WorldWideScience

Sample records for human carried microorganisms

  1. Microorganisms in human milk: lights and shadows.

    Science.gov (United States)

    Civardi, Elisa; Garofoli, Francesca; Tzialla, Chryssoula; Paolillo, Piermichele; Bollani, Lina; Stronati, Mauro

    2013-10-01

    Human milk has been traditionally considered germ free, however, recent studies have shown that it represents a continuous supply of commensal and potentially probiotic bacteria to the infant gut. Mammary microbioma may exercise anti-infective, anti-inflammatory, immunomodulatory and metabolic properties. Moreover human milk may be a source of pathogenic microorganism during maternal infection, if contaminated during expression or in case of vaccination of the mother. The non-sterility of breast milk can, thus, be seen as a protective factor, or rarely, as a risk factor for the newborn.

  2. Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor "indicator microorganism"

    Directory of Open Access Journals (Sweden)

    Ambrosiadis Ioannis

    2006-10-01

    Full Text Available Abstract Background Successful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed. However, information on indicator microorganisms' performance and comparisons in bacteriocin determination with bioassays is almost non-existing in the literature. The aim of the present work was to evaluate the parameter "indicator microorganism" in bioassays carried out on solid -agar diffusion assay- and liquid -turbidometric assay- substrates, applied in the quantification of the most studied bacteriocin nisin. Results The performance of characterized microorganisms of known sources, belonging to the genera of Lactobacillus, Pediococcus, Micrococcus and Leuconostoc, has been assessed in this work in the assays of plate agar diffusion and turbidometry. Dose responses and sensitivities were examined and compared over a range of assay variables in standard bacteriocin solutions, fermentation broth filtrates and processed food samples. Measurements on inhibition zones produced on agar plates were made by means of digital image analysis. The data produced were analyzed statistically using the ANOVA technique and pairwise comparisons tests. Sensitivity limits and linearity of responses to bacteriocin varied significantly among different test-microorganisms in both applied methods, the lower sensitivity limits depending on both the test-microorganism and the applied method. In both methods, however, only two of the nine tested microorganisms (Lactobacillus curvatus ATCC 51436 and Pediococcus acidilactici ATCC 25740 were sensitive to very low concentrations of the bacteriocin and produced a linear-type of response in all kinds of samples used in this work. In all cases, very low bacteriocin concentrations, e.g. 1 IU/ml nisin, were more accurately determined in the turbidometric assay. Conclusion The present work shows that in

  3. Carry

    DEFF Research Database (Denmark)

    Koijen, Ralph S.J.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    that include global equities, global bonds, currencies, commodities, US Treasuries, credit, and equity index options. This predictability underlies the strong returns to "carry trades" that go long high-carry and short low-carry securities, applied almost exclusively to currencies, but shown here...

  4. Titanium photocatalyst against human pathogenic microorganisms

    International Nuclear Information System (INIS)

    Kussovski, V.; Stefchev, P.; Kirilov, R.

    2011-01-01

    The conventional methods of disinfection are not effective in the longer term. They are time and staff intensive and use aggressive chemicals. Photocatalytic oxidation on surfaces coated with titanium dioxide (TiO 2 ) might offer a possible alternative. The antimicrobial activity of TiO 2 powder P25 and thin films of TiO 2 on glass slides against representative strains of microorganisms associated with hospital-acquired infections (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) was investigated in vitro. High efficiency has been found in the case of the studied bacterial strains, particularly for the P. aeruginosa. It was shown that it is possible to disinfect surfaces coated with TiO 2 and stimulated by UV-A light. The reduction efficiencies for P. aeruginosa, S. aureus and C. albicans were 3.19, 2.32 and 1.22. In all cases sublethal UV-A doses provoked an important lethality in the presence of TiO 2 . (authors)

  5. Carry

    DEFF Research Database (Denmark)

    Koijen, Ralph S.J.; Moskowitz, Tobias; Pedersen, Lasse Heje

    2018-01-01

    -sectionally and in time series for a host of different asset classes, including global equities, global bonds, commodities, US Treasuries, credit, and options. Carry is not explained by known predictors of returns from these asset classes, and it captures many of these predictors, providing a unifying framework...... for return predictability. We reject a generalized version of Uncovered Interest Parity and the Expectations Hypothesis in favor of models with varying risk premia, in which carry strategies are commonly exposed to global recession, liquidity, and volatility risks, though none fully explains carry’s premium....

