WorldWideScience

Sample records for human casein kinase

  1. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G

    1993-01-01

    The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain...

  2. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  3. Molecular cloning of the human casein kinase II α subunit

    International Nuclear Information System (INIS)

    Meisner, H.; Heller-Harrison, R.; Buxton, J.; Czech, M.P.

    1989-01-01

    A human cDNA encoding the α subunit of casein kinase II and a partial cDNA encoding the rat homologue were isolated by using a Drosophila casein kinase II cDNA probe. The 2.2-kb human cDNA contains a 1.2-kb open reading frame, 150 nucleotides of 5' leader, and 850 nucleotides of 3' noncoding region. Except for the first 7 deduced amino acids that are missing in the rat cDNA, the 328 amino acids beginning with the amino terminus are identical between human and rat. The Drosophila enzyme sequence is 90% identical with the human casein kinase II sequence, and there is only a single amino acid difference between the published partial bovine sequence and the human sequence. In addition, the C-terminus of the human cDNA has an extra 53 amino acids not present in Drosophila. Northern analysis of rat and human RNA showed predominant bands of 5.5, 3.1, and 1.8 kb. In rat tissues, brain and spleen had the highest levels of casein kinase II α subunit specific RNA, while skeletal muscle showed the lowest. Southern analysis of human cultured cell and tissue genomic DNA using the full-length cDNA probe revealed two bands with restriction enzymes that have no recognition sites within the cDNA and three to six bands with enzymes having single internal sites. These results are consistent with the possibility that two genes encode the α subunits

  4. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue

    DEFF Research Database (Denmark)

    Münstermann, U; Fritz, G; Seitz, G

    1990-01-01

    Protein kinase CKII (i.e. casein kinase II, CKII, NII) is expressed at a higher level in rapidly proliferating tissues and in solid human tumours (e.g. colorectal carcinomas) when compared to the corresponding non-neoplastic colorectal mucosa. This could be shown by (a) Western blotting of cellular...

  5. Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta

    DEFF Research Database (Denmark)

    Boldyreff, B; James, P; Staudenmann, W

    1993-01-01

    Human casein kinase-2 (CK-2) subunits alpha and beta were bicistronically expressed in bacteria. The recombinant holoenzyme shared all investigated properties with the native CK-2 from mammalian sources (rat liver, Krebs II mouse ascites tumour cells). Contrary to recombinant human CK-2 produced...

  6. Assignment of casein kinase 2 alpha sequences to two different human chromosomes

    DEFF Research Database (Denmark)

    Boldyreff, B; Klett, C; Göttert, E

    1992-01-01

    Human casein kinase 2 alpha gene (CK-2-alpha) sequences have been localized within the human genome by in situ hybridization and somatic cell hybrid analysis using a CK-2 alpha cDNA as a probe. By in situ hybridization, the CK-2 alpha cDNA could be assigned to two different loci, one on 11p15.1-ter...

  7. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G

    1991-01-01

    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...

  8. Isolation and characterization of human cDNA clones encoding the α and the α' subunits of casein kinase II

    International Nuclear Information System (INIS)

    Lozeman, F.J.; Litchfield, D.W.; Piening, C.; Takio, Koji; Walsh, K.A.; Krebs, E.G.

    1990-01-01

    Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two α or α' subunits (or one of each) and two β subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell λgt 10 library using cDNA clones isolated from Drosophila melanogasten. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 close was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 by (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of α and α' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the α and α' subunits of casein kinase II. These studies show that there are two distinct catalytic subunits for casein II (α and α') and that the sequence of these subunits is largely conserved between the bovine and the human

  9. Characterization of casein kinase II in human colonic carcinomas after heterotransplantation into nude mice

    DEFF Research Database (Denmark)

    Seitz, G; Münstermann, U; Schneider, H R

    1989-01-01

    Casein kinase II (CKII) activity in colorectal tumours was compared before and after heterotransplantation onto nude mice. The test revealed that the enzyme activity was about two-fold enhanced in the tumours isolated from the nude mice when compared to the respective primary tumours from which...

  10. Casein kinase-2 structure-function relationship

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A

    1992-01-01

    Nine mutants of human casein kinase-2 beta subunit have been created and assayed for their ability to assemble with the catalytic alpha subunit to give, at a 1:1 molar ratio, a fully competent CK-2 holoenzyme as judged by the following criteria: 1) the generation of an active heterotetrameric form...

  11. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    DEFF Research Database (Denmark)

    Engel, M; Issinger, O G; Lascu, I

    1994-01-01

    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  12. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol.

    OpenAIRE

    Martos, C; Plana, M; Guasch, M D; Itarte, E

    1985-01-01

    Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partia...

  13. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    International Nuclear Information System (INIS)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  14. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells.

    Science.gov (United States)

    Lee, Yeo Song; Lee, Do Yeon; Yu, Da Yeon; Kim, Shin; Lee, Yong Chan

    2014-12-01

    Chronic infection with Helicobacter pylori (H. pylori) is causally linked with gastric carcinogenesis. Virulent H. pylori strains deliver bacterial CagA into gastric epithelial cells. Induction of high motility and an elongated phenotype is considered to be CagA-dependent process. Casein kinase 2 plays a critical role in carcinogenesis through signaling pathways related to the epithelial mesenchymal transition. This study was aimed to investigate the effect of H. pylori infection on the casein kinase 2-mediated migration and invasion in gastric epithelial cells. AGS or MKN28 cells as human gastric epithelial cells and H. pylori strains Hp60190 (ATCC 49503, CagA(+)) and Hp8822 (CagA(-)) were used. Cells were infected with H. pylori at multiplicity of infection of 100 : 1 for various times. We measured in vitro kinase assay to examine casein kinase 2 activity and performed immunofluorescent staining to observe E-cadherin complex. We also examined β-catenin transactivation through promoter assay and MMP7 expression by real-time PCR and ELISA. H. pylori upregulates casein kinase 2 activity and inhibition of casein kinase 2 in H. pylori-infected cells profoundly suppressed cell invasiveness and motility. We confirmed that casein kinase 2 mediates membranous α-catenin depletion through dissociation of the α-/β-catenin complex in H. pylori-infected cells. We also found that H. pylori induces β-catenin nuclear translocation and increases MMP7 expressions mediated through casein kinase 2. We show for the first time that CagA(+) H. pylori upregulates cellular invasiveness and motility through casein kinase 2. The demonstration of a mechanistic interplay between H. pylori and casein kinase 2 provides important insights into the role of CagA(+) H. pylori in the gastric cancer invasion and metastasis. © 2014 John Wiley & Sons Ltd.

  15. Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays

    DEFF Research Database (Denmark)

    Dobrowolska, G; Boldyreff, B; Issinger, O G

    1991-01-01

    The nucleotide sequence of the cDNA coding for the alpha subunit of casein kinase 2 of Zea mays has been determined. The cDNA clone contains an open reading frame of 996 nucleotides encoding a polypeptide comprising 332 amino acids. The primary amino acid sequence exhibits 75% identity to the alpha...... subunit and 71% identity to the alpha' subunit of human casein kinase 2....

  16. Nucleolin (C23), a physiological substrate for casein kinase II

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1988-01-01

    Nucleolin (C23), a 110 kDa phosphoprotein, which is mainly found in the nucleolus has been shown to be a physiological substrate for casein kinase II (CKII). Nucleolin was identified and characterized by immunodetection using an anti-nucleolin antibody. Phosphopeptide patterns from nucleolin...... phosphorylated by purified casein kinase II and of phosphorylated nucleolin which had been isolated from tumor cells grown in the presence of [32P]-o-phosphate, were identical. The partial tryptic digest revealed nine phosphopeptides. Nucleolin isolated from Krebs II mouse ascites cells was phosphorylated...... by purified casein kinase II with about two moles phosphate per one mole of nucleolin....

  17. Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2

    Directory of Open Access Journals (Sweden)

    Sanne H. Olesen

    2015-01-01

    Full Text Available The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein–protein interaction (PPI inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37 in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2 did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM, while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands.

  18. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1989-01-01

    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and He...

  19. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  20. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    Science.gov (United States)

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  1. Expression of casein kinase 2 during mouse embryogenesis

    DEFF Research Database (Denmark)

    Mestres, P; Boldyreff, B; Ebensperger, C

    1994-01-01

    This paper deals with the expression and distribution of casein kinase 2 (CK-2) subunits in mouse embryos at different developmental stages. Expression was investigated at the mRNA level of CK-2 alpha- and beta-subunits by in situ hybridization and distribution at the protein level by immunohisto......This paper deals with the expression and distribution of casein kinase 2 (CK-2) subunits in mouse embryos at different developmental stages. Expression was investigated at the mRNA level of CK-2 alpha- and beta-subunits by in situ hybridization and distribution at the protein level...

  2. Reconstitution of normal and hyperactivated forms of casein kinase-2 by variably mutated beta-subunits

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A

    1993-01-01

    Twenty-one mutants of the noncatalytic beta-subunit of human casein kinase-2 have been created, expressed in Escherichia coli, and purified to homogeneity. They are either modified at the autophosphorylation site (mutants beta delta 1-4 and beta A 5,6) or bear variable deletions in their C...

  3. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    A casein kinase was isolated and purifed from rabbit reticulocytes. About 90% of the enzyme activity co-sedimented with the ribosomal fraction, whereas about 10% of the enzyme activity was found in the ribosome-free supernatant. Both casein kinases (the ribosome-bound enzyme as well as the free...... suggested that the casein kinase is a dimer composed of subunits of identical molecular weight. The enzyme utilizes GTP as well as ATP as a phosphoryl donor. It preferentially phosphorylates acidic proteins, in particular the model substrates casein and phosvitin. Casein kinase is cyclic AMP...

  4. Stimulation of casein kinase II by epidermal growth factor: Relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit

    International Nuclear Information System (INIS)

    Ackerman, P.; Osheroff, N.; Glover, C.V.C.

    1990-01-01

    To determine relationships between the hormonal activation of casein kinase II and its phosphorylation state, epidermal growth factor (EGF)-treated and EGF-naive human A-431 carcinoma cells were cultured in the presence of [ 32 P]orthophosphate. Immunoprecipitation experiments indicated that casein kinase II in the cytosol of EGF-treated cells contained approximately 3-fold more incorporated [ 32 P]phosphate than did its counterpart in untreated cells. Levels of kinase phosphorylation paralleled levels of kinase activity over a wide range of EGF concentrations as well as over a time course of hormone action. Approximately 97% of the incorporated [ 32 P]phosphate was found in the β subunit of casein kinase II. Both activated and hormone-naive kinase contained radioactive phosphoserine and phosphothreonine but no phosphotyronsine. On the basis of proteolytic mapping experiments, EGF treatment of A-431 cells led to an increase in the average [ 32 P]phosphate content (i.e., hyperphosphorylation) of casein kinase II β subunit peptides which were modified prior to hormone treatment. Finally, the effect of alkaline phosphatase on the reaction kinetics of activated casein kinase II indicated that hormonal stimulation of the kinase resulted from the increase in its phosphorylation state

  5. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  6. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Marin, O

    1992-01-01

    Recombinant human alpha subunit from casein kinase-2 (CK-2) was subjected, either alone or in combination with recombinant human beta subunit, to high temperature, tryptic digestion and urea treatment. In all three cases, it was shown that the presence of the beta subunit could drastically reduce...... the autophosphorylation site. It is suggested that the acidic domain of the beta subunit, encompassing residues 55-71, plays a role in the interactions between the beta and alpha subunits....

  7. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation.

    Science.gov (United States)

    Liao, Yalin; Weber, Darren; Xu, Wei; Durbin-Johnson, Blythe P; Phinney, Brett S; Lönnerdal, Bo

    2017-11-03

    Whey proteins and caseins in breast milk provide bioactivities and also have different amino acid composition. Accurate determination of these two major protein classes provides a better understanding of human milk composition and function, and further aids in developing improved infant formulas based on bovine whey proteins and caseins. In this study, we implemented a LC-MS/MS quantitative analysis based on iBAQ label-free quantitation, to estimate absolute concentrations of α-casein, β-casein, and κ-casein in human milk samples (n = 88) collected between day 1 and day 360 postpartum. Total protein concentration ranged from 2.03 to 17.52 with a mean of 9.37 ± 3.65 g/L. Casein subunits ranged from 0.04 to 1.68 g/L (α-), 0.04 to 4.42 g/L (β-), and 0.10 to 1.72 g/L (α-), with β-casein having the highest average concentration among the three subunits. Calculated whey/casein ratio ranged from 45:55 to 97:3. Linear regression analyses show significant decreases in total protein, β-casein, κ-casein, total casein, and a significant increase of whey/casein ratio during the course of lactation. Our study presents a novel and accurate quantitative analysis of human milk casein content, demonstrating a lower casein content than earlier believed, which has implications for improved infants formulas.

  8. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    Science.gov (United States)

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  9. Ribosomal S6 Kinase Cooperates with Casein Kinase 2 to Modulate the Drosophila Circadian Molecular Oscillator

    Science.gov (United States)

    Akten, Bikem; Tangredi, Michelle M.; Jauch, Eike; Roberts, Mary A.; Ng, Fanny; Raabe, Thomas; Jackson, F. Rob

    2009-01-01

    There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the MAPK pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the Casein Kinase 2 regulatory subunit (CK2β), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism. PMID:19144847

  10. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  11. Casein kinase 1-Like 3 is required for abscisic acid regulation of ...

    African Journals Online (AJOL)

    Casein kinase 1-Like 3 is required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. M Wang, D Yu, X Guo, X Li, J Zhang, L Zhao, H Chang, S Hu, C Zhang, J Shi, X Liu ...

  12. Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays

    DEFF Research Database (Denmark)

    Peracchia, G; Jensen, A B; Culiáñez-Macià, F A

    1999-01-01

    We have isolated and characterized the genomic clone of maize casein kinase 2 (CK2) alpha subunit using the previously described alphaCK2-1 cDNA clone as a probe. The genomic clone is 7.5 kb long and contains 10 exons, separated by 9 introns of different size, two larger than 1.5 kb and the others...

  13. Selective Inhibition of Casein Kinase 1 epsilon Minimally Alters Circadian Clock Period

    Czech Academy of Sciences Publication Activity Database

    Walton, K. M.; Fisher, K.; Rubitski, D.; Marconi, M.; Meng, Q.-J.; Sládek, Martin; Adams, J.; Bass, M.; Chandrasekaran, R.; Butler, T.; Griffor, M.; Rajamohan, F.; Serpa, M.; Chen, Y.; Claffey, M.; Hastings, M.; Loudon, A.; Maywood, E.; Ohren, J.; Doran, A.; Wager, T. T.

    2009-01-01

    Roč. 330, č. 2 (2009), s. 430-439 ISSN 0022-3565 Institutional research plan: CEZ:AV0Z50110509 Keywords : circadian clock * casein kinase 1 epsilon * inhibitor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.093, year: 2009

  14. The autophosphorylation and p34cdc2 phosphorylation sites of casein kinase-2 beta-subunit are not essential for reconstituting the fully-active heterotetrameric holoenzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G

    1993-01-01

    Two mutants of human casein kinase-2 beta-subunit with short deletions at either their amino (delta 1-4) or carboxy (delta 209-215) terminal side have been created that have lost the capability to undergo autophosphorylation and p34cdc2 mediated phosphorylation, respectively. Both mutants give rise...

  15. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    Science.gov (United States)

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  16. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Functional analysis of Casein Kinase 1 in a minimal circadian system.

    Directory of Open Access Journals (Sweden)

    Gerben van Ooijen

    Full Text Available The Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1 is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcustauri, a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism.

  18. The presence of the casein kinase II phosphorylation sites of Vpu enhances the CD4+ T cell loss caused by the simian-human immunodeficiency virus SHIVKU-lbMC33 in pig-tailed macaques

    International Nuclear Information System (INIS)

    Singh, Dinesh K.; Griffin, Darcy M.; Pacyniak, Erik; Jackson, Mollie; Werle, Michael J.; Wisdom, Bo; Sun, Francis; Hout, David R.; Pinson, David M.; Gunderson, Robert S.; Powers, Michael F.; Wong, Scott W.; Stephens, Edward B.

    2003-01-01

    reversion of the glycine residues in the vpu sequences isolated from this macaque. These results contrast with those from four macaques inoculated with the parental pathogenic SHIV KU-1bMC33 , all of which developed severe CD4 + T cell loss within 1 month after inoculation. Taken together, these results indicate that casein kinase II phosphorylation sites of Vpu contributes to the pathogenicity of the SHIV KU-1bMC33 and suggest that the SHIV KU-1bMC33 /pig-tailed macaque model will be useful in analyzing amino acids/domains of Vpu that contribute to the pathogenesis of HIV-1

  19. RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-beta-catenin signaling

    NARCIS (Netherlands)

    Cruciat, C.M.; Dolde, C.; de Groot, R.E.; Ohkawara, B.; Reinhard, C.; Korswagen, H.C.; Niehrs, C.

    2013-01-01

    Casein kinase 1 (CK1) members play key roles in numerous biological processes. They are considered "rogue" kinases, because their enzymatic activity appears unregulated. Contrary to this notion, we have identified the DEAD-box RNA helicase DDX3 as a regulator of the Wnt-beta-catenin network, where

  20. Interactions between Casein kinase Iepsilon (CKIepsilon and two substrates from disparate signaling pathways reveal mechanisms for substrate-kinase specificity.

    Directory of Open Access Journals (Sweden)

    Caroline Lund Dahlberg

    Full Text Available Members of the Casein Kinase I (CKI family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIepsilon and two substrates from different signaling pathways.CKIepsilon, but not CKIalpha, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIalpha's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIepsilon does not determine Dishevelled's and Period's preference for CKIepsilon nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIepsilon with its substrates. We demonstrate that autophosphorylation of CKIepsilon's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding.The biochemical interactions between CKIepsilon and Disheveled, Period, and its own C-terminus lead to models that explain CKIepsilon's specificity and regulation.

  1. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure...

  2. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae*

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M.

    2016-01-01

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1–77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1–77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. PMID:27834677

  4. Yeast phospholipase C is required for stability of casein kinase I Yck2p and expression of hexose transporters

    Czech Academy of Sciences Publication Activity Database

    Zhang, T.; Galdieri, L.; Hašek, Jiří; Vančura, A.

    2017-01-01

    Roč. 364, č. 22 (2017), č. článku fnx227. ISSN 0378-1097 R&D Projects: GA ČR(CZ) GA16-05497S Institutional support: RVO:61388971 Keywords : phospholipase C * casein kinase I * hexose transporters Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.765, year: 2016

  5. Casein Kinase 2 Reverses Tail-Independent Inactivation of Kinesin-1

    Science.gov (United States)

    Xu, Jing

    2013-03-01

    Kinesin-1 is a plus-end microtubule-based motor, and defects in kinesin-based transport are linked to diseases including neurodegeneration. Kinesin can auto-inhibit via a head-tail interaction, but is believed to be active otherwise. Here we report a tail-independent inactivation of kinesin, reversible by the disease-relevant signalling protein, casein kinase 2 (CK2). The majority of initially active kinesin (native or tail-less) loses its ability to interact with microtubules in vitro, and CK2 reverses this inactivation (approximately fourfold) without altering kinesin's single motor properties. This activation pathway does not require motor phosphorylation, and is independent of head-tail auto-inhibition. In cultured mammalian cells, reducing CK2 expression, but not its kinase activity, decreases the force required to stall lipid droplet transport, consistent with a decreased number of active kinesin motors. Our results (Nat. Commun., 3:754, 2012) provide the first direct evidence of a protein kinase upregulating kinesin-based transport, and suggest a novel pathway for regulating the activity of cargo-bound kinesin. Work supported by NIGMS grants GM64624 to SPG, GM74830-06A1 to LH, GM76516 to LB, NS048501 to SJK, and AHA grant 825278F to JX.

  6. Characterization of the alpha and beta subunits of casein kinase 2 by far-UV CD spectroscopy

    DEFF Research Database (Denmark)

    Issinger, O G; Brockel, C; Boldyreff, B

    1992-01-01

    Although Chou-Fasman calculations of the secondary structure of recombinant casein kinase 2 subunits alpha and beta suggest they have a similar overall conformation, circular dichroism (CD) studies show that substantial differences in the conformation of the two subunits exist. In addition......, no changes in the far-UV CD spectrum of the alpha subunit are observed in the presence of casein or the synthetic decapeptide substrate RRRDDDSDDD. Furthermore, the alpha-helical structure of the alpha subunit (but not the beta subunit) can be increased in the presence of stoichiometric amounts of heparin...

  7. Antimicrobial activity and mechanism of the human milk-sourced peptide Casein201

    International Nuclear Information System (INIS)

    Zhang, Fan; Cui, Xianwei; Fu, Yanrong; Zhang, Jun; Zhou, Yahui; Sun, Yazhou; Wang, Xing; Li, Yun; Liu, Qianqi; Chen, Ting

    2017-01-01

    Introduction: Casein201 is one of the human milk sourced peptides that differed significantly in preterm and full-term mothers. This study is designed to demonstrate the biological characteristics, antibacterial activity and mechanisms of Casein201 against common pathogens in neonatal infection. Methodology: The analysis of biological characteristics was done by bioinformatics. Disk diffusion method and flow cytometry were used to detect the antimicrobial activity of Casein201. Killing kinetics of Casein201 was measured using microplate reader. The antimicrobial mechanism of Casein201 was studied by electron microscopy and electrophoresis. Results: Bioinformatics analysis indicates that Casein201 derived from β-casein and showed significant sequence overlap. Antibacterial assays showed Casein201 inhibited the growth of S taphylococcus aureus and Y ersinia enterocolitica. Ultrastructural analyses revealed that the antibacterial activity of Casein201 is through cytoplasmic structures disintegration and bacterial cell envelope alterations but not combination with DNA. Conclusion: We conclude the antimicrobial activity and mechanism of Casein201. Our data demonstrate that Casein201 has potential therapeutic value for the prevention and treatment of pathogens in neonatal infection.

  8. Order of 17 july 1991 on treatment by ionizing radiation of casein and casein products for human consumption

    International Nuclear Information System (INIS)

    1991-01-01

    This Order authorizes and fixes the conditions for the sale and marketing of casein (one of the chief constituents of milk which forms the basis of cheese), which is treated by ionizing radiation, for human consumption. The absorbed radiation dose must not exceed 6 kGy [fr

  9. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II.

    Science.gov (United States)

    Argüello-Miranda, Orlando; Zagoriy, Ievgeniia; Mengoli, Valentina; Rojas, Julie; Jonak, Katarzyna; Oz, Tugce; Graf, Peter; Zachariae, Wolfgang

    2017-01-09

    Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  11. Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Jacobsen, Jack H; Clement, Christian A; Friis, Martin B

    2008-01-01

    Inhibition of the constitutively active casein kinase 2 (CK2) with 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidasole stimulates the Na(+)-dependent taurine influx via the taurine transporter TauT in NIH3T3 cells. CK2 inhibition reduces the TauT mRNA level and increases the localization of TauT...

  12. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  13. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes.

    Science.gov (United States)

    Kuga, Takahisa; Sasaki, Mitsuho; Mikami, Toshinari; Miake, Yasuo; Adachi, Jun; Shimizu, Maiko; Saito, Youhei; Koura, Minako; Takeda, Yasunori; Matsuda, Junichiro; Tomonaga, Takeshi; Nakayama, Yuji

    2016-05-25

    FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts.

  14. Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction via Casein Kinase 2.

    Science.gov (United States)

    Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua

    2015-06-01

    Myocardial infarction (MI) results in an increased susceptibility to ventricular arrhythmias, due in part to decreased inward-rectifier K+ current (IK1), which is mediated primarily by the Kir2.1 protein. The use of renin-angiotensin-aldosterone system antagonists is associated with a reduced incidence of ventricular arrhythmias. Casein kinase 2 (CK2) binds and phosphorylates SP1, a transcription factor of KCNJ2 that encodes Kir2.1. Whether valsartan represses CK2 activation to ameliorate IK1 remodeling following MI remains unclear. Wistar rats suffering from MI received either valsartan or saline for 7 days. The protein levels of CK2 and Kir2.1 were each detected via a Western blot analysis. The mRNA levels of CK2 and Kir2.1 were each examined via quantitative real-time PCR. CK2 expression was higher at the infarct border; and was accompanied by a depressed IK1/Kir2.1 protein level. Additionally, CK2 overexpression suppressed KCNJ2/Kir2.1 expression. By contrast, CK2 inhibition enhanced KCNJ2/Kir2.1 expression, establishing that CK2 regulates KCNJ2 expression. Among the rats suffering from MI, valsartan reduced CK2 expression and increased Kir2.1 expression compared with the rats that received saline treatment. In vitro, hypoxia increased CK2 expression and valsartan inhibited CK2 expression. The over-expression of CK2 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. AT1 receptor antagonist valsartan reduces CK2 activation, increases Kir2.1 expression and thereby ameliorates IK1 remodeling after MI in the rat model.

  15. Cloning and sequencing of the gene for human β-casein

    International Nuclear Information System (INIS)

    Loennerdal, B.; Bergstroem, S.; Andersson, Y.; Hialmarsson, K.; Sundgyist, A.; Hernell, O.

    1990-01-01

    Human β-casein is a major protein in human milk. This protein is part of the casein micelle and has been suggested to have several physiological functions in the newborn. Since there is limited information on βcasein and the factors that affect its concentration in human milk, the authors have isolated and sequenced the gene for this protein. A human mammary gland cDNA library (Clontech) in gt 11 was screened by plaque hy-hybridization using a 42-mer synthetic 32 p-labelled oligo-nucleotide. Positive clones were identified and isolated, DNA was prepared and the gene isolated by cleavage with EcoR1. Following subcloning (PUC18), restriction mapping and Southern blotting, DNA for sequencing was prepared. The gene was sequenced by the dideoxy method. Human β-casein has 212 amino acids and the amino acid sequence deducted from the nucleotide sequence is to 91% identical to the published sequence for human β-casein show a high degree of conservation at the leader peptide and the highly phosphorylated sequences, but also deletions and divergence at several positions. These results provide insight into the structure of the human β-casein gene and will facilitate studies on factors affecting its expression

  16. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    International Nuclear Information System (INIS)

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-01-01

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2 + . The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  17. On studying protein phosphorylation patterns using bottom-up LC-MS/MS: the case of human alpha-casein

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Savitski, Mikhail M; Nielsen, Michael L

    2007-01-01

    -LC-MS/MS. The occupancy rates of phosphosites in proteins may differ by orders of magnitude, and thus the occupancy rate must be reported for each occupied phosphosite. To highlight potential pitfalls in quantifying the occupancy rates, alpha(s1)-casein from human milk was selected as a model molecule representing...... moderately phosphorylated proteins. For this purpose, human milk from one Caucasian woman in the eighth month of lactation was used. The phosphorylation level of caseins is believed to have major implications for the formation of micelles that are involved in delivering valuable calcium phosphate and other...... minerals to the new-born. Human alpha(s1)-casein has been reported to be much less phosphorylated than ruminant caseins, which may indicate a different function of caseins in humans. Revealing the phosphorylation pattern in human casein can thus shed light on its function. The current study found...

  18. Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A

    1994-01-01

    Various beta-mutants were investigated either as subunits or as substrates for casein kinase 2 (CK-2), in the absence of presence of polylysine. A total of 21 beta-mutants were characterized for their susceptibility to autophosphorylation, by combining them in equimolar amounts with the recombina...

  19. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Midori [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Yamamoto, Ayumu [Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka 422-8529 (Japan); Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aiba, Hirofumi [Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Murakami, Hiroshi, E-mail: hmura@med.nagoya-cu.ac.jp [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  20. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS

    Science.gov (United States)

    Schneider, Rebekka K.; Ademà, Vera; Heckl, Dirk; Järås, Marcus; Mallo, Mar; Lord, Allegra M.; Chu, Lisa P.; McConkey, Marie E.; Kramann, Rafael; Mullally, Ann; Bejar, Rafael; Solé, Francesc; Ebert, Benjamin L.

    2014-01-01

    Summary The Casein kinase 1A1 gene (CSNK1A1) is a putative tumor suppressor gene located in the common deleted region for del(5q) myelodysplastic syndrome (MDS). We generated a murine model with conditional inactivation of Csnk1a1 and found that Csnk1a1 haploinsufficiency induces hematopoietic stem cell expansion and a competitive repopulation advantage whereas homozygous deletion induces hematopoietic stem cell failure. Based on this finding, we found that heterozygous inactivation of Csnk1a1 sensitizes cells to a CSNK1 inhibitor relative to cells with two intact alleles. In addition, we identified recurrent somatic mutations in CSNK1A1 on the non-deleted allele of patients with del(5q) MDS. These studies demonstrate that CSNK1A1 plays a central role in the biology of del(5q) MDS and is a promising therapeutic target. PMID:25242043

  1. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    by the addition of protein kinase CK2 suggest that at least one of the T-antigen-associated protein kinases is CK2 or a protein-kinase-CK2-related enzyme. The association of recombinant CK2 with T antigen was strongly confirmed by in vitro binding studies. Experiments with temperature-sensitive SV40-transformed......The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... show that immuno-purified T antigen from SV40-transformed cells and from baculovirus-infected insect cells is tightly associated with a protein kinase that phosphorylates T antigen in vitro. In the presence of heparin or a peptide resembling a protein kinase CK2 recognition site, the phosphorylation...

  2. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.

    Science.gov (United States)

    Davis, Kaitlin A; Morelli, Marco; Patton, John T

    2017-08-29

    The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1-β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the

  3. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is an ideal method in mammary gland bioreactor research. For this purpose, a gene targeting vector was constructed to targeting the human lysozyme gene on bovine αs1-casein gene locus. In this case, the ...

  4. Targeting the human lysozyme gene on bovine αs1- casein gene ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Targeting an exogenous gene into a favorable gene locus and for expression under endogenous regulators is ... case, the expression of human lysozyme could be regulated by the endogenous cis-element of αs1- casein gene in .... Mouse mammary epithelial C127 cells (Cell Bank, Chinese. Academy of ...

  5. Inhibition of casein kinase 2 modulates XBP1-GRP78 arm of unfolded protein responses in cultured glial cells.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available Stress signals cause abnormal proteins to accumulate in the endoplasmic reticulum (ER. Such stress is known as ER stress, which has been suggested to be involved in neurodegenerative diseases, diabetes, obesity and cancer. ER stress activates the unfolded protein response (UPR to reduce levels of abnormal proteins by inducing the production of chaperon proteins such as GRP78, and to attenuate translation through the phosphorylation of eIF2α. However, excessive stress leads to apoptosis by generating transcription factors such as CHOP. Casein kinase 2 (CK2 is a serine/threonine kinase involved in regulating neoplasia, cell survival and viral infections. In the present study, we investigated a possible linkage between CK2 and ER stress using mouse primary cultured glial cells. 4,5,6,7-tetrabromobenzotriazole (TBB, a CK2-specific inhibitor, attenuated ER stress-induced XBP-1 splicing and subsequent induction of GRP78 expression, but was ineffective against ER stress-induced eIF2α phosphorylation and CHOP expression. Similar results were obtained when endogenous CK2 expression was knocked-down by siRNA. Immunohistochemical analysis suggested that CK2 was present at the ER. These results indicate CK2 to be linked with UPR and to resist ER stress by activating the XBP-1-GRP78 arm of UPR.

  6. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri.

    Science.gov (United States)

    Le Bihan, Thierry; Hindle, Matthew; Martin, Sarah F; Barrios-Llerena, Martin E; Krahmer, Johanna; Kis, Katalin; Millar, Andrew J; van Ooijen, Gerben

    2015-12-01

    Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975). © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans.

    Science.gov (United States)

    Drummond, Elaine; Flynn, Sarah; Whelan, Helena; Nongonierma, Alice B; Holton, Thérèse A; Robinson, Aisling; Egan, Thelma; Cagney, Gerard; Shields, Denis C; Gibney, Eileen R; Newsholme, Philip; Gaudel, Celine; Jacquier, Jean-Christophe; Noronha, Nessa; FitzGerald, Richard J; Brennan, Lorraine

    2018-05-02

    Evidence exists to support the role of dairy derived proteins whey and casein in glycemic management. The objective of the present study was to use a cell screening method to identify a suitable casein hydrolysate and to examine its ability to impact glycemia related parameters in an animal model and in humans. Following screening for the ability to stimulate insulin secretion in pancreatic beta cells, a casein hydrolysate was selected and further studied in the ob/ob mouse model. An acute postprandial study was performed in 62 overweight and obese adults. Acute and long-term supplementation with the casein hydrolysate in in vivo studies in mice revealed a glucose lowering effect and a lipid reducing effect of the hydrolysate (43% reduction in overall liver fat). The postprandial human study revealed a significant increase in insulin secretion ( p = 0.04) concomitant with a reduction in glucose ( p = 0.03). The area under the curve for the change in glucose decreased from 181.84 ± 14.6 to 153.87 ± 13.02 ( p = 0.009). Overall, the data supports further work on the hydrolysate to develop into a functional food product.

  8. Casein kinase 1-Like 3 is required for abscisic acid regulation of ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... root growth compared with ckl3 plants under different ABA concentration treatment. Also, compared with wild-type plants, the expressions of the ABA and abiotic stress-responsive ... CK1 isoforms show that the interaction between CK1 and ..... kinase I, in root development and plant hormone sensitivity.

  9. Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus.

    Science.gov (United States)

    Xia, Chuan; Wolf, Jennifer J; Vijayan, Madhuvanthi; Studstill, Caleb J; Ma, Wenjun; Hahm, Bumsuk

    2018-04-01

    Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA (siRNA)-based knockdown of CK1α repressed the degradation processes of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating conditions favorable for viral propagation. Therefore, the study uncovers a new immune-evasive pathway of influenza virus. IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans, causing seasonal and pandemic influenza. Upon infection, innate and adaptive immunity, such as the interferon (IFN) response, is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses, although the detailed

  10. Casein Kinase 1δ Is an APC/CCdh1 Substrate that Regulates Cerebellar Granule Cell Neurogenesis

    Directory of Open Access Journals (Sweden)

    Clara Penas

    2015-04-01

    Full Text Available Although casein kinase 1δ (CK1δ is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/CCdh1 ubiquitin ligase, and conditional deletion of the APC/CCdh1 activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/CCdh1 also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/CCdh1 controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.

  11. Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver.

    Science.gov (United States)

    Choi, Sung E; Kwon, Sanghoon; Seok, Sunmi; Xiao, Zhen; Lee, Kwan-Woo; Kang, Yup; Li, Xiaoling; Shinoda, Kosaku; Kajimura, Shingo; Kemper, Byron; Kemper, Jongsook Kim

    2017-08-01

    Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases. Copyright © 2017 American Society for Microbiology.

  12. Identification of a secreted casein kinase 1 in Leishmania donovani: effect of protein over expression on parasite growth and virulence.

    Directory of Open Access Journals (Sweden)

    Mary Dan-Goor

    Full Text Available Casein kinase 1 (CK1 plays an important role in eukaryotic signaling pathways, and their substrates include key regulatory proteins involved in cell differentiation, proliferation and chromosome segregation. The Leishmania genome encodes six potential CK1 isoforms, of which five have orthologs in other trypanosomatidae. Leishmania donovani CK1 isoform 4 (Ldck1.4, orthologous to LmjF27.1780 is unique to Leishmania and contains a putative secretion signal peptide. The full-length gene and three shorter constructs were cloned and expressed in E. coli as His-tag proteins. Only the full-length 62.3 kDa protein showed protein kinase activity indicating that the N-terminal and C-terminal domains are essential for protein activity. LdCK1.4-FLAG was stably over expressed in L. donovani, and shown by immunofluorescence to be localized primarily in the cytosol. Western blotting using anti-FLAG and anti-CK1.4 antibodies showed that this CK1 isoform is expressed and secreted by promastigotes. Over expression of LdCK1.4 had a significant effect on promastigote growth in culture with these parasites growing to higher cell densities than the control parasites (wild-type or Ld:luciferase, P<0.001. Analysis by flow cytometry showed a higher percentage, ∼4-5-fold, of virulent metacyclic promastigotes on day 3 among the LdCK1.4 parasites. Finally, parasites over expressing LdCK1.4 gave significantly higher infections of mouse peritoneal macrophages compared to wild-type parasites, 28.6% versus 6.3%, respectively (p = 0.0005. These results suggest that LdCK1.4 plays an important role in parasite survival and virulence. Further studies are needed to validate CK1.4 as a therapeutic target in Leishmania.

  13. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Casein kinase I alpha (CK1α is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1 extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP, an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.

  14. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans.

    Science.gov (United States)

    Jung, Sook-In; Rodriguez, Natalie; Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G; Park, Hyunsook

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions.

  15. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O

    2002-01-01

    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta...... and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two...

  16. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway.

    Science.gov (United States)

    Lakhan, Ram; Said, Hamid M

    2017-04-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.

  17. Safety and preliminary efficacy data of a novel Casein Kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies

    International Nuclear Information System (INIS)

    Solares, Ana M; Alonso, Daniel F; Herrera, Luis; Sigman, Hugo; Perea, Silvio E; Acevedo, Boris E; López-Saura, Pedro; Santana, Agueda; Baladrón, Idania; Valenzuela, Carmen; González, Carlos A; Díaz, Alina; Castillo, Dagnelia; Ramos, Thelvia; Gómez, Roberto

    2009-01-01

    Cervical cancer is now considered the second leading cause of death among women worldwide, and its incidence has reached alarming levels, especially in developing countries. Similarly, high grade squamous intraepithelial lesion (HSIL), the precursor stage for cervical cancer, represents a growing health problem among younger women as the HSIL management regimes that have been developed are not fully effective. From the etiological point of view, the presence of Human Papillomavirus (HPV) has been demonstrated to play a crucial role for developing cervical malignancies, and viral DNA has been detected in 99.7% of cervical tumors at the later stages. CIGB-300 is a novel cyclic synthetic peptide that induces apoptosis in malignant cells and elicits antitumor activity in cancer animal models. CIGB-300 impairs the Casein Kinase (CK2) phosphorylation, by targeting the substrate's phosphoaceptor domain. Based on the perspectives of CIGB-300 to treat cancer, this 'first-in-human' study investigated its safety and tolerability in patients with cervical malignancies. Thirty-one women with colposcopically and histologically diagnosed microinvasive or pre-invasive cervical cancer were enrolled in a dose escalating study. CIGB-300 was administered sequentially at 14, 70, 245 and 490 mg by intralesional injections during 5 consecutive days to groups of 7 – 10 patients. Toxicity was monitored daily until fifteen days after the end of treatment, when patients underwent conization. Digital colposcopy, histology, and HPV status were also evaluated. No maximum-tolerated dose or dose-limiting toxicity was achieved. The most frequent local events were pain, bleeding, hematoma and erythema at the injection site. The systemic adverse events were rash, facial edema, itching, hot flashes, and localized cramps. 75% of the patients experienced a significant lesion reduction at colposcopy and 19% exhibited full histological regression. HPV DNA was negative in 48% of the

  18. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Schneider, H R; Reichert, G H; Issinger, O G

    1986-01-01

    Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity...... mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme...

  19. Casein Kinase I Isoform Hrr25 Is a Negative Regulator of Haa1 in the Weak Acid Stress Response Pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Collins, Morgan E; Black, Joshua J; Liu, Zhengchang

    2017-07-01

    Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2 How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation. IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry. Copyright © 2017 American

  20. Mediator kinase module and human tumorigenesis.

    Science.gov (United States)

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  1. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Medley

    2017-01-01

    Full Text Available Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2 in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.

  2. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P; Jäkel, Martin; Soeters, Peter B

    2005-05-01

    Dietary protein quality is considered to be dependent on the degree and velocity with which protein is digested, absorbed as amino acids, and retained in the gut as newly synthesized protein. Metabolic animal studies suggest that the quality of soy protein is inferior to that of casein protein, but confirmatory studies in humans are lacking. The study objective was to assess the quality of casein and soy protein by comparing their metabolic effects in healthy human subjects. Whole-body protein kinetics, splanchnic leucine extraction, and urea production rates were measured in the postabsorptive state and during 8-h enteral intakes of isonitrogenous [0.42 g protein/(kg body weight . 8 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope techniques were used to study metabolic effects. With enteral food intake, protein metabolism changed from net protein breakdown to net protein synthesis. Net protein synthesis was greater in the CAPM group than in the SOPM group [52 +/- 14 and 17 +/- 14 nmol/(kg fat-free mass (FFM) . min), respectively; P CAPM (P = 0.07). Absolute splanchnic extraction of leucine was higher in the subjects that consumed CAPM [306 +/- 31 nmol/(kg FFM . min)] vs. those that consumed SOPM [235 +/- 29 nmol/(kg FFM . min); P < 0.01]. In conclusion, a significantly larger portion of soy protein is degraded to urea, whereas casein protein likely contributes to splanchnic utilization (probably protein synthesis) to a greater extent. The biological value of soy protein must be considered inferior to that of casein protein in humans.

