WorldWideScience

Sample records for human cell cycle

  1. Lobaplatin arrests cell cycle progression in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Chen Chang-Jie

    2010-10-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC still is a big burden for China. In recent years, the third-generation platinum compounds have been proposed as potential active agents for HCC. However, more experimental and clinical data are warranted to support the proposal. In the present study, the effect of lobaplatin was assessed in five HCC cell lines and the underlying molecular mechanisms in terms of cell cycle kinetics were explored. Methods Cytotoxicity of lobaplatin to human HCC cell lines was examined using MTT cell proliferation assay. Cell cycle distribution was determined by flow cytometry. Expression of cell cycle-regulated genes was examined at both the mRNA (RT-PCR and protein (Western blot levels. The phosphorylation status of cyclin-dependent kinases (CDKs and retinoblastoma (Rb protein was also examined using Western blot analysis. Results Lobaplatin inhibited proliferation of human HCC cells in a dose-dependent manner. For the most sensitive SMMC-7721 cells, lobaplatin arrested cell cycle progression in G1 and G2/M phases time-dependently which might be associated with the down-regulation of cyclin B, CDK1, CDC25C, phosphorylated CDK1 (pCDK1, pCDK4, Rb, E2F, and pRb, and the up-regulation of p53, p21, and p27. Conclusion Cytotoxicity of lobaplatin in human HCC cells might be due to its ability to arrest cell cycle progression which would contribute to the potential use of lobaplatin for the management of HCC.

  2. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  3. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  4. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  5. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2010-02-01

    Full Text Available Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1 to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma.

  7. Connecting the nucleolus to the cell cycle and human disease.

    Science.gov (United States)

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress. © FASEB.

  8. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  9. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    Science.gov (United States)

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  10. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells.

    Science.gov (United States)

    Lin, Chia-Han; Lu, Wei-Cheng; Wang, Che-Wei; Chan, Ya-Chi; Chen, Mu-Kuan

    2013-02-25

    Capsaicin, a pungent phytochemical in a variety of red peppers of the genus Capsicum, has shown an anti-proliferative effect on various human cancer cell lines. In contrast, capsaicin has also been considered to promote the growth of cancer cells. Thus, the effects of capsaicin on various cell types need to be explored. The anti-proliferative effects of capsaicin on human KB cancer cells are still unknown. Therefore, we examined the viability, cell cycle progression, and factors associated with apoptosis in KB cells treated with capsaicin. The cell proliferation/viability and cytotoxicity of KB cells exposed to capsaicin were determined by a sulforhodamine B colorimetric assay and trypan blue exclusion. Apoptosis was detected by Hoechst staining and confirmed by western blot analysis of poly-(ADP-ribose) polymerase cleavage. Cell cycle distribution and changes of the mitochondrial membrane potential were analyzed by flow cytometry. Furthermore, the expression of caspase 3, 8 and 9 was evaluated by immunoblotting. We found that treatment of KB cells with capsaicin significantly reduced cell proliferation/viability and induced cell death in a dose-dependent manner compared with that in the untreated control. Cell cycle analysis indicated that exposure of KB cells to capsaicin resulted in cell cycle arrest at G2/M phase. Capsaicin-induced growth inhibition of KB cells appeared to be associated with induction of apoptosis. Moreover, capsaicin induced disruption of the mitochondrial membrane potential as well as activation of caspase 9, 3 and poly-(ADP-ribose) polymerase in KB cells. Our data demonstrate that capsaicin modulates cell cycle progression and induces apoptosis in human KB cancer cells through mitochondrial membrane permeabilization and caspase activation. These observations suggest an anti-cancer activity of capsaicin.

  11. A protocol to assess cell cycle and apoptosis in human and mouse pluripotent cells

    Directory of Open Access Journals (Sweden)

    Edel Michael J

    2011-04-01

    Full Text Available Abstract Embryonic stem cells (ESC and induced pluripotent stem cells (iPSCs present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.

  12. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  13. Biochemical effects of veterinary antibiotics on proliferation and cell cycle arrest of human HEK293 cells.

    Science.gov (United States)

    Kim, Hyeon Young; Kim, Ki-Tae; Kim, Sang Don

    2012-08-01

    The purpose of this study was to examine the effects of veterinary antibiotics, including amoxicillin (AMX), chlortetracycline (CTC) and tylosin (TYL), on the biochemical mechanism of human embryonic kidney cells (HEK293). CTC and TYL inhibited HEK293 cell proliferation, in both time- and dose-dependent manners, and changed the cell morphology; whereas, AMX showed no cytotoxic effects. The cell cycle analysis of CTC and TYL revealed G1-arrest in HEK293 cells. Western blot analysis also showed that CTC and TYL affected the activation of DNA damage responsive proteins, as well as cell cycle regulatory proteins, such as p53, p21(Waf1/Cip1) and Rb protein, which are crucial in the G1-S transition. The activation of p21(Waf1/Cip1) was significantly up-regulated over time, but there was no change in the level of CDK2 expression. The results of this study suggest that veterinary antibiotics, even at low level concentrations on continuous exposure, can potentially risk the development of human cells.

  14. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  15. Effects of arsenite on cell cycle progression in a human bladder cancer cell line

    International Nuclear Information System (INIS)

    Hernandez-Zavala, A.; Cordova, E.; Razo, L.M. del; Cebrian, M.E.; Garrido, E.

    2005-01-01

    Bladder cancer is one of the most important diseases associated with arsenic (As) exposure in view of its high prevalence and mortality rate. Experimental studies have shown that As exposure induces cell proliferation in the bladder of sodium arsenite (iAsIII) subchronically treated mice. However, there is little available information on its effects on the cell cycle of bladder cells. Thus, our purpose was to evaluate the effects of iAsIII on cell cycle progression and the response of p53 and p21 on the human-derived epithelial bladder cell line HT1197. iAsIII treatment (1-10 μM) for 24 h induced a dose-dependent increase in the proportion of cells in S-phase, which reached 65% at the highest dose. A progressive reduction in cell proliferation was also observed. BrdU was incorporated to cellular DNA in an interrupted form, suggesting an incomplete DNA synthesis. The time-course of iAsIII effects (10 μM) showed an increase in p53 protein content and a transient increase in p21 protein levels accompanying the changes in S-phase. These effects were correlated with iAs concentrations inside the cells, which were not able to metabolize inorganic arsenic. Our findings suggest that p21 was not able to block CDK2-cyclin E complex activity and was therefore unable to arrest cells in G1 allowing their progression into the S-phase. Further studies are needed to ascertain the mechanisms underlying the effects of iAsIII on the G1 to S phase transition in bladder cells

  16. Cell cycle phase of nondividing cells in aging human cell cultures determined by DNA content and chromosomal constitution

    International Nuclear Information System (INIS)

    Yanishevsky, R.M.

    1975-01-01

    Human diploid cell cultures, strain WI-38, have a finite proliferative capacity and have been proposed as a model of biological aging. To identify the cell cycle phase of the nondividing cells, cultures of various ages were exposed to 3 Hdt for 48 hours to label dividing cells, then the cycle phase was identified for individual cells by one of two methods, and finally, the proliferative status of the same cells was scored by autoradiographic evidence of 3 HdT uptake. The methods to identify the cycle phase were: determination of DNA strain content by Feulgen scanning cytophotometry, and determination of chromosome constitution by the technique of premature chromosome condensation (PCC). Preliminary experiments showed the effect of continuous exposure to various levels of 3 HdT on cell growth. High levels of 3 HdT inhibited cell cycle traverse: the cell number and labeling index curves reached a plateau; the cell volume increased; the cells accumulated with 4C DNA contents and it appeared that they blocked in G 2 phase. This pattern is consistent with a radiation effect. (U.S.)

  17. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite.

    Science.gov (United States)

    Al-Eryani, Laila; Waigel, Sabine; Jala, Venkatakrishna; Jenkins, Samantha F; States, J Christopher

    2017-09-15

    Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. HaCaT cells were exposed to 0 or 100nM NaAsO 2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle

    International Nuclear Information System (INIS)

    Finaurini, Sara; Basilico, Nicoletta; Corbett, Yolanda; D’Alessandro, Sarah; Parapini, Silvia; Olliaro, Piero; Haynes, Richard K.; Taramelli, Donatella

    2012-01-01

    Artemisinin derivatives such as dihydroartemisinin (DHA) induce significant depletion of early embryonic erythroblasts in animal models. We have reported previously that DHA specifically targets pro-erythroblasts and basophilic erythroblasts, when human CD34+ stem cells are differentiated toward the erythroid lineage, indicating that a window of susceptibility to artemisinins may exist also in human developmental erythropoiesis during pregnancy. To better investigate the toxicity of artemisinin derivatives, the structure–activity relationship was evaluated against the K562 leukaemia cell line, used as a model for differentiating early human erythroblasts. All artemisinins derivatives, except deoxyartemisinin, inhibited both spontaneous and induced erythroid differentiation, confirming that the peroxide bridge is responsible for the erythro-toxicity. On the contrary, cell growth was markedly reduced by DHA, artemisone and artesunate but not by artemisinin, 10-deoxoartemisinin or deoxy-artemisinin. The substituent at position C-10 is responsible only for the anti-proliferative effect, since 10-deoxoartemisinin did not reduce cell growth but arrested the differentiation of K562 cells. In particular, the results showed that DHA resulted the most potent and rapidly acting compound of the drug family, causing (i) the decreased expression of GpA surface receptors and the down regulation the γ-globin gene; (ii) the alteration of S phase of cell cycle and (iii) the induction of programmed cell death of early erythroblasts in a dose dependent manner within 24 h. In conclusion, these findings confirm that the active metabolite DHA is responsible for the erythro-toxicity of most of artemisinins used in therapy. Thus, as long as no further clinical data are available, current WHO recommendations of avoiding malaria treatment with artemisinins during the first trimester of pregnancy remain valid.

  19. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    Science.gov (United States)

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  20. Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona

    2017-05-01

    Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.

  1. Localization of ORC1 During the Cell Cycle in Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2011-01-01

    Full Text Available The interaction of the origin recognition complex (ORC with replication origins is a critical parameter in eukaryotic replication initiation. In mammals the ORC remains bound except during mitosis, thus the localization of ORC complexes allows localization of origins. A monoclonal antibody that recognizes human ORC1 was used to localize ORC complexes in populations of human MOLT-4 cells separated by cell cycle position using centrifugal elutriation. ORC1 staining in cells in early G1 is diffuse and primarily peripheral. As the cells traverse G1, ORC1 accumulates and becomes more localized towards the center of the nucleus, however around the G1/S boundary the staining pattern changes and ORC1 appears peripheral. By mid to late S phase ORC1 immunofluorescence is again concentrated at the nuclear center. During anaphase, ORC1 staining is localized mainly in the pericentriolar regions. These findings suggest that concerted movements of origin DNA sequences in addition to the previously documented assembly and disassembly of protein complexes are an important aspect of replication initiation loci in eukaryotes.

  2. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal

    Directory of Open Access Journals (Sweden)

    Pfeifer Aleksandra

    2009-06-01

    Full Text Available Abstract Background The molecular mechanisms of cell cycle exit are poorly understood. Studies on lymphocytes at cell cycle exit after growth factor deprivation have predominantly focused on the initiation of apoptosis. We aimed to study gene expression profile of primary and immortalised IL-2-dependent human T cells forced to exit the cell cycle by growth factor withdrawal, before apoptosis could be evidenced. Results By the Affymetrix microarrays HG-U133 2.0 Plus, 53 genes were distinguished as differentially expressed before and soon after IL-2 deprivation. Among those, PIM1, BCL2, IL-8, HBEGF, DUSP6, OSM, CISH, SOCS2, SOCS3, LIF and IL13 were down-regulated and RPS24, SQSTM1, TMEM1, LRRC8D, ECOP, YY1AP1, C1orf63, ASAH1, SLC25A46 and MIA3 were up-regulated. Genes linked to transcription, cell cycle, cell growth, proliferation and differentiation, cell adhesion, and immune functions were found to be overrepresented within the set of the differentially expressed genes. Conclusion Cell cycle exit of the growth factor-deprived T lymphocytes is characterised by a signature of differentially expressed genes. A coordinate repression of a set of genes known to be induced during T cell activation is observed. However, growth arrest following exit from the cell cycle is actively controlled by several up-regulated genes that enforce the non-dividing state. The identification of genes involved in cell cycle exit and quiescence provides new hints for further studies on the molecular mechanisms regulating the non-dividing state of a cell, the mechanisms closely related to cancer development and to many biological processes.

  3. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest.

    Science.gov (United States)

    Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming

    2012-01-07

    To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.

  4. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints

    International Nuclear Information System (INIS)

    Zhang Weifang; Li Jing; Kanginakudru, Sriramana; Zhao Weiming; Yu Xiuping; Chen, Jason J.

    2010-01-01

    HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.

  5. Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts.

    Science.gov (United States)

    Markopoulos, Georgios S; Roupakia, Eugenia; Tokamani, Maria; Vartholomatos, George; Tzavaras, Theodore; Hatziapostolou, Maria; Fackelmayer, Frank O; Sandaltzopoulos, Raphael; Polytarchou, Christos; Kolettas, Evangelos

    2017-10-01

    Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G 1 /S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G 1 /S and G 2 /M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  7. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo.

    Science.gov (United States)

    Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia

    2015-07-27

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. © 2015 Mende et al.

  8. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. The cell cycle inhibitor p27Kip¹ controls self-renewal and pluripotency of human embryonic stem cells by regulating the cell cycle, Brachyury and Twist.

    Science.gov (United States)

    Menchón, Cristina; Edel, Michael J; Izpisua Belmonte, Juan Carlos

    2011-05-01

    The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27(Kip)¹ cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27(Kip)¹ in hESC lead to a G₁phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27(Kip)¹ caused an elongated/scatter cell-like phenotype involving up-regulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27(Kip)¹ protein occupies the Twist1 gene promoter and manipulation of p27(Kip)¹ by gain and loss of function is associated with Twist gene expression changes. These results define p27(Kip)¹ expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27(Kip)¹ in controlling an epithelial to mesenchymal transition (EMT) in hESC.

  10. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    International Nuclear Information System (INIS)

    Su, Miaoxian; Chung, Hau Yin; Li, Yaolan

    2011-01-01

    Highlights: → Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. → ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. → ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. → ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  11. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Miaoxian [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Chung, Hau Yin, E-mail: anthonychung@cuhk.edu.hk [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Li, Yaolan [Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou (China); Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Guangzhou (China)

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  12. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  13. Curcumin Induces Autophagy, Apoptosis, and Cell Cycle Arrest in Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yaping Zhu

    2017-01-01

    Full Text Available Objective. Curcumin is an active extract from turmeric. The aim of this study was to identify the underlying mechanism of curcumin on PCa cells and the role of autophagy in this process. Methods. The inhibitory effect of curcumin on the growth of PANC1 and BxPC3 cell lines was detected by CCK-8 assay. Cell cycle distribution and apoptosis were tested by flow cytometry. Autophagosomes were tested by cell immunofluorescence assay. The protein expression was detected by Western blot. The correlation between LC3II/Bax and cell viability was analyzed. Results. Curcumin inhibited the cell proliferation in a dose- and time-dependent manner. Curcumin could induce cell cycle arrest at G2/M phase and apoptosis of PCa cells. The autophagosomes were detected in the dosing groups. Protein expression of Bax and LC3II was upregulated, while Bcl2 was downregulated in the high dosing groups of curcumin. There was a significant negative correlation between LC3II/Bax and cell viability. Conclusions. Autophagy could be triggered by curcumin in the treatment of PCa. Apoptosis and cell cycle arrest also participated in this process. These findings imply that curcumin is a multitargeted agent for PCa cells. In addition, autophagic cell death may predominate in the high concentration groups of curcumin.

  14. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  15. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Md Sultan Ahamad

    Full Text Available A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01 with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001 dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.

  16. Effect of dihydroartemisinin on the cell cycle progress of irradiated human cervical cancer cell line and its mechanism

    International Nuclear Information System (INIS)

    Chen Xialin; Ji Rong; Cao Jianping; Zhu Wei; Fan Sanjun; Wang Jianfang; Cao Jianping

    2010-01-01

    Objective: To observe the changes of cell cycle on cancer cells after dihydroartemisinin and X-ray irradiation. Methods: Human HeLa cells of cervical cancer with p53 mutation was used and human SiHa cells of cervical cancer with wild p53 was used as control. Flow cytometry was used to detect the effect of dihydroartemisinin (20 and 100 μmol/L) and irradiation (6 Gy)on cell cycle. Western blot was used to measure the levels of cell cycle protein. Results: G 2 arrest was observed in irradiated HeLa cells, which the proportion of cells in G 2 phase was increased from 14.45% to 73.58% after 6 Gy X-ray irradiation, but it was abrogated by dihydroartemisinin from 73. 58% to 48.31% in HeLa cells, and it had no change on the SiHa cells. The elevated Wee1 protein and the lowered Cyclin B1 protein were observed with the G 2 arrest severity. The expression of radiation-induced Wee1 protein was suppressed and the Cyclin B1 protein was increased after dihydroartemisinin treatment, which was in accordance with the abrogation of radiation-induced G 2 delay. Conclusions: The main effect of irradiation on cell cycle of p53 mutated HeLa cells is G 2 arrest. Dihydroartemisinin could abrogate it, which is associated with the changes of Wee1 protein and Cyclin B1 protein. In Siha cells, the main effect of irradiation on cell cycle is G 1 arrest, and dihydroartemisinin has no effect on it. (authors)

  17. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  18. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    Science.gov (United States)

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  19. Characterization of DNA polymerase. beta. mRNA: cell-cycle growth response in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zmudzka, B Z; Fornace, A; Collins, J; Wilson, S H

    1988-10-25

    DNA polymerase ..beta.. (..beta..-polymerase) is a housekeeping enzyme involved in DNA repair in vertebrate cells. The authors used a cDNA probe to study abundance of ..beta..-polymerase mRNA in cultured human cells. The mRNA level in synchronized HeLa cells, representing different stages of the cell-cycle, varied only slightly. Contact inhibited fibroblasts AG-1522 contained the same level of mRNA as growing cells. The steady-state level of mRNA in fibroblasts is equivalent to 6 molecules per cell. The results indicate that the ..beta..-polymerase transcript is low abundance and is neither cell-cycles nor growth phase responsive.

  20. [Effects of HSP90 inhibitor 17-AAG on cell cycle and apoptosis of human gastric cancer cell lines SGC-7901].

    Science.gov (United States)

    Chen, Meini; Xu, Jinghong; Zhao, Jumei

    2013-02-01

    To study the effect of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on cell proliferation and apoptosis of human cancer SGC-7901 cells and explore the mechanisms. The inhibitory effect of 17-AAG on the proliferation and morphology of SGC-7901 cells was assessed with MTT assay and DNA-PI staining, respectively. Flow cytometry was employed to analyze the changes in cell cycle and apoptosis of the cells following 17-AAG exposure. The cellular expression of Fas protein was detected by immunohistochemistry. 17-AAG significantly suppressed the proliferation of SGC-7901 cells in a time- and dose-dependent manner. After treatment with 17-AAG for 48 h, SGC-7901 cells showed cell cycle arrested at G(2)/M stage, and the cell apoptosis rate increased with the 17-AAG concentration. The expression of Fas protein in the cytoplasm of SGC-7901 cells increased gradually with the increase of 17-AAG concentration. 17-AAG can induce apoptosis, alters the cell cycle distribution and up-regulates the expression of Fas protein in SGC-7901 cells to suppress the cell proliferation.

  1. Modulation of Cell Cycle Profile by Chlorella vulgaris Prevents Replicative Senescence of Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Tayyebeh Saberbaghi

    2013-01-01

    Full Text Available In this study, the effects of Chlorella vulgaris (CV on replicative senescence of human diploid fibroblasts (HDFs were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P<0.05. Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P<0.05. Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P<0.05. Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P<0.05. In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.

  2. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anne-France Petit-Bertron

    Full Text Available The most recently characterized H4 histamine receptor (H4R is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs.

  3. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    Science.gov (United States)

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    Science.gov (United States)

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  5. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  6. Establishment and cell cycle distribution pattern of a radioresistant subline from human lung cancer D6 cell line

    International Nuclear Information System (INIS)

    Wei Qichun; Zheng Shu

    2003-01-01

    Objective: To establish a radioresistant cell subline from a human D6 lung cancer cell line and investigate the mechanism of radioresistance. Methods: D6 human NSCLC cells were exposed to X-rays generated by a linear accelerator(650 cGy per fraction). After a total exposure dose of 5200 cGy, a monoclone was obtained. The radiosensitivity and cell cycle distribution of this clone, together with its parent D6 cells, were measured by clonogenic assay and flow cytometry. Results: The new clone, namely D 6 -R subline, had a higher D 0 (D 0 =2.08 Gy) and a broader initial shoulder(Dq=1.64 Gy, N=2.20) than those of the parent D6 cell line (D 0 =1.84 Gy, Dq=0.34 Gy, N=1.20), being 1.65-fold increase in radioresistance as regards to the SF 2 . The D6-R subline also showed higher percentage of cells in S phase(53.4% vs 37.8%), but lower percentages in G 1 (44.1% vs 57.2%) and G 2 /M(2.5% vs 5%) phases. Conclusion: The new subline D6-R is more radioresistant as compare to its parent D6 cell line, and has a different cell cycle distribution

  7. Solutions for the Cell Cycle in Cell Lines Derived from Human Tumors

    Directory of Open Access Journals (Sweden)

    B. Zubik-Kowal

    2006-01-01

    Full Text Available The goal of the paper is to compute efficiently solutions for model equations that have the potential to describe the growth of human tumor cells and their responses to radiotherapy or chemotherapy. The mathematical model involves four unknown functions of two independent variables: the time variable t and dimensionless relative DNA content x. The unknown functions can be thought of as the number density of cells and are solutions of a system of four partial differential equations. We construct solutions of the system, which allow us to observe the number density of cells for different t and x values. We present results of our experiments which simulate population kinetics of human cancer cells in vitro. Our results show a correspondence between predicted and experimental data.

  8. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells.

    Science.gov (United States)

    Koohestani, Faezeh; Braundmeier, Andrea G; Mahdian, Arash; Seo, Jane; Bi, JiaJia; Nowak, Romana A

    2013-01-01

    Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric) and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches for ULs that target ECM proteins and their signaling pathways in ULs.

  9. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    International Nuclear Information System (INIS)

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-01-01

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization

  10. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Cai, Yingyue; Li, Yongshu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Jingjing [College of Life Science, Hubei Normal University, Huangshi 435002, Hubei (China); Liu, Kaiyu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Yi, E-mail: johnli2668@hotmail.com [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Bioengineering Department, Wuhan Bioengineering Institute, Wuhan 430415, Hubei (China); Yang, Yongbo, E-mail: yongboyang@mail.ccnu.edu.cn [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China)

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  11. Phytol isolated from watermelon (Citrullus lanatus) sprouts induces cell death in human T-lymphoid cell line Jurkat cells via S-phase cell cycle arrest.

    Science.gov (United States)

    Itoh, Tomohiro; Ono, Akito; Kawaguchi, Kaori; Teraoka, Sayaka; Harada, Mayo; Sumi, Keitaro; Ando, Masashi; Tsukamasa, Yasuyuki; Ninomiya, Masayuki; Koketsu, Mamoru; Hashizume, Toshiharu

    2018-05-01

    The phytol isolated from watermelon (Citrullus lanatus) sprouts inhibited the growth of a human T-cell leukemia line Jurkat cell and suppressed tumor progression in a xenograft model of human lung adenocarcinoma epithelial cell line A549 in nude mice. To elucidate the mechanisms underlying the phytol-induced cell death in the present study, we examined the changes in cell morphology, DNA fragmentation, and intracellular reactive oxygen species (ROS) levels and performed flow cytometric analysis to evaluate cell cycle stage. There were no significant changes in apoptosis, autophagy, and necrosis marker in cells treated with the phytol. But, we found, for the first time, that phytol remarkably induced S-phase cell cycle arrest accompanied with intracellular ROS production. Western blot analyses showed that phytolinduced S-phase cell cycle arrest was mediated through the decreased expression of cyclins A and D and the downregulations of MAPK and PI3K/Akt. The tumor volume levels in mice treated with phytol were lower than those of non-treatment groups, and it showed very similar suppression compared with those of mice treated with cyclophosphamide. Based on the data of in vitro and in vivo studies and previous studies, we suggest phytol as a potential therapeutic compound for cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Emerging role of LRRK2 in human neural progenitor cell cycle progression, survival and differentiation

    Directory of Open Access Journals (Sweden)

    Meyer Anne K

    2009-06-01

    Full Text Available Abstract Despite a comprehensive mapping of the Parkinson's disease (PD-related mRNA and protein leucine-rich repeat kinase 2 (LRRK2 in the mammalian brain, its physiological function in healthy individuals remains enigmatic. Based on its structural features and kinase properties, LRRK2 may interact with other proteins involved in signalling pathways. Here, we show a widespread LRRK2 mRNA and/or protein expression in expanded or differentiated human mesencephalic neural progenitor cells (hmNPCs and in post-mortem substantia nigra PD patients. Using small interfering RNA duplexes targeting LRRK2 in hmNPCs following their differentiation into glia and neurons, we observed a reduced number of dopaminergic neurons due to apoptosis in LRRK2 knockdown samples. LRRK2-deficient hmNPCs exhibited elevated cell cycle- and cell death-related markers. In conclusion, a reduction of LRRK2 expression in hmNPCs severely impaired dopaminergic differentiation and/or survival of dopaminergic neurons most likely via preserving or reactivating the cell cycle.

  13. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  14. A new cell culture model to genetically dissect the complete human papillomavirus life cycle.

    Science.gov (United States)

    Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Myers, Julia E; Keiffer, Timothy R; DiGiuseppe, Stephen; Polk, Paula; Bodily, Jason M; Scott, Rona S; Sapp, Martin

    2018-03-01

    Herein, we describe a novel infection model that achieves highly efficient infection of primary keratinocytes with human papillomavirus type 16 (HPV16). This cell culture model does not depend on immortalization and is amenable to extensive genetic analyses. In monolayer cell culture, the early but not late promoter was active and yielded a spliced viral transcript pattern similar to HPV16-immortalized keratinocytes. However, relative levels of the E8^E2 transcript increased over time post infection suggesting the expression of this viral repressor is regulated independently of other early proteins and that it may be important for the shift from the establishment to the maintenance phase of the viral life cycle. Both the early and the late promoter were strongly activated when infected cells were subjected to differentiation by growth in methylcellulose. When grown as organotypic raft cultures, HPV16-infected cells expressed late E1^E4 and L1 proteins and replication foci were detected, suggesting that they supported the completion of the viral life cycle. As a proof of principle that the infection system may be used for genetic dissection of viral factors, we analyzed E1, E6 and E7 translation termination linker mutant virus for establishment of infection and genome maintenance. E1 but not E6 and E7 was essential to establish infection. Furthermore, E6 but not E7 was required for episomal genome maintenance. Primary keratinocytes infected with wild type HPV16 immortalized, whereas keratinocytes infected with E6 and E7 knockout virus began to senesce 25 to 35 days post infection. The novel infection model provides a powerful genetic tool to study the role of viral proteins throughout the viral life cycle but especially for immediate early events and enables us to compare low- and high-risk HPV types in the context of infection.

  15. A new cell culture model to genetically dissect the complete human papillomavirus life cycle.

    Directory of Open Access Journals (Sweden)

    Malgorzata Bienkowska-Haba

    2018-03-01

    Full Text Available Herein, we describe a novel infection model that achieves highly efficient infection of primary keratinocytes with human papillomavirus type 16 (HPV16. This cell culture model does not depend on immortalization and is amenable to extensive genetic analyses. In monolayer cell culture, the early but not late promoter was active and yielded a spliced viral transcript pattern similar to HPV16-immortalized keratinocytes. However, relative levels of the E8^E2 transcript increased over time post infection suggesting the expression of this viral repressor is regulated independently of other early proteins and that it may be important for the shift from the establishment to the maintenance phase of the viral life cycle. Both the early and the late promoter were strongly activated when infected cells were subjected to differentiation by growth in methylcellulose. When grown as organotypic raft cultures, HPV16-infected cells expressed late E1^E4 and L1 proteins and replication foci were detected, suggesting that they supported the completion of the viral life cycle. As a proof of principle that the infection system may be used for genetic dissection of viral factors, we analyzed E1, E6 and E7 translation termination linker mutant virus for establishment of infection and genome maintenance. E1 but not E6 and E7 was essential to establish infection. Furthermore, E6 but not E7 was required for episomal genome maintenance. Primary keratinocytes infected with wild type HPV16 immortalized, whereas keratinocytes infected with E6 and E7 knockout virus began to senesce 25 to 35 days post infection. The novel infection model provides a powerful genetic tool to study the role of viral proteins throughout the viral life cycle but especially for immediate early events and enables us to compare low- and high-risk HPV types in the context of infection.

  16. Effect of irradiation on cell cycle, cell death and expression of its related proteins in normal human oral keratinocytes

    International Nuclear Information System (INIS)

    Kang, Mi Ae; Heo, Min Suk; Lee, Sam Sun; Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; Lee, Sul Mi; Jeon, In Seong

    2003-01-01

    To investigate the radiosensitivity of the normal human oral keratinocytes (NHOK), and the effect of irradiation on cell cycle and protein expression. To evaluate the radiosensitivity of NHOK, the number of colonies and cells were counted after irradiation and the SF2 (survival fraction as 2 Gy) value, and the cell survival curve fitted on a linear-quadratic model were obtained. LDH analysis was carried out to evaluate the necrosis of NHOK at 1, 2,3, and 4 days after 2, 10, and 20 Gy irradiation. Cell cycle arrest and the induction of apoptosis were analyzed using flow cytometry at 1, 2, 3, and 4 days after 2, 10, and 20 Gy irradiation. Finally, proteins related cell cycle arrest and apoptosis were analysed by Western blot. The number of survival cell was significantly decreased in a dose-dependent manner. The cell survival curve showed SF2, α, and β values to be 0.568, 0.209, and 0.020 respectively. At 20 Gy irradiated cells showed higher optical density than the control group. After irradiation, apoptosis was not observed but G2 arrest was observed in the NHOK cells. 1 day after 10 Gy irradiation, the expression of p53 remained unchanged, the p21 WAF1/Cip1 increased and the mdm2 decreased. The expression of bax, bcl-2, cyclin B1, and cyclin D remained unchanged. These results indicate that NHOK responds to irradiation by G2 arrest, which is possibly mediated by the expression of p21 WAF1/Cip1 , and that cell necrosis occurs by high dose irradiation.