  6. Color-Removal by Microorganisms Isolated from Human Hands

    Directory of Open Access Journals (Sweden)

    Tsukasa Ito

    2013-08-01

    Full Text Available Microorganisms are essential for human life. Microorganisms decompose the carbon compounds in dead animals and plants and convert them into carbon dioxide. Intestinal bacteria assist in food digestion. Some vitamins are produced by bacteria that live in the intestines. Sewage and industrial wastewater are treated by activated sludge composed of microbial communities. All of these are due to the ability of microbes to produce many enzymes that can degrade chemicals. How do teachers make students understand that microorganisms are always associated with humans, and that microorganisms have the ability to degrade chemicals? The presence of microorganisms on humans can be shown by incubating agar plates after they are touched by the hands of students. The ability of microorganisms to degrade chemicals can be shown by an analytical measurement of the degradation of chemicals. When the chemicals are dyes (colorants in water, microbial activity on degradation of dyes can be demonstrated by observing a decreasing degree of color as a result of the enzymatic activity (e.g., azoreductase. Dyes are widely used in the textile, food, and cosmetic industries. They are generally resistant to conventional biological wastewater treatment systems such as the activated sludge process (4. The discharge of wastewater containing dye pollutes surface water. The ability of microorganisms to decolorize and degrade dyes has been widely investigated to use for bioremediation purposes (5. The goal of this tip is to understand the presence of bacteria on human skin and the ability of bacteria to degrade colorant chemicals (decolorization. In this tip, students first cultivate and isolate bacteria on their hands, and then examine potential decolorization activity of each bacterium by observing the degree of color of the liquid in tubes in which bacteria isolated from students’ hands were inoculated. Decolorization activity of bacterial isolates from human skin has been

  7. Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview

    Directory of Open Access Journals (Sweden)

    María Fernández

    2015-01-01

    Full Text Available Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others. Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.

  8. Impact on human health of microorganisms present in fermented dairy products: an overview.

    Science.gov (United States)

    Fernández, María; Hudson, John Andrew; Korpela, Riitta; de los Reyes-Gavilán, Clara G

    2015-01-01

    Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.

  9. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models.

    Science.gov (United States)

    Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas

    2010-10-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.

  10. Construction of a novel lentiviral vector carrying human B-domain ...

    African Journals Online (AJOL)

    ... integration were detected in all cell lines after transfection. A novel lentiviral vector carrying human FVIII³BD was constructed, which was able to transfect different mammalian cell types accompanied by high-level activity. This lentiviral vector may provide a theoretical basis for the gene therapy of patients with hemophilia ...

  11. Genomics-Based Identifcation of Microorganisms in Human Ocular Body Fluid

    DEFF Research Database (Denmark)

    Kirstahler, Philipp; Solborg Bjerrum, Søren; Friis-Møller, Alice

    2018-01-01

    genomes and (iii) the environment. Our metagenomic read classification revealed in nearly all cases the same microorganism that was determined in cultivation- and mass spectrometry-based analyses. For some patients, we identified the sequence type of the microorganism and antibiotic resistance genes...