  3. Inhibitory effect of fluvoxamine on β-casein expression via a serotonin-independent mechanism in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Kimura, Soichiro; Morimoto, Yasunori; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-11-05

    Selective serotonin reuptake inhibitors (SSRIs) are widely used as a first-line therapy in postpartum depression. The objective of this study was to determine the mechanism underlying the inhibitory effects of the SSRI, fluvoxamine, on β-casein expression, an indicator of lactation, in MCF-12A human mammary epithelial cells. Expression levels of serotonin (5-hydroxytryptamine; 5-HT) transporter, an SSRI target protein, and tryptophan hydroxylase 1, a rate-limiting enzyme in 5-HT biosynthesis, were increased in MCF-12A cells by prolactin treatment. Treatment with 1 μM fluvoxamine for 72 h significantly decreased protein levels of β-casein and phosphorylated signal transducer and activator transcription 5 (pSTAT5). Extracellular 5-HT levels were significantly increased after exposure to 1 μM fluvoxamine, in comparison with those of untreated and vehicle-treated cells; however, extracellular 5-HT had little effect on the decrease in β-casein expression. Expression of glucose-related protein 78/binding immunoglobulin protein, a regulator of endoplasmic reticulum (ER) stress, was significantly increased after treatment with 1 μM fluvoxamine for 48 h. Exposure to tunicamycin, an inducer of ER stress, also decreased expression of β-casein and pSTAT5 in a manner similar to fluvoxamine. Our results indicate that fluvoxamine suppresses β-casein expression in MCF-12A cells via inhibition of STAT5 phosphorylation caused by induction of ER stress. Further studies are required to confirm the effect of fluvoxamine on the function of mammary epithelial cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 21 CFR 582.1748 - Sodium caseinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium caseinate. 582.1748 Section 582.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This substance...

  5. 21 CFR 182.1748 - Sodium caseinate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium caseinate. 182.1748 Section 182.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This substance...

  6. Intraileal casein infusion increases plasma concentrations of amino acids in humans: A randomized cross over trial.

    Science.gov (United States)

    Ripken, Dina; van Avesaat, Mark; Troost, Freddy J; Masclee, Ad A; Witkamp, Renger F; Hendriks, Henk F

    2017-02-01

    Activation of the ileal brake by casein induces satiety signals and reduces energy intake. However, adverse effects of intraileal casein administration have not been studied before. These adverse effects may include impaired amino acid digestion, absorption and immune activation. To investigate the effects of intraileal infusion of native casein on plasma amino acid appearance, immune activation and gastrointestinal (GI) symptoms. A randomized single-blind cross over study was performed in 13 healthy subjects (6 male; mean age 26 ± 2.9 years; mean body mass index 22.8 ± 0.4 kg/m -2 ), who were intubated with a naso-ileal feeding catheter. Thirty minutes after intake of a standardized breakfast, participants received an ileal infusion, containing either control (C) consisting of saline, a low-dose (17.2 kcal) casein (LP) or a high-dose (51.7 kcal) of casein (HP) over a period of 90 min. Blood samples were collected for analysis of amino acids (AAs), C-reactive protein (CRP), pro-inflammatory cytokines and oxylipins at regular intervals. Furthermore, GI symptom questionnaires were collected before, during and after ileal infusion. None of the subjects reported any GI symptoms before, during or after ileal infusion of C, LP and HP. Plasma concentrations of all AAs analyzed were significantly increased after infusion of HP as compared to C (p casein, respectively. Ileal casein infusion did not affect plasma concentrations of CRP, IL-6, IL-8, IL-1β and TNF-α. Infusion of HP resulted in a decreased concentration of 11,12-dihydroxyeicosatrienoic acid whereas none of the other oxylipins analyzed were affected. A single intraileal infusion of native casein results in a concentration and time dependent increase of AAs in plasma, suggesting an effective digestion and absorption of AAs present in casein. Also, ileal infusion did not result in immune activation nor in GI symptoms. CLINICALTRIALS.GOV: NCT01509469. Copyright © 2016 The Authors. Published by Elsevier

  7. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function.

    Science.gov (United States)

    Kim, Hyun-Soo; Mukhopadhyay, Rituparna; Rothbart, Scott B; Silva, Andrea C; Vanoosthuyse, Vincent; Radovani, Ernest; Kislinger, Thomas; Roguev, Assen; Ryan, Colm J; Xu, Jiewei; Jahari, Harlizawati; Hardwick, Kevin G; Greenblatt, Jack F; Krogan, Nevan J; Fillingham, Jeffrey S; Strahl, Brian D; Bouhassira, Eric E; Edelmann, Winfried; Keogh, Michael-Christopher

    2014-03-13

    Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The comparison of nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) with Ki67 proliferation marker expression in common skin tumors.

    Science.gov (United States)

    Zduniak, Krzysztof; Agrawal, Siddarth; Symonowicz, Krzysztof; Jurczyszyn, Kamil; Ziółkowski, Piotr

    2014-03-01

    Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is a chromosomal protein of unknown function. Its amino acid composition and structure of its DNA binding domain resemble those of high mobility group A (HMGA) proteins which are associated with various malignancies. Since changes in expression of HMGA are considered as a marker of tumor progression, it is possible that similar changes in expression of NUCKS could be a useful tool in diagnosis of malignant skin tumors. To investigate this assumption we used specific antibodies against NUCKS for immunohistochemistry of squamous (SCC) and basal cell carcinoma (BCC) as well as keratoacanthoma (KA). We found high expression of NUCKS in nuclei of SCC and BCC cells which exceeded expression of the well-known proliferation marker Ki67. Expression of NUCKS in benign KA was much below that of malignant tumors. With the present study and based on our previous experience we would like to suggest the NUCKS protein as a novel proliferation marker for immunohistochemical evaluation of formalin-fixed and paraffin-embedded skin tumor specimens. We would like to emphasize that NUCKS abundance in malignant skin tumors is higher than that of the well-known proliferation marker Ki67, thus allowing more precise assessment of tumor proliferation potential.

  9. Identification of a BET Family Bromodomain/Casein Kinase II/TAF-Containing Complex as a Regulator of Mitotic Condensin Function

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim

    2014-03-01

    Full Text Available Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02, casein kinase II (CKII, and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.

  10. Immunohistochemical and Proteomic Evaluation of Nuclear Ubiquitous Casein and Cyclin-Dependent Kinases Substrate in Invasive Ductal Carcinoma of the Breast

    Directory of Open Access Journals (Sweden)

    Piotr Ziółkowski

    2009-01-01

    Full Text Available Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS is 27 kDa chromosomal protein of unknown function. Its amino acid composition as well as structure of its DNA binding domain resembles that of high-mobility group A, HMGA proteins. HMGA proteins are associated with various malignancies. Since changes in expression of HMGA are considered as marker of tumor progression, it is possible that similar changes in expression of NUCKS could be useful tool in diagnosis and prognosis of breast cancer. For identification and analysis of NUCKS we used proteomic and histochemical methods. Analysis of patient-matched samples of normal and breast cancer by mass spectrometry revealed elevated levels of NUCKS in protein extracts from ductal breast cancers. We elicited specific antibodies against NUCKS and used them for immunohistochemistry in invasive ductal carcinoma of breast. We found high expression of NUCKS in 84.3% of cancer cells. We suggest that such overexpression of NUCKS can play significant role in breast cancer biology.

  11. Pharmacological and safety evaluation of CIGB-300, a casein kinase 2 inhibitor peptide, administered intralesionally to patients with cervical cancer stage IB2/II

    Directory of Open Access Journals (Sweden)

    Soriano-García JL

    2013-08-01

    Full Text Available CIGB-300 is a pro-apoptotic casein kinase 2 inhibitor peptide with potential anticancer action. An open-label and dose scaling Phase I trial was carried out to investigate the peptide tumor uptake, pharmacokinetics, toxicity, and levels of a CIGB-300 response biomarker in patients with cervical cancer stage IB2/II. Fourteen patients were included; six of them received 35 mg, 6 received 70 mg and the two remaining patients received 245 mg of CIGB-300 prior chemoradiotherapy. CIGB-300 was applied by intratumor injections during 5-consecutive days. For pharmacokinetic and biodistribution studies, the peptide was radiolabeled with 99mTc in the first administration and whole body gammagraphy and plasma testing were done during 48 h. Data showed that the maximum tolerated dose was 70 mg for CIGB-300 in this clinical setting. Furthermore, an allergic-like syndrome was identified as the dose limiting toxicity, which was well-correlated with plasmatic histamine levels. Importantly, the mean tumor uptake was 14.9 mg and 10.4 mg for CIGB-300 doses of 35 and 70 mg, respectively. Also, the kidneys were the main target organ for drug elimination. Finally, treatment with CIGB-300 significantly reduced the B23/nucleophosmin levels in tumor specimens. CIGB-300 meets potentialities to be tested in future trials in a neoadjuvant setting prior to chemoradiotherapy in cervical cancer.

  12. Effect of carrageenans alone and in combination with casein or lipopolysaccharide on human epithelial intestinal HT-29 cells.

    Science.gov (United States)

    Sokolova, E V; Kuz'mich, A S; Byankina, A O; Yermak, I M

    2017-10-01

    The research described here was focused on the effect on human intestinal epithelial cell monolayers of sulfated red algal polysaccharides (κ-, λ-, and κ/β-carrageenans) alone and in combination with casein or lipopolysaccharide (LPS). HT-29 cells were investigated under normal and stress conditions; stress was induced by exposure to ethanol. Cell viability was monitored with a real-time system. The change in binding properties of negatively sulfated red algal polysaccharides assessed by the measurement of free carrageenans in mixtures with casein or McCoy's 5 A culture medium by means of toluidine blue O. Low sulfate content and the presence of 3,6-anhydogalactose are prerequisites for the recovery of ethanol-exposed HT-29 cells by carrageenans. Analysis of carrageenan binding ability confirmed that casein and LPS should affect carrageenan activity. Whether the combined action of the mucin-containing layer and carrageenans or the action of carrageenans alone was responsible for enhanced cell viability under stress conditions induced by ethanol is a subject for further research. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2843-2850, 2017. © 2017 Wiley Periodicals, Inc.

  13. The effect of casein, hydrolyzed casein and whey proteins on urinary and postprandial plasma metabolites in overweight and moderately obese human subjects

    DEFF Research Database (Denmark)

    Schmedes, Mette S; Bendtsen, Line Quist; Gomes, Sisse

    2018-01-01

    , hydrolyzed casein and whey proteins in overweight and moderately obese men and women by investigating select urinary and blood plasma metabolites. RESULTS: A total of 21 urinary and 23 plasma metabolites were identified by NMR spectroscopy. The postprandial plasma metabolites revealed a significant diet...

  14. IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2.

    Directory of Open Access Journals (Sweden)

    Ying-Wen Su

    Full Text Available BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN is the seventh most common cancer worldwide. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years, and thus new targets for therapy are needed. Recently, elevations in serum level of interleukin 6 (IL-6 and expression of Twist in tumor samples were found to be associated with poor clinical outcomes in multiple types of cancer, including SCCHN. Although Twist has been proposed as a master regulator of epithelial-mesenchymal transition and metastasis in cancers, the mechanisms by which Twist levels are regulated post-translationally are not completely understood. Tumor progression is characterized by the involvement of cytokines and growth factors and Twist induction has been connected with a number of these signaling pathways including IL-6. Since many of the effects of IL-6 are mediated through activation of protein phosphorylation cascades, this implies that Twist expression must be under a tight control at the post-translational level in order to respond in a timely manner to external stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that IL-6 increases Twist expression via a transcription-independent mechanism in many SCCHN cell lines. Further investigation revealed that IL-6 stabilizes Twist in SCCHN cell lines through casein kinase 2 (CK2 phosphorylation of Twist residues S18 and S20, and that this phosphorylation inhibits degradation of Twist. Twist phosphorylation not only increases its stability but also enhances cell motility. Thus, post-translational modulation of Twist contributes to its tumor-promoting properties. CONCLUSIONS/SIGNIFICANCE: Our study shows Twist expression can be regulated at the post-translational level through phosphorylation by CK2, which increases Twist stability in response to IL-6 stimulation. Our findings not only provide novel mechanistic insights into post-translational regulation of Twist but also suggest

  15. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity

    Science.gov (United States)

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.

    2011-01-01

    casein kinase II (CKII) inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), reduced the titre of the U type 8.3-fold at 24 h post-infection. In contrast, 100 μm of the CKII inhibitor reduced the titre of the M type only 1.3-fold at 48 h post-infection. Our data suggest that the different growth of U- and M-type IHNV in RTG-2 cells may be linked to a differential requirement for cellular protein kinases such as CKII for their growth.

  16. The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Marin, O

    1992-01-01

    , moreover, is variably accounted for by changes in Vmax and/or Km, depending on the structure of the peptide substrate. Maximum stimulation with all protein/peptide substrates tested requires the presence of the beta subunit, since the recombinant alpha subunit is much less responsive than CK2 holoenzyme......The mechanism by which polybasic peptides stimulate the activity of casein kinase 2 (CK2) has been studied by comparing the effect of polylysine on the phosphorylation of a variety of protein and peptide substrates by the native CK2 holoenzyme and by its recombinant catalytic alpha subunit, either...

  17. The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complex with the nucleotide competitive inhibitor emodin

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Klopffleisch, Karsten; Issinger, Olaf-Georg

    2008-01-01

    The Ser/Thr kinase CK2 (former name: casein kinase 2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha) attached to a dimer of noncatalytic subunits. Together with the cyclin-dependent kinases and the mitogen-activated protein kinases, CK2alpha belongs to the CMGC family of...

  18. Molecular cloning and characterization of a novel human kinase ...

    Indian Academy of Sciences (India)

    throughput cDNA sequencing. It encodes a protein of 341 amino acids, which shows 69% identity with the human kinase CLIK1 (AAL99353), which was suggested to be the CLP-36 interacting kinase. Bioinformatics analysis suggests that the ...

  19. Protein Kinases in Human Breast Carcinoma

    National Research Council Canada - National Science Library

    Cane, William

    1998-01-01

    .... Rak is a novel nuclear tyrosine that our group has identified in breast cancer tissues and cell lines that has structural homology to the Src tyrosine kinase, with SH2 and SH3 domains at its amino terminus...

  20. 21 CFR 558.295 - Iodinated casein.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iodinated casein. 558.295 Section 558.295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... in Animal Feeds § 558.295 Iodinated casein. (a) Approvals. See 017762 in § 510.600(c) of this chapter...

  1. The effect of α- or β-casein addition to waxy maize starch on postprandial levels of glucose, insulin, and incretin hormones in pigs as a model for humans

    Directory of Open Access Journals (Sweden)

    Anthony P. Kett

    2012-04-01

    Full Text Available Background:Starch is a main source of glucose and energy in the human diet. The extent to which it is digested in the gastrointestinal tract plays a major role in variations in postprandial blood glucose levels. Interactions with other biopolymers, such as dairy proteins, during processing can influence both the duration and extent of this postprandial surge.Objective:To evaluate the effect of the addition of bovine α- or β-casein to waxy maize starch on changes in postprandial blood glucose, insulin, and incretin hormones [glucose-dependent insulinotropic polypeptide (GIP and glucagon-like peptide 1 (GLP-1] in 30 kg pigs used as an animal model for humans.Design:Gelatinised starch, Results:starch gelatinised with α-casein, and starch gelatinised with β-casein were orally administered to trained pigs (n = 8 at a level of 60 g of available carbohydrate. Pre- and postprandial glucose measurements were taken every 15 min for the first hour and every 30 min thereafter up to 180 min. Insulin, GIP, and GLP-1 levels were measured in plasma samples up to 90 min postprandial.Starch gelatinised with α-casein had a significantly (p < 0.05 lower peak viscosity on pasting and resulted in significantly lower glucose release at 15, 30, and 90 min postprandial compared to starch gelatinised with β-casein. During the first 45-min postprandial, the area under the glucose curve (AUC for starch gelatinised with α-casein was significantly (p < 0.05 lower than that for starch gelatinised with β-casein. There was also a significant (p < 0.05 difference at T30 in GIP levels in response to the control compared to starch gelatinised with α- or β-casein. Significant (p < 0.05 increases in several free amino acid concentrations were observed on ingestion of either α- or β-casein gelatinised with starch at 30 and 90 min postprandial compared to starch alone. In addition, plasma levels of six individual amino acids were increased on ingestion of starch

  2. Milk Intolerance, Beta-Casein and Lactose.

    Science.gov (United States)

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-08-31

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows' milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows' milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows' milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  3. Milk Intolerance, Beta-Casein and Lactose

    Directory of Open Access Journals (Sweden)

    Sebely Pal

    2015-08-01

    Full Text Available True lactose intolerance (symptoms stemming from lactose malabsorption is less common than is widely perceived, and should be viewed as just one potential cause of cows’ milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows’ milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows’ milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  4. Putative tyrosine kinases expressed in K-562 human leukemia cells

    International Nuclear Information System (INIS)

    Partanen, J.; Maekelae, T.P.; Lehvaeslaiho, H.; Alitalo, K.; Alitalo, R.

    1990-01-01

    Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. The authors analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets

  5. Sensitizing capacity and allergenicity of enzymatically cross-linked sodium caseinate in comparison to sodium caseinate in a mouse model for cow's milk allergy.

    Science.gov (United States)

    van Esch, Betty C A M; Gros-van Hest, Marjan; Westerbeek, Hans; Garssen, Johan

    2013-03-27

    A transglutaminase cross-linked caseinate was designed for use in dairy products to increase the viscosity of food matrices. The difference in structure of cross-linked caseinate might have implications for the risk of developing cow's milk allergy. The sensitizing capacity and the allergenicity (the potency to induce an allergic effector response) of cross-linked sodium caseinate was investigated using a mouse model for cow's milk allergy. Mice were orally sensitized with cross-linked caseinate or caseinate using cholera toxin as adjuvant. Anaphylactic shock reactions, change in body temperature, acute allergic skin response, caseinate-, cross-linked caseinate-IgE and mMCP-1 concentrations were determined after challenge with cross-linked caseinate or caseinate. Sensitization with cross-linked caseinate did not result in anaphylactic shock symptoms, drop in body temperature or release of serum mMCP-1. A tendency toward decreased casein-specific IgE levels was observed. The allergenicity did not differ between both products. These results indicate that in already caseinate-sensitized mice, cross-linked caseinate did not provoke more pronounced allergenic reactions compared to sodium caseinate. On top of that, reduced sensitization to cross-linked caseinate was observed. Cross-linked caseinate might therefore be an interesting new dietary concept for humans at risk for food allergy although more mechanistic studies and clinical trials are needed for validation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Bovine β-casein

    NARCIS (Netherlands)

    Atamer, Zeynep; Post, Antonie E.; Schubert, Thomas; Holder, Aline; Boom, Remko Marcel; Hinrichs, Jörg

    2017-01-01

    In recent years there has been an increasing interest in pure casein fractions, particularly β-casein due to its physiochemical properties as well as its bio- and techno-functional properties. A range of methods has been developed for the fractionation of casein into its individual proteins. The

  7. Structures of thymidine kinase 1 of human and mycoplasma origin

    DEFF Research Database (Denmark)

    Welin, Martin; Kosinska, Urszula; Mikkelsen, Nils-Egil

    2004-01-01

    Cytosolic thymidine kinase, TK1, is a well-known cell cycle regulated enzyme of importance in nucleotide metabolism as well as an activator of antiviral and anticancer drugs as AZT. We have now determined the first structures of the TK1 family, the human and Ureaplasma urealyticum enzymes, in com...

  8. Human adenylate kinases – classification, structure, physiological and pathological importance

    Directory of Open Access Journals (Sweden)

    Magdalena Wujak

    2015-01-01

    Full Text Available Adenylate kinase (AK, EC 2.7.4.3 is a ubiquitous phosphotransferase which catalyzes the reversible transfer of high-energy β – and γ-phosphate groups between nucleotides. All classified AKs show a similar structure: they contain a large central CORE region, nucleoside monophosphate and triphosphate binding domains (NMPbd and NTPbd and the LID domain. Analysis of amino acid sequence similarity revealed the presence of as many as nine human AK isoenzymes, which demonstrate different organ-tissue and intercellular localization. Among these kinases, only two, AK1 and AK2, fulfill the structural and functional criterion by the highest affinity for adenine nucleotides and the utilization of only AMP or dAMP as phosphate acceptors. Human AK isoenzymes are involved in nucleotide homeostasis and monitor disturbances of cell energy charge. Participating in large regulatory protein complexes, AK supplies high energy substrates for controlling the functions of channels and transporters as well as ligands for extracellular P2 nucleotide receptors. In pathological conditions AK can take over the function of other kinases, such as creatine kinase in oxygen-depleted myocardium. Directed mutagenesis and genetic studies of diseases (such as aleukocytosis, hemolytic anemia, primary ciliary dyskinesia (PCD link the presence and activity of AK with etiology of these disturbances. Moreover, AK participates in regulation of differentiation and maturation of cells as well as in apoptosis and oncogenesis. Involvement of AK in a wide range of processes and the correlation between AK and etiology of diseases support the medical potential for the use of adenylate kinases in the diagnosis and treatment of certain diseases. This paper summarizes the current knowledge on the structure, properties and functions of human adenylate kinase.

  9. Simultaneous quantification of α-lactalbumin and β-casein in human milk using ultra-performance liquid chromatography with tandem mass spectrometry based on their signature peptides and winged isotope internal standards.

    Science.gov (United States)

    Chen, Qi; Zhang, Jingshun; Ke, Xing; Lai, Shiyun; Li, Duo; Yang, Jinchuan; Mo, Weimin; Ren, Yiping

    2016-09-01

    In recent years, there is an increasing need to measure the concentration of individual proteins in human milk, instead of total human milk proteins. Due to lack of human milk protein standards, there are only few quantification methods established. The objective of the present work was to develop a simple and rapid quantification method for simultaneous determination of α-lactalbumin and β-casein in human milk using signature peptides according to a modified quantitative proteomics strategy. The internal standards containing the signature peptide sequences were synthesized with isotope-labeled amino acids. The purity of synthesized peptides as standards was determined by amino acid analysis method and area normalization method. The contents of α-lactalbumin and β-casein in human milk were measured according to the equimolar relationship between the two proteins and their corresponding signature peptides. The method validation results showed a satisfied linearity (R(2)>0.99) and recoveries (97.2-102.5% for α-lactalbumin and 99.5-100.3% for β-casein). The limit of quantification for α-lactalbumin and β-casein was 8.0mg/100g and 1.2mg/100g, respectively. CVs for α-lactalbumin and β-casein in human milk were 5.2% and 3.0%. The contents of α-lactalbumin and β-casein in 147 human milk samples were successfully determined by the established method and their contents were 205.5-578.2mg/100g and 116.4-467.4mg/100g at different lactation stages. The developed method allows simultaneously determination of α-lactalbumin and β-casein in human milk. The quantitative strategy based on signature peptide should be applicable to other endogenous proteins in breast milk and other body fluids. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The molecular architecture of human N-acetylgalactosamine kinase.

    Science.gov (United States)

    Thoden, James B; Holden, Hazel M

    2005-09-23

    Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.

  11. Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

    Directory of Open Access Journals (Sweden)

    Samer Haidar

    2017-01-01

    Full Text Available Protein kinase CK2, initially designated as casein kinase 2, is an ubiquitously expressed serine/threonine kinase. This enzyme, implicated in many cellular processes, is highly expressed and active in many tumor cells. A large number of compounds has been developed as inhibitors comprising different backbones. Beside others, structures with an indeno[1,2-b]indole scaffold turned out to be potent new leads. With the aim of developing new inhibitors of human protein kinase CK2, we report here on the generation of common feature pharmacophore model to further explain the binding requirements for human CK2 inhibitors. Nine common chemical features of indeno[1,2-b]indole-type CK2 inhibitors were determined using MOE software (Chemical Computing Group, Montreal, Canada. This pharmacophore model was used for database mining with the aim to identify novel scaffolds for developing new potent and selective CK2 inhibitors. Using this strategy several structures were selected by searching inside the ZINC compound database. One of the selected compounds was bikaverin (6,11-dihydroxy-3,8-dimethoxy-1-methylbenzo[b]xanthene-7,10,12-trione, a natural compound which is produced by several kinds of fungi. This compound was tested on human recombinant CK2 and turned out to be an active inhibitor with an IC50 value of 1.24 µM.

  12. In vitro digestibility of b-casein and b-lactoglobulin under simulated human gastric and duodenal conditions

    NARCIS (Netherlands)

    Mandalari, G.; Adel-Patient, K.; Barkholt, V.; Baro, C.; Bennett, L.; Bublin, M.; Gaier, S.; Graser, G.; Ladics, G.S.; Mierzejewska, D.; Vassilopoulou, E.; Vissers, Y.M.; Zuidmeer, L.; Rigby, N.M.; Salt, L.J.; Defernez, M.; Mulholland, F.; Mackie, A.R.; Wickham, M.S.J.; Mills, E.N.C.

    2009-01-01

    Initially the resistance to digestion of two cow's milk allergens, beta-casein, and beta-lactoglobulin (beta-Lg), was compared using a "high-protease assay" and a "low-protease assay" in a single laboratory. The low-protease assay represents an alternative standardised protocol mimicking conditions

  13. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP......Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...

  14. Natural variation in casein composition of milk

    NARCIS (Netherlands)

    Bijl, E.

    2014-01-01

    Bovine milk contains 3-4 % protein and almost 80% of the milk protein fraction consist of four caseins; αs1-casein, β-casein, αs2-casein and κ-casein. Most of the caseins in milk are assembled in casein micelles, which consist of several thousands of individual casein

  15. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  16. Radioimmunoassay of inactive creatine kinase B protein in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Burnam, M H; Shell, W E [California Univ., Los Angeles (USA). School of Medicine

    1981-08-27

    The authors describe a rapid, sensitive radioimmunoassay for enzymatically inactive creatine kinase B protein (CK-Bi) in plasma. /sup 125/I-CK-Bi of high specific activity and good stability was prepared by oxidant-based iodination. A 12-minute first antibody incubation was used. Bound and free antigen were separated by a second antibody system. Large excesses of purified CK-MM from human skeletal muscle did not react in the assay. Cross reactivity to CK-MB purified from the plasma of patients with acute myocardial infarction was negligible. The 95th percentile of plasma CK-Bi in 150 adults was 145 ..mu..g equivalents/ml. Within-assay and between-assay precision ranged from 5% to 9% and 6% to 10%, respectively. Evidence is presented indicating that the assay measures inactive creatine kinase B protein, a protein not measured by current assay systems dependent on biological activity.

  17. Radioimmunoassay of inactive creatine kinase B protein in human plasma

    International Nuclear Information System (INIS)

    Burnam, M.H.; Shell, W.E.

    1981-01-01

    The authors describe a rapid, sensitive radioimmunoassay for enzymatically inactive creatine kinase B protein (CK-Bi) in plasma. 125 I-CK-Bi of high specific activity and good stability was prepared by oxidant-based iodination. A 12-minute first antibody incubation was used. Bound and free antigen were separated by a second antibody system. Large excesses of purified CK-MM from human skeletal muscle did not react in the assay. Cross reactivity to CK-MB purified from the plasma of patients with acute myocardial infarction was negligible. The 95th percentile of plasma CK-Bi in 150 adults was 145 μg equivalents/ml. Within-assay and between-assay precision ranged from 5% to 9% and 6% to 10%, respectively. Evidence is presented indicating that the assay measures inactive creatine kinase B protein, a protein not measured by current assay systems dependent on biological activity. (Auth.)

  18. ISOLATION, MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF GOAT MILK CASEIN AND ITS FRACTIONS

    Directory of Open Access Journals (Sweden)

    Samir Ahmed Salem

    2009-06-01

    Full Text Available The SDS-PAGE electrophoretic pattern of goats´ milk has a unique pattern compared to those of cow and human milk. β-casein is the major fraction and comprises 70.2% of total goat-milk caseins, while αs- is a minor fraction (29.85 %. This pattern is similar to that of human casein but different to that of cow casein. Purified casein fractions of goat milk showed different electrophoretic migration compared to those of bovine milk. The corresponding Mr(s of goat αs- and β-casein were estimated at 30.2 for αs and 26.6 & 23.9 for β1 and β2 versus 32.6 and 26.6 for bovine αs- and β-casein, respectively. The amino acid composition of goat-milk whole casein appeared to be similar to those of cow, sheep and camel caseins. Meanwhile, goat casein has the satisfactory balance of essential amino acids equal to or exceeding the FAO/ WHO/ UNU requirements for each amino acid. Goat αs-casein was characterized by the presence of higher contents of both acidic and basic amino acids than β-casein. Peptide mapping profiles of goat, cow and human caseins were completely different. This means that each protein has its own unique peptide mapping.

  19. An open library of human kinase domain constructs for automated bacterial expression

    OpenAIRE

    Rodríguez-Laureano, Lucelenie; Işık, Mehtap; Chodera, John; Seeliger, Markus; Jeans, Chris; Gradia, Scott; Hanson, Sonya; Parton, Daniel; Albanese, Steven; Levinson, Nicholas; Behr, Julie

    2017-01-01

    Kinases play a critical role in many cellular signaling pathways and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Since the FDA approval of imatinib in 2001, therapeutics targeting kinases now account for roughly 50% of current cancer drug discovery efforts. The ability to explore human kinase biochemistry, biophysics, and structural biology in the laboratory is essential to making rapid progress in understanding kinase regulation, designing selec...

  20. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils.

    Science.gov (United States)

    Odemuyiwa, Solomon O; Ilarraza, Ramses; Davoine, Francis; Logan, Michael R; Shayeganpour, Anooshirvan; Wu, Yingqi; Majaesic, Carina; Adamko, Darryl J; Moqbel, Redwan; Lacy, Paige

    2015-04-01

    Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation. © 2014 John Wiley & Sons Ltd.

  1. Kinase activation through dimerization by human SH2-B.

    Science.gov (United States)

    Nishi, Masahiro; Werner, Eric D; Oh, Byung-Chul; Frantz, J Daniel; Dhe-Paganon, Sirano; Hansen, Lone; Lee, Jongsoon; Shoelson, Steven E

    2005-04-01

    The isoforms of SH2-B, APS, and Lnk form a family of signaling proteins that have been described as activators, mediators, or inhibitors of cytokine and growth factor signaling. We now show that the three alternatively spliced isoforms of human SH2-B readily homodimerize in yeast two-hybrid and cellular transfections assays, and this is mediated specifically by a unique domain in its amino terminus. Consistent with previous reports, we further show that the SH2 domains of SH2-B and APS bind JAK2 at Tyr813. These findings suggested a model in which two molecules of SH2-B or APS homodimerize with their SH2 domains bound to two JAK2 molecules, creating heterotetrameric JAK2-(SH2-B)2-JAK2 or JAK2-(APS)2-JAK2 complexes. We further show that APS and SH2-B isoforms heterodimerize. At lower levels of SH2-B or APS expression, dimerization approximates two JAK2 molecules to induce transactivation. At higher relative concentrations of SH2-B or APS, kinase activation is blocked. SH2-B or APS homodimerization and SH2-B/APS heterodimerization thus provide direct mechanisms for activating and inhibiting JAK2 and other kinases from the inside of the cell and for potentiating or attenuating cytokine and growth factor receptor signaling when ligands are present.

  2. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  3. Radioimmunoassay of creatine kinase isoenzymes in human serum: isoenzyme MM

    International Nuclear Information System (INIS)

    Van Steirteghem, A.C.; Zweig, M.H.; Schechter, A.N.

    1978-01-01

    Measurement of the mass concentration of serum enzymes by radioimmunoassay provides direct quantitation of specific isoenzymes and may be less subject to some of the limitations of traditional assay procedures for enzymes. We describe the development of a sensitive and specific radioimmunoassay for the muscle isoenzyme of creatine kinase, CK-MM, in human serum. CK-MM, purified from human skeletal muscle, was used to raise high-titer antisera and for iodination by the Chloramine T method. The radioimmunoassay required 50 μl of sample, utilized a double-antibody separation method, and was completed in 24 h. Cross reactivity with CK-BB was virtually zero, 3 to 17 percent with CK-MB. The mass concentration of CK-MM in the serum of healthy subjects ranged from 36 to 1668 μg/liter and correlated closely with total CK enzymatic activity. Serum concentrations of CK-MM from casually selected patients correlated less well with total CK enzymatic activity, suggesting the existence of other CK isoenzymes or the presence of inactive forms

  4. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  5. Natural variation in casein composition of milk

    OpenAIRE

    Bijl, E.

    2014-01-01

    Bovine milk contains 3-4 % protein and almost 80% of the milk protein fraction consist of four caseins; αs1-casein, β-casein, αs2-casein and κ-casein. Most of the caseins in milk are assembled in casein micelles, which consist of several thousands of individual casein molecules and salts. The unique structure of casein micelles allows the delivery of large amounts of calcium and phosphate to the neonate. Considerable natural variation in casein content and composition exists between milk sam...

  6. Isolation and Molecular Characterization of Local Goat Milk Casein for Nutraceutical Value

    Directory of Open Access Journals (Sweden)

    Azhar Mohd Akmal

    2017-01-01

    Full Text Available Bioactive peptide from casein play a very important role in biological functionalities such as antioxidant and antimicrobial activities. Casein is the main protein that derived from goat milk which consists of alpha (α, beta (β and kappa (κ casein. Dietary protein such as casein from animal can provide rich source of bioactive peptide. However, the macromolecular protein such as cow milk can cause allergic response to certain individuals. On the other hand, goat milk have been known for its hypoallergenic and therapeutic properties in human nutrition and health. The purpose of this study is to extract casein from local breed goat milk and identify the molecular characterization of casein for nutraceutical value. The casein was successfully extracted using extraction method. Extraction is a common technique used to separate a desired substance when it is mixed with other components. The average percentage of casein obtained was 24.25%. Then, the casein was analysed by running it in the SDS-Page. The major fraction is β-casein and the minor is α-casein that can be seen between 20kDa and 30kDa respectively. There is no contaminated protein appear in the purified α-amylase. The result obtained in this study indicates that isolated casein from Malaysian goat milk was pure and can be used as bioactive peptide for nutraceutical value.

  7. Protein Kinase A Regulatory Subunits in Human Adipose Tissue

    Science.gov (United States)

    Mantovani, Giovanna; Bondioni, Sara; Alberti, Luisella; Gilardini, Luisa; Invitti, Cecilia; Corbetta, Sabrina; Zappa, Marco A.; Ferrero, Stefano; Lania, Andrea G.; Bosari, Silvano; Beck-Peccoz, Paolo; Spada, Anna

    2009-01-01

    OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects. RESEARCH DESIGN AND METHODS—The expression of the different PKA regulatory subunits was evaluated by immunohistochemistry, Western blot, and real-time PCR in subcutaneous and visceral adipose tissue samples from 20 nonobese and 67 obese patients. PKA activity and glycerol release were evaluated in total protein extract and adipocytes isolated from fresh tissue samples, respectively. RESULTS—Expression techniques showed that R2B was the most abundant regulatory protein, both at mRNA and protein level. Interestingly, R2B mRNA levels were significantly lower in both subcutaneous and visceral adipose tissues from obese than nonobese patients and negatively correlated with BMI, waist circumference, insulin levels, and homeostasis model assessment of insulin resistance. Moreover, both basal and stimulated PKA activity and glycerol release were significantly lower in visceral adipose tissue from obese patients then nonobese subjects. CONCLUSIONS—Our results first indicate that, in human adipose tissue, there are important BMI-related differences in R2B expression and PKA activation, which might be included among the multiple determinants involved in the different lipolytic response to β-adrenergic activation in obesity. PMID:19095761

  8. Expression, purification, crystallization and preliminary crystallographic analysis of human Pim-1 kinase

    International Nuclear Information System (INIS)

    Qian, Kevin C.; Studts, Joey; Wang, Lian; Barringer, Kevin; Kronkaitis, Anthony; Peng, Charline; Baptiste, Alistair; LaFrance, Roger; Mische, Sheenah; Farmer, Bennett

    2004-01-01

    Pim kinases, belong to a distinctive serine/threonine protein-kinase family and are involved in cytokine-induced signal transduction and the development of lymphoid malignancies. Human Pim-1 kinase has been cloned, expressed and crystallized Pim kinases, including Pim-1, Pim-2 and Pim-3, belong to a distinctive serine/threonine protein-kinase family. They are involved in cytokine-induced signal transduction and the development of lymphoid malignancies. Their kinase domains are highly homologous to one another, but share low sequence identity to other kinases. Specifically, there are two proline residues in the conserved hinge-region sequence ERPXPX separated by a residue that is non-conserved among Pim kinases. Full-length human Pim-1 kinase (1–313) was cloned and expressed in Escherichia coli as a GST-fusion protein and truncated to Pim-1 (14–313) by thrombin digestion during purification. The Pim-1 (14–313) protein was purified to high homogeneity and monodispersity. This protein preparation yielded small crystals in the initial screening and large crystals after optimization. The large crystals of apo Pim-1 enzyme diffracted to 2.1 Å resolution and belong to space group P6 5 , with unit-cell parameters a = b = 95.9, c = 80.0 Å, β = 120° and one molecule per asymmetric unit

  9. Subcellular localization of casein kinase I

    DEFF Research Database (Denmark)

    Grankowski, N; Issinger, O G

    1990-01-01

    An anti-yeast CKI antiserum was shown to cross-react with CKI isolated from Krebs II mouse ascites tumour cells. The mammalian CKI showed virtually the same molecular mass (app. 45 kDa) as the yeast enzyme. By immunofluorescence it could be shown that CKI is preferably located in the nucleolus....

  10. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  11. The association of lysozyme with casein

    NARCIS (Netherlands)

    Roos, de A.L.; Walstra, P.; Geurts, T.J.

    1998-01-01

    The association of hen eggs’ lysozyme with caseins was studied by using three casein substrates: (I) solutions of the various caseins, (II) artificially made casein micelles of various compositions and (III) caseins adsorbed onto soya-oil emulsion droplets. In solution, lysozyme associated most

  12. Cloning and expression of human deoxycytidine kinase cDNA

    International Nuclear Information System (INIS)

    Chottiner, E.G.; Shewach, D.S.; Datta, N.S.; Ashcraft, E.; Gribbin, D.; Ginsburg, D.; Fox, I.H.; Mitchell, B.S.

    1991-01-01

    Deoxycytidine (dCyd) kinase is required for the phosphorylation of several deoxyribonucleosides and certain nucleoside analogs widely employed as antiviral and chemotherapeutic agents. Detailed analysis of this enzyme has been limited, however, by its low abundance and instability. Using oligonucleotides based on primary amino acid sequence derived from purified dCyd kinase, the authors have screened T-lymphoblast cDNA libraries and identified a cDNA sequence that encodes a 30.5-kDa protein corresponding to the subunit molecular mass of the purified protein. Expression of the cDNA in Escherichia coli results in a 40-fold increase in dCyd kinase activity over control levels. Northern blot analysis reveals a single 2.8-kilobase mRNA expressed in T lymphoblasts at 5- to 10-fold higher levels than in B lymphoblasts, and decreased dCyd kinase mRNA levels are present in T-lymphoblast cell lines resistant to arabinofuranosylcytosine and dideoxycytidine. These findings document that this cDNA encodes the T-lymphoblast dCyd kinase responsible for the phosphorylation of dAdo and dGuo as well as dCyd and arabinofuranosylcytosine

  13. Characterization of pathogenic germline mutations in human Protein Kinases

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2011-07-01

    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  14. A mathematical model of human thymidine kinase 2 activity

    DEFF Research Database (Denmark)

    Radivoyevitch, Tom; Munch-Petersen, Birgitte; Wang, Liya

    2011-01-01

    _ The mitochondrial enzyme thymidine kinase 2 (TK2) phosphorylates deoxythymidine (dT) and deoxycytidine (dC) to form dTMP and dCMP, which in cells rapidly become the negative-feedback end-products dTTP and dCTP. TK2 kinetic activity exhibits Hill coefficients of ∼0.5 (apparent negative cooperati...

  15. Glycation Reactions of Casein Micelles.

    Science.gov (United States)

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  16. In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal conditions: A multi-laboratory evaluation

    DEFF Research Database (Denmark)

    Mandalari, G.; Adel-Patient, K.; Barkholt, Vibeke

    2009-01-01

    Initially the resistance to digestion of two cow's milk allergens, beta-casein, and beta-lactoglobulin (beta-Lg), was compared using a "high-protease assay" and a "low-protease assay" in a single laboratory. The low-protease assay represents an alternative standardised protocol mimicking conditions...... found in the gastrointestinal tract. For the high-protease assay, both proteins were incubated with either pepsin or pancreatin and digestion monitored by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and reverse phase-high performance liquid chromatography. The low-protease assay involved...... gastroduodenal digestion in the presence or absence of phosphatidylcholine (PC). Both beta-casein and beta-Lg were susceptible to hydrolysis by pepsin and pancreatin in the high-protease assay. In contrast, the kinetics of beta-casein digestion in the low-protease assay were slower, beta-Lg being pepsin...

  17. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4.

    Science.gov (United States)

    Klaus-Heisen, Dörte; Nurisso, Alessandra; Pietraszewska-Bogiel, Anna; Mbengue, Malick; Camut, Sylvie; Timmers, Ton; Pichereaux, Carole; Rossignol, Michel; Gadella, Theodorus W J; Imberty, Anne; Lefebvre, Benoit; Cullimore, Julie V

    2011-04-01

    Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.