  17. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Yukari Takahashi

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5' seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6. CONCLUSIONS/SIGNIFICANCE: We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term 'cell cycle'. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.

  18. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage

    International Nuclear Information System (INIS)

    Liu Zhaojian; Liu Qiao; Xu Bing; Wu Jingjing; Guo Chun; Zhu Faliang; Yang Qiaozi; Gao Guimin; Gong Yaoqin; Shao Changshun

    2009-01-01

    Alkaloid berberine is widely used for the treatment of diarrhea and other diseases. Many laboratory studies showed that it exhibits anti-proliferative activity against a wide spectrum of cancer cells in culture. In this report we studied the mechanisms underlying the inhibitory effects of berberine on human osteosarcoma cells and on normal osteoblasts. The inhibition was largely attributed to cell cycle arrest at G1 and G2/M, and to a less extent, to apoptosis. The G1 arrest was dependent on p53, as G1 arrest was abolished in p53-deficient osteosarcoma cells. The induction of G1 arrest and apoptosis was accompanied by a p53-dependent up-regulation of p21 and pro-apoptotic genes. However, the G2/M arrest could be induced by berberine regardless of the status of p53. Interestingly, DNA double-strand breaks, as measured by the phosphorylation of H2AX, were remarkably accumulated in berberine-treated cells in a dose-dependent manner. Thus, one major mechanism by which berberine exerts its growth-inhibitory effect is to inflict genomic lesions on cells, which in turn trigger the activation of p53 and the p53-dependent cellular responses including cell cycle arrest and apoptosis

  19. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaojian; Liu Qiao; Xu Bing; Wu Jingjing [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Guo Chun; Zhu Faliang [Institute of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Yang Qiaozi [Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States); Gao Guimin [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Gong Yaoqin [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China)], E-mail: yxg8@sdu.edu.cn; Shao Changshun [Key Laboratory of Experimental Teratology of Ministry of Education and Institute of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)], E-mail: shao@biology.rutgers.edu

    2009-03-09

    Alkaloid berberine is widely used for the treatment of diarrhea and other diseases. Many laboratory studies showed that it exhibits anti-proliferative activity against a wide spectrum of cancer cells in culture. In this report we studied the mechanisms underlying the inhibitory effects of berberine on human osteosarcoma cells and on normal osteoblasts. The inhibition was largely attributed to cell cycle arrest at G1 and G2/M, and to a less extent, to apoptosis. The G1 arrest was dependent on p53, as G1 arrest was abolished in p53-deficient osteosarcoma cells. The induction of G1 arrest and apoptosis was accompanied by a p53-dependent up-regulation of p21 and pro-apoptotic genes. However, the G2/M arrest could be induced by berberine regardless of the status of p53. Interestingly, DNA double-strand breaks, as measured by the phosphorylation of H2AX, were remarkably accumulated in berberine-treated cells in a dose-dependent manner. Thus, one major mechanism by which berberine exerts its growth-inhibitory effect is to inflict genomic lesions on cells, which in turn trigger the activation of p53 and the p53-dependent cellular responses including cell cycle arrest and apoptosis.

  20. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Directory of Open Access Journals (Sweden)

    Natalia Bailon-Moscoso

    Full Text Available Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL, a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  1. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Science.gov (United States)

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  2. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  3. Effects of nicotine on cellular proliferation, cell cycle phase distribution, and macromolecular synthesis in human promyelocytic HL-60 leukaemia cells

    International Nuclear Information System (INIS)

    Konno, S.; Wu, J.M.; Chiao, J.W.

    1986-01-01

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in the human promyelocytic HL-60 leukemia cells, with 4 mM nicotine resulting in a 50% inhibition of cellular proliferation after 48-50h. Accompanying the anticellular effect of nicotine is a significant change in the cell cycle distribution of HL-60 cells. For example, treatment with 4 mM nicotine for 20h causes an increase in the proportion of G1-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes partial cell arrest in the G-1 phase which may in part account for its effects on cell growth. To determine whether nicotine changes the cellular uptake/transport to macromolecular precursors, HL-60 cells were treated with 216 mM nicotine for 30h, at the end of which time cells were labelled with ( 3 H)thymidine, ( 3 H)uridine, ( 14 C)lysine and( 35 S)methionine, the trichloroacetic acid soluble and insoluble radioactivities from each of the labelling conditions were determined. These studies show that nicotine mainly affects the ''de novo synthesis'' of proteins. (author)

  4. Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells

    Directory of Open Access Journals (Sweden)

    Barra Viviana

    2012-02-01

    Full Text Available Abstract Background Aneuploidy has been acknowledged as a major source of genomic instability in cancer, and it is often considered the result of chromosome segregation errors including those caused by defects in genes controlling the mitotic spindle assembly, centrosome duplication and cell-cycle checkpoints. Aneuploidy and chromosomal instability has been also correlated with epigenetic alteration, however the molecular basis of this correlation is poorly understood. Results To address the functional connection existing between epigenetic changes and aneuploidy, we used RNA-interference to silence the DNMT1 gene, encoding for a highly conserved member of the DNA methyl-transferases. DNMT1 depletion slowed down proliferation of near-diploid human tumor cells (HCT116 and triggered G1 arrest in primary human fibroblasts (IMR90, by inducing p53 stabilization and, in turn, p21waf1 transactivation. Remarkably, p53 increase was not caused by DNA damage and was not observed after p14-ARF post-transcriptional silencing. Interestingly, DNMT1 silenced cells with p53 or p14-ARF depleted did not arrest in G1 but, instead, underwent DNA hypomethylation and became aneuploid. Conclusion Our results suggest that DNMT1 depletion triggers a p14ARF/p53 dependent cell cycle arrest to counteract the aneuploidy induced by changes in DNA methylation.

  5. The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis.

    Science.gov (United States)

    Fan, W-Y; Wang, D-P; Wen, Q; Fan, T-J

    2017-08-01

    Oxybuprocaine (OBPC) is a widely used topical anesthetic in eye clinic, and prolonged and repeated usage of OBPC might be cytotoxic to the cornea, especially to the outmost corneal epithelium. In this study, we characterized the cytotoxic effect of OBPC on human corneal epithelial (HCEP) cells and investigated its possible cellular and molecular mechanisms using an in vitro model of non-transfected HCEP cells. Our results showed that OBPC at concentrations ranging from 0.025% to 0.4% had a dose- and time-dependent cytotoxicity to HCEP cells. Moreover, OBPC arrested the cells at S phase and induced apoptosis of these cells by inducing plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation. Furthermore, OBPC could trigger the activation of caspase-2, -3, and -9, downregulate the expression of Bcl-xL, upregulate the expression of Bax along with the cytoplasmic amount of mitochondria-released apoptosis-inducing factor, and disrupt mitochondrial transmembrane potential. Our results suggest that OBPC has a dose- and time-dependent cytotoxicity to HCEP cells by inducing cell cycle arrest and cell apoptosis via a death receptor-mediated mitochondria-dependent proapoptotic pathway, and this novel finding provides new insights into the acute cytotoxicity and its toxic mechanisms of OBPC on HCEP cells.

  6. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    Science.gov (United States)

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  7. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

    Science.gov (United States)

    Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E

    2017-11-22

    Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Human cytochrome c enters murine J774 cells and causes G1 and G2/M cell cycle arrest and induction of apoptosis

    International Nuclear Information System (INIS)

    Hiraoka, Yoshinori; Granja, Ana Teresa; Fialho, Arsenio M.; Schlarb-Ridley, Beatrix G.; Das Gupta, Tapas K.; Chakrabarty, Ananda M.; Yamada, Tohru

    2005-01-01

    Cytochrome c is well known as a carrier of electrons during respiration. Current evidence indicates that cytochrome c also functions as a major component of apoptosomes to induce apoptosis in eukaryotic cells as well as an antioxidant. More recently, a prokaryotic cytochrome c, cytochrome c 551 from Pseudomonas aeruginosa, has been shown to enter in mammalian cells such as the murine macrophage-like J774 cells and causes inhibition of cell cycle progression. Much less is known about such functions by mammalian cytochromes c, particularly the human cytochrome c. We now report that similar to P. aeruginosa cytochrome c 551 , the purified human cytochrome c protein can enter J774 cells and induce cell cycle arrest at the G 1 to S phase, as well as at the G 2 /M phase at higher concentrations. Unlike P. aeruginosa cytochrome c 551 which had no effect on the induction of apoptosis, human cytochrome c induces significant apoptosis and cell death in J774 cells, presumably through inhibition of the cell cycle at the G 2 /M phase. When incubated with human breast cancer MCF-7 and normal mammary epithelial cell line MCF-10A1 cells, human cytochrome c entered in both types of cells but induced cell death only in the normal MCF-10A1 cells. The ability of human cytochrome c to enter J774 cells was greatly reduced at 4 deg. C, suggesting energy requirement in the entry process

  9. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  10. Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil.

    Science.gov (United States)

    Asara, Yolande; Marchal, Juan A; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-08-12

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  11. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Roberto Madeddu

    2013-08-01

    Full Text Available Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd, which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  12. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Science.gov (United States)

    Asara, Yolande; Marchal, Juan A.; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A.; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-01-01

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd. PMID:23941782

  13. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.

    Directory of Open Access Journals (Sweden)

    Monica M Horvath

    2007-07-01

    Full Text Available The p53 tumor suppressor is a sequence-specific pleiotropic transcription factor that coordinates cellular responses to DNA damage and stress, initiating cell-cycle arrest or triggering apoptosis. Although the human p53 binding site sequence (or response element [RE] is well characterized, some genes have consensus-poor REs that are nevertheless both necessary and sufficient for transactivation by p53. Identification of new functional gene regulatory elements under these conditions is problematic, and evolutionary conservation is often employed. We evaluated the comparative genomics approach for assessing evolutionary conservation of putative binding sites by examining conservation of 83 experimentally validated human p53 REs against mouse, rat, rabbit, and dog genomes and detected pronounced conservation differences among p53 REs and p53-regulated pathways. Bona fide NRF2 (nuclear factor [erythroid-derived 2]-like 2 nuclear factor and NFkappaB (nuclear factor of kappa light chain gene enhancer in B cells binding sites, which direct oxidative stress and innate immunity responses, were used as controls, and both exhibited high interspecific conservation. Surprisingly, the average p53 RE was not significantly more conserved than background genomic sequence, and p53 REs in apoptosis genes as a group showed very little conservation. The common bioinformatics practice of filtering RE predictions by 80% rodent sequence identity would not only give a false positive rate of approximately 19%, but miss up to 57% of true p53 REs. Examination of interspecific DNA base substitutions as a function of position in the p53 consensus sequence reveals an unexpected excess of diversity in apoptosis-regulating REs versus cell-cycle controlling REs (rodent comparisons: p < 1.0 e-12. While some p53 REs show relatively high levels of conservation, REs in many genes such as BAX, FAS, PCNA, CASP6, SIVA1, and P53AIP1 show little if any homology to rodent sequences. This

  14. Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells.

    Science.gov (United States)

    Wu, Shu-Jing; Chang, Shun-Pang; Lin, Doung-Liang; Wang, Shyh-Shyan; Hou, Fwu-Feuu; Ng, Lean-Teik

    2009-06-01

    Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.

  15. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang, Xiuhua; Chen, Minxiao; Zou, Peng; Kanchana, Karvannan; Weng, Qiaoyou; Chen, Wenbo; Zhong, Peng; Ji, Jiansong; Zhou, Huiping; He, Langchong; Liang, Guang

    2015-01-01

    Prostate cancer is the most commonly diagnosed malignancy among men. The Discovery of new agents for the treatment of prostate cancer is urgently needed. Compound WZ35, a novel analog of the natural product curcumin, exhibited good anti-prostate cancer activity, with an IC 50 of 2.2 μM in PC-3 cells. However, the underlying mechanism of WZ35 against prostate cancer cells is still unclear. Human prostate cancer PC-3 cells and DU145 cells were treated with WZ35 for further proliferation, apoptosis, cell cycle, and mechanism analyses. NAC and CHOP siRNA were used to validate the role of ROS and ER stress, respectively, in the anti-cancer actions of WZ35. Our results show that WZ35 exhibited much higher cell growth inhibition than curcumin by inducing ER stress-dependent cell apoptosis in human prostate cells. The reduction of CHOP expression by siRNA partially abrogated WZ35-induced cell apoptosis. WZ35 also dose-dependently induced cell cycle arrest in the G2/M phase. Furthermore, we found that WZ35 treatment for 30 min significantly induced reactive oxygen species (ROS) production in PC-3 cells. Co-treatment with the ROS scavenger NAC completely abrogated the induction of WZ35 on cell apoptosis, ER stress activation, and cell cycle arrest, indicating an upstream role of ROS generation in mediating the anti-cancer effect of WZ35. Taken together, this work presents the novel anticancer candidate WZ35 for the treatment of prostate cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human prostate cancer treatment. The online version of this article (doi:10.1186/s12885-015-1851-3) contains supplementary material, which is available to authorized users

  16. Cell Cycle Control by PTEN.

    Science.gov (United States)

    Brandmaier, Andrew; Hou, Sheng-Qi; Shen, Wen H

    2017-07-21

    Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cellular morphometry and cycling cell populations of human and dog bronchi. Final report, April 1, 1988 - December 31, 1996

    International Nuclear Information System (INIS)

    Robbins, E.S.

    1996-12-01

    Quantitative data of the human bronchial epithelial cells at possible risk for malignant transformation in lung cancer is crucial for accurate radon dosimetry and risk analysis. The locations and other parameters of the nuclei which may be damaged by α particles and develop into cancers have been determined and compared in different airway generations, among smokers, non-smokers and ex-smokers, between men and women and in people of different ages. This research included extended morphometric studies on electron micrographs of human epithelium of defined airway generations. Since cycling cells can be more sensitive to damage from carcinogens and radioactivity, a second major part of this research consisted of studies to quantitate the cycling tracheobronchial epithelial population(s) using immunocytochemistry and the proliferation marker PCNA on paraffin sections. The basal and suprabasal cycling cell populations of the bronchi of smokers, non-smokers, and ex-smokers, men and women were compared. Normal human airway linings were also compared with normal adult dog trachea and bronchi as well as metaplastic and repairing human airways. The quantitative data from this project resulted in several publications on the cycling and putative stem cells of the tracheobronchial epithelium and more accurate radon dosimetry and risk analyses

  18. Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells.

    Science.gov (United States)

    Petrilli, Alejandra M; Garcia, Jeanine; Bott, Marga; Klingeman Plati, Stephani; Dinh, Christine T; Bracho, Olena R; Yan, Denise; Zou, Bing; Mittal, Rahul; Telischi, Fred F; Liu, Xue-Zhong; Chang, Long-Sheng; Welling, D Bradley; Copik, Alicja J; Fernández-Valle, Cristina

    2017-05-09

    Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.

  19. [The effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell in vitro].

    Science.gov (United States)

    Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei

    2015-08-01

    To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.

  20. Study of the cell cycle control for human malignant mesothelioma lines. Interferon and radiations effect

    International Nuclear Information System (INIS)

    Vivo, C.

    1999-01-01

    In order to better understand the inhibition mechanisms of the IFN-R-HU on tumoral development, the IFN-R-U effect on MM lines has been studied. Three groups of lines has been distinguished: eight sensitive lines, two intermediate and three resistant. The sensitive lines showed a triple locking of the cell cycle: in phases S, G1 and G2. The study of the cell cycle control points function, realized by the MM lines radiation exposure showed the points function on G1/S and-or on G2/M and the dependence or non dependence of the cycle stop of the protein P53 and P21 W at F1/CIP1. (A.L.B.)

  1. Knockdown of human deubiquitinase PSMD14 induces cell cycle arrest and senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Ann; McLaren, Rajashree P.; Mason, Paul; Chai, Lilly; Dufault, Michael R.; Huang, Yinyin; Liang, Beirong; Gans, Joseph D.; Zhang, Mindy; Carter, Kara; Gladysheva, Tatiana B.; Teicher, Beverly A.; Biemann, Hans-Peter N.; Booker, Michael; Goldberg, Mark A.; Klinger, Katherine W.; Lillie, James [Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701 (United States); Madden, Stephen L., E-mail: steve.madden@genzyme.com [Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701 (United States); Jiang, Yide, E-mail: yide.jiang@genzyme.com [Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701 (United States)

    2010-01-15

    The PSMD14 (POH1, also known as Rpn11/MPR1/S13/CepP1) protein within the 19S complex (19S cap; PA700) is responsible for substrate deubiquitination during proteasomal degradation. The role of PSMD14 in cell proliferation and senescence was explored using siRNA knockdown in carcinoma cell lines. Our results reveal that down-regulation of PSMD14 by siRNA transfection had a considerable impact on cell viability causing cell arrest in the G0-G1 phase, ultimately leading to senescence. The molecular events associated with decreased cell proliferation, cell cycle arrest and senescence include down-regulation of cyclin B1-CDK1-CDC25C, down-regulation of cyclin D1 and up-regulation of p21{sup /Cip} and p27{sup /Kip1}. Most notably, phosphorylation of the retinoblastoma protein was markedly reduced in PSMD14 knockdown cells. A comparative study with PSMB5, a subunit of the 20S proteasome, revealed that PSMB5 and PSMD14 have different effects on cell cycle, senescence and associated molecular events. These data support the view that the 19S and 20S subunits of the proteasome have distinct biological functions and imply that targeting 19S and 20S would have distinct molecular consequences on tumor cells.

  2. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells

    Czech Academy of Sciences Publication Activity Database

    Steigerová, J.; Oklešťková, Jana; Levková, M.; Rárová, Lucie; Kolář, Z.; Strnad, Miroslav

    2010-01-01

    Roč. 188, č. 3 (2010), s. 487-496 ISSN 0009-2797 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroids * cause * cell Subject RIV: FD - Oncology ; Hematology Impact factor: 2.832, year: 2010

  3. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    Science.gov (United States)

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma. Copyright © 2014 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  4. CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo

    Science.gov (United States)

    Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico

    2015-01-01

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472

  5. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  6. Resveratrol induces cell cycle arrest and apoptosis in human eosinophils from asthmatic individuals.

    Science.gov (United States)

    Hu, Xin; Wang, Jing; Xia, Yu; Simayi, Mihereguli; Ikramullah, Syed; He, Yuanbing; Cui, Shihong; Li, Shuang; Wushouer, Qimanguli

    2016-12-01

    Eosinophils exert a number of inflammatory effects through the degranulation and release of intracellular mediators, and are considered to be key effector cells in allergic disorders, including asthma. In order to investigate the regulatory effects of the natural polyphenol, resveratrol, on eosinophils derived from asthmatic individuals, the cell counting Kit‑8 assay and flow cytometry analysis were used to determine cell proliferation and cell cycle progression in these cells, respectively. Cellular apoptosis was detected using annexin V-fluorescein isothiocyanate/propidium iodide double‑staining. The protein expression levels of p53, p21, cyclin‑dependent kinase 2 (CDK2), cyclin A, cyclin E, Bim, B‑cell lymphoma (Bcl)‑2 and Bcl‑2‑associated X protein (Bax) were measured by western blot analysis following resveratrol treatment. The results indicated that resveratrol effectively suppressed the proliferation of eosinophils from asthmatic patients in a concentration‑ and time‑dependent manner. In addition, resveratrol was observed to arrest cell cycle progression in G1/S phase by increasing the protein expression levels of p53 and p21, and concurrently reducing the protein expression levels of CDK2, cyclin A and cyclin E. Furthermore, resveratrol treatment significantly induced apoptosis in eosinophils, likely through the upregulation of Bim and Bax protein expression levels and the downregulation of Bcl‑2 protein expression. These findings suggested that resveratrol may be a potential agent for the treatment of asthma by decreasing the number of eosinophils.

  7. Multiparameter Cell Cycle Analysis.

    Science.gov (United States)

    Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G

    2018-01-01

    Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.

  8. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    Science.gov (United States)

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21 CIP1 , p27 KIP1 and p57 KIP2 ) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21 CIP1 , p27 KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57 KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  9. Chemosensitivity of human small cell carcinoma of the lung detected by flow cytometric DNA analysis of drug-induced cell cycle perturbations in vitro

    DEFF Research Database (Denmark)

    Engelholm, S A; Spang-Thomsen, M; Vindeløv, L L

    1986-01-01

    A method based on detection of drug-induced cell cycle perturbation by flow cytometric DNA analysis has previously been described in Ehrlich ascites tumors as a way to estimate chemosensitivity. The method is extended to test human small-cell carcinoma of the lung. Three tumors with different...... sensitivities to melphalan in nude mice were used. Tumors were disaggregated by a combined mechanical and enzymatic method and thereafter have incubated with different doses of melphalan. After incubation the cells were plated in vitro on agar, and drug induced cell cycle changes were monitored by flow...

  10. 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells

    International Nuclear Information System (INIS)

    Karkoulis, Panagiotis K; Stravopodis, Dimitrios J; Margaritis, Lukas H; Voutsinas, Gerassimos E

    2010-01-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinone ansamycin antibiotic, specifically targets heat shock protein 90 (Hsp90) and interferes with its function as a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in cellular signaling. In this study, we have investigated the effect of 17-AAG on the regulation of Hsp90-dependent signaling pathways directly implicated in cell cycle progression, survival and motility of human urinary bladder cancer cell lines. We have used MTT-based assays, FACS analysis, Western blotting, semi-quantitative RT-PCR, immunocytochemistry and scratch-wound assay in RT4, RT112 and T24 human urinary bladder cancer cell lines. We have demonstrated that, upon 17-AAG treatment, bladder cancer cells are arrested in the G1 phase of the cell cycle and eventually undergo apoptotic cell death in a dose-dependent manner. Furthermore, 17-AAG administration was shown to induce a pronounced downregulation of multiple Hsp90 protein clients and other downstream effectors, such as IGF-IR, Akt, IKK-α, IKK-β, FOXO1, ERK1/2 and c-Met, resulting in sequestration-mediated inactivation of NF-κB, reduced cell proliferation and decline of cell motility. In total, we have clearly evinced a dose-dependent and cell type-specific effect of 17-AAG on cell cycle progression, survival and motility of human bladder cancer cells, due to downregulation of multiple Hsp90 clients and subsequent disruption of signaling integrity

  11. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  12. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  13. Identification of Novel Targets of the Human Cell Cycle Regulatory Protein Cdc34

    Science.gov (United States)

    1999-07-01

    centrifugal elutriation, with a purity of -80% as shown by micro - ethyl acetate and separated on thin-layer chromatography plates (Whatman, scopic...Spain. (2) Servicio Bioquimica, Hosp. La Paz. Madrid. ICER protein is elevated in mHR6b-/- (murine Rad6B) fibroblasts Spain. and in human cells

  14. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line.

    Science.gov (United States)

    Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M

    2015-02-05

    Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  15. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.

    Science.gov (United States)

    Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2013-07-01

    Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

  16. Cellular morphometry and cycling cell populations of human and dog bronchi. Annual progress report, April 1, 1994--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, E.S.

    1994-12-01

    Quantitative data of the human bronchial epithelial cells at possible risk for malignant transformation in lung cancer is crucial for accurate radon dosimetry and risk analysis. The nuclei of these cells may be targets for damage by {alpha} particles. Then it is important to determine the locations and other parameters of these nuclei in different airway generations, among smokers, non-smokers and ex-smokers, between men and women and in people of different ages. This proposal includes extended morphometric studies on electron micrographs of human bronchial epithelium of defined airway generations. The second part of this proposal describes the continuation of studies to quantitate the cycling tracheo-bronchial epithelial population(s) using proliferation markers and immunocytochemistry on paraffin sections. The proliferative potential of the airway mucosa of smokers, non-smokers, and ex-smokers, men and women, as well as individuals of different ages are being compared. Normal human bronchial linings are also being compared with normal adult dog bronchi and metaplastic and repairing human airways. Since cycling cells can be more sensitive to damage from carcinogens and radioactivity, the quantitative data from this project will allow the development of more accurate radon risk analysis.

  17. Cellular morphometry and cycling cell populations of human and dog bronchi. Annual progress report, April 1, 1994--March 31, 1995

    International Nuclear Information System (INIS)

    Robbins, E.S.

    1994-12-01

    Quantitative data of the human bronchial epithelial cells at possible risk for malignant transformation in lung cancer is crucial for accurate radon dosimetry and risk analysis. The nuclei of these cells may be targets for damage by α particles. Then it is important to determine the locations and other parameters of these nuclei in different airway generations, among smokers, non-smokers and ex-smokers, between men and women and in people of different ages. This proposal includes extended morphometric studies on electron micrographs of human bronchial epithelium of defined airway generations. The second part of this proposal describes the continuation of studies to quantitate the cycling tracheo-bronchial epithelial population(s) using proliferation markers and immunocytochemistry on paraffin sections. The proliferative potential of the airway mucosa of smokers, non-smokers, and ex-smokers, men and women, as well as individuals of different ages are being compared. Normal human bronchial linings are also being compared with normal adult dog bronchi and metaplastic and repairing human airways. Since cycling cells can be more sensitive to damage from carcinogens and radioactivity, the quantitative data from this project will allow the development of more accurate radon risk analysis

  18. Relation between cell cycle and yield of aberrations observed in irradiated human lymphocytes

    International Nuclear Information System (INIS)

    Leonard, A.; Decat, G.

    1979-01-01

    The bromodeoxyuridine-Giemsa technique has been used to study systematically the incidence of cells in first or subsequent mitoses at differrent fixation times of human lymphocyte control cultures as well as the influence of ionizing radiations on cell kinetics. Second divisions appear (3%) in cultures harvested 48 h after initiation. In 72 h cultures 40% of the dividing cells are in second and 33% in third division. Administration of 200 rads of X-rays before PHA stimulation results in a mitotic delay but does not increase the incidence of SCE. The yield of dicentrics after an exposure to 200 rads was the same for all cells in first mitosis regardless of fixation time. These results demonstrate that there is no evidence for the existence of sensitive subpopulations that could be distinguished by the time of the first mitotic division following stimulation. (author)

  19. Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo*

    Science.gov (United States)

    Maeda, Tadao; Lee, Mee Jee; Palczewska, Grazyna; Marsili, Stefania; Tesar, Paul J.; Palczewski, Krzysztof; Takahashi, Masayo; Maeda, Akiko

    2013-01-01

    Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat−/− and Rpe65−/− mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat−/− and Rpe65−/− mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases. PMID:24129572

  20. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Germini, Diego; Rodighiero, Isabella [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Mirandola, Prisco [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); De Conto, Flora; Medici, Maria-Cristina [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy); Gatti, Rita [Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma (Italy); Chezzi, Carlo; Calderaro, Adriana [Department of Clinical and Experimental Medicine, University of Parma, Parma (Italy)

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  1. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation

    International Nuclear Information System (INIS)

    DeWeese, Theodore L.; Walsh, Jonathan C.; Dillehay, Larry E.; Kessis, Theodore D.; Hedrick, Lora; Cho, Kathleen R.; Nelson, William G.

    1997-01-01

    Purpose: Low-dose-rate radiation therapy has been widely used in the treatment of urogenital malignancies. When continuously exposed to low-dose-rate ionizing radiation, target cancer cells typically exhibit abnormalities in replicative cell-cycle progression. Cancer cells that arrest in the G2 phase of the cell cycle when irradiated may become exquisitely sensitive to killing by further low-dose-rate radiation treatment. Oncogenic human papillomaviruses (HPVs), which play a major role in the pathogenesis of uterine cervix cancers and other urogenital cancers, encode E6 and E7 transforming proteins known to abrogate a p53-dependent G1 cell-cycle checkpoint activated by conventional acute-dose radiation exposure. This study examined whether expression of HPV E6 and E7 oncoproteins by cancer cells alters the cell-cycle redistribution patterns accompanying low-dose-rate radiation treatment, and whether such alterations in cell-cycle redistribution affect cancer cell killing. Methods and Materials: RKO carcinoma cells, which contain wild-type P53 alleles, and RKO cell sublines genetically engineered to express HPV E6 and E7 oncoproteins, were treated with low-dose-rate (0.25-Gy/h) radiation and then assessed for p53 and p21WAF1/CIP1 polypeptide induction by immunoblot analysis, for cell-cycle redistribution by flow cytometry, and for cytotoxicity by clonogenic survival assay. Results: Low-dose-rate radiation of RKO carcinoma cells triggered p53 polypeptide elevations, p21WAF1/CIP1 induction, and arrest in the G1 and G2 phases of the cell cycle. In contrast, RKO cells expressing E6 and E7 transforming proteins from high-risk oncogenic HPVs (HPV 16) arrested in G2, but failed to arrest in G1, when treated with low-dose-rate ionizing radiation. Abrogation of the G1 cell-cycle checkpoint activated by low-dose-rate radiation exposure appeared to be a characteristic feature of transforming proteins from high-risk oncogenic HPVs: RKO cells expressing E6 from a low

  2. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation.

    Science.gov (United States)

    Lange, S; Viergutz, T; Simkó, M

    2004-10-01

    Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.

  3. Molecular mechanisms of celery seed extract induced apoptosis via s phase cell cycle arrest in the BGC-823 human stomach cancer cell line.

    Science.gov (United States)

    Gao, Lin-Lin; Feng, Lei; Yao, Shu-Tong; Jiao, Peng; Qin, Shu-Cun; Zhang, Wei; Zhang, Ya-Bin; Li, Fu-Rong

    2011-01-01

    Mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. Loss of cell cycle control, leading to uncontrolled proliferation, is common in cancer. Therefore, the identification of potent and selective cyclin dependent kinase inhibitors is a priority for anti-cancer drug discovery. There are at least two major apoptotic pathways, initiated by caspase-8 and caspase-9, respectively, which can activate caspase cascades. Apoptosis triggered by activation of the mitochondrial-dependent caspase pathway represents the main programmed cell death mechanism. This is activated by various intracellular stresses that induce permeabilization of the mitochondrial membrane. Anti-tumor effects of celery seed extract (CSE) and related mechanisms regarding apoptosis were here investigated in human gastric cancer BGC-823 cells. CSE was produced by supercritical fluid extraction. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide (MTT) assay and apoptosis by flow cytometry using Annexin/PI staining and DAPI staining and a laser scanning confocal microscope (LSCM). Cell cycling was evaluated using PI staining with flow cytometry and expression of cell cycle and apoptosis-related proteins cyclin A, CDK2, bcl-2 and bax was assessed by immunohistochemical staining. CSE had an anti-proliferation effect on human gastric cancer BGC-823 cells in a dose- and time-dependent manner. After treatment, the apoptotic rate significantly increased, with morphological changes typical of apoptosis observed with LSCM by DAPI staining. Cell cycle and apoptosis related proteins, such as cyclin A, CDK2 and bcl-2 were all down-regulated, whereas bax was up-regulated. The molecular determinants of inhibition of cell proliferation as well as apoptosis of CSE may be associated with cycle arrest in the S phase.