  12. A Sensitive and Rapid Method to Determine the Adhesion Capacity of Probiotics and Pathogenic Microorganisms to Human Gastrointestinal Mucins

    Directory of Open Access Journals (Sweden)

    Bélinda Ringot-Destrez

    2018-05-01

    Full Text Available Mucus is the habitat for the microorganisms, bacteria and yeast that form the commensal flora. Mucins, the main macromolecules of mucus, and more specifically, the glycans that cover them, play essential roles in microbial gastrointestinal colonization. Probiotics and pathogens must also colonize mucus to have lasting positive or deleterious effects. The question of which mucin-harboured glycan motifs favour the adhesion of specific microorganisms remains very poorly studied. In the current study, a simple test based on the detection of fluorescent-labeled microorganisms raised against microgram amounts of mucins spotted on nitrocellulose was developed. The adhesion of various probiotic, commensal and pathogenic microorganisms was evaluated on a panel of human purified gastrointestinal mucins and compared with that of commercially available pig gastric mucins (PGM and of mucins secreted by the colonic cancer cell line HT29-MTX. The latter two proved to be very poor indicators of adhesion capacity on intestinal mucins. Our results show that the nature of the sialylated cores of O-glycans, determined by MALDI MS-MS analysis, potentially enables sialic acid residues to modulate the adhesion of microorganisms either positively or negatively. Other identified factors affecting the adhesion propensity were O-glycan core types and the presence of blood group motifs. This test should help to select probiotics with enhanced adhesion capabilities as well as deciphering the role of specific mucin glycotopes on microbial adhesion.

  13. Formation of harmful compounds in biotransformation of lilial by microorganisms isolated from human skin.

    Science.gov (United States)

    Esmaeili, Akbar; Afshari, Shima; Esmaeili, Davood

    2015-01-01

    The biotransformation of lilial results in an acid that is used in the dairy industry, in perfumery, as an intermediate in the manufacture of pharmaceuticals and cosmetics, and as a food additive for enhancing taste. This study investigates the biotransformation of lilial by Staphylococcus aureus and Staphylococcus epidermidis, two bacterial species isolated from human skin. Both species of Staphylococcus were isolated in samples taken from the skin of individuals living in a rural area of Iran. The pH of the culture medium was optimized, and after culturing the microorganisms, the bacteria were added to a flask containing a nutrient broth and incubated for several hours. The flasks of bacteria were combined with lilial, and various biochemical tests and diagnostics were performed, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectrophotometry (UV-Vis), and gas chromatography-mass spectroscopy (GC-MS). The S. aureus produced isobutyric acid (2-methylpropanoic acid) after 72 h (71% of the total products yielded during biotransformation), whereas the S. epidermidis produced terpenoid alcoholic media after 24 h (90% of total products obtained). The results obtained indicate that biotransformation of lilial by S. aureus is more desirable than by S. epidermidis due to the highly efficient production of a single product. Bourgeonal and liliol were two toxic compounds produced during biotransformation, which indicates that the use of lilial in cosmetics can be harmful to the skin.

  14. Microorganism immobilization

    Science.gov (United States)

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  15. How microorganisms use hydrophobicity and what does this mean for human needs?

    Directory of Open Access Journals (Sweden)

    Anna eKrasowska

    2014-08-01

    Full Text Available Cell surface hydrophobicity (CSH plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting cell surface hydrophobicity (CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.

  16. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    Science.gov (United States)

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Deciphering the Role of Phytoalexins in Plant-Microorganism Interactions and Human Health

    Directory of Open Access Journals (Sweden)

    Philippe Jeandet

    2014-11-01

    Full Text Available Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants as a response to biotic and abiotic stresses. As such they take part in an intricate defense system which enables plants to control invading microorganisms. In this review we present the key features of this diverse group of molecules, namely their chemical structures, biosynthesis, regulatory mechanisms, biological activities, metabolism and molecular engineering.

  18. Human Factors Evaluation of the Modular Lightweight Load-Carrying Equipment (MOLLE) System

    National Research Council Canada - National Science Library

    Sampson, James

    2001-01-01

    .... The FEA was used in drafting a new user requirements document and initiating the development of a modular load-carrying system which ultimately became known as the Modular Lightweight Load-carrying Equipment (MOLLE...