  18. Kinases and Cancer

    OpenAIRE

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  19. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination.

    Science.gov (United States)

    Jeong, Young-Hee; Kim, Yeong Ji; Kim, Eun Young; Kim, Se Eun; Kim, Jiwoo; Park, Min Jee; Lee, Hong-Gu; Park, Se Pill; Kang, Man-Jong

    2016-06-01

    Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast growth factor 2 (FGF2) in the bovine β-casein gene locus. The F2A sequence was fused to the human FGF2 gene and inserted into exon 3 of the β-casein gene. We detected expression of human FGF2 mRNA in the HC11 mouse mammary epithelial cells by RT-PCR and human FGF2 protein in the culture media using western blot analysis when the knock-in vector was introduced. We transfected the knock-in vector into bovine ear fibroblasts and produced knock-in fibroblasts using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Moreover, the CRISPR/Cas9 system was more efficient than conventional methods. In addition, we produced knock-in blastocysts by somatic cell nuclear transfer using the knock-in fibroblasts. Our knock-in fibroblasts may help to create cloned embryos for development of transgenic dairy cattle expressing human FGF2 protein in the mammary gland via the expression system of the bovine β-casein gene.

  20. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase

  1. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  2. HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases

    International Nuclear Information System (INIS)

    Devroe, Eric; Silver, Pamela A.; Engelman, Alan

    2005-01-01

    Mammalian genomes encode two related serine-threonine kinases, nuclear Dbf2 related (NDR)1 and NDR2, which are homologous to the Saccharomyces cerevisiae Dbf2 kinase. Recently, a yeast genetic screen implicated the Dbf2 kinase in Ty1 retrotransposition. Since several virion-incorporated kinases regulate the infectivity of human immunodeficiency virus type 1 (HIV-1), we speculated that the human NDR1 and NDR2 kinases might play a role in the HIV-1 life cycle. Here we show that the NDR1 and NDR2 kinases were incorporated into HIV-1 particles. Furthermore, NDR1 and NDR2 were cleaved by the HIV-1 protease (PR), both within virions and within producer cells. Truncation at the PR cleavage site altered NDR2 subcellular localization and inhibited NDR1 and NDR2 enzymatic activity. These studies identify two new virion-associated host cell enzymes and suggest a novel mechanism by which HIV-1 alters the intracellular environment of human cells

  3. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    Science.gov (United States)

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics.

    Science.gov (United States)

    Poss, Zachary C; Ebmeier, Christopher C; Odell, Aaron T; Tangpeerachaikul, Anupong; Lee, Thomas; Pelish, Henry E; Shair, Matthew D; Dowell, Robin D; Old, William M; Taatjes, Dylan J

    2016-04-12

    Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells (HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-seq data correlated with Mediator kinase targets, the effects of CA on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 7,000 proteins across six time points (0-24 hr), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their roles extend beyond transcription to metabolism and DNA repair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity

    International Nuclear Information System (INIS)

    Azzeh, Maysa; Honigman, Alik; Taraboulos, Albert; Rouvinski, Alexander; Wolf, Dana G.

    2006-01-01

    Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant (ΔUL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the ΔUL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or ΔUL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites

  6. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  7. Chymosin-induced hydrolysis of caseins: Influence of degree of phosphorylation of alpha-s1-casein and genetic variants of beta-casein

    NARCIS (Netherlands)

    Bijl, E.; Valenberg, van H.J.F.; Sikkes, S.; Jumelet, S.; Sala, G.; Olieman, K.; Hooijdonk, van A.C.M.; Huppertz, T.

    2014-01-01

    The objective of this study was to investigate the impact of natural variations in aS1-casein and b-casein composition of milk on chymosin-induced hydrolysis of these caseins in milk gels and in sodium caseinate solutions. At 50% casein degradation, 15% more of aS1-casein with eight phosphate groups

  8. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  9. Characterization of casein and alpha lactalbumin of African elephant (Loxodonta africana) milk.

    Science.gov (United States)

    Madende, M; Osthoff, G; Patterton, H-G; Patterton, H E; Martin, P; Opperman, D J

    2015-12-01

    The current research reports partial characterization of the caseins and α-lactalbumin (α-LA) of the African elephant with proposed unique structure-function properties. Extensive research has been carried out to understand the structure of the casein micelles. Crystallographic structure elucidation of caseins and casein micelles is not possible. Consequently, several models have been developed in an effort to describe the casein micelle, specifically of cow milk. Here we report the characterization of African elephant milk caseins. The κ-caseins and β-caseins were investigated, and their relative ratio was found to be approximately 1:8.5, whereas α-caseins were not detected. The gene sequence of β-casein in the NCBI database was revisited, and a different sequence in the N-terminal region is proposed. Amino acid sequence alignment and hydropathy plots showed that the κ-casein of African elephant milk is similar to that of other mammals, whereas the β-casein is similar to the human protein, and displayed a section of unique AA composition and additional hydrophilic regions compared with bovine caseins. Elephant milk is destabilized by 62% alcohol, and it is speculated that the β-casein characteristics may allow maintenance of the colloidal nature of the casein micelle, a role that was previously only associated with κ-casein. The oligosaccharide content of milk was reported to be low in dairy animals but high in some other species such as humans and elephants. In the milk of the African elephant, lactose and oligosaccharides both occur at high levels. These levels are typically related to the content of α-LA in the mammary gland and thus point to a specialized carbohydrate synthesis, where the whey protein α-LA plays a role. We report the characterization of African elephant α-LA. Homology modeling of the α-LA showed that it is structurally similar to crystal structures of other mammalian species, which in turn may be an indication that its functional

  10. Expression of Human CTP Synthetase in Saccharomyces cerevisiae Reveals Phosphorylation by Protein Kinase A*

    Science.gov (United States)

    Han, Gil-Soo; Sreenivas, Avula; Choi, Mal-Gi; Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2005-01-01

    CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Δ ura8Δ mutant lacking CTP synthetase activity. The expression of the CTPS1-and CTPS2-encoded human CTP synthetase enzymes in the ura7Δ ura8Δ mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from 32Pi-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. PMID:16179339

  11. Restoration of adenosine deaminase-deficient human thymocyte development in vitro by inhibition of deoxynucleoside kinases.

    Science.gov (United States)

    Joachims, Michelle L; Marble, Patrick A; Laurent, Aletha B; Pastuszko, Peter; Paliotta, Marco; Blackburn, Michael R; Thompson, Linda F

    2008-12-01

    Mutations in the gene encoding adenosine deaminase (ADA), a purine salvage enzyme, lead to immunodeficiency in humans. Although ADA deficiency has been analyzed in cell culture and murine models, information is lacking concerning its impact on the development of human thymocytes. We have used chimeric human/mouse fetal thymic organ culture to study ADA-deficient human thymocyte development in an "in vivo-like" environment where toxic metabolites accumulate in situ. Inhibition of ADA during human thymocyte development resulted in a severe reduction in cellular expansion as well as impaired differentiation, largely affecting mature thymocyte populations. Thymocyte differentiation was not blocked at a discrete stage; rather, the paucity of mature thymocytes was due to the induction of apoptosis as evidenced by activation of caspases and was accompanied by the accumulation of intracellular dATP. Inhibition of adenosine kinase and deoxycytidine kinase prevented the accumulation of dATP and restored thymocyte differentiation and proliferation. Our work reveals that multiple deoxynucleoside kinases are involved in the phosphorylation of deoxyadenosine when ADA is absent, and suggests an alternate therapeutic strategy for treatment of ADA-deficient patients.

  12. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways

    International Nuclear Information System (INIS)

    Tong, W.-G.; Ding, X.-Z.; Talamonti, Mark S.; Bell, Richard H.; Adrian, Thomas E.

    2005-01-01

    We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved

  13. wKinMut-2: Identification and Interpretation of Pathogenic Variants in Human Protein Kinases

    DEFF Research Database (Denmark)

    Vazquez, Miguel; Pons, Tirso; Brunak, Søren

    2016-01-01

    forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledgebases and the literature is automatically mined, digested and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic...... is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random...... and drug-binding are identified. Known protein-protein interactions are reported. Altogether, this information is intended to assist the generation of new working hypothesis to be corroborated with ulterior experimental work. The wKinMut-2 system, along with a user manual and examples is freely accessible...

  14. Apical-to-basolateral transepithelial transport of cow's milk caseins by intestinal Caco-2 cell monolayers: MS-based quantitation of cellularly degraded α- and β-casein fragments.

    Science.gov (United States)

    Sakurai, Nao; Nishio, Shunsuke; Akiyama, Yuka; Miyata, Shinji; Oshima, Kenzi; Nadano, Daita; Matsuda, Tsukasa

    2018-02-27

    Casein is the major milk protein to nourish infants but, in certain population, it causes cow's milk allergy, indicating the uptake of antigenic casein and their peptides through the intestinal epithelium. Using human intestinal Caco-2 cell monolayers, the apical-to-basal transepithelial transport of casein was investigated. Confocal microscopy using component-specific antibodies showed that αs1-casein antigens became detectable as punctate signals at the apical-side cytoplasm and reached to the cytoplasm at a tight-junction level within a few hours. Such intracellular casein signals were more remarkable than those of the other antigens, β-lactoglobulin and ovalbumin, colocalized in part with an early endosome marker protein, EEA1, and decreased in the presence of cytochalasin D or sodium azide and also at lowered temperature at 4 °C. LC-MS analysis of the protein fraction in the basal-side medium identified the αs1-casein fragment including the N-terminal region and the αs2-casein fragment containing the central part of polypeptide at 100∼1000 fmol per well levels. Moreover, β-casein C-terminal overlapping peptides were identified in the peptide fraction below 10 kDa of the basal medium. These results suggest that caseins are partially degraded by cellular proteases and/or peptidases and immunologically active casein fragments are transported to basal side of the cell monolayers.

  15. Protein kinase C regulates human pluripotent stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Masaki Kinehara

    Full Text Available The self-renewal of human pluripotent stem (hPS cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2 appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells.In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC, GF109203X (GFX, increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β, suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2 synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells.Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK, PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though h

  16. Protein Kinase C Regulates Human Pluripotent Stem Cell Self-Renewal

    Science.gov (United States)

    Kinehara, Masaki; Kawamura, Suguru; Tateyama, Daiki; Suga, Mika; Matsumura, Hiroko; Mimura, Sumiyo; Hirayama, Noriko; Hirata, Mitsuhi; Uchio-Yamada, Kozue; Kohara, Arihiro; Yanagihara, Kana; Furue, Miho K.

    2013-01-01

    Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long

  17. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    Science.gov (United States)

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  18. Human cytosolic thymidine kinase: purification and physical characterization of the enzyme from HeLa cells

    International Nuclear Information System (INIS)

    Sherley, J.L.; Kelly, T.J.

    1988-01-01

    The mammalian cytosolic thymidine kinase is one of a number of enzymes involved in DNA replication whose activities increase dramatically during S phase of the cell cycle. As a first step in defining the mechanisms that control the S phase induction of thymidine kinase activity, the authors have purified the human enzyme from HeLa cells and raised a specific immune serum against the purified protein. The enzyme was isolated from cells arrested in S phase by treatment with methotrexate and purified to near homogeneity by ion-exchange and affinity chromatography. Stabilization of the purified enzyme was achieved by the addition of digitonin. An electrophoretic R/sub m/ of 0.2 in nondenaturing gels characterizes the purified enzyme activity as cytosolic thymidine kinase. The enzyme has a Stoke's radius of 40 A determined by gel filtration and a sedimentation coefficient of 5.5 S determined by glycerol gradient sedimentation. Based on these hydrodynamic values, a native molecular weight of 96,000 was calculated for the purified enzyme. When electrophoresed in denaturing sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, the most purified enzyme fraction was found to contain one predominant polypeptide of M/sub r/ = 24,000. Several lines of evidence indicate that this polypeptide is responsible for thymidine kinase enzymatic activity

  19. Hydrolyzed Casein Reduces Diet-Induced Obesity in Male C57BL/6J Mice

    DEFF Research Database (Denmark)

    Lillefosse, Haldis H.; Tastesen, Hanne Sørup; Du, Zhen-Yu

    2013-01-01

    used a factorial ANOVA design to investigate the effects of protein form (intact vs. hydrolyzed casein) and protein level (16 vs. 32 energy percent protein) on body mass gain and adiposity in obesity-prone male C57BL/6J mice fed Western diets with 35 energy percent fat. Mice fed the hydrolyzed casein......The digestion rate of dietary protein is a regulating factor for postprandial metabolism both in humans and animal models. However, few data exist about the habitual consumption of proteins with different digestion rates with regard to the development of body mass and diet-induced obesity. Here, we...... diets had higher spontaneous locomotor activity than mice fed intact casein. During the light phase, mice fed hydrolyzed casein tended (P = 0.08) to have a lower respiratory exchange ratio, indicating lower utilization of carbohydrates as energy substrate relative to those fed intact casein. In further...

  20. Complexes of lutein with bovine and caprine caseins and their impact on lutein chemical stability in emulsion systems: Effect of arabinogalactan.

    Science.gov (United States)

    Mora-Gutierrez, A; Attaie, R; Núñez de González, M T; Jung, Y; Woldesenbet, S; Marquez, S A

    2018-01-01

    Lutein is an important xanthophyll carotenoid with many benefits to human health. Factors affecting the application of lutein as a functional ingredient in low-fat dairy-like beverages (pH 6.0-7.0) are not well understood. The interactions of bovine and caprine caseins with hydrophobic lutein were studied using UV/visible spectroscopy as well as fluorescence. Our studies confirmed that the aqueous solubility of lutein is improved after binding with bovine and caprine caseins. The rates of lutein solubilization by the binding to bovine and caprine caseins were as follows: caprine α S1 -II-casein 34%, caprine α S1 -I-casein 10%, and bovine casein 7% at 100 μM lutein. Fluorescence of the protein was quenched on binding supporting complex formation. The fluorescence experiments showed that the binding involves tryptophan residues and some nonspecific interactions. Scatchard plots of lutein binding to the caseins demonstrated competitive binding between the caseins and their sites of interaction with lutein. Competition experiments suggest that caprine α S1 -II casein will bind a larger number of lutein molecules with higher affinity than other caseins. The chemical stability of lutein was largely dependent on casein type and significant increases occurred in the chemical stability of lutein with the following pattern: caprine α S1 -II-casein > caprine α S1 -I-casein > bovine casein. Addition of arabinogalactan to lutein-enriched emulsions increases the chemical stability of lutein-casein complexes during storage under accelerated photo-oxidation conditions at 25°C. Therefore, caprine α S1 -II-casein alone and in combination with arabinogalactan can have important applications in the beverage industry as carrier of this xanthophyll carotenoid (lutein). Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Protein Kinase-A Inhibition Is Sufficient to Support Human Neural Stem Cells Self-Renewal.

    Science.gov (United States)

    Georges, Pauline; Boissart, Claire; Poulet, Aurélie; Peschanski, Marc; Benchoua, Alexandra

    2015-12-01

    Human pluripotent stem cell-derived neural stem cells offer unprecedented opportunities for producing specific types of neurons for several biomedical applications. However, to achieve it, protocols of production and amplification of human neural stem cells need to be standardized, cost effective, and safe. This means that small molecules should progressively replace the use of media containing cocktails of protein-based growth factors. Here we have conducted a phenotypical screening to identify pathways involved in the regulation of hNSC self-renewal. We analyzed 80 small molecules acting as kinase inhibitors and identified compounds of the 5-isoquinolinesulfonamide family, described as protein kinase A (PKA) and protein kinase G inhibitors, as candidates to support hNSC self-renewal. Investigating the mode of action of these compounds, we found that modulation of PKA activity was central in controlling the choice between self-renewal or terminal neuronal differentiation of hNSC. We finally demonstrated that the pharmacological inhibition of PKA using the small molecule HA1004 was sufficient to support the full derivation, propagation, and long-term maintenance of stable hNSC in absence of any other extrinsic signals. Our results indicated that tuning of PKA activity is a core mechanism regulating hNSC self-renewal and differentiation and delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro. © 2015 AlphaMed Press.

  2. Selective blockade of protein kinase B protects the rat and human myocardium against ischaemic injury

    Science.gov (United States)

    Linares-Palomino, José; Husainy, Muhammad A; Lai, Vien K; Dickenson, John M; Galiñanes, Manuel

    2010-01-01

    Protein kinase B (PKB/Akt) plays a critical role in cell survival but the investigation of its involvement has been limited by the lack of specific pharmacological agents. In this study, using novel PKB inhibitors (VIII and XI), we investigated the role of PKB in cardioprotection of the rat and human myocardium, the location of PKB in relation to mitoKATP channels and p38 mitogen-activated protein kinase (p38 MAPK), and whether the manipulation of PKB can overcome the unresponsiveness to protection of the diabetic myocardium. Myocardial slices from rat left ventricle and from the right atrial appendage of patients undergoing elective cardiac surgery were subjected to 90 min ischaemia/120 min reoxygenation at 37°C. Tissue injury was assessed by creatine kinase (CK) released and determination of cell necrosis and apoptosis. The results showed that blockade of PKB activity caused significant reduction of CK release and cell death, a benefit that was as potent as ischaemic preconditioning and could be reproduced by blockade of phosphatidylinositol 3-kinase (PI-3K) with wortmannin and LY 294002. The protection was time dependent with maximal benefit seen when PKB and PI-3K were inhibited before ischaemia or during both ischaemia and reoxygenation. In addition, it was revealed that PKB is located downstream of mitoKATP channels but upstream of p38 MAPK. PKB inhibition induced a similar degree of protection in the human and rat myocardium and, importantly, it reversed the unresponsiveness to protection of the diabetic myocardium. In conclusion, inhibition of PKB plays a critical role in protection of the mammalian myocardium and may represent a clinical target for the reduction of ischaemic injury. PMID:20403980

  3. SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian

    2010-10-01

    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.

  4. Cloning, expression, and mapping of allergenic determinants of alphaS1-casein, a major cow's milk allergen.

    Science.gov (United States)

    Schulmeister, Ulrike; Hochwallner, Heidrun; Swoboda, Ines; Focke-Tejkl, Margarete; Geller, Beate; Nystrand, Mats; Härlin, Annika; Thalhamer, Josef; Scheiblhofer, Sandra; Keller, Walter; Niggemann, Bodo; Quirce, Santiago; Ebner, Christoph; Mari, Adriano; Pauli, Gabrielle; Herz, Udo; Valenta, Rudolf; Spitzauer, Susanne

    2009-06-01

    Milk is one of the first components introduced into human diet. It also represents one of the first allergen sources, which induces IgE-mediated allergies in childhood ranging from gastrointestinal, skin, and respiratory manifestations to severe life-threatening manifestations, such as anaphylaxis. Here we isolated a cDNA coding for a major cow's milk allergen, alphaS1-casein, from a bovine mammary gland cDNA library with allergic patients' IgE Abs. Recombinant alphaS1-casein was expressed in Escherichia coli, purified, and characterized by circular dichroism as a folded protein. IgE epitopes of alphaS1-casein were determined with recombinant fragments and synthetic peptides spanning the alphaS1-casein sequence using microarrayed components and sera from 66 cow's milk-sensitized patients. The allergenic activity of ralphaS1-casein and the alphaS1-casein-derived peptides was determined using rat basophil leukemia cells transfected with human FcepsilonRI, which had been loaded with the patients' serum IgE. Our results demonstrate that ralphaS1-casein as well as alphaS1-casein-derived peptides exhibit IgE reactivity, but mainly the intact ralphaS1-casein induced strong basophil degranulation. These results suggest that primarily intact alphaS1-casein or larger IgE-reactive portions thereof are responsible for IgE-mediated symptoms of food allergy. Recombinant alphaS1-casein as well as alphaS1-casein-derived peptides may be used in clinical studies to further explore pathomechanisms of food allergy as well as for the development of new diagnostic and therapeutic strategies for milk allergy.

  5. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    Science.gov (United States)

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    OpenAIRE

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present ...

  7. Phosphorylation-induced changes in the energetic frustration in human Tank binding kinase 1.

    Science.gov (United States)

    Husain, Shahrukh; Kumar, Vijay; Hassan, Md Imtaiyaz

    2018-07-14

    Tank binding kinase 1 (TBK-1) plays an important role in immunity, inflammation, autophagy, cell growth and proliferation. Nevertheless, a key molecular and structural detail of TBK-1 phosphorylation and activation has been largely unknown. Here we investigated the energy landscape of phosphorylated (active) and unphosphorylated (inactive) forms of human TBK-1 to characterize the interplay between phosphorylation and local frustration. By employing the algorithm equipped with energy function and implemented in Frustratometer web-server (http://www.frustratometer.tk), we quantify the role of frustration in the activation of TBK-1. Accordingly, the conformational changes were observed in phosphoregulated active and inactive TBK-1. Substantial changes in frustration, flexibility and interatomic motions were observed among different forms of TBK-1. Structurally rigid kinase domain constitutes a minimally frustrated hub in the core of the catalytic domain, and highly frustrated clusters mainly at the C-lobe might enable the conformational transitions during activation. Also, a large network of highly frustrated interactions is found in the SDD domain of TBK-1 involved in protein-protein interactions and dimerization. The contact maps of the activation loop and α-C helix of kinase domain showed significant changes upon phosphorylation. Cross correlation analysis indicate that both intra and inter subunit correlated motions increases with phosphorylation of TBK-1. Phosphorylation thus introduces subtle changes in long-range contacts that might lead to significant conformational change of TBK-1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G

    1994-01-01

    to substitute for wild-type beta-subunit as a suppressor of activity toward calmodulin. The only mutations that reduced the ability of the beta-subunit to suppress calmodulin phosphorylation activity, though being compatible with normal reconstitution of CK2 holoenzyme, were those affecting Asp55, Glu57...... are conversely ineffective. The latent "calmodulin kinase" activity of CK2 can also be specifically unmasked by a peptide (alpha[66-86]) reproducing a basic insert of the catalytic subunit. This effect is reversed by equimolar addition of a peptide (beta[55-71]) including the 55-64 acidic stretch of the beta......-subunit. Comparable polylysine stimulation was observed with the holoenzymes reconstituted with either beta wt or the beta mutants capable of assembling with the alpha-subunit, with the notable exception of those bearing Ala substitutions for acidic residues at positions 55, 57, and 59-61. These were nearly...

  9. Role of ERK1/2 kinase in the expression of iNOS by NDMA in human neutrophils.

    Science.gov (United States)

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Garley, Marzena; Jablonski, Jakub; Radziwon, Piotr

    2013-01-01

    Potential role of ERK1/2 kinase in conjunction with p38 in the regulation of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and superoxide anion generation by human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was determined. Increased synthesis of NO due to the involvement of iNOS in neutrophils exposed to NDMA was observed. In addition, intensified activation of ERK1/2 and p38 kinases was determined in these cells. Inhibition of kinase regulated by extracellular signals (ERK1/2) pathway, in contrast to p38 pathway, led to an increased production of NO and expression of iNOS in PMNs. Moreover, as a result of inhibition of ERK1/2 pathway, a decreased activation of p38 kinase was observed in neutrophils, while inhibition of p38 kinase did not affect activation of ERK1/2 pathway in these cells. An increased ability to release superoxide anion by the studied PMNs was observed, which decreased after ERK1/2 pathway inhibition. In conclusion, in human neutrophils, ERK1/2 kinase is not directly involved in the regulation of iNOS and NO production induced by NDMA; however, the kinase participates in superoxide anion production in these cells.

  10. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  11. Disruption of PH–kinase domain interactions leads to oncogenic activation of AKT in human cancers

    Science.gov (United States)

    Parikh, Chaitali; Janakiraman, Vasantharajan; Wu, Wen-I; Foo, Catherine K.; Kljavin, Noelyn M.; Chaudhuri, Subhra; Stawiski, Eric; Lee, Brian; Lin, Jie; Li, Hong; Lorenzo, Maria N.; Yuan, Wenlin; Guillory, Joseph; Jackson, Marlena; Rondon, Jesus; Franke, Yvonne; Bowman, Krista K.; Sagolla, Meredith; Stinson, Jeremy; Wu, Thomas D.; Wu, Jiansheng; Stokoe, David; Stern, Howard M.; Brandhuber, Barbara J.; Lin, Kui; Skelton, Nicholas J.; Seshagiri, Somasekar

    2012-01-01

    The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain–kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH–KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH–KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH–KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH–KD interface. PMID:23134728

  12. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  13. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2018-03-01

    Full Text Available Human natural killer (NK cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.

  14. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  15. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  16. Spectrofluoremetric and molecular docking study on the interaction of bisdemethoxycurcumin with bovine β-casein nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mehranfar, Fahimeh [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Bordbar, Abdol-Khalegh, E-mail: bordbar@chem.ui.ac.ir [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Keyhanfar, Mehrnaz; Behbahani, Mandana [Faculty of Advanced Sciences and Technologies, Department of Biotechnology, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2013-11-15

    The interaction of bisdemethoxycurcumin (BDMC), as one of the main active component of turmeric (Curcuma longa L.), with bovine β-casein nanoparticle, as an efficient drug carrier system, was investigated using steady-state fluorescence spectroscopy and molecular docking calculations. Results of fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations suggested that BDMC bind to the hydrophobic core of β-casein via formation of 3 hydrogen bonds and several vander Waals contacts that represented the encapsulation of BDMC in β-casein micelle nanoparticles. The binding parameters including number of substantive binding sites and the binding constants were evaluated by fluorescence quenching method. Additionally, the cytotoxicity of free BDMC and BDMC-β-casein complex in human breast cancer cell line MCF7 was evaluated in vitro. The study revealed the higher cytotoxic effects of encapsulated BDMC on MCF7 cells compared to equal dose of free BDMC. -- Highlights: • BDMC binds to the hydrophobic core of β-casein. • The effective encapsulation of BDMC in β-casein micelle nanoparticles was shown. • Enhanced cytotoxicity was observed for encapsulated BDMC in β-casein nanoparticles.

  17. Spectrofluoremetric and molecular docking study on the interaction of bisdemethoxycurcumin with bovine β-casein nanoparticles

    International Nuclear Information System (INIS)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Keyhanfar, Mehrnaz; Behbahani, Mandana

    2013-01-01

    The interaction of bisdemethoxycurcumin (BDMC), as one of the main active component of turmeric (Curcuma longa L.), with bovine β-casein nanoparticle, as an efficient drug carrier system, was investigated using steady-state fluorescence spectroscopy and molecular docking calculations. Results of fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations suggested that BDMC bind to the hydrophobic core of β-casein via formation of 3 hydrogen bonds and several vander Waals contacts that represented the encapsulation of BDMC in β-casein micelle nanoparticles. The binding parameters including number of substantive binding sites and the binding constants were evaluated by fluorescence quenching method. Additionally, the cytotoxicity of free BDMC and BDMC-β-casein complex in human breast cancer cell line MCF7 was evaluated in vitro. The study revealed the higher cytotoxic effects of encapsulated BDMC on MCF7 cells compared to equal dose of free BDMC. -- Highlights: • BDMC binds to the hydrophobic core of β-casein. • The effective encapsulation of BDMC in β-casein micelle nanoparticles was shown. • Enhanced cytotoxicity was observed for encapsulated BDMC in β-casein nanoparticles

  18. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    Science.gov (United States)

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  19. Quantitative mass spectrometry analysis reveals similar substrate consensus motif for human Mps1 kinase and Plk1.

    Directory of Open Access Journals (Sweden)

    Zhen Dou

    Full Text Available BACKGROUND: Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC, a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1 is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known. METHODOLOGY/PRINCIPAL FINDINGS: Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus. CONCLUSIONS/SIGNIFICANCE: hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase.

  20. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.

    Science.gov (United States)

    Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dissecting the role of AMP-activated protein kinase in human diseases

    Institute of Scientific and Technical Information of China (English)

    Jin Li; Liping Zhong; Fengzhong Wang; Haibo Zhu

    2017-01-01

    AMP-activated protein kinase (AMPK),known as a sensor and a master of cellular energy balance,integrates various regulatory signals including anabolic and catabolic metabolic processes.Accompanying the application of genetic methods and a plethora of AMPK agonists,rapid progress has identified AMPK as an attractive therapeutic target for several human diseases,such as cancer,type 2 diabetes,atherosclerosis,myocardial ischemia/reperfusion injury and neurodegenerative disease.The role of AMPK in metabolic and energetic modulation both at the intracellular and whole body levels has been reviewed elsewhere.In the present review,we summarize and update the paradoxical role of AMPK implicated in the diseases mentioned above and put forward the challenge encountered.Thus it will be expected to provide important clues for exploring rational methods of intervention in human diseases.

  2. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation.

    Science.gov (United States)

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S

    2017-03-01

    Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and

  3. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  4. Production of calcium- and magnesium-enriched caseins and caseinates by an ecofriendly technology.

    Science.gov (United States)

    Masson, Félix-André; Mikhaylin, Sergey; Bazinet, Laurent

    2018-05-09

    Finding new green ways of producing proteins has never been of such critical public interest, both to meet consumers' needs and to preserve the environment. Milk proteins are among the most attractive protein types due to their high nutritional value and attractive functional properties. In this work, the separation of caseins by conventional chemical acidification was compared with electrodialysis with bipolar membrane coupled to an ultrafiltration module (EDBM-UF), a green process that allows the precipitation of caseins by H + generated in situ by the bipolar membrane and, simultaneously, the production of a separated NaOH stream from OH - electrogenerated by the bipolar membrane. Caseinate production using this NaOH stream by-product and the quantity of NaOH needed to produce caseinates from both methods were also investigated. Hence, the purity and composition of caseins and caseinates were compared in terms of protein, ash, and lactose contents as well as mineral composition. The results showed for the first time that caseinates can be produced by solubilizing caseins with NaOH stream from the EDBM process. Furthermore, the caseins and caseinates produced by EDBM-UF were equivalent in terms of lactose and protein contents to their respective caseins and caseinates that were chemically produced but presented slightly lower sodium content and 3 to 4 times higher magnesium and calcium contents. The fact that calcium and magnesium are likely bound to milk caseins would ensure their favorable absorbability. These caseins or caseinates from the new EDBM-UF process could be suitable as an improved protein-based calcium or magnesium supplement, both for their enhanced nutritional quality and because they are produced by a green process. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Human CD180 Transmits Signals via the PIM-1L Kinase.

    Directory of Open Access Journals (Sweden)

    Nicole Egli

    Full Text Available Toll-like receptors (TLRs are important sensors of the innate immune system that recognize conserved structural motifs and activate cells via a downstream signaling cascade. The CD180/MD1 molecular complex is an unusual member of the TLR family, since it lacks the components that are normally required for signal transduction by other TLRs. Therefore the CD180/MD 1 complex has been considered of being incapable of independently initiating cellular signals. Using chemogenetic approaches we identified specifically the membrane bound long form of PIM-1 kinase, PIM-1L as the mediator of CD180-dependent signaling. A dominant negative isoform of PIM-1L, but not of other PIM kinases, inhibited signaling elicited by cross-linking of CD180, and this effect was phenocopied by PIM inhibitors. PIM-1L was directed to the cell membrane by its N-terminal extension, where it colocalized and physically associated with CD180. Triggering CD180 also induced increased phosphorylation of the anti-apoptotic protein BAD in a PIM kinase-dependent fashion. Also in primary human B cells, which are the main cells expressing CD180 in man, cross-linking of CD180 by monoclonal antibodies stimulated cell survival and proliferation that was abrogated by specific inhibitors. By associating with PIM-1L, CD180 can thus obtain autonomous signaling capabilities, and this complex is then channeling inflammatory signals into B cell survival programs. Pharmacological inhibition of PIM-1 should therefore provide novel therapeutic options in diseases that respond to innate immune stimulation with subsequently increased B cell activity, such as lupus erythematosus or myasthenia gravis.

  6. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein.

    Science.gov (United States)

    Lee, Sang Mi; Kim, Ji Woo; Jeong, Young-Hee; Kim, Se Eun; Kim, Yeong Ji; Moon, Seung Ju; Lee, Ji-Hye; Kim, Keun-Jung; Kim, Min-Kyu; Kang, Man-Jong

    2014-11-01

    Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

  7. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  8. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  9. Mapping of Epitopes Occurring in Bovine α(s1)-Casein Variants by Peptide Microarray Immunoassay.

    Science.gov (United States)

    Lisson, Maria; Erhardt, Georg

    2016-01-01

    Immunoglobulin E epitope mapping of milk proteins reveals important information about their immunologic properties. Genetic variants of αS1-casein, one of the major allergens in bovine milk, are until now not considered when discussing the allergenic potential. Here we describe the complete procedure to assess the allergenicity of αS1-casein variants B and C, which are frequent in most breeds, starting from milk with identification and purification of casein variants by isoelectric focusing (IEF) and anion-exchange chromatography, followed by in vitro gastrointestinal digestion of the casein variants, identification of the resulting peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), in silico analysis of the variant-specific peptides as allergenic epitopes, and determination of their IgE-binding properties by microarray immunoassay with cow's milk allergic human sera.

  10. Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation

    Science.gov (United States)

    Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves

    1999-01-01

    The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375

  11. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    Science.gov (United States)

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  12. Genetic variability of the equine casein genes.

    Science.gov (United States)

    Brinkmann, J; Jagannathan, V; Drögemüller, C; Rieder, S; Leeb, T; Thaller, G; Tetens, J

    2016-07-01

    The casein genes are known to be highly variable in typical dairy species, such as cattle and goat, but the knowledge about equine casein genes is limited. Nevertheless, mare milk production and consumption is gaining importance because of its high nutritive value, use in naturopathy, and hypoallergenic properties with respect to cow milk protein allergies. In the current study, the open reading frames of the 4 casein genes CSN1S1 (αS1-casein), CSN2 (β-casein), CSN1S2 (αS2-casein), and CSN3 (κ-casein) were resequenced in 253 horses of 14 breeds. The analysis revealed 21 nonsynonymous nucleotide exchanges, as well as 11 synonymous nucleotide exchanges, leading to a total of 31 putative protein isoforms predicted at the DNA level, 26 of which considered novel. Although the majority of the alleles need to be confirmed at the transcript and protein level, a preliminary nomenclature was established for the equine casein alleles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors

    DEFF Research Database (Denmark)

    Stalter, G; Siemer, S; Becht, E

    1994-01-01

    of protein kinase CK2 alpha in tumors/normal tissue (T/N) was 1.58 and that of the protein kinase CK2 beta (T/N) was 2.65. The data suggest that the generally described increase in protein kinase CK2 activity in tumor cells may to some extent result from a deregulation in subunit biosynthesis or degradation...

  14. AMP kinase-related kinase NUAK2 affects tumor growth, migration, and clinical outcome of human melanoma.

    Science.gov (United States)

    Namiki, Takeshi; Tanemura, Atsushi; Valencia, Julio C; Coelho, Sergio G; Passeron, Thierry; Kawaguchi, Masakazu; Vieira, Wilfred D; Ishikawa, Masashi; Nishijima, Wataru; Izumo, Toshiyuki; Kaneko, Yasuhiko; Katayama, Ichiro; Yamaguchi, Yuji; Yin, Lanlan; Polley, Eric C; Liu, Hongfang; Kawakami, Yutaka; Eishi, Yoshinobu; Takahashi, Eishi; Yokozeki, Hiroo; Hearing, Vincent J

    2011-04-19

    The identification of genes that participate in melanomagenesis should suggest strategies for developing therapeutic modalities. We used a public array comparative genomic hybridization (CGH) database and real-time quantitative PCR (qPCR) analyses to identify the AMP kinase (AMPK)-related kinase NUAK2 as a candidate gene for melanomagenesis, and we analyzed its functions in melanoma cells. Our analyses had identified a locus at 1q32 where genomic gain is strongly associated with tumor thickness, and we used real-time qPCR analyses and regression analyses to identify NUAK2 as a candidate gene at that locus. Associations of relapse-free survival and overall survival of 92 primary melanoma patients with NUAK2 expression measured using immunohistochemistry were investigated using Kaplan-Meier curves, log rank tests, and Cox regression models. Knockdown of NUAK2 induces senescence and reduces S-phase, decreases migration, and down-regulates expression of mammalian target of rapamycin (mTOR). In vivo analysis demonstrated that knockdown of NUAK2 suppresses melanoma tumor growth in mice. Survival analysis showed that the risk of relapse is greater in acral melanoma patients with high levels of NUAK2 expression than in acral melanoma patients with low levels of NUAK2 expression (hazard ratio = 3.88; 95% confidence interval = 1.44-10.50; P = 0.0075). These data demonstrate that NUAK2 expression is significantly associated with the oncogenic features of melanoma cells and with the survival of acral melanoma patients. NUAK2 may provide a drug target to suppress melanoma progression. This study further supports the importance of NUAK2 in cancer development and tumor progression, while AMPK has antioncogenic properties.

  15. Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties.

    Science.gov (United States)

    Morales, R; Martinez, M J; Pilosof, A M R

    2017-11-01

    Several strategies to improve the interfacial properties and foaming properties of proteins may be developed; among them, the use of mixtures of biopolymers that exhibit synergistic interactions. The aim of the present work was to evaluate the effect of casein glycomacropeptide (CMP) on foaming and surface properties of sodium caseinate (NaCas) and to establish the role of protein interactions in the aqueous phase. To this end particles size, interfacial and foaming properties of CMP, NaCas and NaCas-CMP mixtures at pH 5.5 and 7 were determined. At both pH, the interaction between CMP and NaCas induced a decrease in the aggregation state of NaCas. Single CMP foams showed the highest and NaCas the lowest foam overrun (FO) and the mixture exhibited intermediate values. CMP foam quickly drained. The drainage profile of mixed foams was closer to NaCas foams; at pH 5.5, mixed foams drained even slower than NaCas foam, exhibiting a synergistic performance. Additionally, a strong synergism was observed on the collapse of mixed foams at pH 5.5. Finally, a model to explain the synergistic effect observed on foaming properties in CMP-NaCas mixtures has been proposed; the reduced aggregation state of NaCas in the presence of CMP, made it more efficient for foam stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Overexpression of protein kinase A - RIalpha reduces lipofection efficiency of cisplatin-resistant human tumor cells.

    Science.gov (United States)

    Son, K K; Rosenblatt, J

    2001-04-10

    Cisplatin-resistant variant A2780CP/vector cells were 4.0-5.3-fold more transfectable and 7.6-fold more resistant to cisplatin than their parent cisplatin-sensitive human ovarian carcinoma A2780/vector cells. Overexpression of cAMP-dependent protein kinase Type I regulatory alpha subunit (PKA-RIalpha) gene in A2780CP cells significantly reduced (maximum 47.0%) the transfection activity, with a slight reduction (maximum 27.3%) of cisplatin resistance, of A2780CP cells. However, RIalpha-overexpressing A2780CP (A2780CP/RIalpha) cells were still 2.5-to 3.0-fold more transfectable and 5.5-fold more resistant to cisplatin than A2780 cells. This results suggest that gene transfer efficiency is associated with cisplatin resistance, in part, through the PKA-mediated cAMP signal transduction pathway.

  17. Fisetin targets phosphatidylinositol-3-kinase and induces apoptosis of human B lymphoma Raji cells

    Directory of Open Access Journals (Sweden)

    Ji Yeon Lim

    2015-01-01

    Full Text Available Aberrant regulation of phosphatidylinositol-3-kinases (PI3Ks is known to be involved in the progression of cancers. PI3K-binding flavonoids such as quercetin and myricetin have been shown to inhibit PI3K activity, but the direct targeting of fisetin to PI3K has not been established. Here, we carried out an in silico investigation of fisetin binding to PI3K and determined fisetin’s inhibitory activity in enzymatic and cell-based assays. In addition, fisetin induced apoptosis in human Burkitt’s lymphoma Raji cells by inhibiting both PI3Ks and mammalian target of rapamycin (mTOR. Our results indicate that fisetin may serve as a natural backbone for the development of novel dual inhibitors of PI3Ks and mTOR for the treatment of cancer.

  18. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  19. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  20. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    Science.gov (United States)

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  1. Activation of Protein Kinase C and Protein Kinase D in Human Natural Killer Cells: Effects of Tributyltin, Dibutyltin, and Tetrabromobisphenol A

    Science.gov (United States)

    Rana, Krupa; Whalen, Margaret M.