  4. Laser scanning cytometry (LCS) allows detailed analysis of the cell cycle in PI stained human fibroblasts (TIG-7).

    Science.gov (United States)

    Kawasaki, M; Sasaki, K; Satoh, T; Kurose, A; Kamada, T; Furuya, T; Murakami, T; Todoroki, T

    1997-01-01

    We have demonstrated a method for the in situ determination of the cell cycle phases of TIG-7 fibroblasts using a laser scanning cytometer (LSC) which has not only a function equivalent to flow cytometry (FCM) but also has a capability unique in itself. LSC allows a more detailed analysis of the cell cycle in cells stained with propidium iodide (PI) than FCM. With LSC it is possible to discriminate between mitotic cells and G2 cells, between post-mitotic cells and G1 cells, and between quiescent cells and cycling cells in a PI fluorescence peak (chromatin condensation) vs. fluorescence value (DNA content) cytogram for cells stained with PI. These were amply confirmed by experiments using colcemid and adriamycin. We were able to identify at least six cell subpopulations for PI stained cells using LSC; namely G1, S, G2, M, postmitotic and quiescent cell populations. LSC analysis facilitates the monitoring of effects of drugs on the cell cycle.

  5. Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Vucic V.

    2006-01-01

    Full Text Available Gamma-irradiation (gamma-IR is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD, specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001 antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control to 49% (IR cells, with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.

  6. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    Science.gov (United States)

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  7. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells.

    Directory of Open Access Journals (Sweden)

    Justyna Stefanowicz-Hajduk

    Full Text Available The Securinega-type alkaloids occur in plants belonging to Euphorbiaceae family. One of the most widely distributed alkaloid of this group is securinine, which was identified next to allosecurinine in Phyllanthus glaucus (leafflower. Recently, some Securinega-type alkaloids have paid attention to its antiproliferative potency towards different cancer cells. However, the cytotoxic properties of allosecurinine have not yet been evaluated.The cytotoxicity of the extract, alkaloid fraction obtained from P. glaucus, isolated securinine and allosecurinine against HeLa cells was evaluated by real-time xCELLigence system and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Apoptosis was detected by annexin V and 7-amino-actinomycin (7-AAD staining and confirmed with fluorescent Hoechst 33342 dye. The assessment of mitochondrial membrane potential (MMP, reactive oxygen species (ROS generation, the level of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2, caspase-3/7 activity and cell cycle analysis were measured by flow cytometry. The enzymatic activity of caspase-9 was assessed by a luminometric assay. The expression of apoptosis associated genes was analyzed by real-time PCR.The experimental data revealed that securinine and the alkaloid fraction were significantly potent on HeLa cells growth inhibition with IC50 values of 7.02 ± 0.52 μg/ml (32.3 μM and 25.46 ± 1.79 μg/ml, respectively. The activity of allosecurinine and Phyllanthus extract were much lower. Furthermore, our study showed that the most active securinine induced apoptosis in a dose-dependent manner in the tested cells, increased the percentage of ROS positive cells and depolarized cells as well as stimulated the activity of ERK1/2, caspase-9 and -3/7. Securinine also induced cell cycle arrest in S phase. Real-time PCR analysis showed high expression of TNFRSF genes in the cells stimulated with securinine.Securinine induces apoptosis and activates

  8. E2F-dependent induction of p14ARF during cell cycle re-entry in human T cells

    DEFF Research Database (Denmark)

    del Arroyo, Ana Gutierrez; El Messaoudi, Selma; Clark, Paula A

    2007-01-01

    The ARF protein, encoded by alternate exon usage within the CDKN2A locus, provides a link between the retinoblastoma (pRb) and p53 tumor suppressor pathways. Agents that disable pRb or otherwise impinge on the E2F family of transcription factors induce expression of ARF, resulting in stabilization...... of p53 and activation of p53-regulated genes. However, in some cell types ARF is not induced upon cell cycle re-entry, as expected of a conventional E2F target gene, leading to the suggestion that the ARF promoter only responds to supra-physiological or aberrant levels of E2F. These properties have...

  9. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    Science.gov (United States)

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.

  10. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells

    International Nuclear Information System (INIS)

    He, Licheng; Lu, Na; Dai, Qinsheng; Zhao, Yue; Zhao, Li; Wang, Hu; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2013-01-01

    Highlights: • Wogonin inhibited HCT116 cells growth and arrested at G1 phase of the cell cycle. • Wogonin down-regulated the canonical Wnt/β-catenin signaling pathway. • Wogonin interfered in the combination of β-catenin and TCF/Lef. • Wogonin limited the kinase activity of CDK8. - Abstract: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer

  11. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Wu Xinjiang; Kassie, Fekadu; Mersch-Sundermann, Volker

    2005-01-01

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS

  12. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xinjiang [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Kassie, Fekadu [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Mersch-Sundermann, Volker [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany)]. E-mail: Volker.mersch-sundermann@uniklinikum-giessen.de

    2005-11-11

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.

  13. Inhibition effect of proteasome inhibitor MG132 combined with X-ray irradiation on cell growth, metastasis and cycle distribution of human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Liu Jing; Tang Yiting; Zhou Jundong; Zhang Shuyu; Cao Han; Wu Jinchang; Luo Judong; Chen Guanglie; Cao Jianping

    2014-01-01

    Objective: To study the effects of proteasome inhibitor MG132 on the growth, metastasis, and cell cycle distribution of human lung adenocarcinoma cells A549 irradiated by X-rays. Methods: After treatment of MG132 and irradiation,cell proliferation was detected by MTT assay. Survival was measured by clonogenic assay. Cell migration ability was detected by the Scratch migration assay. Cell invasion ability was detected by transwell migration assay. Cell cycle distribution were analyzed by flow cytometry assay. Protein expression was detected by Western blot assay. Results: MG132 alone inhibited cell growth in a dose-and time-dependent manner. MG132 in combination with radiation significantly suppressed the growth, migration and invasion of A549 cells compared to the control (F =554.78, 954.64, P<0.01). MG132 enhanced radiation-induced G 1 -arrest (t =4.44, 12.41, 3.52, 6.72, P<0.05). The G 1 cell cycle distribution rate of MG132 plus RT group was increased to (71.05 ± 4.17)%. The expressions of MMP-2, MMP-9 and Cyclin D1 were significantly suppressed by MG132 in combination with radiation, while the expression of P53 was up-regulated. Conclusions: MG132 inhibits cell growth, migration and invasion ability, and induces G 1 cell cycle arrest of A549 cells treated with MG132 in combination with radiation, in which the down-regulation of MMPs and Cyclin D1 and up-regulation of P53 may be involved. (authors)

  14. Tributyltin induces a G2/M cell cycle arrest in human amniotic cells via PP2A inhibition-mediated inactivation of the ERK1/2 cascades.

    Science.gov (United States)

    Zhang, Yali; Guo, Zonglou; Xu, Lihong

    2014-03-01

    The molecular mechanisms underlying the cell cycle alterations induced by tributyltin (TBT), a highly toxic environmental contaminant, remain elusive. In this study, cell cycle progression and some key regulators in G2/M phase were investigated in human amniotic cells treated with TBT. Furthermore, protein phosphatase (PP) 2A and the ERK cascades were examined. The results showed that TBT caused a G2/M cell cycle arrest that was accompanied by a decrease in the total cdc25C protein level and an increase in the p-cdc2 level in the nucleus. TBT caused a decrease in PP2A activity and inhibited the ERK cascade by inactivating Raf-1, resulting in the dephosphorylation of MEK1/2, ERK1/2, and c-Myc. Taken together, TBT leads to a G2/M cell cycle arrest in FL cells, an increase in p-cdc2 and a decrease in the levels of total cdc25C protein, which may be caused by the PP2A inhibition-mediated inactivation of the ERK1/2 cascades. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Alpinia pricei Rhizome Extracts Induce Cell Cycle Arrest in Human Squamous Carcinoma KB Cells and Suppress Tumor Growth in Nude Mice

    Directory of Open Access Journals (Sweden)

    You-Cheng Hseu

    2011-01-01

    Full Text Available Alpinia pricei has been shown to induce apoptosis in human squamous carcinoma (KB cells. In this study, we report the effectiveness of the ethanol (70% extracts of A. pricei rhizome (AP extracts in terms of tumor regression as determined using both in vitro cell culture and in vivo athymic nude mice models of KB cells. We found that the AP extract (25–200 μg/mL treatment decreased the proliferation of KB cells by arresting progression through the G2/M phase of the cell cycle. This cell cycle blockade was associated with reductions in cyclin A and B1, Cdc2, and Cdc25C, and increased p21/WAF1, Wee1, p53 and phospho-p53 (p-p53 in a dose- and time-dependent manner. Moreover, we found that AP extract treatment decreased metalloproteinase-9 (MMP-9 and urokinase plasminogen activator (u-PA expression, while expression of their endogenous inhibitors, tissue inhibitor of MMP-1 (TIMP-1 and plasminogen activator inhibitor-1 (PAI-1, were increased in KB cells. Furthermore, AP extract treatment effectively delayed tumor incidence in nude mice inoculated with KB cells and reduced the tumor burden. AP extract treatment also induced apoptotic DNA fragmentation, as detected by in situ TUNEL staining. Thus, A. pricei may possess antitumor activity in human squamous carcinoma (KB cells.

  16. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Siddiqui, Maqsood A; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Ahamed, Maqusood

    2015-02-01

    Due to advent of nanotechnology, nickel nanoparticles (Ni NPs) are increasingly recognized for their utility in various applications including catalysts, sensors and electronics. However, the environmental and human health effects of Ni NPs have not been fully investigated. In this study, we examined toxic effects of Ni NPs in human liver (HepG2) cells. Ni NPs were prepared and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. We observed that Ni NPs (size, ∼28 nm; concentration range, 25-100 μg/mL) induced cytotoxicity in HepG2 cells and degree of induction was concentration-dependent. Ni NPs were also found to induce oxidative stress in dose-dependent manner evident by induction of reactive oxygen species and depletion of glutathione. Cell cycle analysis of cells treated with Ni NPs exhibited significant increase of apoptotic cell population in subG1 phase. Ni NPs also induced caspase-3 enzyme activity and apoptotic DNA fragmentation. Upregulation of cell cycle checkpoint gene p53 and bax/bcl-2 ratio with a concomitant loss in mitochondrial membrane potential suggested that Ni NPs induced apoptosis in HepG2 cells was mediated through mitochondrial pathway. This study warrants that applications of Ni NPs should be carefully assessed as to their toxicity to human health. © 2013 Wiley Periodicals, Inc.

  17. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line

    Directory of Open Access Journals (Sweden)

    Qi XL

    2012-04-01

    Full Text Available Xiaoli Qi1, Dianrui Zhang2, Xia Xu1, Feifei Feng2, Guijie Ren1, Qianqian Chu1, Qiang Zhang3, Keli Tian11Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, 2Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, 3State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of ChinaAbstract: Oridonin, a diterpenoid isolated from Rabdosia rubescencs, has been reported to have antitumor effects. However, low solubility has limited its clinical applications. Preparation of drugs in the form of nanosuspensions is an extensively utilized protocol. In this study, we investigated the anticancer activity of oridonin and oridonin nanosuspension on human pancreatic carcinoma PANC-1 cells. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was performed to investigate the effect of oridonin on cell growth. Propidium iodide and Hoechst 33342 staining were used to detect morphologic changes. The percentage of apoptosis and cell cycle progression was determined by flow cytometric method staining with propidium iodide. Annexin V-fluorescein isothiocyanate (FITC/PI staining was used to evaluate cell apoptosis by flow cytometry. Caspase-3 activity was measured by spectrophotometry. The apoptotic and cell cycle protein expression were determined by Western blot analysis. Both oridonin and oridonin nanosuspension induced apoptosis and G2/M phase cell cycle arrest, and the latter had a more significant cytotoxic effect. The ratio of Bcl-2/Bax protein expression was decreased and caspase-3 activity was stimulated. The expression of cyclin B1 and p-cdc2 (T161 was suppressed. Our results showed that oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line.Keywords: cyclin B1, cdc2, caspase-3, Bcl-2, Bax

  18. A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway

    Directory of Open Access Journals (Sweden)

    Wen Li

    2017-10-01

    Full Text Available Background/Aims: ALT1 is a novel long non-coding RNA derived from the alternatively spliced transcript of the deleted in lymphocytic leukemia 2 (DLEU2. To date, ALT1 biological roles in human vascular endothelial cells have not been reported. Methods: ALT1 was knocked down by siRNAs. Cell proliferation was analyzed by cck-8. The existence and sequence of human ALT1 were identified by 3’ rapid amplification of cDNA ends. The interaction between lncRNA and proteins was analyzed by RNA-Protein pull down assay, RNA immunoprecipitation, and mass spectrometry analysis. Results: ALT1 was expressed in human umbilical vein endothelial cells (HUVECs. The expression of ALT1 was significantly downregulated in contact-inhibited HUVECs and in hypoxia-induced, growth-arrested HUVECs. Knocking down of ALT1 inhibited the proliferation of HUVECs by G0/G1 cell cycle arrest. We observed that angiotensin converting enzyme Ⅱ(ACE2 was a direct target gene of ALT1. Knocking-down of ALT1 or its target gene ACE2 could efficiently decrease the expression of cyclin D1 via the enhanced ubiquitination and degradation, in which HIF-1α and protein von Hippel-Lindau (pVHL might be involved. Conclusion: The results suggested the human long non-coding RNA ALT1 is a novel regulator for cell cycle of HUVECs via ACE2 and cyclin D1 pathway.

  19. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    OpenAIRE

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2016-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen...

  20. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    Science.gov (United States)

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  1. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from kashmiri saffron in a human pancreatic cancer cell line.

    Science.gov (United States)

    Bakshi, Hamid; Sam, Smitha; Rozati, Roya; Sultan, Phalisteen; Islam, Tajamul; Rathore, Babita; Lone, Zahoor; Sharma, Manik; Triphati, Jagrati; Saxena, Ramesh Chand

    2010-01-01

    Apoptosis, a widely important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus in different cancer types. The present study was designed to elucidate apoptosis induction by crocin, a main component of Crocus sativus in a human pancreatic cancer cell line (BxPC-3). Cell viability was measured by MTT assay, Hoechest33258 staining was used to detect the chromatin condensation characteristic of apoptosis, and DNA fragmentation was assessed by gel electrophoresis and cell cycle analysis by flow cytometry. Crocin induced apoptosis and G1-phase cell cycle arrest of BxPC-3 cells, while decreasing cell viability in a dose dependent and time dependent manner. Cells treated with 10μg/L crocin exhibited apoptotic morphology (brightly blue-fluorescent condensed nuclei on Hoechst 33258 staining) and reduction of volume. DNA analysis revealed typical ladders as early as 12 hours after treatment indicative of apoptosis. Our preclinical study demonstrated a pancreatic cancer cell line to be highly sensitive to crocin-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of crocin action are not yet clearly understood, it appears to have potential as a therapeutic agent.

  2. Tocotrienol-Rich Fraction Prevents Cell Cycle Arrest and Elongates Telomere Length in Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2011-01-01

    Full Text Available This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF in preventing cellular senescence of human diploid fibroblasts (HDFs. Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G0/G1 phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA-β-gal, damaged DNA, and cells in G0/G1 phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.

  3. Human T-lymphotropic virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival

    Directory of Open Access Journals (Sweden)

    Silverman Lee

    2007-07-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions. Proviral clones of HTLV-1 with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. p30 expressed exogenously differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and while acting as a repressor of many genes including Tax, in part by blocking tax/rex RNA nuclear export, selectively enhances key gene pathways involved in T-cell signaling/activation. Results Herein, we analyzed the role of p30 in cell cycle regulation. Jurkat T-cells transduced with a p30 expressing lentivirus vector accumulated in the G2-M phase of cell cycle. We then analyzed key proteins involved in G2-M checkpoint activation. p30 expression in Jurkat T-cells resulted in an increase in phosphorylation at serine 216 of nuclear cell division cycle 25C (Cdc25C, had enhanced checkpoint kinase 1 (Chk1 serine 345 phosphorylation, reduced expression of polo-like kinase 1 (PLK1, diminished phosphorylation of PLK1 at tyrosine 210 and reduced phosphorylation of Cdc25C at serine 198. Finally, primary human lymphocyte derived cell lines immortalized by a HTLV-1 proviral clone defective in p30 expression were more susceptible to camptothecin induced apoptosis. Collectively these data are consistent with a cell survival role of p30 against genotoxic insults to HTLV-1 infected lymphocytes. Conclusion Collectively, our data are the first to indicate that HTLV-1 p30 expression results in activation of the G2-M cell cycle checkpoint, events that would promote early viral spread and T-cell

  4. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    Science.gov (United States)

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338. Copyright © 2016. Published by Elsevier Masson SAS.

  5. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest.

    Science.gov (United States)

    Chen, Wenxia; Yan, Yongbin; Song, Chundong; Ding, Ying; Du, Tao

    2017-12-14

    Studies have demonstrated that microvesicles (MVs) derived from human Wharton's Jelly mesenchymal stromal cells (hWJMSCs) could ameliorate renal ischemia/reperfusion injury (IRI); however, the underlying mechanisms were not clear yet. Here, MVs were isolated and injected intravenously into rats immediately after ischemia of the left kidney, and Erk1/2 activator hepatocyte growth factor (HGF) or inhibitor U0126 was administrated. Tubular cell proliferation and apoptosis were identified by Ki67 or terminal-deoxynucleotidyl transferase-mediated nick end labeling immunostaining. Masson's tri-chrome straining and alpha-smooth muscle actin staining were used for assessing renal fibrosis. The mRNA or protein expression in the kidney was measured by quantitative reverse transcription-PCR or Western blot, respectively. The total collagen concentration was also determined. In vitro , NRK-52E cells that treated with MVs under hypoxia injury and with HGF or U0126 administration were used, and cell cycle analysis was performed. The effects of hWJMSC-MVs on enhancing the proliferation and mitigating the apoptosis of renal cells, abrogating IRI-induced fibrosis, improving renal function, decreasing collagen deposition, and altering the expression levels of epithelial-mesenchymal transition and cell cycle-related proteins in IRI rats were found. In vitro experiment showed that hWJMSC-MVs could induce G2/M cell cycle arrest and decrease the expression of collagen deposition-related proteins in NRK-52E cells after 24 or 48 h. However, U0126 treatment reversed these effects. In conclusion, MVs derived from hWJMSCs ameliorate IR-induced renal fibrosis by inducing G2/M cell cycle arrest via Erk1/2 signaling. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.

    Science.gov (United States)

    Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S

    2010-06-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs.

  7. Glucocorticoid effect on melphalan cytotoxicity, cell-cycle position, cell size, and [3H]uridine incorporation in one of three human melanoma cell lines

    International Nuclear Information System (INIS)

    Benckhuijsen, C.; Osman, A.M.; Hillebrand, M.J.; Smets, L.A.

    1987-01-01

    Three human melanoma cell lines of known content of specific glucocorticoid-binding sites were studied for colony formation after a microM dose of glucocorticoid combined with melphalan. In one of the three cell lines, M-5A, subcloned from M-5 (formerly designated RPMI 8322), the effect of combined treatment was markedly increased compared to that of melphalan even if the glucocorticoid was applied for 1 h only, 10 h before the melphalan. Semilogarithmic dose-effect plots for a reduction of final plating efficiency by glucocorticoid were curvilinear, according to a receptor-mediated process. The effects of glucocorticoid, melphalan, and their combination were linearized by bilogarithmic median-effect plotting which allowed the quantitation of a synergism which was more marked in case of glucocorticoid pretreatment, for 1 or 24 h, than on simultaneous exposure. According to sequential DNA per cell cytophotometry, melphalan abolished in M-5A a glucocorticoid-induced arrest in the G1 phase of the cell cycle. The cytotoxic synergism correlated with an apparent stimulation by glucocorticoid of the rate of acid-insoluble incorporation of [ 3 H]uridine and [ 14 C]leucine and an increase in cell size and protein content in M-5A cells but not in the other two cell lines. The way in which glucocorticoids induce an enhanced susceptibility to melphalan is not clear. Our results appear compatible with a hypothesis that chromatin in a transcriptionally activated state is more vulnerable to cytotoxic attack by an alkylating agent than under average conditions

  8. Ajwa Date (Phoenix dactylifera L. Extract Inhibits Human Breast Adenocarcinoma (MCF7 Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest.

    Directory of Open Access Journals (Sweden)

    Fazal Khan

    Full Text Available Phoenix dactylifera L (Date palm is a native plant of the Kingdom of Saudi Arabia (KSA and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD on human breast adenocarcinoma (MCF7 cells in vitro.MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied.Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h. Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP. Quantitative real time PCR (qRT-PCR analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2.MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer.

  9. Umbelliferone arrest cell cycle at G0/G1 phase and induces apoptosis in human oral carcinoma (KB) cells possibly via oxidative DNA damage.

    Science.gov (United States)

    Vijayalakshmi, Annamalai; Sindhu, Ganapathy

    2017-08-01

    Umbelliferone (UMB) has widespread pharmacological activity, comprising anti-inflammatory, anti-oxidant, anti-genotoxic and anti-immunomodulatory but the anticancer activity remains unknown in human oral carcinoma (HOC) KB cells. MTT assay determinations was revealed that treatment of KB cells with UMB, prevent and reduce the cell proliferation with the IC 50 - 200μM as well as induces loss of cell viability, morphology change and internucleosomal DNA fragmentation in a concentration dependent manner. Acridine orange and ethidium bromide dual staining assay established that UMB induced apoptosis in KB cells in a dose dependent manner. Alkaline comet assay determination revealed UMB has the potential to increase oxidative DNA damage in KB cells through DNA tail formation significantly (pKB cells. Similarly, we observed increased DNA damage stimulated apoptotic morphological changes in UMB treated cells. Taken together, the present study suggests that UMB exhibits anticancer effect on KB cell line with the increased generation of intracellular ROS, triggered oxidative stress mediated depolarization of mitochondria, which contributes cell death via DNA damage as well as cell cycle arrest at G0/G1 phase. The results have also provided us insight in the pharmacological backgrounds for the potential use of UMB, to target divergent pathways of cell survival and cell death. To conclude UMB could develop as a novel candidate for cancer chemoprevention and therapy, which is our future focus and to develop a connectivity map between in vivo and in vitro activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  11. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Choi Hyun

    2009-05-01

    Full Text Available Abstract Background 3,3'-Diindolylmethane (DIM, an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 – 30 μmol/L inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. Methods HT-29 cells were cultured with various concentrations of DIM (0 – 30 μmol/L and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK and cell division cycle (CDC2 were conducted. Results The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Conclusion Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  12. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells.

    Science.gov (United States)

    Choi, Hyun Ju; Lim, Do Young; Park, Jung Han Yoon

    2009-05-29

    3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 - 30 micromol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. HT-29 cells were cultured with various concentrations of DIM (0 - 30 micromol/L) and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted. The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  13. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells

    Science.gov (United States)

    Khan, Naghma; Afaq, Farrukh; Syed, Deeba N.; Mukhtar, Hasan

    2008-01-01

    Novel dietary agents for prevention and therapy of prostate cancer (PCa) are desired. The aim of this study was to determine the effect of fisetin, a tetrahydroxyflavone, on inhibition of cell growth and induction of apoptosis in human PCa cells. Treatment of fisetin (10–60 μM, 48 h) was found to result in a decrease in the viability of LNCaP, CWR22Rυ1 and PC-3 cells but had only minimal effects on normal prostate epithelial cells as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide assay. Treatment of LNCaP cells with fisetin also resulted in G1-phase arrest that was associated with a marked decrease in the protein expression of cyclins D1, D2 and E and their activating partner cyclin-dependent kinases 2, 4 and 6 with concomitant induction of WAF1/p21 and KIP1/p27. Fisetin treatment also resulted in induction of apoptosis, poly (ADP-ribose) polymerase (PARP) cleavage, modulation in the expressions of Bcl-2 family proteins, inhibition of phosphatidyl inositol 3-kinase and phosphorylation of Akt at Ser473 and Thr308. There was also induction of mitochondrial release of cytochrome c into cytosol, downregulation of X-linked inhibitor of apoptosis protein and upregulation of second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI on treatment of cells with fisetin. Treatment of cells with fisetin also resulted in significant activation of caspases-3, -8 and -9. Pretreatment of cells with caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced activation of caspases. These data provide the first evidence that fisetin could be developed as an agent against PCa. PMID:18359761

  14. Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells.

    Science.gov (United States)

    Perumalsamy, Haribalan; Sankarapandian, Karuppasamy; Kandaswamy, Narendran; Balusamy, Sri Renukadevi; Periyathambi, Dhaiveegan; Raveendiran, Nanthini

    2017-11-01

    Coumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed. Antiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot. The inhibition concentration (IC 50 ) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC 50 ) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon

  15. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Effect of Scopoletin on Apoptosis and Cell Cycle Arrest in Human ...

    African Journals Online (AJOL)

    treatment with increasing doses compared to control cells, scopoletin treatment resulted in cell ... Conclusion: These results reveal that scopoletin may be used as a natural chemotherapeutic agent .... apoptosis, and necrosis in LNCaP cells .... Pan R, Dai Y, Gao XH, Lu D, Xia YF. Inhibition of vascular endothelial growth.

  17. Alteronol induces cell cycle arrest and apoptosis via increased reactive oxygen species production in human breast cancer T47D cells.

    Science.gov (United States)

    Ren, Boxue; Li, Defang; Si, Lingling; Ding, Yangfang; Han, Jichun; Chen, Xiaoyu; Zheng, Qiusheng

    2018-04-01

    Emerging evidence showed that alteronol has a potential antitumour effect in several tumour cells. However, the antitumour effect of alteronol on breast cancer has not been reported. This study investigated the mechanisms of alteronol-induced cell proliferation inhibition in human breast cancer T47D cells. After treatment with alteronol, T47D cell proliferation was examined by MTT assay. The cell cycle distribution, cell apoptosis, reactive oxygen species level and mitochondrial membrane potential were evaluated via flow cytometry. Next, the protein levels of cyclin B1, cdc2, p21, p-cyclin B1, p-cdc2, p53, Bax, Bcl-2 and cytochrome c were analysed using Western blot analysis. Meanwhile, the mRNA levels of cyclin B1, cdc2, p21 and p53 were examined by qRT-PCR. Our data showed that alteronol inhibited the proliferation of T47D cells via inducing G2-phase arrest and cell apoptosis. Compared with control group, alteronol significantly increased ROS level and triggered mitochondrial dysfunction in alteronol-treated T47D cells. Further studies showed that the mRNA and protein levels of cdc2 and cyclin B1 were downregulated, while the mRNA and protein levels of p21, p53, p-cyclin B1, p-cdc2 and cytochrome c were upregulated. In addition, the expression level of Bax was increased, and the expression level of Bcl-2 was decreased. Alteronol induced T47D cell cycle arrest and cell apoptosis through increasing ROS production and triggering mitochondrial dysfunction, and subsequently inhibiting T47D cell proliferation. © 2018 Royal Pharmaceutical Society.

  18. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    Science.gov (United States)

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Characterization of the N-methoxyindole-3-carbinol (NI3C)–Induced Cell Cycle Arrest in Human Colon Cancer Cell Lines

    DEFF Research Database (Denmark)

    Neave, Antje S.; Sarup, Sussi; Seidelin, Michel

    2005-01-01

    Recent results have shown that indole-3-carbinol (I3C) inhibits the cellular growth of human cancer cell lines. In some cruciferous vegetables, another indole, N-methoxyindole-3-carbinol (NI3C), is found beside I3C. Knowledge about the biological effects of NI3C is limited. The aim of the present...... study was to show the effect of NI3C on cell growth of two human colon cancer cell lines, DLD-1 and HCT-116. For the first time it is shown that NI3C inhibits cellular growth of DLD-1 and HCT-116 and that NI3C is a more potent inhibitor of cell proliferation than I3C. In addition to the inhibition...... of cellular proliferation, NI3C caused an accumulation of HCT-116 cells in the G2/M phase, in contrast to I3C, which led to an accumulation of the colon cells in G0/G1 phase. Furthermore, NI3C delays the G1-S phase transition of synchronized HCT-116 cells. The indole-mediated cell-cycle arrest may be related...

  20. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line

    Directory of Open Access Journals (Sweden)

    Rahman HS

    2014-01-01

    Full Text Available Heshu Sulaiman Rahman,1–3 Abdullah Rasedee,1,2 Ahmad Bustamam Abdul,2,4 Nazariah Allaudin Zeenathul,1,2 Hemn Hassan Othman,1,3 Swee Keong Yeap,2 Chee Wun How,2 Wan Abd Ghani Wan Nor Hafiza4,51Faculty of Veterinary Medicine, 2Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 3Faculty of Veterinary Medicine, University of Sulaimanyah, Sulaimanyah City, Kurdistan Region, Northern Iraq; 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia; 5College of Medical Laboratory Technology, Institute for Medical Research, Kuala Lumpur, MalaysiaAbstract: This investigation evaluated the antileukemia properties of a zerumbone (ZER-loaded nanostructured lipid carrier (NLC prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat cell line in vitro. The apoptogenic effect of the ZER-NLC on Jurkat cells was determined by fluorescent and electron microscopy, Annexin V-fluorescein isothiocyanate, Tdt-mediated dUTP nick-end labeling assay, cell cycle analysis, and caspase activity. An MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyltetrazolium bromide assay showed that ZER-NLC did not have adverse effects on normal human peripheral blood mononuclear cells. ZER-NLC arrested the Jurkat cells at G2/M phase with inactivation of cyclin B1 protein. The study also showed that the antiproliferative effect of ZER-NLC on Jurkat cells is through the intrinsic apoptotic pathway via activation of caspase-3 and caspase-9, release of cytochrome c from the mitochondria into the cytosol, and subsequent cleavage of poly (adenosine diphosphate-ribose polymerase (PARP. These findings show that the ZER-NLC is a potentially useful treatment for acute lymphoblastic leukemia in humans.Keywords: zerumbone-loaded nanostructured lipid carrier, cell cycle arrest, apoptosis, mitochondrial pathway

  1. 5-(2-Carboxyethenyl) isatin derivative induces G2/M cell cycle arrest and apoptosis in human leukemia K562 cells

    International Nuclear Information System (INIS)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan; Fan, Zhen-Chuan; Zhang, Yong-Min; Teng, Yu-Ou; Yu, Peng

    2014-01-01

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G 2 /M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC 50 ) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G 2 /M phase and accumulated subsequently in the sub-G 1 phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G 2 /M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation

  2. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457 (China); Obesita and Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 Place Jussieu, 75005 Paris (France); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.

