cell carcinoma is an aggressive disease with a high rate of mortality. It is known to metastasize to the lung, liver, bone and brain. However, manifestation through lymphatic spread to the lungs is rare. Lymphangitic carcinomatosis is commonly observed in malignancies of the breast, lung, pancreas, colon and cervix. It is unusual to observe lymphangitic carcinomatosis of the lungs due to renal cell carcinoma. Lymphangitic carcinomatosis of the lungs may result in severe respiratory distress and may be the direct cause of death. Currently, there are no known modalities of preventing or slowing lymphangitic carcinomatosis besides treating the primary tumor. However, early detection may change the course of the disease and may prolong survival. This is compounded by the difficulty involved in diagnosing lymphangitic carcinomatosis of the lung which frequently involves lung biopsy. Immunohistochemical studies are often used in conjunction with regular histochemistry in ascertaining the primary tumor and in differentiating it from pulmonary metastasis. In this case report, we describe the presentation and clinical course of renal cell carcinoma in a patient which manifested as lymphangitis carcinomatosa of the lungs. The patient underwent surgical resection of the primary tumor with lymph node resection but presented with a fulminant lymphangitic carcinomatosis of the lungs within two weeks. Immunohistochemistry of the tissue obtained by the biopsy confirmed the diagnosis which was subsequently corroborated during his autopsy. This case illustrates the necessity of an urgent follow-up of chemotherapy and immunotherapy in such patients.

  13. Pulmonary Lymphangitic Carcinomatosis due to Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Achuta K. Guddati

    2012-05-01

    Full Text Available Renal cell carcinoma is an aggressive disease with a high rate of mortality. It is known to metastasize to the lung, liver, bone and brain. However, manifestation through lymphatic spread to the lungs is rare. Lymphangitic carcinomatosis is commonly observed in malignancies of the breast, lung, pancreas, colon and cervix. It is unusual to observe lymphangitic carcinomatosis of the lungs due to renal cell carcinoma. Lymphangitic carcinomatosis of the lungs may result in severe respiratory distress and may be the direct cause of death. Currently, there are no known modalities of preventing or slowing lymphangitic carcinomatosis besides treating the primary tumor. However, early detection may change the course of the disease and may prolong survival. This is compounded by the difficulty involved in diagnosing lymphangitic carcinomatosis of the lung which frequently involves lung biopsy. Immunohistochemical studies are often used in conjunction with regular histochemistry in ascertaining the primary tumor and in differentiating it from pulmonary metastasis. In this case report, we describe the presentation and clinical course of renal cell carcinoma in a patient which manifested as lymphangitis carcinomatosa of the lungs. The patient underwent surgical resection of the primary tumor with lymph node resection but presented with a fulminant lymphangitic carcinomatosis of the lungs within two weeks. Immunohistochemistry of the tissue obtained by the biopsy confirmed the diagnosis which was subsequently corroborated during his autopsy. This case illustrates the necessity of an urgent follow-up of chemotherapy and immunotherapy in such patients.

  14. [Nosocomial infections due to human coronaviruses in the newborn].

    Science.gov (United States)

    Gagneur, A; Legrand, M C; Picard, B; Baron, R; Talbot, P J; de Parscau, L; Sizun, J

    2002-01-01

    Human coronaviruses, with two known serogroups named 229-E and OC-43, are enveloped positive-stranded RNA viruses. The large RNA is surrounded by a nucleoprotein (protein N). The envelop contains 2 or 3 glycoproteins: spike protein (or protein S), matrix protein (or protein M) and a hemagglutinin (or protein HE). Their pathogen role remains unclear because their isolation is difficult. Reliable and rapid methods as immunofluorescence with monoclonal antibodies and reverse transcription-polymerase chain reaction allow new researches on epidemiology. Human coronaviruses can survive for as long as 6 days in suspension and 3 hours after drying on surfaces, suggesting that they could be a source of hospital-acquired infections. Two prospective studies conducted in a neonatal and paediatric intensive care unit demonstrated a significant association of coronavirus-positive nasopharyngal samples with respiratory illness in hospitalised preterm neonates. Positive samples from staff suggested either a patient-to-staff or a staff-to-patient transmission. No cross-infection were observed from community-acquired respiratory-syncitial virus or influenza-infected children to neonates. Universal precautions with hand washing and surface desinfection could be proposed to prevent coronavirus transmission.

  15. A case of recurrent autoimmune hemolytic anemia during remission associated with acute pure red cell aplasia and hemophagocytic syndrome due to human parvovirus B19 infection successfully treated by steroid pulse therapy with a review of the literature.

    Science.gov (United States)

    Sekiguchi, Yasunobu; Shimada, Asami; Imai, Hidenori; Wakabayashi, Mutsumi; Sugimoto, Keiji; Nakamura, Noriko; Sawada, Tomohiro; Komatsu, Norio; Noguchi, Masaaki

    2014-01-01

    The patient was a 47-year-old man diagnosed as having autoimmune hemolytic anemia (AIHA) in April 2011. He also had a congenital chromosomal abnormality, a balanced translocation. Treatment with prednisolone (PSL) 60 mg/day resulted in resolution of the AIHA, and the treatment was completed in November 2011. While the patient no longer had anemia, the direct and indirect Coombs tests remained positive. In May 2013, he developed recurrent AIHA associated with acute pure red cell aplasia (PRCA) and hemophagocytic syndrome (HPS) caused by human parvovirus B19 (HPV B19) infection. Tests for anti-erythropoietin and anti-erythropoietin receptor antibodies were positive. Steroid pulse therapy resulted in resolution of the AIHA, PRCA, as well as HPS. The serum test for anti-erythropoietin antibodies also became negative after the treatment. However, although the serum was positive for anti-HPV B19 IgG antibodies, the patient continued to have a low CD4 lymphocyte count (CD4, <300/μL) and persistent HPV B19 infection (HPV B19 DNA remained positive), suggesting the risk of recurrence and bone marrow failure.

  16. Computation of particle detachment from floors due to human walking

    Science.gov (United States)

    Elhadidi, Basman; Khalifa, Ezzat

    2005-11-01

    A computational model for detachment of fine particles due to the unsteady flow under a foot is developed. As the foot approaches the floor, fluid volume is displaced laterally as a wall jet from the perimeter of the contact area at high velocity and acceleration. Unsteady aerodynamic forces on particles attached to the floor are considered. Results show that the jet velocity is ˜40 m/s for a foot idealized as a 15 cm circular disk approaching the floor at 1 m/s with a final gap of 0.8 mm. This velocity is sufficient to detach small particles (1˜μm). The flow accelerates at ˜400 m/s^2 which affects the detachment of larger sized particles (˜100 μm). As the disk is brought to rest, the unsteady jet expands outwards, advecting a vortex ring closely attached to it. At the disk edge, a counter rotating vortex is generated by the sudden deceleration of the disk. Both vortices can play a role in entrainment of the suspended particles in the flowfield. Numerical studies also show that the maximum jet velocity is ˜20 m/s for a simplified foot immediately after heel contact in the stance phase of the gait.

  17. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  18. Determination of Invisible Environmental Pollution Due to Cell Phones EMF Radiation and projections for 2030

    Directory of Open Access Journals (Sweden)

    K Parandham Gowd

    2013-08-01

    Full Text Available In the last decades cell phones usage have altered the land scape of modern human beings in countless ways, in office, at home and on mobility. However, created the environmental electronic pollution due to electromagnetic fields. In spite of the recent studies indicating possible harmful impact of EMF pollution on several species, there is no long term data available on the environmental impacts of EMF pollution and how much power density is radiated in the environment due to cell phones. The aim of this research work is to experimentally measure the EMF radiated electronic pollution levels of cell phones in three different states such as on(sleep/idle mode, receive and transmit modes as an invisible environmental pollution. These measurements are carried out at the centre frequency of 1800 MHz and in the 300 MHz- 50 GHz frequency band. Another main aim is to carry out the projections of cell phones growth due to exponentially expanding mobile technology products, industrialization along with urbanization. Further to estimate the current (2013 EMF radiation pollution levels into environment and projections for 2030 due to cell phones.

  19. Inherited human sex reversal due to impaired nucleocytoplasmic trafficking of SRY defines a male transcriptional threshold.

    Science.gov (United States)

    Chen, Yen-Shan; Racca, Joseph D; Phillips, Nelson B; Weiss, Michael A

    2013-09-17

    Human testis determination is initiated by SRY (sex determining region on Y chromosome). Mutations in SRY cause gonadal dysgenesis with female somatic phenotype. Two subtle variants (V60L and I90M in the high-mobility group box) define inherited alleles shared by an XY sterile daughter and fertile father. Whereas specific DNA binding and bending are unaffected in a rat embryonic pre-Sertoli cell line, the variants exhibited selective defects in nucleocytoplasmic shuttling due to impaired nuclear import (V60L; mediated by Exportin-4) or export (I90M; mediated by chromosome region maintenance 1). Decreased shuttling limits nuclear accumulation of phosphorylated (activated) SRY, in turn reducing occupancy of DNA sites regulating Sertoli-cell differentiation [the testis-specific SRY-box 9 (Sox9) enhancer]. Despite distinct patterns of biochemical and cell-biological perturbations, V60L and I90M each attenuated Sox9 expression in transient transfection assays by twofold. Such attenuation was also observed in studies of V60A, a clinical variant associated with ovotestes and hence ambiguity between divergent cell fates. This shared twofold threshold is reminiscent of autosomal syndromes of transcription-factor haploinsufficiency, including XY sex reversal associated with mutations in SOX9. Our results demonstrate that nucleocytoplasmic shuttling of SRY is necessary for robust initiation of testicular development. Although also characteristic of ungulate orthologs, such shuttling is not conserved among rodents wherein impaired nuclear export of the high-mobility group box and import-dependent phosphorylation are compensated by a microsatellite-associated transcriptional activation domain. Human sex reversal due to subtle defects in the nucleocytoplasmic shuttling of SRY suggests that its transcriptional activity lies near the edge of developmental ambiguity.

  20. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...... of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...

  1. Laser printing of skin cells and human stem cells.

    Science.gov (United States)

    Koch, Lothar; Kuhn, Stefanie; Sorg, Heiko; Gruene, Martin; Schlie, Sabrina; Gaebel, Ralf; Polchow, Bianca; Reimers, Kerstin; Stoelting, Stephanie; Ma, Nan; Vogt, Peter M; Steinhoff, Gustav; Chichkov, Boris

    2010-10-01

    Laser printing based on laser-induced forward transfer (LIFT) is a new biofabrication technique for the arrangement of biological materials or living cells in well-defined patterns. In the current study, skin cell lines (fibroblasts/keratinocytes) and human mesenchymal stem cells (hMSC) were chosen for laser printing experiments due to their high potential in regeneration of human skin and new application possibilities of stem cell therapy. To evaluate the influence of LIFT on the cells, their survival rate, their proliferation and apoptotic activity, and the DNA damages and modifications of their cell surface markers were assessed and statistically evaluated over several days. The cells survived the transfer procedure with a rate of 98%  +/- 1% standard error of the mean (skin cells) and 90%  +/- 10% (hMSC), respectively. All used cell types maintain their ability to proliferate after LIFT. Further, skin cells and hMSC did not show an increase of apoptosis or DNA fragmentation. In addition, the hMSC keep their phenotype as proven by fluorescence activated cell sorting (FACS) analysis. This study demonstrates LIFT as a suitable technique for unharmed computer-controlled positioning of different cell types and a promising tool for future applications in the ex vivo generation of tissue replacements.

  2. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self-renewal and......Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self...... of clinical applications, e.g., non-healing bone fractures and defects and also non-skeletal degenerative diseases like heart failure. Currently, the numbers of clinical trials that employ MSC are increasing. However, several biological and biotechnological challenges need to be overcome to benefit from...

  3. Subcutaneous human dirofilariasis due to Dirofilaria Repens: Report of two cases

    Directory of Open Access Journals (Sweden)

    Harish S Permi

    2011-01-01

    Full Text Available Zoonotic filariasis due to Dirofilaria repens (D. repens is prevalent in several regions of the world. In view of recent rise of human D. repens infections in Europe, Africa and Asia, it is considered an emerging zoonosis in these continents. Most of the documented cases of human dirofilariasis recorded in India had ocular infections, but very few subcutaneous dirofilariasis have been reported. We hereby report two cases of subcutaneous human dirofilariasis due to D.repens with varied clinical presentations.

  4. Continuous taurocholic acid exposure promotes esophageal squamous cell carcinoma progression due to reduced cell loss resulting from enhanced vascular development.

    Directory of Open Access Journals (Sweden)

    Sho Sato

    Full Text Available BACKGROUND: Refluxogenic effects of smoking and alcohol abuse may be related to the risk of esophageal squamous cell carcinoma (ESCC. The present study attempts to clarify the effects of continuous taurocholic acid (TCA exposure, which is neither mutagenic nor genotoxic, on ESCC progression. METHODS: A squamous carcinoma cell line (ESCC-DR was established from a tumor induced in a rat model of gastroduodenal reflux. ESCC-DR cells were incubated with 2 mM TCA for ≥2 months. The effects of continuous TCA exposure were evaluated in vitro on cell morphology, growth, and invasion and in vivo on xenograft tumor growth in nude mice. Moreover, the mean level of secreted transforming growth factor (TGF-β1 and vascular endothelial growth factor (VEGF proteins in cell culture supernatants and mRNA synthesis of TGF-β1 and VEGF-A of ESCC cells were measured. The angiogenic potential was further examined by a migration assay using human umbilical vein endothelial cells (HUVECs. RESULTS: Continuous TCA exposure induced marked formation of filopodia in vitro. Expression levels of angiogenic factors were significantly higher in the cells treated with TCA than in control cells. Tumor xenografts derived from cells pre-exposed to TCA were larger and more vascularized than those derived from control cells. In addition, TCA exposure increased HUVEC migration. CONCLUSION: Continuous TCA exposure enhanced ESCC progression due to reduced cell loss in vivo. Cell loss was inhibited by TCA-induced vascular endothelial cell migration, which was mediated by TGF-β1 and VEGF-A released from ESCC cells.

  5. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  6. Delayed menopause due to granulosa cell tumor of the ovary

    Directory of Open Access Journals (Sweden)

    Bhushan Murkey

    2011-01-01

    Full Text Available A 52-year-old patient presented with complaints of menorrhagia. Endometrial biopsy revealed simple hyperplasia of the endometrium. Total abdominal hysterectomy with bilateral oophorectomy was carried out. The ovaries looked grossly normal, but histopathology reported granulosa cell tumor of the right ovary. Granulosa cell tumors belong to the sexcord stromal category and account for approximately 2% of all ovarian tumors. We review the features and treatment of granulosa cell tumors and the importance of screening for ovarian tumors in a case of endometrial hyperplasia and delayed menopause.

  7. Orbital Infarction due to Sickle Cell Disease without Orbital Pain

    Directory of Open Access Journals (Sweden)

    Cameron L. McBride

    2016-01-01

    Full Text Available Sickle cell disease is a hemoglobinopathy that results in paroxysmal arteriolar occlusion and tissue infarction that can manifest in a plurality of tissues. Rarely, these infarcted crises manifest in the bony orbit. Orbital infarction usually presents with acute onset of periorbital tenderness, swelling, erythema, and pain. Soft tissue swelling can result in proptosis and attenuation of extraocular movements. Expedient diagnosis of sickle cell orbital infarction is crucial because this is a potentially sight-threatening entity. Diagnosis can be delayed since the presentation has physical and radiographic findings mimicking various infectious and traumatic processes. We describe a patient who presented with sickle cell orbital crisis without pain. This case highlights the importance of maintaining a high index of suspicion in patients with known sickle cell disease or of African descent born outside the United States in a region where screening for hemoglobinopathy is not routine, even when the presentation is not classic.

  8. A Review on Level of Specific Absorption Rate Due to High Power Transmission Lines: Analysis toward Human Position Posture

    Directory of Open Access Journals (Sweden)

    Ghazali Z.

    2016-01-01

    Full Text Available The main contribution of this project is the development of a homogeneous model of a man to presents the specific absorption rate (SAR due to high power transmission line. As a low frequency application under high power transmission line of 50 Hz in electrical engineering, to studies the influence of human’s posture on specific absorption rate. This project designs two types of human body which one design uses most cylinder block and another design use brick block where both blocks have a different value of mesh cells. For each design has four types of posture are standing, sitting, arms up and arms out by using Computer Simulation Technology (CST Studio Software. This analysis does toward for four types of the human position postures because each posture has different value of specific absorption rate (SAR based on the size of the mesh cells of the design. Based on two designs of the human body, the lowest of the mesh cells value will reduce time to simulate SAR. For each posture has different value of SAR for each part of the human body because the whole human body has different types of tissues. Therefore, the CST studio software uses extremely to simulate the SAR value toward human position posture due to high power transmission line.

  9. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  10. Maintenance of mesenchymal stem cells culture due to the cells with reduced attachment rate

    Directory of Open Access Journals (Sweden)

    Shuvalova N. S.

    2013-01-01

    Full Text Available Aim. The classic detachment techniques lead to changes in cells properties. We offer a simple method of cultivating the population of cells that avoided an influence on the surface structures. Methods. Mesenchymal stem cells (MSC from human umbilical cord matrix were obtained and cultivated in standard conditions. While substituting the culture media by a fresh portion, the conditioned culture medium, where the cells were maintained for three days, was transferred to other culture flacks with addition of serum and growth factors. Results. In the flacks, one day after medium transfer, we observed attached cells with typical MSC morphology. The cultures originated from these cells had the same rate of surface markers expression and clonogenic potential as those replated by standard methods. Conclusions. MSC culture, derived by preserving the cells with reduced attachment ability, actually has the properties of «parent» passage. Using this method with accepted techniques of cells reseeding would allow maintaining the cells that avoided an impact on the cell surface proteins.

  11. Demyelinating Peripheral Neuropathy Due to Renal Cell Carcinoma

    Science.gov (United States)

    Nishioka, Kenya; Fujimaki, Motoki; Kanai, Kazuaki; Ishiguro, Yuta; Nakazato, Tomoko; Tanaka, Ryota; Yokoyama, Kazumasa; Hattori, Nobutaka

    2017-01-01

    Renal cell carcinoma (RCC) patients who develop a paraneoplastic syndrome may present with neuromuscular disorders. We herein report the case of a 50-year-old man who suffered from progressive gait disturbance and muscle weakness. The results of a nerve conduction study fulfilled the criteria of chronic inflammatory demyelinating polyneuropathy. An abdominal CT scan detected RCC, the pathological diagnosis of which was clear cell type. After tumor resection and a single course of intravenous immunoglobulin therapy, the patient's symptoms drastically improved over the course of one year. The patient's neurological symptoms preceded the detection of cancer. A proper diagnosis and the initiation of suitable therapies resulted in a favorable outcome. PMID:28049985

  12. Recurrent Syncope due to Esophageal Squamous Cell Carcinoma

    OpenAIRE

    2011-01-01

    Syncope is caused by a wide variety of disorders. Recurrent syncope as a complication of malignancy is uncommon and may be difficult to diagnose and to treat. Primary neck carcinoma or metastases spreading in parapharyngeal and carotid spaces can involve the internal carotid artery and cause neurally mediated syncope with a clinical presentation like carotid sinus syndrome. We report the case of a 76-year-old man who suffered from recurrent syncope due to invasion of the right carotid sinus b...

  13. Assessment of human health hazard due to metal uptake via fish ...

    African Journals Online (AJOL)

    Assessment of human health hazard due to metal uptake via fish consumption from ... Ethiopian Journal of Environmental Studies and Management ... It is well known that fishes can accumulate variety of toxic chemicals including persistent ...

  14. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  16. Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits.

    Science.gov (United States)

    Halgamuge, Malka N

    2013-05-01

    The International Agency for Research on Cancer (IARC) classifies electromagnetic fields (EMFs) as 'possibly carcinogenic' to humans that might transform normal cells into cancer cells. Owing to high utilisation of electricity in day-to-day life, exposure to power-frequency (50 or 60 Hz) EMFs is unavoidable. Melatonin is a natural hormone produced by pineal gland activity in the brain that regulates the body's sleep-wake cycle. How man-made EMFs may influence the pineal gland is still unsolved. The pineal gland is likely to sense EMFs as light but, as a consequence, may decrease the melatonin production. In this study, more than one hundred experimental data of human and animal studies of changes in melatonin levels due to power-frequency electric and magnetic fields exposure were analysed. Then, the results of this study were compared with the International Committee of Non-Ionizing Radiation Protection (ICNIRP) limit and also with the existing experimental results in the literature for the biological effect of magnetic fields, in order to quantify the effects. The results show that this comparison does not seem to be consistent despite the fact that it offers an advantage of drawing attention to the importance of the exposure limits to weak EMFs. In addition to those inconsistent results, the following were also observedfrom this work: (i) the ICNIRP recommendations are meant for the well-known acute effects, because effects of the exposure duration cannot be considered and (ii) the significance of not replicating the existing experimental studies is another limitation in the power-frequency EMFs. Regardless of these issues, the above observation agrees with our earlier study in which it was confirmed that it is not a reliable method to characterise biological effects by observing only the ratio of AC magnetic field strength to frequency. This is because exposure duration does not include the ICNIRP limit. Furthermore, the results show the significance of

  17. Gonadal vein tumor thrombosis due to renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hamidreza Haghighatkhah

    2015-01-01

    Full Text Available Renal cell carcinoma (RCC had a tendency to extend into the renal vein and inferior vena cava, while extension into the gonadal vein has been rarely reported. Gonadal vein tumor thrombosis appears as an enhancing filling defect within the dilated gonadal vein anterior to the psoas muscle and shows an enhancement pattern identical to that of the original tumor. The possibility of gonadal vein thrombosis should be kept in mind when looking at an imaging study of patients with RCC

  18. Paediatric cyclical Cushing's disease due to corticotroph cell hyperplasia.

    LENUS (Irish Health Repository)

    Noctor, E

    2015-06-01

    Cushing\\'s disease is very rare in the paediatric population. Although uncommon, corticotroph hyperplasia causing Cushing\\'s syndrome has been described in the adult population, but appears to be extremely rare in children. Likewise, cyclical cortisol hypersecretion, while accounting for 15 % of adult cases of Cushing\\'s disease, has only rarely been described in the paediatric population. Here, we describe a very rare case of a 13-year old boy with cyclical cortisol hypersecretion secondary to corticotroph cell hyperplasia.

  19. Gonadal vein tumor thrombosis due to renal cell carcinoma.

    Science.gov (United States)

    Haghighatkhah, Hamidreza; Karimi, Mohammad Ali; Taheri, Morteza Sanei

    2015-01-01

    Renal cell carcinoma (RCC) had a tendency to extend into the renal vein and inferior vena cava, while extension into the gonadal vein has been rarely reported. Gonadal vein tumor thrombosis appears as an enhancing filling defect within the dilated gonadal vein anterior to the psoas muscle and shows an enhancement pattern identical to that of the original tumor. The possibility of gonadal vein thrombosis should be kept in mind when looking at an imaging study of patients with RCC.

  20. Recurrent Syncope due to Esophageal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    A. Casini

    2011-09-01

    Full Text Available Syncope is caused by a wide variety of disorders. Recurrent syncope as a complication of malignancy is uncommon and may be difficult to diagnose and to treat. Primary neck carcinoma or metastases spreading in parapharyngeal and carotid spaces can involve the internal carotid artery and cause neurally mediated syncope with a clinical presentation like carotid sinus syndrome. We report the case of a 76-year-old man who suffered from recurrent syncope due to invasion of the right carotid sinus by metastases of a carcinoma of the esophagus, successfully treated by radiotherapy. In such cases, surgery, chemotherapy or radiotherapy can be performed. Because syncope may be an early sign of neck or cervical cancer, the diagnostic approach of syncope in patients with a past history of cancer should include the possibility of neck tumor recurrence or metastasis and an oncologic workout should be considered.

  1. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  2. Primary instabilities in convective cells due to nonuniform heating

    Science.gov (United States)

    Mancho, A. M.; Herrero, H.; Burguete, J.

    1997-09-01

    We study a convection problem in a container with a surface open to the air and heated by a long wire placed at the bottom. Coupled buoyancy and thermocapillarity effects are taken into account. A basic convective state appears as soon as a temperature gradient with horizontal component different from zero is applied. It consists of two big rolls that fill the convective cell and are parallel to the heater. A numerical solution allows us to determine this basic state. A linear stability analysis on this solution is carried out. For different values of the applied temperature gradient the basic rolls undergo a stationary bifurcation. The thresholds depend on the fluid properties, on the geometry of the heater, and on the heat exchange on the free surface. This confirms the results obtained in recent experiments.

  3. Human fetal mesenchymal stem cells.

    Science.gov (United States)

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  4. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans....... Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular...

  5. Differentiated human stem cells resemble fetal, not adult, β cells.

    Science.gov (United States)

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  6. Human infections due to Salmonella Blockley, a rare serotype in South Africa: a case report

    Directory of Open Access Journals (Sweden)

    Gonose Thandubuhle

    2012-10-01

    Full Text Available Abstract Background Infections due to nontyphoidal Salmonella have increased worldwide over the last couple of decades. Salmonella enterica serotype Blockley (Salmonella Blockley infections is associated with chickens and is a rarely isolated serotype in human infections in most countries. Case presentation We report a case of human infections due to Salmonella Blockley in KwaZulu-Natal, South Africa in 2011. Three African males (aged 4, 14 and 16 presented to a clinic with diarrhoea, stomach cramps and headache. They started experiencing signs of illness a day after they consumed a common meal, consisting of meat, rice and potatoes. Stool specimens from the patients cultured Salmonella Blockley. The strains showed an indistinguishable pulsed-field gel electrophoresis pattern. Conclusion This is the first recorded case of human infections due to Salmonella Blockley in South Africa.

  7. The potency of human testicular stem cells

    NARCIS (Netherlands)

    Chikhovskaya, J.V.

    2013-01-01

    In this thesis, we evaluate the stem cell state of cells present in primary human testicular cell cultures as well as their origin and relation to germ or somatic lineages within testicular tissue. We conclude that human testis-derived embryonic stem cell-like (htES-like) colonies arising in primary

  8. Restriction of human adenovirus replication in Chinese hamster cell lines and their hybrids with human cells.

    Science.gov (United States)

    Radna, R L; Foellmer, B; Feldman, L A; Francke, U; Ozer, H L

    1987-11-01

    We have found that the replication of human adenovirus (Ad2) is restricted in multiple Chinese hamster cell lines including CHO and V79. The major site of restriction involves differential accumulation of late viral proteins as demonstrated by immunofluorescence assay and polyacrylamide gel electrophoresis with and without prior immunoprecipitation. Synthesis of fiber and penton base are markedly reduced, whereas others, such as the 100K polypeptide, are synthesized efficiently. This pattern of restriction is similar to that previously reported for Ad2 infection of several monkey cell lines; however, the restriction is more marked in the Chinese hamster cell lines. The restriction is most likely due to a deficient cellular function since stable cell hybrids between V79 or CHO and human cells are permissive for virus replication. By analysis of a series of hybrids with reduced numbers of human chromosomes, fiber synthesis was correlated with the presence of the short arm of human chromosome 3. More hybrids showed restoration of fiber synthesis than production of progeny virus, suggesting that more than one unlinked function is required for the latter.

  9. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  10. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  11. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  12. Necrotizing fasciitis due to Streptococcus mitis caused by accidental human bite.

    Science.gov (United States)

    Bastug, Aliye; Kislak, Sumeyye; Mutlu, Nevzat Mehmet; Akcaboy, Zeynep Nur; Koksal, Asude; Sertcelik, Ahmet; Ünlü, Ramazan Erkin; Akinci, Esragul; Bodur, Hurrem

    2016-01-31

    Human bite wounds are more prone to infection than animal bites, which may cause necrotizing soft tissue infections such as myositis, fasciitis. Both aerobic and anaerobic microorganisms may be responsible, including Streptococcus spp., Staphylococcus aureus, Peptostreptococcus spp. Necrotizing fasciitis is characterized by serious tissue destruction and systemic toxicity with high morbidity and mortality. We report a patient with Streptococcus mitis associated necrotizing fasciitis on the upper extremity resulting from an accidental human bite, which caused nearly fatal infection. Prophylactic antibiotic treatment should be given after a human bite to prevent infection. If the infection signs and symptoms develop, rapid diagnosis, appropriate antibiotic and surgical therapy should be administered immediately. Streptococcus mitis is a viridans streptococcus, usually known as a relatively benign oral streptococcus. To our knowledge, this is the first necrotizing fasciitis case due to Streptococcus mitis after human bite.

  13. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  14. On the development of extragonadal and gonadal human germ cells

    Directory of Open Access Journals (Sweden)

    A. Marijne Heeren

    2016-02-01

    Full Text Available Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception. Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where ‘adrenal’ and ‘ovarian’ germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human ‘adrenal’ germ cells until W22. By contrast, ‘ovarian’ germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development.

  15. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (TFH) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of TFH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on TFH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate TFH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing TFH cell maturation. In cocultures they differentiated B cells into CD138(+) plasma and IgD(-)CD27(+) memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented TFH cell development. Added to TFH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3(+)CXCR5(+)PD-1(+) follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on TFH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control TFH cell maturation, expand follicular regulatory T cells, and inhibit the TFH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the TFH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  17. Thermal Injury in Human Subjects Due to 94-GHz Radio Frequency Radiation Exposures

    Science.gov (United States)

    2016-02-24

    AFRL-RH-FS-TR-2016-0001 Thermal Injury in Human Subjects Due to 94-GHz Radio Frequency Radiation Exposures James E. Parker General...them. This report was cleared for public release by the 88th ABW Public Affairs Office and is available to the general public, including foreign ...This report is published in the interest of scientific and technical information exchange , and its

  18. Human embryonic stem cells and microenvironment

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2014-09-01

    Full Text Available Human embryonic stem cells (hESCs possess a great potential in the field of regenerative medicine by their virtue of pluripotent potential with indefinite proliferation capabilities. They can self renew themselves and differentiate into three embryonic germ layers. Although they are conventionally grown on mitotically inactivated mouse feeder cells, there are in vitro culture systems utilizing feeder cells of human origin in order to prevent cross-species contamination. Recently established in vitro culture systems suggested that direct interaction with feeder cells is not necessary but rather attachment to a substrate is required to ensure long-term, efficient hESC culture in vitro. This substrate is usually composed of a mixture of extracellular matrix components representing in vivo natural niche. In hESC biology, the mechanism of interaction of hESCs with extracellular matrix molecules remained insufficiently explored area of research due to their transient nature of interaction with the in vivo niche. However, an in vitro culture system established using extracellular matrix molecules may provide a safer alternative to culture systems with feeder cells while paving the way to Good Manufacturing Practice-GMP production of hESCs for therapeutic purposes. Therefore, it is essential to study the interaction of extracellular matrix molecules with hESCs in order to standardize in vitro culture systems for large-scale production of hESCs in a less labor-intensive way. This would not only provide valuable information regarding the mechanisms that control pluripotency but also serve to dissect the molecular signaling pathways of directed differentiation for prospective therapeutic applications in the future. J Clin Exp Invest 2014; 5 (3: 486-495

  19. Search for naive human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Simone Aparecida Siqueira Fonseca; Roberta Montero Costas; Lygia Veiga Pereira

    2015-01-01

    Normal mouse pluripotent stem cells were originallyderived from the inner cell mass (ICM) of blastocystsand shown to be the in vitro equivalent of those preimplantationembryonic cells, and thus were calledembryonic stem cells (ESCs). More than a decade later,pluripotent cells were isolated from the ICM of humanblastocysts. Despite being called human ESCs, thesecells differ significantly from mouse ESCs, includingdifferent morphology and mechanisms of control ofpluripotency, suggesting distinct embryonic originsof ESCs from the two species. Subsequently, mousepluripotent stem cells were established from the ICMderivedepiblast of post-implantation embryos. Thesemouse epiblast stem cells (EpiSCs) are morphologicaland epigenetically more similar to human ESCs. Thisraised the question of whether cells from the humanICM are in a more advanced differentiation stage thantheir murine counterpart, or whether the availableculture conditions were not adequate to maintain thosehuman cells in their in vivo state, leading to a transitioninto EpiSC-like cells in vitro . More recently, novel cultureconditions allowed the conversion of human ESCs intomouse ESC-like cells called naive (or ground state)human ESCs, and the derivation of naive human ESCsfrom blastocysts. Here we will review the characteristicsof each type of pluripotent stem cells, how (andwhether) these relate to different stages of embryonicdevelopment, and discuss the potential implications ofnaive human ESCs in research and therapy.

  20. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  1. Prevention of Infection Due to Pneumocystis spp. in Human Immunodeficiency Virus-Negative Immunocompromised Patients

    OpenAIRE

    Rodriguez, Martin; Fishman, Jay A.

    2004-01-01

    Pneumocystis infection in humans was originally described in 1942. The organism was initially thought to be a protozoan, but more recent data suggest that it is more closely related to the fungi. Patients with cellular immune deficiencies are at risk for the development of symptomatic Pneumocystis infection. Populations at risk also include patients with hematologic and nonhematologic malignancies, hematopoietic stem cell transplant recipients, solid-organ recipients, and patients receiving i...

  2. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  3. Preparation of pancreatic β-cells from human iPS cells with small molecules.

    Science.gov (United States)

    Hosoya, Masaki

    2012-01-01

    Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed.