    2015-01-01

    Up to now, the ability of target cells to activate protein kinase C (PKC) and protein kinase D (PKD) (which is often a downstream target of PKC) has not been examined in natural killer (NK) lymphocytes. Here we examined whether exposure of human NK cells to lysis sensitive tumor cells activated PKC and PKD. The results of these studies show for the first time that activation of PKC and PKD occurs in response to target cell binding to NK cells. Exposure of NK cells to K562 tumor cells for 10 and 30 minutes increased phosphorylation/activation of both PKC and PKD by roughly 2 fold. Butyltins (tributyltin (TBT); dibutyltin (DBT)) and brominated compounds (tetrabromobisphenol A (TBBPA)) are environmental contaminants that are found in human blood. Exposures of NK cells to TBT, DBT or TBBPA decrease NK cell lytic function in part by activating the mitogen activated protein kinases (MAPKs) that are part of the NK lytic pathway. We established that PKC and PKD are part of the lytic pathway upstream of MAPKs and thus we investigated whether DBT, TBT, and TBBPA exposures activated PKC and PKD. TBT activated PKC by 2–3 fold at 10 min at concentrations ranging from 50–300 nM while DBT caused a 1.3 fold activation at 2.5 μM at 10 min. Both TBT and DBT caused an approximately 2 fold increase in phosphorylation/activation of PKC. Exposures to TBBPA caused no statistically significant changes in either PKC or PKD activation. PMID:26228090

  2. Molecular characterization of thymidine kinase mutants of human cells induced by densely ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A; Little, J B

    1989-04-01

    In order to characterize the nature of mutants induced by densely ionizing radiations at an autosomal locus, the authors have isolated a series of 99 thymidine kinase (tk) mutants of human TK6 lymphoblastoid cells iraadiated with either fast neutrons or accelerated argon ions. Individual muant clones were examined for alterations in their restriction fragment pattern after hybridization with a human cDNA probe for tk. A restriction fragment length polymorphism (RFLP) allowed identification of the active tk allele. Among the neutron-induced mutants, 34/52 exhibited loss of the previously active allele while 6/52 exhibited intragenic rearrangements. Among the argon-induced mutants 27/46 exhibited allele loses and 10/46 showed rearrangements within the tk locus. The remaining mutants had restriction patterns indistinguishable from the TK6 parent. Each of the mutant clones was further examined for structural alterations within the c-erbAl locus which has been localized to chromosome 17q11-q22, at some unknown distance from the human tk locus at chromosome 17q21-q22. A substantial proportion (54%) of tk mutants induced by densely ionizing radiation showed loss of the c-erb locus on the homologous chromosome, suggesting that the mutations involve large-scale genetic changes. (author). 51 refs.; 2 figs.; 6 tabs.

  3. Expression of Eph receptor tyrosine kinases and their ligands in human Granulosa lutein cells and human umbilical vein endothelial cells.

    Science.gov (United States)

    Xu, Y; Zagoura, D; Keck, C; Pietrowski, D

    2006-11-01

    Corpus luteum development is regulated by gonadotropins and accompanied by extremely rapid vascularization of the avascular granulosa cell compartiment by endothelial cells (EC). The proliferation of Granulosa cells (GC) and EC is a complex interplay and takes place in a spatially and temporarily coordinated manner. The erythropoietin-producing hepatoma amplified sequence (Eph) receptors and their ligands-the ephrins- are a recently detected family of membrane located protein tyrosine kinases which play a crucial role in the growth and development of nerve and blood vessel network. We report about the mRNA expression pattern of Ephs and their ligands in human GC, in human EC, and in carcinoma cell lines OvCar-3 and Hela. The mRNA of EphA4, EphA7, ephrinA4, ephrinB1 and ephrinB2 was detected in GC and EC, while EphA2 was expressed only in GC. The expression of various Ephs and ephrins did not change in GC after stimulation with human chorion gonadotropin. Our study analyzes for the first time the expression of the complete human Eph/ephriny-system in GC and in EC. The remarkable similarity between these two cell types supports the theory of a functional relationship of EC and GC. In addition, it was shown that hCG is not a major determinant of Eph/ephrin regulation in GC.

  4. and K-casein genes in Egyptian sheep breeds

    African Journals Online (AJOL)

    Objective: Casein genetic polymorphisms are important and well known due to their effects on quantitative traits and technological properties of milk manufacturing. The casein fraction of ruminant milk proteins consists of four caseins, namely 8s1-, 8s2-, β-and K-casein. At the DNA level, polymerase chain reaction (PCR) ...

  5. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    Science.gov (United States)

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2* Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue11The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  6. Casein micelle structure: a concise review

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-01-01

    Full Text Available Milk is a complex biological fluid with high amount of proteins, lipid and minerals. The function of milk is to supply nutrients such as essential amino acids required for the growth of the newborn. In addition, due to the importance of casein and casein micelles for the functional behavior of dairy products, the nature and structure of casein micelles have been studied extensively. However, the exact structure of casein micelles is still under debate. Various models for casein micelle structure have been proposed. Most of the proposedmodels fall into three general categories, which are: coat-core, subunit (sub-micelles, and internal structure models. The coat-core models, proposed by Waugh and Nobel in 1965, Payens in 1966, Parry and Carroll in 1969, and Paquin and co-workers in 1987, describe the micelle as an aggregate of caseins with outer layer differing in composition form the interior, and the structure of the inner part is not accurately identified. The sub-micelle models, proposed by Morr in 1967, Slattery and Evard in 1973, Schmidt in 1980, Walstra in1984, and Ono and Obata in 1989, is considered to be composed of roughly spherical uniform subunits. The last models, the internal structure models, which were proposed by Rose in 1969, Garnier and Ribadeau- Dumas in 1970, Holt in 1992, and Horne in 1998, specify the mode of aggregation of the different caseins.

  7. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    Science.gov (United States)

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  8. BIOLOGICAL VALUE OF GOAT MILK CASEIN

    OpenAIRE

    Samir Ahmed Salem; Elsayed Ibrahim Elagamy; Fatma Salama; Nagwa Hussein Abosoliman

    2009-01-01

    The effect of feeding of goat and cow milk caseins on the body weight gain, body organs, erythrocytic & leukocytic counts and their parameters, plasma lipid profile, liver enzyme activities, renal function and plasma proteins of rats over a period of 45 days was studied. Feeding of goat or cow milk caseins had no significant effect on the parameters studied (P≤0.05) between rats fed either milk. However, rats fed on goat milk casein showed a significant increase in high density lipoproteins...

  9. Stability of casein micelles in milk

    Science.gov (United States)

    Tuinier, R.; de Kruif, C. G.

    2002-07-01

    Casein micelles in milk are proteinaceous colloidal particles and are essential for the production of flocculated and gelled products such as yogurt, cheese, and ice-cream. The colloidal stability of casein micelles is described here by a calculation of the pair potential, containing the essential contributions of brush repulsion, electrostatic repulsion, and van der Waals attraction. The parameters required are taken from the literature. The results are expressed by the second osmotic virial coefficient and are quite consistent with experimental findings. It appears that the stability is mainly attributable to a steric layer of κ-casein, which can be described as a salted polyelectrolyte brush.

  10. p21-Activated kinase (PAK regulates cytoskeletal reorganization and directional migration in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Asako Itakura

    Full Text Available Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In this study, we characterized the role of p21-activated kinase (PAK downstream of Rho GTPases in cytoskeletal remodeling and chemotactic processes of human neutrophils. We found that PAK activation occurred upon stimulation of neutrophils with f-Met-Leu-Phe (fMLP, and PAK accumulated at the actin-rich leading edge of stimulated neutrophils, suggesting a role for PAK in Rac-dependent actin remodeling. Treatment with the pharmacological PAK inhibitor, PF3758309, abrogated the integrity of RhoA-mediated actomyosin contractility and surface adhesion. Moreover, inhibition of PAK activity impaired neutrophil morphological polarization and directional migration under a gradient of fMLP, and was associated with dysregulated Ca(2+ signaling. These results suggest that PAK serves as an important effector of Rho-family GTPases in neutrophil cytoskeletal reorganization, and plays a key role in driving efficient directional migration of human neutrophils.

  11. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin

    International Nuclear Information System (INIS)

    Wu, T.-S.; Yu, F.-Y.; Su, C.-C.; Kan, J.-C.; Chung, C.-P.; Liu, B.-H.

    2005-01-01

    Patulin (PAT), a mycotoxin produced by certain species of Penicillium and Aspergillus, is often detectable in moldy fruits and their derivative products. PAT led to a concentration-dependent and time-dependent increase in phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human embryonic kidney (HEK293) cells, human peripheral blood mononuclear cells (PBMCs), and Madin-Darby canine kidney (MDCK) cells. Exposure of HEK293 cells to concentrations above 5 μM PAT for 30 min induced ERK1/2 phosphorylation; activation of ERK1/2 was also observed after 24 h incubation with 0.05 μM of PAT. Treatment of human PBMCs for 30 min with 30 μM PAT dramatically increased the phosphorylated ERK1/2 levels. Both MEK1/2 inhibitors, U0126 and PD98059, suppressed ERK1/2 activation in either HEK293 or MDCK cells. In HEK293 cells, U0126-mediated inhibition of PAT-induced ERK1/2 phosphorylation resulted in a significant decrease in levels of DNA damage, expressed as tail moment values, in the single cell gel electrophoresis assay. Conversely, U0126 did not affect cell viability, lactate dehydrogenase release, and the DNA synthesis rate in PAT-treated cultures. Exposure of HEK293 cells for 90 min to 15 μM PAT elevated the levels of early growth response gene-1 (egr-1) mRNA, but not of c-fos, fosB, and junB mRNAs. These results indicate that in human cells, PAT causes a rapid and persistent activation of ERK1/2 and this signaling pathway plays an important role in mediating PAT-induced DNA damage and egr-1 gene expression

  12. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods.

    Science.gov (United States)

    Holt, C; Carver, J A; Ecroyd, H; Thorn, D C

    2013-10-01

    A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional

  13. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist; Lorenzen, Janne Kunchel; Gomes, Sisse

    2014-01-01

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC......) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic...

  14. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38.

    Science.gov (United States)

    Yustein, Jason T; Xia, Liang; Kahlenburg, J Michelle; Robinson, Dan; Templeton, Dennis; Kung, Hsing-Jien

    2003-09-18

    The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.

  15. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway.

    Science.gov (United States)

    Razeghi, Peter; Bruckner, Brian A; Sharma, Saumya; Youker, Keith A; Frazier, O H; Taegtmeyer, Heinrich

    2003-01-01

    Left ventricular assist device (LVAD) support of the failing human heart improves myocyte function and increases cell survival. One potential mechanism underlying this phenomenon is activation of the protein kinase B (PKB)/Akt/glycogen synthase kinase-3beta (GSK-3beta) survival pathway. Left ventricular tissue was obtained both at the time of implantation and explantation of the LVAD (n = 11). Six patients were diagnosed with idiopathic dilated cardiomyopathy, 4 patients with ischemic cardiomyopathy and 1 patient with peripartum cardiomyopathy. The mean duration of LVAD support was 205 +/- 35 days. Myocyte diameter and phosphorylation of ERK were used as indices for reverse remodeling. Transcript levels of genes required for the activation of PKB/Akt (insulin-like growth factor-1, insulin receptor substrate-1) were measured by quantitative RT-PCR. In addition, we measured the relative activity of PKB/Akt and GSK-3beta, and assayed for molecular and histological indices of PKB/Akt activation (cyclooxygenase mRNA levels and glycogen levels). Myocyte diameter and phosphorylation of ERK decreased with LVAD support. In contrast, none of the components of the PKB/Akt/GSK-3beta pathway changed significantly with mechanical unloading. The PKB/Akt/GSK-3beta pathway is not activated during LVAD support. Other signaling pathways must be responsible for the improvement of cellular function and cell survival during LVAD support. Copyright 2003 S. Karger AG, Basel

  16. Casein-Kinase-2-Beta und neuronale Entwicklungsprozesse

    OpenAIRE

    Kibler, Eike Mathias U.

    2003-01-01

    Die Pilzkörper von Drosophila melanogaster stellen eine für die Lebensfähigkeit dieses Organismus entbehrliche Gehirnstruktur dar. Die Entwicklungsprozesse, die der Bildung dieser zentralnervösen Struktur zugrunde liegen, sind gut erforscht. Die neuronalen Stammzellen, die für die Bildung dieser Gehirnstruktur verantwortlich sind, sind identifiziert und experimentell gut zugänglich. Daher bietet sich die Drosophila-Pilzkörperentwicklung als neurogenetisches Modellsystem an, grundlegende Mecha...

  17. Circadian and pharmacological regulation of casein kinase I in the ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... formed in strict accordance with NIH rules for animal care and maintenance. ... date and a mammalian protease inhibitor cocktail (Sigma,. Cat. No. P8340; dilution ..... 1998 Circadian behavior and plasticity of light-induced ...

  18. Downregulation of an Aim-1 Kinase Couples with Megakaryocytic Polyploidization of Human Hematopoietic Cells

    Science.gov (United States)

    Kawasaki, Akira; Matsumura, Itaru; Miyagawa, Jun-ichiro; Ezoe, Sachiko; Tanaka, Hirokazu; Terada, Yasuhiko; Tatsuka, Masaaki; Machii, Takashi; Miyazaki, Hiroshi; Furukawa, Yusuke; Kanakura, Yuzuru

    2001-01-01

    During the late phase of megakaryopoiesis, megakaryocytes undergo polyploidization, which is characterized by DNA duplication without concomitant cell division. However, it remains unknown by which mechanisms this process occurs. AIM-1 and STK15 belong to the Aurora/increase-in-ploidy (Ipl)1 serine/threonine kinase family and play key roles in mitosis. In a human interleukin-3–dependent cell line, F-36P, the expressions of AIM-1 and STK15 mRNA were specifically observed at G2/M phase of the cell cycle during proliferation. In contrast, the expressions of AIM-1 and STK15 were continuously repressed during megakaryocytic polyploidization of human erythro/megakaryocytic cell lines (F-36P, K562, and CMK) treated with thrombopoietin, activated ras (H-rasG12V), or phorbol ester. Furthermore, their expressions were suppressed during thrombopoietin-induced polyploidization of normal human megakaryocytes. Activation of AIM-1 by the induced expression of AIM-1(wild-type) canceled TPA-induced polyploidization of K562 cells significantly, whereas that of STK15 did not. Moreover, suppression of AIM-1 by the induced expression of AIM-1 (K/R, dominant-negative type) led to polyploidization in 25% of K562 cells, whereas STK15(K/R) showed no effect. Also, the induced expression of AIM-1(K/R) in CMK cells provoked polyploidization up to 32N. These results suggested that downregulation of AIM-1 at M phase may be involved in abortive mitosis and polyploid formation of megakaryocytes. PMID:11266445

  19. Comparative active-site mutation study of human and Caenorhabditis elegans thymidine kinase 1

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Uhlin, Ulla; Munch-Petersen, Birgitte

    2012-01-01

    surrounding the substrate base. In CeTK1, some of these mutations led to increased activity with deoxycytidine and deoxyguanosine, two unusual substrates for TK1-like kinases. In HuTK1, mutation of T163 to S resulted in a kinase with a 140-fold lower K(m) for the antiviral nucleoside analogue 3'-azido-3...

  20. COMPARATIVE STUDY ON MILK CASEIN ASSAY METHODS

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIłĂ

    2008-05-01

    Full Text Available Casein, the main milk protein was determined by different assay methods: the gravimetric method, the method based on the neutralization of the NaOH excess used for the casein precipitate solving and the method based on the titration of the acetic acid used for the casein precipitation. The last method is the simplest one, with the fewer steps, and also with the lowest error degree. The results of the experiment revealed that the percentage of casein from the whole milk protein represents between 72.6–81.3% in experiment 1, between 73.6–81.3% in experiment 2 and between 74.3–81% in experiment 3.

  1. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarcha...

  2. Interactions of casein micelles with calcium phosphate particles.

    Science.gov (United States)

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  3. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase

    International Nuclear Information System (INIS)

    Haberkorn, Uwe; Khazaie, Khashayarsha; Morr, Iris; Altmann, Annette; Mueller, Markus; Kaick, Gerhard van

    1998-01-01

    Assessment of suicide enzyme activity would have considerable impact on the planning and the individualization of suicide gene therapy of malignant tumors. This may be done by determining the pharmacokinetics of specific substrates. We generated ganciclovir (GCV)-sensitive human mammary carcinoma cell lines after transfection with a retroviral vector bearing the herpes simplex virus thymidine kinase (HSV-tk) gene. Thereafter, uptake measurements and HPLC analyses were performed up to 48 h in an HSV-tk-expressing cell line and in a wild-type cell line using tritiated GCV. HSV-tk-expressing cells showed higher GCV uptake and phosphorylation than control cells, whereas in wild-type MCF7 cells no phosphorylated GCV was detected. In bystander experiments the total GCV uptake was related to the amount of HSV-tk-expressing cells. Furthermore, the uptake of GCV correlated closely with the growth inhibition (r=0.92). Therefore, the accumulation of specific substrates may serve as an indicator of the HSV-tk activity and of therapy outcome. Inhibition and competition experiments demonstrated slow transport of GCV by the nucleoside carriers. The slow uptake and low affinity to HSV-tk indicate that GCV is not an ideal substrate for the nucleoside transport systems or for HSV-tk. This may be the limiting factor for therapy success, necessitating the search for better substrates of HSV-tk

  4. The tyrosine kinase inhibitor dasatinib induces a marked adipogenic differentiation of human multipotent mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Adriana Borriello

    Full Text Available BACKGROUND: The introduction of specific BCR-ABL inhibitors in chronic myelogenous leukemia therapy has entirely mutated the prognosis of this hematologic cancer from being a fatal disorder to becoming a chronic disease. Due to the probable long lasting treatment with tyrosine-kinase inhibitors (TKIs, the knowledge of their effects on normal cells is of pivotal importance. DESIGN AND METHODS: We investigated the effects of dasatinib treatment on human bone marrow-derived mesenchymal stromal cells (MSCs. RESULTS: Our findings demonstrate, for the first time, that dasatinib induces MSCs adipocytic differentiation. Particularly, when the TKI is added to the medium inducing osteogenic differentiation, a high MSCs percentage acquires adipocytic morphology and overexpresses adipocytic specific genes, including PPARγ, CEBPα, LPL and SREBP1c. Dasatinib also inhibits the activity of alkaline phosphatase, an osteogenic marker, and remarkably reduces matrix mineralization. The increase of PPARγ is also confirmed at protein level. The component of osteogenic medium required for dasatinib-induced adipogenesis is dexamethasone. Intriguingly, the increase of adipocytic markers is also observed in MSCs treated with dasatinib alone. The TKI effect is phenotype-specific, since fibroblasts do not undergo adipocytic differentiation or PPARγ increase. CONCLUSIONS: Our data demonstrate that dasatinib treatment affects bone marrow MSCs commitment and suggest that TKIs therapy might modify normal phenotypes with potential significant negative consequences.

  5. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family.

    Directory of Open Access Journals (Sweden)

    Douglas R Boettner

    2008-01-01

    Full Text Available Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK, was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i incubation of ameba with anti-PATMK antibodies; (ii PATMK mRNA knock-down using a novel shRNA expression system; and (iii expression of a carboxy-truncation of PATMK (PATMK(delta932. Expression of the carboxy-truncation of PATMK(delta932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.

  6. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family.

    Science.gov (United States)

    Boettner, Douglas R; Huston, Christopher D; Linford, Alicia S; Buss, Sarah N; Houpt, Eric; Sherman, Nicholas E; Petri, William A

    2008-01-01

    Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMK(delta932)). Expression of the carboxy-truncation of PATMK(delta932) also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.

  7. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    International Nuclear Information System (INIS)

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana; Pfeilschifter, Josef; Huwiler, Andrea

    2008-01-01

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1α and HIF-2α, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1α or HIF-2α by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression

  8. SOYBEAN AND CASEIN HYDROLYSATES INDUCE GRAPEVINE IMMUNE RESPONSES AND RESISTANCE AGAINST PLASMOPARA VITICOLA

    Directory of Open Access Journals (Sweden)

    Nihed eLachhab

    2014-12-01

    Full Text Available Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy and casein (cas to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defence responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signalling events were followed by transcriptome reprogramming, including the up-regulation of defence genes encoding pathogenesis-related (PR proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas one. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack.

  9. A Dual Role for the Nonreceptor Tyrosine Kinase Pyk2 during the Intracellular Trafficking of Human Papillomavirus 16.

    Science.gov (United States)

    Gottschalk, Elinor Y; Meneses, Patricio I

    2015-09-01

    The infectious process of human papillomaviruses (HPVs) has been studied considerably, and many cellular components required for viral entry and trafficking continue to be revealed. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during HPV16 pseudovirion infection of human keratinocytes. We found that Pyk2 is necessary for infection and appears to be involved in the intracellular trafficking of the virus. Small interfering RNA-mediated reduction of Pyk2 resulted in a significant decrease in infection but did not prevent viral entry at the plasma membrane. Pyk2 depletion resulted in altered endolysosomal trafficking of HPV16 and accelerated unfolding of the viral capsid. Furthermore, we observed retention of the HPV16 pseudogenome in the trans-Golgi network (TGN) in Pyk2-depleted cells, suggesting that the kinase could be required for the viral DNA to exit the TGN. While Pyk2 has previously been shown to function during the entry of enveloped viruses at the plasma membrane, the kinase has not yet been implicated in the intracellular trafficking of a nonenveloped virus such as HPV. Additionally, these data enrich the current literature on Pyk2's function in human keratinocytes. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during human papillomavirus (HPV) infection of human skin cells. Infections with high-risk types of HPV such as HPV16 are the leading cause of cervical cancer and a major cause of genital and oropharyngeal cancer. As a nonenveloped virus, HPV enters cells by interacting with cellular receptors and established cellular trafficking routes to ensure that the viral DNA reaches the nucleus for productive infection. This study identified Pyk2 as a cellular component required for the intracellular trafficking of HPV16 during infection. Understanding the infectious pathways of HPVs is critical for developing additional preventive therapies. Furthermore, this study advances our knowledge of

  10. Effects of butyltin exposures on MAP kinase dependent transcription regulators in human natural killer cells

    Science.gov (United States)

    Person, Rachel J.; Whalen, Margaret M.

    2010-01-01

    Natural Killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT) have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. 1 h exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression. PMID:20370538

  11. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    International Nuclear Information System (INIS)

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-01-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK α subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21 waf/cip as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21 waf/cip and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21 waf/cip pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  12. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    Science.gov (United States)

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  13. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Siersbaek, Majken S; Chen, Li

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  14. Importance of intrinsic properties of dense caseinate dispersions for structure formation

    NARCIS (Netherlands)

    Manski, J.M.; Riemsdijk, van L.E.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures

  15. Retained sensitivity to cytotoxic pyrimidine nucleoside analogs in thymidine kinase 2 deficient human fibroblasts.

    Science.gov (United States)

    Bjerke, Mia; Solaroli, Nicola; Lesko, Nicole; Balzarini, Jan; Johansson, Magnus; Karlsson, Anna

    2010-01-01

    Thymidine kinase 2 (TK2) is a mitochondrial deoxyribonucleoside kinase that phosphorylates several nucleoside analogs used in anti-viral and anti-cancer therapy. A fibroblast cell line with decreased TK2 activity was investigated in order to obtain insights in the effects of TK2 deficiency on nucleotide metabolism. The role of TK2 for the sensitivity against cytotoxic nucleoside analogs was also investigated. The TK2 deficient cells retained their sensitivity against all pyrimidine nucleoside analogs tested. This study suggests that nucleoside analog phosphorylation mediated by TK2 may be less important, compared to other deoxyribonucleoside kinases, for the cytotoxic effects of these compounds.

  16. Complexation of lysozyme with sodium caseinate and micellar casein in aqueous buffered solutions

    NARCIS (Netherlands)

    Antonov, Y.A.; Moldenaers, P.; Cardinaels, R.M.

    We present an extended structural and morphological study of the complexation of lysozyme (Lys) with sodium caseinate (SC) and micellar casein (MC) by means of turbidity measurements, phase analysis, dynamic, static and electrophoretic light scattering, bright-field and confocal laser scanning

  17. KinMutRF: a random forest classifier of sequence variants in the human protein kinase superfamily

    DEFF Research Database (Denmark)

    Pons, Tirso; Vazquez, Miguel; Matey-Hernandez, María Luisa

    2016-01-01

    annotations from UniProt, Phospho.ELM and FireDB. KinMutRF identifies disease-associated variants satisfactorily (Acc: 0.88, Prec:0.82, Rec:0.75, F-score:0.78, MCC:0.68) when trained and cross-validated with the 3689 human kinase variants from UniProt that have been annotated as neutral or pathogenic. All...

  18. Aspirin Augments IgE-Mediated Histamine Release from Human Peripheral Basophils via Syk Kinase Activation

    Directory of Open Access Journals (Sweden)

    Hiroaki Matsuo

    2013-01-01

    Conclusions: Aspirin enhanced histamine release from basophils via increased Syk kinase activation, and that the augmentation of histamine release by NSAIDs or FAs may be one possible cause of worsening symptoms in patients with chronic urticaria and FDEIA.

  19. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase.

    Science.gov (United States)

    Stoyanov, B; Volinia, S; Hanck, T; Rubio, I; Loubtchenkov, M; Malek, D; Stoyanova, S; Vanhaesebroeck, B; Dhand, R; Nürnberg, B

    1995-08-04

    Phosphoinositide-3 kinase activity is implicated in diverse cellular responses triggered by mammalian cell surface receptors and in the regulation of protein sorting in yeast. Receptors with intrinsic and associated tyrosine kinase activity recruit heterodimeric phosphoinositide-3 kinases that consist of p110 catalytic subunits and p85 adaptor molecules containing Src homology 2 (SH2) domains. A phosphoinositide-3 kinase isotype, p110 gamma, was cloned and characterized. The p110 gamma enzyme was activated in vitro by both the alpha and beta gamma subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) and did not interact with p85. A potential pleckstrin homology domain is located near its amino terminus. The p110 gamma isotype may link signaling through G protein-coupled receptors to the generation of phosphoinositide second messengers phosphorylated in the D-3 position.

  20. Retained sensitivity to cytotoxic pyrimidine nucleoside analogs in thymidine kinase 2 deficient human fibroblasts

    OpenAIRE

    Bjerke, Mia; Solaroli, Nicola; Lesko, Nicole; Balzarini, Jan; Johansson, Magnus; Karlsson, Anna

    2010-01-01

    Thymidine kinase 2 (TK2) is a mitochondrial deoxyribonucleoside kinase that phosphorylates several nucleoside analogs used in anti-viral and anti-cancer therapy. A fibroblast cell line with decreased TK2 activity was investigated in order to obtain insights in the effects of TK2 deficiency on nucleotide metabolism. The role of TK2 for the sensitivity against cytotoxic nucleoside analogs was also investigated. The TK2 deficient cells retained their sensitivity against all pyrimidine nucleoside...

  1. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy.

    Science.gov (United States)

    Aronica, Eleonora; Zurolo, Emanuele; Iyer, Anand; de Groot, Marjolein; Anink, Jasper; Carbonell, Caterina; van Vliet, Erwin A; Baayen, Johannes C; Boison, Detlev; Gorter, Jan A

    2011-09-01

    Adenosine kinase (ADK) represents the key metabolic enzyme for the regulation of extracellular adenosine levels in the brain. In adult brain, ADK is primarily present in astrocytes. Several lines of experimental evidence support a critical role of ADK in different types of brain injury associated with astrogliosis, which is also a prominent morphologic feature of temporal lobe epilepsy (TLE). We hypothesized that dysregulation of ADK is an ubiquitous pathologic hallmark of TLE. Using immunocytochemistry and Western blot analysis, we investigated ADK protein expression in a rat model of TLE during epileptogenesis and the chronic epileptic phase and compared those findings with tissue resected from TLE patients with mesial temporal sclerosis (MTS). In rat control hippocampus and cortex, a low baseline expression of ADK was found with mainly nuclear localization. One week after the electrical induction of status epilepticus (SE), prominent up-regulation of ADK became evident in astrocytes with a characteristic cytoplasmic localization. This increase in ADK persisted at least for 3-4 months after SE in rats developing a progressive form of epilepsy. In line with the findings from the rat model, expression of astrocytic ADK was also found to be increased in the hippocampus and temporal cortex of patients with TLE. In addition, in vitro experiments in human astrocyte cultures showed that ADK expression was increased by several proinflammatory molecules (interleukin-1β and lipopolysaccharide). These results suggest that dysregulation of ADK in astrocytes is a common pathologic hallmark of TLE. Moreover, in vitro data suggest the existence of an additional layer of modulatory crosstalk between the astrocyte-based adenosine cycle and inflammation. Whether this interaction also can play a role in vivo needs to be further investigated. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  2. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    Science.gov (United States)

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  3. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    Science.gov (United States)

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    International Nuclear Information System (INIS)

    Contreras-Paredes, Adriana; Cruz-Hernandez, Erick de la; Martinez-Ramirez, Imelda; Duenas-Gonzalez, Alfonso; Lizano, Marcela

    2009-01-01

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation

  5. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells.

    Science.gov (United States)

    Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique

    2010-05-01

    Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.

  6. Molecular mechanisms of the synergy between cysteinyl-leukotrienes and receptor tyrosine kinase growth factors on human bronchial fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Hajime Yoshisue

    2006-12-01

    Full Text Available We have reported that cysteinyl-leukotrienes (cys-LTs synergise not only with epidermal growth factor (EGF but also with platelet-derived growth factor (PDGF and fibroblast growth factor (FGF to induce mitogenesis in human bronchial fibroblasts. We now describe the molecular mechanisms underlying this synergism. Mitogenesis was assessed by incorporation of [3H]thymidine into DNA and changes in protein phosphorylation by Western blotting. Surprisingly, no CysLT receptor antagonists (MK-571, montelukast, BAY u9773 prevented the synergistic mitogenesis. LTD4 did not cause phosphorylation of EGFR nor did it augment EGF-induced phosphorylation of EGFR, and the synergy between LTD4 and EGF was not blocked by the metalloproteinase inhibitor GM6001 or by an HB-EGF neutralising antibody. The EGFR-selective kinase inhibitor, AG1478, suppressed the synergy by LTD4 and EGF, but had no effect on the synergy with PDGF and FGF. While inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase and protein kinase C (PKC prevented the synergy, these drugs also inhibited mitogenesis elicited by EGF alone. In contrast, pertussis toxin (PTX efficiently inhibited the potentiating effect of LTD4 on EGF-induced mitogenesis, as well as that provoked by PDGF or FGF, but had no effect on mitogenesis elicited by the growth factors alone. Whereas LTD4 alone did not augment phosphorylation of extracellular signal-regulated kinase (Erk-1/2 and Akt, it increased phosphorylation of PKC in a Gi-dependent manner. Addition of LTD4 prolonged the duration of EGF-induced phosphorylation of Erk-1/2 and Akt, both of which were sensitive to PTX. The effect of cys-LTs involves a PTX-sensitive and PKC-mediated intracellular pathway leading to sustained growth factor-dependent phosphorylation of Erk-1/2 and Akt.

  7. Casein Micelle Dispersions under Osmotic Stress

    Science.gov (United States)

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  8. Characteristic aroma components of rennet casein.

    Science.gov (United States)

    Karagül-Yüceer, Yonca; Vlahovich, Katrina N; Drake, MaryAnne; Cadwallader, Keith R

    2003-11-05

    Rennet casein, produced by enzymatic (rennet) precipitation of casein from pasteurized skim milk, is used in both industrial (technical) and food applications. The flavor of rennet casein powder is an important quality parameter; however, the product often contains an odor described as like that of animal/wet dog. Two commercial rennet casein powders were evaluated to determine the compounds responsible for the typical odor. Aroma extracts were prepared by high-vacuum distillation of direct solvent (ether) extracts and analyzed by gas chromatography-olfactometry (GCO), aroma extract dilution analysis (AEDA), and GC-mass spectrometry (MS). Odorants detected by GCO were typical of those previously reported in skim milk powders and consisted mainly of short-chain volatile acids, phenolic compounds, lactones, and furanones. Results of AEDA indicated o-aminoacetophenone to be a potent odorant; however, sensory descriptive sensory analysis of model aroma systems revealed that the typical odor of rennet casein was principally caused by hexanoic acid, indole, guaiacol, and p-cresol.

  9. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    Science.gov (United States)

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  10. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  11. 21 CFR 520.1157 - Iodinated casein tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iodinated casein tablets. 520.1157 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1157 Iodinated casein tablets. (a) Specifications. Each 1-gram tablet contains 25 milligrams of iodinated casein. (b) Sponsor...

  12. Structure-rheology relations in sodium caseinate containing systems

    NARCIS (Netherlands)

    Ruis, H.G.M.

    2007-01-01

    The general aim of the work described in this thesis was to investigate structure-rheologyrelations for dairy related products, focusing on model systems containing sodium caseinate. The acid inducedgelationof sodium caseinate, of sodium caseinate stabilized emulsions, and the effect of shear on the

  13. hermal decomposition of irradiated casein molecules

    International Nuclear Information System (INIS)

    Ali, M.A.; Elsayed, A.A.

    1998-01-01

    NON-Isothermal studies were carried out using the derivatograph where thermogravimetry (TG) and differential thermogravimetry (DTG) measurements were used to obtain the activation energies of the first and second reactions for casein (glyco-phospho-protein) decomposition before and after exposure to 1 Gy γ-rays and up to 40 x 1 04 μg Gy fast neutrons. 25C f was used as a source of fast neutrons, associated with γ-rays. 137 Cs source was used as pure γ-source. The activation energies for the first and second reactions for casein decomposition were found to be smaller at 400 μGy than that at lower and higher fast neutron doses. However, no change in activation energies was observed after γ-irradiation. it is concluded from the present study that destruction of casein molecules by low level fast neutron doses may lead to changes of shelf storage period of milk

  14. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    Energy Technology Data Exchange (ETDEWEB)

    Manceur, Aziza P. [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Michael [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Holowacz, Tamara [Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Witterick, Ian [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Department of Otolaryngology, Head and Neck Surgery, University of Toronto, ON (Canada); Weksberg, Rosanna [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); McCurdy, Richard D. [The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); Warsh, Jerry J. [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Audet, Julie, E-mail: julie.audet@utoronto.ca [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada)

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  17. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    International Nuclear Information System (INIS)

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-01-01

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  18. Factors influencing casein micelle size in milk of individual cows: Genetic variants and glycosylation of k-casein

    NARCIS (Netherlands)

    Bijl, E.; Vries, de R.F.M.; Valenberg, van H.J.F.; Huppertz, T.; Hooijdonk, van A.C.M.

    2014-01-01

    The average casein micelle size varies widely between milk samples of individual cows. The factors that cause this variation in size are not known but could provide more insight into casein micelle structure and into the physiology of casein micelle formation. The objective of this research was

  19. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  20. The cytotoxic effects of regorafenib in combination with protein kinase D inhibition in human colorectal cancer cells

    Science.gov (United States)

    Wei, Ning; Chu, Edward; Wu, Shao-yu; Wipf, Peter; Schmitz, John C.

    2015-01-01

    Metastatic colorectal cancer (mCRC) remains a major public health problem, and diagnosis of metastatic disease is usually associated with poor prognosis. The multi-kinase inhibitor regorafenib was approved in 2013 in the U.S. for the treatment of mCRC patients who progressed after standard therapies. However, the clinical efficacy of regorafenib is quite limited. One potential strategy to improve mCRC therapy is to combine agents that target key cellular signaling pathways, which may lead to synergistic enhancement of antitumor efficacy and overcome cellular drug resistance. Protein kinase D (PKD), a family of serine/threonine kinases, mediates key signaling pathways implicated in multiple cellular processes. Herein, we evaluated the combination of regorafenib with a PKD inhibitor in several human CRC cells. Using the Chou-Talalay model, the combination index values for this combination treatment demonstrated synergistic effects on inhibition of cell proliferation and clonal formation. This drug combination resulted in induction of apoptosis as determined by flow cytometry, increased PARP cleavage, and decreased activation of the anti-apoptotic protein HSP27. This combination also yielded enhanced inhibition of ERK, AKT, and NF-κB signaling. Taken together, PKD inhibition in combination with regorafenib appears to be a promising strategy for the treatment of mCRC. PMID:25544765

  1. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  2. A sensitive radioimmunoassay for a component of mouse casein

    International Nuclear Information System (INIS)

    Enami, Jumpei; Nandi, S.; California Univ. Berkeley

    1977-01-01

    Mouse casein (m.w. 22,000 daltons) has been purified by employing Sephadex G-100 and DEAE-cellulose column chromatographies. A sensitive radioimmunoassay method has been developed by using [ 125 I]-labelled casein and antiserum elicited in rabbits after injection of glutaraldehyde-treated casein. The assay method is capable of detecting as little as 0.1 ng of casein. The use of the present radioimmunoassay method in detecting casein production in cultured mouse mammary explants has also been demonstrated

  3. Phosphorylation of protein kinase C sites Ser42/44 decreases Ca2+-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes

    NARCIS (Netherlands)

    Wijnker, P.J.M.; Sequeira Oliveira, V.; Witjas-Paalberends, E.R.; Foster, D.B.; dos Remedios, C.G.; Murphy, A.M.; Stienen, G.J.M.; van der Velden, J.

    2014-01-01

    Protein kinase C (PKC)-mediated phosphorylation of troponin I (cTnI) at Ser42/44 is increased in heart failure. While studies in rodents demonstrated that PKC-mediated Ser42/44 phosphorylation decreases maximal force and ATPase activity, PKC incubation of human cardiomyocytes did not affect maximal

  4. TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors.

    Science.gov (United States)

    Ibberson, Mark; Bron, Sylvian; Guex, Nicolas; Faes-van't Hull, Eveline; Ifticene-Treboux, Assia; Henry, Luc; Lehr, Hans-Anton; Delaloye, Jean-François; Coukos, George; Xenarios, Ioannis; Doucey, Marie-Agnès

    2013-07-01

    Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response. ©2013 AACR.

  5. PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors

    Directory of Open Access Journals (Sweden)

    Schmidt Enrico K

    2004-05-01

    Full Text Available Abstract Background Erythropoietin is a multifunctional cytokine which regulates the number of erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs with erythropoietin (Epo leads to the activation of the mitogenic kinases (MEKs and Erks. How this is accomplished mechanistically remained unclear. Results Biochemical studies with human cord blood-derived PEPs now show that Ras and the class Ib enzyme of the phosphatidylinositol-3 kinase (PI3K family, PI3K gamma, are activated in response to minimal Epo concentrations. Surprisingly, three structurally different PI3K inhibitors block Ras, MEK and Erk activation in PEPs by Epo. Furthermore, Erk activation in PEPs is insensitive to the inhibition of Raf kinases but suppressed upon PKC inhibition. In contrast, Erk activation induced by stem cell factor, which activates c-Kit in the same cells, is sensitive to Raf inhibition and insensitive to PI3K and PKC inhibitors. Conclusions These unexpected findings contrast with previous results in human primary cells using Epo at supraphysiological concentrations and open new doors to eventually understanding how low Epo concentrations mediate the moderate proliferation of erythroid progenitors under homeostatic blood oxygen levels. They indicate that the basal activation of MEKs and Erks in PEPs by minimal concentrations of Epo does not occur through the classical cascade Shc/Grb2/Sos/Ras/Raf/MEK/Erk. Instead, MEKs and Erks are signal mediators of PI3K, probably the recently described PI3K gamma, through a Raf-independent signaling pathway which requires PKC activity. It is likely that higher concentrations of Epo that are induced by hypoxia, for example, following blood loss, lead to additional mitogenic signals which greatly accelerate erythroid progenitor proliferation.

  6. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs.

    Science.gov (United States)

    Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2015-11-20

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Evaluation of Structure, Chaperone-Like Activity and Allergenicity of Reduced Glycated Adduct of Bovine β-casein.

    Science.gov (United States)

    Yousefi, Reza; Ferdowsi, Leila; Tavaf, Zohreh; Sadeghian, Tanaz; Tamaddon, Ali M; Moghtaderi, Mozhgan; Pourpak, Zahra

    2017-01-01

    Milk has a potent reducing environment with an important quantity of sugar levels. In the current study β-casein was glycated in the presence of D-glucose and sodium cyanoborohydride as a reducing agent. Then, the reduced glucitol adduct of β-casein was used for the structural and functional analyses using different spectroscopic techniques. The results of fluorescence and far ultraviolet circular dichroism assessments suggest important structural alteration upon non-enzymatic glycation of β-casein. In addition, the chaperone activity, micellization properties and antioxidant activity of this protein were altered upon glucose modification. Also, as a result of reduced glycation, the allergenicity profile of this protein remained largely unchanged. Additional to its energetic and nutritional values, β-casein has important functional properties. The native structure of this protein is important to perform accurately its biological functions. Non-enzymatic glycation under reducing state was capable to alter both structural and functional aspects of β-casein. Due to effective reducing environment and significant quantity of reducing sugar of human milk, similar structural and functional alterations are most likely to occur upon reducing glycation of β-casein in vivo. Also, these changes might be even intensified during chronic hyperglycemia in diabetic mothers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The adsorption of orthophosphate onto casein-iron precipitates.

    Science.gov (United States)

    Mittal, Vikas A; Ellis, Ashling; Ye, Aiqian; Edwards, Patrick J B; Singh, Harjinder

    2018-01-15

    This study explored the interactions of orthophosphate with casein-iron precipitates. Casein-iron precipitates were formed by adding ferric chloride at ≥10mM to sodium caseinate solutions ranging in concentration from 1 to 3%(w/v). The addition of different concentrations of orthophosphate solution to the casein-iron precipitates resulted in gradual adsorption of the orthophosphate, causing re-dispersion of the casein-iron complexes. The interactions of added orthophosphate with iron in the presence and absence of caseins are postulated, and new mechanisms are proposed. The re-dispersed soluble complexes of casein-iron-orthophosphate generated using this process could be used as novel iron fortificants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Short communication: separation and quantification of caseins and casein macropeptide using ion-exchange chromatography.