  3. Calotropis procera extract induces apoptosis and cell cycle arrest at G2/M phase in human skin melanoma (SK-MEL-2) cells.

    Science.gov (United States)

    Joshi, Aparna L; Roham, Pratiksha H; Mhaske, Rooth; Jadhav, Mahadev; Krishnadas, Kavitha; Kharat, Amol; Hardikar, Bhagyashree; Kharat, Kiran R

    2015-01-01

    Calotropis procera (family: Asclepiadaceae) contains cardiac glycosides which are cytotoxic to cancer cells. The extracts of C. procera have been reported to be cytotoxic to many cancer cell lines and this is the first report against the human skin melanoma cells (SK-MEL-2). The SK-MEL-2 cells treated with C. procera methanolic extract (CPME) were analysed for growth inhibition and apoptosis. The exposure of phosphatidylserine in apoptotic SK-MEL-2 was analysed by using the Annexin-V FITC flow cytometry method. In CPME-treated SK-MEL-2 cells, 19.6% of apoptotic and 58.3% dead cells were observed. The 15.97% and 15.85% of early apoptotic cells were found at 20 μg/mL of the ouabain and paclitaxel, respectively. Active caspases, nuclear degradation confirmed apoptotic SK-MEL-2 cells in time- and dose-dependent manner. The cell cycle analysis shows that CPME treated cells halt at G2/M phase. Significant cytotoxic activity of CPME against SK-MEL-2 may be attributed to its high cardenolide content.

  4. The cucurbitacins D, E, and I from Ecballium elaterium (L. upregulate the LC3 gene and induce cell-cycle arrest in human gastric cancer cell line AGS

    Directory of Open Access Journals (Sweden)

    Naser Jafargholizadeh

    2018-03-01

    Full Text Available Objective(s: Cucurbitacins exhibit a range of anti-cancer functions. We investigated the effects of cucurbitacins D, E, and I purified from Ecballium elaterium (L. A. Rich fruits on some apoptotic and autophagy genes in human gastric cancer cell line AGS. Materials and Methods: Using quantitative reverse transcription PCR (qRT-PCR, the expression of LC3, VEGF, BAX, caspase-3, and c-MYC genes were quantified in AGS cells 24 hr after treatment with cucurbitacins D, E, and I at concentrations 0.3, 0.1 and 0.5 μg/ml, respectively. Cell cycle and death were analyzed by flowcytometry. Results: Purified cucurbitacins induced sub-G1 cell-cycle arrest and cell death in AGS cells and upregulated LC3mRNA effectively, but showed a very low effect on BAX, caspase-3, and c-MYC mRNA levels. Also after treatment with cucurbitacin I at concentration 0.5 μg/ml, VEGF mRNA levels were increased about 4.4 times. Pairwise comparison of the effect of cucurbitacins D, E, and I on LC3 mRNA expression showed that the cucurbitacin I effect is 1.3 and 1.1 times that of cucurbitacins E and D, respectively; cucurbitacin D effect is 1.2 times that of cucurbitacin E (P-value

  5. Algerian Propolis Potentiates Doxorubicin Mediated Anticancer Effect against Human Pancreatic PANC-1 Cancer Cell Line through Cell Cycle Arrest, Apoptosis Induction and P-Glycoprotein Inhibition.

    Science.gov (United States)

    Rouibah, Hassiba; Mesbah, Lahouel; Kebsa, Wided; Zihlif, Malek; Ahram, Mamoun; Aburmeleih, Bachaer; Mostafa, Ibtihal; El Amir, Hemzeh

    2018-01-10

    Pancreatic cancer is one of the most aggressive and lethal cancer, with poor prognosis and high resistant to current chemotherapeutic agents. Therefore, new therapeutic strategies and targets are underscored. Propolis has been reported to exhibit a broad spectrum of biological activities including anticancer activity. This study was carried out to assess the possible efficacy of Algerian propolis on the antitumor effect of doxorubicin on human pancreatic cancer cell line (PANC-1). Modifications in cell viability, apoptosis and cell cycle progression, Pgp activity and intracellular accumulation of DOX were monitored to study the synergistic effect of Algerian propolis on the antitumor effects of DOX in PANC-1 cell line. Both propolis and its combination with doxorubicin inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In the presence of 100 µg/ml of propolis, the IC50 of DOX against PANC-1 cells decreased by 10.9-fold. Propolis combined with DOX increased after 48h, the number of cells in the G0G1 phase with dramatical increase in sub-G1 phase to reach 47% of total cells, corresponding to an increase of senescence or apoptotic state of the cells. Dead cell assay with annexinV/PI staining demonstrated that propolis and propolis-DOX treatment resulted in a remarkable induction of apoptosis as detected by flow cytometry. It was interesting to note that propolis at its 5IC50 was found as the most potent inducer of apoptosis. Our finding revealed that induced apoptosis in our conditions was caspase-3 and caspase-9 dependent. Flow cytometry showed that propolis increased the accumulation of doxorubicin within PANC-1 cells. Moreover, fluorescent intensity detection revealed that propolis remarkably increased the retention of rhodamine-123, 7-fold compared to 3-fold of verapamil, the most effective P-gp inhibitor. In conclusion, propolis sensitize pancreatic cancer cells to DOX via enhancing the intracellular retention of DOX

  6. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of

  7. Lactobacillus Decelerates Cervical Epithelial Cell Cycle Progression

    Science.gov (United States)

    Vielfort, Katarina; Weyler, Linda; Söderholm, Niklas; Engelbrecht, Mattias; Löfmark, Sonja; Aro, Helena

    2013-01-01

    We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells. PMID:23675492

  8. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  9. Prazosin Displays Anticancer Activity against Human Prostate Cancers: Targeting DNA, Cell Cycle

    Directory of Open Access Journals (Sweden)

    Ssu-Chia Lin

    2007-10-01

    Full Text Available Quinazoline-based α1,-adrenoceptor antagonists, in particular doxazosin, terazosin, are suggested to display antineoplastic activity against prostate cancers. However, there are few studies elucidating the effect of prazosin. In this study, prazosin displayed antiproliferative activity superior to that of other α1-blockers, including doxazosin, terazosin, tamsulosin, phentolamine. Prazosin induced G2 checkpoint arrest, subsequent apoptosis in prostate cancer PC-3, DU-145, LNCaP cells. In p53-null PC-3 cells, prazosin induced an increase in DNA str, breaks, ATM/ATR checkpoint pathways, leading to the activation of downstream signaling cascades, including Cdc25c phosphorylation at Ser216, nuclear export of Cdc25c, cyclin-dependent kinase (Cdk 1 phosphorylation at Tyr15. The data, together with sustained elevated cyclin A levels (other than cyclin B1 levels, suggested that Cdki activity was inactivated by prazosin. Moreover, prazosin triggered mitochondria-mediated, caspaseexecuted apoptotic pathways in PC-3 cells. The oral administration of prazosin significantly reduced tumor mass in PC-3-derived cancer xenografts in nude mice. In summary, we suggest that prazosin is a potential antitumor agent that induces cell apoptosis through the induction of DNA damage stress, leading to Cdki inactivation, G2 checkpoint arrest. Subsequently, mitochondriamediated caspase cascades are triggered to induce apoptosis in PC-3 cells.

  10. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb.

    Science.gov (United States)

    Neuveut, C; Low, K G; Maldarelli, F; Schmitt, I; Majone, F; Grassmann, R; Jeang, K T

    1998-06-01

    Human T-cell leukemia virus type 1 is etiologically linked to the development of adult T-cell leukemia and various human neuropathies. The Tax protein of human T-cell leukemia virus type I has been implicated in cellular transformation. Like other oncoproteins, such as Myc, Jun, and Fos, Tax is a transcriptional activator. How it mechanistically dysregulates the cell cycle is unclear. Previously, it was suggested that Tax affects cell-phase transition by forming a direct protein-protein complex with p16(INK4a), thereby inactivating an inhibitor of G1-to-S-phase progression. Here we show that, in T cells deleted for p16(INK4a), Tax can compel an egress of cells from G0/G1 into S despite the absence of serum. We also show that in undifferentiated myocytes, expression of Tax represses cellular differentiation. In both settings, Tax expression was found to increase cyclin D-cdk activity and to enhance pRb phosphorylation. In T cells, a Tax-associated increase in steady-state E2F2 protein was also documented. In searching for a molecular explanation for these observations, we found that Tax forms a protein-protein complex with cyclin D3, whereas a point-mutated and transcriptionally inert Tax mutant failed to form such a complex. Interestingly, expression of wild-type Tax protein in cells was also correlated with the induction of a novel hyperphosphorylated cyclin D3 protein. Taken together, these findings suggest that Tax might directly influence cyclin D-cdk activity and function, perhaps by a route independent of cdk inhibitors such as p16(INK4a).

  11. Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo

    International Nuclear Information System (INIS)

    Montano, Ryan; Thompson, Ruth; Chung, Injae; Hou, Huagang; Khan, Nadeem; Eastman, Alan

    2013-01-01

    Chk1 inhibitors have emerged as promising anticancer therapeutic agents particularly when combined with antimetabolites such as gemcitabine, cytarabine or hydroxyurea. Here, we address the importance of appropriate drug scheduling when gemcitabine is combined with the Chk1 inhibitor MK-8776, and the mechanisms involved in the schedule dependence. Growth inhibition induced by gemcitabine plus MK-8776 was assessed across multiple cancer cell lines. Experiments used clinically relevant “bolus” administration of both drugs rather than continuous drug exposures. We assessed the effect of different treatment schedules on cell cycle perturbation and tumor cell growth in vitro and in xenograft tumor models. MK-8776 induced an average 7-fold sensitization to gemcitabine in 16 cancer cell lines. The time of MK-8776 administration significantly affected the response of tumor cells to gemcitabine. Although gemcitabine induced rapid cell cycle arrest, the stalled replication forks were not initially dependent on Chk1 for stability. By 18 h, RAD51 was loaded onto DNA indicative of homologous recombination. Inhibition of Chk1 at 18 h rapidly dissociated RAD51 leading to the collapse of replication forks and cell death. Addition of MK-8776 from 18–24 h after a 6-h incubation with gemcitabine induced much greater sensitization than if the two drugs were incubated concurrently for 6 h. The ability of this short incubation with MK-8776 to sensitize cells is critical because of the short half-life of MK-8776 in patients’ plasma. Cell cycle perturbation was also assessed in human pancreas tumor xenografts in mice. There was a dramatic accumulation of cells in S/G 2 phase 18 h after gemcitabine administration, but cells had started to recover by 42 h. Administration of MK-8776 18 h after gemcitabine caused significantly delayed tumor growth compared to either drug alone, or when the two drugs were administered with only a 30 min interval. There are two reasons why delayed

  12. Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells.

    Science.gov (United States)

    González-Sarrías, Antonio; Li, Liya; Seeram, Navindra P

    2012-07-01

    Phenolic-enriched extracts of maple sap and syrup, obtained from the sugar and red maple species (Acer saccharum Marsh, A. rubrum L., respectively), are reported to show anticancer effects. Despite traditional medicinal uses of various other parts of these plants by Native Americans, they have not been investigated for anticancer activity. Here leaves, stems/twigs, barks and sapwoods of both maple species were evaluated for antiproliferative effects against human colon tumorigenic (HCT-116, HT-29, Caco-2) and non-tumorigenic (CCD-18Co) cells. Extracts were standardized to total phenolic and ginnalin-A (isolated in our laboratory) levels. Overall, the extracts inhibited the growth of the colon cancer more than normal cells (over two-fold), their activities increased with their ginnalin-A levels, with red > sugar maple extracts. The red maple leaf extract, which contained the highest ginnalin-A content, was the most active extract (IC₅₀  = 35 and 16 µg/mL for extract and ginnalin-A, respectively). The extracts were not cytotoxic nor did they induce apoptosis of the colon cancer cells. However, cell cycle analyses revealed that the antiproliferative effects of the extracts were mediated through cell cycle arrest in the S-phase. The results from the current study suggest that these maple plant part extracts may have potential anticolon cancer effects. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations.

    Science.gov (United States)

    Kompisch, Kai Michael; Lange, Claudia; Steinemann, Doris; Skawran, Britta; Schlegelberger, Brigitte; Müller, Reinhard; Schumacher, Udo

    2010-11-01

    Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.

  14. Silkworm Pupa Protein Hydrolysate Induces Mitochondria-Dependent Apoptosis and S Phase Cell Cycle Arrest in Human Gastric Cancer SGC-7901 Cells

    Directory of Open Access Journals (Sweden)

    Xiaotong Li

    2018-03-01

    Full Text Available Silkworm pupae (Bombyx mori are a high-protein nutrition source consumed in China since more than 2 thousand years ago. Recent studies revealed that silkworm pupae have therapeutic benefits to treat many diseases. However, the ability of the compounds of silkworm pupae to inhibit tumourigenesis remains to be elucidated. Here, we separated the protein of silkworm pupae and performed alcalase hydrolysis. Silkworm pupa protein hydrolysate (SPPH can specifically inhibit the proliferation and provoke abnormal morphologic features of human gastric cancer cells SGC-7901 in a dose- and time-dependent manner. Moreover, flow cytometry indicated that SPPH can induce apoptosis and arrest the cell-cycle in S phase. Furthermore, SPPH was shown to provoke accumulation of reactive oxygen species (ROS and depolarization of mitochondrial membrane potential. Western blotting analysis indicated that SPPH inhibited Bcl-2 expression and promoted Bax expression, and subsequently induced apoptosis-inducing factor and cytochrome C release, which led to the activation of initiator caspase-9 and executioner caspase-3, cleavage of poly (ADP-ribose polymerase (PARP, eventually caused cell apoptosis. Moreover, SPPH-induced S-phase arrest was mediated by up-regulating the expression of E2F1 and down-regulating those of cyclin E, CDK2 and cyclin A2. Transcriptome sequencing and gene set enrichment analysis (GSEA also revealed that SPPH treatment could affect gene expression and pathway regulation related to tumourigenesis, apoptosis and cell cycle. In summary, our results suggest that SPPH could specifically suppress cell growth of SGC-7901 through an intrinsic apoptotic pathway, ROS accumulation and cell cycle arrest, and silkworm pupae have a potential to become a source of anticancer agents in the future.

  15. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases.

    Science.gov (United States)

    Yang, Diane; Scavuzzo, Marissa A; Chmielowiec, Jolanta; Sharp, Robert; Bajic, Aleksandar; Borowiak, Malgorzata

    2016-02-18

    Efficient gene editing is essential to fully utilize human pluripotent stem cells (hPSCs) in regenerative medicine. Custom endonuclease-based gene targeting involves two mechanisms of DNA repair: homology directed repair (HDR) and non-homologous end joining (NHEJ). HDR is the preferred mechanism for common applications such knock-in, knock-out or precise mutagenesis, but remains inefficient in hPSCs. Here, we demonstrate that synchronizing synchronizing hPSCs in G2/M with ABT phase increases on-target gene editing, defined as correct targeting cassette integration, 3 to 6 fold. We observed improved efficiency using ZFNs, TALENs, two CRISPR/Cas9, and CRISPR/Cas9 nickase to target five genes in three hPSC lines: three human embryonic stem cell lines, neural progenitors and diabetic iPSCs. neural progenitors and diabetic iPSCs. Reversible synchronization has no effect on pluripotency or differentiation. The increase in on-target gene editing is locus-independent and specific to the cell cycle phase as G2/M phase enriched cells show a 6-fold increase in targeting efficiency compared to cells in G1 phase. Concurrently inhibiting NHEJ with SCR7 does not increase HDR or improve gene targeting efficiency further, indicating that HR is the major DNA repair mechanism after G2/M phase arrest. The approach outlined here makes gene editing in hPSCs a more viable tool for disease modeling, regenerative medicine and cell-based therapies.

  16. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood.

    Directory of Open Access Journals (Sweden)

    Helen Budworth

    Full Text Available DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS. Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06human blood ex vivo dataset, and 100% accuracy for discriminating patients who received total body radiation. Three genes of this panel (CDKN1A, FDXR and BBC3 were also highly sensitive to LPS treatment in the absence of radiation exposure, and LPS co-treatment significantly affected their radiation responses. At the protein level, BAX and pCHK2-thr68 were elevated after radiation exposure, but the pCHK2-thr68 response was significantly decreased in the presence of LPS. Our combined panel yields an estimated 4-group accuracy of ∼90% to discriminate between radiation alone, inflammation alone, or combined exposures. Our findings suggest that DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.

  17. Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway.

    Science.gov (United States)

    Yang, Jia; Xiao, Peng; Sun, Jiaming; Guo, Liang

    2018-01-01

    Melanoma is an aggressive form of human cancer with limited treatment options currently available. The present study was aimed to evaluate the anticancer activity of kaempferol (KAM) against the human malignant melanoma A375 cell line along with evaluation of its effects on apoptosis, cell cycle, cell migration and m-TOR/PI3K/AKT pathway. Effects on cell viability were assessed by MTT assay while clonogenic assay measured the effects of KAM on colony formation. Annexin V assay evaluated the apoptotic effects of KAM in these cells using flow cytometry. Effects on cell cycle were determined by using flow cytometry with propidium iodide (PI) as probe. The effects of KAM on m-TOR/ PI3K/AKT signalling pathway were evaluated by western blot assay. MTT assay indicated that KAM exhibits a significant anticancer activity against A375 cells with an IC50 of 20 μM. These antiproliferative effects of KAM were also supported by the colony formation assay wherein KAM reduced the colony formation in a dose-dependent manner. The anticancer effect of KAM was found to be due to the initiation of apoptosis in human malignant melanoma A375 cells. Additionally, KAM also exhibited the capacity to trigger G2/M cell cycle arrest and to inhibit the cell migratory potential of A375 cells. KAM caused significant downregulation of m-TOR, phosphorylated (p) m-TOR, PI3K, p-PI3K and Akt protein levels in A375 malignantmelanoma cells. KAM exerts potent anticancer effects via induction of apoptosis, G2/M cell cycle arrest, cell migration inhibition and downregulation of m-TOR, pm-TOR, PI3K, p-PI3K and Akt protein levels.

  18. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou, 3,4 Zhi-Xu He,4 Ruan Jin Zhao,5 Xueji Zhang,6 Lun Yang,7 Shu-Feng Zhou,3,4 Zong-Fu Mao11School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Center for Traditional Chinese Medicine, Sarasota, FL, USA; 6Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 7Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: Plumbagin (PLB has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC. The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a

  19. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells

    International Nuclear Information System (INIS)

    Gao Jiayu; Morgan, Winston A.; Sanchez-Medina, Alberto; Corcoran, Olivia

    2011-01-01

    Despite a lack of scientific authentication, Scutellaria baicalensis is clinically used in Chinese medicine as a traditional adjuvant to chemotherapy of lung cancer. In this study, cytotoxicity assays demonstrated that crude ethanolic extracts of S. baicalensis were selectively toxic to human lung cancer cell lines A549, SK-LU-1 and SK-MES-1 compared with normal human lung fibroblasts. The active compounds baicalin, baicalein and wogonin did not exhibit such selectivity. Following exposure to the crude extracts, cellular protein expression in the cancer cell lines was assessed using 2D gel electrophoresis coupled with MALDI-TOF-MS/Protein Fingerprinting. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity. These observations were supported by PI staining cell cycle analysis using flow cytometry and Annexin-V apoptotic analysis by fluorescence microscopy of cancer cells treated with the crude extract and pure active compounds. Moreover, specific immunoblotting identification showed the decreased expression of cyclin A results in the S phase arrest of A549 whereas the G 0 /G 1 phase arrest in SK-MES-1 cells results from the decreased expression of cyclin D1. Following treatment, increased expression in the cancer cells of key proteins related to the enhancement of apoptosis was observed for p53 and Bax. These results provide further insight into the molecular mechanisms underlying the clinical use of this herb as an adjuvant to lung cancer therapy. - Research highlights: → Scutellaria baicalensis is a clinical adjuvant to lung cancer chemotherapy in China. → Scutellaria ethanol extracts selectively toxic to A549, SK-LU-1 and SK-MES-1. → Baicalin, baicalein and wogonin were toxic to all lung cancer cell lines. → Proteomics identified increased p53 and BAX in response to Scutellaria extracts.

  20. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    International Nuclear Information System (INIS)

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  1. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    The effects of estradiol and tamoxifen (TAM) on the estrogen-dependent human breast cancer cell line MCF-7 grown in vitro and in nude mice were compared. The effect on growth was determined by cell number in vitro and by tumor growth curves in nude mice. The effects on the cell cycle kinetics were...... determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... in the G1 phase from 60% to 75%. In nude mice, MCF-7 only formed tumors in estradiol-supplemented mice. No differences were observed in growth and cell kinetics between 0.1 and 1.0 mg of estradiol. Daily i.p. injections of TAM resulted in tumor growth inhibition with shrinkage of tumors. The flow...

  2. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells.

    Science.gov (United States)

    Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan; Alsaif, Mohammed A; Al-Warthan, Abdulrahman A; Alshatwi, Ali A

    2014-04-01

    Silica (E551) is commonly used as an anti-caking agent in food products. The morphology and the dimension of the added silica particles are not, however, usually stated on the food product label. The food industry has adapted nanotechnology using engineered nanoparticles to improve the quality of their products. However, there has been increased debate regarding the health and safety concerns related to the use of engineered nanoparticles in consumer products. In this study, we investigated the morphology and dimensions of silica (E551) particles in food. The silica content of commercial food products was determined using inductively coupled plasma optical emission spectrometry. The result indicates that 2.74-14. 45 μg/g silica was found in commercial food products; however, the daily dietary intake in increase causes adverse effects on human health. E551 was isolated from food products and the morphology, particle size, crystalline nature, and purity of the silica particles were analyzed using XRD, FTIR, TEM, EDX and DLS. The results of these analyses confirmed the presence of spherical silica nanoparticles (of amorphous nature) in food, approximately 10-50 nm in size. The effects of E551 on human lung fibroblast cell viability, intracellular ROS levels, cell cycle phase, and the expression levels of metabolic stress-responsive genes (CAT, GSTA4, TNF, CYP1A, POR, SOD1, GSTM3, GPX1, and GSR1) were studied. The results suggest that E551 induces a dose-dependent cytotoxicity and changes in ROS levels and alters the gene expression and cell cycle. Treatment with a high concentration of E551 caused significant cytotoxic effects on WI-38 cells. These findings have implications for the use of these nanoparticles in the food industry.

  3. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes.

    Science.gov (United States)

    Clare, Susan E; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z; Kim, J Julie; Khan, Seema A

    2016-05-23

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer.

  4. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    International Nuclear Information System (INIS)

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer. The online version of this article (doi:10.1186/s12885-016-2355-5) contains supplementary material, which is available to authorized users

  5. Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 229-0195 (Japan); Kita, Kayoko; Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 229-0195 (Japan); Rumpler, Alice; Goessler, Walter; Francesconi, Kevin A [Karl-Franzens University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz (Austria)

    2008-04-01

    Thio-dimethylarsinate (thio-DMA), a recently discovered urine metabolite in humans, was investigated for its cytotoxic, genotoxic and cell-cycle disruptive effects in the cultured human hepatocarcinoma cell line, HepG2, and Syrian hamster embryo cells. In addition, the role of glutathione (GSH) on the cytotoxic effects of thio-DMA was investigated in terms of the effects of GSH depletion and the effects of exogenously added GSH. LC{sub 50} values of arsenicals for cells incubated for 48 h were 0.026 mM for thio-DMA, 0.343 mM for DMA and 3.66 mM for dithio-DMA. Depletion of cell GSH reduced the cytotoxic effects of thio-DMA. The cytotoxic effects of 0.02 mM and 0.05 mM thio-DMA were enhanced markedly when used in combination with 1 to 3 mM GSH, but decreased again when combined with 5 mM GSH. These results suggested that cytotoxic intermediates were generated by the interaction of thio-DMA with GSH, while an excessive amount of GSH suppressed the generation of these intermediates. Flow-cytometry showed that thio-DMA was an inducer of cells with 4N DNA and hypo 2N DNA. The results also demonstrated that cells arrested in the mitotic phase had abnormalities in their spindle organization and centrosome integrity. In addition, cells arrested in mitosis by thio-DMA had chromosome structural aberrations, such as chromatid gaps, chromatid breaks and chromatid exchanges. Moreover, the cytotoxic effects of thio-DMA may in part be associated with an apoptotic mode of cell death that was evaluated by the appearance of nucleosome level DNA fragmentations and an 85-kDa cleavage fragment of poly (ADP-ribose) polymerase. These findings suggest that the presence of thio-DMA in human urine has implications for human health in terms of arsenic metabolism and toxicity.

  6. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  7. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells.

    Science.gov (United States)

    Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2004-05-01

    Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due

  8. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial–mesenchymal transition and cancer-stem cell trait as biological end points

    Energy Technology Data Exchange (ETDEWEB)

    Narang, Himanshi, E-mail: narangh@barc.gov.in [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Amit [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhat, Nagesh [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Badri N.; Ghosh, Anu [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-10-15

    Highlights: • Biological effectiveness of proton and gamma irradiation is compared in A549 cells. • Proton irradiation is two times more cytotoxic than gamma irradiation. • It alters ten times more number of early genes, as observed by microarray study. • It does not enhance cell migration, invasion and adhesion, unlike gamma irradiation. • It was more effective in reducing the percentage of cancer stem cell like cells. - Abstract: Proton beam therapy is a cutting edge modality over conventional gamma radiotherapy because of its physical dose deposition advantage. However, not much is known about its biological effects vis-a-vis gamma irradiation. Here we investigated the effect of proton- and gamma- irradiation on cell cycle, death, epithelial-mesenchymal transition (EMT) and “stemness” in human non-small cell lung carcinoma cells (A549). Proton beam (3 MeV) was two times more cytotoxic than gamma radiation and induced higher and longer cell cycle arrest. At equivalent doses, numbers of genes responsive to proton irradiation were ten times higher than those responsive to gamma irradiation. At equitoxic doses, the proton-irradiated cells had reduced cell adhesion and migration ability as compared to the gamma-irradiated cells. It was also more effective in reducing population of Cancer Stem Cell (CSC) like cells as revealed by aldehyde dehydrogenase activity and surface phenotyping by CD44{sup +}, a CSC marker. These results can have significant implications for proton therapy in the context of suppression of molecular and cellular processes that are fundamental to tumor expansion.

  9. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  10. Piperlongumine decreases cell proliferation and the expression of cell cycle-associated proteins by inhibiting Akt pathway in human lung cancer cells.

    Science.gov (United States)

    Seok, Jin Sil; Jeong, Chang Hee; Petriello, Michael C; Seo, Han Geuk; Yoo, Hyunjin; Hong, Kwonho; Han, Sung Gu

    2018-01-01

    Piperlongumine (PL) is an alkaloid of a pepper plant found in Southeast Asia. PL is known to induce selective toxicity towards a variety of cancer cell types. To explore the possible anti-lung cancer effects of PL, A549 cells were treated with PL (0-40 μM) for 24 h. Alterations in the expression of cell cycle-associated proteins (cyclin D1, cyclin-dependent kinase 4 (CDK4), CDK6 and retinoblastoma (Rb)) and intracellular signaling molecules (extracellular signal receptor-activated kinase 1/2 (ERK1/2), Akt, p38 and nuclear factor-κB (NF-κB)) were examined in cells following treatment of PL using Western blot analysis. Results showed that proliferation of cells were significantly decreased by PL in a dose-dependent manner. Flow cytometry results demonstrated increased number of cells in G1 phase in PL (40 μM)-treated group. Reactive oxygen species was significantly increased in cells treated with PL at 20-40 μM. The expression of cyclin D1, CDK4, CDK6 and p-Rb were markedly decreased in cells treated with PL at 40 μM. Treatment of cells with PL suppressed phosphorylation of Akt but increased ERK1/2 phosphorylation. Treatment of PL significantly decreased nuclear translocation of NF-κB p65 in cells. These results suggest that PL possesses antiproliferative properties in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    Science.gov (United States)

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  12. The human RNA polymerase II-associated factor 1 (hPaf1: a new regulator of cell-cycle progression.

    Directory of Open Access Journals (Sweden)

    Nicolas Moniaux

    2009-09-01

    Full Text Available The human PAF (hPAF complex is part of the RNA polymerase II transcription apparatus and regulates multiple steps in gene expression. Further, the yeast homolog of hPaf1 has a role in regulating the expression of a subset of genes involved in the cell-cycle. We therefore investigated the role of hPaf1 during progression of the cell-cycle.Herein, we report that the expression of hPaf1, a subunit of the hPAF complex, increases with cell-cycle progression and is regulated in a cell-cycle dependant manner. hPaf1 specifically regulates a subclass of genes directly implicated in cell-cycle progression during G1/S, S/G2, and G2/M. In prophase, hPaf1 aligns in filament-like structures, whereas in metaphase it is present within the pole forming a crown-like structure, surrounding the centrosomes. Moreover, hPaf1 is degraded during the metaphase to anaphase transition. In the nucleus, hPaf1 regulates the expression of cyclins A1, A2, D1, E1, B1, and Cdk1. In addition, expression of hPaf1 delays DNA replication but favors the G2/M transition, in part through microtubule assembly and mitotic spindle formation.Our results identify hPaf1 and the hPAF complex as key regulators of cell-cycle progression. Mutation or loss of stoichiometry of at least one of the members may potentially lead to cancer development.

  13. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  14. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2015-11-01

    Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.