  19. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    Science.gov (United States)

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  20. Preliminary experiments on dynamic biology of micro-organisms to avoid any specific full-blown syndrome on humans

    Science.gov (United States)

    Meer, Sneer

    2002-06-01

    The aim of this paper is to apply an efficient system to detect, identify and quicken suppression of any dangerous micro-organism which threatens the health of the human body in any form. It is well known that some specimens of this kind of possess a specific energy related to their speed of division, toxin emissions and high-powered interaction with human and animal cells which have the capacity to provide certain deadly full-blown syndromes. Many problems relating to the above-mentioned properties have not been clarified to date, and it is vital to find a rapid and valid reply as soon as possible. Inter-disciplinary sciences directed us to start some experiments to solve such problems, considering that the human body is dotted with a multiple interactive system of energy release, a fact which can explain the source of the micro-organism's energy also, for their necessity to manifest their deadly pathology. From practical preliminary experiments with some micro-mechanical systems using light-microscopy, connected to video TV Recorder System, one obtains optical enlarged TV images of certain processes which indicated the right way towards our crucial target; ie: the preparation of safe vaccines and safe medicines. This will constitute a basic system to a void deadly manifestations of dangerous micro-organisms and/or even regular infections on earth and in space, a system which will probably be applied at the ISS Space Station and other future actions in space in long and very long flights. We look forward to applying this system of dynamic biology towards preparation of a real and valid vaccine(s) against HIV virus on AIDS diseases.

  1. The construction and evaluation of reference spectra for the identification of human pathogenic microorganisms by MALDI-TOF MS.

    Directory of Open Access Journals (Sweden)

    Di Xiao

    Full Text Available Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS is an emerging technique for the rapid and high-throughput identification of microorganisms. There remains a dearth of studies in which a large number of pathogenic microorganisms from a particular country or region are utilized for systematic analyses. In this study, peptide mass reference spectra (PMRS were constructed and evaluated from numerous human pathogens (a total of 1019 strains from 94 species, including enteric (46 species, respiratory (21 species, zoonotic (17 species, and nosocomial pathogens (10 species, using a MALDI-TOF MS Biotyper system (MBS. The PMRS for 380 strains of 52 species were new contributions to the original reference database (ORD. Compared with the ORD, the new reference database (NRD allowed for 28.2% (from 71.5% to 99.7% and 42.3% (from 51.3% to 93.6% improvements in identification at the genus and species levels, respectively. Misidentification rates were 91.7% and 57.1% lower with the NRD than with the ORD for genus and species identification, respectively. Eight genera and 25 species were misidentified. For genera and species that are challenging to accurately identify, identification results must be manually determined and adjusted in accordance with the database parameters. Through augmentation, the MBS demonstrated a high identification accuracy and specificity for human pathogenic microorganisms. This study sought to provide theoretical guidance for using PMRS databases in various fields, such as clinical diagnosis and treatment, disease control, quality assurance, and food safety inspection.

  2. Sensitivity of C6 Glioma Cells Carrying the Human Poliovirus Receptor to Oncolytic Polioviruses.

    Science.gov (United States)

    Sosnovtseva, A O; Lipatova, A V; Grinenko, N F; Baklaushev, V P; Chumakov, P M; Chekhonin, V P

    2016-10-01

    A humanized line of rat C6 glioma cells expressing human poliovirus receptor was obtained and tested for the sensitivity to oncolytic effects of vaccine strains of type 1, 2, and 3 polioviruses. Presentation of the poliovirus receptor on the surface of C6 glioma cells was shown to be a necessary condition for the interaction of cells with polioviruses, but insufficient for complete poliovirus oncolysis.

  3. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene

    Directory of Open Access Journals (Sweden)

    Heema Hewitson

    2016-03-01

    Full Text Available The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  4. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    OpenAIRE

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-01-01

    Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multip...