    Science.gov (United States)

    Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M

    2010-03-01

    The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).

  10. Fused deposition modelling of sodium caseinate dispersions

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Houlder, S.; Wit, de Martin; Buijsse, C.A.P.; Alting, A.C.

    2018-01-01

    Only recently, researchers have started experimenting with 3D printing of foods. The aim of this study was to investigate 3D printed objects from sodium caseinate dispersions, exhibiting reversible gelation behaviour. Gelation and dispensing behaviour were explored and structures of different

  11. Casein - whey protein interactions in heated milk

    NARCIS (Netherlands)

    Vasbinder, Astrid Jolanda

    2002-01-01

    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of

  12. Contribution to Casein Determination by UV Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Stefanescu Raluca

    2017-12-01

    Full Text Available In the present paper, the interaction between copper ions and proteins is presented, in order to elaborate a simple and rapid spectrophotometric assay of casein in milk. Under alkaline conditions, copper ions form the biuret complex with the proteins, which can be used in protein determination. Although very specific, the biuret method is less sensitive. Using insoluble copper phosphate, casein is able to extract copper ions, with which it forms the biuret complex, while either the complex or copper ions could be determined in the ultraviolet range. Indeed, an increased absorbance of biuret complex at 215 nm was found. Nevertheless, copper ions can be determined in UV as well, their concentration being proportional to that of casein. When used tetraglycine instead casein, mass spectrometric measurements at pH higher than 11 revealed the formation of complexes with many copper ions bound to each peptide bond-containing molecule. Nevertheless, on diluting the biuret solution the complex may dissociate leading to very complex UV spectra that should be further studied.

  13. Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins.

    Science.gov (United States)

    Thompson, Abby K; Singh, Harjinder; Dalgleish, Douglas G

    2010-11-24

    Tests were made to determine whether surface plasmon resonance (SPR) could be used as a technique to study the dissociation properties of bovine casein micelles or of sodium caseinate and the interactions between these protein particles and different polysaccharides. Surfaces of bound micelles or caseinate were made, and the changes in refractive index of these layers were used to define changes in the structures of the chemisorbed material. The technique appears to have some potential for studying details of the dissociation of casein micelles and of the binding of different polysaccharides to caseins.

  14. Inhibition of PIM1 kinase attenuates inflammation-induced pro-labour mediators in human foetal membranes in vitro.

    Science.gov (United States)

    Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-06-01

    Does proviral integration site for Moloney murine leukaemic virus (PIM)1 kinase play a role in regulating the inflammatory processes of human labour and delivery? PIM1 kinase plays a critical role in foetal membranes in regulating pro-inflammatory and pro-labour mediators. Infection and inflammation have strong causal links to preterm delivery by stimulating pro-inflammatory cytokines and collagen degrading enzymes, which can lead to rupture of membranes. PIM1 has been shown to have a role in immune regulation and inflammation in non-gestational tissues; however, its role has not been explored in the field of human labour. PIM1 expression was analysed in myometrium and/or foetal membranes obtained at term and preterm (n = 8-9 patients per group). Foetal membranes, freshly isolated amnion cells and primary myometrial cells were used to investigate the effect of PIM1 inhibition on pro-labour mediators (n = 5 patients per treatment group). Foetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and from preterm pre-labour rupture of membranes (PPROM) (n = 9 per group). Amnion was collected from women with and without preterm chorioamnionitis (n = 8 per group). Expression of PIM1 kinase was determined by qRT-PCR and western blotting. To determine the effect of PIM1 kinase inhibition on the expression of pro-inflammatory and pro-labour mediators induced by bacterial products lipopolysaccharide (LPS) (10 μg/ml) and flagellin (1 μg/ml) and pro-inflammatory cytokine tumour necrosis factor (TNF) (10 ng/ml), chemical inhibitors SMI-4a (20 μM) and AZD1208 (50 μM) were used in foetal membrane explants and siRNA against PIM1 was used in primary amnion cells. Statistical significance was set at P membranes after spontaneous term labour compared to no labour at term and in amnion with preterm chorioamnionitis compared to preterm with no chorioamnionitis. There was no change in PIM1 expression with preterm labour or PPROM

  15. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  16. Use of calcium caseinate in association with lecithin for masking the bitterness of acetaminophen--comparative study with sodium caseinate.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-11-18

    Owing to a variety of structural and functional properties, milk proteins are steadily studied for food and pharmaceutical applications. In the present study, calcium caseinate in association with lecithin was firstly investigated in order to encapsulate the acetaminophen through spray-drying for taste-masking purpose for pediatric medicines. A 2(4)-full factorial design revealed that the spray flow, the calcium caseinate amount and the lecithin amount had significant effects on the release of drug during the first 2 min. Indeed, increasing the spray flow and/or the calcium caseinate amount led to increase the released amount, whereas increasing the lecithin amount decreased the released amount. The "interaction" between the calcium caseinate amount and the lecithin amount was also shown to be statistically significant. The second objective was to compare the efficiency of two caseinate-based formulations, i.e. sodium caseinate and calcium caseinate, on the taste-masking effect. The characteristics of spray-dried powders determined by SEM and DSC were shown to depend on the caseinate/lecithin proportion rather than the type of caseinate. Interestingly, calcium caseinate-based formulations were found to lower the released amount of drug during the early time to a higher extent than sodium caseinate-based formulations, which indicates better taste-masking efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    Science.gov (United States)

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth

  18. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans.

    Science.gov (United States)

    Nakada, Naoyuki; Oda, Kazuo

    2015-01-01

    1. Here, we elucidated the structure of metabolites of novel oral Janus kinase inhibitor ASP015K in rats and humans and evaluated the predictability of human metabolites using chimeric mice with humanized liver (PXB mice). 2. Rat biological samples collected after oral dosing of (14)C-labelled ASP015K were examined using a liquid chromatography-radiometric detector and mass spectrometer (LC-RAD/MS). The molecular weight of metabolites in human and the liver chimeric mouse biological samples collected after oral dosing of non-labelled ASP015K was also investigated via LC-MS. Metabolites were also isolated from rat bile samples and analyzed using nuclear magnetic resonance. 3. Metabolic pathways of ASP015K in rats and humans were found to be glucuronide conjugation, methyl conjugation, sulfate conjugation, glutathione conjugation, hydroxylation of the adamantane ring and N-oxidation of the 1H-pyrrolo[2,3-b]pyridine ring. The main metabolite of ASP015K in rats was the glucuronide conjugate, while the main metabolite in humans was the sulfate conjugate. Given that human metabolites were produced by human hepatocytes in chimeric mice with humanized liver, this human model mouse was believed to be useful in predicting the human metabolic profile of various drug candidates.

  19. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase.

    Science.gov (United States)

    Park, Yong Seek; Kim, Jayoung; Misonou, Yoshiko; Takamiya, Rina; Takahashi, Motoko; Freeman, Michael R; Taniguchi, Naoyuki

    2007-06-01

    Acrolein, a known toxin in tobacco smoke, might be involved in atherogenesis. This study examined the effect of acrolein on expression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) production in endothelial cells. Cyclooxygenase (COX)-2 induction by acrolein and signal pathways were measured using Western blots, Northern blots, immunofluorescence, ELISA, gene silencing, and promoter assay. Colocalization of COX2 and acrolein-adduct was determined by immunohistochemistry. Here we report that the levels of COX-2 mRNA and protein are increased in human umbilical vein endothelial cells (HUVECs) after acrolein exposure. COX-2 was found to colocalize with acrolein-lysine adducts in human atherosclerotic lesions. Inhibition of p38 MAPK activity abolished the induction of COX-2 protein and PGE2 accumulation by acrolein, while suppression of extracellular signal-regulated kinase (ERK) and JNK activity had no effect on the induction of COX-2 expression in experiments using inhibitors and siRNA. Furthermore, rottlerin, an inhibitor of protein kinase Cdelta (PKCdelta), abrogated the upregulation of COX-2 at both protein and mRNA levels. These results provide that acrolein may play a role in progression of atherosclerosis and new information on the signaling pathways involved in COX-2 upregulation in response to acrolein and provide evidence that PKCdelta and p38 MAPK are required for transcriptional activation of COX-2.

  20. Protection of Human Podocytes from Shiga Toxin 2-Induced Phosphorylation of Mitogen-Activated Protein Kinases and Apoptosis by Human Serum Amyloid P Component

    Science.gov (United States)

    Dettmar, Anne K.; Binder, Elisabeth; Greiner, Friederike R.; Liebau, Max C.; Kurschat, Christine E.; Jungraithmayr, Therese C.; Saleem, Moin A.; Schmitt, Claus-Peter; Feifel, Elisabeth; Orth-Höller, Dorothea; Kemper, Markus J.; Pepys, Mark; Würzner, Reinhard

    2014-01-01

    Hemolytic uremic syndrome (HUS) is mainly induced by Shiga toxin 2 (Stx2)-producing Escherichia coli. Proteinuria can occur in the early phase of the disease, and its persistence determines the renal prognosis. Stx2 may injure podocytes and induce proteinuria. Human serum amyloid P component (SAP), a member of the pentraxin family, has been shown to protect against Stx2-induced lethality in mice in vivo, presumably by specific binding to the toxin. We therefore tested the hypothesis that SAP can protect against Stx2-induced injury of human podocytes. To elucidate the mechanisms underlying podocyte injury in HUS-associated proteinuria, we assessed Stx2-induced activation of mitogen-activated protein kinases (MAPKs) and apoptosis in immortalized human podocytes and evaluated the impact of SAP on Stx2-induced damage. Human podocytes express Stx2-binding globotriaosylceramide 3. Stx2 applied to cultured podocytes was internalized and then activated p38α MAPK and c-Jun N-terminal kinase (JNK), important signaling steps in cell differentiation and apoptosis. Stx2 also activated caspase 3, resulting in an increased level of apoptosis. Coincubation of podocytes with SAP and Stx2 mitigated the effects of Stx2 and induced upregulation of antiapoptotic Bcl2. These data suggest that podocytes are a target of Stx2 and that SAP protects podocytes against Stx2-induced injury. SAP may therefore be a useful therapeutic option. PMID:24566618

  1. Iron binding to caseins in the presence of orthophosphate.

    Science.gov (United States)

    Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H

    2016-01-01

    As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  3. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    Science.gov (United States)

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  4. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma

    Science.gov (United States)

    2013-01-01

    Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437

  5. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  6. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    Science.gov (United States)

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  7. Isomeric mono-, di-, and tri-bromobenzo-1H-triazoles as inhibitors of human protein kinase CK2α.

    Directory of Open Access Journals (Sweden)

    Romualda Wąsik

    Full Text Available To further clarify the role of the individual bromine atoms of 4,5,6,7-tetrabromotriazole (TBBt, a relatively selective inhibitor of protein kinase CK2, we have examined the inhibition (IC(50 of human CK2α by the two mono-, the four di-, and the two tri- bromobenzotriazoles relative to that of TBBt. Halogenation of the central vicinal C(5/C(6 atoms proved to be a key factor in enhancing inhibitory activity, in that 5,6-di-Br(2Bt and 4,5,6-Br(3Bt were almost as effective inhibitors as TBBt, notwithstanding their marked differences in pK(a for dissociation of the triazole proton. The decrease in pK(a on halogenation of the peripheral C(4/C(7 atoms virtually nullifies the gain due to hydrophobic interactions, and does not lead to a decrease in IC(50. Molecular modeling of structures of complexes of the ligands with the enzyme, as well as QSAR analysis, pointed to a balance of hydrophobic and electrostatic interactions as a discriminator of inhibitory activity. The role of halogen bonding remains debatable, as originally noted for the crystal structure of TBBt with CK2α (pdb1j91. Finally we direct attention to the promising applicability of our series of well-defined halogenated benzotriazoles to studies on inhibition of kinases other than CK2.

  8. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  9. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    Directory of Open Access Journals (Sweden)

    Jens Milbradt

    2018-01-01

    Full Text Available The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  10. Importance of intrinsic properties of dense caseinate dispersions for structure formation.

    Science.gov (United States)

    Manski, Julita M; van Riemsdijk, Lieke E; van der Goot, Atze J; Boom, Remko M

    2007-11-01

    Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (> or =15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures during shearing and concurrent enzymatic cross-linking. In contrast, sodium caseinate formed isotropic structures using similar processing conditions. The main difference between the two types of caseinates is the counterion present, and as a consequence, the size of structural elements and their interactions. The rheological behavior of calcium caseinate and sodium caseinate reflected these differences, yielding non-monotonic and shear thinning flow behavior for calcium caseinate whereas sodium caseinate behaved only slightly shear thinning. It appears that the intrinsic properties of the dense caseinate dispersions, which are reflected in their rheological behavior, affect the structure formation that was found after applying shear. Therefore, rheological measurements are useful to obtain an indication of the structure formation potential of caseinate dispersions.

  11. Long-term stability of sodium caseinate-stabilized nanoemulsions.

    Science.gov (United States)

    Yerramilli, Manispuritha; Ghosh, Supratim

    2017-01-01

    Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size sodium caseinate-stabilized nanoemulsions.

  12. Structure-rheology relations in sodium caseinate containing systems

    OpenAIRE

    Ruis, H.G.M.

    2007-01-01

    The general aim of the work described in this thesis was to investigate structure-rheologyrelations for dairy related products, focusing on model systems containing sodium caseinate. The acid inducedgelationof sodium caseinate, of sodium caseinate stabilized emulsions, and the effect of shear on the structure formation was characterized. Special attention was given to the sol-gel transition point, which was defined by a frequency independent loss tangent. It was shown that the sol-gel transit...

  13. Thermal decomposition of irradiated casein molecules

    Energy Technology Data Exchange (ETDEWEB)

    Aly, M A; Elsayed, A A [Biophysics Dept., Faculty of Science, Cairo University, Giza (Egypt)

    1997-12-31

    Non-isothermal studies were carried out using the derivatograph where thermogravimetry (TG), and differential thermogravimetry (DTG) measurements were used to obtain the activation energies of the first and second reactions for casein decomposition before and after exposure to gamma rays and fast neutrons. Cf- 252 was used as a source of fast neutrons associated with gamma rays. TG and DTG patterns were also recorded for casein samples before and after irradiation with 1 Gy gamma-rays of 0.662 MeV from Cs - 137. However, no change in a activation energies were observed after exposure to gamma-irradiation. On the other hand, the activation energies for first and second reactions were found to be smaller at 0.4 m Gy than that at lower and higher neutron doses. However, no change in activation energies was observed after {gamma} irradiation. It is concluded from the present study that destruction of casein molecules by low level fast neutron doses may lead to changes of shelf storage period milk. 3 figs., 1 tab.

  14. Sodium caseinate stabilized zein colloidal particles.

    Science.gov (United States)

    Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P

    2010-12-08

    The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.

  15. RAMA casein zymography: Time-saving and highly sensitive casein zymography for MMP7 and trypsin.

    Science.gov (United States)

    Yasumitsu, Hidetaro; Ozeki, Yasuhiro; Kanaly, Robert A

    2016-11-01

    To detect metalloproteinase-7 (MMP7), zymography is conducted using a casein substrate and conventional CBB stain. It has disadvantages because it is time consuming and has low sensitivity. Previously, a sensitive method to detect MMP7 up to 30 pg was reported, however it required special substrates and complicated handlings. RAMA casein zymography described herein is rapid, sensitive, and reproducible. By applying high-sensitivity staining with low substrate conditions, the staining process is completed within 1 h and sensitivity was increased 100-fold. The method can detect 10 pg MMP7 by using commercially available casein without complicated handlings. Moreover, it increases detection sensitivity for trypsin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation

    DEFF Research Database (Denmark)

    Eijnde, Bert O.; Derave, Wim; Wojtaszewski, Jørgen

    2005-01-01

    The effects of leg immobilization and retraining in combination with oral creatine intake on muscle AMP-activated protein kinase (AMPK) protein expression and phosphorylation status were investigated. A double-blind trial was performed in young healthy volunteers (n = 22). A cast immobilized...... the right leg for 2 wk, whereafter the knee-extensor muscles of that leg were retrained for 6 wk. Half of the subjects received creatine monohydrate throughout the study (Cr; from 15 g down to 2.5 g daily), and the others ingested placebo (P; maltodextrin). Before and after immobilization and retraining...... that immobilization-induced muscle inactivity for 2 wk does not alter AMPK a1-, a2-, and ß2-subunit expression or a-AMPK phosphorylation status. Furthermore, the present observations indicate that AMPK probably is not implicated in the previously reported beneficial effects of oral creatine supplementation on muscle...

  17. Casein mediated green synthesis and decoration of reduced graphene oxide

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  18. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    Directory of Open Access Journals (Sweden)

    Violeta Calle-Guisado

    2017-01-01

    Full Text Available AMP-activated kinase (AMPK, a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work′s aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS in the presence or absence of the AMPK inhibitor compound C (CC. AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.

  19. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    Science.gov (United States)

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied. PMID:27678462

  20. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    Science.gov (United States)

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  1. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  2. Protein kinase CK2 inhibition is associated with the destabilization of HIF-1α in human cancer cells

    DEFF Research Database (Denmark)

    Guerra, Barbara; Rasmussen, Tine D. L.; Schnitzler, Alexander

    2015-01-01

    Screening for protein kinase CK2 inhibitors of the structural diversity compound library (DTP NCI/NIH) led to the discovery of 4-[(E)-(fluoren-9-ylidenehydrazinylidene)-methyl]benzoic acid (E9). E9 induces apoptotic cell death in various cancer cell lines and upon hypoxia, the compound suppresses...... and maize CK2alpha in complex with E9 reveals unique binding properties of the inhibitor to the enzyme, accounting for its affinity and selectivity....... CK2-catalyzed HSP90/Cdc37 phosphorylation and induces HIF-1alpha degradation. Furthermore, E9 exerts a strong anti-tumour activity by inducing necrosis in murine xenograft models underlining its potential to be used for cancer treatment in future clinical studies. Crystal structure analysis of human...

  3. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian

    2005-01-01

    adaptations within the AMPK system itself. We investigated the effect of strength training and T2DM on the isoform expression and the heterotrimeric composition of the AMPK in human skeletal muscle. Ten patients with T2DM and seven healthy subjects strength trained (T) one leg for 6 weeks, while the other leg......Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, gamma1, gamma2a, gamma2b and gamma3) AMPK isoforms were independent of T2DM, whereas the protein...

  4. Crystallization and initial X-ray diffraction study of the three PASTA domains of the Ser/Thr kinase Stk1 from the human pathogen Staphylococcus aureus

    International Nuclear Information System (INIS)

    Paracuellos, Patricia; Ballandras, Allison; Robert, Xavier; Cozzone, Alain J.; Duclos, Bertrand; Gouet, Patrice

    2009-01-01

    Crystallization conditions have been determined for an extracellular portion of the Ser/Thr kinase Stk1 from the human pathogen S. aureus that contains three PASTA subunits. Synchrotron data have been collected to a resolution of 2.9 Å. Phasing is in progress. PASTA subunits (∼70 amino acids) are specific to bacterial serine/threonine kinases and to penicillin-binding proteins (PBPs) and are involved in the synthesis of peptidoglycan. The human pathogen Staphylococcus aureus contains a serine/threonine kinase, Stk1, which plays a major role in virulence. A recombinant His-tagged portion of the extracellular domain of Stk1 containing three PASTA subunits has been crystallized using zinc sulfate as a crystallizing agent. The crystals belonged to the tetragonal space group P4 1 22, with unit-cell parameters a = 68.0, b = 68.0, c = 158.1 Å. Structure determination by the MAD method is now in progress

  5. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells.

    Science.gov (United States)

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M

    2014-12-01

    Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.

  6. Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis.

    Science.gov (United States)

    Klein, Sabine; Rick, Johanna; Lehmann, Jennifer; Schierwagen, Robert; Schierwagen, Irela Gretchen; Verbeke, Len; Hittatiya, Kanishka; Uschner, Frank Erhard; Manekeller, Steffen; Strassburg, Christian P; Wagner, Kay-Uwe; Sayeski, Peter P; Wolf, Dominik; Laleman, Wim; Sauerbruch, Tilman; Trebicka, Jonel

    2017-01-01

    Angiotensin II (AngII) activates via angiotensin-II-type-I receptor (AT1R) Janus-kinase-2 (JAK2)/Arhgef1 pathway and subsequently RHOA/Rho-kinase (ROCK), which induces experimental and probably human liver fibrosis. This study investigated the relationship of JAK2 to experimental and human portal hypertension. The mRNA and protein levels of JAK2/ARHGEF1 signalling components were analysed in 49 human liver samples and correlated with clinical parameters of portal hypertension in these patients. Correspondingly, liver fibrosis (bile duct ligation (BDL), carbon tetrachloride (CCl 4 )) was induced in floxed-Jak2 knock-out mice with SM22-promotor (SM22 Cre+ -Jak2 f/f ). Transcription and contraction of primary myofibroblasts from healthy and fibrotic mice and rats were analysed. In two different cirrhosis models (BDL, CCl 4 ) in rats, the acute haemodynamic effect of the JAK2 inhibitor AG490 was assessed using microsphere technique and isolated liver perfusion experiments. Hepatic transcription of JAK2/ARHGEF1 pathway components was upregulated in liver cirrhosis dependent on aetiology, severity and complications of human liver cirrhosis (Model for End-stage Liver disease (MELD) score, Child score as well as ascites, high-risk varices, spontaneous bacterial peritonitis). SM22 Cre+ - Jak2 f/f mice lacking Jak2 developed less fibrosis and lower portal pressure (PP) than SM22 Cre- -Jak2 f/f upon fibrosis induction. Myofibroblasts from SM22 Cre+ -Jak2 f/f mice expressed less collagen and profibrotic markers upon activation. AG490 relaxed activated hepatic stellate cells in vitro. In cirrhotic rats, AG490 decreased hepatic vascular resistance and consequently the PP in vivo and in situ. Hepatic JAK2/ARHGEF1/ROCK expression is associated with portal hypertension and decompensation in human cirrhosis. The deletion of Jak2 in myofibroblasts attenuated experimental fibrosis and acute inhibition of JAK2 decreased PP. Thus, JAK2 inhibitors, already in clinical use for other

  7. Effect of temperature and pH on the solubility of caseins: environmental influences on the dissociation of α(S)- and β-casein.

    Science.gov (United States)

    Post, A E; Arnold, B; Weiss, J; Hinrichs, J

    2012-04-01

    Selective precipitation is a common method for the isolation of β-casein, using the different calcium sensitivities of the individual caseins and the selective solubility of β-casein at a low temperature. In previous studies, it has been indicated that the β-casein yield depends on the physicochemical characteristics of the casein raw material used for fractionation. The objective of this study was to evaluate and compare the solubility of α(S)- and β-casein in solutions of micellar casein, sodium caseinate, and calcium caseinate as a function of pH and temperature. Additionally, the solubility of isolated α(S)- and β-casein fractions in demineralized water, ultrafiltration permeate, and a calcium-depleted milk salt solution was investigated depending on the pH and temperature. Furthermore, micellar casein, sodium caseinate, and calcium caseinate were subjected to a calcium chloride-precipitation process to determine the solubility of α(S)- and β-casein in calcium chloride precipitate, which is produced during selective precipitation, as a function of temperature and pH. Generally, the temperature had only a marginal influence on the α(S)-casein solubility compared with the β-casein solubility, whereas the solubility was shown to be strongly influenced by the pH. Our results suggest that the yield of β-casein obtained during isolation by means of selective precipitation may be a result of the solubility characteristics of α(S)- and β-casein in calcium chloride precipitate. Manufacturers may consider a simple solubility experiment before the β-casein isolation process by means of selective precipitation to predict β-casein yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    International Nuclear Information System (INIS)

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: ► In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. ► The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). ► Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. ► Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  9. The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein.

    Science.gov (United States)

    Treweek, Teresa M; Thorn, David C; Price, William E; Carver, John A

    2011-06-01

    α(S)-Casein, the major milk protein, comprises α(S1)- and α(S2)-casein and acts as a molecular chaperone, stabilizing an array of stressed target proteins against precipitation. Here, we report that α(S)-casein acts in a similar manner to the unrelated small heat-shock proteins (sHsps) and clusterin in that it does not preserve the activity of stressed target enzymes. However, in contrast to sHsps and clusterin, α-casein does not bind target proteins in a state that facilitates refolding by Hsp70. α(S)-Casein was also separated into α- and α-casein, and the chaperone abilities of each of these proteins were assessed with amorphously aggregating and fibril-forming target proteins. Under reduction stress, all α-casein species exhibited similar chaperone ability, whereas under heat stress, α-casein was a poorer chaperone. Conversely, α(S2)-casein was less effective at preventing fibril formation by modified κ-casein, whereas α- and α(S1)-casein were comparably potent inhibitors. In the presence of added salt and heat stress, α(S1)-, α- and α(S)-casein were all significantly less effective. We conclude that α(S1)- and α-casein stabilise each other to facilitate optimal chaperone activity of α(S)-casein. This work highlights the interdependency of casein proteins for their structural stability. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Regulation of Discrete Functional Responses by Syk and Src Family Tyrosine Kinases in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Thornin Ear

    2017-01-01

    Full Text Available Neutrophils play a critical role in innate immunity and also influence adaptive immune responses. This occurs in good part through their production of inflammatory and immunomodulatory cytokines, in conjunction with their prolonged survival at inflamed foci. While a picture of the signaling machinery underlying these neutrophil responses is now emerging, much remains to be uncovered. In this study, we report that neutrophils constitutively express various Src family isoforms (STKs, as well as Syk, and that inhibition of these protein tyrosine kinases selectively hinders inflammatory cytokine generation by acting posttranscriptionally. Accordingly, STK or Syk inhibition decreases the phosphorylation of signaling intermediates (e.g., eIF-4E, S6K, and MNK1 involved in translational control. By contrast, delayed apoptosis appears to be independent of either STKs or Syk. Our data therefore significantly extend our understanding of which neutrophil responses are governed by STKs and Syk and pinpoint some signaling intermediates that are likely involved. In view of the foremost role of neutrophils in several chronic inflammatory conditions, our findings identify potential molecular targets that could be exploited for future therapeutic intervention.

  11. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. I. An immunohistochemical analysis of creatine kinase isoenzyme expression patterns

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Virágh, S.; Kálmán, F.; Morris, G. E.; Man, N. T.; Lamers, W. H.; Moorman, A. F.

    1990-01-01

    Using monoclonal antibodies against the M and B subunit isoforms of creatine kinase (CK) we have investigated their distribution in developing human skeletal and cardiac muscle immunohistochemically. It is demonstrated that in skeletal muscle, a switch from CK-B to CK-M takes place around the week 8

  12. Discovery of a 1,2-bis(3-indolyl)ethane that selectively inhibits the pyruvate kinase of methicillin-resistant Staphylococcus aureus over human isoforms.

    Science.gov (United States)

    Zoraghi, Roya; Campbell, Sara; Kim, Catrina; Dullaghan, Edie M; Blair, Lachlan M; Gillard, Rachel M; Reiner, Neil E; Sperry, Jonathan

    2014-11-01

    Methicillin-resistant Staphylococcus aureus pyruvate kinase (MRSA PK) has recently been identified as a target for development of novel antibacterial agents. Testing a series of 1,2-bis(3-indolyl)ethanes against MRSA PK has led to the discovery of a potent inhibitor that is selective over human isoforms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Binding analysis for interaction of diacetylcurcumin with β-casein nanoparticles by using fluorescence spectroscopy and molecular docking calculations

    Science.gov (United States)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Fani, Najme; Keyhanfar, Mehrnaz

    2013-11-01

    The interaction of diacetylcurcumin (DAC), as a novel synthetic derivative of curcumin, with bovine β-casein (an abundant milk protein that is highly amphiphilic and self assembles into stable micellar nanoparticles in aqueous solution) was investigated using fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations. The fluorescence quenching measurements revealed the presence of a single binding site on β-casein for DAC with the binding constant value equals to (4.40 ± 0.03) × 104 M-1. Forster energy transfer measurements suggested that the distance between bound DAC and Trp143 residue is higher than the respective critical distance, hence, the static quenching is more likely responsible for fluorescence quenching other than the mechanism of non-radiative energy transfer. Our results from molecular docking calculations indicated that binding of DAC to β-casein predominantly occurred through hydrophobic contacts in the hydrophobic core of protein. Additionally, in vitro investigation of the cytotoxicity of free DAC and DAC-β-casein complex in human breast cancer cell line MCF7 revealed the higher cytotoxic effect of DAC-β-casein complex.

  14. Casein genes of Bos taurus. II. Isolation and characterization of the β-casein gene

    International Nuclear Information System (INIS)

    Gorodetskii, S.I.; Tkach, T.M.; Kapelinskaya, T.V.

    1988-01-01

    The expression of the casein genes in the cells of the mammary gland is regulated by peptide and steroid hormones. In order to study the controlling mechanisms we have isolated and characterized the β-casein gene. The gene is 8.6 kb long and exceeds by a factor of 7.8 the length of the corresponding mRNA which is encoded by nine exons. The genomic clones incorporate in addition 8.5 kb and 4.5 kb of the 5'- and 3'-flanking regions. We have determined the sequence of the 5- and 3-terminals of the gene and have performed a comparative analysis of the corresponding regions of the rat β-casein gene. Furthermore we have identified the conversed sequences identical or homologous to the potential sections of binding to the nuclear factor CTF/NF-1 by glucocorticoid and progesterone receptors. The regulatory region of the bovine casein gene contains two variants of the TATA signal, flanking the duplication section in the promoter region

  15. Influence of shear during enzymatic gelation of caseinate-water and caseinate-water-fat systems

    NARCIS (Netherlands)

    Manski, J.M.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Solidification, emulsification and application of shear were combined to induce diversity and heterogeneity in the micro- and macrostructure of concentrated caseinate-based food matrices containing a dispersed fat phase. The products were evaluated with selected parameters from small-scale and

  16. Kappa-casein gene polymorphism in Holstein and Iranian native ...

    African Journals Online (AJOL)

    Caseins amount to nearly 80% of the protein output in cow milk. Caseins are biologically important proteins and they are also a raw material for the cheese ... BB genotype could be a good factor for increase of fat and protein content of milk.

  17. κ-Casein-deficient mice fail to lactate

    Science.gov (United States)

    Shekar, P. Chandra; Goel, Sandeep; Rani, S. Deepa Selvi; Sarathi, D. Partha; Alex, Jomini Liza; Singh, Shashi; Kumar, Satish

    2006-01-01

    Acquisition of milk production capabilities by an ancestor of mammals is at the root of mammalian evolution. Milk casein micelles are a primary source of amino acids and calcium phosphate to neonates. To understand the role of κ-casein in lactation, we have created and characterized a null mouse strain (Csnk−/−) lacking this gene. The mutant κ-casein allele did not affect the expression of other milk proteins in Csnk−/− females. However, these females did not suckle their pups and failed to lactate because of destabilization of the micelles in the lumina of the mammary gland. Thus, κ-casein is essential for lactation and, consequently, for the successful completion of the process of reproduction in mammals. In view of the extreme structural conservation of the casein locus, as well as the phenotype of Csnk−/− females, we propose that the organization of a functional κ-casein gene would have been one of the critical events in the evolution of mammals. Further, κ-casein variants are known to affect the industrial properties of milk in dairy animals. Given the expenses and the time scale of such experiments in livestock species, it is desirable to model the intended genetic modifications in mice first. The mouse strain that we have created would be a useful model to study the effect of κ-casein variants on the properties of milk and/or milk products. PMID:16698927

  18. The study of zinc ions binding to casein.

    Science.gov (United States)

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Is there a feeding strategy to increase milk casein content?

    Directory of Open Access Journals (Sweden)

    A. Formigoni

    2010-04-01

    Full Text Available Because more than 60% of milk produced in Italy is transformed into cheese, milk economical value strongly depends on cheese yield. Among the factors that influence cheese yield, milk casein and fat content plays a major role: when milk is converted into Grana Padano and Parmigiano reggiano, three grams of seasoned cheese are produced from one gram of milk casein.....

  20. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.|info:eu-repo/dai/nl/073609609

    2012-01-01

    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  1. Formation of fibrous materials from dense caseinate dispersions

    NARCIS (Netherlands)

    Manski, J.M.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Application of shear and cross-linking enzyme transglutaminase (Tgase) induced fibrous hierarchical structures in dense (30% w/w) calcium caseinate (Ca-caseinate) dispersions. Using Tgase was essential for the anisotropic structure formation. The fibrous materials showed anisotropy on both micro-

  2. Quantification of Melanoidin Concentration in Sugar-Casein Systems

    NARCIS (Netherlands)

    Brands, C.M.J.; Wedzicha, B.L.; Boekel, van M.A.J.S.

    2002-01-01

    Melanoidins are the final, brown, high molecular weight products of the Maillard reaction. The aim of the present study was to determine the average molar extinction coefficients of melanoidins formed in heated glucose-casein and fructose-casein systems. The value of the extinction coefficient can

  3. Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types

    DEFF Research Database (Denmark)

    Dümmler, Bettina A; Hauge, Camilla; Silber, Joachim

    2005-01-01

    characterization of a predicted new human RSK homologue, RSK4. We showed that RSK4 is a predominantly cytosolic protein with very low expression and several characteristics of the RSK family kinases, including the presence of two functional kinase domains and a C-terminal docking site for ERK. Surprisingly......, however, in all cell types analyzed, endogenous RSK4 was maximally (constitutively) activated under serum-starved conditions where other RSKs are inactive due to their requirement for growth factor stimulation. Constitutive activation appeared to result from constitutive phosphorylation of Ser232, Ser372...

  4. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir

    Directory of Open Access Journals (Sweden)

    Chou Sunwen

    2009-01-01

    Full Text Available Abstract The UL97 kinase has been shown to phosphorylate and inactivate the retinoblastoma protein (Rb and has three consensus Rb-binding motifs that might contribute to this activity. Recombinant viruses containing mutations in the Rb-binding motifs generally replicated well in human foreskin fibroblasts with only a slight delay in replication kinetics. Their susceptibility to the specific UL97 kinase inhibitor, maribavir, was also examined. Mutation of the amino terminal motif, which is involved in the inactivation of Rb, also renders the virus hypersensitive to the drug and suggests that the motif may play a role in its mechanism of action.

  5. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma.

    Science.gov (United States)

    Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F

    2017-08-01

    Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G 2 -M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Influence of succinylation on physicochemical property of yak casein micelles.

    Science.gov (United States)

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.

    Science.gov (United States)

    Verkhivker, Gennady M

    2016-01-01

    The human protein kinome presents one of the largest protein families that orchestrate functional processes in complex cellular networks, and when perturbed, can cause various cancers. The abundance and diversity of genetic, structural, and biochemical data underlies the complexity of mechanisms by which targeted and personalized drugs can combat mutational profiles in protein kinases. Coupled with the evolution of system biology approaches, genomic and proteomic technologies are rapidly identifying and charactering novel resistance mechanisms with the goal to inform rationale design of personalized kinase drugs. Integration of experimental and computational approaches can help to bring these data into a unified conceptual framework and develop robust models for predicting the clinical drug resistance. In the current study, we employ a battery of synergistic computational approaches that integrate genetic, evolutionary, biochemical, and structural data to characterize the effect of cancer mutations in protein kinases. We provide a detailed structural classification and analysis of genetic signatures associated with oncogenic mutations. By integrating genetic and structural data, we employ network modeling to dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using biophysical simulations and analysis of protein structure networks, we show that conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR kinase that are linked with the ligand-mediated changes in the residue interaction networks and global network properties of key residues that are responsible for structural stability of specific functional states. A strong network dependency on high centrality residues in the conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to a broad spectrum of mutations and the emergence of drug resistance. Our study offers a systems-based perspective on drug design by unravelling

  8. Detecting β-Casein Variation in Bovine Milk.

    Science.gov (United States)

    Caroli, Anna Maria; Savino, Salvatore; Bulgari, Omar; Monti, Eugenio

    2016-01-25

    In bovine species, β-casein (β-CN) is characterized by genetic polymorphism. The two most common protein variants are β-CN A² (the original one) and A¹, differing from A² for one amino acid substitution (Pro67 to His67). Several bioactive peptides affecting milk nutritional properties can originate from β-CN. Among them, β-casomorphin-7 (BCM7) ranging from amino acid 60 to 66 can be released more easily from β-CN variants carrying His67 (A¹ type) instead of Pro67 (A² type). Nowadays, "A2 milk" is produced in different countries claiming its potential benefits in human health. The aim of this study was to further develop and apply an isoelectric focusing electrophoresis (IEF) method to bulk and individual milk samples in order to improve its use for β-CN studies. We succeeded in identifying A2 milk samples correctly and quantifying the percentage of A², A¹, and B variants in bulk samples not derived from A2 milk as well as in individual milk samples. The method allows us to quantify the relative proportion of β-CN variants in whole milk without eliminating whey protein by acid or enzymatic precipitation of caseins. The aim of this study was also to study the different behavior of β-CN and β-lactoglobulin (β-LG) in the presence of trichloroacetic acid (TCA). The higher sensitivity of β-CN to TCA allows quantifying β-CN variants after TCA fixation because β-LG is not visible. Monitoring β-CN variation in cattle breeds is important in order to maintain a certain balance between Pro67 and His67 in dairy products. Overall, the debate between A1 and A2 milk needs further investigation.

  9. Detecting β-Casein Variation in Bovine Milk

    Directory of Open Access Journals (Sweden)

    Anna Maria Caroli

    2016-01-01

    Full Text Available In bovine species, β-casein (β-CN is characterized by genetic polymorphism. The two most common protein variants are β-CN A2 (the original one and A1, differing from A2 for one amino acid substitution (Pro67 to His67. Several bioactive peptides affecting milk nutritional properties can originate from β-CN. Among them, β-casomorphin-7 (BCM7 ranging from amino acid 60 to 66 can be released more easily from β-CN variants carrying His67 (A1 type instead of Pro67 (A2 type. Nowadays, “A2 milk” is produced in different countries claiming its potential benefits in human health. The aim of this study was to further develop and apply an isoelectric focusing electrophoresis (IEF method to bulk and individual milk samples in order to improve its use for β-CN studies. We succeeded in identifying A2 milk samples correctly and quantifying the percentage of A2, A1, and B variants in bulk samples not derived from A2 milk as well as in individual milk samples. The method allows us to quantify the relative proportion of β-CN variants in whole milk without eliminating whey protein by acid or enzymatic precipitation of caseins. The aim of this study was also to study the different behavior of β-CN and β-lactoglobulin (β-LG in the presence of trichloroacetic acid (TCA. The higher sensitivity of β-CN to TCA allows quantifying β-CN variants after TCA fixation because β-LG is not visible. Monitoring β-CN variation in cattle breeds is important in order to maintain a certain balance between Pro67 and His67 in dairy products. Overall, the debate between A1 and A2 milk needs further investigation.

  10. AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2013-05-01

    Organotin compounds such as tributyltin (TBT) are known to cause various forms of cytotoxicity, including developmental toxicity and neurotoxicity. However, the molecular target of the toxicity induced by nanomolar levels of TBT has not been identified. In the present study, we found that exposure to 100 nM TBT induced growth arrest in human pluripotent embryonic carcinoma cell line NT2/D1. Since glucose provides metabolic energy, we focused on the glycolytic system. We found that exposure to TBT reduced the levels of both glucose-6-phosphate and fructose-6-phosphate. To investigate the effect of TBT exposure on glycolysis, we examined glucose transporter (GLUT) activity. TBT exposure inhibited glucose uptake via a decrease in the level of cell surface-bound GLUT1. Furthermore, we examined the effect of AMP-activated protein kinase (AMPK), which is known to regulate glucose transport by facilitating GLUT translocation. Treatment with the potent AMPK activator, AICAR, restored the TBT-induced reduction in cell surface-bound GLUT1 and glucose uptake. In conclusion, these results suggest that exposure to nanomolar levels of TBT causes growth arrest by targeting glycolytic systems in human embryonic carcinoma cells. Thus, understanding the energy metabolism may provide new insights into the mechanisms of metal-induced cytotoxicity.

  11. Knockdown of MAGEA6 Activates AMP-Activated Protein Kinase (AMPK) Signaling to Inhibit Human Renal Cell Carcinoma Cells.