  15. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  16. Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells

    DEFF Research Database (Denmark)

    Yang, Hsiao Yin; Vonk, Lucienne A.; Licht, Ruud

    2014-01-01

    % amidation), for siRNA delivery into primary mesenchymal cells including nucleus pulposus cells, articular chondrocytes and mesenchymal stem cells (MSCs). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing by 20 nM or 200 nM siRNA at day...

  17. Ethanol extract of Kilkyung-baeksan, a traditional herbal formula, induces G0/G1 cell cycle arrest in human lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Jinhee Kim

    2015-09-01

    Conclusion: EE-KKBS exerted its cytostatic activity through regulating G1 cell cycle checkpoint in lung cancer cells, and this activity is mainly mediated by one of its component herbs, seeds of Croton tiglium. Collectively, our data suggest that EE-KKBS could be a novel candidate for adjuvant therapy for lung cancer.

  18. Capilliposide Isolated from Lysimachia capillipes Hemsl. Induces ROS Generation, Cell Cycle Arrest, and Apoptosis in Human Nonsmall Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Zheng-hua Fei

    2014-01-01

    Full Text Available Several data has reported that capilliposide, extracted from a traditional Chinese medicine, Lysimachia capillipes Hemsl. (LC could exhibit inhibitory effect on cell proliferation in various cancers. The current study investigated the antitumor efficacy of Capilliposide and elucidated its potential molecular mechanism involved in vivo and vitro. Our results indicated that LC capilliposide inhibited proliferation of lung cancer cells in a dose-dependent manner. LC capilliposide induced cell cycle arrest at the S stage and enhanced apoptosis in NSCLC cells. Treatment with LC capilliposide increased the intracellular level of ROS, which activated the mitochondrial apoptotic pathway. Blockage of ROS by NAC highly reversed the effect of LC capilliposide on apoptosis. Xenograft tumor growth was significantly lower in the LC-treated group compared with the untreated control group (P<0.05. The results also show that LC treatment does not produce any overt signs of acute toxicity in vivo. These findings demonstrate that LC capilliposide could exert an anti-tumor effect on NSCLC through mitochondrial-mediated apoptotic pathway and the activation of ROS is involved.

  19. Therapeutic Cell-Cycle-Decoy Efficacy of a Telomerase-Dependent Adenovirus in an Orthotopic Model of Chemotherapy-Resistant Human Stomach Carcinomatosis Peritonitis Visualized With FUCCI Imaging.

    Science.gov (United States)

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-11-01

    We have established an orthotopic nude-mouse model of gastric cancer carcinomatosis peritonitis, a recalcitrant disease in human patients. Human MKN45 poorly-differentiated human gastric cancer cells developed carcinomatosis peritonitis upon orthotopic transplantation in nude mice. The MKN45 cells expressed the fluorescent ubiquitination-based cell cycle indicator (FUCCI) that color codes the phases of the cell cycle. The intra-peritoneal tumors and ascites contained mostly quiescent G 1 /G o cancer cells visualized as red by FUCCI imaging. Cisplatinum (CDDP) treatment did not reduce bloody ascites, and larger tumors formed in the peritoneal cavity after CDDP treatment in an early-stage carcinomatosis peritonitis orthotopic mouse model. Paclitaxel-treated mice had reduced ascites, but also had large tumor masses in the peritonium after treatment with cancer cells mostly in G 0 /G 1 , visualized by FUCCI red. In contrast, OBP-301 telomerase-dependent adenovirus-treated mice had no ascites and only small tumor nodules consisting of cancer cells mostly in S/G 2 phases in the early-stage carcinomatosis peritonitis model, visualized by FUCCI green. Furthermore, OBP-301 significantly reduced the size of tumors (P < 0.01) and ascites even in a late-stage carcinomatosis peritonitis model. These results suggest that quiescent peritoneally-disseminated gastric cancer cells are resistant to conventional chemotherapy, but OBP-301 significantly reduced the weight of the tumors and increased survival, suggesting clinical potential. J. Cell. Biochem. 118: 3635-3642, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Attenuation of G{sub 2} cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J. [and others

    1997-08-01

    The contribution of G{sub 2} cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G{sub 2} and there were large cell line-to-cell line variations in the length of the G{sub 2} block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G{sub 2} delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G{sub 2} delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G{sub 2} delay and the level of chromosome aneuploidy in each cell line, suggesting that the G{sub 2} and mitotic spindel checkpoints may be linked to each other. Attenuation in G{sub 2} checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G{sub 2}. Thus, agents that act solely to override G{sub 2} arrest should produce little radiosensitization in human tumor cells.

  1. Placental macrophage contact potentiates the complete replicative cycle of human cytomegalovirus in syncytiotrophoblast cells: role of interleukin-8 and transforming growth factor-beta1.

    Science.gov (United States)

    Bácsi, A; Aranyosi, J; Beck, Z; Ebbesen, P; Andirkó, I; Szabó, J; Lampé, L; Kiss, J; Gergely, L; Tóth, F D

    1999-10-01

    Although syncytiotrophoblast (ST) cells can be infected by human cytomegalovirus (HCMV), in vitro studies have indicated that ST cells do not support the complete viral reproductive cycle, or HCMV replication may occur in less than 3% of ST cells. The present study tested the possibility that placental macrophages might enhance activation of HCMV carried in ST cells and, further, that infected ST cells would be capable of transmitting virus to neighboring macrophages. For this purpose, we studied HCMV replication in ST cells grown alone or cocultured with uninfected placental macrophages. Our results demonstrated that HCMV gene expression in ST cells was markedly upregulated by coculture with macrophages, resulting in release of substantial amounts of infectious virus from HCMV-infected ST cells. After having become permissive for viral replication, ST cells delivered HCMV to the cocultured macrophages, as evidenced by detection of virus-specific antigens in these cells. The stimulatory effect of coculture on HCMV gene expression in ST cells was mediated by marked interleukin-8 (IL-8) and transforming growth factor-beta1 (TGF-beta1) release from macrophages, an effect caused by contact between the different placental cells. Our findings indicate an interactive role for the ST layer and placental macrophages in the dissemination of HCMV among placental tissue. Eventually, these interactions may contribute to the transmission of HCMV from mother to the fetus.

  2. FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors

    Directory of Open Access Journals (Sweden)

    Lam Paula Y

    2010-10-01

    Full Text Available Abstract Background Glioblastoma multiforme is the most malignant cancer of the brain and is notoriously difficult to treat due to the highly proliferative and infiltrative nature of the cells. Herein, we explored the combination treatment of pre-established human glioma xenograft using multiple therapeutic genes whereby the gene expression is regulated by both cell-type and cell cycle-dependent transcriptional regulatory mechanism conferred by recombinant HSV-1 amplicon vectors. Results We demonstrated for the first time that Ki67-positive proliferating primary human glioma cells cultured from biopsy samples were effectively induced into cell death by the dual-specific function of the pG8-FasL amplicon vectors. These vectors were relatively stable and exhibited minimal cytotoxicity in vivo. Intracranial implantation of pre-transduced glioma cells resulted in better survival outcome when compared with viral vectors inoculated one week post-implantation of tumor cells, indicating that therapeutic efficacy is dependent on the viral spread and mode of viral vectors administration. We further showed that pG8-FasL amplicon vectors are functional in the presence of commonly used treatment regimens for human brain cancer. In fact, the combined therapies of pG8-FasL and pG8-FADD in the presence of temozolomide significantly improved the survival of mice bearing intracranial high-grade gliomas. Conclusion Taken together, our results showed that the glioma-specific and cell cycle-dependent HSV-1 amplicon vector is potentially useful as an adjuvant therapy to complement the current gene therapy strategy for gliomas.

  3. Production of transforming growth factor α in human pancreatic cancer cells: evidence for a superagonist autocrine cycle

    International Nuclear Information System (INIS)

    Smith, J.J.; Derynck, R.; Korc, M.

    1987-01-01

    Previous work showed that cultured human pancreatic cancer cells overexpress the epidermal growth factor (EGF) receptor. In the present study, the authors sought to determine whether some of these cell lines produce transforming growth factor α (TGF-α). Utilizing a radiolabeled TGF-α cDNA in hybridization experiments, they determined that ASPC-1, T 3 M 4 , PANC-1, COLO-357, and MIA PaCa-2 cell lines expressed TGF-α mRNA. Serum-free medium conditioned by T 3 M 4 and ASPC-1 cells contained significant amounts of TGF-α protein. Although unlabeled TGF-α readily competed with 125 I-labeled EGF for binding, each cell line exhibited lower surface binding and internalization of 125 I-labeled TGF-α as compared to 125 I-labeled EGF. Both TGF-α and EGF significantly enhanced the anchorage-independent growth of PANC-1, T 3 M 4 , and ASPC-1 cells. However, TGF-α was 10- to 100-fold more potent than EGF. These findings suggest that the concomitant overexpression of EGF receptors and production of TGF-α may represent an efficient mechanism for certain cancer cells to obtain a growth advantage

  4. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    Science.gov (United States)

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  5. Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bela-Ong, Dennis; Jalali, Seyed Amir Hossein

    2015-01-01

    MicroRNAs (miRNAs) are similar to 22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene...... regulation mediated by miRNAs has been shown to be involved in almost all biological phenomena, including development, metabolism, cell cycle, tumor formation, and host-pathogen interactions. To address the latter in a primitive vertebrate host, we here used an array platform to analyze the miRNA response...... regulation. Stimulation of fish cell cultures with the IFN inducer poly I:C accordingly upregulated the expression of miR-462 and miR-731, while no stimulatory effect on miR-191 and miR-425 expression was observed in human cell lines. Despite high sequence conservation, evolution has thus resulted...

  6. Radiosensitizing and toxic effects of the 2-nitroimidazole Ro-07-0582 in different phases of the cell cycle of extremely hypoxic human cells in vitro

    International Nuclear Information System (INIS)

    Petterson, E.O.

    1978-01-01

    The radiosensitizing effect of 5 and 30 mM of Ro-07-0582 (misonidazole) has been studied at different stages of the cell cycle of mitotically selected NHIK 3025 cells under aerobic and extremely hypoxic conditions. For cells irradiated under aerobic conditions no sensitizing effect was seen at any stage of the cell cycle. For cells irradiated under extremely hypoxic conditions there was a lower sensitizing effect in mid-G1 than in mid-S for low radiation doses (in the initial region of the dose-response curves). For high radiation doses, however, no significant difference in sensitizing effect on cells in mid-G1 and in mid-S was seen. For cells in mid-G1 the sensitizing effect increased with increasing radiation dose. The toxic effect of 30 mM Ro-07-0582 as measured by loss of reproductive capacity was studied at room temperature for contact times up to 6 hours under aerobic conditions and 3 hours under extremely hypoxic conditions. While no effect was seen under aerobic conditions there was a toxic effect for contact intervals above 1 hour under extremely hypoxic conditions. Cells in S were more sensitive to the toxic effect of Ro-07-0582 than cells in G1. Implications for clinical use are discussed

  7. Outcome of Treatment of Human HeLa Cervical Cancer Cells With Roscovitine Strongly Depends on the Dosage and Cell Cycle Status Prior to the Treatment

    Czech Academy of Sciences Publication Activity Database

    Wesierska-Gadek, J.; Borza, A.; Walzi, E.; Kryštof, Vladimír; Maurer, M.; Komina, O.; Wandl, S.

    2009-01-01

    Roč. 106, č. 5 (2009), s. 937-955 ISSN 0730-2312 Institutional research plan: CEZ:AV0Z50380511 Keywords : APOPTOSIS * CELL CYCLE ARREST * CYCLIN-DEPENDENT KINASES Subject RIV: ED - Physiology Impact factor: 2.935, year: 2009

  8. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [College of Life Science, Hebei University, Baoding (China); Yang, R.L. [Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding (China)

    2013-07-30

    MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27{sup KIP1} protein and p21{sup CIP1} mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21{sup CIP1}, p16{sup INK4a} and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.

  9. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    International Nuclear Information System (INIS)

    Chen, C.; Yang, R.L.

    2013-01-01

    MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27 KIP1 protein and p21 CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21 CIP1 , p16 INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer

  10. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

    International Nuclear Information System (INIS)

    Chang, J.-K.; Li, C.-J.; Liao, H.-J.; Wang, C.-K.; Wang, G.-J.; Ho, M.-L.

    2009-01-01

    It has been reported that anti-inflammatory drugs (AIDs) inhibited bone repair in animal studies, and suppressed proliferation and induced cell death in rat osteoblast cultures. In this study, we further investigated the molecular mechanisms of AID effects on proliferation and cell death in human osteoblasts (hOBs). We examined the effects of dexamethasone (10 -7 and 10 -6 M), non-selective non-steroidal anti-inflammatory drugs (NSAIDs): indomethacin, ketorolac, piroxicam and diclofenac (10 -5 and 10 -4 M), and COX-2 inhibitor: celecoxib (10 -6 and 10 -5 M) on proliferation, cytotoxicity, cell death, and mRNA and protein levels of cell cycle and apoptosis-related regulators in hOBs. All the tested AIDs significantly inhibited proliferation and arrested cell cycle at G0/G1 phase in hOBs. Celecoxib and dexamethasone, but not non-selective NSAIDs, were found to have cytotoxic effects on hOB, and further demonstrated to induce apoptosis and necrosis (at higher concentration) in hOBs. We further found that indomethacin, celecoxib and dexamethasone increased the mRNA and protein expressions of p27 kip1 and decreased those of cyclin D2 and p-cdk2 in hOBs. Bak expression was increased by celecoxib and dexamethasone, while Bcl-XL level was declined only by dexamethasone. Furthermore, the replenishment of PGE1, PGE2 or PGF2α did not reverse the effects of AIDs on proliferation and expressions of p27 kip1 and cyclin D2 in hOBs. We conclude that the changes in expressions of regulators of cell cycle (p27 kip1 and cyclin D2) and/or apoptosis (Bak and Bcl-XL) by AIDs may contribute to AIDs caused proliferation suppression and apoptosis in hOBs. This effect might not relate to the blockage of prostaglandin synthesis by AIDs

  11. Very low dose and dose-rate X-ray induced adaptive response in human lymphocytes at various cell cycle stages against bleomycin induced chromatid aberrations

    International Nuclear Information System (INIS)

    Hossein Mozdarani; Moghadam, R.N.

    2007-01-01

    Complete text of publication follows. Objective: To study the adaptive response induced by very low doses of X-rays at very low dose rate in human lymphocytes at different cell cycle stages followed by a challenge dose of bleomycin sulphate at G2 phase. Materials and Methods: Human peripheral blood lymphocytes before (G0) and after PHA stimulation (G1 and G2) were exposed to 1 and 5 cGy X-rays generated by a fluoroscopy unit with a dose rate of 5.56 mGy/min and challenged with 5 μg/ml bleomycin sulphate (BLM) 48 hours after culture initiation. Mitotic cells were arrested at metaphase by addition of colcemid in cultures 1.5 h before harvesting. Harvesting and slide preparation was performed using standard method. 100 well spread metaphases were analyzed for the presence of chromatid type aberrations for each sample. Results: Results obtained indicate that there is a linear relationship between the dose of BLM and chromatid aberrations below 5 μg/ml (R=0.93, p<0.0001). The results also show that pretreatment of lymphocytes with low dose X-rays at G0, G1 and G2 phases of the cell cycle significantly reduced the sensitivity of lymphocytes to the clastogenic effects of BLM in G2. Much lower frequencies of chromatid aberrations were observed in X-ray irradiated lymphocytes following BLM treatment (p<0.05). The magnitudes of adaptation induced at different phases of the cell cycle were not significantly different. Furthermore, there was no a significant difference in the magnitude of adaptive response induced by either 1 or 5 cGy X-rays. Conclusion: These observations might indicate that resistance of pre-exposure of lymphocytes to very low doses of X-rays protects them from clastogenic effects of BLM. This effect might be due to initial DNA damage induced in these cells leading to provocation of an active DNA repair mechanism independent of cell cycle stage.

  12. Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Shuai [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 (China); Tang, Shunan; Li, Kai; Li, Ziwei; Liang, Wenfei; Qiao, Xue; Wang, Qi [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Yu, Siwang, E-mail: swang_yu@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Ye, Min, E-mail: yemin@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China)

    2017-07-01

    Licorice (Glycyrrhiza uralensis Fisch.) possesses significant anti-cancer activities, but the active ingredients and underlying mechanisms have not been revealed. By screening the cytotoxic activities of 122 licorice compounds against SW480 human colorectal adenocarcinoma cells, we found that licoricidin (LCD) inhibited SW480 cell viability with an IC{sub 50} value of 7.2 μM. Further studies indicated that LCD significantly induced G1/S cell cycle arrest and apoptosis in SW480 cells, accompanied by inhibition of cyclins/CDK1 expression and activation of caspase-dependent pro-apoptotic signaling. Meanwhile, LCD promoted autophagy in SW480 cells, and activated AMPK signaling and inhibited Akt/mTOR pathway. Overexpression of a dominant-negative AMPKα2 abolished LCD-induced inhibition of Akt/mTOR, autophagic and pro-apoptotic signaling pathways, and significantly reversed loss of cell viability, suggesting activation of AMPK is essential for the anti-cancer activity of LCD. In vivo anti-tumor experiments indicated that LCD (20 mg/kg, i.p.) significantly inhibited the growth of SW480 xenografts in nude mice with an inhibitory rate of 43.5%. In addition, we obtained the glycosylated product LCDG by microbial transformation, and found that glycosylation slightly enhanced the in vivo anti-cancer activities of LCD. This study indicates that LCD could inhibit SW480 cells by inducing cycle arrest, apoptosis and autophagy, and is a potential chemopreventive or chemotherapeutic agent against colorectal cancer. - Highlights: • Molecular mechanisms for cytotoxic activity of licoricidin (LCD) were investigated. • LCD promoted autophagy of SW480 cells through AMPK and Akt/mTOR signaling pathways. • Both LCD and its glucoside showed in vivo anti-colorectal cancer activities.

  13. DNA double-strand break and apoptosis induction in human lymphocytes in different cycle cell phases by 60Co gamma rays and Bragg peak protons of a medical beam

    International Nuclear Information System (INIS)

    Khachenkova, A.A.; Boreyko, A.V.; Mozhaeva, A.V.; Chausov, V.N.; Ravnachka, I.I.; Amov, I.; Tiunchik, S.I.

    2009-01-01

    A comparative analysis is made of the regularities in the formation of DNA double-strand break and apoptosis induction in peripheral human blood lymphocytes in different cell cycle phases after 60 Co gamma and extended Bragg peak proton irradiation. It is shown that the formation of apoptotic cells in a lymphocyte population increases linearly in all the cell cycle stages after proton irradiation. The maximal DNA double-strand break and apoptosis yield in lymphocytes is observed in the S phase of the cell cycle

  14. A change in the oxygen effect throughout the cell-cycle of human cells of the line NHIK 3025 cultivated in vitro

    International Nuclear Information System (INIS)

    Pettersen, E.O.; Christensen, T.; Bakke, O.; Oftebro, R.

    1977-01-01

    NHIK 3025 cells were synchronized by repeated mitotic selection. The S-phase was determined by 3 H-thymidine incorporation and scintillation counting. By comparing the age-response curves of aerobic cells irradiated with 500 rad with those of extremely hypoxic ( 2 ) cells irradiated with 1500 rad, it was found that the sensitizing effect of oxygen was not constant throughout the cycle. It was significantly higher in S, G2 and mitosis than in G1. No significant sensitizing effect of 120 p.p.m. O 2 (compared with 2 ) was found on cells in G1 when the cells were irradiated with 1500 rad. In S, G2 and mitosis, however, the sensitizing effect of oxygen at 120 p.p.m was considered to be significant. Experiment performed with cells irradiated with 2000 rad in contact with either 2 or 80 p.p.m. O 2 showed the same trend, little sensitizing effect in G1 and higher in S, G2 and mitosis. Dose-response curves for cells in mid-G1 and mid-S under aerobic and extremely hypoxic conditions were well fitted by the formula S = exp (-αD-βD 2 ). From the dose-response curves it was concluded that the change in the sensitizing effect of oxygen throughout the cell-cycle only appeared for low doses (in the dose region where α dominates). The sensitizing effect of oxygen on cells in mid-G1 was found to be increasing with increasing dose. (author)

  15. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    OpenAIRE

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    Background The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. Methods We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then...

  16. A theory that may explain the Hayflick limit--a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts.

    Science.gov (United States)

    Naveilhan, P; Baudet, C; Jabbour, W; Wion, D

    1994-09-01

    A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.

  17. Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Felipe, K.B., E-mail: kakabettega@yahoo.com.br [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Farias, M.S., E-mail: mirellesfarias@hotmail.com [Laboratorio de Bioquimica Experimental, Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Glorieux, C., E-mail: christophe.glorieux@uclouvain.be [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); Valenzuela, M., E-mail: mavalenzuela@med.uchile.cl [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); Sid, B., E-mail: brice.sid@uclouvain.be [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Universite Catholique de Louvain, 73 Avenue E. Mounier, GTOX 7309, 1200 Brussels (Belgium); and others

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress in juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.

  18. Cell cycle regulation of human immunodeficiency virus type 1 integration in T cells: antagonistic effects of nuclear envelope breakdown and chromatin condensation

    International Nuclear Information System (INIS)

    Mannioui, Abdelkrim; Schiffer, Cecile; Felix, Nathalie

    2004-01-01

    We examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration. As a result of the balance between the two effects, virus integration efficiency is eventually up to threefold greater in dividing cells. At the single-cell level, using a green fluorescent protein-expressing reporter virus, we found that passage through mitosis leads to prominent asymmetric segregation of the viral genome in daughter cells without interfering with provirus expression

  19. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression.

    Science.gov (United States)

    Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd

    2015-01-01

    Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression

  20. Over-expression and siRNA of a novel environmental lipopolysaccharide-responding gene on the cell cycle of the human hepatoma-derived cell line HepG2

    International Nuclear Information System (INIS)

    Du Kejun; Chai Yubo; Hou Lichao; Chang Wenhui; Chen Suming; Luo Wenjing; Cai Tongjian; Zhang Xiaonan; Chen Nanchun; Chen Yaoming; Chen Jingyuan

    2008-01-01

    Lipopolysaccharide (LPS) is the toxic determinant for Gram-negative bacterium infection. The individual response to LPS was related to its gene background. It is necessary to identify new molecules and signaling transduction pathways about LPS. The present study was undertaken to evaluate the effects of a novel environmental lipopolysaccharide-responding (Elrg) gene on the regulation of proliferation and cell cycle of the hepatoma-derived cell line, HepG2. By means of RT-PCR, the new molecule of Elrg was generated from a human dental pulp cell cDNA library. Expression level of Elrg in HepG2 cells was remarkably upgraded by the irritation of LPS. Localization of Elrg in HepG2 cells was positioned mainly in cytoplasm. HepG2 cells were markedly arrested in the G1 phase by over-expressing Elrg. The percentage of HepG2 cells in G1 phase partly decreased after Elrg-siRNA. In conclusion, Elrg is probably correlative with LPS responding. Elrg is probably a new protein in cytoplasm which plays an important role in regulating cell cycle. The results will deepen our understanding about the potential effects of Elrg on the human hepatoma-derived cell line HepG2

  1. In vitro short-term exposure to air pollution PM{sub 2.5-0.3} induced cell cycle alterations and genetic instability in a human lung cell coculture model

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Lebanese Atomic Energy Commission – CNRS, Beirut (Lebanon); Verdin, Anthony [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Escande, Fabienne [Centre de Biologie Pathologie, Centre Hospitalier Régional et Universitaire, Lille (France); Saint-Georges, Françoise [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); Cazier, Fabrice [Université de Lille, Lille (France); Centre Commun de Mesures, Université du Littoral-Côte d’Opale, Dunkerque (France); Mulliez, Philippe [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); Courcot, Dominique; Shirali, Pirouz [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Gosset, Pierre [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); and others

    2016-05-15

    Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOH and/or MSI) in the PM{sub 2.5-0.3}-exposed coculture model. PM{sub 2.5-0.3} exposure of human AM from the coculture model induced marked cell cycle alterations after 24 h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM{sub 2.5-0.3} was reported in the L132 cells. Exposure of human AM from the coculture model to PM{sub 2.5-0.3} resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM{sub 2.5-0.3} induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability. - Highlights: • Better knowledge on health adverse effects of air pollution PM{sub 2.5}. • Human alveolar macrophage and normal human epithelial lung cell coculture. • Molecular abnormalities from TP53-RB gene signaling pathway. • Loss of heterozygosity and microsatellite instability. • Pathologic changes in morphology and number of cells in relation to airway remodeling.

  2. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  3. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    Science.gov (United States)

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  4. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  5. Effects of recombinant plasmid pEgr-p53 transfected stably in combination with X-irradiation on cell cycle progression and proliferation in human SKOV-3 tumor cells in vitro

    International Nuclear Information System (INIS)

    Dong Lihua; Liu Feng; Li Yanbo; Fu Shibo; Gong Shouliang

    2008-01-01

    Objective: To investigate the effect of recombinant plasmid pEgr-hp53 transfected stably in combination with X-ray irradiation on the cell cycle progression and the proliferation in human SKOV-3 tumor cells. Methods: pEgr-hp53 and pcDNA3.1 packaged with liposome were stably transfected into SKOV-3 cells in vitro. SKOV-3-hp53 and SKOV-3-vect were irradiated with 0, 0.5, 2.0 and 5.0 Gy X-rays, respectively, i.e. 8 experimental groups. The SKOV-3 cell proliferation and the cell cycle progression were measured with flow cytometry and cell growth curve, respectively. Results: Compared with 0 Gy group, the cell counts in SKOV-3- hp53 plus different doses of irradiation groups 2 d after irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased in varying degrees. The cell counts in SKOV-3-hp53 plus irradiation group were significantly lower than those in corresponding SKOV-3-vect plus irradiation group, the cell counts 4-8 d after irradiation with 0.5 Gy, 2 d after 2.0 Gy irradiation and 6 d after 5.0 Gy irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased significantly (P 1 arrest in SKOV-3 cells and inhibits the cell proliferation. Ionizing radiation can activate early growth response-1 (Egr-1) gene promoter and increase the expression of p53 gene, and enhance the inhibition of tumor cell growth. (authors)

  6. Poly[3-(3, 4-dihydroxyphenyl) glyceric acid] from Comfrey exerts anti-cancer efficacy against human prostate cancer via targeting androgen receptor, cell cycle arrest and apoptosis.

    Science.gov (United States)

    Shrotriya, Sangeeta; Gagan, Deep; Ramasamy, Kumaraguruparan; Raina, Komal; Barbakadze, Vakhtang; Merlani, Maia; Gogilashvili, Lali; Amiranashvili, Lela; Mulkijanyan, Karen; Papadopoulos, Kyriakos; Agarwal, Chapla; Agarwal, Rajesh

    2012-08-01

    The major obstacles in human prostate cancer (PCA) treatment are the development of resistance to androgen ablation therapy leading to hormone-refractory state and the toxicity associated with chemotherapeutic drugs. Thus, the identification of additional non-toxic agents that are effective against both androgen-dependent and androgen-independent PCA is needed. In the present study, we investigated the efficacy of a novel phytochemical poly[3-(3, 4-dihydroxyphenyl)glyceric acid] (p-DGA) from Caucasian species of comfrey (Symphytum caucasicum) and its synthetic derivative syn-2, 3-dihydroxy-3-(3, 4-dihydroxyphenyl) propionic acid (m-DGA) against PCA LNCaP and 22Rv1 cells. We found that both p-DGA and m-DGA suppressed the growth and induced death in PCA cells, with comparatively lesser cytotoxicity towards non-neoplastic human prostate epithelial cells. Furthermore, we also found that both p-DGA and m-DGA caused G(1) arrest in PCA cells through modulating the expression of cell cycle regulators, especially an increase in CDKIs (p21 and p27). In addition, p-DGA and m-DGA induced apoptotic death by activating caspases, and also strongly decreased AR and PSA expression. Consistent with in vitro results, our in vivo study showed that p-DGA feeding strongly inhibited 22Rv1 tumors growth by 76% and 88% at 2.5 and 5mg/kg body weight doses, respectively, without any toxicity, together with a strong decrease in PSA level in plasma; and a decrease in PCNA, AR and PSA expression but increase in p21/p27 expression and apoptosis in tumor tissues from p-DGA-fed mice. Overall, present study identifies p-DGA as a potent agent against PCA without any toxicity, and supports its clinical application.

  7. 1-(2,6-Dihydroxy-4-methoxyphenyl-2-(4-hydroxyphenyl Ethanone-Induced Cell Cycle Arrest in G1/G0 in HT-29 Cells Human Colon Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ma Ma Lay

    2014-01-01

    Full Text Available 1-(2,6-Dihydroxy-4-methoxyphenyl-2-(4-hydroxyphenyl ethanone (DMHE was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff. Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry and NMR (nuclear magnetic resonance analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.

  8. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Liou, S.-F.; Lin, H.-H.; Liang, J.-C.; Chen, I.-J.; Yeh, J.-L.

    2009-01-01

    In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective α 1 -adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of α 1 -adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G 0 /G 1 arrest, and G 2 /M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its α 1 -adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through

  9. Benzo(a)pyrene induced cell cycle arrest and apoptosis in human choriocarcinoma cancer cells through reactive oxygen species-induced endoplasmic reticulum-stress pathway.

    Science.gov (United States)

    Kim, Soo-Min; Lee, Hae-Miru; Hwang, Kyung-A; Choi, Kyung-Chul

    2017-09-01

    Cigarette smoke (CS) contains over 60 well established carcinogens. In this study, we examined the effects of benzo(a)pyrene (B(a)P), a main CS component, on the viability and apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cell lines. An MTT assay confirmed that B(a)P decreased the cell viability of JEG-3 and BeWo cells in a dose-dependent manner. Additionally, Western blot (WB) assay revealed that protein expression of cyclin D and cyclin E decreased, while protein expression of p21 and p27 was increased in response to B(a)P treatment for 48 h. The changes in reactive oxygen species (ROS) levels in JEG-3 and BeWo cells exposed to B(a)P were also measured by a dichlorofluorescein diacetate (DCF-DA) assay, which revealed that ROS levels increased in response to B(a)P treatment for 48 h. WB assay also confirmed that each B(a)P treatment of JEG-3 and BeWo cells for 4 h promoted the expression of phosphorylated eukaryotic initiation factor 2 alpha protein (p-eIF2α) and C/EBP homologous protein (CHOP), which are known to be involved in ROS-mediated endoplasmic reticulum stress (ER-stress) related apoptosis. Overall, the protein expression of Bax (a pro-apoptosis marker) increased, while the expression of Bcl-xl (an anti-apoptotic marker) decreased and the number of apoptotic cells increased in response to B(a)P treatment for 48 h. Taken together, these results suggest that B(a)P has the potential to induce apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cells by increasing the ROS level and simultaneously activating ER-stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Crataegus azarolus Leaves Induce Antiproliferative Activity, Cell Cycle Arrest, and Apoptosis in Human HT-29 and HCT-116 Colorectal Cancer Cells.