  4. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Directory of Open Access Journals (Sweden)

    Nathalia R. Lestard

    2016-01-01

    Full Text Available Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  5. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  6. Data Mining of Historical Human Data to Assess the Risk of Injury due to Dynamic Loads

    Science.gov (United States)

    Wells, Jesica; Somers, Jeffrey T.; Newby, N.; Gernhardt, Michael

    2014-01-01

    deflection was determined from motion capture video of the impact test. HIC- 15 and BRIC were calculated from head acceleration responses. Given the number of human subjects for each test condition a confidence interval of injury probability will be obtained. RESULTS: Results will be discussed in terms of injury-risk probability estimates based on the human data set evaluated. Also, gaps in the data set will be identified. These gaps could be one of two types. One is areas where additional THOR testing would increase the comparable human data set, thereby improving confidence in the injury probability rate. The other is where additional human testing would assist in obtaining information on other acceleration levels or directions. DISCUSSION: The historical human data showed validity of the THOR ATD for supplemental testing. The historical human data are limited in scope, however. Further data are needed to characterize the effects of sex, age, anthropometry, and deconditioning due to spaceflight on risk of injury

  7. Human Neural Cell-Based Biosensor

    Science.gov (United States)

    2013-05-28

    including incubation with factors such as SHH ) and proceed to Human Neural Progenitor Cells Dopaminergic Differentiation β-III Tubulin/TH...exposure in human embryonic stem cells. J Recept Signal Transduct Res. 2011 Jun;31(3):206-13. Gerwe BA, Angel PM, West FD, Hasneen K, Young A

  8. Recurrent Breast Abscesses due to Corynebacterium kroppenstedtii, a Human Pathogen Uncommon in Caucasian Women

    Directory of Open Access Journals (Sweden)

    Anne Le Flèche-Matéos

    2012-01-01

    Full Text Available Background. Corynebacterium kroppenstedtii (Ck was first described in 1998 from human sputum. Contrary to what is observed in ethnic groups such as Maori, Ck is rarely isolated from breast abscesses and granulomatous mastitis in Caucasian women. Case Presentation. We herein report a case of recurrent breast abscesses in a 46-year-old Caucasian woman. Conclusion. In the case of recurrent breast abscesses, even in Caucasian women, the possible involvement of Ck should be investigated. The current lack of such investigations, probably due to the difficulty to detect Ck, may cause the underestimation of such an aetiology.

  9. Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: report of 24 cases.

    Science.gov (United States)

    Somayaji, R; Priyantha, M A R; Rubin, J E; Church, D

    2016-08-01

    Staphylococcus pseudintermedius has been recently identified as a novel species within the genus Staphylococcus, and is commonly associated with infections in dogs. Currently, there are few reports of human infections due to this bacterium. To use a population-based approach to describe the characteristics of human S. pseudintermedius infections in a large Canadian healthcare region. All adult cases aged ≥18 years identified at a large regional laboratory from April 1, 2013 to April 1, 2015 who had at least one positive culture for S. pseudintermedius were retrospectively reviewed. A combination of phenotypic methods, mass spectrometry (i.e., MALDI-TOF), and cpn60 sequencing were used to identify S. pseudintermedius. Chart review was conducted, and cases were analysed descriptively. Twenty-seven isolates of S. pseudintermedius from 24 human cases were included for analysis. 58.3% were male with median age of 61 years (IQR 55-70.5). Most patients [22 (92.1%)] had confirmed contact with dogs at time of infection. S. pseudintermedius was isolated in 18 cases (75.0%) of skin and soft tissue infections (SSTI), and 2 invasive cases (8.3%) including a prosthetic joint and bloodstream infection. The other 4 patients were considered to be colonized (skin - 3; lung - 1). Methicillin resistance was identified in 3 cases with 6 total isolates (22.2%); multi-drug resistance was also demonstrated commonly. S. pseudintermedius is most commonly associated with SSTIs in humans. Transmission probably occurs from a pet dog. Species-level identification of S. pseudintermedius is important due to the high prevalence of antibiotic resistance, particularly to methicillin. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  11. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  12. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  13. Hepatic expression of detoxification enzymes is decreased in human obstructive cholestasis due to gallstone biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Jin Chai

    Full Text Available Levels of bile acid metabolic enzymes and membrane transporters have been reported to change in cholestasis. These alterations (e.g. CYP7A1 repression and MRP4 induction are thought to be adaptive responses that attenuate cholestatic liver injury. However, the molecular mechanisms of these adaptive responses in human obstructive cholestasis due to gallstone biliary obstruction remain unclear.We collected liver samples from cholestatic patients with biliary obstruction due to gallstones and from control patients without liver disease (n = 22 per group. The expression levels of bile acid synthetic and detoxification enzymes, membrane transporters, and the related nuclear receptors and transcriptional factors were measured.The levels of bile acid synthetic enzymes, CYP7B1 and CYP8B1, and the detoxification enzyme CYP2B6 were increased in cholestatic livers by 2.4-fold, 2.8-fold, and 1.9-fold, respectively (p<0.05. Conversely, the expression levels of liver detoxification enzymes, UGT2B4/7, SULT2A1, GSTA1-4, and GSTM1-4, were reduced by approximately 50% (p<0.05 in human obstructive cholestasis. The levels of membrane transporters, OSTβ and OCT1, were increased 10.4-fold and 1.8-fold, respectively, (p<0.05, whereas those of OSTα, ABCG2 and ABCG8 were all decreased by approximately 40%, (p<0.05 in human cholestatic livers. Hepatic nuclear receptors, VDR, HNF4α, RXRα and RARα, were induced (approximately 2.0-fold, (p<0.05 whereas FXR levels were markedly reduced to 44% of control, (p<0.05 in human obstructive cholestasis. There was a significantly positive correlation between the reduction in FXR mRNA and UGT2B4/7, SULT2A1, GSTA1, ABCG2/8 mRNA levels in livers of obstructive cholestatic patients (p<0.05.The levels of hepatic detoxification enzymes were significantly decreased in human obstructive cholestasis, and these decreases were positively associated with a marked reduction of FXR levels. These findings are consistent with impaired

  14. Declaring the Existence of Human Germ-Cell Mutagens

    Science.gov (United States)

    After more than 80 years of searching for human germ-cell mutagens, I think that sufficient evidence already exists for a number of agents to be so considered, and definitive confirmation seems imminent due to the application ofrecently developed genomic techniques. In preparatio...

  15. Hazards Due to Overdischarge in Lithium-ion Cylindrical Cells in Multi-cell Configurations

    Science.gov (United States)

    Jeevarajan, Judith; Strangways, Brad; Nelson, Tim

    2010-01-01

    Lithium-ion cells in the cylindrical Commercial-off-the-shelf 18650 design format were used to study the hazards associated with overdischarge. The cells in series or in parallel configurations were subjected to different conditions of overdischarge. The cells in parallel configurations were all overdischarged to 2.0 V for 75 cycles with one cell removed at 25 cycles to study the health of the cell. The cells in series were designed to be in an unbalanced configuration by discharging one cell in each series configuration before the start of test. The discharge consisted of removing a pre-determined capacity from the cell. This ranged from 50 to 150 mAh removal. The cells were discharged down to a predetermined end-of-discharge voltage cutoff which allowed the cell with lower capacity to go into an overdischarge mode. The cell modules that survived the 75 cycles were subjected to one overvoltage test to 4.4 V/cell.

  16. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  17. Human health risk assessment due to global warming--a case study of the Gulf countries.

    Science.gov (United States)

    Husain, Tahir; Chaudhary, Junaid Rafi

    2008-12-01

    Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25 degrees E to 61.875 degrees E and latitude 9.278 degrees N to 27.833 degrees N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC.The preliminary assessment indicates

  18. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  19. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  20. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice

    Directory of Open Access Journals (Sweden)

    Nakayama Keiko

    2006-04-01

    Full Text Available Abstract Background The gonads are responsible for the production of germ cells through both mitosis and meiosis. Skp2 is the receptor subunit of an SCF-type ubiquitin ligase and is a major regulator of the progression of cells into S phase of the cell cycle, which it promotes by mediating the ubiquitin-dependent degradation of p27, an inhibitor of cell proliferation. However, the role of the Skp2-p27 pathway in germ cell development remains elusive. Results We now show that disruption of Skp2 in mice results in a marked impairment in the fertility of males, with the phenotypes resembling Sertoli cell-only syndrome in men. Testes of Skp2-/- mice manifested pronounced germ cell hypoplasia accompanied by massive apoptosis in spermatogenic cells. Flow cytometry revealed an increased prevalence of polyploidy in spermatozoa, suggesting that the aneuploidy of these cells is responsible for the induction of apoptosis. Disruption of the p27 gene of Skp2-/- mice restored germ cell development, indicating that the testicular hypoplasia of Skp2-/- animals is attributable to the antiproliferative effect of p27 accumulation. Conclusion Our results thus suggest that compromised cell cycle progression caused by the accumulation of p27 results in aneuploidy and the induction of apoptosis in gonadal cells of Skp2-/- mice. The consequent reduction in the number of mature gametes accounts for the decreased fertility of these animals. These findings reinforce the importance of the Skp2-p27 pathway in cell cycle regulation and in germ cell development.

  1. AFM-based analysis of human metastatic cancer cells

    Science.gov (United States)

    Cross, Sarah E.; Jin, Yu-Sheng; Tondre, Julianne; Wong, Roger; Rao, Jian Yu; Gimzewski, James K.

    2008-09-01

    Recently biomechanics of cancer cells, in particular stiffness or elasticity, has been identified as an important factor relating to cancer cell function, adherence, motility, transformation and invasion. We report on the nanomechanical responses of metastatic cancer cells and benign mesothelial cells taken from human body cavity fluids using atomic force microscopy. Following our initial study (Cross et al 2007 Nat. Nanotechnol. 2 780-3), we report on the biophysical properties of patient-derived effusion cells and address the influence of cell morphology on measured cell stiffness. Using a cytocentrifugation method, which yields morphologically indistinguishable cells that can be prepared in 1 min and avoids any possible artifacts due to 12 h ex vivo culture, we find that metastatic tumor cells are more than 80% softer than benign cells with a distribution over six times narrower than that of normal cells. Consistent with our previous study, which yielded distinguishable cell populations based on ex vivo growth and morphological characteristics, our results show it is unlikely that morphology alone is sufficient to explain the difference in elastic moduli for these two cell types. Moreover, analysis of non-specific cell adhesion inherent to tumor and normal cells collected from patients show surface adhesion of tumor cells is ~33% less adhesive compared to that of normal cells. Our findings indicate that biomechanical-based functional analysis may provide an additional platform for cytological evaluation and diagnosis of cancer in the future.

  2. AFM-based analysis of human metastatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Sarah E; Gimzewski, James K [Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 (United States); Jin Yusheng; Tondre, Julianne; Wong, Roger [Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095 (United States); Rao Jianyu [California NanoSystems Institute, University of California, Los Angeles, CA 90095 (United States)], E-mail: jrao@mednet.ucla.edu, E-mail: gim@chem.ucla.edu

    2008-09-24

    Recently biomechanics of cancer cells, in particular stiffness or elasticity, has been identified as an important factor relating to cancer cell function, adherence, motility, transformation and invasion. We report on the nanomechanical responses of metastatic cancer cells and benign mesothelial cells taken from human body cavity fluids using atomic force microscopy. Following our initial study (Cross et al 2007 Nat. Nanotechnol. 2 780-3), we report on the biophysical properties of patient-derived effusion cells and address the influence of cell morphology on measured cell stiffness. Using a cytocentrifugation method, which yields morphologically indistinguishable cells that can be prepared in 1 min and avoids any possible artifacts due to 12 h ex vivo culture, we find that metastatic tumor cells are more than 80% softer than benign cells with a distribution over six times narrower than that of normal cells. Consistent with our previous study, which yielded distinguishable cell populations based on ex vivo growth and morphological characteristics, our results show it is unlikely that morphology alone is sufficient to explain the difference in elastic moduli for these two cell types. Moreover, analysis of non-specific cell adhesion inherent to tumor and normal cells collected from patients show surface adhesion of tumor cells is {approx}33% less adhesive compared to that of normal cells. Our findings indicate that biomechanical-based functional analysis may provide an additional platform for cytological evaluation and diagnosis of cancer in the future.

  3. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  4. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Science.gov (United States)

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  5. 75 FR 13137 - National Institutes of Health Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-03-18

    ... on a revision to the definition of human embryonic stem cells (hESCs) in the ``National Institutes of Health Guidelines for Human Stem Cell Research'' (Guidelines). Due to a technical problem, comments... . Comments may also be mailed to: NIH Stem Cell Guidelines, MSC 7997, 9000 Rockville Pike, Bethesda, Maryland...

  6. Probing Human NK Cell Biology Using Human Immune System (HIS) Mice.

    Science.gov (United States)

    Li, Yan; Di Santo, James P

    2016-01-01

    Our incomplete understanding of the mechanisms that orchestrate human lymphocyte differentiation and condition human immune responses is in part due to the limited access to normal human tissue samples that can inform on these complex processes. In addition, in vitro culture conditions fail to recapitulate the three-dimensional microenvironments that influence cell-cell interactions and impact on immune outcomes. Small animals provide a preclinical model to dissect and probe immunity and over the past decades, development of immunodeficient hosts that can be engrafted with human hematopoietic precursors and mature cells have led to the development of new in vivo models to study human lymphocyte development and function. Natural killer (NK) cells are implicated in the recognition and elimination of pathogen-infected and transformed cells and belong to a family of diverse innate lymphoid cells (ILCs) that provide early immune defense against disease. Here, we summarize the use of humanized mouse models for the study of NK cell and group 1 ILCs and their respective roles in immunity and tissue homeostasis.

  7. Characterization and functionality of proliferative human Sertoli cells.

    Science.gov (United States)

    Chui, Kitty; Trivedi, Alpa; Cheng, C Yan; Cherbavaz, Diana B; Dazin, Paul F; Huynh, Ai Lam Thu; Mitchell, James B; Rabinovich, Gabriel A; Noble-Haeusslein, Linda J; John, Constance M

    2011-01-01

    It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2'-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility

  8. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  9. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  10. Status Epilepticus Due to Severe HHV-6 Encephalitis in an Allogeneic Stem Cell Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Poorvi Chordia

    2013-12-01

    Full Text Available Reactivation of human herpes virus-6 (HHV-6 after stem cell transplantation occurs frequently. It is associated with clinical manifestations varying from nonspecific symptoms such as fevers or rash, to severe life threatening complications including post-transplantation limbic encephalitis. We report a case of severe HHV-6 encephalitis with viremia in an allogeneic peripheral stem cell transplant recipient who presented with status epilepticus unresponsive to antiepileptic therapy.  With intravenous ganciclovir and supportive care, the patient’s condition improved. Awareness of HHV-6 infection in stem cell transplant recipients may help with early diagnosis and improved outcome.

  11. Reversal by EGTA of the enhanced secretory responsiveness of mast cells due to treatment with ouabain

    DEFF Research Database (Denmark)

    Johansen, Torben; Knudsen, T; Bertelsen, Niels Haldor

    1990-01-01

    The effect of EGTA on the enhancement by ouabain of compound 48/80-induced secretion from mast cells was compared with the effect on the Na(+)-K+ pump activity. The time-dependent secretory enhancement by ouabain was blocked by addition of EGTA to the cell suspension concomitantly with the addition...... of ouabain, and EGTA caused a large increase in the pump activity. Addition of 10 microM EGTA to ouabain-treated cells stopped but did not reverse the enhancement. The experiments show that the effect of ouabain was due to changes in a calcium pool utilized in compound 48/80-induced secretion following...

  12. Derivation of naive human embryonic stem cells.

    Science.gov (United States)

    Ware, Carol B; Nelson, Angelique M; Mecham, Brigham; Hesson, Jennifer; Zhou, Wenyu; Jonlin, Erica C; Jimenez-Caliani, Antonio J; Deng, Xinxian; Cavanaugh, Christopher; Cook, Savannah; Tesar, Paul J; Okada, Jeffrey; Margaretha, Lilyana; Sperber, Henrik; Choi, Michael; Blau, C Anthony; Treuting, Piper M; Hawkins, R David; Cirulli, Vincenzo; Ruohola-Baker, Hannele

    2014-03-25

    The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.

  13. An experimental investigation of composite floor vibration due to human activities. A case study

    Directory of Open Access Journals (Sweden)

    Yasser G. Mohamed Fahmy

    2012-12-01

    Full Text Available Composite steel floor decks are used in a large variety of constructions with long spans, such as administration and commercial buildings, hotels and bridges. Due to decreased floor mass and longer span lengths, floor vibrations have become an area of concern. Floor decks with low frequencies may be in resonance with the vibrations due to human activities and the resulting acceleration may exceed human comfort levels. The design of slender floor structures, with steel or composite cross sections, is often limited by the serviceability criteria such as deflection limits and vibration behavior, rather than the strength criteria. Control of deflections under AISC specifications requirement is not enough to satisfy the serviceability requirements of the floor systems for vibration. In addition, vibration analysis procedures introduced by AISC design Guide No. 11 are based on regularly-shaped structures and simple boundary conditions. In this paper, a case study for full scale testing of a composite floor system proposed for a tower at Kuwait state that was tested prior to construction. The heel-drop and walking tests are performed on floor systems with and without raised floor respectively. Since heel-drop and walking test results would vary in light of person performance, both tests are carried out three or four times to reduce uncertainty. The fundamental frequencies and damping ratio of the floor system are measured. Comparison of the experimental results with results based on the AISC hand calculations shows that there is no significant difference; therefore the results based on AISC are generally acceptable.

  14. Pulmonary tumor thrombotic microangiopathy with cor pulmonale due to desmoplastic small round cell tumor.

    Science.gov (United States)

    Sadimin, Evita T; Collier, Adrienne G; Gaffney, Joseph W; Fyfe, Billie

    2012-04-01

    A 12-year-old boy presented acutely after an episode of syncope with perioral cyanosis. He died 19 hours after admission due to cor pulmonale as a complication of metastatic desmoplastic small round cell tumor in the lungs with associated tumor thrombotic microangiopathy.

  15. Human embryonic stem cell research debates: a confucian argument.

    Science.gov (United States)

    Tsai, D F-C

    2005-11-01

    Human embryonic stem cell research can bring about major biomedical breakthroughs and thus contribute enormously to human welfare, yet it raises serious moral problems because it involves using human embryos for experiment. The "moral status of the human embryo" remains the core of such debates. Three different positions regarding the moral status of the human embryo can be categorised: the "all" position, the "none" position, and the "gradualist" position. The author proposes that the "gradualist" position is more plausible than the other two positions. Confucius's moral principle of jen, which proposes a unique theory of "love of gradation", and the principle of yi, which advocates "due treatment for persons", are then explored. The author then argues that our moral obligations to do good to other living organisms, persons, and our families are different. Putting together the "gradualist" position on the human embryo, and Confucius's theories of "love of gradation" and "due treatment for persons", the author concludes that the early embryo has less ethical significance than the later fetus and adult human. The moral obligation we have toward persons is clearer and stronger than that which we have toward human embryos. Embryo research is justifiable if it brings enormous welfare to human persons that cannot be otherwise achieved. The "love of gradation" requires us, however, to extend love and respect towards other entities according to their different status. We should therefore be very cautious in using human embryos for research, acknowledging the gradualist nature of their moral status.

  16. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  17. Computational dosimetry for grounded and ungrounded human models due to contact current

    Science.gov (United States)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-08-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.

  18. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  19. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  20. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.

    Science.gov (United States)

    Halgamuge, Malka N

    2013-08-01

    Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.

  1. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosom

  2. Thermal energy conduction in a honey bee comb due to cell-heating bees.

    Science.gov (United States)

    Humphrey, J A C; Dykes, E S

    2008-01-07

    Theoretical analysis and numerical calculations are performed to characterize the unsteady two-dimensional conduction of thermal energy in an idealized honey bee comb. The situation explored corresponds to a comb containing a number of brood cells occupied by pupae. These cells are surrounded by other cells containing pollen which, in turn, are surrounded (above) by cells containing honey and (below) by vacant cells containing air. Up to five vacant cells in the brood region can be occupied by cell-heating bees which, through the isometrical contraction of their flight muscles, can generate sufficient energy to raise their body temperatures by a few degrees. In this way, the cell-heating bees alter the heat flux and temperature distributions in the brood region so as to maintain conditions that benefit the pupae. The calculations show that the number of cell-heating bees significantly affects the magnitude, time rate of change, and spatial distribution of temperature throughout the comb. They also reveal a vertically aligned asymmetry in the spatial distribution of temperature that is due to the large heat capacity and thermal conductivity of honey relative to air, whereby air-filled cells experience larger temperature increases than honey-filled cells. Analysis shows that convection and radiation represent negligible modes of thermal energy transfer at all levels in the problem considered. Also, because of its small thickness, the wax wall of a comb cell simultaneously presents negligible resistance to conduction heat transfer normal to it and very large resistance along it. As a consequence the walls of a cell play no thermal role, but simply serve as mechanical supports for the materials they contain.

  3. Prevention of infection due to Pneumocystis spp. in human immunodeficiency virus-negative immunocompromised patients.

    Science.gov (United States)

    Rodriguez, Martin; Fishman, Jay A

    2004-10-01

    Pneumocystis infection in humans was originally described in 1942. The organism was initially thought to be a protozoan, but more recent data suggest that it is more closely related to the fungi. Patients with cellular immune deficiencies are at risk for the development of symptomatic Pneumocystis infection. Populations at risk also include patients with hematologic and nonhematologic malignancies, hematopoietic stem cell transplant recipients, solid-organ recipients, and patients receiving immunosuppressive therapies for connective tissue disorders and vasculitides. Trimethoprim-sulfamethoxazole is the agent of choice for prophylaxis against Pneumocystis unless a clear contraindication is identified. Other options include pentamidine, dapsone, dapsone-pyrimethamine, and atovaquone. The risk for PCP varies based on individual immune defects, regional differences, and immunosuppressive regimens. Prophylactic strategies must be linked to an ongoing assessment of the patient's risk for disease.

  4. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  5. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  6. Memory regulatory T cells reside in human skin.

    Science.gov (United States)

    Sanchez Rodriguez, Robert; Pauli, Mariela L; Neuhaus, Isaac M; Yu, Siegrid S; Arron, Sarah T; Harris, Hobart W; Yang, Sara Hsin-Yi; Anthony, Bryan A; Sverdrup, Francis M; Krow-Lucal, Elisabeth; MacKenzie, Tippi C; Johnson, David S; Meyer, Everett H; Löhr, Andrea; Hsu, Andro; Koo, John; Liao, Wilson; Gupta, Rishu; Debbaneh, Maya G; Butler, Daniel; Huynh, Monica; Levin, Ethan C; Leon, Argentina; Hoffman, William Y; McGrath, Mary H; Alvarado, Michael D; Ludwig, Connor H; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D

    2014-03-01

    Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.

  7. Performance of multi-junction cells due to illumination distribution across the cell surface

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.D., E-mail: s206029578@live.nmmu.ac.za [Nelson Mandela University, Physics Department, P.O. Box 77000, 6031, Port Elizabeth (South Africa); Vorster, F.J; Dyk, E.E van [Nelson Mandela University, Physics Department, P.O. Box 77000, 6031, Port Elizabeth (South Africa)

    2012-05-15

    This paper addresses the influence of illumination distribution on the performance of a high concentration photovoltaic (HCPV) module. CPV systems comprise of optical elements as well as mechanical tracking to concentrate the solar flux onto the solar receiver as well as to keep the system on track with the sun. The performance of the subcells of the multi-junction concentrator cell depends on the optical alignment of the system. Raster scanning of the incident intensity in the optical plane of the receiver and corresponding I-V measurements were used to investigate the influence of illumination distribution on performance. The results show that the illumination distribution that differs between cells does affect the performance of the module. The performance of the subcells of the multi-junction concentrator cell also depends on the optical alignment of the system.

  8. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...

  9. Human hair genealogies and stem cell latency

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2006-02-01

    Full Text Available Abstract Background Stem cells divide to reproduce themselves and produce differentiated progeny. A fundamental problem in human biology has been the inability to measure how often stem cells divide. Although it is impossible to observe every division directly, one method for counting divisions is to count replication errors; the greater the number of divisions, the greater the numbers of errors. Stem cells with more divisions should produce progeny with more replication errors. Methods To test this approach, epigenetic errors (methylation in CpG-rich molecular clocks were measured from human hairs. Hairs exhibit growth and replacement cycles and "new" hairs physically reappear even on "old" heads. Errors may accumulate in long-lived stem cells, or in their differentiated progeny that are eventually shed. Results Average hair errors increased until two years of age, and then were constant despite decades of replacement, consistent with new hairs arising from infrequently dividing bulge stem cells. Errors were significantly more frequent in longer hairs, consistent with long-lived but eventually shed mitotic follicle cells. Conclusion Constant average hair methylation regardless of age contrasts with the age-related methylation observed in human intestine, suggesting that error accumulation and therefore stem cell latency differs among tissues. Epigenetic molecular clocks imply similar mitotic ages for hairs on young and old human heads, consistent with a restart with each new hair, and with genealogies surreptitiously written within somatic cell genomes.

  10. Diminished Memory T-Cell Expansion Due to Delayed Kinetics of Antigen Expression by Lentivectors.

    Directory of Open Access Journals (Sweden)

    Karina Furmanov

    Full Text Available Memory CD8(+ T lymphocytes play a central role in protective immunity. In attempt to increase the frequencies of memory CD8(+ T cells, repeated immunizations with viral vectors are regularly explored. Lentivectors have emerged as a powerful vaccine modality with relatively low pre-existing and anti-vector immunity, thus, thought to be ideal for boosting memory T cells. Nevertheless, we found that lentivectors elicited diminished secondary T-cell responses that did not exceed those obtained by priming. This was not due to the presence of anti-vector immunity, as limited secondary responses were also observed following heterologous prime-boost immunizations. By dissecting the mechanisms involved in this process, we demonstrate that lentivectors trigger exceptionally slow kinetics of antigen expression, while optimal activation of lentivector-induced T cells relays on durable expression of the antigen. These qualities hamper secondary responses, since lentivector-encoded antigen is rapidly cleared by primary cytotoxic T cells that limit its presentation by dendritic cells. Indeed, blocking antigen clearance by cytotoxic T cells via FTY720 treatment, fully restored antigen presentation. Taken together, while low antigen expression is expected during secondary immunization with any vaccine vector, our results reveal that the intrinsic delayed expression kinetics of lentiviral-encoded antigen, further dampens secondary CD8(+ T-cell expansion.

  11. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  12. Human BLyS facilitates engraftment of human PBL derived B cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Madelyn R Schmidt

    Full Text Available The production of fully immunologically competent humanized mice engrafted with peripheral lymphocyte populations provides a model for in vivo testing of new vaccines, the durability of immunological memory and cancer therapies. This approach is limited, however, by the failure to efficiently engraft human B lymphocytes in immunodeficient mice. We hypothesized that this deficiency was due to the failure of the murine microenvironment to support human B cell survival. We report that while the human B lymphocyte survival factor, B lymphocyte stimulator (BLyS/BAFF enhances the survival of human B cells ex vivo, murine BLyS has no such protective effect. Although human B cells bound both human and murine BLyS, nuclear accumulation of NF-kappaB p52, an indication of the induction of a protective anti-apoptotic response, following stimulation with human BLyS was more robust than that induced with murine BLyS suggesting a fundamental disparity in BLyS receptor signaling. Efficient engraftment of both human B and T lymphocytes in NOD rag1(-/- Prf1(-/- immunodeficient mice treated with recombinant human BLyS is observed after adoptive transfer of human PBL relative to PBS treated controls. Human BLyS treated recipients had on average 40-fold higher levels of serum Ig than controls and mounted a de novo antibody response to the thymus-independent antigens in pneumovax vaccine. The data indicate that production of fully immunologically competent humanized mice from PBL can be markedly facilitated by providing human BLyS.

  13. cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics

    Science.gov (United States)

    Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.

    2017-06-01

    Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.

  14. Field collapse due to band-tail charge in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States); Schiff, E.A. [Syracuse Univ., NY (United States)

    1996-05-01

    It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  15. Lacrimal gland and perioptic nerve lesions due to Langerhans cell histiocytosis (2007: 9b)

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.; Demaerel, P.; Wilms, G. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Gool, S. van [University Hospitals Leuven, Department of Pediactrics, Leuven (Belgium); Casteels, I. [University Hospitals Leuven, Department of Ophthalmology, Leuven (Belgium)

    2007-12-15

    We report a patient presenting with bilateral lacrimal gland involvement and perioptic nerve sheath lesions due to Langerhans cell histiocytosis (LCH) invasion. LCH is a rare multisystemic disease characterized by a clonal proliferation of Langerhans cells. All organs may be involved with a clinical spectrum ranging from a solitary bone lesion to a severe life-threatening multisystem disease. Osteolytic orbital bone lesions with extension into the adjacent orbital soft tissues have been described. To our knowledge, lacrimal gland involvement has probably been described only once before. Perioptic nerve lesions are also very rare, having been described only three times before. (orig.)

  16. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  17. Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness

    Directory of Open Access Journals (Sweden)

    Maria Letizia Taddei

    2012-01-01

    Full Text Available Increased ROS (cellular reactive oxygen species are characteristic of both fibrosis and tumour development. ROS induce the trans-differentiation to myofibroblasts, the activated form of fibroblasts able to promote cancer progression. Here, we report the role of ROS produced in response to dysfunctions of mitochondrial complex I, in fibroblast activation and in tumour progression. We studied human fibroblasts with mitochondrial dysfunctions of complex I, leading to hyperproduction of ROS. We demonstrated that ROS level produced by the mutated fibroblasts correlates with their activation. The increase of ROS in these cells provides a greater ability to remodel the extracellular matrix leading to an increased motility and invasiveness. Furthermore, we evidentiated that in hypoxic conditions these fibroblasts cause HIF-1α stabilization and promote a proinvasive phenotype of human melanoma cells through secretion of cytokines. These data suggest a possible role of deregulated mitochondrial ROS production in fibrosis evolution as well as in cancer progression and invasion.

  18. INTERACTIONS BETWEEN THE HUMAN GASTRIC CARCINOMA CELL AND THE HUMAN VASCULAR ENDOTHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous metastasis.Methods We prepared the conditioned mediums of each cell so as to study the effect of the conditioned medium on itself or others by MTT colorimetry. The comprehensive effect of interactions between two cells was determined by stratified transfilter co-culture or direct contact co-culture.Results The conditioned medium of human gastric carcinoma cell can stimulate the proliferation of the human vascular endothelial cell, but the CM of HVEC can inhibit the growth of HGCC. Both kinds of cells can inhibit the growth of itself. The ultimate comprehensive effect of the interactions between two kinds of cells was increase of total cell numbers.Conclusion There exist the complicated interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the tumor angiogenesis and the tumor hematogenous metastasis. The ultimate comprehensive effect of the interactions is increase of total cells numbers and tumor volume.

  19. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  20. Characteristics of the vibratory reflex in humans with reduced suprasegmental influence due to spinal cord injury.

    Science.gov (United States)

    Sherwood, A M; Dimitrijevic, M R; Bacia, T; McKay, W B

    1993-01-01

    The tonic stretch reflex elicited by vibration of a muscle or tendon provides a means of studying segmental reflex activity in humans with impaired volitional motor activity due to spinal cord injury (SCI). Vibration applied to the achilles or patellar tendon in a group of 51 SCI subjects elicited motor unit activity different from that found in 12 healthy subjects. Four distinct features of motor unit responses to vibration of a single tendon (achilles or patellar) could be seen in the SCI subjects: (i) a rapid onset, tonic response, frequently beginning with a single burst analogous to a tendon jerk, in 72% of vibrated sites; (ii) repetitive, phasic bursts of activity or vibratory-induced clonus in 23% of the tonic responses; (iii) spread of activity to muscles distant from the vibration in 44% of the tonic responses; and vibratory-induced withdrawal reflexes (VWR) which occurred after vibration of 37% of the sites. Overall, 81% of stimulated sites responded to vibration in SCI subjects. In contrast, only 54% of vibrated sites responded in control subjects, always with a gradual onset tonic response, never accompanied by a VWR. The VWR in SCI subjects was typically of much larger amplitude than the tonic responses and involved a mean of 5 muscles (41% bilaterally). Features of these responses provide an insight into underlying neurocontrol mechanisms which may provide guidance in the selection of appropriate intervention or management strategies.

  1. Acute liver failure due to Human Herpesvirus 6 in an infant

    Directory of Open Access Journals (Sweden)

    G.M. Tronconi

    2012-10-01

    Full Text Available We report a case of a 4-months infant with fever in the absence of other specific symptoms that has rapidly and unexpectedly developed acute liver failure (ALF with coagulopathy and complicated with bone marrow failure without encephalopathy. The main viral infection agents (hepatitis virus A, B, C, Citomegalovirus, Ebstain Barr virus, Parvovirus B19, Adenovirus, drug-induced hepatotoxicity and metabolic disorders associated to ALF were excluded. Quantitative determination of Human Herpesvirus 6 (HHV6 genome was positive with a significant number of copies for mL. A favorable evolution of the clinical symptoms and a progressive hematochemical resolution were obtained. Plasma and Vitamin K were administrated as a support therapy for treating coagulopathy. The present case report and the cases’ review from the literature, evidence the importance of always including screening for HHV6 infection in the diagnostic approach to acute onset of liver failure. HHV6 is a common virus in the pediatric population with a greater number of cases of fulminant viral non-A, non-B, non-C hepatitis in immunocompetent patients due to this virus: these forms have often a high mortality rate and maybe necessitate liver transplantation; for this reason correct etiological agent identification is mandatory for the prognosis and it has to be based on the quantitative search of the virus’s genome. Pathogenesis of liver-induced damage associated to HHV6 remains unclear; however in vitro studies demonstrate the potential hepatotoxicity effects of this virus.

  2. [Acute liver failure due to human herpesvirus 6 in an infant].