    Science.gov (United States)

    Ye, Xueting; Xie, Jing; Huang, Hang; Deng, Zhexian

    2018-01-01

    Melanoma antigen A6 (MAGEA6) is a cancer-specific ubiquitin ligase of AMP-activated protein kinase (AMPK). The current study tested MAGEA6 expression and potential function in renal cell carcinoma (RCC). MAGEA6 and AMPK expression in human RCC tissues and RCC cells were tested by Western blotting assay and qRT-PCR assay. shRNA method was applied to knockdown MAGEA6 in human RCC cells. Cell survival and proliferation were tested by MTT assay and BrdU ELISA assay, respectively. Cell apoptosis was tested by the TUNEL assay and single strand DNA ELISA assay. The 786-O xenograft in nude mouse model was established to test RCC cell growth in vivo. MAGEA6 is specifically expressed in RCC tissues as well as in the established (786-O and A498) and primary human RCC cells. MAGEA6 expression is correlated with AMPKα1 downregulation in RCC tissues and cells. It is not detected in normal renal tissues nor in the HK-2 renal epithelial cells. MAGEA6 knockdown by targeted-shRNA induced AMPK stabilization and activation, which led to mTOR complex 1 (mTORC1) in-activation and RCC cell death/apoptosis. AMPK inhibition, by AMPKα1 shRNA or the dominant negative AMPKα1 (T172A), almost reversed MAGEA6 knockdown-induced RCC cell apoptosis. Conversely, expression of the constitutive-active AMPKα1 (T172D) mimicked the actions by MAGEA6 shRNA. In vivo, MAGEA6 shRNA-bearing 786-O tumors grew significantly slower in nude mice than the control tumors. AMPKα1 stabilization and activation as well as mTORC1 in-activation were detected in MAGEA6 shRNA tumor tissues. MAGEA6 knockdown inhibits human RCC cells via activating AMPK signaling. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    International Nuclear Information System (INIS)

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J.

    2006-01-01

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1β intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38 + cells. DON-induced p38 activation occurred exclusively in the CD14 + monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response

  13. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    Science.gov (United States)

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  14. A novel imidazopyridine analogue as a phosphatidylinositol 3-kinase inhibitor against human breast cancer.

    Science.gov (United States)

    Lee, Hyunseung; Li, Guang-Yong; Jeong, Yujeong; Jung, Kyung Hee; Lee, Ju-Hee; Ham, Kyungrok; Hong, Sungwoo; Hong, Soon-Sun

    2012-05-01

    Potentiation of anti-breast cancer activity of an imidazopyridine-based PI3Kα inhibitor, HS-104, was investigated in human breast cancer cells. HS-104 shows strong inhibitory activity against recombinant PI3Kα isoform and the PI3K signaling pathway, resulting in anti-proliferative activity in breast cancer cells. It also induced cell cycle arrest at the G(2)/M phase as well as apoptosis. Furthermore, oral administration of HS-104 significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Therefore, HS-104 could be considered as a potential candidate for the treatment of human breast cancer. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Genetic variations of β- and K-casein genes in Egyptian sheep breeds

    African Journals Online (AJOL)

    SARAH

    2013-04-25

    Apr 25, 2013 ... ABSTRACT. Objective: Casein genetic polymorphisms are important and well known due to their effects on quantitative traits and technological properties of milk manufacturing. The casein fraction of ruminant milk proteins consists of four caseins, namely αs1-, αs2-, β-and K-casein. At the DNA level, ...

  16. A Specific Inhibitor of TGF-β Receptor Kinase, SB-431542, as a Potent Antitumor Agent for Human Cancers

    Directory of Open Access Journals (Sweden)

    Sunil K. Halder

    2005-05-01

    Full Text Available Small molecule inhibitors of signaling pathways have proven to be extremely useful for the development of therapeutic strategies for human cancers. Blocking the tumor-promoting effects of transforming growth factor-β (TGF-β in advanced stage carcinogenesis provides a potentially interesting drug target for therapeutic intervention. Although very few TGF-β receptor kinase inhibitors (TRKI are now emerging in preclinical studies, nothing is known about how these inhibitors might regulate the tumor-suppressive or tumor-promoting effects of TGF-β, or when these inhibitors might be useful for treatment during cancer progression. We have investigated the potential of TRKI in new therapeutic approaches in preclinical models. Here, we demonstrate that the TRKI, SB-431542, inhibits TGF-β-induced transcription, gene expression, apoptosis, and growth suppression. We have observed that SB-431542 attenuates the tumor-promoting effects of TGF-β, including TGF-β-induced EMT, cell motility, migration and invasion, and vascular endothelial growth factor secretion in human cancer cell lines. Interestingly, SB-431542 induces anchorage independent growth of cells that are growth-inhibited by TGF-β, whereas it reduces colony formation by cells that are growth-promoted by TGF-β. However, SB-431542 has no effect on a cell line that failed to respond to TGF-β. This represents a novel potential application of these inhibitors as therapeutic agents for human cancers with the goal of blocking tumor invasion, angiogenesis, and metastasis, when tumors are refractory to TGF-β-induced tumor-suppressor functions but responsive to tumor-promoting effects of TGF-β.

  17. Genes influenced by the non-muscle isoform of Myosin light chain kinase impact human cancer prognosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available The multifunctional non-muscle isoform of myosin light chain kinase (nmMLCK is critical to the rapid dynamic coordination of the cytoskeleton involved in cancer cell proliferation and migration. We identified 45 nmMLCK-influenced genes by bioinformatic filtering of genome-wide expression in wild type and nmMLCK knockout (KO mice exposed to preclinical models of murine acute inflammatory lung injury, pathologies that are well established to include nmMLCK as an essential participant. To determine whether these nmMLCK-influenced genes were relevant to human cancers, the 45 mouse genes were matched to 38 distinct human orthologs (M38 signature (GeneCards definition and underwent Kaplan-Meier survival analysis in training and validation cohorts. These studies revealed that in training cohorts, the M38 signature successfully identified cancer patients with poor overall survival in breast cancer (P<0.001, colon cancer (P<0.001, glioma (P<0.001, and lung cancer (P<0.001. In validation cohorts, the M38 signature demonstrated significantly reduced overall survival for high-score patients of breast cancer (P = 0.002, colon cancer (P = 0.035, glioma (P = 0.023, and lung cancer (P = 0.023. The association between M38 risk score and overall survival was confirmed by univariate Cox proportional hazard analysis of overall survival in the both training and validation cohorts. This study, providing a novel prognostic cancer gene signature derived from a murine model of nmMLCK-associated lung inflammation, strongly supports nmMLCK-involved pathways in tumor growth and progression in human cancers and nmMLCK as an attractive candidate molecular target in both inflammatory and neoplastic processes.

  18. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima

    2015-01-01

    -intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given...

  19. Tyrosine kinase signalling in breast cancer: Modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates

    International Nuclear Information System (INIS)

    Kairouz, Rania; Daly, Roger J

    2000-01-01

    The past decade has seen the definition of key signalling pathways downstream of receptor tyrosine kinases (RTKs) in terms of their components and the protein-protein interactions that facilitate signal transduction. Given the strong evidence that links signalling by certain families of RTKs to the progression of breast cancer, it is not surprising that the expression profile of key downstream signalling intermediates in this disease has also come under scrutiny, particularly because some exhibit transforming potential or amplify mitogenic signalling pathways when they are overexpressed. Reflecting the diverse cellular processes regulated by RTKs, it is now clear that altered expression of such signalling proteins in breast cancer may influence not only cellular proliferation (eg Grb2) but also the invasive properties of the cancer cells (eg EMS1/cortactin)

  20. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    Science.gov (United States)

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  1. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    International Nuclear Information System (INIS)

    Winiewska, Maria; Makowska, Małgorzata; Maj, Piotr; Wielechowska, Monika; Bretner, Maria; Poznański, Jarosław; Shugar, David

    2015-01-01

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC 50 ) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (H bind ) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between H bind and ligand pK a . Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site

  2. In Vitro Activation of the IκB Kinase Complex by Human T-cell Leukemia Virus Type-1 Tax*

    Science.gov (United States)

    Mukherjee, Sohini; Negi, Veera S.; Keitany, Gladys; Tanaka, Yuetsu; Orth, Kim

    2008-01-01

    Human T-cell leukemia virus type-I expresses Tax, a 40-kDa oncoprotein that activates IκB kinase (IKK), resulting in constitutive activation of NFκB. Herein, we have developed an in vitro signaling assay to analyze IKK complex activation by recombinant Tax. Using this assay in combination with reporter assays, we demonstrate that Tax-mediated activation of IKK is independent of phosphatases. We show that sustained activation of the Tax-mediated activation of the NFκB pathway is dependent on an intact Hsp90-IKK complex. By acetylating and thereby preventing activation of the IKK complex by the Yersinia effector YopJ, we demonstrate that Tax-mediated activation of the IKK complex requires a phosphorylation step. Our characterization of an in vitro signaling assay system for the mechanism of Tax-mediated activation of the IKK complex with a variety of mutants and inhibitors results in a working model for the biochemical mechanism of Tax-induced activation. PMID:18223255

  3. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  4. Identification of human Phosphatidyl Inositol 5-Phosphate 4-Kinase as an RNA binding protein that is imported into Plasmodium falciparum.

    Science.gov (United States)

    Vindu, Arya; Dandewad, Vishal; Seshadri, Vasudevan

    2018-04-06

    Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. Translation repression of specific set of mRNA has been reported in gametocyte stages of this parasite. A conserved element present in the 3'UTR of some of these transcripts was identified. Biochemical studies have identified components of the RNA storage and/or translation inhibitor complex but it is not yet clear how the complex is specifically recruited on the RNA targeted for translation regulation. We used the 3'UTR region of translationally regulated transcripts to identify Phosphatidyl-inositol 5-phosphate 4-kinase (PIP4K2A) as the protein that associates with these RNAs. We further show that recombinant PIP4K2A has the RNA binding activity and can associate specifically with Plasmodium 3'UTR RNAs. Immunostainings show that hPIP4K2A is imported into the Plasmodium parasite from RBC. These results identify a novel RNA binding role for PIP4K2A that may play a role in Plasmodium propagation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Phosphoinositide Kinase-3 Status Associated With Presence or Absence of Human Papillomavirus in Head and Neck Squamous Cell Carcinomas

    International Nuclear Information System (INIS)

    Yarbrough, Wendell G.; Whigham, Amy; Brown, Brandee; Roach, Michael; Slebos, Robbert

    2007-01-01

    Purpose: To investigate phosphoinositide kinase-3 (PI3K) activation in relation to human papillomavirus (HPV) status in head and neck squamous cell carcinoma (HNSCC). Methods and Materials: Gene expression microarray data were analyzed to determine differentially expressed genes between HPV(+) and HPV(-) HNSCC. PIK3CA gene expression was confirmed by quantitative reverse transcriptase-polymerase chain reaction in seven HPV(+) and seven HPV(-) primary HNSCCs. PIK3CA mutation status in three HPV(+) and nine HPV(-) cell lines was determined by polymerase chain reaction amplification of hot spot exons (1, 9, 20) followed by direct sequencing. Results: PIK3CA was overexpressed in HPV(+)-associated HNSCC compared with the expression in HPV(-) HNSCC. Activation of PIK3CA by mutation was found in 1 of the 12 tested HNSCC cell lines. Conclusion: Activation of PI3K by mutation of PIK3CA is rare in HNSCC cell lines and was not found in three HPV(+) cell lines. One mechanism by which HPV-associated HNSCC might activate PI3K is increased expression of PIK3CA

  6. Sequential Events in the Irreversible Thermal Denaturation of Human Brain-Type Creatine Kinase by Spectroscopic Methods

    Directory of Open Access Journals (Sweden)

    Yan-Song Gao

    2010-06-01

    Full Text Available The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK thermal denaturation were studied by differential scanning calorimetry (DSC, CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK. The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.

  7. Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase.

    Directory of Open Access Journals (Sweden)

    Safiatou T Coulibaly

    Full Text Available Identifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK mutant (G12 that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36 that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC, for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches.

  8. LC-MS/MS assay for the quantitation of the tyrosine kinase inhibitor neratinib in human plasma.

    Science.gov (United States)

    Kiesel, Brian F; Parise, Robert A; Wong, Alvin; Keyvanjah, Kiana; Jacobs, Samuel; Beumer, Jan H

    2017-02-05

    Neratinib is an orally available tyrosine kinase inhibitor targeting HER2 (ERBB2) and EGFR (ERBB). It is being clinically evaluated for the treatment of breast and other solid tumors types as a single agent or in combination with other chemotherapies. In support of several phase I/II clinical trials investigating neratinib combinations, we developed and validated a novel LC-MS/MS assay for the quantification of neratinib in 100μL of human plasma with a stable isotopic internal standard. Analytes were extracted from plasma using protein precipitation and evaporation of the resulting supernatant followed by resuspension. Chromatographic separation was achieved using an Acquity UPLC BEH Shield RP18 column and a gradient methanol-water mobile phase containing 10% ammonium acetate. An ABI 4000 mass spectrometer and electrospray positive mode ionization were used for detection. The assay was linear from 2 to 1,000ng/mL and proved to be accurate (98.9-106.5%) and precise (neratinib. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. αS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form

    Science.gov (United States)

    2010-01-01

    Background Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known. Results In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-derived vesicles prepared from rat or goat mammary tissues. The majority of both αS1- and β-casein which are cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat immature β-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of immature αS1-casein was recovered in permeabilised microsomes when incubated in conservative conditions. Furthermore, a substantial amount of αS1-casein remained associated with microsomal or post-ER membranes after saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of αS1-casein with membranes. Conclusions These experiments reveal for the first time the existence of a membrane-associated form of αS1-casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary epithelial cells. Our data suggest that αS1-casein, which is required for efficient export of the other caseins from the endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the secretory pathway. PMID:20704729

  10. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    Science.gov (United States)

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  11. Studies of the cytosolic thymidine kinase in human cells and comparison to the recombinantly expressed enzyme

    DEFF Research Database (Denmark)

    Kock Jensen, Helle

    by recombinant technics to examine the relation between the TKl gene and the TKl protein. In the second part of this investigation a direct expression system for human TKl in E.coli was developed to produce a source of high amounts of TKl, to be able to examine the structure of TKl. The resulting recombinant TKl...... cells and that this modification can not be performed in E.coli....... infections. In the first part of the present investigation a sensitive test for quantitating TKl mRNA (competitive PCR) is developed and the results show that PHA stimulated lymphocytes reveal the same pattern concerning expression of TKl mRNA and TKl enzyme activity as serum-stimulated cells. This pattern...

  12. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    Energy Technology Data Exchange (ETDEWEB)

    Winiewska, Maria; Makowska, Małgorzata [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Maj, Piotr [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Nencki Institute of Experimental Biology PAS, Warszawa (Poland); Wielechowska, Monika; Bretner, Maria [Warsaw University of Technology, Faculty of Chemistry, Warszawa (Poland); Poznański, Jarosław, E-mail: jarek@ibb.waw.pl [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Shugar, David [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland)

    2015-01-02

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC{sub 50}) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (H{sub bind}) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between H{sub bind} and ligand pK{sub a}. Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.

  13. Signaling via class IA Phosphoinositide 3-kinases (PI3K in human, breast-derived cell lines.

    Directory of Open Access Journals (Sweden)

    Veronique Juvin

    Full Text Available We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K in human breast-derived MCF10a (and iso-genetic derivatives and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5-trisphosphate (PtdIns(3,4,5P3 that can activate effectors, eg protein kinase B (PKB, and responses, eg migration. The PtdIns(3,4,5P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110β>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not β- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not β- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K, basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/- cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110β, but not α- or δ- activity; in PTEN(-/- MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely

  14. Depletion interaction of casein micelles and an exocellular polysaccharide

    Science.gov (United States)

    Tuinier, R.; Ten Grotenhuis, E.; Holt, C.; Timmins, P. A.; de Kruif, C. G.

    1999-07-01

    Casein micelles become mutually attractive when an exocellular polysaccharide produced by Lactococcus lactis subsp. cremoris NIZO B40 (hereafter called EPS) is added to skim milk. The attraction can be explained as a depletion interaction between the casein micelles induced by the nonadsorbing EPS. We used three scattering techniques (small-angle neutron scattering, turbidity measurements, and dynamic light scattering) to measure the attraction. In order to connect the theory of depletion interaction with experiment, we calculated structure factors of hard spheres interacting by a depletion pair potential. Theoretical predictions and all the experiments showed that casein micelles became more attractive upon increasing the EPS concentration.

  15. Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis.

    Science.gov (United States)

    Tu, Chengyi; Xu, Robert; Koleti, Meghana; Zoldan, Janet

    2017-08-01

    Inhibition of glycogen synthase kinase 3 (GSK3) is an extensively used strategy to activate Wnt pathway for pluripotent stem cell (PSC) differentiation. However, the effects of such inhibition on PSCs, besides upregulating the Wnt pathway, have rarely been investigated despite that GSK3 is broadly involved in other cellular activities such as insulin signaling and cell growth/survival regulation. Here we describe a previously unknown synergistic effect between GSK3 inhibition (e.g., Chir99021 and LY2090314) and various normally non-toxic thiol-containing antioxidants (e.g., N-acetylcysteine, NAC) on the induction of apoptosis in human induced pluripotent stem cells (iPSCs). Neither Chir99021 nor the antioxidants individually induced significant apoptosis, whereas their combined treatment resulted in rapid and extensive apoptosis, with substantial caspase 3 activity observed within 3h and over 90% decrease in cell viability after 24h. We confirmed the generality of this phenomenon with multiple independent iPSCs lines, various thiol-based antioxidants and distinct GSK3 inhibitors. Mechanistically, we demonstrated that rapamycin treatment could substantially reduce cell death, suggesting the critical role of mammalian target of rapamycin (mTOR). Akt dysregulation was also found to partially contribute to cell apoptosis but was not the primary cause. Further, this coordinated proapoptotic effect was not detected in mouse ESCs but was present in another human cells line: a breast cancer cell line (MDA-MB-231). Given the wide use of GSK3 inhibition in biomedical research: from iPSC differentiation to cancer intervention and the treatment of neuronal diseases, researchers can potentially take advantage of or avoid this synergistic effect for improved experimental or clinical outcome. Copyright © 2017. Published by Elsevier B.V.

  16. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal.

    Science.gov (United States)

    Villa-Diaz, Luis G; Kim, Jin Koo; Laperle, Alex; Palecek, Sean P; Krebsbach, Paul H

    2016-07-01

    Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764. © 2016 AlphaMed Press.

  17. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    Science.gov (United States)

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  18. Structural characterization of casein micelles: shape changes during film formation

    International Nuclear Information System (INIS)

    Gebhardt, R; Kulozik, U; Vendrely, C

    2011-01-01

    The objective of this study was to determine the effect of size-fractionation by centrifugation on the film structure of casein micelles. Fractionated casein micelles in solution were asymmetrically distributed with a small distribution width as measured by dynamic light scattering. Films prepared from the size-fractionated samples showed a smooth surface in optical microscopy images and a homogeneous microstructure in atomic force micrographs. The nano- and microstructure of casein films was probed by micro-beam grazing incidence small angle x-ray scattering (μGISAXS). Compared to the solution measurements, the sizes determined in the film were larger and broadly distributed. The measured GISAXS patterns clearly deviate from those simulated for a sphere and suggest a deformation of the casein micelles in the film. (paper)

  19. Characterization of casein and poly-l-arginine multilayer films

    Science.gov (United States)

    Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P.

    2014-06-01

    Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. alfa- and beta-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). We investigated the effect of the type of casein used for the film formation and of the polyethyleneimine anchoring layer on the thickness and mass of adsorbed films. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability, while the XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers.

  20. Immune activation by casein dietary antigens in bipolar disorder

    NARCIS (Netherlands)

    Severance, E.G.; Dupont, D.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Krivogorsky, B.; Yang, S.; Haasnoot, W.; Yolken, R.H.

    2010-01-01

    Objectives: Inflammation and other immune processes are increasingly linked to psychiatric diseases. Antigenic triggers specific to bipolar disorder are not yet defined. We tested whether antibodies to bovine milk caseins were associated with bipolar disorder, and whether patients recognized

  1. Post-exercise ingestion of a carbohydrate and casein hydrolysate ...

    African Journals Online (AJOL)

    casein hydrolysate) supplement on perceived muscle soreness and fatigue, in international level Sevens rugby players (n=23) during a pre-season training camp. Methods. A randomised, double-blind, placebo-controlled design was used. Players ...

  2. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer

    International Nuclear Information System (INIS)

    Brooks, Colin; Sheu, Tommy; Bridges, Kathleen; Mason, Kathy; Kuban, Deborah; Mathew, Paul; Meyn, Raymond

    2012-01-01

    Many prostate cancers demonstrate an increased expression of growth factor receptors such as vascular endothelial growth factor receptor (VEGFR) and platelet derived growth factor receptor (PDGFR) which have been correlated with increased resistance to radiotherapy and poor prognosis in other tumors. Therefore, response to radiation could potentially be improved by using inhibitors of these abnormally activated pathways. We have investigated the radiosensitizing effects of sunitinib, a potent, multi-tyrosine kinase inhibitor of the VEGFR and PDGFR receptors, on human prostate cancer cells. The radiosensitizing effects of sunitinib were assessed on human prostate cancer cell lines DU145, PC3 and LNCaP by clonogenic assay. Sunitinib’s ability to inhibit the activities of its key targets was determined by immunoblot analysis. The radiosensitizing effects of sunitinib in vivo were tested on human tumor xenografts growing in nude mice where response was assessed by tumor growth delay. Clonogenic survival curve assays for both DU145 and PC3 cells showed that the surviving fraction at 2 Gy was reduced from 0.70 and 0.52 in controls to 0.44 and 0.38, respectively, by a 24 hr pretreatment with 100 nM sunitinib. LNCaP cells were not radiosensitized by sunitinib. Dose dependent decreases in VEGFR and PDGFR activation were also observed following sunitinib in both DU145 and PC3 cells. We assessed the ability of sunitinib to radiosensitize PC3 xenograft tumors growing in the hind limb of nude mice. Sunitinib given concurrently with radiation did not prolong tumor growth delay. However, when animals were treated with sunitinib commencing the day after fractionated radiation was complete, tumor growth delay was enhanced compared to radiation alone. We conclude, based on the in vivo results, that sunitinib and radiation do not interact directly to radiosensitize the PC3 tumor cells in vivo as they did in vitro. The fact that tumor growth delay was enhanced when sunitinib was

  3. Examination of rheological properties of aqueous solutions of sodium caseinate

    OpenAIRE

    Jolanta Gawałek; Piotr Wesołowski

    2012-01-01

    Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The materia...

  4. TGFβ1-mediated PI3K/Akt and p38 MAP kinase dependent alternative splicing of fibronectin extra domain A in human podocyte culture.

    Science.gov (United States)

    Madne, Tarunkumar Hemraj; Dockrell, Mark Edward Carl

    2018-04-30

    Alternative splicing is an important gene regulation process to distribute proteins in health and diseases. Extra Domain A+ Fibronectin (EDA+Fn) is an alternatively spliced form of fibronectin (Fn) protein, present in the extra cellular matrix (ECM) and a recognised marker of various pathologies. TGFβ1 has been shown to induce alternative splicing of EDA+Fn in many cell types. Podocytes are spectacular cell type and play a key role in filtration and synthesise ECM proteins in renal physiology and pathology. In our previous study we have demonstrated expression and alternative splicing of EDA+Fn in basal condition in human podocytes culture. TGFβ1 further induced the basal expression and alternative splicing of EDA+Fn through Alk5 receptor and SR proteins. In this study, we have investigated TGFβ1 mediated signalling involved in alternative splicing of EDA+Fn in human podocytes. We have performed western blotting to characterise the expression of the EDA+Fn protein and other signalling proteins and RT-PCR to look for signalling pathways involved in regulation of alternative splicing of EDA+Fn in conditionally immortalised human podocytes culture.We have used TGFβ1 as a stimulator and SB431542, SB202190 and LY294002 for inhibitory studies. In this work, we have demonstrated in human podocytes culture TGFβ1 2.5ng/ml induced phosphorylation of Smad1/5/8, Smad2 and Smad3 via the ALK5 receptor. TGFβ1 significantly induced the PI3K/Akt pathway and the PI3K/Akt pathway inhibitor LY294002 significantly downregulated basal as well as TGFβ1 induced alternative splicing of EDA+Fn in human podocytes. In addition to this, TGFβ1 significantly induced the p38 MAP kinase signalling pathway and p38 MAP kinase signalling pathway inhibitor SB202190 downregulated the TGFβ1-mediated alternative splicing of EDA+Fn in human podocytes. The results with PI3K and p38 MAP kinase signalling pathway suggest that inhibiting PI3K signalling pathway downregulated the basal alternative

  5. Examination of the signal transduction pathways leading to upregulation of tissue type plasminogen activator by Porphyromonas endodontalis in human pulp cells.

    Science.gov (United States)

    Huang, F-M; Chen, Y-J; Chou, M-Y; Chang, Y-C

    2005-12-01

    To investigate the tissue type plasminogen activator (t-PA) activity in human pulp cells stimulated with Porphyromonas endodontalis (P. endodontalis) in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126 and phosphatidylinositaol 3-kinase (PI3K) inhibitor LY294002. The supernatants of P. endodontalis were used to evaluate t-PA activity in human pulp cells using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search for possible signal transduction pathways, SB203580, U0126 and LY294002 were added to test how they modulated the t-PA activity. The main casein secreted by human pulp cells migrated at 70 kDa and represented t-PA. Secretion of t-PA was found to be stimulated with P. endodontalis during 2-day cultured period (P endodontalis stimulated t-PA production respectively (P endodontalis stimulated t-PA production (P > 0.05). Porphyromonas endodontalis enhances t-PA production in human pulp cells, and the signal transduction pathways p38 and MEK are involved in the inhibition of t-PA.

  6. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.

  7. The roles of MCP-1 and protein kinase C delta activation in human eosinophilic leukemia EoL-1 cells.

    Science.gov (United States)

    Lee, Ji-Sook; Yang, Eun Ju; Kim, In Sik

    2009-12-01

    Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-alpha (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKC delta in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a G(i)/G(o) protein, phospholipase C (PLC), PKC delta, p38 MAPK and NF-kappaB. MCP-1 activates p38 MAPK via G(i)/G(o) protein, PLC and PKC delta cascade. MCP-1 also induces NF-kappaB translocation and the activation is inhibited by PKC delta activation. The increase in the basal expression and activity of PKC delta in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKC delta is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKC delta functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.

  8. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    Science.gov (United States)

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  9. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    Science.gov (United States)

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  10. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yong-Chao Ma

    Full Text Available Both tyrosine kinase and topoisomerase II (TopII are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT dUTP nick-end labeling (TUNEL assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK detection kit using a horseradish peroxidase (HRP-conjugated phosphotyrosine (pY20 antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05, and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose

  11. Biliary lipid composition and gallstone formation in rabbits fed on soy protein, cholesterol, casein and modified casein.

    OpenAIRE

    Ozben, T

    1989-01-01

    In four experimental groups, rabbits were fed on diets containing soy beans, soy beans plus cholesterol (1%, w/w), casein and modified casein for 8 weeks. Biliary lipid levels, lithogenic-index values and the rate of gallstone formation were determined. The highest mean relative concentrations (mol%) of cholesterol and phospholipid were found in the soy bean + cholesterol group, and the highest mean relative bile acid concentration was in the soy bean group. The lowest mean relative cholester...

  12. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    Science.gov (United States)

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  13. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells.

    Science.gov (United States)

    Guon, Tae Eun; Chung, Ha Sook

    2017-08-01

    The present study was performed to determine the effect of Moringa oleifera fruit extract on the apoptosis of human melanoma A2058 cells. A2058 cells were treated for 72 h with Moringa oleifera fruit extract at 50-100 µg/ml, and cell viability with apoptotic changes was examined. The involvement of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) was examined. It was revealed that Moringa oleifera fruit extract significantly inhibited the cell viability and promoted apoptosis of A2058 cells in a concentration-dependent manner. Moringa oleifera fruit extract-treated A2058 cells exhibited increased activities of cleaved caspase-9 and caspase-3. It also caused an enhancement of MAPK phosphorylation and ROS production. The pro-apoptotic activity of Moringa oleifera fruit extract was significantly reversed by pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125, extracellular-signal-regulated kinase (ERK) inhibitor PD98058 or ROS inhibitor N-acetyl-L-cysteine. Taken together, Moringa oleifera fruit extract is effective in inducing mitochondrial apoptosis of A2058 cells, which is mediated through induction of ROS formation, and JNK and ERK activation. Moringa oleifera fruit extract may thus have therapeutic benefits for human melanoma A2058 cells.

  14. Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies.

    Science.gov (United States)

    Heuss, Dieter; Klascinski, Janine; Schubert, Steffen W; Moriabadi, Tehmur; Lochmüller, Hanns; Hashemolhosseini, Said

    2008-09-01

    Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800-1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2alpha and CK2beta and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.

  15. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  16. Modulation of integrin-linked kinase (ILK expression in human oesophageal squamous cell carcinoma cell lines by the EGF and TGFβ1 growth factors

    Directory of Open Access Journals (Sweden)

    Veale Robin B

    2006-04-01

    Full Text Available Abstract Background Integrin-linked kinase (ILK is a ubiquitously expressed protein kinase that has emerged as one of the points of convergence between integrin- and growth factor-signalling pathways. Results In this study we identify the ILK isoform expressed in five human oesophageal squamous cell carcinoma cell lines of South African origin as ILK1, and demonstrate its cellular distribution. ILK expression, although similar in the majority of the cell lines, did show variation. Furthermore, the ILK expressed was shown to be catalytically functional. The effect of growth factors on ILK expression was examined. An increase in ILK expression, following EGF and TGFβ1 exposure, was a trend across all the five oesophageal carcinoma cell lines tested. Conclusion These results suggest that growth factor modulation of ILK expression relies on the internalisation/recycling of growth factor receptors and stimulation of the PI3K pathway, which may have implications with regards to cell adhesion and tumourigenesis.

  17. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    Science.gov (United States)

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  18. Effect of Fluoride, Casein Phosphopeptide–Amorphous Calcium Phosphate and Casein Phosphopeptide–Amorphous Calcium Phosphate Fluoride on Enamel Surface Microhardness After Microabrasion: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadi Zenouz

    2016-03-01

    Full Text Available Objectives: This study aimed to assess the effect of applying casein phosphopeptide–amorphous calcium phosphate (CPP-ACP paste, casein phosphopeptide–amorphous calcium phosphate fluoride (CPP-ACPF paste and sodium fluoride gel on surface microhardness of enamel after microabrasion.Materials and Methods: Thirty freshly extracted human premolars were selected. All samples were subjected to hardness indentations made with the Vickers hardness machine and the average value was recorded as the initial surface microhardness. The specimens were then randomly divided into three groups (n=10 of CPP-ACPF, fluoride and CPP-ACP. The teeth were micro-abraded with Opalustre. Microhardness test was performed to assess the post-abrasion hardness. Three remineralization modalities were performed on samples of each group. The enamel surface microhardness measurements were performed. To compare the difference between groups, the rehardening and softening values were defined. One-way ANOVA and Tukey’s post hoc test at a significance level of 5% were used for statistical analysis.Results: The mean microhardness value (MMV had a significant decrease after microabrasion from baseline. The MMV had a significant increase after remineralization in all groups. The MMV of CPP-ACPF group was significantly more than that of fluoride group (P=0.027. The rehardening value of fluoride group was significantly more than that of other groups (P<0.001.Conclusion: All the remineralizing agents were effective for rehardening the enamel after microabrasion. The CPP-ACP and CPP-ACPF pastes are effective, but to a lesser extent than neutral sodium fluoride gel in remineralizing enamel surface. Incorporation of fluoride to CPP-ACP formulation does not provide any additional remineralizing potential.Keywords: Casein phosphopeptide-amorphous calcium phosphate nanocomplex; Enamel Microabrasion; Hardness; Sodium Fluoride

  19. Cytotoxic Activity of 3,6-Dihydroxyflavone in Human Cervical Cancer Cells and Its Therapeutic Effect on c-Jun N-Terminal Kinase Inhibition

    Directory of Open Access Journals (Sweden)

    Eunjung Lee

    2014-08-01

    Full Text Available Previously we have shown that 3,6-dihydroxyflavone (3,6-DHF is a potent agonist of the human peroxisome proliferator-activated receptor (hPPAR with cytotoxic effects on human cervical cancer cells. To date, the mechanisms by which 3,6-DHF exerts its antitumor effects on cervical cells have not been clearly defined. Here, we demonstrated that 3,6-DHF exhibits a novel antitumor activity against HeLa cells with IC50 values of 25 μM and 9.8 μM after 24 h and 48 h, respectively. We also showed that the anticancer effects of 3,6-DHF are mediated via the toll-like receptor (TLR 4/CD14, p38 mitogen-activated protein kinase (MAPK, Jun-N terminal kinase (JNK, extracellular-signaling regulated kinase (ERK, and cyclooxygenase (COX-2 pathways in lipopolysaccharide (LPS-stimulated RAW264.7 cells. We found that 3,6-DHF showed a similar IC50 (113 nM value to that of the JNK inhibitor, SP600125 (IC50 = 118 nM in a JNK1 kinase assay. Binding studies revealed that 3,6-DHF had a strong binding affinity to JNK1 (1.996 × 105 M−1 and that the 6-OH and the carbonyl oxygen of the C ring of 3,6-DHF participated in hydrogen bonding interactions with the carbonyl oxygen and the amide proton of Met111, respectively. Therefore, 3,6-DHF may be a candidate inhibitor of JNKs, with potent anticancer effects.

  20. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  1. Casein maps: Effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles

    Science.gov (United States)

    Ye, Ran; Harte, Federico

    2015-01-01

    Although conditions favoring casein micelle aggregation are well known, factors promoting the dissociation of the casein micelle are not fully understood. It was our objective to investigate the ethanol-induced dissociation of micellar casein as affected by temperature and a wide range of pH, along with the concentrations of calcium and casein. Two different concentrations of casein micelles were dispersed in imidazole buffer with 0 to 80% ethanol (vol/vol) and 2 and 10 mM calcium. Apparent micelle size was determined by dynamic light scattering at 5, 30, and 60°C. In the absence of ethanol, casein precipitation occurred at pH 4.6 in imidazole buffer. Ten to forty percent ethanol promoted casein aggregation (>1,000 nm) and higher temperature (30 and 60°C) enhanced this effect. Higher ethanol concentrations at 50 to 80% induced the dissociation (casein micelle upon acidification (pH 8) in imidazole buffer. In addition, higher concentrations of casein (0.25 mg/mL) and calcium (20 mM) caused the formation of larger aggregates (>1,000 nm) in the presence of ethanol when comparing with the initial lower concentrations of casein (0.1 mg/mL) and calcium (2 mM). Casein micelle dissociation can be achieved near the isoelectric pH by modifying the solvent composition and temperature. PMID:23200467

  2. Structural investigations of sodium caseinate micelles in complex environments

    Energy Technology Data Exchange (ETDEWEB)

    Huck Iriart, C.; Herrera, M.L.; Candal, R. [Universidad de Buenos Aires, Buenos Aires (Argentina); Oliveira, C.L.P. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Torriani, I. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The most frequent destabilization mechanisms in Sodium Caseinate (NaCas) emulsions are creaming and flocculation. Coarse or fine emulsions with low protein con- tent destabilize mainly by creaming. If migration mechanism is suppressed, flocculation may become the main mechanism of destabilization. Small Angle X-Ray Scattering (SAXS) technique was applied to investigate sodium caseinate micelles structure in different environments. As many natural products, Sodium Caseinate samples have large polydisperse size distribution. The experimental data was analyzed using advanced modeling approaches. The Form Factor for the Caseinate micelle subunits was described by an ellipsoidal core shell model and the structure factor was split into two contributions, one corresponding to the particle-particle interactions and another one for the long range correlation of the subunits in the supramolecular structure. For the first term the hard sphere structure factor using the Percus-Yevick approximation for closure relation was used and for the second term a fractal model was applied. Three concentrations of sodium Caseinate (2, 5 and 7.5 %wt.) were measured in pure water, sugar solutions (20 %wt.) and in three different lipid phase emulsions containing 10 %wt. sunflower seed, olive and fish oils. Data analysis provided an average casein subunit radius of 4 nm, an average distance between the subunits of around 20nm and a fractal dimension value of around 3 for all samples. As indicated by the values of the correlation lengths for the set of studied samples, the casein aggregation is strongly affected by simple sugar additions and it is enhanced by emulsion droplets hydrophobic interaction. As will be presented, these nanoscale structural results provided by scattering experiments is consistent with macroscopic results obtained from several techniques, providing a new understanding of NaCas emulsions. (author)

  3. Structural investigations of sodium caseinate micelles in complex environments

    International Nuclear Information System (INIS)

    Huck Iriart, C.; Herrera, M.L.; Candal, R.; Oliveira, C.L.P.; Torriani, I.

    2012-01-01

    Full text: The most frequent destabilization mechanisms in Sodium Caseinate (NaCas) emulsions are creaming and flocculation. Coarse or fine emulsions with low protein con- tent destabilize mainly by creaming. If migration mechanism is suppressed, flocculation may become the main mechanism of destabilization. Small Angle X-Ray Scattering (SAXS) technique was applied to investigate sodium caseinate micelles structure in different environments. As many natural products, Sodium Caseinate samples have large polydisperse size distribution. The experimental data was analyzed using advanced modeling approaches. The Form Factor for the Caseinate micelle subunits was described by an ellipsoidal core shell model and the structure factor was split into two contributions, one corresponding to the particle-particle interactions and another one for the long range correlation of the subunits in the supramolecular structure. For the first term the hard sphere structure factor using the Percus-Yevick approximation for closure relation was used and for the second term a fractal model was applied. Three concentrations of sodium Caseinate (2, 5 and 7.5 %wt.) were measured in pure water, sugar solutions (20 %wt.) and in three different lipid phase emulsions containing 10 %wt. sunflower seed, olive and fish oils. Data analysis provided an average casein subunit radius of 4 nm, an average distance between the subunits of around 20nm and a fractal dimension value of around 3 for all samples. As indicated by the values of the correlation lengths for the set of studied samples, the casein aggregation is strongly affected by simple sugar additions and it is enhanced by emulsion droplets hydrophobic interaction. As will be presented, these nanoscale structural results provided by scattering experiments is consistent with macroscopic results obtained from several techniques, providing a new understanding of NaCas emulsions. (author)

  4. Protein aggregation in aqueous casein solution

    International Nuclear Information System (INIS)

    Yousri, R.M.

    1980-01-01

    From the vast amount of research efforts dealing with various aspects of radiation effects on foods and food components (11, 18, 5, 12, 19, 8, 9, 6, 13, 15, 17, 20), it is apparent up to now that much remains to be studied in depth, much may have to be added or corrected about radiation-induced physico-chemical changes in foods. A great many reactions that take place when foodstuffs are subjected to ionizing radiation are still not fully understood. The better understanding of some of the radiation-induced changes in pure proteins as such or in mixture with other food constituents could yield much data which could be meaningfully extrapolated to intact foods and consequently could help to improve the assessment of the wholesomeness of irradiated foods. It was the purpose of our investigations to elucidate some of the changes in the chemical structure of a pure protein (casein), irradiated as such or which added carbohydrate and/or lipid. The effect of subsequent storage of the irradiated solutions has been also examined. The formation of protein aggregates was studied by gel filtration technique. The application of thin-layer gel filtration, its speed and adaptability to very small samples facilitated the measurements of the extent of aggregation which occurred in protein molecules after irradiation. (orig.) [de

  5. Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion

    International Nuclear Information System (INIS)

    Cai, Kun; Mulatz, Kirk; Ard, Ryan; Nguyen, Thanh; Gee, Stephen H

    2014-01-01

    Unraveling the signaling pathways responsible for the establishment of a metastatic phenotype in carcinoma cells is critically important for understanding the pathology of cancer. The acquisition of cell motility is a key property of metastatic tumor cells and is a prerequisite for invasion. Rho GTPases regulate actin cytoskeleton reorganization and the cellular responses required for cell motility and invasion. Diacylglycerol kinase ζ (DGKζ), an enzyme that phosphorylates diacylglycerol to yield phosphatidic acid, regulates the activity of the Rho GTPases Rac1 and RhoA. DGKζ mRNA is highly expressed in several different colon cancer cell lines, as well as in colon cancer tissue relative to normal colonic epithelium, and thus may contribute to the metastatic process. To investigate potential roles of DGKζ in cancer metastasis, a cellular, isogenic model of human colorectal cancer metastatic transition was used. DGKζ protein levels, Rac1 and RhoA activity, and PAK phosphorylation were measured in the non-metastatic SW480 adenocarcinoma cell line and its highly metastatic variant, the SW620 line. The effect of DGKζ silencing on Rho GTPase activity and invasion through Matrigel-coated Transwell inserts was studied in SW620 cells. Invasiveness was also measured in PC-3 prostate cancer and MDA-MB-231 breast cancer cells depleted of DGKζ. DGKζ protein levels were elevated approximately 3-fold in SW620 cells compared to SW480 cells. There was a concomitant increase in active Rac1 in SW620 cells, as well as substantial increases in the expression and phosphorylation of the Rac1 effector PAK1. Similarly, RhoA activity and expression were increased in SW620 cells. Knockdown of DGKζ expression in SW620 cells by shRNA-mediated silencing significantly reduced Rac1 and RhoA activity and attenuated the invasiveness of SW620 cells in vitro. DGKζ silencing in highly metastatic MDA-MB-231 breast cancer cells and PC-3 prostate cancer cells also significantly attenuated

  6. Identification of Phosphoglycerate Kinase 1 (PGK1 as a reference gene for quantitative gene expression measurements in human blood RNA

    Directory of Open Access Journals (Sweden)

    Unger Elizabeth R

    2011-09-01

    Full Text Available Abstract Background Blood is a convenient sample and increasingly used for quantitative gene expression measurements with a variety of diseases including chronic fatigue syndrome (CFS. Quantitative gene expression measurements require normalization of target genes to reference genes that are stable and independent from variables being tested in the experiment. Because there are no genes that are useful for all situations, reference gene selection is an essential step to any quantitative reverse transcription-PCR protocol. Many publications have described appropriate genes for a wide variety of tissues and experimental conditions, however, reference genes that may be suitable for the analysis of CFS, or human blood RNA derived from whole blood as well as isolated peripheral blood mononuclear cells (PBMCs, have not been described. Findings Literature review and analyses of our unpublished microarray data were used to narrow down the pool of candidate reference genes to six. We assayed whole blood RNA from Tempus tubes and cell preparation tube (CPT-collected PBMC RNA from 46 subjects, and used the geNorm and NormFinder algorithms to select the most stable reference genes. Phosphoglycerate kinase 1 (PGK1 was one of the optimal normalization genes for both whole blood and PBMC RNA, however, additional genes differed for the two sample types; Ribosomal protein large, P0 (RPLP0 for PBMC RNA and Peptidylprolyl isomerase B (PPIB for whole blood RNA. We also show that the use of a single reference gene is sufficient for normalization when the most stable candidates are used. Conclusions We have identified PGK1 as a stable reference gene for use with whole blood RNA and RNA derived from PBMC. When stable genes are selected it is possible to use a single gene for normalization rather than two or three. Optimal normalization will improve the ability of results from PBMC RNA to be compared with those from whole blood RNA and potentially allows comparison of

  7. Effect of C-terminal of human cytosolic thymidine kinase (TK1) on in vitro stability and enzymatic properties

    DEFF Research Database (Denmark)

    Munch-Petersen, Birgitte; Munch-Petersen, Sune; Berenstein, Dvora

    2006-01-01

    Thymidine kinase (TK1) is a key enzyme in the salvage pathway of nucleotide metabolism and catalyzes the first rate-limiting step in the synthesis of dTTP, transfer of a gamma-phosphate group from a nucleoside triphosphate to the 5′-hydroxyl group of thymidine, thus forming dTMP. TK1 is cytosolic...