    Science.gov (United States)

    Mustapha, Nadia; Pinon, Aline; Limami, Youness; Simon, Alain; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-05-01

    Limited success has been achieved in extending the survival of patients with metastatic colorectal cancer (CRC). There is a strong need for novel agents in the treatment and prevention of CRC. Therefore, in the present study we evaluated the antiproliferative and pro-apoptotic potential of Crataegus azarolus ethyl acetate extract in HCT-116 and HT-29 human colorectal cancer cell lines. Moreover, we attempted to investigate the signaling pathways that should be involved in its cytotoxic effect. The Crataegus azarolus ethyl acetate extract-induced growth inhibitory effect was associated with DNA fragmentation, sub-G1 peak, loss of mitochondrial potential, and poly (ADP-ribose) polymerase (PARP) cleavage. In addition, ethyl acetate extract of Crataegus azarolus induced the cleavage of caspase-8. It has no effect on steady-state levels of total Bcl-2 protein. Whereas Bax levels decreased significantly in a dose-dependent manner in both tested cell lines. Taken together, these findings confirm the involvement of the extrinsic pathway of apoptosis. The apoptotic cell death induced by ethyl acetate extract of Crataegus azarolus was accompanied by an enhancement of the p21 expression but not through p53 activation in human colorectal cancer cells. The above-mentioned data provide insight into the molecular mechanisms of Crataegus azarolus ethyl acetate extract-induced apoptosis in CRC. Therefore, this compound should be a potential anticancer agent for the treatment of CRC. © 2015 Wiley Periodicals, Inc.

  11. SKLB70326, a novel small-molecule inhibitor of cell-cycle progression, induces G{sub 0}/G{sub 1} phase arrest and apoptosis in human hepatic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yuanyuan; He, Haiyun [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Peng, Feng [Department of Thoracic Oncology of the Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Liu, Jiyan; Dai, Xiaoyun; Lin, Hongjun; Xu, Youzhi; Zhou, Tian; Mao, Yongqiu; Xie, Gang; Yang, Shengyong; Yu, Luoting; Yang, Li [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Zhao, Yinglan, E-mail: alancenxb@sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer SKLB70326 is a novel compound and has activity of anti-HCC. Black-Right-Pointing-Pointer SKLB70326 induces cell cycle arrest and apoptosis in HepG2 cells. Black-Right-Pointing-Pointer SKLB70326 induces G{sub 0}/G{sub 1} phase arrest via inhibiting the activity of CDK2, CDK4 and CDK6. Black-Right-Pointing-Pointer SKLB70326 induces apoptosis through the intrinsic pathway. -- Abstract: We previously reported the potential of a novel small molecule 3-amino-6-(3-methoxyphenyl)thieno[2.3-b]pyridine-2-carboxamide (SKLB70326) as an anticancer agent. In the present study, we investigated the anticancer effects and possible mechanisms of SKLB70326 in vitro. We found that SKLB70326 treatment significantly inhibited human hepatic carcinoma cell proliferation in vitro, and the HepG2 cell line was the most sensitive to its treatment. The inhibition of cell proliferation correlated with G{sub 0}/G{sub 1} phase arrest, which was followed by apoptotic cell death. The SKLB70326-mediated cell-cycle arrest was associated with the downregulation of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6 but not cyclin D1 or cyclin E. The phosphorylation of the retinoblastoma protein (Rb) was also observed. SKLB70326 treatment induced apoptotic cell death via the activation of PARP, caspase-3, caspase-9 and Bax as well as the downregulation of Bcl-2. The expression levels of p53 and p21 were also induced by SKLB70326 treatment. Moreover, SKLB70326 treatment was well tolerated. In conclusion, SKLB70326, a novel cell-cycle inhibitor, notably inhibits HepG2 cell proliferation through the induction of G{sub 0}/G{sub 1} phase arrest and subsequent apoptosis. Its potential as a candidate anticancer agent warrants further investigation.

  12. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    Science.gov (United States)

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-11-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.

  13. A Novel Bromophenol Derivative BOS-102 Induces Cell Cycle Arrest and Apoptosis in Human A549 Lung Cancer Cells via ROS-Mediated PI3K/Akt and the MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chuan-Long Guo

    2018-01-01

    Full Text Available Bromophenol is a type of natural marine product. It has excellent biological activities, especially anticancer activities. In our study of searching for potent anticancer drugs, a novel bromophenol derivative containing indolin-2-one moiety, 3-(4-(3-([1,4′-bipiperidin]-1′-ylpropoxy-3-bromo-5-methoxybenzylidene-N-(4-bromophenyl-2-oxoindoline-5-sulfonamide (BOS-102 was synthesized, which showed excellent anticancer activities on human lung cancer cell lines. A study of the mechanisms indicated that BOS-102 could significantly block cell proliferation in human A549 lung cancer cells and effectively induce G0/G1 cell cycle arrest via targeting cyclin D1 and cyclin-dependent kinase 4 (CDK4. BOS-102 could also induce apoptosis, including activating caspase-3 and poly (ADP-ribose polymerase (PARP, increasing the Bax/Bcl-2 ratio, enhancing reactive oxygen species (ROS generation, decreasing mitochondrial membrane potential (MMP, ΔΨm, and leading cytochrome c release from mitochondria. Further research revealed that BOS-102 deactivated the PI3K/Akt pathway and activated the mitogen-activated protein kinase (MAPK signaling pathway resulting in apoptosis and cell cycle arrest, which indicated that BOS-102 has the potential to develop into an anticancer drug.

  14. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  15. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  16. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  17. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    Science.gov (United States)

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  18. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  19. Fisetin induces G2/M phase cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation in human endometrial cancer cells

    Directory of Open Access Journals (Sweden)

    Zhan-Ying Wang

    2015-06-01

    Full Text Available Endometrial cancer is one of the most prevalent gynaecological malignancies where, currently available therapeutic options remain limited. Recently phytochemicals are exploited for their efficiency in cancer therapy. The present study investigates the anti-proliferative effect of fisetin, a flavonoid on human endometrial cancer cells (KLE and Hec1 A. Fisetin (20-100 µM effectively reduced the viability of Hec1 A and KLE cells and potentially altered the cell population at G2/M stage. Expression levels of the cell cycle proteins (cyclin B1, p-Cdc2, p-Cdc25C, p-Chk1, Chk2, p-ATM, cyclin B1, H2AX, p21 and p27 were analyzed. Fisetin suppressed cyclin B1 expression and caused inactiva-tion of Cdc25C and Cdc2 by increasing their phosphorylation levels and further activated ATM, Chk1 and Chk2. Increased levels of p21 and p27 were observed as well. These results suggest that fisetin induced G2/M cell cycle arrest via inactivating Cdc25c and Cdc2 through activation of ATM, Chk1 and Chk2.

  20. Evaluation of a multiple-cycle, recombinant virus, growth competition assay that uses flow cytometry to measure replication efficiency of human immunodeficiency virus type 1 in cell culture.

    Science.gov (United States)

    Dykes, Carrie; Wang, Jiong; Jin, Xia; Planelles, Vicente; An, Dong Sung; Tallo, Amanda; Huang, Yangxin; Wu, Hulin; Demeter, Lisa M

    2006-06-01

    Human immunodeficiency virus type 1 (HIV-1) replication efficiency or fitness, as measured in cell culture, has been postulated to correlate with clinical outcome of HIV infection, although this is still controversial. One limitation is the lack of high-throughput assays that can measure replication efficiency over multiple rounds of replication. We have developed a multiple-cycle growth competition assay to measure HIV-1 replication efficiency that uses flow cytometry to determine the relative proportions of test and reference viruses, each of which expresses a different reporter gene in place of nef. The reporter genes are expressed on the surface of infected cells and are detected by commercially available fluorescence-labeled antibodies. This method is less labor-intensive than those that require isolation and amplification of nucleic acids. The two reporter gene products are detected with similar specificity and sensitivity, and the proportion of infected cells in culture correlates with the amount of viral p24 antigen produced in the culture supernatant. HIV replication efficiencies of six different drug-resistant site-directed mutants were reproducibly quantified and were similar to those obtained with a growth competition assay in which the relative proportion of each variant was measured by sequence analysis, indicating that recombination between the pol and reporter genes was negligible. This assay also reproducibly quantified the relative fitness conferred by protease and reverse transcriptase sequences containing multiple drug resistance mutations, amplified from patient plasma. This flow cytometry-based growth competition assay offers advantages over current assays for HIV replication efficiency and should prove useful for the evaluation of patient samples in clinical trials.

  1. The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1

    International Nuclear Information System (INIS)

    Gupta, Sanjay; Takhar, Param Parkash S; Degenkolbe, Roland; Heng Koh, Choon; Zimmermann, Holger; Maolin Yang, Christopher; Guan Sim, Khe; I-Hong Hsu, Stephen; Bernard, Hans-Ulrich

    2003-01-01

    The genital human papillomaviruses (HPVs) are a taxonomic group including HPV types that preferentially cause genital and laryngeal warts ('low-risk types'), such as HPV-6 and HPV-11, or cancer of the cervix and its precursor lesions ('high-risk types'), such as HPV-16. The transforming processes induced by these viruses depend on the proteins E5, E6, and E7. Among these oncoproteins, the E6 protein stands out because it supports a particularly large number of functions and interactions with cellular proteins, some of which are specific for the carcinogenic HPVs, while others are shared among low- and high-risk HPVs. Here we report yeast two-hybrid screens with HPV-6 and -11 E6 proteins that identified TRIP-Br1 as a novel cellular target. TRIP-Br1 was recently detected by two research groups, which described two separate functions, namely that of a transcriptional integrator of the E2F1/DP1/RB cell-cycle regulatory pathway (and then named TRIP-Br1), and that of an antagonist of the cyclin-dependent kinase suppression of p16INK4a (and then named p34SEI-1). We observed that TRIP-Br1 interacts with low- and high-risk HPV E6 proteins in yeast, in vitro and in mammalian cell cultures. Transcription activation of a complex consisting of E2F1, DP1, and TRIP-Br1 was efficiently stimulated by both E6 proteins. TRIP-Br1 has an LLG E6 interaction motif, which contributed to the binding of E6 proteins. Apparently, E6 does not promote degradation of TRIP-Br1. Our observations imply that the cell-cycle promoting transcription factor E2F1/DP1 is dually targeted by HPV oncoproteins, namely (i) by interference of the E7 protein with repression by RB, and (ii) by the transcriptional cofactor function of the E6 protein. Our data reveal the natural context of the transcription activator function of E6, which has been predicted without knowledge of the E2F1/DP1/TRIP-Br/E6 complex by studying chimeric constructs, and add a function to the limited number of transforming properties shared

  2. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  3. Regulation of cell cycle progression by cell-cell and cell-matrix forces

    NARCIS (Netherlands)

    Uroz, Marina; Wistorf, Sabrina; Serra-Picamal, Xavier; Conte, Vito; Sales-Pardo, Marta; Roca-Cusachs, Pere; Guimerà, Roger; Trepat, Xavier

    2018-01-01

    It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces 1-12 . However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression

  4. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Science.gov (United States)

    Kowalewski, Ashley A.; Randall, R. Lor; Lessnick, Stephen L.

    2011-01-01

    Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22)(q24;q12). This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered. PMID:21052502

  5. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Ashley A. Kowalewski

    2011-01-01

    Full Text Available Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22(q24;q12. This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.

  6. Regulation of the cell cycle by irradiation

    International Nuclear Information System (INIS)

    Akashi, Makoto

    1995-01-01

    The molecular mechanism of cell proliferation is extremely complex; deregulation results in neoplastic transformation. In eukaryotes, proliferation of cells is finely regulated through the cell cycle. Studies have shown that the cell cycle is regulated by s series of enzymes known as cyclin-dependent kinases (CDKs). The activities of CDKs are controlled by their association with regulatory subunits, cyclins; the expression of cyclins and the activation of the different cyclin-CDK complexes are required for the cell to cycle. Thus, the cell cycle is regulated by activating and inhibiting phosphorylation of the CDK subunits and this program has internal check points at different stages of the cell cycle. When cells are exposed to external insults such as DNA damaging agents, negative regulation of the cell cycle occurs; arrest in either G1 or G2 stage is induced to prevent the cells from prematurely entering into the next stage before DNA is repaired. Recently, a potent inhibitor of CDKs, which inhibits the phosphorylation of retinoblastoma susceptibility (Rb) gene product by cyclin A-CDK2, cyclin E-CDK2, cyclin D1-CDK4, and cyclin D2-CDK4 complexes has been identified. This protein named WAF1, Sdi1, Cip1, or p21 (a protein of Mr 21,000) contains a p53-binding site in its promoter and studies have reported that the expression of WAF1 was directly regulated by p53; cells with loss of p53 activity due to mutational alteration were unable to induce WAF1. This chapter will be focused on the mechanisms of the cell cycle including inhibitors of CDKs, and the induction of WAF1 by irradiation through a pathway independent of p53 will be also described. (author)

  7. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  8. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  9. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  10. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    International Nuclear Information System (INIS)

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho

    2007-01-01

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 μM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins

  11. Study of the cell cycle control for human malignant mesothelioma lines. Interferon and radiations effect; Etude de la regulation du cycle cellulaire de lignees de mesotheliome malin humain. Effet de l'interferon et des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Vivo, C

    1999-07-01

    In order to better understand the inhibition mechanisms of the IFN-R-HU on tumoral development, the IFN-R-U effect on MM lines has been studied. Three groups of lines has been distinguished: eight sensitive lines, two intermediate and three resistant. The sensitive lines showed a triple locking of the cell cycle: in phases S, G1 and G2. The study of the cell cycle control points function, realized by the MM lines radiation exposure showed the points function on G1/S and-or on G2/M and the dependence or non dependence of the cycle stop of the protein P53 and P21 W at F1/CIP1. (A.L.B.)

  12. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  13. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer

    International Nuclear Information System (INIS)

    Chang, J.-L.; Chen, T.-H.; Wang, C.-F.; Chiang, Y.-H.; Huang, Y.-L.; Wong, F.-H.; Chou, C.-K.; Chen, C.-M.

    2006-01-01

    Chromosomal passenger proteins including Aurora B, Survivin, and Borealin/Dasra B, also called CDCA8/FLJ10468, are known to play crucial roles during mitosis and cell division. Inappropriate chromosomal segregation and cell division may cause auneuploidy leading to cancer. However, it is still unclear how the expression of chromosomal passenger proteins may be linked to cancer. In this study, we demonstrated that Borealin is a cell cycle-regulated gene and is upregulated at G2-M phases of the cell cycle. We showed that Borealin interacts with Survivin but not with Aurora B. The interaction domain of Survivin in Borealin was mapped to the N-terminal 92 amino-acid residues of Borealin. To examine the linkage between expression of Borealin and cancer, we performed immunohistochemistry analysis using anti-Borealin specific antibody on the paraffin-embedded gastric cancer tissues. Our results showed that Borealin expression is significantly correlated with Survivin (P = 0.003) and Ki67 (P = 0.007) in gastric cancer. Interestingly, an increased nuclear Borealin level reveals borderline association with a poor survival rate (P = 0.047). Taken together, our results demonstrated that Borealin is a cell cycle-regulated chromosomal passenger protein and its aberrant expression is linked to a poor prognosis for gastric cancer

  14. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  15. 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells.

    OpenAIRE

    Andreassen, P R; Margolis, R L

    1992-01-01

    BHK cells blocked at any of several points in the cell cycle override their drug-induced arrest and proceed in the cycle when exposed concurrently to the protein kinase inhibitor 2-aminopurine (2-AP). For cells arrested at various points in interphase, 2-AP-induced cell cycle progression is made evident by arrival of the drug-treated cell population in mitosis. Cells that have escaped from mimosine G1 arrest, from hydroxyurea or aphidicolin S-phase arrest, or from VM-26-induced G2 arrest subs...

  16. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  17. A signature-based method for indexing cell cycle phase distribution from microarray profiles

    Directory of Open Access Journals (Sweden)

    Mizuno Hideaki

    2009-03-01

    Full Text Available Abstract Background The cell cycle machinery interprets oncogenic signals and reflects the biology of cancers. To date, various methods for cell cycle phase estimation such as mitotic index, S phase fraction, and immunohistochemistry have provided valuable information on cancers (e.g. proliferation rate. However, those methods rely on one or few measurements and the scope of the information is limited. There is a need for more systematic cell cycle analysis methods. Results We developed a signature-based method for indexing cell cycle phase distribution from microarray profiles under consideration of cycling and non-cycling cells. A cell cycle signature masterset, composed of genes which express preferentially in cycling cells and in a cell cycle-regulated manner, was created to index the proportion of cycling cells in the sample. Cell cycle signature subsets, composed of genes whose expressions peak at specific stages of the cell cycle, were also created to index the proportion of cells in the corresponding stages. The method was validated using cell cycle datasets and quiescence-induced cell datasets. Analyses of a mouse tumor model dataset and human breast cancer datasets revealed variations in the proportion of cycling cells. When the influence of non-cycling cells was taken into account, "buried" cell cycle phase distributions were depicted that were oncogenic-event specific in the mouse tumor model dataset and were associated with patients' prognosis in the human breast cancer datasets. Conclusion The signature-based cell cycle analysis method presented in this report, would potentially be of value for cancer characterization and diagnostics.

  18. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): Identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42

    International Nuclear Information System (INIS)

    Shinjo, K.; Koland, J.G.; Hart, M.J.; Narasimhan, V.; Cerione, R.A.; Johnson, D.I.; Evans, T.

    1990-01-01

    The authors have isolated cDNA clones from a human placental library that code for a low molecular weight GTP-binding protein originally designated G p (also called G25K). This identification is based on comparisons with the available peptide sequences for the purified human G p protein and the use of two highly specific anti-peptide antibodies. The predicted amino acid sequence of the protein is very similar to those of various members of the ras superfamily of low molecular weight GTP-binding proteins, including the N-, Ki-, and Ha-ras proteins (30-35% identical), the rho proteins and the rac proteins. The highest degree of sequence identity (80%) is found with the Saccharomyces cerevisiae cell division-cycle protein CDC42. The human placental gene, which they designate CDC42Hs, complements the cdc42-1 mutation in S. cerevisiae, which suggests that this GTP-binding protein is the human homolog of the yeast protein

  19. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  20. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  1. Identification of new ovulation-related genes in humans by comparing the transcriptome of granulosa cells before and after ovulation triggering in the same controlled ovarian stimulation cycle

    DEFF Research Database (Denmark)

    Wissing, M L; Kristensen, S G; Andersen, C Y

    2014-01-01

    . Many new ovulation-related genes were revealed, such as CD24, ANKRD22, CLDN11 and FBXO32. FF estrogen, androstenedione and anti-Müllerian hormone decreased significantly while progesterone increased, accompanied by radical changes in the expression of steroidogenic genes (CYP17A, CYP19A, HSD11B1......, REASONS FOR CAUTION: The present dataset was generated from women under hormonal stimulation. However, comparison with a macaque natural cycle whole follicle ovulation dataset revealed major overlap, supporting the idea that the ovulation-related genes found in this study are relevant in the human natural...... cycle. WIDER IMPLICATIONS OF THE FINDINGS: These data will serve as a research resource for genes involved in human ovulation and final oocyte maturation. Ovulation-related genes might be good candidate biomarkers of follicle and oocyte health. Further, some of the ovulation-related genes may serve...

  2. Ethyl acetate extract of Chinese medicinal herb Sarcandra glabra induces growth inhibition on human leukemic HL-60 cells, associated with cell cycle arrest and up-regulation of pro-apoptotic Bax/Bcl-2 ratio.

    Science.gov (United States)

    Li, W Y; Chiu, Lawrence C M; Lam, W S; Wong, W Y; Chan, Y T; Ho, Y P; Wong, Elaine Y L; Wong, Y S; Ooi, Vincent E C

    2007-02-01

    Sarcandra glabra (Thunb.) Nakai, colloquially known as Caoshanhu, is a Chinese medicinal herb with reported anti-tumor, anti-inflammatory, anti-viral and non-specific immunoenhancing properties. Although the plant has been clinically used for treating a variety of diseases, its bioactive ingredients are largely unknown and its mode of action has never been investigated. In this study, the anti-tumor property of ethyl acetate (EA) extract of S. glabra was investigated by determining its in vitro growth-inhibitory effects on a panel of human cancer cell lines of different histotypes. Growth inhibition of the EA extract on the cancer cells seemed to be selective, and the leukemic HL-60 was found to be the most responsive after 48 h of treatment (IC50=58 microg/ml). Flow cytometric studies further illustrated that the extract might interfere with DNA replication and thus arrested the cell cycle at S phase in the leukemic cells, followed by DNA fragmentation and loss of phospholipid asymmetry in the plasma membrane after 72 h of treatment. Concurrently, the pro-apoptotic Bax/Bcl-2 ratio was also up-regulated by more than 178% of the control level. All these findings suggested that the extract had initiated apoptosis to kill the leukemic cells. Results from this pioneer study help to establish a scientific foundation for future research and development of the bioactive ingredients in EA extract of S. glabra as efficacious anti-cancer agents.

  3. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    Science.gov (United States)

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  4. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  5. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  6. A nuclear glutathione cycle within the cell cycle.

    Science.gov (United States)

    Diaz Vivancos, Pedro; Wolff, Tonja; Markovic, Jelena; Pallardó, Federico V; Foyer, Christine H

    2010-10-15

    The complex antioxidant network of plant and animal cells has the thiol tripeptide GSH at its centre to buffer ROS (reactive oxygen species) and facilitate cellular redox signalling which controls growth, development and defence. GSH is found in nearly every compartment of the cell, including the nucleus. Transport between the different intracellular compartments is pivotal to the regulation of cell proliferation. GSH co-localizes with nuclear DNA at the early stages of proliferation in plant and animal cells. Moreover, GSH recruitment and sequestration in the nucleus during the G1- and S-phases of the cell cycle has a profound impact on cellular redox homoeostasis and on gene expression. For example, the abundance of transcripts encoding stress and defence proteins is decreased when GSH is sequestered in the nucleus. The functions of GSHn (nuclear GSH) are considered in the present review in the context of whole-cell redox homoeostasis and signalling, as well as potential mechanisms for GSH transport into the nucleus. We also discuss the possible role of GSHn as a regulator of nuclear proteins such as histones and PARP [poly(ADP-ribose) polymerase] that control genetic and epigenetic events. In this way, a high level of GSH in the nucleus may not only have an immediate effect on gene expression patterns, but also contribute to how cells retain a memory of the cellular redox environment that is transferred through generations.

  7. Cell-cycle-specific interaction of nuclear DNA-binding proteins with a CCAAT sequence from the human thymidine kinase gene

    International Nuclear Information System (INIS)

    Knight, G.B.; Gudas, J.M.; Pardee, A.B.

    1987-01-01

    Induction of thymidine kinase parallels the onset of DNA synthesis. To investigate the transcriptional regulation of the thymidine kinase gene, the authors have examined whether specific nuclear factors interact in a cell-cycle-dependent manner with sequences upstream of this gene. Two inverted CCAAT boxes near the transcriptional initiation sites were observed to form complexes with nuclear DNA-binding proteins. The nature of the complexes changes dramatically as the cells approach DNA synthesis and correlates well with the previously reported transcriptional increase of the thymidine kinase gene

  8. The Human Cell Atlas.

    Science.gov (United States)

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  9. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Cell cycle kinetics and radiation therapy

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1975-01-01

    Radiation therapy as currently practiced involves the subtle largely empirical art of balancing the recurrence of cancer due to undertreatment against severe damage to local tissues due to overtreatment. Therapeutic results too often fall short of desired success rates; yet, the therapist is continually tantalized to the likelihood that a slight shift of therapeutic ratio favoring normal tissue over cancer would have a profoundly beneficial effect. The application of cell cycle kinetics to radiation therapy is one hope for improving the therapeutic ratio; but, as I will try to show, kinetic approaches are complex, poorly understood, and presently too elusive to elicit confidence or to be used clinically. Their promise lies in their diversity and in the magnitude of our ignorance about how they work and how they should be used. Potentially useful kinetic approaches to therapy can be grouped into three classes. The first class takes advantage of intracyclic differential sensitivity, an effect involving the metabolism and biology of the cell cycle; its strategies are based on synchronization of cells over intervals of hours to days. The second class involves the distinction between cycling and noncycling cells; its strategies are based on the resistance of noncycling cells to cycle-linked radiation sensitizers and chemotherapeutic agents. The third class uses cell repopulation between fractions; its strategies are based on the relative growth rates of tumor and relevant normal tissue before and after perturbation

  11. Cell Cycle Inhibition To Treat Sleeping Sickness

    Directory of Open Access Journals (Sweden)

    Conrad L. Epting

    2017-09-01

    Full Text Available African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR, which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.

  12. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  13. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    International Nuclear Information System (INIS)

    Wang, Haihe; Yang, Zhanchun; Liu, Chunbo; Huang, Shishun; Wang, Hongzhi; Chen, Yingli; Chen, Guofu

    2014-01-01

    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC

  14. Cell-cycle phase specificity of chloroethylnitrosoureas

    International Nuclear Information System (INIS)

    Linfoot, P.A.

    1986-01-01

    Although the cancer chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is considered a non-cell cycle phase specific drug, it has been shown to produce differential cell killing in G 1 , S, and G 2 /M phase cells, with S phase cells appearing relatively resistant. Studies of cell cycle phase specific cell killing produced by nitrosoureas with different chemical reactivities, clearly indicated that the ability of compounds to cross-link DNA was important in determining their phase specificity. Cells that lacked guanine O 6 -alkytransferase activity showed similar patterns of BCNU phase specificity regardless of their intrinsic sensitivity to BCNU. DNA inter-strand cross-linking, as measured by alkaline elution, was similar in cells exposed to BCNU in G 1 or S phase. 3 H [1-chloroethyl-1nitrosourea] binding to DNA was the same in G 1 , S and G 2 /M phase cells indicating that phase-specific differences in drug uptake and intracellular drug dose were not responsible for phase specific cell kill. These studies suggest that cross-link lesions, other than DNA inter-strand cross-links, and/or effects on DNA repair, other than guanine O 6 -alkyltransferase, are additional important determinants of BCNU phase specific cell killing

  15. Genotoxic polycyclic aromatic hydrocarbons fail to induce the p53-dependent DNA damage response, apoptosis or cell-cycle arrest in human prostate carcinoma LNCaP cells

    Czech Academy of Sciences Publication Activity Database

    Hrubá, E.; Trilecová, L.; Marvanová, S.; Krčmář, P.; Vykopalová, L.; Milcová, Alena; Líbalová, Helena; Topinka, Jan; Staršíchová, Andrea; Souček, Karel; Vondráček, Jan; Machala, M.

    2010-01-01

    Roč. 198, č. 3 (2010), s. 227-235 ISSN 0378-4274 Grant - others:GA ČR(CZ) GA310/07/0961 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : prostate epithelial cells * DNA adducts * carcinogenesis Subject RIV: BO - Biophysics Impact factor: 3.581, year: 2010

  16. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    Full Text Available Feng Wang,1,2 Hai Li,3 Xiao-Gang Yan,4 Zhi-Wei Zhou,2 Zhi-Gang Yi,5 Zhi-Xu He,6 Shu-Ting Pan,7 Yin-Xue Yang,3 Zuo-Zheng Wang,1 Xueji Zhang,8 Tianxing Yang,9 Jia-Xuan Qiu,7 Shu-Feng Zhou21Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colorectal Surgery, General Hospital, Ningxia Medical University, 4Department of Oncological Surgery, The First People’s Hospital of Yinchuan, 5Department of General Surgery, Changqing Yangehu Hospital, Yinchuan, 6Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 7Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 8Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 9Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USAAbstract: Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS, a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and Bx

  17. The human cell atlas

    DEFF Research Database (Denmark)

    Regev, Aviv; Teichmann, Sarah A.; Lander, Eric S.

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international...... collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells...... in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early...

  18. Control points within the cell cycle

    International Nuclear Information System (INIS)

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures

  19. Elucidating respective functions of two domains BIR and C-helix of human IAP survivin for precise targeted regulating mitotic cycle, apoptosis and autophagy of cancer cells.

    Science.gov (United States)

    Hu, Fabiao; Pan, Daxia; Zheng, Wenyun; Yan, Ting; He, Xiujuan; Ren, Fuzheng; Lu, Yiming; Ma, Xingyuan

    2017-12-26

    Survivin was the smallest member of the IAP family, which was over expressed in many different cancers, and considered to be a promising hot target for cancer therapy, and our previous study demonstrated that multiple dominant negative mutants from full-length survivin could have many complex effects on cancer cells, such as cell cycle, apoptosis, and autophagy. But it was not yet known what role the two main domains played in those functions, which would be very important for the design of targeted anticancer drugs and for the interpretation of their molecular mechanisms. In this study, based on preparation the two parts (BIR domain and CC domain) of survivin by genetic engineering and cell characterization assay, we discovered that BIR (T34A)-domain peptide could inhibit Bcap-37 cells growth in a dose- and time-dependent manner, increase the proportion of G2/M phase, and induce caspase-dependent apoptosis via the mitochondrial pathway. While CC (T117A)-domain peptide increased the proportion of S-phase cells and increased the level of the autophagy marker protein LC3B significantly. These further experiments confirmed that TAT-BIR (T34A) peptide could be used to inhibit cell proliferation, promote apoptosis, and block mitosis, and TAT-CC (T117A) peptide showed mainly to promote autophagy, process of DNA replication, and mitosis to breast cancer cells. This research will lay the foundation for interpreting the multifunction mechanism of survivin in cell fates, further make senses in developing the anticancer drugs targeting it precisely and efficiently.