    Science.gov (United States)

    Tronconi, G M; Mariani, B; Pajno, R; Fomasi, M; Cococcioni, L; Biffi, V; Bove, M; Corsin, P; Garbetta, G; Barera, G

    2012-01-01

    We report a case of a 4-months infant with fever in the absence of other specific symptoms that has rapidly and unexpectedly developed acute liver failure (ALF) with coagulopathy and complicated with bone marrow failure without encephalopathy. The main viral infection agents (hepatitis virus A, B, C, Citomegalovirus, Ebstain Barr virus, Parvovirus B19, Adenovirus), drug-induced hepatotoxicity and metabolic disorders associated to ALF were excluded. Quantitative determination of Human Herpesvirus 6 (HHV6) genome was positive with a significant number of copies for mL. A favorable evolution of the clinical symptoms and a progressive hematochemical resolution were obtained. Plasma and Vitamin K were administrated as a support therapy for treating coagulopathy. The present case report and the cases' review from the literature, evidence the importance of always including screening for HHV6 infection in the diagnostic approach to acute onset of liver failure. HHV6 is a common virus in the pediatric population with a greater number of cases of fulminant viral non-A, non-B, non-C hepatitis in immunocompetent patients due to this virus: these forms have often a high mortality rate and maybe necessitate liver transplantation; for this reason correct etiological agent identification is mandatory for the prognosis and it has to be based on the quantitative search of the virus's genome. Pathogenesis of liver-induced damage associated to HHV6 remains unclear; however in vitro studies demonstrate the potential hepatotoxicity effects of this virus.

  3. Malignancies and infection due to the human immunodeficiency virus. Are these emerging diseases?

    Science.gov (United States)

    Valencia Ortega, M E

    2017-09-02

    Since the start of the human immunodeficiency virus (HIV) epidemic, tumour disease among patients has been significant. The collection of malignancies can be divided primarily into 2 groups: those associated with HIV (all of which are related to viral diseases) and those not associated with HIV (only some of which are associated with viral diseases). The origin of these malignancies is multifactorial, and the main causes that have led to an increase in tumour disease are immunosuppression, coinfection with oncogenic viruses and life prolongation secondary to the use of antiretroviral therapy. Establishing the general characteristics of the undiagnosed AIDS tumours is difficult, mainly because they are a highly heterogeneous group formed by malignancies of a diverse nature. The treatments do not differ from those used in the general population, although the management can be more difficult due to the late diagnosis, drug interactions and associated comorbidities. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  4. Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis.

    Science.gov (United States)

    Wilting, Harry C; Schipper, Aafke M; Bakkenes, Michel; Meijer, Johan R; Huijbregts, Mark A J

    2017-03-21

    It is increasingly recognized that human consumption leads to considerable losses of biodiversity. This study is the first to systematically quantify these losses in relation to land use and greenhouse gas (GHG) emissions associated with the production and consumption of (inter)nationally traded goods and services by presenting consumption-based biodiversity losses, in short biodiversity footprint, for 45 countries and world regions globally. Our results showed that (i) the biodiversity loss per citizen shows large variations among countries, with higher values when per-capita income increases; (ii) the share of biodiversity losses due to GHG emissions in the biodiversity footprint increases with income; (iii) food consumption is the most important driver of biodiversity loss in most of the countries and regions, with a global average of 40%; (iv) more than 50% of the biodiversity loss associated with consumption in developed economies occurs outside their territorial boundaries; and (v) the biodiversity footprint per dollar consumed is lower for wealthier countries. The insights provided by our analysis might support policymakers in developing adequate responses to avert further losses of biodiversity when population and incomes increase. Both the mitigation of GHG emissions and land use related reduction options in production and consumption should be considered in strategies to protect global biodiversity.

  5. Fibronectin production by human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R. (Univ. of California, Berkeley); Vlodavsky, I.; Smith, H.S.; Ford, R.; Becker, F.F.; Riggs, J.

    1981-01-01

    Human mammary cells were examined for the presence of the high-molecular-weight surface glycoprotein fibronectin. Early passage mammary epithelial cell and fibroblast cultures from both carcinomas and normal tissues were tested for the presence of cell-associated fibronectin by immunofluorescence microscopy and for the synthesis and secretion of fibronectin by specific immunoprecipitation of metabolically labeled protein. In vivo frozen sections of primary carcinomas and normal tissues were tested for the localization of fibronectin by immunofluorescence microscopy. In contrast to the extensive fibrillar networks of fibronectin found in the fibroblast cultures, the epithelial cell cultures from both tissue sources displayed a pattern of cell-associated fibronectin characterizd by powdery, punctate staining. However, the cultured epithelial cells, as well as the fibroblasts, secreted large quantities of fibronectin into the medium. Putative myoepithelial cells also displayed extensive fibrillar networks of fibronectin. The difference in cell-associated fibronectin distribution between the epithelial cells and the fibroblasts and putative myoepithelial cells provided a simple means of quantitating stromal and myoepithelial cell contamination of the mammary epithelial cells in culture. In vivo, normal tissues showed fibronectin primarily localized in the basement membrane surrounding the epithelial cells and in the stroma. Most primary carcinomas displayed powdery, punctate staining on the epithelial cells in addition to the fibronectin present in the surrounding stroma.

  6. Immunosurveillance function of human mast cell?

    Institute of Scientific and Technical Information of China (English)

    (O)ner (O)zdemir

    2005-01-01

    Mast cell (MC) is so widely recognized as a critical effector in allergic disorders that it can be difficult to think of MC in any other context. Indeed, MCs are multifunctional and recently shown that MCs can also act as antigen presenters as well as effector elements of human immune system. First observations of their possible role as anti-tumor cells in peri- or intra-tumoral tissue were mentioned five decades ago and a high content of MCs is considered as a favorable prognosis,consistent with this study. Believers of this hypothesis assumed them to be inhibitors of tumor development through their pro-apoptotic and -necrolytic granules e.g.,granzymes and TNF-α. However, some still postulate them to be enhancers of tumor development through their effects on angiogenesis due to mostly tryptase.There are also some data suggesting increased MC density causes tumor development and indicates bad prognosis. Furthermore, since MC-associated mediators have shown to influence various aspects of tumor biology, the net effect of MCs on the development/progression of tumors has been difficult to evaluate. For instance, chymase induces apoptosis in targets; yet,tryptase, another MC protease, is a well-known mitogen.MCs with these various enzyme expression patterns may mediate different functions and the predominant MC type in tissues may be determined by the environmental needs. The coexistence of tryptase-expressing MCs(MCT) and chymase and tryptase-expressing MCs (MCTC)in physiological conditions reflects a naturally occurring balance that contributes to tissue homeostasis. We have recently discussed the role and relevance of MC serine proteases in different bone marrow diseases.

  7. Human spleen and red blood cells

    Science.gov (United States)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  8. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  9. Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells.

    Directory of Open Access Journals (Sweden)

    Xiao Ma

    Full Text Available It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge simulating the hypergravity phases that occur during one (P1 and 31 parabolas (P31 of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1 and modulating (EZR, RDX, and MSN the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8 or protein kinases (PRKAA1 and PRKCA. The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.

  10. Cardiac arrest due to hyperkalemia following irradiated packed red cells transfusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Kazuharu [Yamamoto-kumiai General Hospital, Noshiro, Akita (Japan); Ohta, Sukejuurou; Kojima, Yukiko; Mizunuma, Takahide; Nishikawa, Toshiaki

    1998-11-01

    We describe two cases of cardiac arrest due to hyperkalemia following transfusion of irradiated packed red cells. Case 1: Because sudden, rapid and massive hemorrage occurred in a 69-year-old male patient undergoing the left lobectomy of the liver, 8 units of irradiated packed red cells were rapidly transfused, the patient developed cardiac arrest. Serum kalium concentration after transfusion was 7.6 mEq/l. Case 2: A 7-month-old girl scheduled for closure of a ventricular septal defect, developed cardiac arrest due to hyperkalemia at the start of cardiopulmonary bypass. The extracorporeal circuit was primed with 6 units of irradiated packed red blood cells. Serum kalium concentration immediately after the start of cardiopulmonary bypass was 10.6 mEq/l. Analysis of kalium concentration in the pilot tubes of the same packs revealed 56-61 mEq/l. These case reports suggest that fresh irradiated packed red cells should be transfused during massive bleeding and for pediatric patients to prevent severe hyperkalemia. (author)

  11. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  12. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  13. Human embryonic stem cells for neuronal repair.

    Science.gov (United States)

    Ben-Hur, Tamir

    2006-02-01

    Human embryonic stem cells may serve as a potentially endeless source of transplantable cells to treat various neurologic disorders. Accumulating data have shown the therapeutic value of various neural precursor cell types in experimental models of neurologic diseases. Tailoring cell therapy for specific disorders requires the generation of cells that are committed to specific neural lineages. To this end, protocols were recently developed for the derivation of dopaminergic neurons, spinal motor neurons and oligodendrocytes from hESC. These protocols recapitulate normal development in culture conditions. However, a novel concept emerging from these studies is that the beneficial effect of transplanted stem cells is not only via cell replacement in damaged host tissue, but also by trophic and protective effects, as well as by an immunomodulatory effect that down-regulates detrimental brain inflammation.

  14. Phenotype Transformation of Aortic Valve Interstitial Cells Due to Applied Shear Stresses Within a Microfluidic Chip.

    Science.gov (United States)

    Wang, Xinmei; Lee, Joohyung; Ali, Mir; Kim, Jungkyu; Lacerda, Carla M R

    2017-06-15

    Despite valvular heart diseases constituting a significant medical problem, the acquisition of information describing their pathophysiology remains difficult. Due to valvular size, role and location within the body, there is a need for in vitro systems that can recapitulate disease onset and progression. This study combines the development of an in vitro model and its application in the mechanical stimulation of valvular cell transformation. Specifically, porcine aortic valvular interstitial cells (PAVIC) were cultured on polydimethylsiloxane microfluidic devices with or without exposure to shear stresses. Mechanobiological responses of valvular interstitial cells were evaluated at shear stresses ranging from 0 to 4.26 dyn/cm(2). When flow rates were higher than 0.78 dyn/cm(2), cells elongated and aligned with the flow direction. In addition, we found that shear stress enhanced the formation of focal adhesions and up-regulated PAVIC transformation, assessed by increased expression of α-smooth muscle actin and transforming growth factor β. This study reveals a link between the action of shear forces, cell phenotype transformation and focal adhesion formation. This constitutes the first step towards the development of co-cultures (interstitial-endothelial cells) on organ-on-a-chip devices, which will enable studies of the signaling pathways regulating force-induced valvular degeneration in microtissues and potential discovery of valvular degeneration therapies.

  15. An FNA pitfall: Mammary analog secretory carcinoma mistaken for acinic cell carcinoma due to cytoplasmic granules

    Directory of Open Access Journals (Sweden)

    Nouf Hijazi, MD

    2014-12-01

    Full Text Available In the salivary gland, a key differential feature of Mammary analog secretory carcinoma (MASC from acinic cell carcinoma (ACC is the lack of cytoplasmic granules. We report a case of a parotid mass incorrectly diagnosed on fine needle aspirate as acinic cell carcinoma due to many cells with basophilic granules suggesting serous acinar differention. Tumor resection revealed a tumor consistent with low grade adenocarcinoma that had eosinophilic, microvacuolar cytoplasm with distinct basophilic granules staining with PASD and mucicarmine. The diagnosis of MASC was confirmed with stains for GCDF-15, mammoglobin, and S100 and FISH consistent with a t(12;15 translocation. Relying on the absence of cytoplasmic granules as a feature to distinguish ACC from MASC is a diagnostic pitfall.

  16. Generation of glycosylphosphatidylinositol anchor protein-deficient blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Yuan, Xuan; Braunstein, Evan M; Ye, Zhaohui; Liu, Cyndi F; Chen, Guibin; Zou, Jizhong; Cheng, Linzhao; Brodsky, Robert A

    2013-11-01

    PIG-A is an X-linked gene required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors; thus, PIG-A mutant cells have a deficiency or absence of all GPI-anchored proteins (GPI-APs). Acquired mutations in hematopoietic stem cells result in the disease paroxysmal nocturnal hemoglobinuria, and hypomorphic germline PIG-A mutations lead to severe developmental abnormalities, seizures, and early death. Human induced pluripotent stem cells (iPSCs) can differentiate into cell types derived from all three germ layers, providing a novel developmental system for modeling human diseases. Using PIG-A gene targeting and an inducible PIG-A expression system, we have established, for the first time, a conditional PIG-A knockout model in human iPSCs that allows for the production of GPI-AP-deficient blood cells. PIG-A-null iPSCs were unable to generate hematopoietic cells or any cells expressing the CD34 marker and were defective in generating mesodermal cells expressing KDR/VEGFR2 (kinase insert domain receptor) and CD56 markers. In addition, PIG-A-null iPSCs had a block in embryonic development prior to mesoderm differentiation that appears to be due to defective signaling through bone morphogenetic protein 4. However, early inducible PIG-A transgene expression allowed for the generation of GPI-AP-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development.

  17. Diesel exhaust particle-induced cell death of cultured normal human bronchial epithelial cells.

    Science.gov (United States)

    Matsuo, Mitsuyoshi; Shimada, Toshio; Uenishi, Rie; Sasaki, Naoko; Sagai, Masaru

    2003-04-01

    We investigated the effect of diesel exhaust particles (DEPs) on normal human bronchial epithelial (NHBE) cells. Inclusion of DEPs in culture media was lethal to NHBE cells. NHBE cells are more susceptible to DEPs than other normal human lung cells, normal human pulmonary artery endothelial cells and normal human embryonic lung fibroblasts. DEP-induced cell death was mainly due to necrosis. Using the fluorescence probes diacetoxymethyl 6-carboxy-3',6'-diacetoxy-2',7'-dichloro-3',6'-dideoxydihydrofluorescinate and 4,5-diaminofluorescein diacetate, it was observed that hydrogen peroxide and nitrogen monoxide, respectively, were generated within DEP-exposed NHBE cells. DEP cytotoxicity increased or decreased with an increase or decrease in the cellular level of reduced glutathione (GSH) by treatment with L-buthionine-(R,S)-sulfoximine or ethyl reduced glutathionate, respectively. In addition, DEPs themselves decreased the cellular level of GSH in a dose-dependent manner. Upon exposure of NHBE cells to high concentrations of DEPs, their cellular GSH was depleted almost throughout. Further, the following agents decreased DEP cytotoxicity: 1) antioxidants 2,2,5,7,8-pentamethylchroman-6-ol, ebselen, and N,N'-bis(salicylidene)ethylenediaminomanganese(II) dihydrate (EUK-8); 2) iron ion-chelating agents disodium bathophenanthrolinedisulfonate and desferrioxamine mesylate; 3) nitrogen monoxide synthase inhibitors N(G)-nitro-L-arginine methyl ester hydrochloride and N(G)-methyl-L-arginine acetate salt; and 4) an endocytosis inhibitor quinacrine. On the basis of these observations, the mechanism of DEP cytotoxicity toward NHBE cells is discussed.

  18. Novel agents inhibit human leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Wei-ping YU; Juan LI

    2012-01-01

    Ouabain (OUA) and pyrithione zinc (PZ) have been proved as the potential drugs for treating acute myeloid leukemia (AML).Selected from a screening among 1040 Food and Drug Administration-approved pharmacological agents,both drugs showability to induce apoptosis of the culturing AML cells,exhibiting the poisoning effect on the cells.Studies also reveal the efficiency of the drugs in inhibiting the growth of human AML cells injected into the mice lacking of immunity and killing primary AML cells from the peripheral blood of AML patients[1].

  19. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  20. Myristoylation profiling in human cells and zebrafish

    Directory of Open Access Journals (Sweden)

    Malgorzata Broncel

    2015-09-01

    Full Text Available Human cells (HEK 293, HeLa, MCF-7 and zebrafish embryos were metabolically tagged with an alkynyl myristic acid probe, lysed with an SDS buffer and tagged proteomes ligated to multifunctional capture reagents via copper-catalyzed alkyne azide cycloaddition (CuAAC. This allowed for affinity enrichment and high-confidence identification, by delivering direct MS/MS evidence for the modification site, of 87 and 61 co-translationally myristoylated proteins in human cells and zebrafish, respectively. The data have been deposited to ProteomeXchange Consortium (Vizcaíno et al., 2014 Nat. Biotechnol., 32, 223–6 (PXD001863 and PXD001876 and are described in detail in Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic protein lipidation during vertebrate development׳ by Broncel et al., Angew. Chem. Int. Ed.

  1. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  2. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  3. INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. S. Umnyakova

    2016-01-01

    Full Text Available Search for new compounds providing delivery of drugs into infected or neoplastic cells, is an important direction of biomedical research. Cell-penetrating peptides are among those compounds, due to their ability to translocate through membranes of eukaryotic cells, serving as potential carriers of various therapeutic agents to the target cells. The aim of present work was to investigate the ability of acipensin 1, an antimicrobial peptide of innate immune system, for in vitro penetration into human tumor cells. Acipensin 1 is a cationic peptide that we have previously isolated from leukocytes of the Russian sturgeon, Acipenser gueldenstaedtii. Capability of acipensin 1 to enter the human erytroleukemia K-562 cells has been investigated for the first time. A biotechnological procedure for producing a recombinant acipensin 1 peptide has been developed. The obtained peptide was conjugated with a fluorescent probe BODIPY FL. By means of confocal microscopy, we have shown that the tagged acipensin 1 rapidly enters into K-562 cells and can be detected in the intracellular space within 5 min after its addition to the cell culture. Using flow cytometry technique, penetration kinetics of the labeled peptide into K-562 cells (at nontoxic micromolar concentrations has been studied. We have observed a rapid internalization of the peptide to the target cells, thus confirming the results of microscopic analysis, i.e, the labeled acipensin was detectable in K-562 cells as soon as wihin 2-3 seconds after its addition to the incubation medium. The maximum of fluorescence was reached within a period of approx. 45 seconds, with further “plateau” at the terms of >100 seconds following cell stimulation with the test compound. These data support the concept, that the antimicrobial peptides of innate immunity system possess the features of cell-penetrating peptides, and allow us to consider the studied sturgeon peptide a promising template for development of new

  4. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines.

    Science.gov (United States)

    Zou, Chunlin; Chou, Bin-Kuan; Dowey, Sarah N; Tsang, Kitman; Huang, Xiaosong; Liu, Cyndi F; Smith, Cory; Yen, Jonathan; Mali, Prashant; Zhang, Yu Alex; Cheng, Linzhao; Ye, Zhaohui

    2012-08-10

    Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.

  5. [Human pluripotent stem cell and neural differentiation].

    Science.gov (United States)

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  6. Hydro-ecological degradation due to human impacts in the Twin Streams Watershed, Auckland, New Zealand

    Science.gov (United States)

    Torrecillas Nunez, C.; Miguel-rodriguez, A.

    2012-12-01

    wide range of impacts due to human actions which will exacerbated by future development as the population in the watershed is forecast to increase by at least 65% and the likely impacts of global warming. The rural watershed generates sediment which smothers the streams and harbor, while the urban watershed is the source of point and diffuse contamination with heavy metals which damage ecosystems. Evidence of impacts is given by the extent of flooding, reduced ecological flows and sampling results showing that more than 50% of the sites do not comply with environmental guidelines for: water clarity, turbidity, suspended solids, nitrogen, phosphorus, copper, zinc, conductivity, Dieldrin, DDT, Dissolved Oxygen, E.Coli, macroinvertebrates ,etc. , with water quality deteriorating progressively downstream where there is greater urbanization. But perhaps the most stunning evidence of the impacts was established by comparing aerial photographs of the 1940s and 2006 and seeing the build-up of sediments in the estuaries, the change in vegetation cover and discolored water. It is highly likely that the tipping point was reached before urbanization started but there is no doubt that urban development has accelerated the impacts, which has been corroborated by studies in other watersheds in Auckland.

  7. T-cell response in human leishmaniasis

    DEFF Research Database (Denmark)

    Kharazmi, A; Kemp, K; Ismail, A

    1999-01-01

    In the present communication we provide evidence for the existence of a Th1/Th2 dichotomy in the T-cell response to Leishmania antigens in human leishmaniasis. Our data suggest that the pattern of IL-4 and IFN-gamma response is polarised in these patients. Lymphocytes from individuals recovered......+. Furthermore, IL-10 plays an important role in the development of post kala azar dermal leishmaniasis (PKDL) from VL. The balance between the parasitic-specific T-cell response plays an important regulatory role in determining the outcome of Leishmania infections in humans....

  8. Characterization of human pluripotent stem cells.

    Science.gov (United States)

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  9. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor {gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee [Konkuk Univ., Seoul (Korea, Republic of); Woo, Eunrhan [Chosun Univ., Gwangju (Korea, Republic of)

    2012-07-15

    Human peroxisomes proliferate-activated receptor gamma (hPPAR{gamma}) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPAR{gamma} and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPAR{gamma} expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPAR{gamma} in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPAR{gamma} activation.

  10. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    Energy Technology Data Exchange (ETDEWEB)

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  11. Human pluripotent stem cells in contemporary medicine

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2015-01-01

    Full Text Available Human pluripotent stem cells (hPSCs are capable of indefinite proliferation and can be differentiated into any cell type of the human body. Therefore, they are a promising source of cells for treatment of numerous degenerative diseases and injuries. Pluripotent stem cells are also associated with a number of ethical, safety and technological issues. In this review, we describe various types of hPSCs, safety issues that concern all or some types of hPSCs and methods of clinical-grade hPSC line development. Also, we discuss current and past clinical trials involving hPSCs, their outcomes and future perspectives of hPSC-based therapy. 

  12. Excretion of cytoplasmic proteins in Staphylococcus is most likely not due to cell lysis.

    Science.gov (United States)

    Ebner, Patrick; Rinker, Janina; Götz, Friedrich

    2016-02-01

    The excretion of cytoplasmic proteins (ECP) is a long-known phenomenon in bacteria and eukaryotes. So far, it was not possible to associate either a signal peptide-dependent or a signal peptide-independent pathway to ECP. Nevertheless 25% of the proteins found in Staphylococcus aureus supernatants were cytoplasmic proteins. Because the excreted proteins do not possess a common motive, the most widespread opinion is that ECP is due to cell lysis. This explanation seems to be too easy since several indications imply that there exists a yet unknown mechanism for ECP. Certainly, the up-regulation of autolysins as well as decreased peptidoglycan cross-linking increased ECP. However, in recent years, several evidences arose that cell lysis is not the only reason for ECP. It seems that ECP is a part of the normal cell cycle of S. aureus as it turned out that ECP with several model proteins occurs mainly during cell growth. It has common features as proteins secreted via the Sec translocon and finally the excretion site is the cross wall of dividing cells.

  13. Unusual Upper Gastrointestinal Bleeding due to Late Metastasis from Renal Cell Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Wen-Tsan Chang

    2004-03-01

    Full Text Available A case of recurrent massive upper gastrointestinal bleeding originating from metastatic renal cell carcinoma is reported. A 63-year-old woman underwent right nephrectomy 9 years previously and experienced no recurrence during follow-up. A gradually enlarging ulcerative tumor over the bulb of the duodenum and four subsequent episodes of massive bleeding from this tumor occurred between June 2001 and March 2002. The patient underwent surgery in April 2002 for intractable bleeding from the tumor. Renal cell carcinoma metastasis to the duodenum was confirmed from the surgical specimen. Upper gastrointestinal bleeding due to malignancy is very rare and the duodenum is the least frequently involved site. Furthermore, a solitary late renal cell carcinoma metastasis 9 years after a nephrectomy is extremely uncommon. This case suggests that life-long follow-up of renal cell carcinoma patients is necessary, owing to unpredictable behavior and the possibility of long disease-free intervals. In nephrectomized patients suffering from gastrointestinal bleeding, complete evaluation, especially endoscopic examination, is indicated. The possibility of late recurrent renal cell carcinoma metastasis to the gastrointestinal tract should be kept in mind, although it is rare. If the patient is fit for surgery, metastatectomy is the first choice of treatment.

  14. A theoretical model of the endothelial cell morphology due to different waveforms.

    Science.gov (United States)

    Sáez, P; Malvè, M; Martínez, M A

    2015-08-21

    Endothelial cells are key units in the regulatory biological process of blood vessels. They represent an interface to transmit variations on the fluid dynamic changes. They are able to adapt its cytoskeleton, by means of microtubules reorientation and F-actin reorganization, due to new mechanical environments. Moreover, they are responsible for initiating a huge cascade of biological processes, such as the release of endothelins (ET-1), in charge of the constriction of the vessel and growth factors such as TGF-β and PDGF. Although a huge efforts have been made in the experimental characterization and description of these two issues the computational modeling has not gained such an attention. In this work we study the 3D remodeling of endothelial cells based on the main features of blood flow. In particular we study how different oscillatory shear index and the time average wall shear stresses modify the endothelial cell shape. We found our model fitted the experimental works presented before in in vitro studies. We also include our model within a computational fluid dynamics simulation of a carotid artery to evaluate endothelial cell shape index which is a key predictor of atheroma plaque formation. Moreover, our approach can be coupled with models of collagen and smooth muscle cell growth, where remodeling and the associated release of chemical substance are involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Human embryonic stem cell technologies and drug discovery.

    Science.gov (United States)

    Jensen, Janne; Hyllner, Johan; Björquist, Petter

    2009-06-01

    Development of new drugs is costly and takes huge resources into consideration. The big pharmaceutical companies are currently facing increasing developmental costs and a lower success-rate of bringing new compounds to the market. Therefore, it is now of outmost importance that the drug-hunting companies minimize late attritions due to sub-optimal pharmacokinetic properties or unexpected toxicity when entering the clinical programs. To achieve this, a strong need to test new candidate drugs in assays of high human relevance in vitro as early as possible has been identified. The traditionally used cell systems are however remarkably limited in this sense, and new improved technologies are of greatest importance. The human embryonic stem cells (hESC) is one of the most powerful cell types known. They have not only the possibility to divide indefinitely; these cells can also differentiate into all mature cell types of the human body. This makes them potentially very valuable for pharmaceutical development, spanning from use as tools in early target studies, DMPK or safety assessment, as screening models to find new chemical entities modulating adult stem cell fate, or as the direct use in cell therapies. This review illustrates the use of hESC in the drug discovery process, today, as well as in a future perspective. This will specifically be exemplified with the most important cell type for pharmaceutical development-the hepatocyte. We discuss how hESC-derived hepatocyte-like cells could improve this process, and how these cells should be cultured if optimized functionality and usefulness should be achieved. J. Cell. Physiol. 219: 513-519, 2009. (c) 2009 Wiley-Liss, Inc.

  16. Inhibition of FGF signaling accelerates neural crest cell differentiation of human pluripotent stem cells.

    Science.gov (United States)

    Jaroonwitchawan, Thiranut; Muangchan, Pattamon; Noisa, Parinya

    2016-12-02

    Neural crest (NC) is a transient population, arising during embryonic development and capable of differentiating into various somatic cells. The defects of neural crest development leads to neurocristopathy. Several signaling pathways were revealed their significance in NC cell specification. Fibroblast growth factor (FGF) is recognized as an important signaling during NC development, for instance Xenopus and avian; however, its contributions in human species are remained elusive. Here we used human pluripotent stem cells (hPSCs) to investigate the consequences of FGF inhibition during NC cell differentiation. The specific-FGF receptor inhibitor, SU5402, was used in this investigation. The inhibition of FGF did not found to affect the proliferation or death of hPSC-derived NC cells, but promoted hPSCs to commit NC cell fate. NC-specific genes, including PAX3, SLUG, and TWIST1, were highly upregulated, while hPSC genes, such as OCT4, and E-CAD, rapidly reduced upon FGF signaling blockage. Noteworthy, TFAP-2α, a marker of migratory NC cells, abundantly presented in SU5402-induced cells. This accelerated NC cell differentiation could be due to the activation of Notch signaling upon the blockage of ERK1/2 phosphorylation, since NICD was increased by SU5402. Altogether, this study proposed the contributions of FGF signaling in controlling human NC cell differentiation from hPSCs, the crosstalk between FGF and Notch, and might imply to the influences of FGF signaling in neurocristophatic diseases.

  17. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  18. Merkel cell distribution in the human eyelid

    Directory of Open Access Journals (Sweden)

    C.A. May

    2013-10-01

    Full Text Available Although Merkel cell carcinoma of the eye lid is reported frequently in the literature, only limited information exists about the distribution of Merkel cells in this tissue. Therefore, serial sections of 18 human cadaver eye lids (donors ages ranging between 63 and 97 years were stained for cytokeratin 20 in various planes. The overall appearance of Merkel cells in these samples was low and mainly located in the outer root layer of the cilia hair follicles. Merkel cells were more frequent in the middle, and almost not detectable at the nasal and temporal edges. The localization is in accordance with that of Merkel cell carcinoma, but concerning the scarce appearance within this adulthood group, a specific physiological role of these cells in the eye lid is difficult to establish.

  19. Natural killer cells in human autoimmune disorders

    Science.gov (United States)

    2013-01-01

    Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases. PMID:23856014

  20. Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression.

    Science.gov (United States)

    Pan, Bing; Ma, Yijing; Ren, Hui; He, Yubin; Wang, Yongyu; Lv, Xiaofeng; Liu, Donghui; Ji, Liang; Yu, Baoqi; Wang, Yuhui; Chen, Y Eugene; Pennathur, Subramaniam; Smith, Jonathan D; Liu, George; Zheng, Lemin

    2012-01-01

    Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction. We found that the dysfunction of diabetic HDL on human umbilical vein endothelial cells (HUVECs) was associated with the down regulation of the HDL receptor protein, SR-BI. Akt-phosphorylation in HUVECs was induced in a biphasic manner by normal HDL. While diabetic HDL induced Akt phosphorylation normally after 20 minutes, the phosphorylation observed 24 hours after diabetic HDL treatment was reduced. To determine the role of SR-BI down regulation on diminished EC responses of diabetic HDL, Mouse aortic endothelial cells (MAECs) were isolated from wild type and SR-BI (-/-) mice, and treated with normal and diabetic HDL. The proliferative and migratory effects of normal HDL on wild type MAECs were greatly diminished in SR-BI (-/-) cells. In contrast, response to diabetic HDL was impaired in both types suggesting diminished effectiveness of diabetic HDL on EC proliferation and migration might be due to the down regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL's capacity to activate Akt chronically. Diabetic HDL was dysfunctional in promoting EC proliferation, migration, and adhesion to matrix which was associated with the down-regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL's capacity to activate Akt chronically.

  1. Human Colon Cancer Cells Cultivated in Space

    Science.gov (United States)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  2. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Lan

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Methods: Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. Results: We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Conclusion: Our findings regarding the inhibitory effects of quercetin on cell migration and

  3. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  4. Genetic Manipulation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.

  5. Malaria and human red blood cells.

    Science.gov (United States)

    Mohandas, Narla; An, Xiuli

    2012-11-01

    Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.

  6. Effect of Deep Space Radiation on Human Hematopoietic Cells

    Science.gov (United States)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  7. Enriched retinal ganglion cells derived from human embryonic stem cells

    Science.gov (United States)

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  8. Human ES cells: starting culture from frozen cells.

    Science.gov (United States)

    Trish, Erin; Dimos, John; Eggan, Kevin

    2006-11-09

    Here we demonstrate how our lab begins a HuES human embryonic stem cell line culture from a frozen stock. First, a one to two day old ten cm plate of approximately one (to two) million irradiated mouse embryonic fibroblast feeder cells is rinsed with HuES media to remove residual serum and cell debris, and then HuES media added and left to equilibrate in the cell culture incubator. A frozen vial of cells from long term liquid nitrogen storage or a -80 C freezer is sourced and quickly submerged in a 37 C water bath for quick thawing. Cells in freezing media are then removed from the vial and placed in a large volume of HuES media. The large volume of HuES media facilitates removal of excess serum and DMSO, which can cause HuES human embryonic stem cells to differentiate. Cells are gently spun out of suspension, and then re-suspended in a small volume of fresh HuES media that is then used to seed the MEF plate. It is considered important to seed the MEF plate by gently adding the HuES cells in a drop wise fashion to evenly disperse them throughout the plate. The newly established HuES culture plate is returned to the incubator for 48 hrs before media is replaced, then is fed every 24 hours thereafter.

  9. Sodium Valproate Induces Cell Senescence in Human Hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hong-Mei An

    2013-12-01

    Full Text Available Hepatocarcinogenesis is associated with epigenetic changes, including histone deacetylases (HDACs. Epigenetic modulation by HDAC inhibition is a potentially valuable approach for hepatocellular carcinoma treatment. In present study, we evaluated the anticancer effects of sodium valproate (SVP, a known HDAC inhibitor, in human hepatocarcinoma cells. The results showed SVP inhibited the proliferation of Bel-7402 cells in a dose-dependent manner. Low dose SVP treatment caused a large and flat morphology change, positive SA-β-gal staining, and G0/G1 phase cell cycle arrest in human hepatocarcinoma cells. Low dose SVP treatment also increased acetylation of histone H3 and H4 on p21 promoter, accompanied by up-regulation of p21 and down-regulation of RB phosphorylation. These observations suggested that a low dose of SVP could induce cell senescence in hepatocarcinoma cells, which might correlate with hyperacetylation of histone H3 and H4, up-regulation of p21, and inhibition of RB phosphorylation. Since the effective concentration inducing cell senescence in hepatocarcinoma cells is clinically available, whether a clinical dose of SVP could induce cell senescence in clinical hepatocarcinoma is worthy of further study.

  10. Acute scrotum due to arterial bleeding mimicking non-seminomatous germ cell tumor

    Institute of Scientific and Technical Information of China (English)

    F.Christoph; M.Schradert; A.Amirmaki; K.Miller

    2004-01-01

    Men with testicular tumors usually present with painless increase in testis size incidentally noticed by the patient. We report a case of a young patient presenting as an emergency with acute onset of massive right-sided testicular pain without previous injury. After physical examination testicular torsion could not be excluded. Ultrasound examination of the tesds was suspicious for tesdcular tumor. Surgical exploration of the right testis by inguinal approach was performed revealing subcapsular arterial bleeding due to a small nonseminomatous germ cell tumor non-palpable on clinical examination. (Asian J Andro12004 Dec;6:379-381)

  11. Energy Dissipation from Vibrating Floor Slabs due to Human-Structure Interaction

    Directory of Open Access Journals (Sweden)

    James M.W. Brownjohn

    2001-01-01

    Full Text Available Lightweight pre-cast flooring systems using post-tensioning to increase strength but not stiffness are increasingly popular, and vibration serviceability problems tend to govern design of such floors where human occupants are increasingly concerned with vibrations. At the same time as inducing response, stationary human observers can also participate in the response as mitigating influence and it is clear that a human behaves as a highly effective damper, even when seated.