  5. Unexpected detection of porcine rotavirus C strains carrying human origin VP6 gene.

    Science.gov (United States)

    Kattoor, Jobin Jose; Saurabh, Sharad; Malik, Yashpal Singh; Sircar, Shubhankar; Dhama, Kuldeep; Ghosh, Souvik; Bányai, Krisztián; Kobayashi, Nobumichi; Singh, Raj Kumar

    2017-12-01

    Rotavirus C (RVC), a known etiological agent of diarrheal outbreaks, mainly inflicts swine population globally with sporadic incidence in human, cattle, ferret, mink and dog. To demonstrate the presence of RVC in Indian swine population and characterization of its selected structural (VP6) and non-structural (NSP4 and NSP5) genes. A total of 108 diarrheic samples from different regions of India were used. Isolated RNA was loaded onto polyacrylamide gel to screen for the presence of RVs through the identification of specific electrophoretic genomic migration pattern. To characterize the RVC strains, VP6 gene and NSP4 and NSP5 genes were amplified, sequenced and analyzed. Based on VP6 gene specific diagnostic RT-PCR, the presence of RVC was confirmed in 12.0% (13/108) piglet fecal specimens. The nucleotide sequence analysis of VP6 gene, encoding inner capsid protein, from selected porcine RVC (PoRVC) strains revealed more than 93% homologies to human RVC strains (HuRVC) of Eurasian origin. These strains were distant from hitherto reported PoRVCs and clustered with HuRVCs, owning I2 genotype. However, the two non-structural genes, i.e. NSP4 and NSP5, of these strains were found to be of swine type, signifying a re-assortment event that has occurred in the Indian swine population. The findings indicate the presence of human-like RVC in Indian pigs and division of RVC clade with I2 genotype into further sub-clades. To the best of our knowledge, this appears to be the first report of RVC in Indian swine population. Incidence of human-like RVC VP6 gene in swine supports its subsequent zoonotic prospective.

  6. Detecting contaminating microorganism in human food and water from Raman mapping through biofilms

    Science.gov (United States)

    Detecting microbial growth can help experts determine how to prevent the outbreaks especially if human food or water has been contaminated. Biofilms are a group of microbial cells that can either grow on living surfaces or surrounding themselves as they progress. Biofilms are not necessarily uniform...

  7. 1000 human genomes carry widespread signatures of GC biased gene conversion.

    Science.gov (United States)

    Dutta, Rajib; Saha-Mandal, Arnab; Cheng, Xi; Qiu, Shuhao; Serpen, Jasmine; Fedorova, Larisa; Fedorov, Alexei

    2018-04-16

    GC-Biased Gene Conversion (gBGC) is one of the important theories put forward to explain profound long-range non-randomness in nucleotide compositions along mammalian chromosomes. Nucleotide changes due to gBGC are hard to distinguish from regular mutations. Here, we present an algorithm for analysis of millions of known SNPs that detects a subset of so-called "SNP flip-over" events representing recent gBGC nucleotide changes, which occurred in previous generations via non-crossover meiotic recombination. This algorithm has been applied in a large-scale analysis of 1092 sequenced human genomes. Altogether, 56,328 regions on all autosomes have been examined, which revealed 223,955 putative gBGC cases leading to SNP flip-overs. We detected a strong bias (11.7% ± 0.2% excess) in AT- > GC over GC- > AT base pair changes within the entire set of putative gBGC cases. On average, a human gamete acquires 7 SNP flip-over events, in which one allele is replaced by its complementary allele during the process of meiotic non-crossover recombination. In each meiosis event, on average, gBGC results in replacement of 7 AT base pairs by GC base pairs, while only 6 GC pairs are replaced by AT pairs. Therefore, every human gamete is enriched by one GC pair. Happening over millions of years of evolution, this bias may be a noticeable force in changing the nucleotide composition landscape along chromosomes.

  8. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human.

    Science.gov (United States)

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-07-30

    Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. Sul genes were distributed widely in E. coli isolated

  9. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    Directory of Open Access Journals (Sweden)

    Hammerum Anette M

    2010-07-01

    Full Text Available Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3 in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. Results A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%, while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively. Multireplicons were found associated with all three sul genes

  10. Curcumin-carrying nanoparticles prevent ischemia-reperfusion injury in human renal cells.

    Science.gov (United States)