  20. Cell cycle and apoptosis genes in atherosclerosis

    NARCIS (Netherlands)

    Boesten, Lianne Simone Mirjam

    2006-01-01

    The work described in this thesis was aimed at identifying the role of cell cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, a disorder occurring in the large and medium-sized arteries of the body. Although in the beginning 90s promising

  1. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  2. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  3. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  4. Identification of a novel EGF-sensitive cell cycle checkpoint

    International Nuclear Information System (INIS)

    Walker, Francesca; Zhang Huihua; Burgess, Antony W.

    2007-01-01

    The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells

  5. Identification of a novel intergenic miRNA located between the human DDC and COBL genes with a potential function in cell cycle arrest.

    Science.gov (United States)

    Hoballa, Mohamad Hussein; Soltani, Bahram M; Mowla, Seyed Javad; Sheikhpour, Mojgan; Kay, Maryam

    2018-07-01

    Frequent abnormalities in 7p12 locus in different tumors like lung cancer candidate this region for novel regulatory elements. MiRNAs as novel regulatory elements encoded within the human genome are potentially oncomiRs or miR suppressors. Here, we have used bioinformatics tools to search for the novel miRNAs embedded within human chromosome 7p12. A bona fide stem loop (named mirZa precursor) had the features of producing a real miRNA (named miRZa) which was detected through RT-qPCR following the overexpression of its precursor. Then, endogenous miRZa was detected in human cell lines and tissues and sequenced. Consistent to the bioinformatics prediction, RT-qPCR as well as dual luciferase assay indicated that SMAD3 and IGF1R genes were targeted by miRZa. MiRZa-3p and miRZa-5p were downregulated in lung tumor tissue samples detected by RT-qPCR, and mirZa precursor overexpression in SW480 cells resulted in increased sub-G1 cell population. Overall, here we introduced a novel miRNA which is capable of targeting SMAD3 and IGF1R regulatory genes and increases the cell population in sub-G1 stage.

  6. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  7. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  8. Circatrigintan cycle of testosterone in human male

    International Nuclear Information System (INIS)

    Celec, P.; Kudela, M.; Bursky, P.; Ostatnikova, D.; Zdenek PUTZ, Z.

    2002-01-01

    In recent years the influence of testosterone on physical and mental well-being has become a focus of research attention. Testosterone is no more considered the m ale hormone . It was proved to influence woman's behaviour and mental functioning as well as that of a man. Cyclic changes throughout the menstrual cycle in women are known. To search for the infradian variations of human male testosterone levels in a follow up study, which was held in autumn 1999 (one month of continuous sampling) and in autumn 2000 (two and a half months of continuous sampling). Testosterone was determined in saliva, which contains biologically active fraction, unbound to proteins. In autumn 2000 sampling of 31 males (mean age 21.3 ± 1.3) collected saliva in the morning 30 minutes after waking-up every second day during one month and every third day during the following 6 weeks. Saliva was deeply frozen and analyzed by radioimmunoassay. Data of our preliminary study (based on samples collected in 1999) indicated circatrigintan variations of male salivary testosterone. By the use of two different methods (zones of minimum-moving averages and analysis of variance) circatrigintan and circavigintan cycles of salivary testosterone were found in the collected data of our subjects. The article considerates clinical applications of variation of hormonal levels. (authors)

  9. Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Glahn, Felix; Wiese, Jan; Foth, Heidi [Martin-Luther-University, Halle-Wittenberg, Institute of Environmental Toxicology, Halle/Saale (Germany); Schmidt-Heck, Wolfgang; Guthke, Reinhard [Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena (Germany); Zellmer, Sebastian; Gebhardt, Rolf [University of Leipzig, Institute of Biochemistry, Medical Faculty, Leipzig (Germany); Golka, Klaus; Degen, Gisela H.; Hermes, Matthias; Schormann, Wiebke; Brulport, Marc; Bauer, Alexander; Bedawy, Essam [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany); Hergenroeder, Roland [ISAS, Institute for Analytical Sciences, Dortmund (Germany); Lehmann, Thomas [Translational Centre for Regenerative Medicine, Leipzig (Germany); Hengstler, Jan G. [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany)

    2008-08-15

    Workers occupationally exposed to cadmium, cobalt and lead have been reported to have increased levels of DNA damage. To analyze whether in vivo relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene array study using primary normal human bronchial epithelial cells. Cells were incubated with 15{mu}g/l Cd(II), 25{mu}g/l Co(II) and 550{mu}g/l Pb(II) either with individual substances or in combination. Differentially expressed genes were filtered out and used to identify enriched GO categories as well as KEGG pathways and to identify transcription factors whose binding sites are enriched in a given set of promoters. Interestingly, combined exposure to Cd(II), Co(II) and Pb(II) caused a coordinated response of at least seven stress response-related transcription factors, namely Oct-1, HIC1, TGIF, CREB, ATF4, SRF and YY1. A stress response was further corroborated by up regulation of genes involved in glutathione metabolism. A second major response to heavy metal exposure was deregulation of the cell cycle as evidenced by down regulation of the transcription factors ELK-1 and the Ets transcription factor GABP, as well as deregulation of genes involved in purine and pyrimidine metabolism. A third and surprising response was up regulation of genes involved in steroid metabolism, whereby promoter analysis identified up regulation of SRY that is known to play a role in sex determination. A forth response was up regulation of xenobiotic metabolising enzymes, particularly of dihydrodiol dehydrogenases 1 and 2 (AKR1C1, AKR1C2). Incubations with individual heavy metals showed that the response of AKR1C1 and AKR1C2 was predominantly caused by lead. In conclusion, we have shown that in vivo relevant concentrations of Cd(II), Co(II) and Pb(II) cause a complex and coordinated response in normal human bronchial epithelial cells. This study gives an overview of the most responsive genes. (orig.)

  10. Human resource development for uranium production cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Nuclear fission energy is a viable option for meeting the ever increasing demand for electricity and high quality process heat in a safe, secured and sustainable manner with minimum carbon foot print and degradation of the environment. The growth of nuclear power has shifted from North America and Europe to Asia, mostly in China and India. Bangladesh, Vietnam, Indonesia, Malaysia and the United Arab Emirates are also in the process of launching nuclear power program. Natural uranium is the basic raw material for U-235 and Pu-239, the fuels for all operating and upcoming nuclear power reactors. The present generation of nuclear power reactors are mostly light water cooled and moderated reactor (LWR) and to a limited extent pressurized heavy water reactor (PHWR). The LWRs and PHWRs use low enriched uranium (LEU with around 5% U-235) and natural uranium as fuel in the form of high density UO_2 pellets. The uranium production cycle starts with uranium exploration and is followed by mining and milling to produce uranium ore concentrate, commonly known as yellow cake, and ends with mine and mill reclamation and remediation. Natural uranium and its daughter products, radium and radon, are radioactive and health hazardous to varying degrees. Hence, radiological safety is of paramount importance to uranium production cycle and there is a need to review and share best practices in this area. Human Resource Development (HRD) is yet another challenge as most of the experts in this area have retired and have not been replaced by younger generation because of the continuing lull in the uranium market. Besides, uranium geology, exploration, mining and milling do not form a part of the undergraduate or post graduate curriculum in most countries. Hence, the Technical Co-operation activities of the IAEA are required to be augmented and more country specific and regional training and workshop should be conducted at different universities with the involvement of international experts

  11. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  12. Eukaryotic Cell Cycle as a Test Case for Modeling Cellular Regulation in a Collaborative Problem-Solving Environment

    Science.gov (United States)

    2007-03-01

    computer models of cell cycle regulation in a variety of organisms, including yeast cells, amphibian embryos, bacterial cells and human cells. These...and meiosis ), but they do not nullify the central role played by irreversible, alternating START and FINISH transitions in the cell cycle. 32...AFRL-IF-RS-TR-2007-69 Final Technical Report March 2007 EUKARYOTIC CELL CYCLE AS A TEST CASE FOR MODELING CELLULAR REGULATION IN A

  13. Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells.

    Science.gov (United States)

    Zeng, Guofang; Liu, Jie; Chen, Hege; Liu, Bin; Zhang, Qingyu; Li, Mingyi; Zhu, Runzhi

    2014-06-01

    Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.

  14. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  15. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    Science.gov (United States)

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death

    DEFF Research Database (Denmark)

    Høj, Berit Rahbek; la Cour, Peter Jonas Marstrand; Mollerup, Jens

    2009-01-01

    downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate...... that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.......ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2...

  17. Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis.

    Science.gov (United States)

    Chong, Dianlong; Ma, Linyan; Liu, Fang; Zhang, Zhirui; Zhao, Surong; Huo, Qiang; Zhang, Pei; Zheng, Hailun; Liu, Hao

    2017-09-01

    3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.

  18. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  19. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  20. A Guide to Studying Human Hair Follicle Cycling In Vivo.

    Science.gov (United States)

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan; Kim, Moonkyu; Paus, Ralf; Plikus, Maksim V

    2016-01-01

    Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  2. Human Resource Development for Uranium Production Cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Concluding Remarks & Suggestions: • HRD will be one of the major challenges in the expanding nuclear power program in countries like China and India. • China and India get uranium raw material from domestic mines and international market. In addition, China has overseas uranium property. India is also exploring the possibility of overseas Joint Venture and uranium properties. For uranium production cycle there is a need for trained geologist, mining engineers, chemical and mechanical engineers. • There is a need for introducing specialization course on “uranium production cycle” at post graduate levels in government and private universities. Overseas Utilities and private firms in India engaged in nuclear power and fuel cycle activities may like to sponsor MTech students with assurance of employment after the successful completion of the course. • The IAEA may consider to extend Technical Assistance to universities in HRD in nuclear power and fuel cycle in general and uranium production cycle in particular - IAEA workshops, with participation of international experts, on uranium geology, mining, milling and safety and best practices in uranium production cycle will be of great help. • The IAEA – UPSAT could play an important role in HRD in uranium production cycle

  3. Interlink between cholesterol & cell cycle in prostate carcinoma

    Directory of Open Access Journals (Sweden)

    Govind Singh

    2017-01-01

    Interpretation & conclusions: The present findings along with increased expression of cell cycle protein cyclin E in the cell nucleus of the tumour tissue suggested the possibility of an intriguing role of cholesterol in the mechanism of cell cycle process of prostate cell proliferation.

  4. Human innate lymphoid cells.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2015-11-01

    Full Text Available Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1 based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs activity.

  6. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    Science.gov (United States)

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  7. Effects on proliferation and cell cycle of irradiated KG-1 cells stimulated by CM-CSF

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    In order to explore the variety of cell proliferation and cell cycle after exposure to ionizing radiation, the responses of irradiated KG-1 cells of the human myeloid leukemia stimulated by GM-CSF, the most common used cytokine in clinic, were investigated. The results showed that GM-CSF enhance KG-1 cells proliferation, reduce G0/G1 block, increase S phase and G2/M phase. The stimulation effects of the GM-CSF are more effective in irradiated group than in control group

  8. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  9. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    Jung, T.

    2000-01-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [de

  10. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  11. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    Science.gov (United States)

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-06-01

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10 3 or 2×10 4 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag + release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10 4 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag + release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects on g2/m phase cell cycle distribution and aneuploidy formation of exposure to a 60 Hz electromagnetic field in combination with ionizing radiation or hydrogen peroxide in l132 nontumorigenic human lung epithelial cells.

    Science.gov (United States)

    Jin, Hee; Yoon, Hye Eun; Lee, Jae-Seon; Kim, Jae-Kyung; Myung, Sung Ho; Lee, Yun-Sil

    2015-03-01

    The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM H2O2 for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or H2O2 (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

  13. Cell cycle control by the thyroid hormone in neuroblastoma cells

    International Nuclear Information System (INIS)

    Garcia-Silva, Susana; Perez-Juste, German; Aranda, Ana

    2002-01-01

    The thyroid hormone (T3) blocks proliferation and induces differentiation of neuroblastoma N2a-β cells that overexpress the β1 isoform of the T3 receptor. An element in the region responsible for premature termination of transcription mediates a rapid repression of c-myc gene expression by T3. The hormone also causes a decrease of cyclin D1 gene transcription, and is able to antagonize the activation of the cyclin D1 promoter by Ras. In addition, a strong and sustained increase of the levels of the cyclin kinase inhibitor (CKI) p27 Kip1 are found in T3-treated cells. The increased levels of p27 Kip1 lead to a marked inhibition of the kinase activity of the cyclin-CDK2 complexes. As a consequence of these changes, retinoblastoma proteins are hypophosphorylated in T3-treated N2a-β cells, and progression through the restriction point in the cell cycle is blocked

  14. Cell cycle checkpoints: reversible when possible, irreversible when needed

    NARCIS (Netherlands)

    Krenning, L.

    2015-01-01

    Cell cycle checkpoints are reversible in nature, and can prevent progression into the next cell cycle phase if needed. In the case of DNA damage, cells can prevent progression from G1 into S phase, and from G2 into mitosis in the presence of DNA double strand breaks. Following DNA repair, these

  15. Cell cycle controls: potential targets for chemical carcinogens?

    OpenAIRE

    Afshari, C A; Barrett, J C

    1993-01-01

    The progression of the cell cycle is controlled by the action of both positive and negative growth regulators. The key players in this activity include a family of cyclins and cyclin-dependent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-points involved in cell cycle control may result in unrepaired DNA damage during DNA synthesis or mitosis leading to genet...

  16. Human leukaemic cells

    International Nuclear Information System (INIS)

    Andronikashvili, E.L.; Mosulishvili, L.M.; Belokobil'skiy, A.I.; Kharabadze, N.E.; Shonia, N.I.; Desai, L.S.; Foley, G.E.

    1976-01-01

    The results of the determination of trace elements in nucleic acids and histones in human leukaemic cells by activation analysis are reported. The Cr 2+ , Fe 2+ , Zn 2+ , Co 2+ and Sb 2+ content of DNA and RNA of leukaemic cells compared to that of lymphocytes from a patient with infectious mononucleosis or a normal donor are shown tabulated. Similar comparisons are shown for the same trace metal content of histones isolated from the same type of cells. It is felt that the results afford further interesting speculation that trace metals may be involved in the interactions between histones and DNA (especially at the binding sites of histones to DNA), which affect transcription characteristics. (U.K.)

  17. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis

    Science.gov (United States)

    Scott, RE; Ghule, PN; Stein, JL; Stein, GS

    2015-01-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with p = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability and they are enriched in mRNA transcripts associated with mitosis many of which are associated with chromosomal instability. PMID:25808367

  18. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  19. Cyclin D1 overexpression, cell cycle progression and radiosensitivity in MBP cells

    International Nuclear Information System (INIS)

    Wu Lijun; Yu Zengliang

    2000-11-01

    Clones that exhibited a minimum of 7-8 fold cyclin D1 level above the parent cell lines or the vector control were obtained after transfected with the entire coding sequence of human 1.1 kb cyclin D1 cDNA. Studies showed that there was no significant difference in Radiosensitivity between over-expressing cyclin D1 and control cultures from either mouse or human origin. Using flow cytometry to access cell cycle distribution in the exponentially growth cultures of MCF10F-D1-21 and MCF10F-V-3, it was found that there was a 50 percent increase in the proportion of G2/M phase cells and 5.3 percent decrease in the proportion of G0/G1 phase cells in MCF10F-D1-21 comparing with MCF10F-V-3, though they were with the same proportion of cells in S phase

  20. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    Science.gov (United States)

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Intrinsic radiation resistance in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A.

    2006-01-01

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16 ink4a , one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16 ink4a contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16 ink4a expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16 ink4a expression on chondrosarcoma cell resistance to low-dose γ-irradiation (1-5 Gy). p16 ink4a expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16 ink4a transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16 ink4a plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas

  2. A Method to Design Synthetic Cell-Cycle Networks

    International Nuclear Information System (INIS)

    Ke-Ke, Miao

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of cell-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network. (condensed matter: structure, mechanical and thermal properties)

  3. Playing with the cell cycle to build the spinal cord.

    Science.gov (United States)

    Molina, Angie; Pituello, Fabienne

    2017-12-01

    A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of in vitro irradiation and cell cycle-inhibitory drugs on the spontaneous human IgE synthesis in vitro

    International Nuclear Information System (INIS)

    Del Prete, G.F.; Vercelli, D.; Tiri, A.; Maggi, E.; Rossi, O.; Romagnani, S.; Ricci, M.

    1987-01-01

    The in vitro effects of radiation, diterpine forskolin (FK), and hydrocortisone (HC) on the in vitro spontaneous IgE synthesis by peripheral blood B-lymphocytes from atopic patients were investigated. Without affecting cell viability, in vitro irradiation inhibited in a dose-dependent fashion de novo IgE synthesis in vitro by B cells from all patients examined with a mean 40% reduction of in vitro IgE product after treatment with 100 rads. In contrast, the in vitro IgE production by the U266 myeloma cell line was unaffected, even by irradiation with 1600 rads. The addition to B cell cultures from atopic patients of FK consistently resulted in a dose-dependent inhibition of the spontaneous IgE production in vitro. The addition to cultures of 10(-5) and 10(-6) molar concentrations of HC was also usually inhibitory, whereas lower HC concentrations were uneffective or even enhanced the spontaneous in vitro IgE synthesis. When 10(-6) molar concentrations of both HC and FK were combined in culture, a summation inhibitory effect on the spontaneous IgE synthesis was observed. In contrast, neither FK nor HC had inhibitory effect on the in vitro spontaneous IgE synthesis by the U266 myeloma cell line. The spontaneous in vitro IgE synthesis by B cells from patients with Hodgkin's disease, demonstrating high levels of serum IgE, was strongly reduced or virtually abolished after patients underwent total nodal irradiation to prevent the spread of the disease. In addition, the in vitro spontaneous IgE synthesis by B cells from atopic patients was markedly decreased or abolished by in vivo administration of betamethasone

  5. Human leukaemic cells

    International Nuclear Information System (INIS)

    Andronikashvili, E.L.; Mosulishvili, L.M.; Belokobil'skiy, A.I.; Kharabadze, N.E.; Shonia, N.I.; Desai, L.S.; Foley, G.E.

    1976-01-01

    Trace metals were measured by neutron-activation analyses in purified nucleic acids and histone(s) of lymphocytes from patients with acute lymphocytic leukaemia or infectious mononucleosis, and from normal donors. DNA isolated from lymphocytes of a patient with infectious mononucleosis and a normal donor showed a high content of Cr 2+ , Sb 2+ , Fe 2+ , Zn 2+ , whereas DNA of lymphoblasts from a patient with acute lymphocytic leukaemia had a lower content of these trace metals, but the Co 2+ content was 20-fold higher than in DNA of normal donor lymphocytic cells. Total histones from leukaemic cells had higher contents of most of the trace metals except for Zn 2+ , which was present in lesser concentration than in histones from normal donor lymphocytic cells. Lysine-rich (F1) histones showed lower contents of Cr 2+ , Sb 2+ and Co 2+ , whereas arginine-rich (F3) histones had significantly higher contents of these trace metals. These observations may be of interest in that F3 histones more effectively inhibit RNA synthesis in human lymphocytic cells than do other species of histones. (author)

  6. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  7. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  8. Variety in intracellular diffusion during the cell cycle

    DEFF Research Database (Denmark)

    Selhuber-Unkel, C.; Yde, P.; Berg-Sørensen, Kirstine

    2009-01-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast...... Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent...... a that is also linked to the viscoelastic moduli of the cytoplasm. The exponent a was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences...

  9. Selenium as an essential micronutrient: roles in cell cycle and apoptosis.

    Science.gov (United States)

    Zeng, Huawei

    2009-03-23

    Selenium is an essential trace element for humans and animals, and selenium deficiency is associated with several disease conditions such as immune impairment. In addition, selenium intakes that are greater than the recommended daily allowance (RDA) appear to protect against certain types of cancers. In humans and animals, cell proliferation and death must be regulated to maintain tissue homeostasis, and it has been well documented that numerous human diseases are directly related to the control of cell cycle progression and apoptosis. Thus, the elucidation of the mechanisms by which selenium regulates the cell cycle and apoptosis can lead to a better understanding of the nature of selenium's essentiality and its role in disease prevention. This article reviews the status of knowledge concerning the effect of selenium on cell cycle and apoptosis.

  10. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  11. Chromatin association of UHRF1 during the cell cycle

    KAUST Repository

    Al-Gashgari, Bothayna

    2017-05-01

    Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a nuclear protein that associates with chromatin. Regardless of the various functions of UHRF1 in the cell, one of its more important functions is its role in the maintenance of DNA methylation patterns by the recruitment of DNMT1. Studies on UHRF1 based on this function have revealed the importance of UHRF1 during the cell cycle. Moreover, based on different studies various factors were described to be involved in the regulation of UHRF1 with different functionalities that can control its binding affinity to different targets on chromatin. These factors are regulated differently in a cell cycle specific manner. In light of this, we propose that UHRF1 has different binding behaviors during the cell cycle in regard to its association with chromatin. In this project, we first analyzed the binding behavior of endogenous UHRF1 from different unsynchronized cell systems in pull-down assays with peptides and oligonucleotides. Moreover, to analyze UHRF1 binding behavior during the cell cycle, we used two different approaches. First we sorted Jurkat and HT1080 cells based on their cell cycle stage using FACS analysis. Additionally, we synchronized HeLa cells to different stages of the cell cycle by chemical treatments, and used extracts from cellsorting and cell synchronization experiments for pull-down assays. We observed that UHRF1 in different cell systems has different preferences in regard to its binding to H3 unmodified and H3K9me3. Moreover, we detected that UHRF1, in general, displays different patterns between different stages of cell cycle; however, we cannot draw a final model for UHRF1 binding pattern during cell cycle.

  12. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    Directory of Open Access Journals (Sweden)

    Qiong Liao

    2016-06-01

    Full Text Available AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3 make effect on outflow facility through the trabecular meshwork (TM. METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC cells were determined, still were the collagen, type IV, alpha 1 (COL4A1 and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1. Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis.

  13. Cell-cycle control in cell-biomaterial interactions : Expression of p53 and Ki67 in human umbilical vein endothelial cells in direct contact and extract testing of biomaterials

    NARCIS (Netherlands)

    van Kooten, TG; Klein, CL; Kirkpatrick, CJ

    2000-01-01

    Current biocompatibility testing involves the demonstration of cell proliferation, which is usually interpreted as a sign of positive biocompatibility when the materials sustain cell proliferation. As the field of biomaterials research is rapidly moving toward tissue-engineered devices and hybrid

  14. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  15. Repressive histone methylation regulates cardiac myocyte cell cycle exit.

    Science.gov (United States)

    El-Nachef, Danny; Oyama, Kyohei; Wu, Yun-Yu; Freeman, Miles; Zhang, Yiqiang; Robb MacLellan, W

    2018-05-22

    Mammalian cardiac myocytes (CMs) stop proliferating soon after birth and subsequent heart growth comes from hypertrophy, limiting the adult heart's regenerative potential after injury. The molecular events that mediate CM cell cycle exit are poorly understood. To determine the epigenetic mechanisms limiting CM cycling in adult CMs (ACMs) and whether trimethylation of lysine 9 of histone H3 (H3K9me3), a histone modification associated with repressed chromatin, is required for the silencing of cell cycle genes, we developed a transgenic mouse model where H3K9me3 is specifically removed in CMs by overexpression of histone demethylase, KDM4D. Although H3K9me3 is found across the genome, its loss in CMs preferentially disrupts cell cycle gene silencing. KDM4D binds directly to cell cycle genes and reduces H3K9me3 levels at these promotors. Loss of H3K9me3 preferentially leads to increased cell cycle gene expression resulting in enhanced CM cycling. Heart mass was increased in KDM4D overexpressing mice by postnatal day 14 (P14) and continued to increase until 9-weeks of age. ACM number, but not size, was significantly increased in KDM4D expressing hearts, suggesting CM hyperplasia accounts for the increased heart mass. Inducing KDM4D after normal development specifically in ACMs resulted in increased cell cycle gene expression and cycling. We demonstrated that H3K9me3 is required for CM cell cycle exit and terminal differentiation in ACMs. Depletion of H3K9me3 in adult hearts prevents and reverses permanent cell cycle exit and allows hyperplastic growth in adult hearts in vivo. Copyright © 2017. Published by Elsevier Ltd.

  16. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  17. Induction of cell cycle arrest and apoptosis by Ormenis eriolepis a ...

    African Journals Online (AJOL)

    Induction of cell cycle arrest and apoptosis by Ormenis eriolepis a Morrocan endemic plant in various human cancer cell lines. Lamiae Belayachi, Clara Aceves-Luquero, Nawel Merghoub, Silvia Fernández de Mattos, Saaïd Amzazi, Priam Villalonga, Youssef Bakri ...

  18. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    Science.gov (United States)

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1

  19. Distinct mechanisms act in concert to mediate cell cycle arrest.

    Science.gov (United States)

    Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit

    2009-01-20

    In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.

  20. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  1. Brucella abortus Cell Cycle and Infection Are Coordinated.

    Science.gov (United States)

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Glucose and fructose 6-phosphate cycle in humans

    International Nuclear Information System (INIS)

    Karlander, S.; Roovete, A.; Vranic, M.; Efendic, S.

    1986-01-01

    We have determined the rate of glucose cycling by comparing turnovers of [2- 3 H]- and [6- 3 H]glucose under basal conditions and during a glucose infusion. Moreover, the activity of the fructose 6-phosphate cycle was assessed by comparing [3- 3 H]- and [6- 3 H]glucose. The study included eight lean subjects with normal glucose tolerance. They participated in two randomly performed investigations. In one experiment [2- 3 H]- and [6- 3 H]glucose were given simultaneously, while in the other only [3- 3 H]glucose was given. The basal rate of glucose cycling was 0.32 +/- 0.08 mg X kg-1 X min-1 or 17% of basal glucose production (P less than 0.005). During glucose infusion the activity of endogenous glucose cycling did not change but since glucose production was suppressed it amounted to 130% of glucose production. The basal fructose 6-phosphate cycle could be detected only in three subjects and was suppressed during glucose infusion. In conclusion, the glucose cycle is active in healthy humans both in basal conditions and during moderate hyperglycemia. In some subjects, the fructose 6-phosphate cycle also appears to be active. Thus it is preferable to use [6- 3 H]glucose rather than [3- 3 H]glucose when measuring glucose production and particularly when assessing glucose cycle

  3. Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Bauer, K.D.

    1989-01-01

    Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: (1) cell volume; (2) cell cycle position; and (3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings (1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and (2) demonstrate EC subpopulations in culture

  4. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  5. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  6. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    DNA synthesis is one of the landmark events in the cell cycle: G 1 cells have one copy of the genome, S phase cells are actively engaged in DNA synthesis, and G 2 cells have twice as much nuclear DNA as G 1 cells. Cellular DNA content can be measured by staining with a fluorescent dye followed by a flow-cytometric readout. This method provides a quantitative measurement of cell cycle position on a cell-by-cell basis at high speed. Using flow cytometry, tens of thousands of single-cell measurements can be generated in a few seconds. This protocol details staining of cells of the budding yeast Saccharomyces cerevisiae for flow cytometry using Sytox Green dye in a method that can be scaled widely-from one sample to many thousands and operating on inputs ranging from 1 million to more than 100 million cells. Flow cytometry is preferred over light microscopy or Coulter analyses for the analysis of the cell cycle as DNA content and cell cycle position are being directly measured. © 2017 Cold Spring Harbor Laboratory Press.

  7. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  8. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  9. Life cycle human health impacts of 875 pesticides

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Oliver

    2016-01-01

    present a consistent framework for characterizing human toxicological impacts associated with pesticides applied to agricultural crops in the frame of life cycle impact assessment based on state-of-the-art data and methods. Methods We combine a dynamic multicrop plant uptake model designed for evaluating......-crop combinations of 10 orders of magnitude. Conclusions Our framework is operational for use in current life cycle impact assessment models, is made available for USEtox, and closes an important gap in the assessment of human exposure to pesticides. For ready use in life cycle assessment studies, we present...... pesticide-crop combination-specific characterization factors normalized to pesticide mass applied and provide default data for application times and loss due to post-harvest food processing. When using our data, we emphasize the need to consult current pesticide regulation, since each pesticide...

  10. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  11. Study of cell cycle parameters of man lymphocytes irradiated at various stages using differential coloring of sister chromatides

    International Nuclear Information System (INIS)

    Poryadkova, N.A.

    1984-01-01

    Parameters of the cell cycle of human lymphocytes are specified, radiation effect applied at various stages of mitotic cycle on the kinetics of cell advance in the cycle is also investigated. It is shown that increasing mitotic index occurs only due to the introduction of cells into the first mitosis. It is not excluded that cells ready to enter the second mitosis died with greater probability as after second synthesis they contained two-fold amount of BDU (5-brominedesoxiuridine) than cells of the first mitosis. In all cases with irradiation of cells of the third mitosis were not found

  12. Performances of Saft Lithium-Ion Cells in LEO Cycling

    Directory of Open Access Journals (Sweden)

    Prevot D.

    2017-01-01

    The article will thus present the whole LEO cycling results available for the two cells, and will provide afterwards the correlation status of Saft Li-ion Model (SLIM with all the experimental data acquired.

  13. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  14. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Ujiki, Michael B.; Milam, Ben; Ding Xianzhong; Roginsky, Alexandra B.; Salabat, M. Reza; Talamonti, Mark S.; Bell, Richard H.; Gu Wenxin; Silverman, Richard B.; Adrian, Thomas E.

    2006-01-01

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  15. Keith's MAGIC: Cloning and the Cell Cycle.

    Science.gov (United States)

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  16. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Hseu, You-Cheng; Lee, Meng-Shiou; Wu, Chi-Rei; Cho, Hsin-Ju; Lin, Kai-Yuan; Lai, Guan-Hua; Wang, Sheng-Yang; Kuo, Yueh-Hsiung; Kumar, K J Senthil; Yang, Hsin-Ling

    2012-03-07

    Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.

  17. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle.

    Science.gov (United States)

    Gaucher, Jonathan; Montellier, Emilie; Sassone-Corsi, Paolo

    2018-05-01

    The cell cycle and the circadian clock operate as biological oscillators whose timed functions are tightly regulated. Accumulating evidence illustrates the presence of molecular links between these two oscillators. This mutual interplay utilizes various coupling mechanisms, such as the use of common regulators. The connection between these two cyclic systems has unique interest in the context of aberrant cell proliferation since both of these oscillators are frequently misregulated in cancer cells. Further studies will provide deeper understanding of the detailed molecular connections between the cell cycle and the circadian clock and may also serve as a basis for the design of innovative therapeutic strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  19. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  20. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  1. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  2. NONO couples the circadian clock to the cell cycle.