  12. A Review of Human Health and Ecological Risks due to CO2 Exposure

    Science.gov (United States)

    Hepple, R. P.; Benson, S. M.

    2001-05-01

    Nyos in Cameroon, Mammoth Mountain in California, Dieng Volcanic Complex in Java, Indonesia, and industrial accidents with CO2 fire suppression systems teach that slow leakage rates and effective dilution must be proven to ensure human and environmental safety. Monitoring CO2 levels in occupational settings is done with reliable IR sensors. Remote sensing of low levels of CO2 over long distances cannot be done easily yet, although LIDAR, an airborne laser technique under development, may have good potential. The environmental impacts of elevated CO2 levels on vegetation are being investigated now in free-air CO2 enrichment studies. In general, persistent elevated CO2 levels cause a change in species composition, favoring C3 plants over C4 or CAM. The ecological effects of catastrophic releases are severe but depend upon (a) release rate and amount, (b) surface topography and rate of atmospheric mixing (c) exposure concentrations and duration, (d) the respiratory mechanism of the form of life under discussion, (e) its tolerance for oxygen deprivation, and (f) its ability to maintain homeostatic pH levels. Suppression of root respiration due to elevated soil-gas CO2 concentrations and acidifiction of the root zone are known mechanisms of tree-kill. Soil-gas CO2 in the tree-kill areas at Mammoth Mountain exceeded 20-30% at 15 cm depth. Surface masses of concentrated CO2 probably smother the canopy through oxygen deprivation, but the precise mechanism is not known. Lake Nyos and Mammoth Mountain reveal that catastrophic releases can result in complete dead zones.

  13. Experimental response of Salix cuttings to different flow regimes due to human activities

    Science.gov (United States)

    Gorla, Lorenzo; Signarbieux, Constant; Turberg, Pascal; Buttler, Alexandre; Perona, Paolo

    2014-05-01

    Hydropower production and other human activities change the natural flow regime of rivers, in turn impacting the riparian environment. The main challenge in order to define eco-sustainable flows is to quantify the effects in terms of geomorphology and ecosystem adaptation. We present 2-years controlled experiments to investigate riparian vegetation (Salix Viminalis) response to forced water table changing dynamics, from one water regime to another, in a temperate region (Switzerland). Three synthetic flow regimes have been simulated and applied to three batteries of Salix cuttings growing outdoor within plastic pots, each about 1 meter tall. In 2012 one treatment simulated a minimal flow policy for small run-of-river hydropower plants, which drastically impacts the low and the medium-low components of the hydrograph, but not the extremes. In 2013 we confirmed and completed some of 2012 results, by reproducing typical hydropeaking effects due to dam management and focusing on daily water table variations and offsets. For both the seasons, after an initial period where all pots undergone the same oscillations in order to uniform the plants initial conditions, the experiment started, and the water dynamic was changed. Cuttings transitory response dynamics has been quantified by continuous sap flow and water potential measurements, and by regularly collecting growth parameters, as well as leaves photosynthesis, fluorescence, and pictures of each plant. At the end of the experiment, all cuttings were carefully removed and the both above and below ground biomass analyzed in detail. Particularly, the 3D root structure was obtained by High Resolution Computer Tomography. Our analyses revealed a clear dependence between roots distribution and water regime reflecting the need for adaptation, in agreement with field observations of Pasquale et al. (2012). In particular, an initial strong difference in terms of stress and growth performances was then followed by a later

  14. [Immune system evolution. (From cells to humans)].

    Science.gov (United States)

    Belek, A S

    1992-01-01

    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  15. Centre for human development, stem cells & regeneration.

    Science.gov (United States)

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  16. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy...... are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  17. Improved performance due to selective passivation of nitrogen clusters in GaInNAs solar cells

    Science.gov (United States)

    Fukuda, Miwa; Whiteside, Vincent R.; Al Khalfioui, Mohamed; Leroux, Mathieu; Hossain, Khalid; Sellers, Ian R.

    2015-03-01

    While GaInNAs has the potential to be a fourth-junction in multi-junction solar cells it has proved to be difficult to incorporate due to the low solubility of nitrogen in these materials. Specifically, mid-gap states attributed to nitrogen clusters have proved prohibitive for practical implementation of these systems. Here, we present the selective passivation of nitrogen impurities using a UV-activated hydrogenation process, which enables the removal of defects while retaining substitution nitrogen. Temperature dependent photoluminescence measurements of the intrinsic region of a GaInNAs p-i-n solar cell show a classic ``s-shape'' associated with localization prior to hydrogenation, while after hydrogenation no sign of the ``s-shape'' is evident. This passivation of nitrogen centers is reflected in improved performance of solar cells structures relative to reference, unpassivated devices presenting a potential route to practical implementation of GaInNAs solar cells. The authors acknowledge support through Oklahoma Center for the Advancement of Science and Technology under the Oklahoma Applied Research Support Grant No. AR12.2-040.

  18. Potential and Limitation of HLA-Based Banking of Human Pluripotent Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Casimir de Rham

    2014-01-01

    Full Text Available Great hopes have been placed on human pluripotent stem (hPS cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA, the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.

  19. Advances in human B cell phenotypic profiling

    Directory of Open Access Journals (Sweden)

    Denise A Kaminski

    2012-10-01

    Full Text Available To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (Big Biology, necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort.

  20. Induction of apoptotic cell death specifically in rat and human cancer cells by pancratistatin.

    Science.gov (United States)

    Pandey, Siyaram; Kekre, Natasha; Naderi, Jafar; McNulty, James

    2005-01-01

    The major challenge in the battle against cancer is the specific targeting of cancer cells. Most chemotherapeutics and radiotherapies induce cancer cell death by inducing DNA damage. These treatments also cause severe side effects by affecting normal cells causing toxicity and mutations that may predispose them to become cancerous. Some non-genotoxic drugs such as tamoxifen are useful but are of limited applicability. Natural compounds such as paclitaxel have been useful in cancer treatment, but due to its effect as a general microtubule stabilizer and genotoxic agent, it also induces death of normal cells. Pancratistatin is a natural compound isolated from Pancratium littorale that has been shown to have anti-viral and anti-neoplastic activity. The objective in the present study was to elucidate the mechanism of the anti-neoplastic action of pancratistatin and evaluate the specificity of this compound for cancer cells. We used cancer cell lines and normal human endothelial and fibroblast cells to investigate the effect of pancratistatin treatment. Further, we compared the toxic effects of paclitaxel and VP-16 to that of pancratistatin on non-cancerous cells. Pancratistatin induced apoptosis in all the cancer cell lines used in this study at sub-micromolar concentrations. Interestingly, normal human fibroblasts and endothelial cells remained unaffected by pancratistatin treatment under identical conditions whereas paclitaxel and VP-16 were both toxic to these two normal cell lines. The capability of pancratistatin to selectively induce apoptosis in cancer cells is an exciting finding and makes it a suitable anti-cancer agent. Since pancratistatin shows little structural similarity to any DNA intercalating drug or to paclitaxel derivatives, it appears to be non-genotoxic. Additionally, due to the unprecedented differential cytotoxicity observed in cancerous cells, we believe pancratistatin may act upon a novel target, allowing selective induction of apoptosis in

  1. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    Science.gov (United States)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  2. Human plasma cells express granzyme B.

    Science.gov (United States)

    Xu, Wei; Narayanan, Priya; Kang, Ning; Clayton, Sandra; Ohne, Yoichiro; Shi, Peiqing; Herve, Marie-Cecile; Balderas, Robert; Picard, Capucine; Casanova, Jean-Laurent; Gorvel, Jean-Pierre; Oh, Sangkon; Pascual, Virginia; Banchereau, Jacques

    2014-01-01

    While studying the plasma cell (PC) compartment in human tonsils, we identified that immunoglobulin kappa or lambda chain-expressing PCs are the main cells expressing granzyme B (GrzB). In vitro studies revealed that activated B cells differentiated into GrzB-expressing PCs when co-cultured with macrophages and follicular helper T cells. This effect could be reproduced on combined stimulation of IL-15 (produced by macrophages) and IL-21 (produced by T follicular helper cells) in a STAT3-dependent manner. Whereas IL-21 triggers the transcription of mRNA of GrzB, IL-15 synergizes the translation of GrzB proteins. The precise role of GrzB in PC biology remains to be understood and studies in mice will not help as their PCs do not express GrzB.

  3. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...... cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  4. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  5. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U.; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  6. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  7. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Byskov, Anne Grete; Møllgård, Kjeld

    2005-01-01

    Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry......Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry...

  8. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses.

    Science.gov (United States)

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2016-12-15

    A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage

  9. High concentrations of NaCl induce cell swelling leading to senescence in human cells.

    Science.gov (United States)

    Yamakami, Yoshimi; Yonekura, Ryuzo; Matsumoto, Yuko; Takauji, Yuki; Miki, Kensuke; Fujii, Michihiko; Ayusawa, Dai

    2016-01-01

    Cell swelling and retardation in DNA replication are always observed in senescent cells. When DNA replication is slowed down with RNA and protein syntheses unchanged in proliferating cells, it causes a phenomenon known as unbalanced growth. The purpose of this study is to assess the role of cell swelling in unbalanced growth in terms of senescence and investigate the mechanism underlying this phenomenon. We tried to induce cell swelling with minimum damage to cells in this study. We perturbed the osmoregulatory functions to induce cell swelling under hypotonic and hypertonic conditions in normal human fibroblasts. Addition of excess NaCl was found to induce significant cell and nuclear swelling in dose- and time-dependent manners. Excess NaCl immediately retarded DNA replication, accumulated cells at G1 phase of the cell cycle, and eventually deprived division potential of the cells. Such cells showed typical senescent cell shape followed by expression of the typical senescence-associated genes. Excess NaCl also activated ERK1/2, p38, and JNK of the mitogen activated protein kinase family. Addition of U0126, an inhibitor of ERK1/2, prevented appearance of senescent features induced by excess NaCl. These results suggest that hypertonic conditions induce cell swelling due to unbalanced growth, thereby leading to cellular senescence.

  10. Pancreatic α-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation

    Science.gov (United States)

    Larger, Etienne; Wewer Albrechtsen, Nicolai J; Hansen, Lars H; Gelling, Richard W; Capeau, Jacqueline; Deacon, Carolyn F; Madsen, Ole D; Yakushiji, Fumiatsu; De Meyts, Pierre

    2016-01-01

    Summary Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia. Here, we describe a patient carrying a homozygous G to A substitution in the invariant AG dinucleotide found in a 3′ mRNA splice junction of the glucagon receptor gene. Loss of the splice site acceptor consensus sequence results in the deletion of 70 nucleotides encoded by exon 9, which introduces a frame shift and an early termination signal in the receptor mRNA sequence. The mutated receptor neither bound 125I-labeled glucagon nor induced cAMP production upon stimulation with up to 1 µM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells. Learning points: Loss of function of the glucagon receptor may not necessarily lead to the dysregulation of glucose homeostasis. Loss of function of the glucagon receptor causes hyperaminoacidemia, hyperglucagonemia and α-cell hyperplasia and sometimes other pancreatic abnormalities. A hepato–pancreatic feedback regulation of the α-cells, possibly involving amino acids, may exist in humans. PMID:27933176

  11. Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Daniels, Brian R; Hale, Christopher M; Khatau, Shyam B; Kusuma, Sravanti; Dobrowsky, Terrence M; Gerecht, Sharon; Wirtz, Denis

    2010-12-01

    Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell "softness" is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.

  12. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Wang, Kai [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Gong, Yun Guo; Khoo, Sok Kean [Genomic Microarray Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503 (United States); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States)

    2013-02-08

    Highlights: ► CDX2 and EOMES play critical roles in human induced trophoblast progenitors (iTP). ► iTP cells directly transformed from fibroblasts. ► Differentiation of iTP cells into extravillous trophoblasts and syncytiotrophoblasts. -- Abstract: Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, can be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and

  13. A novel model for evaluating therapies targeting human tumor vasculature and human cancer stem-like cells.

    Science.gov (United States)

    Burgos-Ojeda, Daniela; McLean, Karen; Bai, Shoumei; Pulaski, Heather; Gong, Yusong; Silva, Ines; Skorecki, Karl; Tzukerman, Maty; Buckanovich, Ronald J

    2013-06-15

    Human tumor vessels express tumor vascular markers (TVM), proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately, preclinical in vivo studies testing anti-human TVM therapies have been difficult to do due to a lack of in vivo models with confirmed expression of human TVMs. We therefore evaluated TVM expression in a human embryonic stem cell-derived teratoma (hESCT) tumor model previously shown to have human vessels. We now report that in the presence of tumor cells, hESCT tumor vessels express human TVMs. The addition of mouse embryonic fibroblasts and human tumor endothelial cells significantly increases the number of human tumor vessels. TVM induction is mostly tumor-type-specific with ovarian cancer cells inducing primarily ovarian TVMs, whereas breast cancer cells induce breast cancer specific TVMs. We show the use of this model to test an anti-human specific TVM immunotherapeutics; anti-human Thy1 TVM immunotherapy results in central tumor necrosis and a three-fold reduction in human tumor vascular density. Finally, we tested the ability of the hESCT model, with human tumor vascular niche, to enhance the engraftment rate of primary human ovarian cancer stem-like cells (CSC). ALDH(+) CSC from patients (n = 6) engrafted in hESCT within 4 to 12 weeks whereas none engrafted in the flank. ALDH(-) ovarian cancer cells showed no engraftment in the hESCT or flank (n = 3). Thus, this model represents a useful tool to test anti-human TVM therapy and evaluate in vivo human CSC tumor biology.

  14. Generation of mature hematopoietic cells from human pluripotent stem cells.

    Science.gov (United States)

    Togarrati, Padma Priya; Suknuntha, Kran

    2012-06-01

    A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.

  15. Human colostral cells. I. Separation and characterization.

    Science.gov (United States)

    Crago, S S; Prince, S J; Pretlow, T G; McGhee, J R; Mestecky, J

    1979-12-01

    Analyses of the cells present in human colostrum obtained from fifty-four healthy donors during the first four days of lactation revealed that there were 3.3 x 10(6) (range 1.1 x 10(5)--1.2 x 10(7)) cells per ml of colostrum. Based on histochemical examinations, it was found that this population consisted of 30--47% macrophages, 40--60% polymorphonuclear leucocytes, 5.2--8.9% lymphocytes, and 1.3--2.8% colostral corpuscles; epithelial cells were rarely encountered. The identity of various cell types was confirmed by Wright's stain and by a series of histochemical techniques which disclosed the presence of non-specific esterase, peroxidase, and lipids. For further characterization, the different types of cells were separated by various methods, such as Ficoll-Hypaque density centrifugation, isokinetic centrifugation on a linear Ficoll gradient, adherence to glass or plastic, and phagocytosis of carbonyl iron. Immunohistochemical staining with FITC- and/or TRITC-labelled reagents to IgA, IgM, IgG, K- and lambda-chains, secretory component, lactoferrin, and alpha-lactalbumin were applied to unseparated as well as separated colostral cells. Polymorphonuclear leucocytes (staining for peroxidase) as well as macrophages and colostral corpuscles (staining for non-specific esterase) exhibited numerous intracellular vesicles that contained lipids as well as various combinations of milk proteins. Lymphoid cells did not stain with any of these reagents and plasma cells were not detected among the colostral cells. Individual phagocytic cells contained immunoglobulins of the IgA and IgM classes, both K and lambda light chains, secretory component, lactoferrin, and alpha-lactalbumin. The coincidental appearance of these proteins in single, phagocytic cells but not in lymphoid cells indicate that the cells acquired these proteins by ingestion from the environment. Markers commonly used for the identification of B lymphocytes (surface immunoglobulins) and T lymphocytes (receptors

  16. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  17. Immune reconstitution syndrome in a human immunodeficiency virus infected child due to giardiasis leading to shock

    Directory of Open Access Journals (Sweden)

    Sneha Nandy

    2015-01-01

    Full Text Available Human immunodeficiency virus (HIV-associated immune reconstitution inflammatory syndrome has been reported in association with tuberculosis, herpes zoster (shingles, Cryptococcus neoformans, Kaposi′s sarcoma, Pneumocystis pneumonia, hepatitis B virus, hepatitis C virus, herpes simplex virus, Histoplasma capsulatum, human papillomavirus, and Cytomegalovirus. However, it has never been documented with giardiasis. We present a 7-year-old HIV infected girl who developed diarrhea and shock following the initiation of antiretroviral therapy, and her stool showed the presence of giardiasis.

  18. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  19. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  20. Biological impact of human embryonic stem cells.

    Science.gov (United States)

    Martín, Miguel; Menéndez, Pablo

    2012-01-01

    Research on human embryonic stem cells (hESCs) and induced pluripotent (iPS) stem cells is currently a field of great potential in biomedicine. These cells represent a highly valuable tool for developmental biology studies, disease models, and drug screening and toxicity. The ultimate goal of hESCs and iPS cell research is the treatment of diseases or disorders for which there is currently no treatment or existing therapies are only partially effective. Despite the disproportionate short-term hopes generated, which are putting too much pressure on scientists, the international scientific community is making rapid progress in understanding hESCs and iPS cells. Nonetheless, great efforts have to be made to provide an answer to still quite basic questions concerning their biology. Moreover, translation to clinical applications in cell replacement therapy requires prior solution to ethical barriers. The recent development of iPS cells has provided a strong alternative to overcome ethical issues concerning hESCs. However, an in-depth characterization of their genetic and epigenetic features, as well as their differentiation potential still remains to be undertaken. This chapter will describe, precisely, what the critical issues are, where scientific and ethical barriers stand, and how we are to overcome them. Only then, we shall finally discover whether hESCs and iPS cells will allow building reproducible disease models, and whether they really are a safe tool, with great potential for regenerative medicine.

  1. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  2. Cell phoney: human cloning after Quintavalle.

    Science.gov (United States)

    Morgan, Derek; Ford, Mary

    2004-12-01

    Reproductive cloning has thrown up new scientific possibilities, ethical conundrums, and legal challenges. An initial question, considered by the English courts in 2003, was whether the technique presently available, that of cell nucleus replacement, falls outside the provisions of the Human Fertilisation and Embryology Act 1990. If it does, the creation and use, including use in research protocols, of human embryos would be unregulated, disclosing a need to consider remedial legislation. The resolution by the courts of this legal question dramatically engages them in a resolution of fundamental ethical dilemmas, and discloses the possibilities and limitation of negotiating science policy through the processes of litigation.

  3. Biochemical and biomolecular aspects of oxidative stress due to acute and severe hypoxia in human muscle tissue.

    Science.gov (United States)

    Corbucci, G G; Sessego, R; Velluti, C; Salvi, M

    1995-01-01

    Mitochondrial oxidative stress was investigated in severe and acute hypoxia and in reperfusion applied to human muscle tissues. The biochemical and biomolecular relationship between the response of the respiratory-chain enzymic complexes and the metabolism of specific hypoxia stress proteins (HSP) suggest an adaptive mechanism which antagonizes the oxidative damage due to acute and severe tissue hypoxia.

  4. Direct Generation of Human Neuronal Cells from Adult Astrocytes by Small Molecules

    Directory of Open Access Journals (Sweden)

    Longfei Gao

    2017-03-01

    Full Text Available Astrocytes, due to the proximity to neuronal lineage and capability to proliferate, are ideal starting cells to regenerate neurons. Human fetal astrocytes have been successfully converted into neuronal cells by small molecules, which offered a broader range of further applications than transcription factor-mediated neuronal reprogramming. Here we report that human adult astrocytes could also be converted into neuronal cells by a different set of small molecules. These induced cells exhibited typical neuronal morphologies, expressed neuronal markers, and displayed neuronal electrophysiological properties. Genome-wide RNA-sequencing analysis showed that the global gene expression profile of induced neuronal cells resembled that of human embryonic stem cell-differentiated neurons. When transplanted into post-natal mouse brains, these induced neuronal cells could survive and become electrophysiologically mature. Altogether, our study provides a strategy to directly generate transgene-free neuronal cells from human adult astrocytes by small molecules.

  5. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    Science.gov (United States)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  6. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  7. Epithelial cells as alternative human biomatrices for comet assay

    Directory of Open Access Journals (Sweden)

    Emilio eRojas

    2014-11-01

    Full Text Available The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes.Over a thirty year period, the comet assay in epithelial cells has been litlle employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  8. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  9. Lovastatin-Mediated Changes in Human Tendon Cells.

    Science.gov (United States)

    Kuzma-Kuzniarska, Maria; Cornell, Hannah R; Moneke, Michael C; Carr, Andrew J; Hulley, Philippa A

    2015-10-01

    Statins are among the most widely prescribed drugs worldwide. Numerous studies have shown their beneficial effects in prevention of cardiovascular disease through cholesterol-lowering and anti-atherosclerotic properties. Although some statin patients may experience muscle-related symptoms, severe side effects of statin therapy are rare, primarily due to extensive first-pass metabolism in the liver. Skeletal muscles appear to be the main site of side effects; however, recently some statin-related adverse effects have been described in tendon. The mechanism behind these side effects remains unknown. This is the first study that explores tendon-specific effects of statins in human primary tenocytes. The cells were cultured with different concentrations of lovastatin for up to 1 week. No changes in cell viability or morphology were observed in tenocytes incubated with therapeutic doses. Short-term exposure to lovastatin concentrations outside the therapeutic range had no effect on tenocyte viability; however, cell migration was reduced. Simvastatin and atorvastatin, two other drug family members, also reduced the migratory properties of the cells. Prolonged exposure to high concentrations of lovastatin induced changes in cytoskeleton leading to cell rounding and decreased levels of mRNA for matrix proteins, but increased BMP-2 expression. Gap junctional communication was impaired but due to cell shape change and separation rather than direct gap junction inhibition. These effects were accompanied by inhibition of prenylation of Rap1a small GTPase. Collectively, we showed that statins in a dose-dependent manner decrease migration of human tendon cells, alter their expression profile and impair the functional network, but do not inhibit gap junction function.

  10. CargoVibes: human response to vibration due to freight rail traffic

    NARCIS (Netherlands)

    Waddington, D.; Woodcock, J.; Smith, M.G.; Janssen, S.A.; Persson Waye, K.

    2015-01-01

    The aim of this paper is to present an overview of the research concerning human response to vibration conducted in the EU FP7 CargoVibes project. The European Union-funded project CargoVibes involved 10 partners from 8 nations and ran from April 2011 to April 2014. The project was concerned with ra

  11. CargoVibes: human response to vibration due to freight rail traffic

    NARCIS (Netherlands)

    Waddington, D.; Woodcock, J.; Smith, M.G.; Janssen, S.A.; Persson Waye, K.

    2015-01-01

    The aim of this paper is to present an overview of the research concerning human response to vibration conducted in the EU FP7 CargoVibes project. The European Union-funded project CargoVibes involved 10 partners from 8 nations and ran from April 2011 to April 2014. The project was concerned with

  12. Severe respiratory failure due to co-infection with human metapneumovirus and Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Masafumi Seki

    2014-01-01

    Full Text Available A 64-year-old male patient was admitted with respiratory failure, although chest X-rays revealed only mild bronchiolitis. Streptococcus pneumoniae, which usually presents as massive lobular pneumonia, was isolated from sputum, however, pan-pathogen screening using a next-generation sequencer also detected human metapneumovirus genome fragments.

  13. Fatal hyperkalemia due to rapid red cell transfusion in a critically ill patient.

    Science.gov (United States)

    Tsukamoto, Sakiko; Maruyama, Koichi; Nakagawa, Hideyuki; Iwase, Yoshinori; Kitamura, Akira; Hayashida, Masakazu

    2009-10-01

    A 60-year-old woman in severe hemorrhagic shock underwent urgent laparotomy to control massive hematemesis. Severe metabolic acidosis due to hemorrhagic shock and hyperkalemia as well as hypocalcemia associated with rapid blood transfusion were aggressively corrected with administration of sodium bicarbonate, insulin, and calcium chloride. Following rapid transfusion of the last 8 units of red cell concentrate (RCC), however, cardiac arrest occurred because of hyperkalemia and did not respond to cardiopulmonary resuscitation. Blood gas analysis revealed that the serum K(+) concentration had increased from 4.05 to 8.24 mEq/L over a 7-minute period, while the Ca(2+) concentration had decreased from 1.43 to 0.53 mmol/L. Rapid transfusion of irradiated RCC containing a high concentration of K(+), an extreme decrease in the circulating blood volume to dilute the exogenously administered K(+) and citrate, and severe metabolic acidosis impeding the intracellular shift of K(+) seemed to have contributed to the extremely rapid development of fetal hyperkalemia accompanied by hypocalcemia. Anesthesiologists must be aware that hyperkalemia due to rapid blood transfusion can develop extremely rapidly in patients in severe hemorrhagic shock.

  14. TALEN-Induced Translocations in Human Cells.

    Science.gov (United States)

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  15. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  16. Myogenic potential of human alveolar mucosa derived cells.

    Science.gov (United States)

    Zorin, Vadim L; Pulin, Andrey A; Eremin, Ilya I; Korsakov, Ivan N; Zorina, Alla I; Khromova, Natalia V; Sokova, Olga I; Kotenko, Konstantin V; Kopnin, Pavel B

    2017-03-19

    Difficulties related to the obtainment of stem/progenitor cells from skeletal muscle tissue make the search for new sources of myogenic cells highly relevant. Alveolar mucosa might be considered as a perspective candidate due to availability and high proliferative capacity of its cells. Human alveolar mucosa cells (AMC) were obtained from gingival biopsy samples collected from 10 healthy donors and cultured up to 10 passages. AMC matched the generally accepted multipotent mesenchymal stromal cells criteria and possess population doubling time, caryotype and immunophenotype stability during long-term cultivation. The single myogenic induction of primary cell cultures resulted in differentiation of AMC into multinucleated myotubes. The myogenic differentiation was associated with expression of skeletal muscle markers: skeletal myosin, skeletal actin, myogenin and MyoD1. Efficiency of myogenic differentiation in AMC cultures was similar to that in skeletal muscle cells. Furthermore, some of differentiated myotubes exhibited contractions in vitro. Our data confirms the sufficiently high myogenic potential and proliferative capacity of AMC and their ability to maintain in vitro proliferation-competent myogenic precursor cells regardless of the passage number.

  17. The core regulatory network in human cells.

    Science.gov (United States)

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  18. Nonlinear imaging techniques for the observation of cell membrane perturbation due to pulsed electric field exposure

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Roth, Caleb C.; Ibey, Bennett L.

    2014-03-01

    Nonlinear optical probes, especially those involving second harmonic generation (SHG), have proven useful as sensors for near-instantaneous detection of alterations to orientation or energetics within a substance. This has been exploited to some success for observing conformational changes in proteins. SHG probes, therefore, hold promise for reporting rapid and minute changes in lipid membranes. In this report, one of these probes is employed in this regard, using nanosecond electric pulses (nsEPs) as a vehicle for instigating subtle membrane perturbations. The result provides a useful tool and methodology for the observation of minute membrane perturbation, while also providing meaningful information on the phenomenon of electropermeabilization due to nsEP. The SHG probe Di- 4-ANEPPDHQ is used in conjunction with a tuned optical setup to demonstrate nanoporation preferential to one hemisphere, or pole, of the cell given a single square shaped pulse. The results also confirm a correlation of pulse width to the amount of poration. Furthermore, the polarity of this event and the membrane physics of both hemispheres, the poles facing either electrode, were tested using bipolar pulses consisting of two pulses of opposite polarity. The experiment corroborates findings by other researchers that these types of pulses are less effective in causing repairable damage to the lipid membrane of cells.

  19. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  20. Preliminary study on human fibroblasts as feeder layer for human embryonic stem cells culture in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblastswith human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We successfully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.

  1. Diabetic HDL Is Dysfunctional in Stimulating Endothelial Cell Migration and Proliferation Due to Down Regulation of SR-BI Expression

    Science.gov (United States)

    Pan, Bing; Ma, Yijing; Ren, Hui; He, Yubin; Wang, Yongyu; Lv, Xiaofeng; Liu, Donghui; Ji, Liang; Yu, Baoqi; Wang, Yuhui; Chen, Y. Eugene; Pennathur, Subramaniam; Smith, Jonathan D.; Liu, George; Zheng, Lemin

    2012-01-01

    Background Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction. Methodology/Principal Findings We found that the dysfunction of diabetic HDL on human umbilical vein endothelial cells (HUVECs) was associated with the down regulation of the HDL receptor protein, SR-BI. Akt-phosphorylation in HUVECs was induced in a biphasic manner by normal HDL. While diabetic HDL induced Akt phosphorylation normally after 20 minutes, the phosphorylation observed 24 hours after diabetic HDL treatment was reduced. To determine the role of SR-BI down regulation on diminished EC responses of diabetic HDL, Mouse aortic endothelial cells (MAECs) were isolated from wild type and SR-BI (−/−) mice, and treated with normal and diabetic HDL. The proliferative and migratory effects of normal HDL on wild type MAECs were greatly diminished in SR-BI (−/−) cells. In contrast, response to diabetic HDL was impaired in both types suggesting diminished effectiveness of diabetic HDL on EC proliferation and migration might be due to the down regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically. Conclusions/Significance Diabetic HDL was dysfunctional in promoting EC proliferation, migration, and adhesion to matrix which was associated with the down-regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically. PMID:23133640

  2. Lifespan differences in hematopoietic stem cells are due to imperfect repair and unstable mean-reversion.

    Directory of Open Access Journals (Sweden)

    Hans B Sieburg

    2013-04-01

    Full Text Available The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs. HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans. However, there is increasing evidence that genetically identical HSCs differ in lifespan and that the lifespan of a HSC is predetermined and HSC-intrinsic. Lifespan is here defined as the time a HSC gives rise to all mature blood cells. This raises the intriguing question: what controls the lifespan of HSCs within the same animal, exposed to the same environment? We present here a new model based on reliability theory to account for the diversity of lifespans of HSCs. Using clonal repopulation experiments and computational-mathematical modeling, we tested how small-scale, molecular level, failures are dissipated at the HSC population level. We found that the best fit of the experimental data is provided by a model, where the repopulation failure kinetics of each HSC are largely anti-persistent, or mean-reverting, processes. Thus, failure rates repeatedly increase during population-wide division events and are counteracted and decreased by repair processes. In the long-run, a crossover from anti-persistent to persistent behavior occurs. The cross-over is due to a slow increase in the mean failure rate of self-renewal and leads to rapid clonal extinction. This suggests that the repair capacity of HSCs is self-limiting. Furthermore, we show that the lifespan of each HSC depends on the amplitudes and frequencies of fluctuations in the failure rate kinetics. Shorter and longer lived HSCs differ significantly in their pre-programmed ability to dissipate perturbations. A likely interpretation of these findings is that the lifespan of HSCs is determined by preprogrammed differences in repair capacity.

  3. Primitive cardiac cells from human embryonic stem cells.

    Science.gov (United States)

    Hudson, James; Titmarsh, Drew; Hidalgo, Alejandro; Wolvetang, Ernst; Cooper-White, Justin

    2012-06-10

    Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.

  4. Stem Cells from Human Exfoliated Deciduous Tooth Exhibit Stromal-Derived Inducing Activity and Lead to Generation of Neural Crest Cells from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Khadijeh Karbalaie

    2015-04-01

    Full Text Available Objective: The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs. These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. Materials and Methods: In this experimental study, we cultured human embryonic stem cells (hESCs on stromal stem cells from human exfoliated deciduous teeth (SHED for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs and NCCs. Results: In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. Conclusion: SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development.

  5. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    OpenAIRE

    2003-01-01

    Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC) directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plas...

  6. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  7. Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells.

    Directory of Open Access Journals (Sweden)

    Francesca Cecchinato

    Full Text Available Magnesium alloys are of particular interest in medical science since they provide compatible mechanical properties with those of the cortical bone and, depending on the alloying elements, they have the capability to tailor the degradation rate in physiological conditions, providing alternative bioresorbable materials for bone applications. The present study investigates the in vitro short-term response of human undifferentiated cells on three magnesium alloys and high-purity magnesium (Mg.The degradation parameters of magnesium-silver (Mg2Ag, magnesium-gadolinium (Mg10Gd and magnesium-rare-earth (Mg4Y3RE alloys were analysed after 1, 2, and 3 days of incubation in cell culture medium under cell culture condition. Changes in cell viability and cell adhesion were evaluated by culturing human umbilical cord perivascular cells on corroded Mg materials to examine how the degradation influences the cellular development.The pH and osmolality of the medium increased with increasing degradation rate and it was found to be most pronounced for Mg4Y3RE alloy. The biological observations showed that HUCPV exhibited a more homogeneous cell growth on Mg alloys compared to high-purity Mg, where they showed a clustered morphology. Moreover, cells exhibited a slightly higher density on Mg2Ag and Mg10Gd in comparison to Mg4Y3RE, due to the lower alkalinisation and osmolality of the incubation medium. However, cells grown on Mg10Gd and Mg4Y3RE generated more developed and healthy cellular structures that allowed them to better adhere to the surface. This can be attributable to a more stable and homogeneous degradation of the outer surface with respect to the incubation time.