    Xu, Yong; Hu, Ning; Jiang, Wei; Yuan, Hong-Fang; Zheng, Dong-Hui

    2016-12-27

    Renal ischemia-reperfusion injury (IRI) is a major complication in clinical practice. However, despite its frequency, effective preventive/treatment strategies for this condition are scarce. Curcumin possesses antioxidant properties and is a promising potential protective agent against renal IRI, but its poor water solubility restricts its application. In this study, we constructed curcumin-carrying distearoylphosphatidylethanolamine-polyethylene glycol nanoparticles (Cur-NPs), and their effect on HK-2 cells exposed to IRI was examined in vitro. Curcumin encapsulated in NPs demonstrated improved water solubility and slowed release. Compared with the IRI and Curcumin groups, Cur-NP groups displayed significantly improved cell viability, downregulated protein expression levels of caspase-3 and Bax, upregulated expression of Bcl-2 protein, increased antioxidant superoxide dismutase level, and reduced apoptotic rate, reactive oxygen species level, and malondialdehyde content. Results clearly showed that Cur-NPs demonstrated good water solubility and slow release, as well as exerted protective effects against oxidative stress in cultured HK-2 cells exposed to IRI.

  11. Transcriptional interactions suggest niche segregation among microorganisms in the human gut

    DEFF Research Database (Denmark)

    Plichta, Damian Rafal; Juncker, Agnieszka; dos Santos, Marcelo Bertalan Quintanilha

    2016-01-01

    The human gastrointestinal (GI) tract is the habitat for hundreds of microbial species, of which many cannot be cultivated readily, presumably because of the dependencies between species 1. Studies of microbial co-occurrence in the gut have indicated community substructures that may reflect...... functional and metabolic interactions between cohabiting species 2,3. To move beyond species co-occurrence networks, we systematically identified transcriptional interactions between pairs of coexisting gut microbes using metagenomics and microarray-based metatranscriptomics data from 233 stool samples from...

  12. Generation of KCL025 research grade human embryonic stem cell line carrying a mutation in NF1 gene

    Directory of Open Access Journals (Sweden)

    Heema Hewitson

    2016-03-01

    Full Text Available The KCL025 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation in the NF1 gene encoding neurofibromin (c.3739–3742 ΔTTTG. Mutations in this gene have been linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  13. Generation of KCL018 research grade human embryonic stem cell line carrying a mutation in the DMPK gene

    Directory of Open Access Journals (Sweden)

    Cristian Miere

    2016-03-01

    Full Text Available The KCL018 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the DMPK gene encoding the dystrophia myotonica protein kinase (2200 trinucleotide repeats; 14 for the normal allele. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  14. Generation of KCL028 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    Directory of Open Access Journals (Sweden)

    Laureen Jacquet

    2016-03-01

    Full Text Available The KCL028 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (43 trinucleotide repeats; 21 for the normal allele. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  15. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    Directory of Open Access Journals (Sweden)

    Lingfeng Sang

    2014-01-01

    Full Text Available For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

  16. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    DEFF Research Database (Denmark)

    Shuyu, Wu; Dalsgaard, A.; Hammerum, A. M.

    2010-01-01

    isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids...... and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids...

  17. Lignite microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  18. Characterization of Variant Creutzfeldt-Jakob Disease Prions in Prion Protein-humanized Mice Carrying Distinct Codon 129 Genotypes*

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W.; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-01-01

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype. PMID:23792955

  19. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  20. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  1. Very low cost stand-off suicide bomber detection system using human gait analysis to screen potential bomb carrying individuals

    Science.gov (United States)