  8. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  9. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.; Arold, Stefan T.; Chauhan, Gaurav B.; Blachno, Korina V.; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W.; Bartholomeusz, Chandra; Ladbury, John E.; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J.

    2014-01-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  10. The Effect of Direct Current Transthoracic Countershock on Human Myocardial Cells Evidenced by Creatine Kinase and Lactic Dehydrogenase Isoenzymes.

    Science.gov (United States)

    1986-05-01

    however, fractionation of these enzymes will identify their specific source. Plasma levels of CK isoenzymes (CKMB) and LDH isoenzymes ( LDHI ) are most...damage--inferred by isoenzyme levels of CKMB and/or LDHI in the serum above normal levels (see definitions of creatine kinase and lactic dehydrogenase

  11. Involvement of the phosphoinositide 3-kinase/Akt pathway in apoptosis induced by capsaicin in the human pancreatic cancer cell line PANC-1.

    Science.gov (United States)

    Zhang, Jian-Hong; Lai, Fu-Ji; Chen, Hui; Luo, Jiang; Zhang, Ri-Yuan; Bu, He-Qi; Wang, Zhao-Hong; Lin, Hong-Hai; Lin, Sheng-Zhang

    2013-01-01

    Capsaicin, one of the major pungent ingredients found in red peppers, has been recently demonstrated to induce apoptosis in various malignant cell lines through an unclear mechanism. In this study, the effect of capsaicin on proliferation and apoptosis in the human pancreatic cancer cell line PANC-1 and its possible mechanism(s) of action were investigated. The results of a Cell Counting Kit-8 (CCK-8) assay revealed that capsaicin significantly decreased the viability of PANC-1 cells in a dose-dependent manner. Capsaicin induced G0/G1 phase cell cycle arrest and apoptosis in PANC-1 cells as demonstrated by a flow cytometric assessment. Caspase-3 expression at both the protein and mRNA level was promoted following capsaicin treatment. Furthermore, we revealed that phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473) in PANC-1 cells were downregulated in response to capsaicin. Moreover, capsaicin gavage significantly inhibited the growth of pancreatic cancer PANC-1 cell xenografts in athymic nude mice. An increased number of TUNEL-positive cells and cleaved caspase-3 were observed in capsaicin-treated mice. In vivo, capsaicin downregulated the expression of phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473). In conclusion, we have demonstrated that capsaicin is an inhibitor of growth of PANC-1 cells, and downregulation of the phosphoinositide 3-kinase/Akt pathway may be involved in capsaicin-induced apoptosis in vitro and in vivo.

  12. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation

    International Nuclear Information System (INIS)

    Chou, C.-T.; He Shiping; Jan, C.-R.

    2007-01-01

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH 2 -terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca 2+ ] i increases which involved the mobilization of intracellular Ca 2+ stored in the endoplasmic reticulum and Ca 2+ influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca 2+ chelator, to prevent paroxetine-induced [Ca 2+ ] i increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca 2+ -independent apoptosis via inducing p38 MAPK-associated caspase-3 activation

  13. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    International Nuclear Information System (INIS)

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K.

    2005-01-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP 3 -mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKCα) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKCα-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKCα-specific inhibitor Goe6976 suggested the involvement of PKCα in the regulation of guanylate cyclase activity

  14. Crystal Structure of Human Dual-Specificity Tyrosine-Regulated Kinase 3 Reveals New Structural Features and Insights into its Auto-phosphorylation.

    Science.gov (United States)

    Kim, Kuglae; Cha, Jeong Seok; Cho, Yong-Soon; Kim, Hoyoung; Chang, Nienping; Kim, Hye-Jung; Cho, Hyun-Soo

    2018-04-07

    Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Promotion of DNA strand breaks in cocultured mononuclear leukocytes by protein kinase C-dependent prooxidative interactions of benoxaprofen, human polymorphonuclear leukocytes, and ultraviolet radiation

    International Nuclear Information System (INIS)

    Schwalb, G.; Beyers, A.D.; Anderson, R.; Nel, A.E.

    1988-01-01

    At concentrations of 5 micrograms/ml and greater the nonsteroidal antiinflammatory drug benoxaprofen caused dose-related activation of lucigenin-enhanced chemiluminescence in human polymorphonuclear leukocytes (PMNL). Benoxaprofen-mediated activation of lucigenin-enhanced chemiluminescence by PMNL was increased by UV radiation and was particularly sensitive to inhibition by the selective protein kinase C inhibitor H-7. To identify the molecular mechanism of the prooxidative activity of benoxaprofen, the effects of the nonsteroidal antiinflammatory drug on the activity of purified protein kinase C in a cell-free system were investigated. Benoxaprofen caused a dose-related activation of protein kinase C by interaction with the binding site for the physiological activator phosphatidylserine, but could not replace diacylglycerol. When autologous mononuclear leukocytes (MNL) were cocultured with PMNL and benoxaprofen in combination, but not individually, the frequency of DNA strand breaks in MNL was markedly increased. UV radiation significantly potentiated damage to DNA mediated by benoxaprofen and PMNL. Inclusion of superoxide dismutase, H-7, and, to a much lesser extent, catalase during exposure of MNL to benoxaprofen-activated PMNL prevented oxidant damage to DNA. These results clearly demonstrate that potentially carcinogenic prooxidative interactions, which are unlikely to be detected by conventional assays of mutagenicity, may occur between phagocytes, UV radiation, and certain pharmacological agents

  16. Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase.

    Science.gov (United States)

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.

  17. The decontamination of industrial casein and milk powder by irradiation

    International Nuclear Information System (INIS)

    Zegota, H.; Malolepszy, B.

    2008-01-01

    The efficacy of gamma radiation decontamination of industrial casein, a milk protein utilized as a component of many food and non-food products has been studied. Low-fat milk powder was also included with a purpose to study the microflora survival in protein-rich materials. Microbial analysis of the samples prior to irradiation showed that the initial total viable count was higher than 6.0 log cfu g -1 in both casein and milk powders. The contamination of casein with moulds and yeasts was found to be equal to 3.56 log cfu g -1 . The counts of coliforms have not exceeded the value of 2.48 log cfu g -1 . Radiation processing of casein and milk powder has substantially reduced the microbial population of all samples. The dose of 5 kGy was sufficient to reduce the total microflora and coliforms counts to the level permitted for food products. Survivals of microorganisms were analyzed by the generalized exponential equation, SF=exp[-D/D o ) α ]. Values of an exponent, α, standing for the dispersion parameter, were equal to 0.65 and 0.70 for microorganisms contaminating casein and milk powders, respectively. The numerical value of the dispersion parameter α<1 indicates the concave dependence of a logarithm of surviving fraction versus radiation dose. No difference in microflora survival in irradiated samples tested immediately and in samples stored for 1-month after irradiation has been noticed

  18. Effect of microfluidization on casein micelle size of bovine milk

    Science.gov (United States)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    The properties of milk are likely to be dependent on the casein micelle size, and various processing technologies produce particular change in the average size of casein micelles. The main objective of this study was to manipulate casein micelle size by subjecting milk to microfluidizer. The experiment was performed as a complete block randomised design with three replications. The sample was passed through the microfluidizer at the set pressure of 83, 97, 112 and 126 MPa for one, two, three, four, five and six cycles, except for the 112 MPa. The results showed that microfluidized milk has smaller size by 3% with pressure up to 126 MPa. However, at each pressure, no further reduction was observed after increasing the passed up to 6 cycles. Although the average casein micelle size was similar, elevating pressure resulted in narrower size distribution. In contrast, increasing the number of cycles had little effect on casein micelle distribution. The finding from this study can be applied for future work to characterize the fundamental and functional properties of the treated milk.

  19. The decontamination of industrial casein and milk powder by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zegota, H. [Institute of Applied Radiation Chemistry, Technical University, Wroblewskiego 15, 93-590 Lodz (Poland)], E-mail: ahzegota@mitr.p.lodz.pl; Malolepszy, B. [Fleur Comp. Ltd., Artyleryjska 6, 91-072 Lodz (Poland)

    2008-09-15

    The efficacy of gamma radiation decontamination of industrial casein, a milk protein utilized as a component of many food and non-food products has been studied. Low-fat milk powder was also included with a purpose to study the microflora survival in protein-rich materials. Microbial analysis of the samples prior to irradiation showed that the initial total viable count was higher than 6.0 log cfu g{sup -1} in both casein and milk powders. The contamination of casein with moulds and yeasts was found to be equal to 3.56 log cfu g{sup -1}. The counts of coliforms have not exceeded the value of 2.48 log cfu g{sup -1}. Radiation processing of casein and milk powder has substantially reduced the microbial population of all samples. The dose of 5 kGy was sufficient to reduce the total microflora and coliforms counts to the level permitted for food products. Survivals of microorganisms were analyzed by the generalized exponential equation, SF=exp[-D/D{sub o}){sup {alpha}}]. Values of an exponent, {alpha}, standing for the dispersion parameter, were equal to 0.65 and 0.70 for microorganisms contaminating casein and milk powders, respectively. The numerical value of the dispersion parameter {alpha}<1 indicates the concave dependence of a logarithm of surviving fraction versus radiation dose. No difference in microflora survival in irradiated samples tested immediately and in samples stored for 1-month after irradiation has been noticed.

  20. Rheological behavior of high-concentration sodium caseinate dispersions.

    Science.gov (United States)

    Loveday, Simon M; Rao, M Anandha; Creamer, Lawrence K; Singh, Harjinder

    2010-03-01

    Apparent viscosity and frequency sweep (G', G'') data for sodium caseinate dispersions with concentrations of approximately 18% to 40% w/w were obtained at 20 degrees C; colloidal glass behavior was exhibited by dispersions with concentration >or=23% w/w. The high concentrations were obtained by mixing frozen powdered buffer with sodium caseinate in boiling liquid nitrogen, and allowing the mixtures to thaw and hydrate at 4 degrees C. The low-temperature G'-G'' crossover seen in temperature scans between 60 and 5 degrees C was thought to indicate gelation. Temperature scans from 5 to 90 degrees C revealed gradual decrease in G' followed by plateau values. In contrast, G'' decreased gradually and did not reach plateau values. Increase in hydrophobicity of the sodium caseinate or a decrease in the effective volume fraction of its aggregates may have contributed to these phenomena. The gelation and end of softening temperatures of the dispersions increased with the concentration of sodium caseinate. From an Eldridge-Ferry plot, the enthalpy of softening was estimated to be 29.6 kJ mol(-1). The results of this study should be useful for creating new products with high concentrations of sodium caseinate.

  1. Phenylalanine flux and gastric emptying are not affected by replacement of casein with whey protein in the diet of adult cats consuming frequent small meals.

    Science.gov (United States)

    Tycholis, Tanya J; Cant, John P; Osborne, Vern R; Shoveller, Anna K

    2014-08-12

    Decreasing the rate of protein emptying from the stomach may improve efficiency of utilization of dietary amino acids for protein deposition. Some studies in rats and humans have shown casein to be more slowly released from the stomach than whey protein. To test if casein induces a slower rate of gastric emptying in cats than whey protein, L-[1-(13)C]phenylalanine (Phe) was dosed orally into 9 adult cats to estimate gastric emptying and whole-body Phe flux. Concentrations of indispensable amino acids in plasma were not significantly affected by dietary protein source. First-pass splanchnic extraction of Phe was not different between diets and averaged 50% (SEM = 3.8%). The half-time for gastric emptying averaged 9.9 min with casein and 10.3 min with whey protein, and was not significantly different between diets (SEM = 1.7 min). Phenylalanine fluxes were 45.3 and 46.5 μmol/(min · kg) for casein- and whey-based diets, respectively (SEM = 4.7 μmol/(min · kg)). In adult cats fed frequent small meals, the replacement of casein with whey protein in the diet does not affect supply or utilization of amino acids. These two milk proteins appear to be equally capable of meeting the dietary amino acid needs of cats.

  2. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  3. Novel covalent modification of human anaplastic lymphoma kinase (ALK and potentiation of crizotinib-mediated inhibition of ALK activity by BNP7787

    Directory of Open Access Journals (Sweden)

    Parker AR

    2015-02-01

    Full Text Available Aulma R Parker,1 Pavankumar N Petluru,1 Vicki L Nienaber,2 Min Zhao,1 Philippe Y Ayala,1 John Badger,2 Barbara Chie-Leon,2 Vandana Sridhar,2 Cheyenne Logan,2 Harry Kochat,1 Frederick H Hausheer1 1BioNumerik Pharmaceuticals, Inc., San Antonio, TX, USA; 2Zenobia Therapeutics, Inc., La Jolla, CA, USA Abstract: BNP7787 (Tavocept, disodium 2,2’-dithio-bis-ethanesulfonate is a novel, investigational, water-soluble disulfide that is well-tolerated and nontoxic. In separate randomized multicenter Phase II and Phase III clinical trials in non-small-cell lung cancer (NSCLC patients, treatment with BNP7787 in combination with standard chemotherapy resulted in substantial increases in the overall survival of patients with advanced adenocarcinoma of the lung in the first-line treatment setting. We hypothesized that BNP7787 might interact with and modify human anaplastic lymphoma kinase (ALK. At least seven different variants of ALK fusions with the gene encoding the echinoderm microtubule-associated protein-like 4 (EML4 are known to occur in NSCLC. EML4–ALK fusions are thought to account for approximately 3% of NSCLC cases. Herein, we report the covalent modification of the kinase domain of human ALK by a BNP7787-derived mesna moiety and the functional consequences of this modification in ALK assays evaluating kinase activity. The kinase domain of the ALK protein crystallizes as a monomer, and BNP7787-derived mesna-cysteine adducts were observed at Cys 1235 and Cys 1156. The BNP7787-derived mesna adduct at Cys 1156 is located in close proximity to the active site and results in substantial disorder of the P-loop and activation loop (A-loop. Comparison with the P-loop of apo-ALK suggests that the BNP7787-derived mesna adduct at Cys 1156 interferes with the positioning of Phe 1127 into a small pocket now occupied by mesna, resulting in a destabilization of the loop's binding orientation. Additionally, in vitro kinase activity assays indicate that BNP7787

  4. Prevention of adsorption losses during radioimmunoassay of polypeptide hormones: effectiveness of albumins, gelatin, caseins, Tween 20 and plasma

    International Nuclear Information System (INIS)

    Livesey, J.H.; Donald, R.A.

    1982-01-01

    It is well known that polypeptide hormones adsorb to glass and plastic surfaces and that this adsorption may be reduced by adding a relatively large quantity of another protein. Consequently proteins (or sometimes detergents) are added almost universally to peptide hormone radioimmunassays to minimise loss of analyte by adsorption. This study was undertaken because there are few reports of the relative effectiveness of the proteins so used. The results suggest that moderate concentrations of the widely used albumins of Tween 20 do not always adequately prevent the adsorption of hormonal polypeptides to surfaces. Casein and alkali-treated casein appear to be more effective than the adsorption inhibitors in general use in radioimmunoassay for the range of hormones and adsorptive surfaces tested. They were also found to be very effective for preventing the adsorption of radio-labelled human luteinizing hormone, human growth hormone and Tyr-somatostatin. (Auth.)

  5. Mini Screening of Kinase Inhibitors Affecting Period-length of Mammalian Cellular Circadian Clock

    International Nuclear Information System (INIS)

    Yagita, Kazuhiro; Yamanaka, Iori; Koinuma, Satoshi; Shigeyoshi, Yasufumi; Uchiyama, Yasuo

    2009-01-01

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase Iεδ (CKIεδ) regurates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKIεδ. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells

  6. Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts.

    Science.gov (United States)

    Mellinghoff, Ingo K; Tran, Chris; Sawyers, Charles L

    2002-09-15

    Experiments with human prostate cancer cell lines have shown that forced overexpression of the ErbB2-receptor tyrosine kinase (RTK) promotes androgen-independent growth and increases androgen receptor-transcriptional activity in a ligand-independent fashion. To investigate the relationship between ErbB-RTK signaling and androgen in genetically unmanipulated human prostate cancer, we performed biochemical and biological studies with the dual ErbB1/ErbB2 RTK inhibitor PKI-166 using human prostate cancer xenograft models with isogenic sublines reflecting the transition from androgen-dependent to androgen-independent growth. In the presence of low androgen concentrations, PKI-166 showed profound growth-inhibitory effects on tumor growth, which could be partially reversed by androgen add-back. At physiological androgen concentrations, androgen withdrawal greatly enhanced the ability of PKI-166 to retard tumor growth. The level of extracellular signal-regulated kinase activation correlated with the response to PKI-166 treatment, whereas the expression levels of ErbB1 and ErbB2 did not. These results suggest that ErbB1/ErbB2 RTKs play an important role in the biology of androgen-independent prostate cancer and provide a rationale for clinical evaluation of inhibitors targeted to this pathway.

  7. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  8. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Jia, Bingbing; Madsen, Lise; Petersen, Rasmus Koefoed

    2012-01-01

    ) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence......Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA...... results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells....

  9. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    International Nuclear Information System (INIS)

    Intine, R.V.; Rainbow, A.J.

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in part at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair

  10. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    Science.gov (United States)

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  11. Horseradish peroxidase-catalyzed cross-linking of feruloylated arabinoxylans with β-casein

    NARCIS (Netherlands)

    Boeriu, C.G.; Oudgenoeg, G.; Spekking, W.T.J.; Berendsen, L.B.J.M.; Vancon, L.; Boumans, H.; Gruppen, H.; Berkel, W.J.H. van; Laane, C.; Voragen, A.G.J.

    2004-01-01

    Heterologous conjugates of wheat arabinoxylan and β-casein were prepared via enzymatic cross-linking, using sequential addition of the arabinoxylan to a mixture of β-casein, peroxidase, and hydrogen peroxide. The maximal formation of adducts between the β-casein and the feruloylated arabinoxylan was

  12. Application of a decanter centrifuge for casein fractionation on pilot scale

    NARCIS (Netherlands)

    Schubert, Thomas; Meric, Asutay; Boom, Remko; Hinrichs, Jörg; Atamer, Zeynep

    2018-01-01

    Individual casein fractions are of growing interest because of their multifunctional applications. The fractions of caseinsS-, β- & κ-) possess a wide range of bio- and techno-functional properties. Although various isolation and purification methods to obtain casein fractions

  13. Fractionation of milk proteins on pilot scale with particular focus on β-casein

    NARCIS (Netherlands)

    Thienel, Katharina J.F.; Holder, Aline; Schubert, Thomas; Boom, Remko M.; Hinrichs, Jörg; Atamer, Zeynep

    2018-01-01

    The aim of this study was to increase the yield and purity of casein fractions at pilot scale and determine the main process parameters influencing the isolation of β-casein, such as cold extraction time, separation speed. The fractions were obtained from micellar casein by means of selective

  14. Investigation of eco-friendly casein fibre production methods

    Science.gov (United States)

    Bier, M. C.; Kohn, S.; Stierand, A.; Grimmelsmann, N.; Homburg, S. V.; Rattenholl, A.; Ehrmann, A.

    2017-10-01

    The growing environmentally awareness of the consumers leads to a lot of new products in the textile industry. Either a sustainably produced textile or one which is created by reuse of a waste product is preferred. One possibility to create fibers from waste is using waste milk for casein fiber production. Opposite to several other biopolymers, however, spinning fibers from casein causes diverse problems. This article gives an overview of the investigations on how to produce fibres from the milk protein casein in a sustainable way, i.e. without formaldehyde or other polluting ingredients. Mechanical properties as well as water-resistance were investigated for chemical and physical modifications of the base composition. In this way, the positive influence of paraffin oil and wax as well as aggregation at high temperatures could be proven, while temperature treatment resulted in a higher E-modulus.

  15. Knockdown of human serine/threonine kinase 33 suppresses human small cell lung carcinoma by blocking RPS6/BAD signaling transduction.

    Science.gov (United States)

    Sun, E L; Liu, C X; Ma, Z X; Mou, X Y; Mu, X A; Ni, Y H; Li, X L; Zhang, D; Ju, Y R

    2017-01-01

    Small cell lung cancer (SCLC) is characterized by rapid growth rate and a tendency to metastasize to distinct sites of patients' bodies. The human serine/threonine kinase 33 (STK33) gene has shown its potency as a therapeutic target for prevention of lung carcinomas including non-small cell lung cancer (NSCLC), but its function in the oncogenesis and development of SCLC remains unrevealed. In the current study, it was hypothesized that STK33 played a key role in the proliferation, survival, and invasion of SCLC cells. The expression of STK33 in human SCLC cell lines NCI-H466 and DMS153 was inhibited by specific shRNA. The cell proliferation, cell apoptosis, and cell invasion of the cells were assessed with a series of in vitro assays. To explore the mechanism through which STK33 gene exerted its function in the carcinogenesis of SCLC cells, the effect of STK33 knockdown on the activity of S6K1/RPS6/BAD signaling was detected. Then the results were further confirmed with STK33 inhibitor ML281 and in vivo assays. The results demonstrated that inhibition of STK33 in SCLC cells suppressed the cell proliferation and invasion while induced cell apoptosis. Associated with the change in the phenotypic features, knockdown of STK33 also decreased the phosphorylation of RPS6 and BAD while increased the expression of cleaved caspase 9, indicating that apoptosis induced by STK33 suppression was mediated via mitochondrial pathway. Similar to the results of STK33 knockdown, incubating NCI-H466 cells with STK33 inhibitor also reduced the cell viability by suppressing RPS6/BAD pathways. Additionally, STK33 knockdown also inhibited tumor growth and RPS6/BAD activity in mice models. Findings outlined in our study were different from that in NSCLC to some extent: knockdown of STK33 in SCLC cells induced the apoptosis through mitochondrial pathway but independent of S6K1 function, inferring that the function of STK33 might be cancer type specific.

  16. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Science.gov (United States)

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  17. Involvement of p38 mitogen-activated protein kinase in acquired gemcitabine-resistant human urothelial carcinoma sublines

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kao

    2014-07-01

    Full Text Available Resistance to chemotherapeutic drugs is one of the major challenges in the treatment of cancer. A better understanding of how resistance arises and what molecular alterations correlate with resistance is the key to developing novel effective therapeutic strategies. To investigate the underlying mechanisms of gemcitabine (Gem resistance and provide possible therapeutic options, three Gem-resistant urothelial carcinoma sublines were established (NG0.6, NG0.8, and NG1.0. These cells were cross-resistant to arabinofuranosyl cytidine and cisplatin, but sensitive to 5-fluorouracil. The resistant cells expressed lower values of [hENT1 × dCK/RRM1 × RRM2] mRNA ratio. Two adenosine triphosphate-binding cassette proteins ABCD1 as well as multidrug resistance protein 1 were elevated. Moreover, cyclin D1, cyclin-dependent kinases 2 and 4 were upregulated, whereas extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase (MAPK activity were repressed significantly. Administration of p38 MAPK inhibitor significantly reduced the Gem sensitivity in NTUB1 cells, whereas that of an extracellular signal-regulated kinase MAPK inhibitor did not. Furthermore, the Gem-resistant sublines also exhibited higher migration ability. Forced expression of p38 MAPK impaired the cell migration activity and augmented Gem sensitivity in NG1.0 cells. Taken together, these results demonstrate that complex mechanisms were merged in acquiring Gem resistance and provide information that can be important for developing therapeutic targets for treating Gem-resistant tumors.

  18. The evolution of milk casein genes from tooth genes before the origin of mammals.

    Science.gov (United States)

    Kawasaki, Kazuhiko; Lafont, Anne-Gaelle; Sire, Jean-Yves

    2011-07-01

    Caseins are among cardinal proteins that evolved in the lineage leading to mammals. In milk, caseins and calcium phosphate (CaP) form a huge complex called casein micelle. By forming the micelle, milk maintains high CaP concentrations, which help altricial mammalian neonates to grow bone and teeth. Two types of caseins are known. Ca-sensitive caseins (α(s)- and β-caseins) bind Ca but precipitate at high Ca concentrations, whereas Ca-insensitive casein (κ-casein) does not usually interact with Ca but instead stabilizes the micelle. Thus, it is thought that these two types of caseins are both necessary for stable micelle formation. Both types of caseins show high substitution rates, which make it difficult to elucidate the evolution of caseins. Yet, recent studies have revealed that all casein genes belong to the secretory calcium-binding phosphoprotein (SCPP) gene family that arose by gene duplication. In the present study, we investigated exon-intron structures and phylogenetic distributions of casein and other SCPP genes, particularly the odontogenic ameloblast-associated (ODAM) gene, the SCPP-Pro-Gln-rich 1 (SCPPPQ1) gene, and the follicular dendritic cell secreted peptide (FDCSP) gene. The results suggest that contemporary Ca-sensitive casein genes arose from a putative common ancestor, which we refer to as CSN1/2. The six putative exons comprising CSN1/2 are all found in SCPPPQ1, although ODAM also shares four of these exons. By contrast, the five exons of the Ca-insensitive casein gene are all reminiscent of FDCSP. The phylogenetic distribution of these genes suggests that both SCPPPQ1 and FDCSP arose from ODAM. We thus argue that all casein genes evolved from ODAM via two different pathways; Ca-sensitive casein genes likely originated directly from SCPPPQ1, whereas the Ca-insensitive casein genes directly differentiated from FDCSP. Further, expression of ODAM, SCPPPQ1, and FDCSP was detected in dental tissues, supporting the idea that both types of caseins

  19. Locostatin, a disrupter of Raf kinase inhibitor protein, inhibits extracellular matrix production, proliferation, and migration in human uterine leiomyoma and myometrial cells.

    Science.gov (United States)

    Janjusevic, Milijana; Greco, Stefania; Islam, Md Soriful; Castellucci, Clara; Ciavattini, Andrea; Toti, Paolo; Petraglia, Felice; Ciarmela, Pasquapina

    2016-11-01

    To investigate the presence of Raf kinase inhibitor protein (RKIP) in human myometrium and leiomyoma as well as to determine the effect of locostatin (RKIP inhibitor) on extracellular matrix (ECM) production, proliferation, and migration in human myometrial and leiomyoma cells. Laboratory study. Human myometrium and leiomyoma. Thirty premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Myometrial and leiomyoma tissues were used to investigate the localization and the expression level of RKIP through immunohistochemistry and Western blotting. Myometrial and leiomyoma cells were treated with locostatin (10 μM) to measure ECM expression by real-time polymerase chain reaction, GSK3β expression by Western blotting, cell migration by wound-healing assay, and cell proliferation by MTT assay and immunocytochemistry. The expression of RKIP in human myometrial and leiomyoma tissue; ECM components and GSK3β expression, migration, and proliferation in myometrial and leiomyoma cells. RKIP is expressed in human myometrial and leiomyoma tissue. Locostatin treatment resulted in the activation of the mitogen-activated protein kinase (MAPK) signal pathway (ERK phosphorylation), providing a powerful validation of our targeting protocol. Further, RKIP inhibition by locostatin reduces ECM components. Moreover, the inhibition of RKIP by locostatin impaired cell proliferation and migration in both leiomyoma and myometrial cells. Finally, locostatin treatment reduced GSK3β expression. Therefore, even if the activation of MAPK pathway should increase proliferation and migration, the destabilization of GSK3β leads to the reduction of proliferation and migration of myometrial and leiomyoma cells. Our results indicate that RKIP may be involved in leiomyoma pathophysiology. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  1. [{sup 11}C]FMAU and [{sup 18}F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Erik F.J. de E-mail: e.f.j.de.vries@pet.azg.nl; Waarde, Aren van; Harmsen, Marco C.; Mulder, Nanno H.; Vaalburg, Willem; Hospers, Geke A.P

    2000-02-01

    [{sup 11}C]-2'-Fluoro-5-methyl-1-{beta}-D-arabinofuranosyluracil ([{sup 11}C]FMAU) and [{sup 18}F]-9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([{sup 18}F]FHPG), radiolabeled representatives of two classes of antiviral agents, were evaluated as tracers for measuring herpes simplex virus thymidine kinase (HSV-tk) enzyme activity after gene transfer and as tracers for localization of active human cytomegalovirus (HCMV) infections. In vitro accumulation experiments revealed that both [{sup 11}C]FMAU and [{sup 18}F]FHPG accumulated significantly more in HSV-tk expressing cells than they did in control cells. [{sup 18}F]FHPG uptake in HSV-tk expressing cells, however, was found to depend strongly on the cell line used, which might be due to cell type dependent membrane transport or cell type dependent substrate specific susceptibility of the enzyme. In vitro, both tracers exhibited a good selectivity for accumulation in HCMV-infected human umbilical vein endothelial cells over uninfected cells. In contrast to [{sup 18}F]FHPG, [{sup 11}C]FMAU uptake in control cells was relatively high due to phosphorylation of the tracer by host kinases. Therefore, [{sup 18}F]FHPG appears to be the more selective tracer not only to predict HSV-tk gene therapy outcome, but also to localize active HCMV infections with PET.

  2. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding, E-mail: jdqiu@ncu.edu.cn

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. - Highlights: • We reported a novel ECL-RET biosensor for sensitive analysis of casein kinase II activity. • The successful ECL-RET between GQDs and GO could be established. • GQDs was employed for casein kinase II activity monitoring and inhibition assay. • Highly sensitive detection of CK2 activity and inhibition was achieved.

  3. Enterococcus faecalis phosphomevalonate kinase

    Science.gov (United States)

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  4. Amino acid composition of casein isolated from the milks of different species

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, B H; Baker, B E

    1977-01-01

    Casein was isolated from the milks of the following species: cow, horse, pig, reindeer, caribou, moose, harp seal, musk-ox, polar bear, dall sheep, and fin whale. The caseins were subjected to acid hydrolysis, the resultant amino acids were converted to their n-butyl-N-trifluoroacetyl esters, and the amino acid composition of the caseins was determined by gas chromatographic analysis of these esters. Notable among the results was the close similarity, with respect to amino acid composition, of reindeer and caribou caseins. The results of the amino acid analyses of the other caseins are presented and discussed.

  5. Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: Differential roles of mitogen-activated protein kinases

    International Nuclear Information System (INIS)

    Hou, Yongyong; Wang, Yi; Wang, Huihui; Xu, Yuanyuan

    2014-01-01

    Highlights: • Arsenic exposure increased intracellular levels of glutathione. • Mitogen-activated protein kinases were involved in glutathione homeostasis. • ERK contributed to glutathione synthesis during acute arsenic exposure. • Glutathione synthesis was regulated by p38 at least in part independent of NRF2 during chronic arsenic exposure. - Abstract: Glutathione (GSH) is a vital component of antioxidant defense which protects cells from toxic insults. Previously we found intracellular GSH was involved in cell resistance against arsenic-induced cytotoxicity. However, molecular mechanisms of GSH homeostasis during arsenic exposure are largely undefined. Here, we investigated roles of mitogen-activated protein kinases (MAPKs) in GSH synthesis pathway with two arsenic exposure strategies by using Chang human hepatocytes. In one strategy, acute arsenic exposure (20 μM, 24 h) was applied, as MAPK signaling is generally considered to be transient. In the other one, chronic arsenic exposure (500 nM, 20 weeks) was applied, which mimicked the general human exposure to arsenic. We found that acute arsenic exposure activated extracellular signal-regulated 1/2 kinases (ERK1/2) and c-Jun N-terminal kinase (JNK) in parallel with increased transcription and nuclear translocation of factor-erythroid 2-related factor 2 (NRF2) and enhanced expression of γ-glutamyl cysteine ligase catalytic subunit (GCLC), resulting in elevated intracellular GSH levels. Specific ERK inhibitor abolished arsenic-induced NRF2 nuclear translocation and GSH synthesis. During chronic arsenic exposure which induced a malignant cellular phenotype, continuous p38 activation and NRF2 nuclear translocation were observed with enhanced GSH synthesis. Specific p38 inhibitor attenuated arsenic-enhanced GSH synthesis without changing NRF2 nuclear translocation. Taken together, our results indicate MAPK pathways play an important role in cellular GSH homeostasis in response to arsenic. However, the

  6. Casein haplotypes and their association with milk production traits in Norwegian Red cattle

    Directory of Open Access Journals (Sweden)

    Nome Torfinn

    2009-02-01

    Full Text Available Abstract A high resolution SNP map was constructed for the bovine casein region to identify haplotype structures and study associations with milk traits in Norwegian Red cattle. Our analyses suggest separation of the casein cluster into two haplotype blocks, one consisting of the CSN1S1, CSN2 and CSN1S2 genes and another one consisting of the CSN3 gene. Highly significant associations with both protein and milk yield were found for both single SNPs and haplotypes within the CSN1S1-CSN2-CSN1S2 haplotype block. In contrast, no significant association was found for single SNPs or haplotypes within the CSN3 block. Our results point towards CSN2 and CSN1S2 as the most likely loci harbouring the underlying causative DNA variation. In our study, the most significant results were found for the SNP CSN2_67 with the C allele consistently associated with both higher protein and milk yields. CSN2_67 calls a C to an A substitution at codon 67 in β-casein gene resulting in histidine replacing proline in the amino acid sequence. This polymorphism determines the protein variants A1/B (CSN2_67 A allele versus A2/A3 (CSN2_67 C allele. Other studies have suggested that a high consumption of A1/B milk may affect human health by increasing the risk of diabetes and heart diseases. Altogether these results argue for an increase in the frequency of the CSN2_67 C allele or haplotypes containing this allele in the Norwegian Red cattle population by selective breeding.

  7. Optimizing the taste-masked formulation of acetaminophen using sodium caseinate and lecithin by experimental design.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-09-10

    In a previous study of ours, the association of sodium caseinate and lecithin was demonstrated to be promising for masking the bitterness of acetaminophen via drug encapsulation. The encapsulating mechanisms were suggested to be based on the segregation of multicomponent droplets occurring during spray-drying. The spray-dried particles delayed the drug release within the mouth during the early time upon administration and hence masked the bitterness. Indeed, taste-masking is achieved if, within the frame of 1-2 min, drug substance is either not released or the released amount is below the human threshold for identifying its bad taste. The aim of this work was (i) to evaluate the effect of various processing and formulation parameters on the taste-masking efficiency and (ii) to determine the optimal formulation for optimal taste-masking effect. Four investigated input variables included inlet temperature (X1), spray flow (X2), sodium caseinate amount (X3) and lecithin amount (X4). The percentage of drug release amount during the first 2 min was considered as the response variable (Y). A 2(4)-full factorial design was applied and allowed screening for the most influential variables i.e. sodium caseinate amount and lecithin amount. Optimizing these two variables was therefore conducted by a simplex approach. The SEM and DSC results of spray-dried powder prepared under optimal conditions showed that drug seemed to be well encapsulated. The drug release during the first 2 min significantly decreased, 7-fold less than the unmasked drug particles. Therefore, the optimal formulation that performed the best taste-masking effect was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    Science.gov (United States)

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Thymidine kinase deficient human cells have increased UV sensitivity in their capacity to support herpes simplex virus but normal UV sensitivity for colony formation

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    A thymidine kinase deficient (tk - ) and two thymidine kinase proficient (tk + ) human cell lines were compared for UV sensitivity using colony-forming ability as well as their capacity to support the plaque formation of herpes simplex type 1 (HSV-1).The tk - line (143 cells) was a derivative of one of the tk + lines (R970-5), whereas the other tk + line (AC4 cells) was a derivative of the 143 cells obtained by transfection with purified sheared HSV-2 DNA encoding the viral tk gene. 143, R970-5 and AC4 cells showed a similar UV sensitivity for colony-forming ability. In contrast, the capacity to support HSV-1 plaque formation immediately (within 1 h) afte UV-irradiation was reduced to a greater extent in the 143 cells compared to the R970-5 and AC4 cells. Capacity curves for plaque formation of the HSV-1: KOS wild-type (tk + ) strain were similar to those for the HSV-1: PTK3B mutant (tk - ) strain were similar to those for the HSV-1: PTK3B mutant (tk - ) strain in the 3 cell strains, indicating that the viral tk gene does not influence the ability of HSV-1 to form plaques in UV-irradiated compared to unirradiated human cells. Cellular capacity for HSV-1 plaque formation was found to recover in both tk - and tk + cells for cultures infected 24 h after UV-irradiation. These results suggest that repair of UV-damaged DNA takes place to a similar extent in both tk - and tk + human cells, but the kinetics of repair are initially slower in tk - compared to tk + human cells. (author). 33 refs.; 3 figs.; 1 tab

  10. Detection of protein kinase activity by renaturation in sodium dodecyl sulfate-polyacrylamide gels

    International Nuclear Information System (INIS)

    Anostario, M. Jr.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    The authors have developed a procedure for identifying protein kinase activity in protein samples following electrophoresis on SDS-polyacrylamide gels. Proteins are allowed to renature directly in the gel by removal of detergent. The gel is then incubated with [γ- 32 P]ATP to allow renatured protein kinases to autophosphorylate or to phosphorylate various substrates which can be incorporated into the gel. The positions of the radiolabeled proteins can then be detected by autoradiography. With this technique, using purified catalytic subunit of cAMP-dependent protein kinase, enzyme concentrations as low as 0.01 μg can be detected on gels containing 1.0 mg/ml casein. The procedure is also applicable for the determination of active subunits of multisubunit protein kinases. For example, when the two subunits of casein kinase II are separated by SDS-polyacrylamide gel electrophoresis and allowed to renature, only the larger α subunit shows activity. This procedure can also be used to detect and distinguish kinases present in heterogeneous mixtures. Starting with a particulate fraction from LSTRA, a murine T cell lymphoma, several distinct enzymes were detected, including a 30,000 Dalton protein with protein-tyrosine kinase activity. This same enzyme has also been detected in T lymphocytes and other T lymphoid cell lines

  11. Structural Basis for Inhibition of Mycobacterial and Human Adenosine Kinase by 7-Substituted 7-(Het)aryl-7-deazaadenine Ribonucleosides

    Czech Academy of Sciences Publication Activity Database

    Snášel, Jan; Nauš, Petr; Dostál, Jiří; Hnízda, Aleš; Fanfrlík, Jindřich; Brynda, Jiří; Bourderioux, Aurelie; Dušek, Michal; Dvořáková, H.; Stolaříková, J.; Zábranská, Helena; Pohl, Radek; Konečný, P.; Džubák, P.; Votruba, Ivan; Hajdúch, M.; Řezáčová, Pavlína; Veverka, Václav; Hocek, Michal; Pichová, Iva

    2014-01-01

    Roč. 57, č. 20 (2014), s. 8268-8279 ISSN 0022-2623 R&D Projects: GA ČR GAP207/11/0344; GA MŠk LO1302; GA MŠk(CZ) LK11205 EU Projects: European Commission(XE) 241587 - SYSTEMTB Grant - others:GA MŠk(CZ) LM2011020 Institutional support: RVO:61388963 ; RVO:68378271 Keywords : 7-(het)aryl-7-deazaadenine ribonucleosides * enzyme inhibition * adenosine kinase * cytostatic activity Subject RIV: CC - Organic Chemistry Impact factor: 5.447, year: 2014

  12. Protein kinase activity associated with Fcγ/sub 2a/ receptor of a murine macrophage like cell line, P388D1

    International Nuclear Information System (INIS)

    Hirata, Y.; Suzuki, T.