  8. Differential cytotoxicity of copper ferrite nanoparticles in different human cells.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Siddiqui, Maqsood A; Saquib, Quaiser; Khan, Shams T; Wahab, Rizwan; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Akhtar, Mohd Javed; Ahamed, Maqusood

    2016-10-01

    Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  10. Simulation study of dose enhancement in a cell due to nearby carbon and oxygen in particle radiotherapy

    CERN Document Server

    Shin, Jae Ik; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Jung, Won-Gyun; Yoo, SeungHoon; Shin, Dongho; Lee, Se Byeong; Yoon, Myonggeun; Incerti, Sebastian; Geso, Moshi; Rosenfeld, Anatoly B

    2015-01-01

    The aim of this study is to investigate the dose-deposition enhancement by alpha-particle irradiation in a cellular model using carbon and oxygen chemical compositions.A simulation study was performed to study dose enhancement due to carbon and oxygen for a human cell where Geant4 code used for the alpha-particle irradiation to the cellular phantom. The characteristic of dose enhancement in the nucleus and cytoplasm by the alpha-particle radiation was investigated based on concentrations of the carbon and oxygen compositions and was compared with those by gold and gadolinium.The results show that both the carbon and oxygen-induced dose enhancement was found to be more effective than those of gold and gadolinium. We found that the dose-enhancement effect was more dominant in the nucleus than in the cytoplasm if carbon or oxygen is uniformly distributed in a whole cell. In the condition that the added chemical composition was inserted only into the cytoplasm, the effect of the dose enhancement in nucleus become...

  11. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  12. Characterizing motility dynamics in human RPE cells

    Science.gov (United States)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  13. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  14. Mortalin sensitizes human cancer cells to MKT-077-induced senescence.

    Science.gov (United States)

    Deocaris, Custer C; Widodo, Nashi; Shrestha, Bhupal G; Kaur, Kamaljit; Ohtaka, Manami; Yamasaki, Kazuhiko; Kaul, Sunil C; Wadhwa, Renu

    2007-07-18

    Mortalin is a chaperone protein that functions in many cellular processes such as mitochondrial biogenesis, intracellular trafficking, cell proliferation and signaling. Its upregulation in many human cancers makes it a candidate target for therapeutic intervention by small molecule drugs. In continuation to our earlier studies showing mortalin as a cellular target of MKT-077, a mitochondrion-seeking delocalized cationic dye that causes selective death of cancer cells, in this work, we report that MKT-077 binds to the nucleotide-binding domain of mortalin, causes tertiary structural changes in the protein, inactivates its chaperone function, and induces senescence in human tumor cell lines. Interestingly, in tumor cells with elevated level of mortalin expression, fairly low drug doses were sufficient to induce senescence. Guided by molecular screening for mortalin in tumor cells, our results led to the idea that working at low doses of the drug could be an alternative senescence-inducing cancer therapeutic strategy that could, in theory, avoid renal toxicities responsible for the abortion of MKT-077 clinical trials. Our work may likely translate to a re-appraisal of the therapeutic benefits of low doses of several classes of anti-tumor drugs, even of those that had been discontinued due to adverse effects.

  15. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    Directory of Open Access Journals (Sweden)

    Kentaro Kikuchi

    2003-01-01

    Full Text Available Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plasma cells in spleen increased by 100 fold after transplantation. Plasma cell numbers correlated with the detection of human IgM and IgG in serum, indicating that human B cells had differentiated into mature plasma cells in the murine spleen. In addition to CD19+ plasma cells, a distinct CD19- plasma cell population was detected, suggesting that downregulation of CD19 associated with maturation of plasma cells occurred. When purified human B cells were transplanted, those findings were not observed. Our results indicate that differentiation and maturation of human B cells and plasma cells can be investigated by transplantation of human PBMC into the spleen of NOD/SCID mice. The model will be useful for studying the differentiation of human B cells and generation of plasma cells.

  16. Schisandrin B reverses multidrug resistance due to MDR1-mediated human osteosarcoma cell line U-2 OS/ADR%五味子乙素对 MDR1介导的人骨肉瘤细胞 U-2 OS/ADR所致多药耐药性的逆转研究

    Institute of Scientific and Technical Information of China (English)

    李秋萍; 盖亚男

    2014-01-01

    目的:研究五味子乙素(schisandrin B,SchB)对人骨肉瘤细胞阿霉素耐药株U-2 OS/ADR多药耐药的逆转效果及逆转机制。方法采用浓度梯度递增法构建U-2 OS阿霉素耐药株U-2 OS/ADR;使用MTT法测定Sch B对于U-2 OS多药耐药逆转的影响,实时荧光定量PCR( Q-PCR)检测SchB对MDR1基因转录的影响,流式细胞术检测细胞膜表面MDR1蛋白的表达,流式细胞术检测五味子乙素对罗丹明123外排和蓄积的影响,Western Blotting检测五味子乙素对PI3K/AKT通路的影响。结果五味子乙素能逆转U-2 OS/ADR细胞的多药耐药,并且能抑制MDR1基因的转录,降低膜表面MDR1蛋白的表达,增加细胞内罗丹明123的蓄积、减少外排,抑制U-2 OS/ADR细胞中PI3K/AKT通路的激活。结论五味子乙素具有强大的逆转人骨肉瘤细胞U-2 OS多药耐药的效果,其机制和下调耐药株的MDR1基因和蛋白水平,抑制PI3K/AKT通路激活有关。%Objective To study the reversal effect of schisandrin B on doxorubicin induced drug-fast human osteosarcoma cell line U-2 OS/ADR.Methods U-2 OS/ADR was established by increasing the concentration gradient of doxorubicin in a stepwise manner ;deter-mine the effects of SchB on reversal of multidrug resistance by MTT , test the effect of SchB on the Gene transcription of MDR 1 by quantitative real-time PCR, test the expression of MDR1 on the cell membrane as well as the influence of SchB on the excretion and ac-cumulation of Luo Danming123 by the method of flow cytometry , test schisandrin B'effect on PI3K/AKT signal pathway by western blotting.Results Schisandrin B showed potent reversal effect on multidrug resistance (MDR) of U-2 OS/ADR cell and has the func-tion of inhibiting the transcription of MDR1 gene, reducing the expression of MDR1 on cell membrane, increasing the accumulation and decreasing the excretion of Luo Danming 123 inside of the cell, as well as inhibiting the

  17. At the edge of humanity: human stem cells, chimeras, and moral status.

    Science.gov (United States)

    Streiffer, Robert

    2005-12-01

    Experiments involving the transplantation of human stem cells and their derivatives into early fetal or embryonic nonhuman animals raise novel ethical issues due to their possible implications for enhancing the moral status of che chimeric individual. Although status-enhancing research is not necessarily objectionable from the perspective of the chimeric individual, there are grounds for objecting to it in the conditions in which it is likely to occur. Translating this ethical conclusion into a policy recommendation, however, is complicated by the fact that substantial empirical and ethical uncertainties remain about which transplants, if any, would significantly enhance the chimeric individual's moral status. Considerations of moral status justify either an early-termination policy on chimeric embryos, or, in the absence of such a policy, restrictions on the introduction of pluripotent human stem cells into early-stage developing animals, pending the resolution of those uncertainties.

  18. Human somatic cell nuclear transfer is alive and well.

    Science.gov (United States)

    Cibelli, Jose B

    2014-06-05

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well.

  19. Entry of Oncolytic Herpes Simplex Virus into Human Squamous Cell Carcinoma Cells by Ultrasound

    Directory of Open Access Journals (Sweden)

    Shusuke Okunaga

    2015-10-01

    Full Text Available Low-intensity ultrasound is a useful method to introduce materials into cells due to the transient formation of micropores, called sonoporations, on the cell membrane. Whether oncolytic herpes simplex virus type 1 (HSV-1 can be introduced into oral squamous cell carcinoma (SCC cells through membrane pores remains undetermined. Human SCC cell line SAS and oncolytic HSV-1 RH2, which was deficient in the 134.5 gene and fusogenic, were used. Cells were exposed to ultrasound in the presence or absence of microbubbles. The increase of virus entry was estimated by plaque numbers. Viral infection was hardly established without the adsorption step, but plaque number was increased by the exposure of HSV-1-inoculated cells to ultrasound. Plaque number was also increased even if SAS cells were exposed to ultrasound and inoculated with RH2 without the adsorption step. This effect was abolished when the interval from ultrasound exposure to virus inoculation was prolonged. Scanning electron microscopy revealed depressed spots on the cell surface after exposure to ultrasound. These results suggest that oncolytic HSV-1 RH2 can be introduced into SAS cells through ultrasound-mediated pores of the cell membrane that are resealed after an interval.

  20. New methods for dete rmining the relative load due to physical effort of the human body

    Directory of Open Access Journals (Sweden)

    Józef Szubert

    2014-04-01

    Full Text Available Background: The relative physical load (% VO2max is the quotient of oxygen uptake (Vo2 during physical effort and maximum oxygen uptake (VO2max by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Material and Methods: Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (TW or heart rate within one minute (HR, body mass (m, height (H, and body surface area (AD instead of VO2max. Results: The values of the relative physical load (% VO2max obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. Conclusions: The developed methods for determining the relative physical load (% VO2max do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study a feasible alternative to current methods. Med Pr 2014;65(2:189–195

  1. The association between human papillomavirus and oropharyngeal squamous cell Carcinoma

    DEFF Research Database (Denmark)

    Walvik, Lena; Svensson, Amanda Björk; Friborg, Jeppe

    2016-01-01

    There is emerging evidence of the association between human papillomavirus and a subset of head and neck cancers. However, the role of human papillomavirus as a causal factor is still debated. This review addresses the association between human papillomavirus and oropharyngeal squamous cell...... of well-defined premalignant lesions. However, a causal relationship between human papillomavirus infection and oropharyngeal squamous cell carcinoma seems evident....

  2. [Pseudo-tumoral human African trypanosomiasis due to Trypanosoma gambiense. Clinical and tomodensitometry study (author's transl)].

    Science.gov (United States)

    Poisson, M; Bleibel, J M; Regnier, A; Mashaly, R; Le Bigot, P; Danis, M; Buge, A

    The authors report an observation of african trypanosomiasis due to Trypanosoma Gambiense, clinical signs included massive and progressive hemiplegia, papillary edema and vascular shift from median line at arteriography. These pseudo tumoral clinical features are unusual in this disease. Asymetrical heterogenous hypodensities of the centrum semioval are dominant in the initial CT scanner aspect. The confrontation of CT scanner images to the clinical and evolutive data suggests the presence of associated cerebral edema and demyelination. With treatment, hypodensities were regressing while images of subcortical atrophy appeared. Lastly, in spite of severe general signs and the importance of neurological deficit, arsenical treatment associated with high doses of corticotherapy lead to a rapid improvement.

  3. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  4. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells.

    Science.gov (United States)

    Akopian, Veronika; Andrews, Peter W; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B; Ludwig, Tenneille E; McKay, Ronald D G; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K W; Pera, Martin F; Rossant, Janet; Stacey, Glyn N; Suemori, Hirofumi

    2010-04-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.

  5. Glycomics of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Furukawa, Jun-Ichi; Okada, Kazue; Shinohara, Yasuro

    2016-10-01

    Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.

  6. Isolation and characterization of human spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Liu Shixue

    2011-10-01

    Full Text Available Abstract Background To isolate and characterization of human spermatogonial stem cells from stem spermatogonium. Methods The disassociation of spermatogonial stem cells (SSCs were performed using enzymatic digestion of type I collagenase and trypsin. The SSCs were isolated by using Percoll density gradient centrifugation, followed by differential surface-attachment method. Octamer-4(OCT4-positive SSC cells were further identified using immunofluorescence staining and flow cytometry technques. The purity of the human SSCs was also determined, and a co-culture system for SSCs and Sertoli cells was established. Results The cell viability was 91.07% for the suspension of human spermatogonial stem cells dissociated using a two-step enzymatic digestion process. The cells isolated from Percoll density gradient coupled with differential surface-attachement purification were OCT4 positive, indicating the cells were human spermatogonial stem cells. The purity of isolated human spermatogonial stem cells was 86.7% as assessed by flow cytometry. The isolated SSCs were shown to form stable human spermatogonial stem cell colonies on the feeder layer of the Sertoli cells. Conclusions The two-step enzyme digestion (by type I collagenase and trypsin process is an economical, simple and reproducible technique for isolating human spermatogonial stem cells. With little contamination and less cell damage, this method facilitates isolated human spermatogonial stem cells to form a stable cell colony on the supporting cell layer.

  7. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.

    Science.gov (United States)

    Feric, Nicole T; Radisic, Milica

    2016-01-15

    Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Haemophilus ducreyi hemolysin acts as a contact cytotoxin and damages human foreskin fibroblasts in cell culture.

    OpenAIRE

    Alfa, M J; DeGagne, P; Totten, P A

    1996-01-01

    Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, produces several factors that damage human cells. We used isogenic mutants of H. ducreyi 35000 to demonstrate that the hemolytic activity and the cytotoxic effect of H. ducreyi on human foreskin fibroblasts are due to the same toxin.

  9. Cell entry by human pathogenic arenaviruses.

    Science.gov (United States)

    Rojek, Jillian M; Kunz, Stefan

    2008-04-01

    The arenaviruses Lassa virus (LASV) in Africa and Machupo (MACV), Guanarito (GTOV) and Junin viruses (JUNV) in South America cause severe haemorrhagic fevers in humans with fatality rates of 15-35%. The present review focuses on the first steps of infection with human pathogenic arenaviruses, the interaction with their cellular receptor molecules and subsequent entry into the host cell. While similarities exist in genomic organization, structure and clinical disease caused by pathogenic Old World and New World arenaviruses these pathogens use different primary receptors. The Old World arenaviruses employ alpha-dystroglycan, a cellular receptor for proteins of the extracellular matrix, and the human pathogenic New World arenaviruses use the cellular cargo receptor transferrin receptor 1. While the New World arenavirus JUNV enters cells via clathrin-dependent endocytosis, evidence occurred for clathrin-independent entry of the prototypic Old World arenavirus lymphocytic choriomeningitis virus. Upon internalization, arenaviruses are delivered to the endosome, where pH-dependent membrane fusion is mediated by the envelope glycoprotein (GP). While arenavirus GPs share characteristics with class I fusion GPs of other enveloped viruses, unusual mechanistic features of GP-mediated membrane fusion have recently been discovered for arenaviruses with important implications for viral entry.

  10. Efficient photodynamic therapy on human retinoblastoma cell lines.

    Directory of Open Access Journals (Sweden)

    Jan Walther

    Full Text Available Photodynamic therapy (PDT has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma.

  11. Efficient Photodynamic Therapy on Human Retinoblastoma Cell Lines

    Science.gov (United States)

    Walther, Jan; Schastak, Stanislas; Dukic-Stefanovic, Sladjana; Wiedemann, Peter; Neuhaus, Jochen; Claudepierre, Thomas

    2014-01-01

    Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma. PMID:24498108

  12. Markers of T Cell Senescence in Humans

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.

  13. Arecoline is cytotoxic for human endothelial cells.

    Science.gov (United States)

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Pathophysiology of movement disorders due to gravity transitions: the channelopathy linkage in human balance and locomotion.

    Science.gov (United States)

    Rizzo-Sierra, Carlos V; Leon-Sarmiento, Fidias E

    2011-07-01

    Despite theoretical and experimental efforts to understand the space adaptation syndrome (SAS), which is responsible for spatial disorientation that severely affects physical and cognitive performance in astronauts, most of its pathophysiology is still unknown. As a consequence, countermeasures for SAS are not completely effective. Accordingly, in addition to the sensory-motor conflict theories, we propose that microgravity would affect the potassium channels of inner ear hair cells that would result in a temporal channelopathy as the most likely molecular origin for SAS, as well as being responsible for perpetuating movement disorders in gravity transition environments including those to be experienced by people visiting or living on the earth, moon, mars and beyond.

  15. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    Science.gov (United States)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  16. In Vitro Cell Culture Infectivity Assay for Human Noroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin A.; Orosz Coghlan, Patricia A.; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza; Nickerson, Cheryl A.

    2007-01-30

    Human noroviruses (NoV) cause severe, self-limiting gastroenteritis that typically lasts 24 - 48 hours. The true nature of NoV pathogenesis remains unknown due to the lack of suitable tissue culture or animal models. Here we show, for the first time, that NoV can infect and replicate in an organoid, three-dimensional (3-D) model of human small intestinal epithelium (INT-407). Cellular differentiation for this model was achieved by growing the cells in 3-D on porous collagen I-coated microcarrier beads under conditions of physiological fluid shear in rotating wall vessel bioreactors. Microscopy, PCR, and fluorescent in-situ hybridization were employed to provide evidence of NoV infection. CPE and norovirus RNA was detected at each of the five cell passages for both genogroup I and II viruses. Our results demonstrate that the highly differentiated 3-D cell culture model can support the natural growth of human noroviruses, whereas previous attempts using differentiated monolayer cultures failed.

  17. Biological effects on human health due to radiofrequency/microwave exposure

    DEFF Research Database (Denmark)

    Breckenkamp, Jürgen; Berg, Gabriele; Blettner, Maria

    2003-01-01

    electromagnetic pulses similar to those after a nuclear explosion. In all studies (except one that used a qualitative job-exposure-matrix) either the duration of occupational work as an approximation to actual exposure was determined or a simple yes/no differentiation was used based on a definition of high......We evaluated the methods and results of nine cohort studies dealing with the biological effects on human health from exposure to radiofrequencies/microwaves, published between 1980 and 2002. The size of the cohorts varied between 304 (3,362 person years) and nearly 200,000 persons (2.7 million...... person years). As exposures were defined: dielectric heaters in a plastic manufacturing plant, working with radio devices (professional and amateur), production of wireless communication technologies, radar devices of the Canadian police, radar units used by the military as well as artificially produced...

  18. Electronic tracking of human resource skills and knowledge, just in time training, manageable due diligence

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, M.A. [Quick Test International Inc., (Canada). Canadian Technology Human Resource Board; Baker, O. [KeySpan Energy Canada, Calgary, AB (Canada)

    2001-06-01

    KeySpan Energy Canada is in the process of obtaining recognition of various occupational profiles including pipeline operators, inspectors, and field and plant operators from various certifying organizations. The process of allowing individuals to obtain certification is recognized by Canadian Technology Human Resources Board as a step towards national standards for technologists and technicians. Proven competency is a must for workers in todays oil industry in response to increasingly stringent government safety regulations, environmental concerns and high public scrutiny. Quick Test international Inc. has developed a management tool in collaboration with end users at KeySpan Energy Canada. It is an electronic, Internet based competency tool for tracking personal competencies and maintaining continued competency. Response to the tool has been favourable. 2 refs., 4 figs.

  19. Emerging infections due to filamentous fungi in humans and animals: only the tip of the iceberg?

    Science.gov (United States)

    Debourgogne, Anne; Dorin, Joséphine; Machouart, Marie

    2016-06-01

    Over the last few decades, the number of patients susceptible to invasive filamentous fungal infections has steadily increased, especially in populations suffering from hematological diseases. The pathogens responsible for such mycoses are now quite well characterized, such as Aspergillus spp. - the most commonly isolated mold -, Mucorales, Fusarium spp., Scedosporium spp. or melanized fungi. An increase in the incidence of this category of 'emerging' fungi has been recently highlighted, evoking a shift in fungal ecology. Starting from these medical findings, taking a step back and adopt a wider perspective offers possible explanations of this phenomenon on an even larger scale than previously reported. In this review, we illustrate the link between emerging fungi in medicine and changes in ecology or human behaviours, and we encourage integrative approaches to apprehend the adverse effects of progress and develop preventive measures in vast domains, such as agriculture or medicine. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Kalilo river pollution due to limited land settlement and human behavior along the Kalilo riverbanks

    Directory of Open Access Journals (Sweden)

    H. Suprihatin

    2014-04-01

    Full Text Available Kalilo River is one of the sights that is always visible to the people who come cross to Banyuwangi. However, there are many trash and animal (human defecation in the Kalilo river that may impair the beautiful scenery of the river. This study was aimed to measure whether or not the physical, chemical and bacteriological parameters of the river water meets the criteria of Class II Water Quality Standard. River water samples were collected from upstream, midstream and downstream of the Kalilo river for suspended solid, sulfate, total phosphate, BOD, COD, DO, anionic detergent, total coliforms. Results of water analysis showed that the suspended solid, sulfate, total phosphate, BOD, COD, DO, anionic detergent, total coliform contents exceeded standard limit of the of Class II Water Quality Standard. Such conditions affect physical, environmental and economic development of the district. A Communal Waste Treatment Plant, Anaerobic Baffle Reactor (ABR, is recommended to overcome the problems.

  1. Physical geography and the study of human vulnerability due to natural and other hazards

    Directory of Open Access Journals (Sweden)

    Karel Natek

    2003-12-01

    Full Text Available Physical geography in Slovenia has achieved a significant level of knowledge on natural and other hazards, after studying these phenomena since 1950s. These extremely complex features are clearly showing the interconnections between the nature and man and the increasing vulnerability of modern societies. The article is based on geographical approach to hazards, which does not consider them as casual events, but as constituent parts of the environment, including very different ways of human adaptation. The rapid development of science and technology have even increased our vulnerability and direct exposure to hazards, what is considered as new challenge to physical geographers in looking for new approaches to increase the possibilities of sustainable 'co-existence' with natural and other hazards.

  2. Human dirofilariasis due to Dirofilaria repens in Ukraine, an emergent zoonosis: epidemiological report of 1465 cases.

    Science.gov (United States)

    Sałamatin, Rusłan V; Pavlikovska, Tamara M; Sagach, Olga S; Nikolayenko, Svitlana M; Kornyushin, Vadim V; Kharchenko, Vitaliy O; Masny, Aleksander; Cielecka, Danuta; Konieczna-Sałamatin, Joanna; Conn, David Bruce; Golab, Elzbieta

    2013-12-01

    The filarial nematode Dirofilaria repens is currently considered to be one of the most extensively spreading human and animal parasites in Europe. In Ukraine, reporting cases of dirofilariasis has been mandatory since 1975, and the disease was included in the national surveillance system for notifiable diseases. Up until December 31st 2012, a total of 1533 cases have been registered, with 1465 cases occurring within the previous 16 years. Most of the cases of dirofilariasis were registered in 6 regions: Kyiv, and the Donetsk, Zaporizhzhya, Dnipropetrovsk, Kherson and Chernihiv oblasts. In the years 1997-2002 the highest incidence rate was noted in the Kherson oblast in the south of the country (9.79 per 100 000 people), and the lowest in western Ukraine (0.07-1.68 per 100 000 people). D. repens infections were registered in all oblasts. Parasitic lesions were most often located in the head, the subconjunctival tissue and around the eyes. D. repens lesions were also found in the limbs, torso, male sexual organs, and female mammary glands. Dirofilariasis was diagnosed in persons aged from 11 months to 90 years old, most often among people between 21-40 years of age. Most patients had only one parasitic skin lesion; the majority of isolated nematodes were female. The results of our analysis point to a constant increase in D. repens dirofilariasis incidence in humans in Ukraine. Despite educational efforts, infections have become more frequent and the territory in which the disease occurs has enlarged to encompass the whole of Ukraine. Nevertheless, the Ukrainian sanitary-epidemiological services managed to achieve some measure of success, e.g. by creating a registration system for D. repens infections and establishing proper diagnostics for the disease.

  3. Study of Hydrodynamics due to Turbulent Mixing in Animal Cell Microcarrier Bioreactors

    Science.gov (United States)

    Venkat, Raghavan V.

    1995-01-01

    Turbulent mixing is essential for improving oxygenation and to provide uniform nutrients to microcarrier animal cell cultures grown in agitated stirred reactors. Large -scale microcarrier culture is plagued with problems of scale-up. Hydrodynamics due to impeller agitation was found to be one of the major causes for cell damage in microcarrier culture. Insufficient or improper scale-up of agitation environment from small-scale to large-scale has been postulated to be one of the main causes for failure of large-scale microcarrier culture. For successful scale-up of microcarrier culture, it will be useful to obtain the flow characteristics in typical reactors: macro-characteristics that provides information on zoning/unmixed regions within the reactor as well as fundamental flow information such as velocity fields and energy distribution in the impeller stream of the reactors. This information can lead to methods of scale-up that preserve flow environments in different sizes of bioreactors. Three dimensional particle tracking velocimetry (3-D PTV) was used to map the flow fields in the impeller stream of the spinner vessel, 3 L bench-scale, 20 L medium -scale, and 150 L large-scale cell culture reactors. For the purposes of characterization of the 150 L large-scale reactor, an internal dual lens probe system was designed to visualize the turbulent mixing environment. 3-D (stereo) visual information obtained was used to come up with mean velocity fields and energy distribution in the impeller stream of the reactors. Fundamental flow information obtained was further used to arrive at the flow structures/patterns that exist in the impeller stream and the distribution of energy parameters: viscous dissipation rate, mean turbulent kinetic energy and the pseudo-shear rate, within the flow structures. The impeller stream of all the reactors was found to be highly anisotropic and dominated by distinct flow structures. The highest values of the energy parameters were also

  4. Alloimmunization due to red cell antibodies in Rhesus positive Omani Pregnant Women: Maternal and Perinatal outcome

    Directory of Open Access Journals (Sweden)

    Tamima Al-Dughaishi

    2015-01-01

    Full Text Available Objective: This study is aimed to determine the prevalence of alloimmunization due to antibodies to red blood cell (RBC antigens (other than rhesus [Rh] antigen and report the maternal, perinatal, and neonatal outcomes. Materials and Methods: A retrospective review of medical records of all patients with minor RBCs antibodies alloimmunization who were followed and delivered at Sultan Qaboos University Hospital, Oman from June 2011 to June 2013. Maternal characteristics, antibody type, antibody titer in addition to perinatal and neonatal outcomes were reviewed. Results: There were 1160 patients with Rh positive status in the study. The most common ABO blood group was O, followed by A, B, and AB. We found 33 out of 1160 Rh positive women alloimmunized with minor RBCs antibodies that gave a prevalence of minor RBCs alloimmunization of 2.7%. The most frequent antibody was anti-E 38%, followed by anti-c 17% and anti-kell 17%. 6 of these 33 patients were identified to have significant antibody titer, and two cases showed evidence of fetal anemia. Only one case required an intrauterine blood transfusion. The most common neonatal complication was jaundice in 53%, followed by respiratory distress syndrome in 28%. Two cases complicated by neonatal anemia required a postnatal blood transfusion. Conclusion: Alloimmunization with anti-E, anti-c, and anti-kell were the most common antibodies among the study group. Minor RBCs alloimmunization was an important cause of neonatal morbidity.

  5. Impedance Spectroscopic Investigation of the Degraded Dye-Sensitized Solar Cell due to Ageing

    Directory of Open Access Journals (Sweden)

    Parth Bhatt

    2016-01-01

    Full Text Available This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs. The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V characteristics are analyzed. Short circuit current density (JSC decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS. An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.

  6. Secondary Involvement of the Mandible due to Basal Cell Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Pegah Mosannen Mozaffary

    2015-05-01

    Full Text Available Basal cell carcinoma (BCC is the most common cutaneous malignancy among Caucasians. Rare examples of aggressive and neglected BCC have been reported. Here we report a unique case of a neglected BCC with significant jaw involvement. A 50-year-old female, referred by an otorhinologist, presented with a large ulcer on her chin, which was extended to her mandibular vestibule. The ulcer was 9×5.5 cm in size, and tissue destruction, necrosis was observed in the central portion, and the mandibular bone was exposed. On intraoral examination, tooth mobility and severe bone loss were evident. Due to the primary cutaneous origin of the lesion, BCC was considered as preliminary diagnosis. Biopsy was performed and diagnosis of BCC was confirmed. The diseased mandibular bone was resected and reconstructed with a surgical plate. The soft tissue defect was reconstructed with deltopectoral flap. The patient refused secondary stage plastic surgery. Although BCC is not a lethal malignancy, if left untreated and neglected, it can result in severe destruction, disfigurement, and even mortality.

  7. Tolvaptan Treatment in Syndrome of Inappropriate ADH Secretion due to Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mucahit Gur

    2014-06-01

    Full Text Available Experience of ADH receptor antagonist (-vaptanes treatment in hyponatremia in malign patient is very limited. 68 years old male patient admitted to our department with a complain of nause, vomitting and epigastric pain. He has advanced stage of small cell lung cancer. He had treated with cisplatin and etoposide regimen 10 days ago as a first cure. We diagnosed inapropriate secretion of antidiuretic hormone syndrome (SIADH with low sodium level (118 meq/dl. Although the treatment with water restriction and 3% NaCl infusion, sodium level was not in normal. So we ordered 30 mg tolvaptan tablet. And then sodium levels were reached normal. After one month of discharge from hospital, he has hospitilized with same symptom and diagnosis. And again we ordered same treatment procedure and tolvaptane treatment. He had normal sodium (136 mEq/dl level during his follow up. This case demostrate that tolvaptane treatment is suitable aproaches in hyponatremia due to SIADH in oncologic patient.

  8. Identification of a candidate stem cell in human gallbladder

    Directory of Open Access Journals (Sweden)

    Rohan Manohar

    2015-05-01

    In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  9. Engineering the human pluripotent stem cell microenvironment to direct cell fate

    Science.gov (United States)

    Hazeltine, Laurie B.; Selekman, Joshua A.; Palecek, Sean P.

    2013-01-01

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystems technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. PMID:23510904

  10. Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses.

    Science.gov (United States)

    Hildebrand, Laura; Seemann, Petra; Kurtz, Andreas; Hecht, Jochen; Contzen, Jörg; Gossen, Manfred; Stachelscheid, Harald

    2015-12-01

    Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.

  11. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  12. Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Directory of Open Access Journals (Sweden)

    Taro Ishigaki

    2009-01-01

    Full Text Available We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months.

  13. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  14. Human Auditory Communication Disturbances Due To Road Traffic Noise Pollution in Calabar City, Nigeria

    Directory of Open Access Journals (Sweden)

    E. O. Obisung

    2016-10-01

    Full Text Available Study on auditory communication disturbances due to road transportation noise in Calabar Urban City, Nigeria was carried out. Both subjective (psycho-social and objective (acoustical measurements were made for a period of twelve months. Questionnaire/interview schedules containing pertinent questions were administered randomly to 500 respondents of age 15 year and above, who were also with a good level of literacy skills (reading writing and leaving in houses sited along or parallel to busy road, with heavy traffic volume for at least three (3 years. The questionnaires provided the psycho-social responses of respondents used in this study, their reactions to road traffic noise effect on communication activities (listening to radio, listening and watching television, verbal communication between individuals, speech communication and telephone/GSM communication. Acoustical measurements were made at the facades of respondents' houses facing the road using precision digital sound level meter, Bruel and Kjaer (B & K type 732 following ISO standards 1996. The meter read the road traffic noise levels at measurement sites (facades of respondents' houses. From the results obtained in this study residents of Calabar City suffer serious communication interferences as a result of excessive road traffic noise levels. The noise indices used for this study were LAeq and Ldn. Noise levels obtained were over 93 dB(A (daytime and 60 dB(A, (nighttime for LAeq and 80 dB(A for Ldn. These far exceeded the recommended theoretical values of 45-55 and 70 dB(A, for LAeqand Ldn respectively. A-weighted sound pressure level (SPLS range between 87.0 and 100.0 dB(A. In this study it was also observed that over 98% of the respondents reported their television watching/radio listening disturbed, 99% recorded telephone/GSM disturbed, and 98% reported face-to-face verbal conversation disturbed, and 98% reported speech communication disturbed. The background noise levels (BNLs of

  15. Human embryonic stem cells and patent protection

    Directory of Open Access Journals (Sweden)

    Radovanović Sanja M.

    2015-01-01

    Full Text Available Given the importance of biotechnological research in modern diagnostics and therapeutics, on the one hand, and stimulative function of a patent, on the other hand, this work deals with the question of the possibility of pa-tent protection of human embryonic stem cells. Taking into account that this is a biotechnological invention, the key question that this paper highlights is the interpretation of the provisions of their patentability. Namely, thanks to the advanced methods of isolation, purification and preparation for implementation, modern patent systems do not exclude a priori living organisms from patent protection. Therefore, the analysis of representative administrative decisions or court rulings sought to define the criteria that would be applied in order to give patent protection to a certain biotechnological invention (stem cells while others do not.

  16. Grape seed extract induces cell cycle arrest and apoptosis in human colon carcinoma cells.

    Science.gov (United States)

    Kaur, Manjinder; Mandair, Reinuka; Agarwal, Rajesh; Agarwal, Chapla

    2008-01-01

    One approach to control colorectal cancer (CRC) is its preventive intervention by dietary agents or those consumed as supplements. However, because most of these products are often consumed by patients as an complementary and alternative medicine practice, a scientific base such as efficacy, mechanism, and standardized preparation needs to be developed. Grape seed extract (GSE) is one such supplement widely consumed by humans for its several health benefits. We reported recently that GSE inhibits CRC cell HT29 growth in culture and nude mice xenograft. Because GSE is available commercially through different vendors, here we assessed whether GSE from 2 different manufacturers produces comparable biological effects in a panel of human CRC cell lines. Our results show that irrespective of source, GSE strongly inhibits LoVo, HT29, and SW480 cell growth, with a G1 arrest in LoVo and HT29 cells but an S and/or G2/M arrest in SW480 cell cycle progression. GSE also induced Cip/p21 levels in all 3 cell lines. Furthermore, an induction of apoptosis was observed in all 3 cell lines by GSE. Taken together, our findings suggest that GSE could be an effective CAM agent against CRC possibly due to its strong growth inhibitory and apoptosis-inducing effects.

  17. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  18. Involuntary human hand movements due to FM radio waves in a moving van.

    Science.gov (United States)

    Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R

    2011-06-01

    Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety.

  19. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  20. HIF induces human embryonic stem cell markers in cancer cells.