    Greneker, Gene, III

    2005-05-01

    Individuals who carry bombs on their bodies and detonate those bombs in public places are a security problem. There is belief that suicide bombings currently used in the mid-east may spread to the United States if the organized terrorist groups operating in the United States are not identified and the cell members arrested. While bombs in vehicles are the primary method currently used to spread terror in Iraq, U. S. warfighters are starting to face suicide bombers. This may become more of the situation if a stand-off detection capability is developed for the vehicle bomb case. This paper presents a concept, that if developed and commercialized, could provide an inexpensive suicide bomber screening system that could be used to screen individuals approaching a checkpoint while the individual is still 500 to 1,000 feet from the checkpoint. The proposed system measures both the radar cross-section of the individual and the radar derived gait characteristics that are associated with individuals carrying a bomb on their body. GTRI researchers propose to use human gait characteristics, as detected by radar, to determine if a human subject who is carrying no visible load on the body is actually carrying a concealed load under their clothes. The use of radar gait as a metric for the detection (as opposed to a video system) of a suicide bomber is being proposed because detection of gait characteristics are thought to be less sensitive to where the bomb is located on the body, lighting conditions, and the fact that the legs may be shrouded in a robe. The detection of a bomb using radar gait analysis may also prove to be less sensitive to changing tactics regarding where the bomb is placed on the body. An inert suicide bomb vest was constructed using water pipes to simulate the explosive devices. Wiring was added to simulated detonators. The vest weighs approximately 35 pounds. Radar data was taken on the volunteer subject wearing the vest that simulated the suicide bomb. This

  2. Assessment of microbiological quality of water in the Nowohucki Reservoir with particular regard to microorganisms potentially dangerous to humans

    Directory of Open Access Journals (Sweden)

    Katarzyna Wolny-Koładka

    2016-12-01

    Full Text Available Introduction. This study was aimed to assess the microbiological quality of water in the Nowohucki Reservoir (Kraków, Poland as well as to determine whether its waters contain microorganisms potentially dangerous from an epidemiological point of view. Material and methods. Microbiological analyses included the determination of the number of mesophilic and psychrophilic bacteria, coliforms, fecal E. coli, as well as E. faecalis, C. perfringens, Staphylococcus spp. and Salmonella spp.. Water samples were collected 4 times per year on April 27th 2015 (spring, July 10th 2015 (summer, October 12th 2015 (autumn and December 29th 2015 (winter at 5 points within the area of the reservoir. Water and air temperature was measured onsite. Results. It was found that the prevalence of the analyzed microorganisms was affected by changing water and air temperature as well as by using this reservoir during holiday season for swimming purposes by local residents. All analyzed microbiological indicators of poor water quality were found in the analyzed water samples, which may pose a potential health risk to people swimming in the considered reservoir. Conclusions. From an epidemiological point of view, it is reasonable to include the Nowohucki Reservoir into a constant sanitary monitoring programme.

  3. Monitoring of psychrotrophic microorganisms in raw milk

    Directory of Open Access Journals (Sweden)

    Radka Burdychová

    2008-01-01

    Full Text Available The group of psychrotrophic microorganisms belongs to the microorganisms representing a risk for human health as well as a risk of milk and milk products spoilage. Some genus are considered to be significant producers of proteolytic and lipolytic enzymes. In this work, we analysed raw milk samples (n = 109 originated from 26 different suppliers from the area of North and Middle Moravia. The screening was performed from March 2007 to February 2008. The total bacterial counts (TBC ranged between 3.2 × 103 to 8.3 × 106 CFU/ml. The psychrotrophic bacterial counts (PBC ranged between 1.0 × 103 to 8.2 × 106 CFU/ml. Total of 48.62 % and 48.62 % of samples exceeded the hygienic limit in raw milk for TBC and PBC, respectively. The correlation between TBC and PBC was highly significant (r = 0.87.Significantly higher (P < 0.05 numbers of psychrotrophic microorganisms were detected in summer months. The identification of isolates was carried out and all strains were sreened for ability to produce proteolytic and lipolytic enzymes. The most commonly identified genus in raw milk was of the genus Pseudomonas. The ability to produce proteases or lipases was found at 76 % identified bacterial strains.

  4. Microorganisms in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A H

    1981-11-01

    Man has been using microorganisms for thousands of years to make bread, cheese, beer, wine, etc. Today, microorganisms can be specially grown or genetically manipulated so as to synthesize high-quality proteins even from low-grade basic materials.

  5. Comparison of extended-spectrum-β-lactamase (ESBL) carrying Escherichia coli from sewage sludge and human urinary tract infection

    International Nuclear Information System (INIS)

    Zarfel, G.; Galler, H.; Feierl, G.; Haas, D.; Kittinger, C.; Leitner, E.; Grisold, A.J.; Mascher, F.; Posch, J.; Pertschy, B.; Marth, E.; Reinthaler, F.F.