    Science.gov (United States)

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  3. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-08

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.

  4. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2017-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  5. Regulation of the vertebrate cell cycle by the cdc2 protein kinase

    International Nuclear Information System (INIS)

    Draetta, G.; Brizuela, L.; Moran, B.; Beach, D.

    1988-01-01

    A homolog of the cdc2/CDC28 protein kinase of yeast is found in all vertebrate species that have been investigated. Human cdc2 exists as a complex with a 13-kD protein that is homologous to the suc1 gene product of fission yeast. In both human and fission yeast cells, the protein kinase also exists in a complex with a 62-kD polypeptide that has not been identified genetically but acts as a substrate in vitro. The authors have studied the properties of the protein kinase in rat and human cells, as well as in Xenopus eggs. They find that in baby rat kidney (BRK) cells, which are quiescent in cell culture, the cdc2 protein is not synthesized. However, synthesis is rapidly induced in response to proliferative activation by infection with adenovirus. In human HeLa cells, the protein kinase is present continuously. It behaves as a cell-cycle oscillator that is inactive in G 1 but displays maximal enzymatic activity during mitotic metaphase. These observations indicate that in a wide variety of vertebrate cells, the cdc2 protein kinase is involved in regulating mitosis. The authors' approach taken toward study of the cdc2 protein kinase highlights the possibilities that now exist for combining the advantages of ascomycete genetics with the cell-free systems of Xenopus and the biochemical advantages of tissue culture cells to investigate fundamental problems of the cell cycle

  6. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  7. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    Science.gov (United States)

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  8. Cell cycle effects of L-sulforaphane, a major antioxidant from cruciferous vegetables: The role of the anaphase promoting complex.

    Science.gov (United States)

    Shelley, Zhaoping; Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2014-01-01

    L-sulforaphane (LSF) is a natural isothiocyanate found in cruciferous vegetables particularly broccoli. LSF has been identified as a potent antioxidant and anti-cancer agent and is widely known to regulate phase II detoxifying enzymes and induce cell cycle arrest or apoptosis in malignant cells in vitro and in vivo. Previous studies have found significant G2/M cell cycle arrest in response to LSF in various model of cancer and results have mainly been attributed to increased cyclin B1 protein levels and increased p21expression. Using genome-wide mRNA-Seq analysis we provide insights into the molecular mechanisms of action of LSF to identify a key pathway in cell cycle progression - the role of the anaphase promoting complex (APC) pathway. We evaluated gene expression changes in human erythroleukemic K562 cells following treatment with 15 μM LSF for 48h and compared them to immortalized human keratinocytes, human microvascular endothelial cells (HMEC-1) cells and normal human umbilical endothelial cells (HUVEC). We identified disparate gene expression changes in response to LSF between malignant and normal cells and immortalized cell lines. The results highlight significant down-regulation of kinase CDK1 which is suggestive that the existence and activity of APC/CDC20 complex will be inhibited along with its associated down-stream degradation of key cell cycle regulators preventing cell cycle progression from mitotic exit.

  9. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells

    International Nuclear Information System (INIS)

    Buchholz, Daniel J.; Lepek, Katherine J.; Rich, Tyvin A.; Murray, David

    1995-01-01

    Purpose: To determine the effect of cellular proliferation and cell cycle stage on the ability of postirradiation 5-fluorouracil (5-FU) to radiosensitize cultured human colon adenocarcinoma Clone A cells. Methods and Materials: Cell survival curves were generated for irradiated: (a) log- and plateau-phase Clone A cells; and (b) Clone A cells separated by centrifugal elutriation into the various phases of the cell cycle; with and without postirradiation treatment with 100 μg/ml 5-FU. Results: Postirradiation treatment with 5-FU sensitized proliferating cells to a greater degree than it sensitized cells growing in plateau phase. The β component of cell kill in log-phase cells was increased by a factor of 1.5 with a sensitizer enhancement ratio of 1.21 at the 0.01 survival level. Plateau-phase cells showed less radiosensitization (sensitizer enhancement ratio of 1.13 at the 0.01 survival level); however, there was a mild increase in both α and β kill in plateau-phase cells. Elutriated G 1 cells were the most radiosensitive, independent of treatment with 5-FU. The phase of the cell cycle had little effect on the ability of fluorouracil to radiosensitize Clone A cells. Conclusion: Proliferating cells are more susceptible to radiosensitization with 5-FU than plateau-phase cells are, but this effect appears to be independent of the phase of the cell cycle

  10. Achieving Precision Death with Cell-Cycle Inhibitors that Target DNA Replication and Repair.

    Science.gov (United States)

    Lin, Aimee Bence; McNeely, Samuel C; Beckmann, Richard P

    2017-07-01

    All cancers are characterized by defects in the systems that ensure strict control of the cell cycle in normal tissues. The consequent excess tissue growth can be countered by drugs that halt cell division, and, indeed, the majority of chemotherapeutics developed during the last century work by disrupting processes essential for the cell cycle, particularly DNA synthesis, DNA replication, and chromatid segregation. In certain contexts, the efficacy of these classes of drugs can be impressive, but because they indiscriminately block the cell cycle of all actively dividing cells, their side effects severely constrain the dose and duration with which they can be administered, allowing both normal and malignant cells to escape complete growth arrest. Recent progress in understanding how cancers lose control of the cell cycle, coupled with comprehensive genomic profiling of human tumor biopsies, has shown that many cancers have mutations affecting various regulators and checkpoints that impinge on the core cell-cycle machinery. These defects introduce unique vulnerabilities that can be exploited by a next generation of drugs that promise improved therapeutic windows in patients whose tumors bear particular genomic aberrations, permitting increased dose intensity and efficacy. These developments, coupled with the success of new drugs targeting cell-cycle regulators, have led to a resurgence of interest in cell-cycle inhibitors. This review in particular focuses on the newer strategies that may facilitate better therapeutic targeting of drugs that inhibit the various components that safeguard the fidelity of the fundamental processes of DNA replication and repair. Clin Cancer Res; 23(13); 3232-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Drosophila cell cycle under arrest: uncapped telomeres plead guilty.

    Science.gov (United States)

    Cenci, Giovanni

    2009-04-01

    Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.

  12. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Science.gov (United States)

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-07-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  13. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  14. Neurosecretory cells of the amygdaloid complex during estrous cycle.

    Science.gov (United States)

    Akhmadeev, A V; Kalimullina, L B

    2005-02-01

    Ultrastructure of neurosecretory cells of the dorsomedial nucleus of the cerebral amygdaloid complex (one of the main zones of sexual dimorphism) was studied in different phases of the estrous cycle. The characteristics of the "light" and "dark" cells change depending on the concentrations of sex steroids during estrus and metestrus.

  15. Cell cycle sibling rivalry: Cdc2 vs. Cdk2.

    Science.gov (United States)

    Kaldis, Philipp; Aleem, Eiman

    2005-11-01

    It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings.

  16. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  17. Human innate lymphoid cells

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Spits, Hergen

    2014-01-01

    Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of

  18. Human innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Spits, Hergen

    2016-01-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune

  19. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells.

    Science.gov (United States)

    Yue, Meng; Li, Shiquan; Yan, Guoqiang; Li, Chenyao; Kang, Zhenhua

    2018-01-01

    Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.

  20. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  1. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  2. Radiotherapy and chemotherapy after partial synchronization of cell cycle

    International Nuclear Information System (INIS)

    Hermann, H.J.; Ammon, J.; Nuevemann, M.; Zum Winkel, K.; Technische Hochschule Aachen

    1977-01-01

    Apart from densely ionising radiations, radiotherapy and chemotherapy after partial synchronisation of the cell cycle are, at the moment, the only way to improve the efficiency of a treatment of malignant tumours. The new principle is based on the finding that tumour cells are more sensitive to radiation or chemotherapy in a certain metabolic situation. Partial synchronisation of the cell cycle makes it possible to enrich tumour cells in a certain metabolic state. In order to show the efficiency of such a measure, several methods can be used. Recently, impulse cytophotometry has been replacing these methods, since it permits a quick, simple, and individual control of the synchronisation effect. However, there has not been any clinical experiment yet to prove that tumour cells show a maximum sensitivity to radio- and chemotherapy in the G 2 -M-phase. This is why a number of patients with malignant tumours which could not be operated or treated with the usual radiotherapy or polychemotherapy were treated according to this new therapeutic principle. The results obtained in 233 cases encourage the specialists to continue the experiments. The indication of a treatment after partial synchronisation of the cell cycle should be based on the tumour spread as documented according to the TNM-system. Only when these guidelines are followed will it be possible to explain the problems still unsolved in the principle of radiotherapy and chemotherapy after partial synchronisation of the cell cycle and to carry out radio- and chemotherapy with improved efficiency in the future. (orig./MG) [de

  3. Cell cycle related /sup 125/IUDR-induced-division delay

    International Nuclear Information System (INIS)

    Scheniderman, M.H.; Hofer, K.G.

    1987-01-01

    A series of experiments were run to determine if /sup 125/I-decays, in /sup 125/IUdR labeled DNA, specifically accumulated at 1, 3, 5, 7 and 9 hours after plating labeled mitotic cells caused a change in the rate or time of cell entry into mitosis. To accomplish this, a pool of labeled mitotic cells was selected in mitosis and plated in replicate flasks. /sup 125/I decays were accumulated in groups of cells by cooling (4 0 C) for 2 hours starting at the designated times. After rewarding, colcemid was added to arrest cells in mitosis. The rate of cell progression into mitosis for each cell cycle time of accumulation was determined by scoring the mitotic index of cells sampled as a function of time after addition of the colcemid. The results are summarized: (1) Decays from /sup 125/I in /sup 125/I(UdR) labeled DNA reduced the rate of cell progression into mitosis and delayed the time of initiation of mitosis. (2) The reduced rate of progression and the delayed time of initiation of mitosis were independent of the cell cycle time that /sup 125/I-decays were accumulated. (3) The reduced rate of progression after cell cycle accumulation of /sup 125/I decay was statistically indistinguishable from the corresponding controls. (4) The delayed initiation of mitosis after specific cell cycle accumulation of /sup 125/I- decays was greater than the corresponding control. The relationship of these data to DNA and non-DNA division delay target(s) is emphasized

  4. Cell cycle in egg cell and its progression during zygotic development in rice.

    Science.gov (United States)

    Sukawa, Yumiko; Okamoto, Takashi

    2018-03-01

    Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.

  5. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    Science.gov (United States)

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  7. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  8. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  9. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  10. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus

    2007-01-01

    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase...

  11. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  12. Characterization of chaotic dynamics in the human menstrual cycle

    Science.gov (United States)

    Derry, Gregory; Derry, Paula

    2010-03-01

    The human menstrual cycle exhibits much unexplained variability, which is typically dismissed as random variation. Given the many delayed nonlinear feedbacks in the reproductive endocrine system, however, the menstrual cycle might well be a nonlinear dynamical system in a chaotic trajectory, and that this instead accounts for the observed variability. Here, we test this hypothesis by performing a time series analysis on data for 7438 menstrual cycles from 38 women in the 20-40 year age range, using the database maintained by the Tremin Research Program on Women's Health. Using phase space reconstruction techniques with a maximum embedding dimension of 6, we find appropriate scaling behavior in the correlation sums for this data, indicating low dimensional deterministic dynamics. A correlation dimension of 2.6 is measured in this scaling regime, and this result is confirmed by recalculation using the Takens estimator. These results may be interpreted as offering an approximation to the fractal dimension of a strange attractor governing the chaotic dynamics of the menstrual cycle.

  13. DNA damage response is hijacked by human papillomaviruses to complete their life cycle

    OpenAIRE

    Hong, Shi-yuan

    2017-01-01

    The DNA damage response (DDR) is activated when DNA is altered by intrinsic or extrinsic agents. This pathway is a complex signaling network and plays important roles in genome stability, tumor transformation, and cell cycle regulation. Human papillomaviruses (HPVs) are the main etiological agents of cervical cancer. Cervical cancer ranks as the fourth most common cancer among women and the second most frequent cause of cancer-related death worldwide. Over 200 types of HPVs have been identifi...

  14. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  15. Chapter 10 the primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Stine F; Satir, Peter

    2008-01-01

    Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present...... an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact...... with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration....

  16. Cycling G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent G0 CD34+/CD38-/low severe combined immunodeficiency repopulating cells.

    Science.gov (United States)

    Byk, Tamara; Kahn, Joy; Kollet, Orit; Petit, Isabelle; Samira, Sarit; Shivtiel, Shoham; Ben-Hur, Herzl; Peled, Amnon; Piacibello, Wanda; Lapidot, Tsvee

    2005-04-01

    The mechanism of human stem cell expansion ex vivo is not fully understood. Furthermore, little is known about the mechanisms of human stem cell homing/repopulation and the role that differentiating progenitor cells may play in these processes. We report that 2- to 3-day in vitro cytokine stimulation of human cord blood CD34(+)-enriched cells induces the production of short-term repopulating, cycling G1 CD34(+)/CD38(+) cells with increased matrix metalloproteinase (MMP)-9 secretion as well as increased migration capacity to the chemokine stromal cell-derived factor-1 (SDF-1) and homing to the bone marrow of irradiated nonobese diabetic severe/combined immunodeficiency (NOD/SCID) mice. These cycling G1 cells enhance SDF-1-mediated in vitro migration and in vivo homing of quiescent G0 CD34(+) cells, which is partially abrogated after inhibition of MMP-2/-9 activity. Moreover, the engraftment potential of quiescent G0 SCID repopulating cells (SRCs) is also increased by the cycling G1 CD34(+)/CD38(+) cells. This effect is significantly abrogated after incubation of cycling G1 cells with a neutralizing anti-CXCR4 antibody. Our data suggest synergistic interactions between accessory cycling G1 CD34(+)/CD38(+) committed progenitor cells and quiescent, primitive G0 CD34(+)/CD38(-/low) SRC/stem cells, the former increasing the motility and engraftment potential of the latter, partly via secretion of MMP-9.

  17. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways.

    Science.gov (United States)

    Li, Ming-Yi; Liu, Jin-Quan; Chen, Dong-Ping; Li, Zhou-Yu; Qi, Bin; He, Lu; Yu, Yi; Yin, Wen-Jin; Wang, Meng-Yao; Lin, Ling

    2017-09-02

    Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.

  18. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... for assembling the same molecular machines just in time for action....

  19. Studies on luteinizing hormone receptors of human corpora lutea during menstrual cycle and pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yasushi (Keio Univ., Tokyo (Japan). School of Medicine)

    1982-10-01

    With the purpose of explicating the lifespan of human corpora lutea, using human corpora lutea of the menstrual cycle and pregnancy, binding of /sup 125/I-LH to the 20,000g cell membrane fraction was examined. 1) Specific bindings of /sup 125/I-LH, /sup 125/I-HCG were demonstrated in the 20,000g cell membrane fraction. Although LH and HCG were parallel in inhibiting /sup 125/I-LH binding, HCG was found to be more effective. FSH did not inhibit binding. 2) Binding of /sup 125/I-LH was dependent on time, temperature, /sup 125/I-LH concentration, amount of the cell membrane fraction protein and pH. The highest binding was seen at pH 6.0 while incubating for 60 min at 37/sup 0/C. 3) The number of LH receptors in human corpora lutea of the menstrual cycle increased towards midluteal phase, especially on 5th day from ovulation, and decreased towards late luteal phase. LH receptor was not found in corpus albicans. The apparent dissociation constant of each corpus luteum did not change throughout the menstrual cycle. 4) Corpora lutea of pregnancy contained a few or no receptors which bound /sup 125/I-LH specifically. These data suggest that LH receptor is an important factor regulating the lifespan of corpus luteum and exogenous HCG has effect on luteal insufficiency, but the effect of HCG on threatened abortion is uncertain.

  20. Studies on luteinizing hormone receptors of human corpora lutea during menstrual cycle and pregnancy

    International Nuclear Information System (INIS)

    Izumi, Yasushi

    1982-01-01

    With the purpose of explicating the lifespan of human corpora lutea, using human corpora lutea of the menstrual cycle and pregnancy, binding of 125 I-LH to the 20,000g cell membrane fraction was examined. 1) Specific bindings of 125 I-LH, 125 I-HCG were demonstrated in the 20,000g cell membrane fraction. Although LH and HCG were parallel in inhibiting 125 I-LH binding, HCG was found to be more effective. FSH did not inhibit binding. 2) Binding of 125 I-LH was dependent on time, temperature, 125 I-LH concentration, amount of the cell membrane fraction protein and pH. The highest binding was seen at pH 6.0 while incubating for 60 min at 37 0 C. 3) The number of LH receptors in human corpora lutea of the menstrual cycle increased towards midluteal phase, especiallt on 5th day from ovulation, and decreased towards late luteal phase. LH receptor was not found in corpus albicans. The apparent dissociation constant of each corpus luteum did not change throughout the menstrual cycle. 4) Corpora lutea of pregnancy contained a few or no receptors which bound 125 I-LH specifically. These data suggest that LH receptor is an important factor regulating the lifespan of corpus luteum and exogenous HCG has effect on luteal insufficiency, but the effect of HCG on threatened abortion is uncertain. (author)

  1. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    Directory of Open Access Journals (Sweden)

    Marie Saghaeian Jazi

    2016-07-01

    Full Text Available Objective(s: T-cell acute lymphoblastic leukemia (T-ALL is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA as a recently emerged anti-neoplastic histone deacetylase (HDAC inhibitor and pioglitazone (PGZ as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after   24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27 expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  2. Cell Cycle Regulation by Alternative Polyadenylation of CCND1.

    Science.gov (United States)

    Wang, Qiong; He, Guopei; Hou, Mengmeng; Chen, Liutao; Chen, Shangwu; Xu, Anlong; Fu, Yonggui

    2018-05-01

    Global shortening of 3'UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.

  3. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  4. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  5. Cytotoxicity and cell-cycle effects of paclitaxel when used as a single agent and in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Gupta, Nalin; Hu, Lily J.; Deen, Dennis F.

    1997-01-01

    Purpose: This study aimed to determine the extent of paclitaxel-induced cytotoxicity and cell-cycle perturbations when used alone and in combination with radiation in human glioma cells. Methods and Materials: The effect of paclitaxel alone on three human glioma cells lines--SF-126, U-87 MG, and U-251 MG--was assessed after 24, 48, 72, or 96 h treatment. For experiments in combination with radiation, cells were exposed to either a long (48-h) or short (8-h) duration of paclitaxel treatment prior to irradiation. Cell survival was determined by clonogenic assay. Cell cycle perturbations were assessed by using flow cytometry to measure the proportion of cells in G 1 , S, and G 2 /M phases. Results: When cells were treated with paclitaxel alone for ≥24 h, cytotoxicity increased up to a threshold dose, after which it plateaued. When treatment duration was ≤24 h, cytotoxicity was appreciably greater in U-251 MG cells than in SF-126 and U-87 MG cells. After 24 h of paclitaxel treatment, cells in plateau phase growth had increased survival compared to cells in log phase growth. In contrast, after 8 h paclitaxel treatment, mitotic cells had reduced survival compared to cells from an asynchronous population. Cell-cycle perturbations were consistent with the presence of a mitotic block after paclitaxel treatment, although changes in other cell-cycle phase fractions varied among cell lines. For experiments in combination with radiation, cytotoxicity was increased when cells were irradiated after 48 h of paclitaxel treatment but not after 8 h of treatment. Conclusion: The duration of paclitaxel treatment and the location of cells in the cell cycle modify the degree of radiation cytotoxicity. The mechanisms of paclitaxel cytotoxicity are likely to be multifactorial because varying effects are seen in different cell lines. Furthermore, it is clear that simply increasing the number of cells in G 2 /M is insufficient in itself to increase the response of cells to radiation

  6. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Olga Momcilovic

    2010-10-01

    Full Text Available Induced pluripotent stem (iPS cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability.Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB, and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2 phase of the cell cycle, displaying a lack of the G(1/S cell cycle arrest similar to human embryonic stem (ES cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts.High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1/S cell cycle arrest, were observed in stem cells generated by induced pluripotency.

  7. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    International Nuclear Information System (INIS)

    Magno, A.C.G.; Oliveira, I.L.; Hauck, J.V.S.

    2016-01-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation (paper)

  8. Stimulated human fibroblast cell survival

    International Nuclear Information System (INIS)

    Smith, B.P.; Gale, K.L.; Einspenner, M.; Greenstock, C.L.; Gentner, N.E.

    1992-01-01

    Techniques for cloning cultured mammalian cells have supported the most universally-accepted method for measuring the induction of lethality by geno-toxicants such as ionizing radiation: the 'survival of colony-forming ability (CFA)' assay. Since most cultured human cell lines exhibit plating efficiency (i.e. the percentage of cells that are capable of reproductively surviving and dividing to form visible colonies) well below 100%, such assays are in essence 'survival of plating efficiency' assays, since they are referred to the plating (or cloning) efficiency of control (i.e. unirradiated) cells. (author). 8 refs., 2 figs

  9. The recruitability and cell-cycle state of intestinal stem cells

    International Nuclear Information System (INIS)

    Potten, C.S.; Chadwick, C.; Ijiri, K.; Tsubouchi, S.; Hanson, W.R.

    1984-01-01

    Evidence is presented which suggests that the crypts of the small intestine contain at least two discrete but interdependent classes of stem cells, some with discrete cell kinetic properties and some with discrete radiation responses or radiosensitivities. Very low doses of X rays or gamma rays, or neutrons, kill a few cells in the stem cell regions of the crypt in a sensitive dose-dependent manner. Similar doses generate several different cell kinetic responses within either the clonogenic fraction or the cells at the stem cell position within the crypt. The cell kinetic responses range from apparent recruitment of G0 clonogenic cells into cycle, to a marked shortening of the average cell cycle of the cells at the stem cell position. It is suggested that the cell kinetic changes may be the consequence of the cell destruction

  10. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  11. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  12. The Design Space of the Embryonic Cell Cycle Oscillator.

    Science.gov (United States)

    Mattingly, Henry H; Sheintuch, Moshe; Shvartsman, Stanislav Y

    2017-08-08

    One of the main tasks in the analysis of models of biomolecular networks is to characterize the domain of the parameter space that corresponds to a specific behavior. Given the large number of parameters in most models, this is no trivial task. We use a model of the embryonic cell cycle to illustrate the approaches that can be used to characterize the domain of parameter space corresponding to limit cycle oscillations, a regime that coordinates periodic entry into and exit from mitosis. Our approach relies on geometric construction of bifurcation sets, numerical continuation, and random sampling of parameters. We delineate the multidimensional oscillatory domain and use it to quantify the robustness of periodic trajectories. Although some of our techniques explore the specific features of the chosen system, the general approach can be extended to other models of the cell cycle engine and other biomolecular networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Dramatic repositioning of c-Myb to different promoters during the cell cycle observed by combining cell sorting with chromatin immunoprecipitation.

    Directory of Open Access Journals (Sweden)

    Anita M Quintana

    2011-02-01

    Full Text Available The c-Myb transcription factor is a critical regulator of proliferation and stem cell differentiation, and mutated alleles of c-Myb are oncogenic, but little is known about changes in c-Myb activity during the cell cycle. To map the association of c-Myb with specific target genes during the cell cycle, we developed a novel Fix-Sort-ChIP approach, in which asynchronously growing cells were fixed with formaldehyde, stained with Hoechst 33342 and separated into different cell cycle fractions by flow sorting, then processed for chromatin immunoprecipitation (ChIP assays. We found that c-Myb actively repositions, binding to some genes only in specific cell cycle phases. In addition, the specificity of c-Myb is dramatically different in small subpopulations of cells, for example cells in the G2/M phase of the cell cycle, than in the bulk population. The repositioning of c-Myb during the cell cycle is not due to changes in its expression and also occurs with ectopically expressed, epitope-tagged versions of c-Myb. The repositioning occurs in established cell lines, in primary human CD34+ hematopoietic progenitors and in primary human acute myeloid leukemia cells. The combination of fixation, sorting and ChIP analysis sheds new light on the dynamic nature of gene regulation during the cell cycle and provides a new type of tool for the analysis of gene regulation in small subsets of cells, such as cells in a specific phase of the cell cycle.

  14. Effect of low dose radiation on cell cycle and expression of its related proteins of HCT-8 cells

    International Nuclear Information System (INIS)

    Xu Ying; Ma Kewei; Li Wei; Wang Guanjun

    2009-01-01

    Objective: To study the effects of low dose radiation (LDR) on cell cycle and the expression of its related proteins of HCT-8 cells and provide theoretical basis for clinical application of LDR. Methods: Human colon carcinoma cells (HCT-8) cultivated in vitro were divided into seven groups: sham radiation group (0 mGy), LDR groups (25, 50, 75, 100 and 200 mGy) and high dose radiation group (1000 mGy). The proliferation rate was detected with the method of cell count and MTT, the ratios of G 0 /G 1 , S, G 2 /M in cell cycle were determined with flow cytometry after LDR, The cell cycle and expressions of related signal proteins were analyzed with protein assay system. Results: The results of cell count and MTT showed that there were no significant differences of proliferation rate of HCT-8 cells between 25, 50, 75, 100, 200 mGy LDR groups and sham radiation group (P>0.05); compared with high dose radiation group, there were significant differences (P 0 /G 1 phase of HCT-8 cells increased (P>0.05), the ratio of S phase decreased significantly (P 2 /M phase increased obviously (P 0 /G 1 , S, and G 2 /M phases of HCT-8 cells 48 h after radiation compared with sham radiation group (P>0.05). The protein assay result indicated that the expressions of AKt, PCNA, p27, CDK2, cyclin E, EGFR, ERK1/2, p-ERK, p-GSK-32/β in HCT-8 cells after LDR decreased compared with sham radiation group. Conclusion: LDR has no stimulating effect on HCT-8 cells. However, to some extent LDR suppress the expressions of some proteins related to proliferation and cell cycle. (authors)

  15. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...

  16. Indicators for human toxicity in Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Krewitt, Wolfram; Pennington, David W.; Olsen, Stig Irving

    2002-01-01

    The main objectives of this task group under SETAC-Europe’s Second Working Group on Life Cycle Impact Assessment (LCIA-WIA2) were to identify and discuss the suitability of toxicological impact measures for human health for use in characterization in LCIA. The current state of the art of defining......, as well as potency. Quantitative severity-based indicators yield measures in terms of Years of Life Lost (YOLL), Disability Adjusted Life Years (DALY), Quality Adjusted Life Years (QALY) and other similar measures. DALYs and QALYs are examples of approaches that attempt to account for both years of life...... such as No Observed Effect Levels (NOEL). NOELs, and similar data, are determined in laboratory studies using rodents and are then extrapolated to more relevant human measures. Many examples also exist of measures and methods beyond potency-based indicators that attempt to account for differences in expected severity...

  17. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  18. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  19. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    Science.gov (United States)

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  20. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  1. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  2. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  3. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  4. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  5. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-01-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G_1/G_0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  6. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  7. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  8. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  9. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2010-12-01

    Full Text Available Abstract Background Although the cerebellum is considered to be predominantly involved in fine motor control, emerging evidence documents its participation in language, impulsive behavior and higher cognitive functions. While the specific connections of the cerebellar deep nuclei (CDN that are responsible for these functions are still being worked out, their deficiency has been termed "cerebellar cognitive affective syndrome" - a syndrome that bears a striking similarity to many of the symptoms of Alzheimer's disease (AD. Using ectopic cell cycle events and DNA damage markers as indexes of cellular distress, we have explored the neuropathological involvement of the CDN in human AD. Results We examined the human cerebellar dentate nucleus in 22 AD cases and 19 controls for the presence of neuronal cell cycle events and DNA damage using immunohistochemistry and fluorescence in situ hybridization. Both techniques revealed several instances of highly significant correlations. By contrast, neither amyloid plaque nor neurofibrillary tangle pathology was detected in this region, consistent with previous reports of human cerebellar pathology. Five cases of early stage AD were examined and while cell cycle and DNA damage markers were well advanced in the hippocampus of all five, few indicators of either cell cycle events (1 case or a DNA damage response (1 case were found in CDN. This implies that CDN neurons are most likely affected later in the course of AD. Clinical-pathological correlations revealed that cases with moderate to high levels of cell cycle activity in their CDN are highly likely to show deficits in unorthodox cerebellar functions including speech, language and motor planning. Conclusion Our results reveal that the CDN neurons are under cellular stress in AD and suggest that some of the non-motor symptoms found in patients with AD may be partly cerebellar in origin.

  10. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    Science.gov (United States)

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cell cycle analysis in patients with Fanconi anemia from Serbia

    Directory of Open Access Journals (Sweden)

    Ćirković Sanja

    2013-01-01

    Full Text Available Fanconi anemia (FA is a rare autosomal recessive disorder, characterized by progressive bone marrow failure, chromosomal instability and cell cycle blockage in the G2 phase. The hypersensitivity of FA cells can be additionally induced with specific alkylating agents such as diepoxybutane (DEB and mitomycin C, which is used in differential diagnosis of FA. Among 72 patients with clinical suspicion of FA, who were diagnosed at the Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic” and the University Children’s Hospital (2004 - 2011, in 10 patients the diagnosis of FA was confirmed on the basis of an increased chromosome sensitivity to DEB. Five out of 10 FA patients were available for further flow cytometric analysis of cell cycle. We examined cell cycle blockage in G2 phase in untreated and with DEB treated lymphocyte cultures from FA patients and from the healthy persons, as control group. All five patients affected with FA, showed an increased DEB induced G2-phase-blockage which was over two times higher than in controls. The percentage of FA cells arrested in G2 phase was between 4,41% and 10,45% with mean value (MV of 7,76%, but in the control group this range was lower: 1,56% - 4,11% (MV: 2.84%, with no overlapping. FA patients showed an increased spontaneous arrest in G2 phase, as well, comparing to healthy controls (MV: 14,63% vs. 5,82%. Cell cycle assay of G2 phase blockage could be used as an additional diagnostic tool for confirmation of FA in patients with clinical suspicion of this disease. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  12. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  13. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    2009-10-01

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  14. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    International Nuclear Information System (INIS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-01-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings. (paper)

  15. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4).

    Science.gov (United States)

    Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2018-01-01

    PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.

  16. In Vitro Eff