    Science.gov (United States)

    Mathieu, Julie; Zhang, Zhan; Zhou, Wenyu; Wang, Amy J; Heddleston, John M; Pinna, Claudia M A; Hubaud, Alexis; Stadler, Bradford; Choi, Michael; Bar, Merav; Tewari, Muneesh; Liu, Alvin; Vessella, Robert; Rostomily, Robert; Born, Donald; Horwitz, Marshall; Ware, Carol; Blau, C Anthony; Cleary, Michele A; Rich, Jeremy N; Ruohola-Baker, Hannele

    2011-07-01

    Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

  1. Parotid enlargement due to adenovirus infection in patient with human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Maria Irma Seixas Duarte

    1996-10-01

    Full Text Available The authors report a case of adenovirus- induced enlargement of the parotid gland involving a patient infected with human immunodeficiency virus (HIV. Physical examination revealed good general condition, no fever and bilateral enlargement of the parotid region, which was of increased consistency and slightly tender to palpation. Histological examination of the parotid gland demonstrated a slight periductal lymphomononuclear inflammatory infiltrate with the presence of focal points of necrosis. Tests to determine the presence of fungi and alcohol-acid resistent bacilli were negative. Immunohistochemistry for cytomegalovirus, heipes simplex, HIV p24 antigen and adenovirus showed positivity only for adenovirus in the epithelial nuclei of numerous gland ducts. Tins is the third case of this type reported in the literature, indicating the importance of including adenovirus in the differential diagnosis of this condition.Os autores relatam um caso de aumento da glândula parótida ocasionado por adenovirus, em paciente infectado pelo vírus da imunodeficiência humana. Ao exame físico, este se apresentava em bom estado geral, afebril e com aumento bilateral de parõtidas, de consistência aumentada e discretamente dolorosas ã palpação. O exame histológico da parótida demonstrou discreto infiltrado inflamatório linfomononuclear periductal com presença de focos de necrose, as pesquisas para fungos e bacilos ãlcool ãcido resistentes foram negativas. A técnica de imuno-histoquímica para citomegalovírus, beipes simples, antígeno p24 do HIVe adenovirus, somente evidenciou posítividade para o último. Este é o terceiro caso descrito na literatura, destacando a importância de incluir o adenovíms, no diagnóstico diferencial, deste acometimento.

  2. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  3. Derivation of human embryonic stem cells in defined conditions.

    Science.gov (United States)

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  4. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells

    Science.gov (United States)

    Panula, Sarita; Reda, Ahmed; Stukenborg, Jan-Bernd; Ramathal, Cyril; Sukhwani, Meena; Albalushi, Halima; Edsgärd, Daniel; Nakamura, Michiko; Söder, Olle; Orwig, Kyle E.; Yamanaka, Shinya; Reijo Pera, Renee A.; Hovatta, Outi

    2016-01-01

    The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo. PMID:27768780

  5. Moving forward moving backward: directional sorting of chemotactic cells due to size and adhesion differences.

    Directory of Open Access Journals (Sweden)

    Jos Käfer

    2006-06-01

    Full Text Available Differential movement of individual cells within tissues is an important yet poorly understood process in biological development. Here we present a computational study of cell sorting caused by a combination of cell adhesion and chemotaxis, where we assume that all cells respond equally to the chemotactic signal. To capture in our model mesoscopic properties of biological cells, such as their size and deformability, we use the Cellular Potts Model, a multiscale, cell-based Monte Carlo model. We demonstrate a rich array of cell-sorting phenomena, which depend on a combination of mescoscopic cell properties and tissue level constraints. Under the conditions studied, cell sorting is a fast process, which scales linearly with tissue size. We demonstrate the occurrence of "absolute negative mobility", which means that cells may move in the direction opposite to the applied force (here chemotaxis. Moreover, during the sorting, cells may even reverse the direction of motion. Another interesting phenomenon is "minority sorting", where the direction of movement does not depend on cell type, but on the frequency of the cell type in the tissue. A special case is the cAMP-wave-driven chemotaxis of Dictyostelium cells, which generates pressure waves that guide the sorting. The mechanisms we describe can easily be overlooked in studies of differential cell movement, hence certain experimental observations may be misinterpreted.

  6. [Two Cases of Germ Cell Tumors with Hyperthyroidism Due to High Serum hCGLevels].

    Science.gov (United States)

    Chihara, Ichiro; Nitta, Satoshi; Kimura, Tomokazu; Kandori, Shuya; Kawahara, Takashi; Waku, Natsui; Kojima, Takahiro; Joraku, Akira; Miyazaki, Jun; Iwasaki, Hitoshi; Suzuki, Hiroaki; Kawai, Koji; Nishiyama, Hiroyuki

    2016-09-01

    We reported two cases of hyperthyroidism that developed during induction chemotherapy for advanced germ cell tumors with high serum human chorionic gonadotropin (hCG) levels. Case 1 : An 18-year-old man with mediastinal choriocarcinoma complained of tachycardia and tremor. His pretreatment serum hCG level was 1.37 million mIU/ml. The free thyroxine (fT4) level measured on day 2 of the first course of bleomycin, etoposide and cisplatin (BEP) was elevated to 7.8 ng/dl (<1.7 ng/dl), whereasthe thyroidstimulating hormone (TSH) level was undetectable. We diagnosed the patient with hyperthyroidism and started oral propranolol and thiamazole. Subsequently, his tachycardia and tremor disappeared. On day 12 of the first course of BEP, his hCG level decreased to less than 50,000 mIU/ml. Also, his fT4 level returned to the normal range. Case 2 : A 29-year-old man presented with a left scrotal mass. He was diagnosed with non-seminoma testicular cancer (embryonal carcinoma and choriocarcinoma) with multiple lung, liver and lymph node metastases. On the admission day, his serum hCG and fT4 levels were high ; 3.23 million mIU/ml and 2.2 ng/dl, respectively. The TSH level was low at 0.011 mIU/ml. On day 3 of the first course of BEP, his hCG and fT4 levels increased to 4.5 million mIU/ml and 3.0 ng/dl, respectively. He complained of tachycardia, tremor and hyperhydrosis. He was started on propranolol and potassium iodide. After the treatment, histachycardia, tremor and hyperhidrosisdis appeared. HisfT4 level normalized on day 17 of the first course of BEP. The TSH-like activity of hCG is considered to be responsible for paraneoplastic hyperthyroidism among germ cell cancer patients with high hCG levels. To our knowledge, thisisthe first report of such a case in Japan. However, thisphenomenon isnot rare among patients with extremely high hCG levels. Therefore, we should be careful of these patients.

  7. Introduction: characterization and functions of human T regulatory cells.

    Science.gov (United States)

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  8. Human pancreatic cell autotransplantation following total pancreatectomy.

    Science.gov (United States)

    Traverso, L W; Abou-Zamzam, A M; Longmire, W P

    1981-01-01

    During total pancreaticoduodenectomy for chronic pancreatitis, four patients received an intraportal pancreatic mixed-cell autograft prepared by collagenase digestion. The technique of this autotransplantation procedure was successfully developed using a normal canine pancreas, but has proved difficult to apply in the human chronic pancreatitis model. Our four patients became insulin-dependent, with proof of intrahepatic insulin production in only one patient. Three factors have contributed to the lack of graft success: 1) the preoperative endocrine status, 2) systemic hypotension and portal hypertension secondary to graft infusion, and 3) difficulty applying the successful technique in a normal dog pancreas to an extensively scarred human pancreas. The preoperative insulin response during a glucose tolerance test was blunted or delayed in the three patients tested. An immediate decrease in blood pressure and rise in portal pressure occurred in every patient and prevented infusion of the entire graft (30-50%) in three patients. Unfortunately, the patient with the most compromised insulin status was the only patient able to receive the entire graft. Our experience would indicate that further refinements in technique are necessary to prevent the vascular reaction and allow infusion of the entire graft. Furthermore, normal islet cell function is necessary before a successful graft can be expected. PMID:6781424

  9. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    OpenAIRE

    Mehta, Rajvi H.

    2014-01-01

    The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF...

  10. Progression of Mortality due to Diseases of the Circulatory System and Human Development Index in Rio de Janeiro Municipalities

    Science.gov (United States)

    Soares, Gabriel Porto; Klein, Carlos Henrique; Silva, Nelson Albuquerque de Souza e; de Oliveira, Glaucia Maria Moraes

    2016-01-01

    Background Diseases of the circulatory system (DCS) are the major cause of death in Brazil and worldwide. Objective To correlate the compensated and adjusted mortality rates due to DCS in the Rio de Janeiro State municipalities between 1979 and 2010 with the Human Development Index (HDI) from 1970 onwards. Methods Population and death data were obtained in DATASUS/MS database. Mortality rates due to ischemic heart diseases (IHD), cerebrovascular diseases (CBVD) and DCS adjusted by using the direct method and compensated for ill-defined causes. The HDI data were obtained at the Brazilian Institute of Applied Research in Economics. The mortality rates and HDI values were correlated by estimating Pearson linear coefficients. The correlation coefficients between the mortality rates of census years 1991, 2000 and 2010 and HDI data of census years 1970, 1980 and 1991 were calculated with discrepancy of two demographic censuses. The linear regression coefficients were estimated with disease as the dependent variable and HDI as the independent variable. Results In recent decades, there was a reduction in mortality due to DCS in all Rio de Janeiro State municipalities, mainly because of the decline in mortality due to CBVD, which was preceded by an elevation in HDI. There was a strong correlation between the socioeconomic indicator and mortality rates. Conclusion The HDI progression showed a strong correlation with the decline in mortality due to DCS, signaling to the relevance of improvements in life conditions. PMID:27849263

  11. Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells.

    Science.gov (United States)

    Irie, Naoko; Surani, M Azim

    2017-01-01

    We recently reported a robust and defined culture system for the specification of human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs), both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro (Irie et al. Cell 160: 253-268, 2015). Similar attempts previously produced hPGCLCs from hPSCs at a very low efficiency, and the resulting cells were not fully characterized. A key step, which facilitated efficient hPGCLC specification from hPSCs, was the induction of a "competent" state for PGC fate via the medium containing a cocktail of four inhibitors. The competency of hPSCs can be maintained indefinitely and interchangeably with the conventional/low-competent hPSCs. Specification of hPGCLC occurs following sequential expression of key germ cell fate regulators, notably SOX17 and BLIMP1, as well as initiation of epigenetic resetting over 5 days. The hPGCLCs can be isolated using specific cell surface markers without the need for generating germ cell-specific reporter hPSC lines. This powerful method for the induction and isolation of hPGCLCs can be applied to both hESCs and iPSCs, which can be used for advances in human germ line biology.

  12. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  13. Quantification of Hydrological Responses Due to Climate Change and Human Activities over Various Time Scales in South Korea

    Directory of Open Access Journals (Sweden)

    Sangho Lee

    2017-01-01

    Full Text Available Hydrological responses are being impacted by both climate change and human activities. In particular, climate change and regional human activities have accelerated significantly during the last three decades in South Korea. The variation in runoff due to the two types of factors should be quantitatively investigated to aid effective water resources’ planning and management. In water resources’ planning, analysis using various time scales is useful where rainfall is unevenly distributed. However, few studies analyzed the impacts of these two factors over different time scales. In this study, hydrologic model-based approach and hydrologic sensitivity were used to separate the relative impacts of these two factors at monthly, seasonal and annual time scales in the Soyang Dam upper basin and the Seom River basin in South Korea. After trend analysis using the Mann–Kendall nonparametric test to identify the causes of gradual change, three techniques, such as the double mass curve method, Pettitt’s test and the BCP (Bayesian change point analysis, were used to detect change points caused by abrupt changes in the collected observed runoff. Soil and Water Assessment Tool (SWAT models calibrated from the natural periods were used to calculate the impacts of human activities. Additionally, six Budyko-based methods were used to verify the results obtained from the hydrological-based approach. The results show that impacts of climate change have been stronger than those of human activities in the Soyang Dam upper basin, while the impacts of human activities have been stronger than those of climate change in the Seom River basin. Additionally, the quantitative characteristics of relative impacts due to these two factors were identified at the monthly, seasonal and annual time scales. Finally, we suggest that the procedure used in this study can be used as a reference for regional water resources’ planning and management.

  14. Radiosensitivity of Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R. M.; Medina, V.; Cricco, G.; Mohamed, N.; Martin, G.; Nunez, M.; Croci, M.; Crescenti, E. J.; Rivera, E. S.

    2004-07-01

    Cutaneous melanoma is a skin cancer resulting from the malign transformation of skin-pigment cells, the melanocytes. The radiotherapy, alone or in combination with other treatment, is an important therapy for this disease. the objective of this paper was to determine in vitro the radiosensitivity of two human melanoma cell lines with different metastatic capability: WM35 and MI/15, and to study the effect of drugs on radiobiological parameters. The Survival Curves were adjusted to the mathematical Linear-quadratic model using GrapsPad Prism software. Cells were seeded in RPMI medium (3000-3500 cells/flask), in triplicate and irradiated 24 h later. The irradiation was performed using an IBL 437C H Type equipment (189 TBq, 7.7 Gy/min) calibrated with a TLD 700 dosimeter. The range of Doses covered from 0 to 10 Gy and the colonies formed were counted at day 7th post-irradiation. Results obtained were: for WM35, {alpha}=0.37{+-}0.07 Gy''-1 and {beta}=0.06{+-}0.02 Gy''-2, for M1/15m {alpha}=0.47{+-}0.03 Gy''-1 and {beta}=0.06{+-}0.01 Gy''-2. The {alpha}/{beta} values WM35: {alpha}/{beta} values WM35: {alpha}/{beta}=6.07 Gy and M1/15: {alpha}/{beta}{sub 7}.33 Gy were similar, independently of their metastatic capabillity and indicate that both lines exhibit high radioresistance. Microscopic observation of irradiated cells showed multinuclear cells with few morphologic changes non-compatible with apoptosis. By means of specific fluorescent dyes and flow cytometry analysis we determined the intracellular levels of the radicals superoxide and hydrogen peroxide and their modulation in response to ionizing radiation. The results showed a marked decreased in H{sub 2}O{sub 2} intracellular levels with a simultaneous increase in superoxide that will be part of a mechanism responsible for induction of cell radioresistance. This response triggered by irradiated cells could not be abrogated by different treatments like histamine or the

  15. Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sardar [Chinese Academy of Sciences, Xiamen (China). Inst. of Urban Environment; Peshawar Univ. (Pakistan). Dept. of Environmental Science; Cao, Qing [Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environemntal Sciences

    2012-02-15

    Polycyclic aromatic hydrocarbons (PAH) are persistent, toxic, and carcinogenic contaminants present in soil ecosystem globally. These pollutants are gradually accumulating in wastewater-irrigated soils and lead to the contamination of vegetables. Food chain contamination with PAH is considered as one of the major pathways for human exposure. This study was aimed to investigate the concentrations of PAH in soils and vegetables collected from wastewater-irrigated fields from metropolitan areas of Beijing, China. Origin of PAH, daily intake, and health risks of PAH through consumption of contaminated vegetables were studied. Soil samples were collected from the upper horizon (0-20 cm) of both wastewater-irrigated and reference sites and sieved (<2 mm mesh) and then followed by freeze-drying at -50 C and 123 {+-} 2 Pa. Standing vegetables were also collected from the same sites used for soil sampling and divided into roots and shoots, thoroughly washed with deionized water, and freeze-dried. PAH were extracted using the Soxhlet method with 200 mL DCM for 24 h, and the extracts were cleaned with silica adsorption chromatography prepared with silica gel, alumina, and capped with anhydrous sodium. The final concentrated extracts (soil and vegetable) were analyzed using gas chromatography-mass spectrometry (Agilent 6890). Bioaccumulation factors, daily intake of PAH, and carcinogenicity of PAH were calculated by different statistical equations. Results indicate that the soils and grown vegetables were contaminated with all possible carcinogenic PAH (declared by USEPA 2002) except indeno[1,2,3-c,d]pyrene. The highest concentration (242.9 {mu}g kg{sup -1}) was found for benzo(k)fluoranthene (BkF), while lowest (79.12 {mu}g kg{sup -1}) for benzo[a]pyrene (BaP). The emission sources of PAH were both pyrogenic and petrogenic in nature. However, the total concentrations of PAH were lower than the permissible limits set by different countries like Canada, Denmark and Germany

  16. Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment.

    Science.gov (United States)

    Chaudhari, Pooja; Tian, Lipeng; Deshmukh, Abhijeet; Jang, Yoon-Young

    2016-09-01

    Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations.

  17. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Peng-fei GE; Ji-zhou ZHANG; Xiao-fei WANG; Fan-kai MENG; Wen-chen LI; Yong-xin LUAN; Feng LING; Yi-nan LUO

    2009-01-01

    Aim:The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation.Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy.Due to the dual roles of autophagy in tumor cell survival and death,the effect of autophagy on the destiny of glioma cells remains unclear.In this study,we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells.Methods:The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells,and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA.Cell viability was measured by MTT assay.Apoptosis and cell cycle were detected by flow cytometry.The expression of autophagy related proteins was determined by Western blot.Results:MG-132 inhibited cell proliferation,induced cell death and cell cycle arrest at G~JM phase,and activated autophagy in SHG-44 glioma cells.The expression of autophagy-related Beclin-1 and LC3-1 was significantly up-regulated and part of LC3-1 was converted into LC3-11.However,when SHG-44 glioma cells were co-treated with MG-132 and 3-MA,the cells became less viable,but cell death and cell numbers at G2/M phase increased.Moreover,the accumulation of acidic vesicular organelles was decreased,the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-11 from LC3-1 was also inhibited.Conclusion:Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells,and inhibition of autophagy increases cell death.This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.

  18. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  19. Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14-/- mice.

    Directory of Open Access Journals (Sweden)

    Fiona B Young

    Full Text Available Huntingtin Interacting Protein 14 (HIP14 is a palmitoyl acyl transferase (PAT that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD. HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14-/- share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14-/- model in order to confirm that the defects seen in Hip14-/- mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14-/- model. Our findings yield important insights into HIP14 function in vivo.

  20. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells

    Institute of Scientific and Technical Information of China (English)

    SHI Cheng; SHEN Huan; JIANG Wei; SONG Zhi-hua; WANG Cheng-yan; WEI Li-hui

    2011-01-01

    Background Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background,which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use,especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability.Methods Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propogate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells.Results We generated a new Chinese human embryonic stem cells line,CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines:normal morphology,karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line.Conclusions This newly established Chinese cell line,CH1,which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells,will provide

  1. In Vitro Drug Transfer Due to Drug Retention in Human Epidermis Pretreated with Application of Marketed Estradiol Transdermal Systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Pavurala, Naresh; Yang, Yang; Manda, Prashanth; Katragadda, Usha; Yang, Yongsheng; Shah, Rakhi; Fang, Guodong; Khan, Mansoor A

    2016-12-27

    Study objective was to assess skin-to-skin drug transfer potential that may occur due to drug retention in human epidermis (DRE) pretreated with application of estradiol transdermal drug delivery systems (TDDS) and other estradiol transdermal dosage forms (gels and sprays). TDDS (products-A, B, and C) with varying formulation design and composition, and other estradiol transdermal products (gel and spray) were applied to heat separated human epidermis (HSE) and subjected to in vitro drug permeation study. Amounts of DRE were quantified after 24 h. The DRE with product-B was significantly (P  0.05) amounts of DRE. A separate in vitro permeation study was carried out to determine amounts of drug transferred from drug-retaining epidermis to untreated HSE. The amounts of drug transferred, due to DRE after 8 h, with product-C were significantly (P drug transfer due to the DRE after labeled period of using estradiol TDDS, though the clinical relevance of these findings is yet to be determined.

  2. Bystander apoptosis in human cells mediated by irradiated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr, E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine (Ukraine); Lloyd, David; Finnon, Paul [Centre for Radiation, Chemical and Environmental Hazards of the Health Protection Agency of the United Kingdom (United Kingdom)

    2012-03-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G{sub 0}-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40 Gy acute {gamma}-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 Degree-Sign C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 {+-} 1.8% in plasma-free cultures, 21.6 {+-} 1.1% in cultures treated with plasma from unirradiated blood, 20.2 {+-} 1.4% in cultures with plasma from blood given 2-4 Gy and 16.7 {+-} 3.2% in cultures with plasma from blood given 6-10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  3. Stereological quantification of mast cells in human synovium

    DEFF Research Database (Denmark)

    Damsgaard, T E; Sørensen, Flemming Brandt; Herlin, T;

    1999-01-01

    Mast cells participate in both the acute allergic reaction as well as in chronic inflammatory diseases. Earlier studies have revealed divergent results regarding the quantification of mast cells in the human synovium. The aim of the present study was therefore to quantify these cells in the human...... synovium, using stereological techniques. Different methods of staining and quantification have previously been used for mast cell quantification in human synovium. Stereological techniques provide precise and unbiased information on the number of cell profiles in two-dimensional tissue sections of......, in this case, human synovium. In 10 patients suffering from osteoarthritis a median of 3.6 mast cells/mm2 synovial membrane was found. The total number of cells (synoviocytes, fibroblasts, lymphocytes, leukocytes) present was 395.9 cells/mm2 (median). The mast cells constituted 0.8% of all the cell profiles...

  4. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  5. Human B cell activating factor (BCAF): production by a human T cell tumor line.

    Science.gov (United States)

    Fevrier, M; Diu, A; Mollier, P; Abadie, A; Olive, D; Mawas, C; Theze, J

    1989-01-01

    In a previous study, we demonstrated that supernatants from human T cell clones stimulated by a pair of anti-CD2 monoclonal antibodies cause resting human B cells to become activated and to proliferate in the absence of any other signals. The activity responsible for these effects was shown to be different from already characterized lymphokines and in particular from IL-2 and IL-4, and was named B Cell Activating Factor or BCAF. In this paper, we describe the production of BCAF by a human T cell tumor line T687 after phorbol myristate acetate (PMA) stimulation; this production can be potentiated by phytohemagglutinin (PHA). We further show that the stimulatory phase can be separated from the secretory phase thereby avoiding contamination of BCAF-containing supernatant by PMA and PHA. Supernatants produced under these conditions do not contain either IL-4 or IFN but contain traces of lymphotoxin and 2 to 10 ng/ml of IL-2. The T687 cell line will allow us to obtain a large volume of supernatant for biochemical study and purification of the molecule(s) responsible for BCAF activity.

  6. Cryopreservation and Revival of Human Mesenchymal Stromal Cells.

    Science.gov (United States)

    Haack-Sørensen, Mandana; Ekblond, Annette; Kastrup, Jens

    2016-01-01

    Cell-based therapy is a promising and innovative new treatment for different degenerative and autoimmune diseases, and mesenchymal stromal cells (MSCs) from the bone marrow have demonstrated great therapeutic potential due to their immunosuppressive and regenerative capacities.The establishment of methods for large-scale expansion of clinical-grade MSCs in vitro has paved the way for their therapeutic use in clinical trials. However, the clinical application of MSCs also requires cryopreservation and banking of the cell products. To preserve autologous or allogeneic MSCs for future clinical applications, a reliable and effective cryopreservation method is required.Developing a successful cryopreservation protocol for clinical stem cell products, cryopreservation media, cryoprotectant agents (CPAs), the freezing container, the freezing temperature, and the cooling and warming rate are all aspects which should be considered.A major challenge is the selection of a suitable cryoprotectant which is able to penetrate the cells and yet has low toxicity.This chapter focuses on recent technological developments relevant for the cryopreservation of MSCs using the most commonly used cryopreservation medium containing DMSO and animal serum or human-derived products for research use and the animal protein-free cryopreservation media CryoStor (BioLife Solutions) for clinical use.

  7. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    Science.gov (United States)

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  8. Decitabine nanoconjugate sensitizes human glioblastoma cells to temozolomide.

    Science.gov (United States)

    Cui, Yi; Naz, Asia; Thompson, David H; Irudayaraj, Joseph

    2015-04-01

    In this study, we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) based nanoconjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells than that with the free drug. After synthesis, the highly efficient uptake process and intracellular dynamics of this nanoconjugate were monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nanovector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing positive feedback to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to the excellent internalization and endolysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than that of free drug molecules. Hence, the synthesized nanoconjugate and temozolomide could act in synergy to deliver a more potent and long-term antiproliferative effect against malignant GBM cells.

  9. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    OpenAIRE

    Ham, Hyoungjun; Billadeau, Daniel D.

    2014-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synaps...

  10. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  11. Loratadine dysregulates cell cycle progression and enhances the effect of radiation in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Cook John A

    2010-02-01

    Full Text Available Abstract Background The histamine receptor-1 (H1-antagonist, loratadine has been shown to inhibit growth of human colon cancer xenografts in part due to cell cycle arrest in G2/M. Since this is a radiation sensitive phase of the cell cycle, we sought to determine if loratadine modifies radiosensitivity in several human tumor cell lines with emphasis on human colon carcinoma (HT29. Methods Cells were treated with several doses of loratadine at several time points before and after exposure to radiation. Radiation dose modifying factors (DMF were determined using full radiation dose response survival curves. Cell cycle phase was determined by flow cytometry and the expression of the cell cycle-associated proteins Chk1, pChk1ser345, and Cyclin B was analyzed by western blot. Results Loratadine pre-treatment of exponentially growing cells (75 μM, 24 hours increased radiation-induced cytotoxicity yielding a radiation DMF of 1.95. However, treatment of plateau phase cells also yielded a DMF of 1.3 suggesting that mechanisms other than cell cycle arrest also contribute to loratadine-mediated radiation modification. Like irradiation, loratadine initially induced G2/M arrest and activation of the cell-cycle associated protein Chk1 to pChk1ser345, however a subsequent decrease in expression of total Chk1 and Cyclin B correlated with abrogation of the G2/M checkpoint. Analysis of DNA repair enzyme expression and DNA fragmentation revealed a distinct pattern of DNA damage in loratadine-treated cells in addition to enhanced radiation-induced damage. Taken together, these data suggest that the observed effects of loratadine are multifactorial in that loratadine 1 directly damages DNA, 2 activates Chk1 thereby promoting G2/M arrest making cells more susceptible to radiation-induced DNA damage and, 3 downregulates total Chk1 and Cyclin B abrogating the radiation-induced G2/M checkpoint and allowing cells to re-enter the cell cycle despite the persistence of

  12. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  13. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  14. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  15. Loss of CD44dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus

    Science.gov (United States)

    Canté-Barrett, Kirsten; Mendes, Rui D.; Li, Yunlei; Vroegindeweij, Eric; Pike-Overzet, Karin; Wabeke, Tamara; Langerak, Anton W.; Pieters, Rob; Staal, Frank J. T.; Meijerink, Jules P. P.

    2017-01-01

    Human T-cell development is less well studied than its murine counterpart due to the lack of genetic tools and the difficulty of obtaining cells and tissues. Here, we report the transcriptional landscape of 11 immature, consecutive human T-cell developmental stages. The changes in gene expression of cultured stem cells on OP9-DL1 match those of ex vivo isolated murine and human thymocytes. These analyses led us to define evolutionary conserved gene signatures that represent pre- and post-αβ T-cell commitment stages. We found that loss of dim expression of CD44 marks human T-cell commitment in early CD7+CD5+CD45dim cells, before the acquisition of CD1a surface expression. The CD44−CD1a− post-committed thymocytes have initiated in frame T-cell receptor rearrangements that are accompanied by loss of capacity to differentiate toward myeloid, B- and NK-lineages, unlike uncommitted CD44dimCD1a− thymocytes. Therefore, loss of CD44 represents a previously unrecognized human thymocyte stage that defines the earliest committed T-cell population in the thymus. PMID:28163708

  16. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  17. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  18. Derivation and differentiation of haploid human embryonic stem cells.

    Science.gov (United States)

    Sagi, Ido; Chia, Gloryn; Golan-Lev, Tamar; Peretz, Mordecai; Weissbein, Uri; Sui, Lina; Sauer, Mark V; Yanuka, Ofra; Egli, Dieter; Benvenisty, Nissim

    2016-04-07

    Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.

  19. Human embryonic stem cells and respect for life

    OpenAIRE

    Meyer, J.(CERN, Geneva, Switzerland)

    2000-01-01

    The purpose of this essay is to stimulate academic discussion about the ethical justification of using human primordial stem cells for tissue transplantation, cell replacement, and gene therapy. There are intriguing alternatives to using embryos obtained from elective abortions and in vitro fertilisation to reconstitute damaged or dysfunctional human organs. These include the expansion and transplantation of latent adult progenitor cells.

  20. Colloquium paper: human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency.

    Science.gov (United States)

    Hancock, Angela M; Witonsky, David B; Ehler, Edvard; Alkorta-Aranburu, Gorka; Beall, Cynthia; Gebremedhin, Amha; Sukernik, Rem; Utermann, Gerd; Pritchard, Jonathan; Coop, Graham; Di Rienzo, Anna

    2010-05-11

    Human populations use a variety of subsistence strategies to exploit an exceptionally broad range of ecoregions and dietary components. These aspects of human environments have changed dramatically during human evolution, giving rise to new selective pressures. To understand the genetic basis of human adaptations, we combine population genetics data with ecological information to detect variants that increased in frequency in response to new selective pressures. Our approach detects SNPs that show concordant differences in allele frequencies across populations with respect to specific aspects of the environment. Genic and especially nonsynonymous SNPs are overrepresented among those most strongly correlated with environmental variables. This provides genome-wide evidence for selection due to changes in ecoregion, diet, and subsistence. We find particularly strong signals associated with polar ecoregions, with foraging, and with a diet rich in roots and tubers. Interestingly, several of the strongest signals overlap with those implicated in energy metabolism phenotypes from genome-wide association studies, including SNPs influencing glucose levels and susceptibility to type 2 diabetes. Furthermore, several pathways, including those of starch and sucrose metabolism, are enriched for strong signals of adaptations to a diet rich in roots and tubers, whereas signals associated with polar ecoregions are overrepresented in genes associated with energy metabolism pathways.

  1. High resolution microfluidic single cell transcriptional profiling reveals clinically relevant subtypes among human stem cell populations commonly utilized in cell-based therapies

    Directory of Open Access Journals (Sweden)

    Robert C. Rennert

    2016-03-01

    Full Text Available Stem cell therapies can promote neural repair and regeneration, yet controversy regarding optimal cell source and mechanism of action has slowed clinical translation, potentially due to undefined cellular heterogeneity. Single cell resolution is needed to identify clinically relevant subpopulations with the highest therapeutic relevance. We combine single cell microfluidic analysis with advanced computational modeling to study for the first time two common sources for cell-based therapies, human NSCs and MSCs. This methodology has the potential to logically inform cell source decisions for any clinical application.

  2. Theoretical method for estimation of power loss due to mismatch in solar cell I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasamurthy, N.; Malathi, B.; Mathur, R.S.

    1978-01-01

    In order to generate power from the solar panels at a required voltage, suitable number of cells should be connected in series and parallel. There exists a mismatch in the solar cell I-V characteristics, when they are produced in a lot. When such cells are connected in a series parallel array, power loss would occur due to the mismatch. A theoretical approach is made to compute the power loss. This would suggest the designer to select proper combination of cells for minimum power loss of any configuration of the solar panel.

  3. First report of a human case of polycystic echinococcosis due to Echinococcus vogeli from neotropical area of Peru, South America.

    Science.gov (United States)

    Somocurcio, José R; Sánchez, Elizabeth L; Náquira, César; Schilder, José; Rojas, Francisco; Chacón, Pedro; Yabar, Alejandro

    2004-01-01

    We report a human case of polycystic hidatidosis due to Echinococcus vogeli from Contamana (Department of Loreto) village located in the central jungle of Peru. The patient is a 44 year-old lady, teacher, who carried a painless liver mass since a year ago. She was submitted to abdominal surgery and the liver mass was removed and showed multiple cysts containing colorless liquid as is showed in the polycystic hidatidosis. The morphology and measure of the hooks obtained from the liquid contained in the cysts are from Echinococcus vogeli. It is the first report of this parasitism in Perú.

  4. Acute post-infectious cerebellar ataxia due to co-infection of human herpesvirus-6 and adenovirus mimicking myositis.

    Science.gov (United States)

    Naselli, Aldo; Pala, Giovanna; Cresta, Federico; Finetti, Martina; Biancheri, Roberta; Renna, Salvatore

    2014-11-26

    Acute cerebellar ataxia (ACA) is a relatively common neurological disease in children. Most common types of ACA are acute post-infectious (APCA) and acute disseminated encephalomyelitis (ADEM). Less common but important causes include opsoclonus-myoclonus syndrome (OMS) and acute cerebellitis. Cerebellar neoplasms and acute hydrocephalus are additional causes of paediatric ataxia. APCA is the most common cause of ACA in children, comprising about 30-50% of total cases. This is a report about an immunocompetent 4-yrs-old male affected by APCA, due to co-infection by human herpesvirus-6 (HHV-6) and adenovirus, with symptoms mimicking myositis.

  5. Induction of cell death by ascorbic acid derivatives in human renal carcinoma and glioblastoma cell lines.

    Science.gov (United States)

    Makino, Y; Sakagami, H; Takeda, M

    1999-01-01

    Sodium-L-ascorbate, L-ascorbic acid, D-isoascorbic acid, sodium 5,6-benzylidene-L-ascorbate and sodium-6-beta-O-galactosyl-L-ascorbate, which produce ascorbyl radicals during the oxidative degradation, also induced cytotoxicity against cultured human renal carcinoma (TC-1) and glioblastoma multiform tumor (T98G) cell lines. On the other hand, L-ascorbic acid 2-phosphate magnesium and L-ascorbic acid 2-sulfate dipotassium salt, which do not produce the ascorbyl radical, were inactive. This suggests the possible role of the ascorbyl radical for cell death induction. T98G cells were more resistant to ascorbate analogs than TC-1 and HL-60 cells, possibly due to higher intracellular glutathione concentrations. Ascorbate treatment induced rapid elevation of both intracellular concentration of cAMP and Ca2+ in HL-60 cells, but not in TC-1 and T98G cells. However, the elevation of cAMP by theophyline and N,2-dibutyryl adenosine 3,5 cyclic monophosphate (dibutyryl cAMP) resulted in a decrease in the viable cell number. This suggests the possible role of cAMP for ascorbate-induced cell death.

  6. Proteomic analysis of human blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    2013-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the blastocyst and can differentiate into any cell type in the human body. These cells hold a great potential for regenerative medicine, but to obtain enough cells needed for medical treatment, culture is required......, the blastocoel fluid, which is in contact with all the cells in the blastocyst, including hESCs. Fifty-three surplus human blastocysts were donated after informed consent, and blastocoel fluid was isolated by micromanipulation. Using highly sensitive nano-high-pressure liquid chromatography-tandem mass...