    1987-01-01

    The properties of protein kinase activity associated with Fc receptor specific for IgG/sub 2a/(Fcγ/sub 2a/R) of a murine macrophage like cell line, P388D 1 , were investigated. IgG/sub 2a/-binding protein isolated from the detergent lysate of P388D 1 cells by affinity chromatography of IgG-Sepharose was found to contain four distinct proteins of M/sub r/ 50,000, 43,000, 37,000, and 17,000, which could be autophosphorylated upon incubation with [γ- 32 P]ATP. The autophosphorylation of Fcγ/sub 2a/ receptor complex ceased when exogenous phosphate acceptors (casein or histone) were added in the reaction mixture. Phosphorylation of casein catalyzed by Fcγ/sub 2a/ receptor complex was dependent on casein concentration, increased with time or temperature, was dependent on the concentration of ATP and Mg 2+ , and was maximum at pH near 8. Casein phosphorylation was significantly inhibited by a high concentration of Mn 2+ or KCl or by a small amount of heparin and was enhanced about 2-fold by protamine. Casein kinase activity associated with Fcγ/sub 2a/ receptor used ATP as substrate with an apparent K/sub m/ of 2 μM as well as GTP with an apparent K/sub m/ of 10 μM. Prior heating (60 0 C for 15 min) or treatment with protease (trypsin or Pronase) of Fcγ/sub 2a/ receptor complex almost totally abolished casein kinase activity. Thin-layer chromatography of a partial acid hydrolysate of the phosphorylated casein showed that the site of phosphorylation is at a seryl residue. These results suggest that Fcγ 2 /sub a/ receptor forms a molecule complex with protein kinase, whose characteristics resemble those of type II casein kinase but are different from those of cyclic nucleotide dependent protein kinase or from those of C protein kinase

  13. STUDIES ON THE FORMATION AND IONIZATION OF THE COMPOUNDS OF CASEIN WITH ALKALI

    Science.gov (United States)

    Greenberg, David M.; Schmidt, Carl L. A.

    1924-01-01

    1. The deposition of casein on a platinum anode which takes place on the passage of a direct current through solutions of alkali caseinates was quantitatively studied, and it was found that: (a) the amount of casein which is deposited is directly proportional to the current, i.e. it obeys Faraday's law; (b) the amount of casein deposited is inversely proportional (within the limits studied) to the amount of alkali which is combined with the casein. 2. A method of determining the transport numbers of proteins insoluble at their isoelectric point has been developed. 3. A titration method for determining the amount of alkali in a casein solution is given. 4. Data from the results of transference experiments on sodium caseinate, potassium caseinate, cesium caseinate, and rubidium caseinate solutions are given. It is shown that the data are best explained on the assumption that in these solutions the carriers of the current are alkali metal cations and casein anions. 5. On the basis of our transference results an explanation is given of the results which were obtained by Robertson and by Haas in their migration experiments. PMID:19872135

  14. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19).

    Science.gov (United States)

    Pan, Xiao-Wen; Zhao, Xin-Huai

    2015-06-17

    Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  15. Kinetic modelling of reactions in heated disaccharide-casein systems

    NARCIS (Netherlands)

    Brands, C.M.J.; Boekel, van M.A.J.S.

    2003-01-01

    The reactions occurring in disaccharide-casein reaction mixtures during heating at 120 degreesC and pH 6.8 were studied. The existence of two main degradation routes were established: (1) Isomerisation of the aldose sugars lactose and maltose in their ketose isomers lactulose and maltulose,

  16. Modification of Casein by the Lipid Oxidation Product Malondialdehyde

    NARCIS (Netherlands)

    Adams, A.; Kimpe, de N.; Boekel, van T.

    2008-01-01

    The reaction of malondialdehyde with casein was studied in aqueous solution to evaluate the impact of this lipid oxidation product on food protein modification. By using multiresponse modeling, a kinetic model was developed for this reaction. The influence of temperature and pH on protein browning

  17. Monitoring the aggregation of single casein micelles using fluorescence microscopy

    DEFF Research Database (Denmark)

    Bomholt, Julie; Moth-Poulsen, Kasper; Harboe, Marianne

    2011-01-01

    The aggregation of casein micelles (CMs) induced by milk-clotting enzymes is a process of fundamental importance in the dairy industry for cheese production; however, it is not well characterized on the nanoscale. Here we enabled the monitoring of the kinetics of aggregation between single CMs (30...

  18. Aroma barrier properties of sodium caseinate-based films.

    Science.gov (United States)

    Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée

    2008-05-01

    The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.

  19. Heteroaggregation of lipid droplets coated with sodium caseinate and lactoferrin.

    Science.gov (United States)

    de Figueiredo Furtado, Guilherme; Michelon, Mariano; de Oliveira, Davi Rocha Bernardes; da Cunha, Rosiane Lopes

    2016-11-01

    Formation and characterization of droplet heteroaggregates were investigated by mixing two emulsions previously stabilized by proteins oppositely charged. Emulsions were composed of 5vol.% of sunflower oil and 95vol.% of sodium caseinate or lactoferrin aqueous dispersions. They were produced using ultrasound with fixed power (300W) and sonication time (6min). Different volume ratios (0-100%) of sodium caseinate-stabilized emulsion (droplet diameter around 1.75μm) to lactoferrin-stabilized emulsion (droplet diameter around 1.55μm) were mixed under conditions that both proteins showed opposite charges (pH7). Influence of ionic strength (0-400mM NaCl) on the heteroaggregates stability was also evaluated. Creaming stability, zeta potential, microstructure, mean particle diameter and rheological properties of the heteroaggregates were measured. These properties depended on the volume ratio (0-100%) of sodium caseinate to lactoferrin-stabilized emulsion (C:L) and the ionic strength. In the absence of salt, different zeta potential values were obtained, rheological properties (viscosity and elastic moduli) were improved and the largest heteroaggregates were formed at higher content of lactoferrin-stabilized emulsion (60-80%). The system containing 40 and 60vol.% of sodium caseinate and lactoferrin stabilized emulsion, respectively, presented good stability against phase separation besides showing enhanced rheological and size properties due to extensive droplets aggregation. Phase separation was observed only in the absence of sodium caseinate, demonstrating the higher susceptibility of lactoferrin to NaCl. The heteroaggregates produced may be useful functional agents for texture modification and controlled release since different rheological properties and sizes can be achieved depending on protein concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Human interleukin 1. beta. stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca sup 2+ handling

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1{beta} in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca{sup 2+} handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations (<1 min) interleukin 1{beta} did not affect the production of inositoltrisphosphate. Addition of interleukin 1{beta} affected neither the cytoplasmic free Ca{sup 2+} concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a {sup 32}P-labelled substrate for this enzyme, was not altered by interleukin 1{beta}. Separation of {sup 32}P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1{beta} are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca{sup 2+} handling of the B-cells. (author).

  1. Human interleukin 1β stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca2+ handling

    International Nuclear Information System (INIS)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1β in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca 2+ handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations ( 2+ concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a 32 P-labelled substrate for this enzyme, was not altered by interleukin 1β. Separation of 32 P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1β are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca 2+ handling of the B-cells. (author)

  2. Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: Possible involvement of inhibition of survival signal transduction pathways

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Ishikawa, Hitoshi; Sakurai, Hideyuki; Saitoh, Jun-ichi; Takahashi, Takeo; Mitsuhashi, Norio

    2001-01-01

    Purpose: The effect of genistein, a tyrosine kinase inhibitor, on radiosensitivity was examined, especially focusing on 'survival signal transduction pathways'. Methods and Materials: Two human esophageal squamous cell cancer cell lines, TE-1 (p53, mutant) and TE-2 (p53, wild), were used. Radiosensitivity was determined by clonogenic assay, and activation of survival signals was examined by Western blot. Results: Genistein (30 μM) greatly enhanced radiosensitivity in these cell lines by suppressing radiation-induced activation of survival signals, p42/p44 extracellular signal-regulated kinase and AKT/PKB. Significant increase in the percentage of apoptotic cells and increased poly[ADP-ribose] polymerase cleavage were observed in TE-2, but not in TE-1 even after combination of genistein with irradiation. In terms of changes in expression of p53-related proteins, increase in expression of Bax and decrease in that of Bcl-2 were observed in TE-2 but not in TE-1, suggesting that the main mode of cell death induced by genistein in a cell line with wild type p53 differed from that with mutant p53. Conclusions: This study suggested that survival signals, including p42/p44 ERK and AKT/PKB, may be involved in determining radiosensitivity, and genistein would be a potent therapeutic agent that has an enhancing effect on radiation

  3. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors.

    Science.gov (United States)

    Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2011-08-26

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.

  4. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-01-01

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  5. Bioactive glass induced osteogenic differentiation of human adipose stem cells is dependent on cell attachment mechanism and mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    M Ojansivu

    2018-02-01

    Full Text Available Bioactive glasses (BaGs are widely utilised in bone tissue engineering (TE but the molecular response of cells to BaGs is poorly understood. To elucidate the mechanisms of cell attachment to BaGs and BaG-induced early osteogenic differentiation, we cultured human adipose stem cells (hASCs on discs of two silica-based BaGs S53P4 (23.0 Na2O - 20.0 CaO - 4.0 P2O5 - 53.0 SiO2 (wt-% and 1-06 (5.9 Na2O - 12.0 K2O - 5.3 MgO - 22.6 CaO - 4.0 P2O5 - 0.2 B2O3 - 50.0 SiO2 in the absence of osteogenic supplements. Both BaGs induced early osteogenic differentiation by increasing alkaline phosphatase activity (ALP and the expression of osteogenic marker genes RUNX2a and OSTERIX. Based on ALP activity, the slower reacting 1-06 glass was a stronger osteoinducer. Regarding the cell attachment, cells cultured on BaGs had enhanced integrinβ1 and vinculin production, and mature focal adhesions were smaller but more dispersed than on cell culture plastic (polystyrene. Focal adhesion kinase (FAK, extracellular signal-regulated kinase (ERK1/2 and c-Jun N-terminal kinase (JNK-induced c-Jun phosphorylations were upregulated by glass contact. Moreover, the BaG-stimulated osteoinduction was significantly reduced by FAK and mitogen-activated protein kinase (MAPK inhibitors, indicating an important role for FAK and MAPKs in the BaG-induced early osteogenic commitment of hASCs. Upon indirect insert culture, the ions released from the BaG discs could not reproduce the observed cellular changes, which highlighted the role of direct cell-BaG interactions in the osteopotential of BaGs. These findings gave valuable insight into the mechanism of BaG-induced osteogenic differentiation and therefore provided knowledge to aid the future design of new functional biomaterials to meet the increasing demand for clinical bone TE treatments.

  6. Src Family Kinases Regulate Interferon Regulatory Factor 1 K63 Ubiquitination following Activation by TLR7/8 Vaccine Adjuvant in Human Monocytes and B Cells

    Directory of Open Access Journals (Sweden)

    Lorenza Tulli

    2018-03-01

    Full Text Available Toll-like receptors (TLRs play a key role in the activation of innate immune cells, in which their engagement leads to production of cytokines and co-stimulatory molecules. TLRs signaling requires recruitment of toll/IL-1R (TIR domain-containing adaptors, such as MyD88 and/or TRIF, and leads to activation of several transcription factors, such as NF-κB, the AP1 complex, and various members of the interferon regulatory factor (IRF family, which in turn results in triggering of several cellular functions associated with these receptors. A role for Src family kinases (SFKs in this signaling pathway has also been established. Our work and that of others have shown that this type of kinases is activated following engagement of several TLRs, and that this event is essential for the initiation of specific downstream cellular response. In particular, we have previously demonstrated that activation of SFKs is required for balanced production of pro-inflammatory cytokines by monocyte-derived dendritic cells after stimulation with R848, an agonist of human TLRs 7/8. We also showed that TLR7/8 triggering leads to an increase in interferon regulatory factor 1 (IRF-1 protein levels and that this effect is abolished by inhibition of SFKs, suggesting a critical role of these kinases in IRF-1 regulation. In this study, we first confirmed the key role of SFKs in TLR7/8 signaling for cytokine production and accumulation of IRF-1 protein in monocytes and in B lymphocytes, two other type of antigen-presenting cells. Then, we demonstrate that TLR7 triggering leads to an increase of K63-linked ubiquitination of IRF-1, which is prevented by SFKs inhibition, suggesting a key role of these kinases in posttranslational regulation of IRF-1 in the immune cells. In order to understand the mechanism that links SFKs activation to IRF-1 K63-linked ubiquitination, we examined SFKs and IRF-1 possible interactors and proved that activation of SFKs is necessary for their

  7. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium

    DEFF Research Database (Denmark)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2012-01-01

    plasma lithium concentration of 1.0 mmol/L. Kidneys from lithium-treated rat pups exhibited dilated distal nephron segments with microcysts. Stereological analysis showed reduced cortex and outer medullary volumes. Lithium increased pGSK-3β and the proliferation marker PCNA protein abundances in cortex...... concentration capacity and diminished outer medullary volume. Histological sections of nephrectomy samples and a biopsy from 3 long-term lithium-treated patients showed multiple cortical microcysts that originated from normally appearing tubules. Microcysts were lined by a cuboidal PCNA-, GSK-3β- and pGSK-3β......It was hypothesized that lithium causes accelerated and permanent injury to the postnatally developing kidney through entry into epithelial cells of the distal nephron and inhibition of glycogen synthase kinase-3β (GSK-3β). GSK-3β immunoreactivity was associated with glomeruli, thick ascending limb...

  8. Anti-VEGF strategies - from antibodies to tyrosine kinase inhibitors: background and clinical development in human cancer.

    LENUS (Irish Health Repository)

    Korpanty, Grzegorz

    2012-01-01

    Tumour angiogenesis (formation of new blood vessels supporting tumour growth and metastasis) is a result of complex interactions between the tumour and the surrounding microenvironment. Targeting tumours with anti-angiogenic therapy remains an exciting area of preclinical and clinical studies. Although many significant advances have been achieved and the clinical use of anti-angiogenic drugs is now well recognized in many solid malignancies, these therapies fall short of their anticipated clinical benefits and leave many unanswered questions like exact mechanism of action, patients\\' selection and monitoring response to anti-angiogenic drugs. Tumour angiogenesis is controlled by complex signaling cascades and ongoing research into molecular mechanisms of tumour angiogenesis not only helps to understand its basic mechanisms but hopefully will identify new therapeutic targets. In 2012, both monoclonal antibodies and small molecule tyrosine kinase inhibitors remain the two major clinically useful therapeutic options that interfere with tumour angiogenesis in many solid malignancies.

  9. Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library

    International Nuclear Information System (INIS)

    Hung, Ming-Szu; Xu, Zhidong; Lin, Yu-Ching; Mao, Jian-Hua; Yang, Cheng-Ta; Chang, Pey-Jium; Jablons, David M; You, Liang

    2009-01-01

    Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library. We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors in vitro was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays. Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC 50 value of 0.55 μM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells. In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors

  10. Enhancing proliferation and osteogenic differentiation of HMSCs on casein/chitosan multilayer films.

    Science.gov (United States)

    Li, Yan; Zheng, Zebin; Cao, Zhinan; Zhuang, Liangting; Xu, Yong; Liu, Xiaozhen; Xu, Yue; Gong, Yihong

    2016-05-01

    Creating a bioactive surface is important in tissue engineering. Inspired by the natural calcium binding property of casein (CA), multilayer films ((CA/CS)n) with chitosan (CS) as polycation were fabricated to enhance biomineralization, cell adhesion and differentiation. LBL self-assembly technique was used and the assembly process was intensively studied based on changes of UV absorbance, zeta potential and water contact angle. The increasing content of chitosan and casein with bilayers was further confirmed with XPS and TOF-SIMS analysis. To improve the biocompatibility, gelatin was surface grafted. In vitro mineralization test demonstrated that multilayer films had more hydroxyapatite crystal deposition. Human mesenchymal stem cells (HMSCs) were seeded onto these films. According to fluorescein diacetate (FDA) and cell cytoskeleton staining, MTT assay, expression of osteogenic marker genes, ALP activity, and calcium deposition quantification, it was found that these multilayer films significantly promoted HMSCs attachment, proliferation and osteogenic differentiation than TCPS control. Copyright © 2016. Published by Elsevier B.V.

  11. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.

    Science.gov (United States)

    Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu

    2012-01-01

    Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.

  12. Quantitative determination of casein genetic variants in goat milk: Application in Girgentana dairy goat breed.

    Science.gov (United States)

    Montalbano, Maria; Segreto, Roberta; Di Gerlando, Rosalia; Mastrangelo, Salvatore; Sardina, Maria Teresa

    2016-02-01

    The study was conducted to develop a high-performance liquid chromatographic (HPLC) method to quantify casein genetic variants (αs2-, β-, and κ-casein) in milk of homozygous individuals of Girgentana goat breed. For calibration experiments, pure genetic variants were extracted from individual milk samples of animals with known genotypes. The described HPLC approach was precise, accurate and highly suitable for quantification of goat casein genetic variants of homozygous individuals. The amount of each casein per allele was: αs2-casein A = 2.9 ± 0.8 g/L and F = 1.8 ± 0.4 g/L; β-casein C = 3.0 ± 0.8 g/L and C1 = 2.0 ± 0.7 g/L and κ-casein A = 1.6 ± 0.3 g/L and B = 1.1 ± 0.2 g/L. A good correlation was found between the quantities of αs2-casein genetic variants A and F, and β-casein C and C1 with other previously described method. The main important result was obtained for κ-casein because, till now, no data were available on quantification of single genetic variants for this protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The bioactive effects of casein proteins on enteroendocrine cell health, proliferation and incretin hormone secretion.

    Science.gov (United States)

    Gillespie, Anna L; Green, Brian D

    2016-11-15

    Previous studies suggest that casein exerts various anti-diabetic effects. However, it is not known which casein proteins are bioactive, nor their effects on enteroendocrine cells. This study evaluated the effects of intact whole casein, intact individual proteins (alpha, beta and kappa casein) and hydrolysates on an enteroendocrine cell line. High content analysis accurately monitored changes in cell health and intracellular glucagon-like peptide-1 (GLP-1) content. Cheese ripening duration and GLP-1 secretory responses were also considered. Beta casein significantly stimulated enteroendocrine cell proliferation and all caseins were potent GLP-1 secretagogues (except kappa casein). Interestingly the GLP-1 secretory activity was almost always lost or significantly reduced upon hydrolysis with proteolytic enzymes. Only pepsin-derived beta casein hydrolysates had significantly increased potency compared with the intact protein, but this was diminished with prolonged hydrolysis. In conclusion casein proteins are not detrimental to enteroendocrine cells, and alpha and beta casein are particularly beneficial stimulating proliferation and GLP-1 secretion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Milk Lacking α-Casein Leads to Permanent Reduction in Body Size in Mice

    Science.gov (United States)

    Kolb, Andreas F.; Huber, Reinhard C.; Lillico, Simon G.; Carlisle, Ailsa; Robinson, Claire J.; Neil, Claire; Petrie, Linda; Sorensen, Dorte B.; Olsson, I. Anna S.; Whitelaw, C. Bruce A.

    2011-01-01

    The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight. PMID:21789179

  15. Milk lacking α-casein leads to permanent reduction in body size in mice.

    Directory of Open Access Journals (Sweden)

    Andreas F Kolb

    Full Text Available The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate.We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.

  16. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  17. Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation

    International Nuclear Information System (INIS)

    Refsnes, Magne; Skuland, Tonje; Schwarze, Per E.; Ovrevik, Johan; Lag, Marit

    2008-01-01

    Exposure of human epithelial lung cells to fluorides is known to induce a marked increase in the release of interleukin (IL)-8, a chemokine involved in neutrophil recruitment. In the present study, the involvement of mitogen-activating protein kinases (MAPKs), the role of upstream activation of Src family kinases (SFKs), epidermal growth factor receptor (EGFR) activation and the interrelationships between these pathways in fluoride-induced IL-8 were examined in a human epithelial lung cell line (A549). Sodium fluoride strongly activated MAPK, in particular JNK1/2 and p38. The ERK1/2-inhibitor PD98059, the p38-inhibitor SB202190 and the JNK1/2-inhibitor SP600125 partially inhibited the fluoride-induced IL-8 response. Combinations of these inhibitors reduced the responses nearly to basal levels. Treatment with siRNA against JNK2 also reduced the IL-8 response to fluoride. Furthermore, fluoride activated SFKs, which was abolished by the SFK-inhibitor PP2. PP2 substantially inhibited the increased levels of IL-8, and partially reduced the fluoride-induced activation of ERK1/2, p38 and JNK1/2. Fluoride exposure also led to a phosphorylation of the EGFR, that was partially inhibited by PP2. AG1478, an EGFR-inhibitor, partially reduced the fluoride-induced IL-8 response and the phosphorylation of JNK1/2 and ERK1/2, but less the phosphorylation of p38. The effects of AG1478 were less than that of PP2. In conclusion, our findings suggest that the fluoride-induced IL-8 release involves the combined activation of ERK1/2, JNK1/2 and p38, and that the phosphorylation of these kinases, and in particular JNK1/2 and ERK1/2, partly, is mediated via a SFK-dependent EGFR-linked pathway. SFK-dependent, but EGFR-independent mechanisms seem important, and especially for phosphorylation of p38

  18. Digestibility of transglutaminase cross-linked caseinate versus native caseinate in an in vitro multicompartmental model simulating young child and adult gastrointestinal conditions

    NARCIS (Netherlands)

    Havenaar, R.; Jong, A. de; Koenen, M.E.; Bilsen, J. van; Janssen, A.M.; Labij, E.; Westerbeek, H.J.M.

    2013-01-01

    Aim of this study was to investigate the digestion of transglutaminase cross-linked caseinate (XLC) versus native caseinate (NC) in solution and in cheese spread under digestive conditions for adults and children mimicked in a gastrointestinal model. Samples were collected for gel electrophoresis

  19. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  20. [Architecture of the X chromosome, expression of LIM kinase 1, and recombination in the agnostic mutants of Drosophila: a model of human Williams syndrome].

    Science.gov (United States)

    Savvateeva-Popova, E V; Peresleni, A I; Sharagina, L M; Medvedeva, A V; Korochkina, S E; Grigor'eva, I V; Diuzhikova, N A; Popov, A V; Baricheva, E M; Karagodin, D; Heisenberg, M

    2004-06-01

    As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.

  1. Autoantibodies to αS1-Casein Are Induced by Breast-Feeding

    Science.gov (United States)

    Petermann, Klaudia; Vordenbäumen, Stefan; Maas, Ruth; Braukmann, Achim; Bleck, Ellen; Saenger, Thorsten; Schneider, Matthias; Jose, Joachim

    2012-01-01

    Background The generation of antibodies is impaired in newborns due to an immature immune system and reduced exposure to pathogens due to maternally derived antibodies and placental functions. During nursing, the immune system of newborns is challenged with multiple milk-derived proteins. Amongst them, caseins are the main constituent. In particular, human αS1-casein (CSN1S1) was recently shown to possess immunomodulatory properties. We were thus interested to determine if auto-antibodies to CSN1S1 are induced by breast-feeding and may be sustained into adulthood. Methods 62 sera of healthy adult individuals who were (n = 37) or were not (n = 25) breast-fed against human CSN1S1 were investigated by a new SD (surface display)-ELISA. For cross-checking, these sera were tested for anti Epstein-Barr virus (EBV) antibodies by a commercial ELISA. Results IgG-antibodies were predominantly detected in individuals who had been nursed. At a cut-off value of 0.4, the SD-ELISA identified individuals with a history of having been breast-fed with a sensitivity of 80% and a specificity of 92%. Under these conditions, 35 out of 37 sera from healthy donors, who where breast-fed, reacted positively but only 5 sera of the 25 donors who were not breast-fed. The duration of breast-feeding was of no consequence to the antibody reaction as some healthy donors were only short term breast-fed (5 days minimum until 6 weeks maximum), but exhibited significant serum reaction against human CSN1S1 nonetheless. Conclusion We postulate that human CSN1S1 is an autoantigen. The antigenicity is orally determined, caused by breast-feeding, and sustained into adulthood. PMID:22496735

  2. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li JP

    2015-02-01

    , but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl and B-cell lymphoma 2 (Bcl-2, but increased the expression of Bcl-2-associated X protein (Bax and p53-upregulated modulator of apoptosis (PUMA, and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK and extracellular signal-regulated kinases 1 and 2 (Erk1/2 and inhibited the activation of protein kinase B (Akt/mammalian target of rapamycin (mTOR signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E

  3. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  4. Src kinase regulation by phosphorylation and dephosphorylation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2005-01-01

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPα, PTPε, and PTPλ. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined

  5. Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Falko Lange

    2014-01-01

    Full Text Available Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC patients, to evaluate effects of the small molecule kinase inhibitors (SMI vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

  6. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA induces ROS generation through LPA 1 and LPA 3 . •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA 1 and LPA 3 siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway

  7. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  8. The Natural Stilbenoid Piceatannol Decreases Activity and Accelerates Apoptosis of Human Neutrophils: Involvement of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Viera Jancinova

    2013-01-01

    Full Text Available Neutrophils are able to release cytotoxic substances and inflammatory mediators, which, along with their delayed apoptosis, have a potential to maintain permanent inflammation. Therefore, treatment of diseases associated with chronic inflammation should be focused on neutrophils; formation of reactive oxygen species and apoptosis of these cells represent two promising targets for pharmacological intervention. Piceatannol, a naturally occurring stilbenoid, has the ability to reduce the toxic action of neutrophils. This substance decreased the amount of oxidants produced by neutrophils both extra- and intracellularly. Radicals formed within neutrophils (fulfilling a regulatory role were reduced to a lesser extent than extracellular oxidants, potentially dangerous for host tissues. Moreover, piceatannol did not affect the phosphorylation of p40phox—a component of NADPH oxidase, responsible for the assembly of functional oxidase in intracellular (granular membranes. The stilbenoid tested elevated the percentage of early apoptotic neutrophils, inhibited the activity of protein kinase C (PKC—the main regulatory enzyme in neutrophils, and reduced phosphorylation of PKC isoforms α, βII, and δ on their catalytic region. The results indicated that piceatannol may be useful as a complementary medicine in states associated with persisting neutrophil activation and with oxidative damage of tissues.

  9. Interactions between tea catechins and casein micelles and their impact on renneting functionality.

    Science.gov (United States)

    Haratifar, Sanaz; Corredig, Milena

    2014-01-15

    Many studies have shown that tea catechins bind to milk proteins. This research focused on the association of tea polyphenols with casein micelles, and the consequences of the interactions on the renneting behaviour of skim milk. It was hypothesized that epigallocatechin-gallate (EGCG), the main catechin present in green tea, forms complexes with the casein micelles and that the association modifies the processing functionality of casein micelles. The binding of EGCG to casein micelles was quantified using HPLC. The formation of catechin-casein micelles complexes affected the rennet induced gelation of milk, and the effect was concentration dependent. Both the primary as well as the secondary stage of gelation were affected. These experiments clearly identify the need for a better understanding of the effect of tea polyphenols on the processing functionality of casein micelles, before milk products can be used as an appropriate platform for delivery of bioactive compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Transglutaminase-treated conjugation of sodium caseinate and corn fiber gum hydrolysate: Interfacial and dilatational properties.

    Science.gov (United States)

    Liu, Yan; Selig, Michael J; Yadav, Madhav P; Yin, Lijun; Abbaspourrad, Alireza

    2018-05-01

    This study compliments previous work where peroxidase was successfully used to crosslink corn fiber gum (CFG) with bovine serum albumin and improve CFG's emulsifying properties. Herein, an alternative type of enzyme, transglutaminase, was used to prepare conjugates of CFG and sodium caseinate. Additionally, the CFG was partially hydrolyzed by sulfuric acid and its crosslinking pattern with caseinate was evaluated. The interfacial crosslinking degree between caseinate and CFG increased after hydrolysis according to high performance size exclusion chromatography. The equilibrium interfacial tension of CFG hydrolysate-caseinate conjugate was lower than that of CFG-caseinate conjugate as the rearrangement rate of the CFG hydrolysate-caseinate conjugate was higher. The dilatational modulus of CFG hydrolysate decreased from that of CFG. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis

    Science.gov (United States)

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with “stemness.” These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) “cancer stem cells.” These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies. PMID:23047602

  12. Casein kinase I epsilon somatic mutations found in breast cancer cause overgrowth in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Doležal, Tomáš; Kučerová, K.; Neuhold, J.; Bryant, P. J.

    2010-01-01

    Roč. 54, č. 10 (2010), s. 1419-1424 ISSN 0214-6282 R&D Projects: GA ČR GA301/07/0814 Institutional research plan: CEZ:AV0Z50070508 Keywords : Drosophila * breast cancer * Dco Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.856, year: 2010 http://www.ijdb.ehu.es/web/paper.php?doi=093032td

  13. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance.

    Science.gov (United States)

    Morgenstern, Yael; Das Adhikari, Upasana; Ayyash, Muneef; Elyada, Ela; Tóth, Beáta; Moor, Andreas; Itzkovitz, Shalev; Ben-Neriah, Yinon

    2017-10-16

    The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ. Co-ablation of CKIδ/ε in the mouse gut epithelium results in rapid ISC elimination, with subsequent growth arrest, crypt-villous shrinking, and rapid mouse death. Unexpectedly, Wnt activation is preserved in all CKIδ/ε-deficient enterocyte populations, with the exception of Lgr5 + ISCs, which exhibit Dvl2-dependent Wnt signaling attenuation. CKIδ/ε-depleted gut organoids cease proliferating and die rapidly, yet survive and resume self-renewal upon reconstitution of Dvl2 expression. Our study underscores a unique regulation mode of the Wnt pathway in ISCs, possibly providing new means of stem cell enrichment for regenerative medicine. © 2017 The Authors.

  14. Sequential Activation and Inactivation of Dishevelled in the Wnt/beta-Catenin Pathway by Casein Kinases

    Czech Academy of Sciences Publication Activity Database

    Bernatík, Ondřej; Ganji, R.S.; Dijksterhuis, J.; Koník, P.; Červenka, I.; Krejčí, Pavel; Schulte, G.; Bryja, Vítězslav

    2011-01-01

    Roč. 286, č. 12 (2011), s. 10396-10410 ISSN 0021-9258 Institutional support: RVO:68081707 Keywords : WNT SIGNAL-TRANSDUCTION * BETA-CATENIN * I-EPSILON Subject RIV: BO - Biophysics Impact factor: 4.773, year: 2011

  15. Die Inhibition der Casein Kinase 2 durch DMAT als Therapieoption bei Pankreaskarzinom

    OpenAIRE

    Plötz, Katharina

    2011-01-01

    1.1.1 Hintergrund Das Pankreaskarzinom stellt mit einer Inzidenz von etwa 9-10 neuen Fällen pro Jahr eine nicht zu vernachlässigende Krebserkrankung der Zivilbevölkerung dar. Unter den verschiedenen Formen tritt das duktale Adenokarzinom am häufigsten auf. Als Auslöser werden heute sehr viele unterschiedliche Ursachen diskutiert. So schreibt man dem Rauchen beispielsweise nahezu 30 % aller Fälle des Pankreaskarzinoms zu. Genauso aber erhöhen bestimmte genetische Faktoren das Risiko, an Bauchs...

  16. Toxicity and biodistribution of orally administered casein nanoparticles.

    Science.gov (United States)

    Gil, Ana Gloria; Irache, Juan Manuel; Peñuelas, Iván; González Navarro, Carlos Javier; López de Cerain, Adela

    2017-08-01

    In the last years, casein nanoparticles have been proposed as carriers for the oral delivery of biologically active compounds. However, till now, no information about their possible specific hazards in vivo was available. The aim of this work was to assess the safety of casein nanoparticles when administered orally to animals through a 90 days dose-repeated toxicity study (OECD guideline 408), that was performed in Wistar rats under GLP conditions. After 90 days, no evidences of significant alterations in animals treated daily with 50, 150 or 500 mg/kg bw of nanoparticles were found. This safety agrees well with the fact that nanoparticles were not absorbed and remained within the gut as observed by radiolabelling in the biodistribution study. After 28 days, there was a generalized hyperchloremia in males and females treated with the highest dose of 500 mg/kg bw, that was coupled with hypernatremia in the females. These effects were related to the presence of mannitol which was used as excipient in the formulation of casein nanoparticles. According to these results, the No Observed Adverse Effect Level (NOAEL) could be established in 150 mg/kg bw/day and the Lowest Observed Effect Level (LOEL) could be established in 500 mg/kg bw/day. Copyright © 2017. Published by Elsevier Ltd.

  17. Polymerization of calcium caseinates solutions induced by gamma irradiation

    International Nuclear Information System (INIS)

    Lacroix, M.; Jobin, M.; Mezgheni, E.; Srour, M.; Boileau, S.

    1998-01-01

    Solutions of calcium caseinate (5%) combined with propylene glycol (PG) or triethylene glycol(TEG) (0, 2.5% and 5%) and used for the development of edible films and coatings, were irradiated at doses between 0 to 128 kGy. Solutions were chromatographed through toyopearl HW 55F resin to observe the effect of irradiation on cross-link reactions. In unirradiated calcium caseinate solutions, two peaks could be observed (fractions 30 and 37) while samples irradiated at 64 kGy and 128 kGy showed one shifted peak at fraction 32 and 29 respectively. No effect of the plasticizers was observed. According to proteins standards of knowed molecular weights, the molecular weight of calcium caseinate increased approximately 10 times when irradiated at 128 kGy and 5 times when irradiated at 64 kGy. The physico-chemical properties of bio-films prepared with the irradiated solutions, demonstrated that tensile strength at break increased with increase of irradiation dose. A maximum dose was obtained at 16 kGy

  18. Thymol nanoencapsulated by sodium caseinate: physical and antilisterial properties.

    Science.gov (United States)

    Pan, Kang; Chen, Huaiqiong; Davidson, P Michael; Zhong, Qixin

    2014-02-19

    In this work, thymol was encapsulated in sodium caseinate using high shear homogenization. The transparent dispersion at neutral pH was stable for 30 days at room temperature as determined by dynamic light scattering and atomic force microscopy, which agreed with high ζ potential of nanoparticles. The slightly decreased particle dimension during storage indicates the absence of Ostwald ripening. When molecular binding was studied by fluorescence spectroscopy, thymol was observed to bind with tyrosine and possibly other amino acid residues away from tryptophan of caseins. At pH 4.6 (isoelectric point of caseins), the stabilization of thymol nanoparticles against aggregation was enabled by soluble soybean polysaccharide, resulting from the combined electrostatic and steric repulsions. The encapsulated thymol showed the significantly improved antilisterial activity in milk with different fat levels when compared to thymol crystals, resulting from the quicker mixing and increased solubility in the milk serum. The transparent thymol nanodispersions have promising applications to improve microbiological safety and quality of foods.

  19. CD147-targeting siRNA inhibits cell-matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase.

    Science.gov (United States)

    Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro

    2012-01-01

    CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.

  20. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    Science.gov (United States)

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  1. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    Science.gov (United States)

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  2. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review

    Science.gov (United States)

    Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad

    2015-01-01

    Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635

  3. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  4. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models.

    Science.gov (United States)

    Saha, Dipongkor; Wakimoto, Hiroaki; Peters, Cole W; Antoszczyk, Slawomir J; Rabkin, Samuel D; Martuza, Robert L

    2018-03-29

    Purpose: Glioblastoma (GBM), a fatal brain cancer, contains a subpopulation of GBM stem-like cells (GSCs) that contribute to resistance to current therapy. Angiogenesis also plays a key role in GBM progression. Therefore, we developed a strategy to target the complex GBM microenvironment, including GSCs and tumor vasculature. Experimental Design: We evaluated the cytotoxic effects of VEFGR tyrosine kinase inhibitor (TKI) axitinib in vitro and then tested antitumor efficacy of axitinib in combination with oncolytic herpes simplex virus (oHSV) expressing antiangiogenic cytokine murine IL12 (G47Δ-mIL12) in two orthotopic GSC-derived GBM models: patient-derived recurrent MGG123 GSCs, forming vascular xenografts in immunodeficient mice; and mouse 005 GSCs, forming syngeneic tumors in immunocompetent mice. Results: GSCs form endothelial-like tubes and were sensitive to axitinib. G47Δ-mIL12 significantly improved survival, as did axitinib, while dual combinations further extended survival significantly compared with single therapies alone in both models. In MGG123 tumors, axitinib was effective only at high doses (50 mg/kg), alone and in combination with G47Δ-mIL12, and this was associated with greatly decreased vascularity, increased macrophage infiltration, extensive tumor necrosis, and PDGFR/ERK pathway inhibition. In the mouse 005 model, antiglioma activity, after single and combination therapy, was only observed in immunocompetent mice and not the T-cell-deficient athymic mice. Interestingly, immune checkpoint inhibition did not improve efficacy. Conclusions: Systemic TKI (axitinib) beneficially combines with G47Δ-mIL12 to enhance antitumor efficacy in both immunodeficient and immunocompetent orthotopic GBM models. Our results support further investigation of TKIs in combination with oHSV for GBM treatment. Clin Cancer Res; 1-14. ©2018 AACR. ©2018 American Association for Cancer Research.

  5. Radioimmunoassay of creatine kinase-B isoenzyme in human sera: results in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Willerson, J.T.; Stone, M.J.; Ting, R.; Mukherjee, A.; Gomez-Sanchez, C.E.; Lewis, P.; Hersh, L.B.

    1977-01-01

    A radiommunoassay was developed to measure serum levels of the B isoenzyme of creatine kinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) (CPK) in order to evaluate the time course and frequency of MB isoenzyme elevation in patients with acute myocardial infarction. The method can identify as little as 0.2 ng of the B portion of the CPK-MB isoenzyme, does not significantly crossreact with CPK-MM isoenzyme, and is not affected by storage of serum at -20 0 . CPK isoenzyme containing B subunits was detected in 48 out of 51 sera from normal adults; serum levels in these individuals ranged between 1.2 and 12.5 ng/ml[mean +- SEM was 2.7 +- 0.30 ng/ml]. The mean serum level of CPK-B isoenzyme in a pool of sera obtained from 100 normal subjects was 2.9 +- 0.35 ng/ml; two patients with rhabdomyolysis that were studied had serum CPK-B isoenzyme levels of 2.5 and 3.5 ng/ml, respectively. In contrast, serum levels of the CPK-B isoenzyme were markedly elevated in sera from 18 patients with acute myocardial infarcts when obtained within 12 hr after hospital admission; the mean +- SEM concentration was 56 +- 7.8 ng/ml. We performed serial determinations on 14 patients with acute myocardial infarcts and demonstrated that maximal serum CPK-B levels occurred within the first 12 hr after admission and were lower thereafter. The serum concentration of B-containing CPK isoenzyme in 19 additional patients admitted with chest pain but without acute myocardial infarction was 3.4 +- 0.50 ng/ml. Thus, radioimmunoassay measurement of CPK-B isoenzyme appears to be a useful and sensitive test for the detection of acute myocardial infarcts in patients

  6. Gluten-free and casein-free diets in the therapy of autism.

    Science.gov (United States)

    Lange, Klaus W; Hauser, Joachim; Reissmann, Andreas

    2015-11-01

    The purpose of this study is to discuss the role of gluten-free and casein-free diets in the treatment of autism. In a recent UK survey, more than 80% of parents of children with autism spectrum disorder reported some kind of dietary intervention for their child (gluten-free and casein-free diet in 29%). When asked about the effects of the gluten-free and casein-free diet, 20-29% of the parents reported significant improvements on the autism spectrum disorder core dimensions. The findings of this study suggest additional effects of a gluten-free and casein-free diet on comorbid problems of autism such as gastrointestinal symptoms, concentration, and attention. The findings of another recent investigation suggested that age and certain urine compounds may predict the response of autism symptoms to a gluten-free and casein-free diet. Although these results need to be replicated, they highlight the importance of patient subgroup analysis. Intervention trials evaluating the effects of a gluten-free and casein-free diet on autistic symptoms have so far been contradictory and inconclusive. Most investigations assessing the efficacy of a gluten-free and casein-free diet in the treatment of autism are seriously flawed. The evidence to support the therapeutic value of this diet is limited and weak. A gluten-free and casein-free diet should only be administered if an allergy or intolerance to nutritional gluten or casein is diagnosed.

  7. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate.

    Science.gov (United States)

    Kent, R M; Guinane, C M; O'Connor, P M; Fitzgerald, G F; Hill, C; Stanton, C; Ross, R P

    2012-08-01

    The aim of this study was to identify Bacillus isolates capable of degrading sodium caseinate and subsequently to generate bioactive peptides with antimicrobial activity. Sodium caseinate (2.5% w/v) was inoculated separately with 16 Bacillus isolates and allowed to ferment overnight. Protein breakdown in the fermentates was analysed using gel permeation-HPLC (GP-HPLC) and screened for peptides (casein. This study highlights the potential to exploit Bacillus sp. or the enzymes they produce for the generation of bioactive antimicrobial peptides from bovine casein. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  8. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  9. Functional human sperm capacitation requires bo