  7. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  8. Derivation and characterization of human embryonic stem cells on human amnion epithelial cells.

    Science.gov (United States)

    Lai, Dongmei; Wang, Yongwei; Sun, Jian; Chen, Yifei; Li, Ting; Wu, Yi; Guo, Lihe; Wei, Chunsheng

    2015-05-07

    Culture conditions that support the growth of undifferentiated human embryonic stem cells (hESCs) have already been established using primary human amnion epithelial cells (hAECs) as an alternative to traditional mitotically inactivated mouse embryonic fibroblasts (MEFs). In the present work, inner cell masses (ICM) were isolated from frozen embryos obtained as donations from couples undergoing in vitro fertilization (IVF) treatment and four new hESC lines were derived using hAECs as feeder cells. This feeder system was able to support continuous growth of what were, according to their domed shape and markers, undifferentiated naïve-like hESCs. Their pluripotent potential were also demonstrated by embryoid bodies developing to the expected three germ layers in vitro and the productions of teratoma in vivo. The cell lines retained their karyotypic integrity for over 35 passages. Transmission electron microscopy (TEM) indicated that these newly derived hESCs consisted mostly of undifferentiated cells with large nuclei and scanty cytoplasm. The new hESCs cultured on hAECs showed distinct undifferentiated characteristics in comparison to hESCs of the same passage maintained on MEFs. This type of optimized culture system may provide a useful platform for establishing clinical-grade hESCs and assessing the undifferentiated potential of hESCs.

  9. Dynamic behaviour of human neuroepithelial cells in the developing forebrain

    Science.gov (United States)

    Subramanian, Lakshmi; Bershteyn, Marina; Paredes, Mercedes F.; Kriegstein, Arnold R.

    2017-01-01

    To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. PMID:28139695

  10. Narcolepsy: Autoimmunity, Effector T Cell Activation Due to Infection, or T Cell Independent, Major Histocompatibility Complex Class II Induced Neuronal Loss?

    Science.gov (United States)

    Fontana, Adriano; Gast, Heidemarie; Reith, Walter; Recher, Mike; Birchler, Thomas; Bassetti, Claudio L.

    2010-01-01

    Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of…

  11. Narcolepsy: Autoimmunity, Effector T Cell Activation Due to Infection, or T Cell Independent, Major Histocompatibility Complex Class II Induced Neuronal Loss?

    Science.gov (United States)

    Fontana, Adriano; Gast, Heidemarie; Reith, Walter; Recher, Mike; Birchler, Thomas; Bassetti, Claudio L.

    2010-01-01

    Human narcolepsy with cataplexy is a neurological disorder, which develops due to a deficiency in hypocretin producing neurons in the hypothalamus. There is a strong association with human leucocyte antigens HLA-DR2 and HLA-DQB1*0602. The disease typically starts in adolescence. Recent developments in narcolepsy research support the hypothesis of…

  12. Human pluripotent stem cells:Towards therapeutic development for the treatment of lifestyle diseases

    Institute of Scientific and Technical Information of China (English)

    Miwako; Nishio; Masako; Nakahara; Akira; Yuo; Kumiko; Saeki

    2016-01-01

    There are two types of human pluripotent stem cells: Embryonic stem cells(ESCs) and induced pluripotent stem cells(iPSCs),both of which launched themselves on clinical trials after having taken measures to overcome problems: Blocking rejections by immunosuppressants regarding ESCs and minimizing the risk of tumorigenicity by depleting exogenous gene components regarding iP SCs.It is generally assumed that clinical applications of human pluripotent stem cells should be limited to those cases where there are no alternative measures for treatments because of the risk in transplanting those cells to living bodies.Regarding lifestyle diseases,we have already several therapeutic options,and thus,development of human pluripotent stem cell-based therapeutics tends to be avoided.Nevertheless,human pluripotent stem cells can contribute to the development of new therapeutics in this field.As we will show,there is a case where only a short-term presence of human pluripotent stem-derived cells can exert long-term therapeutic effects even after they are rejected.In those cases,immunologically rejections of ESC-or allogenic iP SC-derived cells may produce beneficial outcomes by nullifying the risk of tumorigenesis without deterioration of therapeutic effects.Another utility of human pluripotent stem cells is the provision of an innovative tool for drug discovery that are otherwise unavailable.For example,clinical specimens of human classical brown adipocytes(BAs),which has been attracting a great deal of attention as a new target of drug discovery for the treatment of metabolic disorders,are unobtainable from living individuals due to scarcity,fragility and ethical problems.However,BA can easily be produced from human pluripotent stem cells.In this review,we will contemplate potential contribution of human pluripotent stem cells to therapeutic development for lifestyle diseases.

  13. Painful scoliosis due to superposed giant cell bone tumor and aneurysmal bone cyst in a child.

    Science.gov (United States)

    Togral, Guray; Arikan, Murat; Hasturk, Askin E; Gungor, Safak

    2014-07-01

    Giant cell bone tumors are the most common precursor lesions of aneurysmal bone cysts (ABCs) developing secondarily. In giant cell bone tumors containing an explicit ABC component, the observation of the solid component of the giant cell bone tumor plays a critical role in the separation of the primary ABC. In general, ABC cases together with giant cell tumors in the bone are diagnosed histopathologically. The combination of giant cell bone tumor with superposed ABC and that of painful scoliosis with backache is rarely seen in children. In this case study, we discussed the diagnosis and the treatment of a giant cell tumor and superposed an ABC present in the fifth lumbar spine in a pediatric patient admitted to our clinic with a complaint of acute scoliotic back pain.

  14. [Nuclear heterogeneity and proliferative capacity of human adipose derived MSC-like cells].

    Science.gov (United States)

    Lavrov, A V; Smirnichina, S A

    2010-01-01

    Adipose derived stem cells (ADSCs) are MSC-like cells which could be easily used for regenerative medicine. Here, the morphology and proliferative capacity of human ADSCs is discribed. ADSCs were analyzed after one month of cultivation at a density of 10 cells/cm2. 21 colonies were counted. Few atypical cells (huge nuclei and cytoplasm) were found in 9 out of 17 colonies analyzed. ANOVA demonstrated that colonies also differed (P = 0.0025) in nuclei dimensions and scatter in the dimensions in each colony. Nuclei dimensions and cell density logarithms correlated in reverse proportion (-0.7; P = 0.002). Thus, ADSCs were heterogeneous and represented two types of cells: small highly proliferative and large low proliferative cells. Cell heterogeneity observed in some colonies might be due to cells registered at different cell cycle phases. Stable and typical morphology, colony-formation capability and high proliferative capacity of cells indicate visceral adipose tissue as a rich source of ADSCs.

  15. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line.

    Science.gov (United States)

    Ding, Chenhui; Huang, Sunxing; Qi, Quan; Fu, Rui; Zhu, Wanwan; Cai, Bing; Hong, Pingping; Liu, Zhengxin; Gu, Tiantian; Zeng, Yanhong; Wang, Jing; Xu, Yanwen; Zhao, Xiaoyang; Zhou, Qi; Zhou, Canquan

    2015-10-01

    Human embryonic stem cells (hESCs) have long been considered as a promising source for cell replacement therapy. However, one major obstacle for the use of these cells is immune compatibility. Histocompatible human parthenogenetic ESCs have been reported as a new method for generating human leukocyte antigen (HLA)-matched hESCs. To further investigate the possibility of obtaining histocompatible stem cells from uniparental embryos, we tried to produce androgenetic haploid human embryos by injecting a single spermatozoon into enucleated human oocyte, and establish human androgenetic embryonic stem (hAGES) cell lines from androgenetic embryos. In the present study, a diploid hAGES cell line has been established, which exhibits typical features of human ESCs, including the expression of pluripotency markers, having differentiation potential in vitro and in vivo, and stable propagation in an undifferentiated state (>P40). Bisulfite sequencing of the H19, Snrpn, Meg3, and Kv imprinting control regions suggested that hAGES cells maintained to a certain extent a sperm methylation pattern. Genome-wide single nucleotide polymorphism, short tandem repeat, and HLA analyses revealed that the hAGES cell genome was highly homozygous. These results suggest that hAGES cells from spermatozoon could serve as a useful tool for studying the mechanisms underlying genomic imprinting in humans. It might also be used as a potential resource for cell replacement therapy as parthenogenetic stem cells.

  16. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  17. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  18. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    Human tissue legislation in South Africa: Focus on stem cell research and therapy. ... Related Substances Act, the Consumer Protection Act, the Children's Act and ... human tissue legislation in SA, the legislator has an opportunity to mirror the ...

  19. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    Science.gov (United States)

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.

  20. Human pancreatic β-cell G1/S molecule cell cycle atlas.

    Science.gov (United States)

    Fiaschi-Taesch, Nathalie M; Kleinberger, Jeffrey W; Salim, Fatimah G; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E; Takane, Karen K; Scott, Donald K; Stewart, Andrew F

    2013-07-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical "atlas" of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion.

  1. Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids

    Science.gov (United States)

    Sagie, Shira; Toubiana, Shir; Hartono, Stella R.; Katzir, Hagar; Tzur-Gilat, Aya; Havazelet, Shany; Francastel, Claire; Velasco, Guillaume; Chédin, Frédéric; Selig, Sara

    2017-01-01

    DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction. PMID:28117327

  2. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...

  3. Human embryonic stem cell research: ethical and legal issues.

    Science.gov (United States)

    Robertson, J A

    2001-01-01

    The use of human embryonic stem cells to replace damaged cells and tissues promises future hope for the treatment of many diseases. However, many countries now face complex ethical and legal questions as a result of the research needed to develop these cell-replacement therapies. The challenge that must be met is how to permit research on human embryonic tissue to occur while maintaining respect for human life generally.

  4. Degradation of CIGS solar cells due to the migration of alkali-elements

    NARCIS (Netherlands)

    Theelen, M.; Barreau, N.; Hans, V.; Steijvers, H.; Vroon, Z.; Zeman, M.

    2015-01-01

    Non-encapsulated CIGS solar cells with different contents of sodium (Na) and potassium (K) were simultaneously exposed to damp heat and illumination. The solar cells with higher alkali (Na, K) content exhibited higher initial conversion efficiencies, but degraded severely within 100 hours, while sam

  5. Epigenetic Regulation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Qidong eHu

    2012-11-01

    Full Text Available Recently, there has been tremendous progress in characterizing the transcriptional network regulating hESCs (MacArthur et al., 2009; Loh et al., 2011, including those signaling events mediated by Oct4, Nanog and Sox2. There is growing interest in the epigenetic machinery involved in hESC self-renewal and differentiation. In general, epigenetic regulation includeschromatin reorganization, DNA modification and histone modification, which are not directly related to alterations in DNA sequences. Various protein complexes, includingPolycomb, trithorax, NuRD, SWI/SNF andOct4, have been shown to play critical roles in epigenetic control of hESC maintenance and differentiation. Hence, we will formally review recent advances in unraveling the multifaceted role of epigenetic regulation in hESC self-renewal and induced differentiation, particularly with respect to chromatin remodeling and DNA methylation events. Unraveling the molecular mechanisms underlying the maintenance/differentiation of hESCs and reprogramming of somatic cells will greatly strengthen our capacity to generate various types of cells to treat human diseases.

  6. Mast cells and human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Fabio Grizzi; Barbara Franceschini; Maurizio Chiriva-Internati; Young Liu; Paul L. Hermonat; Nicola Dioguardi

    2003-01-01

    AIM: To investigate the density of mast cells (MCs) in human hepatocellular carcinoma (HCC), and to determine whether the MCs density has any correlations with histopathological grading, staging or some baseline patient characteristics.METHODS: Tissue sections of 22 primary HCCs were histochemically stained with toluidine blue, in order to be able to quantify the MCs in and around the neoplasm using a computer-assisted image analysis system. HCC was staged and graded by two independent pathologists. To identify the sinusoidal capillarisation of each specimen 3μm thick sections were histochemically stained with sirius red, and semi-quantitatively evaluated by two independent observers. The data were statistically analysed using Spearman′s correlation and Student′s t-test when appropriate.RESULTS: MCs density did not correlate with the age or sex of the patients, the serum alanine aminotransferase (ALT) or aspartate aminotransferase (AST) levels, or the stage or grade of the HCC. No significant differences were found between the MCs density of the patients with and without hepatitis C virus infection, but they were significantly higher in the specimens showing marked sinusoidal capillarisation.CONCLUSION: The lack of any significant correlation between MCs density and the stage or grade of the neoplastic lesions suggests that there is no causal relationship between MCs recruitment and HCC. However, as capillarisation proceeds concurrently with arterial blood supply during hepatocarcinogenesis, MCs may be considered of primary importance in the transition from sinusoidal to capillary-type endothelial cells and the HCC growth.

  7. A Model for Compression-Weakening Materials and the Elastic Fields due to Contractile Cells

    CERN Document Server

    Rosakis, Phoebus; Ravichandran, Guruswami

    2014-01-01

    We construct a homogeneous, nonlinear elastic constitutive law, that models aspects of the mechanical behavior of inhomogeneous fibrin networks. Fibers in such networks buckle when in compression. We model this as a loss of stiffness in compression in the stress-strain relations of the homogeneous constitutive model. Problems that model a contracting biological cell in a finite matrix are solved. It is found that matrix displacements and stresses induced by cell contraction decay slower (with distance from the cell) in a compression weakening material, than linear elasticity would predict. This points toward a mechanism for long-range cell mechanosensing. In contrast, an expanding cell would induce displacements that decay faster than in a linear elastic matrix.

  8. A model for compression-weakening materials and the elastic fields due to contractile cells

    Science.gov (United States)

    Rosakis, Phoebus; Notbohm, Jacob; Ravichandran, Guruswami

    2015-12-01

    We construct a homogeneous, nonlinear elastic constitutive law that models aspects of the mechanical behavior of inhomogeneous fibrin networks. Fibers in such networks buckle when in compression. We model this as a loss of stiffness in compression in the stress-strain relations of the homogeneous constitutive model. Problems that model a contracting biological cell in a finite matrix are solved. It is found that matrix displacements and stresses induced by cell contraction decay slower (with distance from the cell) in a compression weakening material than linear elasticity would predict. This points toward a mechanism for long-range cell mechanosensing. In contrast, an expanding cell would induce displacements that decay faster than in a linear elastic matrix.

  9. Derivation, propagation and differentiation of human embryonic stem cells.

    Science.gov (United States)

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  10. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  11. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  12. Extracellular DNA affects NO content in human endothelial cells.

    Science.gov (United States)

    Efremova, L V; Alekseeva, A Yu; Konkova, M S; Kostyuk, S V; Ershova, E S; Smirnova, T D; Konorova, I L; Veiko, N N

    2010-08-01

    Fragments of extracellular DNA are permanently released into the blood flow due to cell apoptosis and possible de novo DNA synthesis. To find out whether extracellular DNA can affect the synthesis of nitric oxide (NO), one of key vascular tone regulators, we studied in vitro effects of three artificial DNA probes with different sequences and 10 samples of extracellular DNA (obtained from healthy people and patients with hypertension and atherosclerosis) on NO synthesis in endothelial cell culture (HUVEC). For detection of NO in live cells and culture medium, we used a NO-specific agent CuFL penetrating into the cells and forming a fluorescent product FL-NO upon interaction with NO. Human genome DNA fragments affected the content of NO in endothelial cells; this effect depended on both the base sequence and concentration of DNA fragments. Addition of artificial DNA and extracellular DNA from healthy people into the cell culture in a low concentration (5 ng/ml) increased the detected NO concentration by 4-fold at most. Cytosine-guanine (CG)-rich fragment of the transcribed sequence of ribosomal repeat was the most powerful NO-inductor. The effect of DNA fragments on NO synthesis was comparable with that of low doses of oxidizing agents, H(2)O(2) and 17β-estradiol. Extracellular DNA samples obtained from patients with hypertension and atherosclerosis decreased NO content in cells and medium by 1.3-28 times compared to the control; the effect correlated with the content of CG-rich sequences.

  13. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  14. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis.

    Science.gov (United States)

    Rosner, Margit; Dolznig, Helmut; Schipany, Katharina; Mikula, Mario; Brandau, Oliver; Hengstschläger, Markus

    2011-09-01

    Besides their putative usage for therapies, stem cells are a promising tool for functional studies of genes involved in human genetic diseases or oncogenesis. For this purpose induced pluripotent stem (iPS) cells can be derived from patients harbouring specific mutations. In contrast to adult stem cells, iPS cells are pluripotent and can efficiently be grown in culture. However, iPS cells are modulated due to the ectopic induction of pluripotency, harbour other somatic mutations accumulated during the life span of the source cells, exhibit only imperfectly cleared epigenetic memory of the source cell, and are often genomically instable. In addition, iPS cells from patients only allow the investigation of mutations, which are not prenatally lethal. Embryonic stem (ES) cells have a high proliferation and differentiation potential, but raise ethical issues. Human embryos, which are not transferred in the course of in vitro fertilization, because of preimplantation genetic diagnosis of a genetic defect, are still rarely donated for the establishment of ES cell lines. In addition, their usage for studies on gene functions for oncogenesis is hampered by the fact the ES cells are already tumorigenic per se. In 2003 amniotic fluid stem (AFS) cells have been discovered, which meanwhile have been demonstrated to harbour the potential to differentiate into cells of all three germ layers. Monoclonal human AFS cell lines derived from amniocenteses have a high proliferative potential, are genomically stable and are not associated with ethical controversies. Worldwide amniocenteses are performed for routine human genetic diagnosis. We here discuss how generation and banking of monoclonal human AFS cell lines with specific chromosomal aberrations or monogenic disease mutations would allow to study the functional consequences of disease causing mutations. In addition, recently a protocol for efficient and highly reproducible siRNA-mediated long-term knockdown of endogenous gene

  15. Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells

    Science.gov (United States)

    Kleiner, Karin; Jakes, Peter; Scharner, Sebastian; Liebau, Verena; Ehrenberg, Helmut

    2016-06-01

    The electrode balancing defines the state of charge (SoC) of a lithium-ion cell and is a crucial point considering lifetime and safe operation. The electrode balancing varies during fatigue which results in changes of the individual electrode potentials for fixed (dis-)charge voltages of the full-cell. Therefore the materials are cycled closer or beyond their electrochemical (meta-)stability window. This leads to accelerated degradation reactions or even to safety problems. The origin of the changes in the cell balancing is the limited amount of mobile lithium, which decreases during cycling due to the loss of lithiated active material a), the reduction of accessible lattice sites in the active materials b) and the loss of active lithium outside the electrodes c). In most of the commercial cells a) and b) can be attributed to the cathode, c) occurs due to reactions on the anode surface. Changes in the electrode balancing of three differently fatigued 7 Ah lithium-ion cells are investigated by electrochemical cycling of full- and half-cells, assembled from cell components of the fatigued 7 Ah cells. Based on these results the observed performance drop is assigned to a), b) or c) mentioned above and the capacity losses are quantified.

  16. CELL EXPANSION-DEPENDENT INFLAMMATORY AND METABOLIC PROFILE OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    Directory of Open Access Journals (Sweden)

    PATRICIA PRIETO

    2016-11-01

    Full Text Available Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to cell aging related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression and to anti-inflammatory cytokines (i.e., HO1 and Arg1 until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6 and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies.

  17. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Prieto, Patricia; Fernández-Velasco, María; Fernández-Santos, María E.; Sánchez, Pedro L.; Terrón, Verónica; Martín-Sanz, Paloma; Fernández-Avilés, Francisco; Boscá, Lisardo

    2016-01-01

    Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to “cell aging” related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression) and to anti-inflammatory cytokines (i.e., HO1 and Arg1) until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6, and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies. PMID:27899899

  18. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  19. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Xiaoti Xu

    2015-09-01

    Full Text Available Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  20. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.

  1. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation.

    Science.gov (United States)

    Magaldi, Thomas G; Almstead, Laura L; Bellone, Stefania; Prevatt, Edward G; Santin, Alessandro D; DiMaio, Daniel

    2012-01-05

    Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 that is limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Magaldi, Thomas G.; Almstead, Laura L. [Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005 (United States); Bellone, Stefania [Department of Obstetrics and Gynecology and Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520-8063 (United States); Prevatt, Edward G. [Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005 (United States); Santin, Alessandro D. [Department of Obstetrics and Gynecology and Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520-8063 (United States); Yale Comprehensive Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028 (United States); DiMaio, Daniel, E-mail: daniel.dimaio@yale.edu [Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005 (United States); Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040 (United States); Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, P.O. Box 208024 (United States); Yale Comprehensive Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028 (United States)

    2012-01-05

    Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 that is limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells.

  3. [Elimination of large pyroninophilic cells due to the effect of phytohemagglutinin].

    Science.gov (United States)

    Bykovskaia, S N; Bykovskiĭ, A F; Shepelenko, A M

    1975-09-01

    Large pyroninophilic lymphocytes adsorbed on the surface of target-cells disappeared after phytohemagglutinin (PHA) addition. Incubation during 45 minutes in the presence of PHA did not reveal cisternas of the granular endoplasmatic reticulum and the number of mitochondrias decreased. The H3-thymidine-labeled cells were almost eliminated. There appeared population of small lymphocytes with even outline and clear cytoplasm, poor in organellas, with ribosomas freely scattered in it. After 24--48 hours of incubation they transformed into blasts, large cells with clear nucleus and clear cytoplasm in which no cisternas of granular endoplasmatic reticulum were revealed.

  4. Pancreatic α-cell hyperplasia and hyperglucagonemia due to a mutation of the glucagon

    DEFF Research Database (Denmark)

    Larger, Etienne; Albrechtsen, Nicolai Jacob Wewer; Hansen, L.H.

    2016-01-01

     µM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads...... to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells....

  5. Delayed presentation of severe combined immunodeficiency due to prolonged maternal T cell engraftment

    Science.gov (United States)

    Al-Muhsen, Saleh Z.

    2010-01-01

    Severe combined immunodeficiency (SCID) is a primary immunodeficiency disorder with heterogenous genetic etiologies. We describe a typical case in a 9-year-old boy that was masked by a clinically functional maternal T cell engraftment leading to late presentation with Pneumocystis jiroveci pneumonia and cytomegalovirus infection, probably following exhaustion of maternally engrafted cells. Based on immunological findings, he had a T- B+SCID phenotype. This report suggests that in rare cases, engrafted maternal T cell might persist for long time leading to partial constitution of immune function and delayed clinical presentation of SCID. PMID:20427943

  6. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  7. Stem Cells: A Renaissance in Human Biology Research.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.

  8. Estimated red blood cell thickness in microcytic anemia due to iron deficiency anemia and thalassemia

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2009-05-01

    Full Text Available "nAnemia is one of the most common hematological disorders that are still the present in all countries around the world. Microcytic anemia is a specific kind of anemia presenting with small red blood cell. In this paper, the author discusses on the estimated red blood cell thickness, a new proposed parameter, comparing between that of iron deficiency anemia and thalassemia and further extrapolate on the clinical implication.

  9. Delayed presentation of severe combined immunodeficiency due to prolonged maternal T cell engraftment

    OpenAIRE

    Al-Muhsen, Saleh Z.

    2010-01-01

    Severe combined immunodeficiency (SCID) is a primary immunodeficiency disorder with heterogenous genetic etiologies. We describe a typical case in a 9-year-old boy that was masked by a clinically functional maternal T cell engraftment leading to late presentation with Pneumocystis jiroveci pneumonia and cytomegalovirus infection, probably following exhaustion of maternally engrafted cells. Based on immunological findings, he had a T- B+SCID phenotype. This report suggests that in rare cases, ...

  10. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells.

    Science.gov (United States)

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J; Bhatia, Mick

    2015-09-08

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs.

  11. Ultrastructure of interstitial cells in subserosa of human colon

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Vanderwinden, Jean-Marie; Hansen, Alastair;

    2013-01-01

    We studied the ultrastructure of interstitial cells in the subserosal/adventitial layer in human colon. An interstitial cell type with an ultrastructure intermediate between fibroblast-like cells (FLC) and interstitial cells of Cajal was identified (IC-SS). IC-SS had thin and flattened branching...

  12. Differentiation of neuroepithelia from human embryonic stem cells

    OpenAIRE

    2009-01-01

    We describe the method for in vitro differentiation of neuroepithelial cells from human embryonic stem cells under a chemically defined condition. The protocol is established following the fundamental principle of in vivo neuroectodermal specification. The primitive neuroepithelial cells generated by this protocol can be further induced into neuronal and glia cells with forebrain, mid/hind brain, and spinal cord identities.

  13. Identification of a candidate stem cell in human gallbladder.

    Science.gov (United States)

    Manohar, Rohan; Li, Yaming; Fohrer, Helene; Guzik, Lynda; Stolz, Donna Beer; Chandran, Uma R; LaFramboise, William A; Lagasse, Eric

    2015-05-01

    There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  14. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  15. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  16. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  17. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... working with cells derived from one individual or animal species, only to eventually learn that the cells..., morphology, pathologic or disease-state, hybrid or mixed culture, feeder cells, date of origin, etc), the STR... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National...

  18. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways.

    Science.gov (United States)

    Martínez-Revollar, Gabriela; Garay, Erika; Martin-Tapia, Dolores; Nava, Porfirio; Huerta, Miriam; Lopez-Bayghen, Esther; Meraz-Cruz, Noemí; Segovia, José; González-Mariscal, Lorenza

    2015-11-15

    The lack of a successful treatment for triple-negative breast cancer demands the study of the heterogeneity of cells that constitute these tumors. With this aim, two clones from triple negative breast MDA-MB-231 cancer cells were isolated: One with fibroblast-like appearance (F) and another with semi-epithelial (SE) morphology. Cells of the F clone have a higher migration and tumorigenesis capacity than SE cells, suggesting that these cells are in a more advanced stage of epithelial to mesenchymal transformation. In agreement, F cells have a diminished expression of the tight junction proteins claudins 1 and 4, and an increased content of β-catenin. The latter is due to an augmented activity of the canonical Wnt route and of the EGFR/PI3K/mTORC2/AKT pathway favoring the cytoplasmic accumulation of β-catenin and its transcriptional activity. In addition, F cells display increased phosphorylation of β-catenin at Tyr654 by Src. These changes favor in F cells, the over-expression of Snail that promotes EMT. Finally, we observe that both F and SE cells display markers of cancer stem cells, which are more abundant in the F clone.

  19. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jie Ting Zhang

    Full Text Available The biologic studies of human neural crest stem cells (hNCSCs are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs. For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.

  20. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells.

    Science.gov (United States)

    Zhang, Jie Ting; Weng, Zhi Hui; Tsang, Kam Sze; Tsang, Lai Ling; Chan, Hsiao Chang; Jiang, Xiao Hua

    2016-01-01

    The biologic studies of human neural crest stem cells (hNCSCs) are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs). For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.

  1. The evolution of human cells in terms of protein innovation.

    Science.gov (United States)

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  2. Spinal osteomyelitis due to Aspergillus flavus in a child: a rare complication after haematopoietic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Beluffi, Giampiero [Fondazione IRCCS Policlinico ' S.Matteo' , Section of Paediatric Radiology, Department of Radiodiagnosis, Pavia PV (Italy); Bernardo, Maria E.; Locatelli, Franco [University of Pavia, Fondazione IRCCS Policlinico ' S.Matteo' , Department of Paediatric Haematology/Oncology, Pavia (Italy); Meloni, Giulia [University of Pavia, Fondazione IRCCS Policlinico ' S.Matteo' , Institute of Radiology, Pavia (Italy); Spinazzola, Angelo [Fondazione IRCCS Policlinico ' S.Matteo' , Section of Paediatric Radiology, Department of Radiodiagnosis, Pavia PV (Italy); Ospedale Maggiore, Crema CR (Italy)

    2008-06-15

    We report the case of a child affected by acute myeloid leukaemia who was treated with allogeneic haematopoietic stem cell transplantation and developed cervicothoracic spinal osteomyelitis due to Aspergillus flavus. The diagnosis was difficult on a clinical basis, but made possible by conventional radiography and MRI. (orig.)

  3. Chronic ulceration of the leg following extensive scarring due to a snake bite complicated by squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Mello, L.F.B.; Barcelos, M.G.; Nogueira Neto, N.C. [Dept. of Radiology, National Cancer Institute - INCA, Rio de Janeiro, RJ (Brazil); Meohas, W. [Dept. of Surgery (Bone and Soft Tissue), National Cancer Institute - INCA, Rio de Janeiro, RJ (Brazil); Pinto, L.W. [Department of Surgical Pathology, National Cancer Institute - INCA, Rio de Janeiro, RJ (Brazil); Melo, P.A. [Pharmacology Lab. of Snake-related Toxins, Department of Basic and Clinical Pharmacology, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil); Smith, J. [Dept. of Radiology, National Cancer Institute - INCA, Rio de Janeiro, RJ (Brazil); Rua Humberto de Campos 974/1301, Leblon 22430 - 190, Rio de Janeiro, RJ (Brazil)

    2000-05-01

    Chronic ulcers of the leg are common in Brazil, perhaps more common than in the developed world. We report a case of a chronic ulcer of the leg following extensive scarring due to a bite by a venomous snake, which eventually led to a squamous cell carcinoma. (orig.)

  4. Modeling of photon and pair production due to quantum electrodynamics effects in particle-in-cell simulation

    CERN Document Server

    Wang, W -M; Gibbon, P; Li, Y -T

    2016-01-01

    We develop the particle-in-cell (PIC) code KLAPS to include the photon generation via the Compton scattering and electron-positron creation via the Breit-Wheeler process due to quantum electrodynamics (QED) effects. We compare two sets of existing formulas for the photon generation and different Monte Carlo algorithms. Then we benchmark the PIC simulation results.

  5. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    Science.gov (United States)

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  6. Adult human brain cell culture for neuroscience research.

    Science.gov (United States)

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Vascular regeneration in a basal chordate is due to the presence of immobile, bi-functional cells.

    Directory of Open Access Journals (Sweden)

    Brian P Braden

    Full Text Available The source of tissue turnover during homeostasis or following injury is usually due to proliferation of a small number of resident, lineage-restricted stem cells that have the ability to amplify and differentiate into mature cell types. We are studying vascular regeneration in a chordate model organism, Botryllus schlosseri, and have previously found that following surgical ablation of the extracorporeal vasculature, new tissue will regenerate in a VEGF-dependent process within 48 hrs. Here we use a novel vascular cell lineage tracing methodology to assess regeneration in parabiosed individuals and demonstrate that the source of regenerated vasculature is due to the proliferation of pre-existing vascular resident cells and not a mobile progenitor. We also show that these cells are bi-potential, and can reversibly adopt two fates, that of the newly forming vessels or the differentiated vascular tissue at the terminus of the vasculature, known as ampullae. In addition, we show that pre-existing vascular resident cells differentially express progenitor and differentiated cell markers including the Botryllus homologs of CD133, VEGFR-2, and Cadherin during the regenerative process.

  8. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  9. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  10. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, Andrea; Ziemann, Frank; Wittig, Andrea; Preising, Stefanie; Engenhart-Cabillic, Rita [Philipps-University, Department of Radiotherapy and Radiooncology, BMFZ - Biomedical Research Center, Marburg (Germany); Mayer, Christina; Wagner, Steffen; Klussmann, Jens-Peter; Wittekindt, Claus [Justus Liebig University, Department of Otorhinolaryngology and Head and Neck Surgery, Giessen (Germany); Dreffke, Kirstin [Philipps-University, Institute for Radiobiology and Molecular Radiooncology, Marburg (Germany)

    2014-09-15

    Human Papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) respond favourably to radiotherapy as compared to HPV-unrelated HNSCC. We investigated DNA damage response in HPV-positive and HPV-negative HNSCC cell lines aiming to identify mechanisms, which illustrate reasons for the increased sensitivity of HPV-positive cancers of the oropharynx. Radiation response including clonogenic survival, apoptosis, DNA double-strand break (DSB) repair, and cell cycle redistribution in four HPV-positive (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) and four HPV-negative (UD-SCC-1, UM-SCC-6, UM-SCC-11b, UT-SCC-33) cell lines was evaluated. HPV-positive cells were more radiosensitive (mean SF2: 0.198 range: 0.22-0.18) than HPV-negative cells (mean SF2: 0.34, range: 0.45-0.27; p = 0.010). Irradiated HPV-positive cell lines progressed faster through S-phase showing a more distinct accumulation in G2/M. The abnormal cell cycle checkpoint activation was accompanied by a more pronounced increase of cell death after x-irradiation and a higher number of residual and unreleased DSBs. The enhanced responsiveness of HPV-related HNSCC to radiotherapy might be caused by a higher cellular radiosensitivity due to cell cycle dysregulation and impaired DNA DSB repair. (orig.) [German] Fuer Patienten mit HPV-assoziierten Kopf-Hals-Tumoren (HNSCC) ist im Vergleich zu Patienten mit nicht-HPV-assoziierten Tumoren ein besseres Ueberleben nach Radiotherapie gesichert. Ziel der Untersuchung war die Identifizierung von Unterschieden in der zellulaeren DNA-Schadensantwort von HPV-positiven und HPV-negativen Zelllinien, wodurch die bereits in Erprobung stehende Deeskalation einer Radiotherapie bei Patienten mit HPV-assoziierten HNSCC durch experimentelle Daten abgesichert werden koennte. Klonogenes Ueberleben, Induktion von Apoptose, DNA-Doppelstrang-Reparatur und Zellzyklusverhalten wurden in vier HPV-positiven (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) und vier HPV

  11. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    Science.gov (United States)

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  12. Analysis of lead toxicity in human cells

    Directory of Open Access Journals (Sweden)

    Gillis Bruce S

    2012-07-01

    Full Text Available Abstract Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were

  13. Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2.

    Science.gov (United States)

    Biernacka, K M; Uzoh, C C; Zeng, L; Persad, R A; Bahl, A; Gillatt, D; Perks, C M; Holly, J M P

    2013-10-01

    Clinically relevant prostate cancer (PCa) is more frequent in Westernised societies and increasingly men have co-morbidities associated with a Western lifestyle, primarily diabetes, characterised by hyperinsulinaemia and hyperglycaemia. IGFs and their binding proteins (IGFBPs) are important mediators of the effects of nutrition on growth and play a key role in the development of PCa. We used DU145, PC3 and LNCaP PCa cell lines to examine how hyperglycaemia altered their response to docetaxel. Trypan Blue dye-exclusion assay was used to determine the percentage of cell death. Protein abundance was determined using western immunoblotting. Levels of IGFBP2 were measured using an ELISA. IGFBP2 gene silencing was achieved using siRNA technology. DNA methylation was assessed using combined bisulphide restriction analysis. Acetylation status of histones H3 and H4 associated with IGFBP2 gene was assessed using chromatin immunoprecipitation assay. Hyperglycaemia reduced docetaxel-induced apoptosis by 40% for DU145 cells and by 88% for LNCaP cells. This reduced cell death was mediated by a glucose-induced up-regulation of IGFBP2, as silencing IGFBP2 negated the survival effect of high glucose. Glucose increased IGFBP2 via increasing the acetylation of histones associated with the IGFBP2 gene promoter. This finding could have important implications in relation to therapeutic strategies as epigenetic modulation could be reversible.

  14. Interleukin 2 inhibits in vitro growth of human T cell lines carrying retrovirus.

    Science.gov (United States)

    Sugamura, K; Nakai, S; Fujii, M; Hinuma, Y

    1985-05-01

    Four human T cell lines, TL-Mor, TL-Su, TL-TerI, and TL-OmI, carrying human T cell leukemia virus (HTLV), were established previously. TL-Mor, TL-Su, and TL-TerI were derived from interleukin 2 (IL-2)-dependent parental cell lines cloned from peripheral blood leukocytes (PBL) of three healthy HTLV carriers, while TL-OmI was directly established from PBL of a patient with adult T cell leukemia. These four TL cell lines grow autonomously without IL-2. When they were cultured in the presence of IL-2, their growth was inhibited after a few days. This growth inhibition depended on the dose of IL-2, and the effective dose significantly promoted growth of their parental IL-2-dependent cell lines. The growth inhibition is demonstrated to be due to specific binding of IL-2 to receptors on the TL cells.

  15. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  16. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    Science.gov (United States)

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  17. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  18. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  19. Nucleosome Organization in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational

  20. Nucleosome Organization in Human Embryonic Stem Cells.

    Science.gov (United States)

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  1. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  2. Cryopreservation of human embryonic stem cells by vitrification

    Institute of Scientific and Technical Information of China (English)

    周灿权; 麦庆云; 李涛; 庄广伦

    2004-01-01

    Background The efficiency of traditional cryopreservation of human embryonic stem (ES) cells is low, and there have been few attempts to prove new cryopreservation methods effective. This study was designed to evaluate the efficiency of cryopreservation of human ES cells using vitrification method.Methods Human ES cells clumped from an identical cell line were randomly allocated to be cryopreserved by vitrification or by slow freezing. The recovery rates, the growth and differentiation potential of thawed human ES cells were compared between these two groups. The pluripotency of human ES cells after thawing was identified.Results Eighty-one point nine percent (59/72) of human ES cell clumps were recovered after vitrification, while only 22.8% (16/70) were recovered after slow freezing (P<0.01). The colonies after vitrification manifested have not only faster growth but also a lower level of differentiation when compared to colonies subjected to the slow freezing protocol. However, the rates of growth and differentiation in undifferentiated colonies from both groups were identical to the rates in those of non-cryopreserved stem cells after a prolonged culture period. Passage 6 of vitrified human ES cells retained the properties of pluripotent cells, a normal karyotype and expressed the transcription factor OCT-4, stage specific expressed antigen-4 (SSEA-4) and SSEA-3. Teratoma growth of these cells demonstrated the ability to develop into all three germ layers.Conclusions Vitrification is effective in cryopreserving human ES cells. During a prolonged culture, human ES cells retain their pluripotency after cryopreservation.

  3. Site controlled transgenic mice validating increased expression from human matrix metalloproteinase (MMP-1) promoter due to a naturally occurring SNP.

    Science.gov (United States)

    Coon, Charles I; Fiering, Steven; Gaudet, Justin; Wyatt, Colby A; Brinckerhoff, Constance E

    2009-09-01

    Matrix metalloproteinases (MMPs) comprise a family of more than 20 members, each with the ability to degrade components of the extracellular matrix. The interstitial collagenases have the unique capacity to degrade the stromal collagens, types I, II and III, the body's most abundant proteins. These collagenases include MMP-1, MMP-8, MMP-13 and MMP-14. MMP-1, with a very broad expression pattern, has major roles in mediating matrix destruction in many diseases. We have described a single nucleotide polymorphism (SNP) in the MMP-1 promoter that augments transcription. This SNP is the presence or absence of an extra guanine (G) at -1607 bp, which creates the sequence 5'-GGAA-3'(2G allele), and which is an ETS binding site. Compared to the 1G allele (5'-GAA-3'), the 2G SNP is associated with enhanced transcription of MMP-1 and increased enzymatic activity. Although murine systems are often used to model human diseases, mice have only distant homologues of human MMP-1. Therefore, we used a technique for the targeted insertion of a single copy of a gene at the HPRT locus to compare expression of the 1G and 2G alleles. We generated transgenic mice with -4372 bp of the human MMP-1 promoter containing either the 1G or 2G SNP in front of the lac Z (E.coli ss-galactosidase) gene. We measured the relative expression of the transgenes in vitro in embryonic stem (ES) cells and in fibroblasts derived from embryonic mice. Our data show modest constitutive expression of ss-galactosidase mRNA and protein from these alleles, with the 2G allele more transcriptionally active than the 1G allele. We conclude that these mice represent a model for integration of a single copy of the human MMP-1 promoter into the murine genome, and could be used to study MMP-1 gene expression in a murine system.

  4. Human induced hepatic lineage-oriented stem cells: autonomous specification of human iPS cells toward hepatocyte-like cells without any exogenous differentiation factors.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishikawa

    Full Text Available Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG, conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5, transporters (SULT2A1, SLC13A5, and SLCO2B1, and urea cycle-related enzymes (ARG1 and CPS1. In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the

  5. A Two Dimensional Infinite Element Model to Study Temperature Distribution in Human Dermal Regions due to Tumors

    Directory of Open Access Journals (Sweden)

    K. R. pardasani

    2005-01-01

    Full Text Available In this study, a two dimensional infinite element model has been developed to study thermal effect in human dermal regions due to tumors. This model incorporates the effect of blood mass flow rate, metabolic heat generation and thermal conductivity of the tissues.The dermal region is divided into three natural layers, namely, epidermis, dermis and subdermal tissues. A uniformly perfused tumor is assumed to be present in the dermis. The domain is assumed to be finite along the depth and infinite along the breadth. The whole dermis region involving tumor is modelled with the help of triangular finite elements to incorporate the geometry of the region. These elements are surrounded by infinite domain elements along the breadth. Appropriate boundary conditions has been incorporated. A computer program has been developed to obtain the numerical results.

  6. Isolated homonymous hemianopsia due to presumptive cerebral tubercular abscess as the initial manifestation of human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Sujit Gharai

    2012-01-01

    Full Text Available We report a case of isolated homonymous hemianopsia due to presumptive cerebral tubercular abscess as the initial manifestation of human immunodeficiency virus (HIV infection. A 30-year-old man presented to our outpatient department with sudden loss of visibility in his left visual field. He had no other systemic symptoms. Perimetry showed left-sided incongruous homonymous hemianopsia denser above the horizontal meridian. Magnetic resonance imaging revealed irregular well-marginated lobulated lesions right temporo-occipital cerebral hemisphere and left high fronto-parietal cerebral hemisphere suggestive of brain tubercular abscess. Serological tests for HIV were reactive, and the patient was started only on anti-tubercular drugs with the presumptive diagnosis of cerebral tubercular abscess. Therapeutic response confirmed the diagnosis. Atypical ophthalmic manifestations may be the initial presenting feature in patients with HIV infection. This highlights the need for increased index of suspicion for HIV infection in young patients with atypical ophthalmic manifestations.

  7. Evaluation of mechanical properties of human mesenchymal stem cells during differentiation to smooth muscle cells.

    Science.gov (United States)

    Khani, Mohammad-Mehdi; Tafazzoli-Shadpour, Mohammad; Rostami, Mostafa; Peirovi, Habibollah; Janmaleki, Mohsen

    2014-07-01

    Human mesenchymal stem cells (hMSCs) are multipotent cells appropriate for a variety of tissue engineering and cell therapy applications. Mechanical properties of hMSCs during differentiation are associated with their particular metabolic activity and regulate cell function due to alternations in cytoskeleton and structural elements. The objective of this study is to evaluate elastic and viscoelastic properties of hMSCs during long term cultivation in control and transforming growth factor-β1 treatment groups using micropipette aspiration technique. The mean Young's modulus (E) of the control samples remained nearly unchanged during 6 days of cultivation, but that of the test samples showed an initial reduction compared to its relevant control sample after 2 days of treatment by biological growth factor, followed by a significant rise after 4 and 6 days. The viscoelastic creep tests showed that both instantaneous and equilibrium moduli significantly increased with the treatment time and reached to maximum values of 622.9 ± 114.2 and 144.3 ± 11.6 Pa at the sixth day, respectively, while increase in apparent viscosity was not statistically significant. Such change of mechanical properties of hMSCs during specific lineage commitment contributes to regenerative medicine as well as stem-cell-based therapy in which biophysical signals regulate stem cell fate.

  8. Identification of skin immune cells in non-human primates.

    Science.gov (United States)

    Adam, Lucille; Rosenbaum, Pierre; Cosma, Antonio; Le Grand, Roger; Martinon, Frédéric

    2015-11-01

    The skin is a valuable target for vaccine delivery because it contains many immune cell populations, notably antigen presenting cells. Skin immune cells have been extensively described in mice and humans but not in non-human primates, which are pertinent models for immunological research in vaccination. The aim of this work was to describe immune cell populations in the epidermis, dermis and skin draining lymph nodes in cynomolgus macaques by a single 12-parameter flow cytometry protocol. Given that skin cells share several markers, we defined a gating strategy to identify accurately immune cells and to limit contamination of one immune cell population by another. The epidermis contained CD1a(+)CD1c(-) Langerhans cells (LCs), CD3(+) T cells and putative NK cells. The dermis contained CD1a(+)CD1c(-) cells, which were similar to LCs, CD1a(+)CD1c(+) dermal dendritic cells (DDCs), CD163(high)CD11b(+) resident macrophages, CD3(+) T cells and putative NK cells. The skin also contained CD66(+) polymorphonuclear cells in some animals. Thus, immune cell populations in the macaque are similar to those in humans despite some differences in phenotype. In skin draining lymph nodes, we identified migratory LCs, CD1a(+)CD1c(+) DDCs and macrophages. The simultaneous identification of these different immune cells with one panel of markers avoids the use of large amounts of precious sample and may improve the understanding of immune mechanisms in the skin after treatment or vaccination.

  9. [In vitro strategies for human gametes production from stem cells].

    Science.gov (United States)

    Tosca, Lucie; Courtot, Anne-Marie; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2011-10-01

    Embryonic stem cells (ESC) are self-renewal and pluripotent cells that are able to differentiate in vitro into several cell types in favourable conditions. Technical protocols for in vitro gametes production have been developed in mice and human species. The functionality of such differentiated cells is not always analysed and an early meiotic arrest is a current observation. These kinds of experimentations have also been tested from human induced pluripotent stem cells (IPSC). However, differentiation ends shortly at the primordial germ cell stage.

  10. Growth in agarose of human cells infected with cytomegalovirus.

    Science.gov (United States)

    Lang, D J; Montagnier, L; Latarjet, R

    1974-08-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation.

  11. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  12. Human embryonic stem cell-derived hematopoietic cells maintain core epigenetic machinery of the polycomb group/Trithorax Group complexes distinctly from functional adult hematopoietic stem cells.

    Science.gov (United States)

    Schnerch, Angelique; Lee, Jung Bok; Graham, Monica; Guezguez, Borhane; Bhatia, Mickie

    2013-01-01

    Hematopoietic cells derived from human embryonic stem cells (hESCs) have a number of potential utilities, including the modeling of hematological disorders in vitro, whereas the use for cell replacement therapies has proved to be a loftier goal. This is due to the failure of differentiated hematopoietic cells, derived from human pluripotent stem cells (hPSCs), to functionally recapitulate the in vivo properties of bona fide adult hematopoietic stem/progenitor cells (HSPCs). To better understand the limitations of differentiation programming at the molecular level, we have utilized differential gene expression analysis of highly purified cells that are enriched for hematopoietic repopulating activity across embryonic, fetal, and adult human samples, including in vivo explants of human HSPCs 8-weeks post-transplantation. We reveal that hESC-derived hematopoietic progenitor cells (eHPCs) fail to express critical transcription factors which are known to govern self-renewal and myeloid/lymphoid development and instead retain the expression of Polycomb Group (PcG) and Trithorax Group (TrxG) factors which are more prevalent in embryonic cell types that include EZH1 and ASH1L, respectively. These molecular profiles indicate that the differential expression of the core epigenetic machinery comprising PcGs/TrxGs in eHPCs may serve as previously unexplored molecular targets that direct hematopoietic differentiation of PSCs toward functional HSPCs in humans.

  13. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block.

    Science.gov (United States)

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis

    2015-11-15

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers.

  15. Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells

    Science.gov (United States)

    Kolodinski, Sabine; Werner, Jürgen H.; Wittchen, Thomas; Queisser, Hans J.

    1993-10-01

    Absolute measurements demonstrate internal quantum efficiencies in silicon solar cells to exceed unity for photon energies above the first direct band gap and to show distinct spectral features that correspond to specific points in the Brillouin zone. Ultraviolet radiation can generate hot carriers with sufficient energy to cause impact ionization which results in two electron hole pairs per incident photon.

  16. Primary pulmonary amyloidosis due to low-grade B cell lymphoma.

    Science.gov (United States)

    Georghiou, Georgios P; Boikov, Olga; Vidne, Bernardo A; Saute, Milton

    2007-01-01

    Pulmonary involvement is not an infrequent complication of systemic amyloidosis, although affected patients rarely have significant pulmonary symptoms. In contrast, localized (primary) pulmonary amyloidosis is rare. We report a case of pulmonary low-grade B cell lymphoma with amyloid production, causing localized pulmonary amyloidosis.

  17. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  18. A proteomic perspective on the changes in milk proteins due to high somatic cell count

    NARCIS (Netherlands)

    Zhang, L.; Boeren, J.A.; Hooijdonk, van A.C.M.; Vervoort, J.J.M.; Hettinga, K.A.

    2015-01-01

    Although cows with subclinical mastitis have no difference in the appearance of their milk, milk composition and milk quality are altered because of the inflammation. To know the changes in milk quality with different somatic cell count (SCC) levels, 5 pooled bovine milk samples with SCC from 105 to

  19. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    Science.gov (United States)

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  20. Comprehensive quantitative comparison of the membrane proteome and PTM-ome of human embryonic stem cells and neural stem cells

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Schulz, Melanie; Jakobsen, Lene

    Introduction: Human embryonic stem cells (hESCs) can differentiate into all three germ layers and self-renew. Due to its ability to differentiate in vitro into human neural stem cells (hNSCs), which can further be differentiated into motor neurons and dopaminergic neurons, these cells are potential...... source for treatment of neurological diseases such as Parkinson´s disease. Membrane proteins are very important in cellular signaling and they are regulated by post-translational modifications such as phosphorylation and glycosylation. In order to obtain more information about important membrane proteins...... development and has been implicated in cell growth control. Neuronal cell adhesion molecule (NRCAM) is a sialylated glycoprotein upregulated in hNSCs. This protein is involved in several aspects of nervous system development, such as synaptogenesis. In addition, components of neural specific canonical...

  1. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases.

    Science.gov (United States)

    Hagemann, Thorsten; Robinson, Stephen C; Schulz, Matthias; Trümper, Lorenz; Balkwill, Frances R; Binder, Claudia

    2004-08-01

    Apart from the neoplastic cells, malignant tumours consist of the extracellular matrix (ECM) and normal cells, in particular tumour-associated macrophages (TAM). To understand the mechanisms by which TAM can influence tumour cell invasion we co-cultured the human breast cancer cell lines MCF-7, SK-BR-3 and the benign mammary epithelial cell line hTERT-HME1 with macrophages. Co-incubation enhanced invasiveness of the tumour cells, while hTERT-HME1 remained non-invasive. Addition of the broad-spectrum matrix metalloprotease (MMP)-inhibitor FN 439, neutralizing MMP-9 or tumour necrosis factor-alpha (TNF-alpha) antibodies reduced invasiveness to basal levels. As shown by zymography, all cell lines produced low amounts of MMP-2, -3, -7 and -9 under control conditions. Basal MMP production by macrophages was significantly higher. Upon co-incubation, supernatant levels of MMPs -2, -3, -7 and -9 increased significantly, paralleled by an increase of MMP-2 activation. MMP-2 and -9 induction could be blocked by TNF-alpha antibodies. Co-culture of macrophages and hTERT-HME1 did not lead to MMP induction. In the co-cultures, mRNAs for MMPs and TNF-alpha were significantly up-regulated in macrophages, while the mRNA concentrations in the tumour cells remained unchanged. In summary, we have found that co-cultivation of tumour cells with macrophages leads to enhanced invasiveness of the malignant cells due to TNF-alpha dependent MMP induction in the macrophages.

  2. Human dental pulp stem cells: Applications in future regenerative medicine.

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-06-26

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

  3. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells.

    Science.gov (United States)

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2012-01-01

    -apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.

  4. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke.

    Science.gov (United States)

    Lin, Yu-Ching; Ko, Tsui-Ling; Shih, Yang-Hsin; Lin, Maan-Yuh Anya; Fu, Tz-Win; Hsiao, Hsiao-Sheng; Hsu, Jung-Yu C; Fu, Yu-Show

    2011-07-01

    Stroke is a cerebrovascular defect that leads to many adverse neurological complications. Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.

  5. Role of human mast cells and basophils in bronchial asthma.

    Science.gov (United States)

    Marone, Gianni; Triggiani, Massimo; Genovese, Arturo; De Paulis, Amato

    2005-01-01

    Mast cells and basophils are the only cells expressing the tetrameric (alphabetagamma2) structure of the high affinity receptor for IgE (FcepsilonRI) and synthesizing histamine in humans. Human FcepsilonRI+ cells are conventionally considered primary effector cells of bronchial asthma. There is now compelling evidence that these cells differ immunologically, biochemically, and pharmacologically, which suggests that they might play distinct roles in the appearance and fluctuation of the asthma phenotype. Recent data have revealed the complexity of the involvement of human mast cells and basophils in asthma and have shed light on the control of recruitment and activation of these cells in different lung compartments. Preliminary evidence suggests that these cells might not always be detrimental in asthma but, under some circumstances, they might exert a protective effect by modulating certain aspects of innate and acquired immunity and allergic inflammation.

  6. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    Science.gov (United States)

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-09

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  7. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  8. The Metastatic Potential and Chemoresistance of Human Pancreatic Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Vikash J Bhagwandin

    Full Text Available Cancer stem cells (CSCs typically have the capacity to evade chemotherapy and may be the principal source of metastases. CSCs for human pancreatic ductal carcinoma (PDAC have been identified, but neither the metastatic potential nor the chemoresistance of these cells has been adequately evaluated. We have addressed these issues by examining side-population (SP cells isolated from the Panc-1 and BxPC3 lines of human PDAC cells, the oncogenotypes of which differ. SP cells could be isolated from monolayers of Panc-1, but only from spheroids of BxPC3. Using orthotopic xenografts into the severely immunocompromised NSG mouse, we found that SP cells isolated from both cell lines produced tumors that were highly metastatic, in contrast to previous experience with PDAC cell lines. SP cells derived from both cell lines expressed the ABCG2 transporter, which was demonstrably responsible for the SP phenotype. SP cells gave rise to non-SP (NSP cells in vitro and in vivo, a transition that was apparently due to posttranslational inhibition of the ABCG2 transporter. Twenty-two other lines of PDAC cells also expressed ABCG2. The sensitivity of PDAC SP cells to the vinca alkaloid vincristine could be greatly increased by verapamil, a general inhibitor of transporters. In contrast, verapamil had no effect on the killing of PDAC cells by gemcitabine, the current first-line therapeutic for PDAC. We conclude that the isolation of SP cells can be a convenient and effective tool for the study of PDAC CSCs; that CSCs may be the principal progenitors of metastasis by human PDAC; that the ABCG2 transporter is responsible for the SP phenotype in human PDAC cells, and may be a ubiquitous source of drug-resistance in PDAC, but does not confer resistance to gemcitabine; and that inhibition of ABCG2 might offer a useful adjunct in a therapeutic attack on the CSCs of PDAC.

  9. The Metastatic Potential and Chemoresistance of Human Pancreatic Cancer Stem Cells.

    Science.gov (United States)

    Bhagwandin, Vikash J; Bishop, J Michael; Wright, Woodring E; Shay, Jerry W

    2016-01-01

    Cancer stem cells (CSCs) typically have the capacity to evade chemotherapy and may be the principal source of metastases. CSCs for human pancreatic ductal carcinoma (PDAC) have been identified, but neither the metastatic potential nor the chemoresistance of these cells has been adequately evaluated. We have addressed these issues by examining side-population (SP) cells isolated from the Panc-1 and BxPC3 lines of human PDAC cells, the oncogenotypes of which differ. SP cells could be isolated from monolayers of Panc-1, but only from spheroids of BxPC3. Using orthotopic xenografts into the severely immunocompromised NSG mouse, we found that SP cells isolated from both cell lines produced tumors that were highly metastatic, in contrast to previous experience with PDAC cell lines. SP cells derived from both cell lines expressed the ABCG2 transporter, which was demonstrably responsible for the SP phenotype. SP cells gave rise to non-SP (NSP) cells in vitro and in vivo, a transition that was apparently due to posttranslational inhibition of the ABCG2 transporter. Twenty-two other lines of PDAC cells also expressed ABCG2. The sensitivity of PDAC SP cells to the vinca alkaloid vincristine could be greatly increased by verapamil, a general inhibitor of transporters. In contrast, verapamil had no effect on the killing of PDAC cells by gemcitabine, the current first-line therapeutic for PDAC. We conclude that the isolation of SP cells can be a convenient and effective tool for the study of PDAC CSCs; that CSCs may be the principal progenitors of metastasis by human PDAC; that the ABCG2 transporter is responsible for the SP phenotype in human PDAC cells, and may be a ubiquitous source of drug-resistance in PDAC, but does not confer resistance to gemcitabine; and that inhibition of ABCG2 might offer a useful adjunct in a therapeutic attack on the CSCs of PDAC.

  10. Genetic engineering of human pluripotent cells using TALE nucleases.

    Science.gov (United States)

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  11. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  12. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  13. Generation of human melanocytes from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Shigeki Ohta

    Full Text Available Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC. These iPS cell lines were subsequently used to form embryoid bodies (EBs and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.

  14. Calcium Alternans is Due to an Order-Disorder Phase Transition in Cardiac Cells

    Science.gov (United States)

    Alvarez-Lacalle, Enrique; Echebarria, Blas; Spalding, Jon; Shiferaw, Yohannes

    2015-03-01

    Electromechanical alternans is a beat-to-beat alternation in the strength of contraction of a cardiac cell, which can be caused by an instability of calcium cycling. Using a distributed model of subcellular calcium we show that alternans occurs via an order-disorder phase transition which exhibits critical slowing down and a diverging correlation length. We apply finite size scaling along with a mapping to a stochastic coupled map model, to show that this transition in two dimensions is characterized by critical exponents consistent with the Ising universality class. These findings highlight the important role of cooperativity in biological cells, and suggest novel approaches to investigate the onset of the alternans instability in the heart.

  15. Embryonic death and the creation of human embryonic stem cells

    OpenAIRE

    Landry, Donald W.; Zucker, Howard A.

    2004-01-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ ...

  16. Embryonic death and the creation of human embryonic stem cells.

    Science.gov (United States)

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  17. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  18. An animal model of adult T-cell leukemia: humanized mice with HTLV-1-specific immunity.

    Science.gov (United States)

    Tezuka, Kenta; Xun, Runze; Tei, Mami; Ueno, Takaharu; Tanaka, Masakazu; Takenouchi, Norihiro; Fujisawa, Jun-ichi

    2014-01-16

    Human T-cell leukemia virus type 1 (HTLV-1) is causally associated with adult T-cell leukemia (ATL), an aggressive T-cell malignancy with a poor prognosis. To elucidate ATL pathogenesis in vivo, a variety of animal models have been established; however, the mechanisms driving this disorder remain poorly understood due to deficiencies in each of these animal models. Here, we report a novel HTLV-1-infected humanized mouse model generated by intra-bone marrow injection of human CD133(+) stem cells into NOD/Shi-scid/IL-2Rγc null (NOG) mice (IBMI-huNOG mice). Upon infection, the number of CD4(+) human T cells in the periphery increased rapidly, and atypical lymphocytes with lobulated nuclei resembling ATL-specific flower cells were observed 4 to 5 months after infection. Proliferation was seen in both CD25(-) and CD25(+) CD4 T cells with identical proviral integration sites; however, a limited number of CD25(+)-infected T-cell clones eventually dominated, indicating an association between clonal selection of infected T cells and expression of CD25. Additionally, HTLV-1-specific adaptive immune responses were induced in infected mice and might be involved in the control of HTLV-1-infected cells. Thus, the HTLV-1-infected IBMI-huNOG mouse model successfully recapitulated the development of ATL and may serve as an important tool for investigating in vivo mechanisms of ATL leukemogenesis and evaluating anti-ATL drug and vaccine candidates.

  19. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  20. Pancreatic α-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation

    Directory of Open Access Journals (Sweden)

    Etienne Larger

    2016-11-01

    Full Text Available Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia. Here, we describe a patient carrying a homozygous G to A substitution in the invariant AG dinucleotide found in a 3′ mRNA splice junction of the glucagon receptor gene. Loss of the splice site acceptor consensus sequence results in the deletion of 70 nucleotides encoded by exon 9, which introduces a frame shift and an early termination signal in the receptor mRNA sequence. The mutated receptor neither bound 125I-labeled glucagon nor induced cAMP production upon stimulation with up to 1 μM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells.

  1. Exogenous thymosin beta4 prevents apoptosis in human intervertebral annulus cells in vitro.

    Science.gov (United States)

    Tapp, H; Deepe, R; Ingram, J A; Yarmola, E G; Bubb, M R; Hanley, E N; Gruber, H E

    2009-12-01

    Loss of cells in the human disc due to programmed cell death (apoptosis) is a major factor in the aging and degenerating human intervertebral disc. Our objective here was to determine if thymosin beta(4) (TB4), a small, multifunctional 5 kDa protein with diverse activities, might block apoptosis in human annulus cells cultured in monolayer or three-dimensional (3D) culture. Apoptosis was induced in vitro using hydrogen peroxide or serum starvation. Annulus cells were processed for identification of apoptotic cells using the TUNEL method. The percentage of apoptotic cells was determined by cell counts. Annulus cells also were treated with TB4 for determination of proliferation, and proteoglycan production was assessed using cell titer and 1,2 dimethylmethylamine (DMB) assays and histological staining. A significant reduction in disc cell apoptosis occurred after TB4 treatment. The percentage of cells undergoing apoptosis decreased significantly in TB4 treated cells in both apoptosis induction designs. TB4 exposure did not alter proteoglycan production as assessed by either DMB measurement or histological staining. Our results indicate the need for further studies of the anti-apoptotic effect of TB4 and suggest that TB4 may have therapeutic application in future biological therapies for disc degeneration.

  2. Autocrine growth regulation of human glomerular mesangial cells is primarily mediated by basic fibroblast growth factor.

    OpenAIRE

    Francki, A.; Uciechowski, P.; Floege, J; von der Ohe, J.; Resch, K.; Radeke, H. H.

    1995-01-01

    For various forms of human glomerulonephritis a close relationship between inflammatory injury and a local mesangial proliferative response has been described. Herein, we used primary cultures of human glomerular mesangial cells (HMCs) from five different donors to determine the autocrine growth-inducing capacity of their supernatants after stimulation with different cytokines and lipopolysaccharide (LPS) to determine whether this effect is due to basic fibroblast growth factor (bFGF). The ba...

  3. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  4. An autopsy case of subacute cor pulmonale due to pulmonary tumor cell emboli in a patient with gastric cancer.

    Science.gov (United States)

    Iwakami, Shin-ichiro; Sato, Teruhiko; Takagi, Haruhi; Fujii, Mitsuhiro; Iwakami, Naoko; Yoshimi, Kaku; Koyama, Ryo; Ichikawa, Masako; Yoshioka, Masakata; Takahashi, Kazuhisa

    2009-01-01

    A 53-year-old woman was admitted to our hospital due to a severe respiratory condition and malnutrition. Radiological and electrophysiological findings suggested the existence of inexplicable cor pulmonale. Although we commenced to determine the causes of her severe condition, she suddenly died 3 days after admission. Postmortem autopsy revealed tumor cell microemboli in the small pulmonary arteries due to gastric cancer. Such a case of cor pulmonale as the first clinical manifestation is exceptionally rare. Occult malignancy should be considered as a differential diagnosis when one encounters a patient with subacutely aggravated respiratory condition and inexplicable cor pulmonale.

  5. Generating trunk neural crest from human pluripotent stem cells.

    Science.gov (United States)

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  6. Generation of human-induced pluripotent stem cells.

    Science.gov (United States)

    Park, In-Hyun; Lerou, Paul H; Zhao, Rui; Huo, Hongguang; Daley, George Q

    2008-01-01

    Pluripotent cells, such as embryonic stem cells, are invaluable tools for research and can potentially serve as a source of cell- and tissue-replacement therapy. Rejection after transplantation of cells and tissue derived from embryonic stem cells is a significant obstacle to their clinical use. Recently, human somatic cells have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Human iPS cells are a potential source of patient-specific pluripotent stem cells that would bypass immune rejection. iPS cells can also be used to study diseases for which there are no adequate human in vitro or animal models. In this protocol, we describe how to establish primary human fibroblasts lines and how to derive iPS cells by retroviral transduction of reprogramming factors. Overall, it takes 2 months to complete reprogramming human primary fibroblasts starting from biopsy.

  7. Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Wen-bin

    2009-09-01

    Full Text Available Abstract Background Most deaths from ovarian cancer are due to metastases that are resistant to conventional therapies. But the factors that regulate the metastatic process and chemoresistance of ovarian cancer are poorly understood. In the current study, we investigated the aberrant expression of human sperm protein 17 (HSp17 in human epithelial ovarian cancer cells and tried to analyze its influences on the cell behaviors like migration and chemoresistance. Methods Immunohistochemistry and immunocytochemistry were used to identify HSp17 in paraffin embedded ovarian malignant tumor specimens and peritoneal metastatic malignant cells. Then we examined the effect of HSp17 overexpression on the proliferation, migration, and chemoresistance of ovarian cancer cells to carboplatin and cisplatin in a human ovarian carcinoma cell line, HO8910. Results We found that HSp17 was aberrantly expressed in 43% (30/70 of the patients with primary epithelial ovarian carcinomas, and in all of the metastatic cancer cells of ascites from 8 patients. The Sp17 expression was also detected in the metastatic lesions the same as in ovarian lesions. None of the 7 non-epithelial tumors primarily developed in the ovaries was immunopositive for HSp17. Overexpression of HSp17 increased the migration but decreased the chemosensitivity of ovarian carcinoma cells to carboplatin and cisplatin. Conclusion HSp17 is aberrantly expressed in a significant proportion of epithelial ovarian carcinomas. Our results strongly suggest that HSp17 plays a role in metastatic disease and resistance of epithelial ovarian carcinoma to chemotherapy.

  8. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  9. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    Science.gov (United States)

    2015-05-01

    IGF1, SOX15, BMPR1B, TGFBR1, etc), which fall into distinct GO categories including SC, development, stress response, and wound healing (unpublished...prostate cancer through the elucidation of the role of cancer stem cells in the pathogenesis of the disease. During the past year, we have made the...studies, ii) in vitro co-culture of human prostate cancer cells (established cell lines and primary patient samples) with human prostate fibroblasts

  10. Isolation, identification and differentiation of human embryonic cartilage stem cells.

    Science.gov (United States)

    Fu, Changhao; Yan, Zi; Xu, Hao; Zhang, Chen; Zhang, Qi; Wei, Anhui; Yang, Xi; Wang, Yi

    2015-07-01

    We isolated human embryonic cartilage stem cells (hECSCs), a novel stem cell population, from the articular cartilage of eight-week-old human embryos. These stem cells demonstrated a marker expression pattern and differentiation potential intermediate to those of human embryonic stem cells (hESCs) and human adult stem cells (hASCs). hECSCs expressed markers associated with both hESCs (OCT4, NANOG, SOX2, SSEA-3 and SSEA-4) and human adult stem cells (hASCs) (CD29, CD44, CD90, CD73 and CD10). These cells also differentiated into adipocytes, osteoblasts, chondrocytes, neurons and islet-like cells under specific inducing conditions. We identified N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) as an inducer of chondrogenic differentiation in hECSCs. Similar results using N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) were obtained for two other types of human embryonic tissue-derived stem cells, human embryonic hepatic stem cells (hEHSCs) and human embryonic amniotic fluid stem cells (hEASCs), both of which exhibited a marker expression pattern similar to that of hECSCs. The isolation of hECSCs and the discovery that N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) induces chondrogenic differentiation in different stem cell populations might aid the development of strategies in tissue engineering and cartilage repair.

  11. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  12. Vasoprotective effects of human CD34+ cells: towards clinical applications

    Directory of Open Access Journals (Sweden)

    Lerman Amir

    2009-07-01

    Full Text Available Abstract Background The development of