    2013-01-01

    For many years, extended-spectrum-beta-lactamase (ESBL) producing bacteria were a problem mainly located in medical facilities. Within the last decade however, ESBL-producing bacteria have started spreading into the community and the environment. In this study, ESBL-producing Escherichia coli from sewage sludge were collected, analysed and compared to ESBL-E. coli from human urinary tract infections (UTIs). The dominant ESBL-gene-family in both sample groups was bla CTX-M , which is the most prevalent ESBL-gene-family in human infection. Still, the distribution of ESBL genes and the frequency of additional antibiotic resistances differed in the two sample sets. Nevertheless, phenotyping did not divide isolates of the two sources into separate groups, suggesting similar strains in both sample sets. We speculate that an exchange is taking place between the ESBL E. coli populations in infected humans and sewage sludge, most likely by the entry of ESBL E. coli from UTIs into the sewage system. - Highlights: ► ESBL E. coli strains from sewage sludge harbour the same dominant ESBL enzymes as human isolates. ► High resistance rates for important antibiotics can be found in isolated ESBL strains. ► High phenotypic diversity of ESBL E. coli isolates from sewage sludge and from human sources. - The distribution of ESBL resistance genes in isolates from patients and environmental samples.

  6. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma

    International Nuclear Information System (INIS)

    Bereli, Nilay; Sener, Guelsu; Yavuz, Handan; Denizli, Adil

    2011-01-01

    Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human β-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N',N'-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H 2 O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption-desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity. - Research highlights: → LDL cholesterol is a risk factor in the development of coronary heart diseases. → Antibodies against LDL are used for the selective extracorporeal removal of LDL. → Protein A is used for the oriented immobilization of anti LDL onto PHEMA cryogel. → PHEMA cryogels are biocompatible, exhibit a low pressure drop, lack diffusion resistance and viscous samples can be

  7. Oriented immobilized anti-LDL antibody carrying poly(hydroxyethyl methacrylate) cryogel for cholesterol removal from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bereli, Nilay [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Sener, Guelsu [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara (Turkey); Yavuz, Handan, E-mail: handany@hacettepe.edu.tr [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey)

    2011-07-20

    Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human {beta}-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N',N'-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H{sub 2}O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption-desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity. - Research highlights: {yields} LDL cholesterol is a risk factor in the development of coronary heart diseases. {yields} Antibodies against LDL are used for the selective extracorporeal removal of LDL. {yields} Protein A is used for the oriented immobilization of anti LDL onto PHEMA cryogel. {yields} PHEMA cryogels are biocompatible, exhibit a low pressure drop, lack diffusion

  8. Current Advances in the Antimicrobial Potential of Species of Genus Ganoderma (Higher Basidiomycetes) against Human Pathogenic Microorganisms (Review).

    Science.gov (United States)

    Rai, Mahendra K; Gaikwad, Swapnil; Nagaonkar, Dipali; dos Santos, Carolina Alves

    2015-01-01

    Ganoderma spp. are very important therapeutic mushrooms and have been used traditionally for 4000 years in the treatment of various human disorders. Different species of Ganoderma possess bioactive compounds, which have already demonstrated antiviral, antibacterial, and antifungal activities. Various bioactive compounds such as triterpenoids, colossolactones, and polysaccharides, which are responsible for the antimicrobial potential of the genus, are discussed here in detail. Some Ganoderma spp. have been reported to be potential agents for the synthesis of metal nanoparticles. These nanoparticles have demonstrated antimicrobial activity and also are reviewed herein. The main aim of this review is to discuss the possible use of Ganoderma extracts and their active principles in antimicrobial therapy.

  9. Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption.

    Science.gov (United States)

    Firmesse, Olivier; Alvaro, Elise; Mogenet, Agnès; Bresson, Jean-Louis; Lemée, Riwanon; Le Ruyet, Pascale; Bonhomme, Cécile; Lambert, Denis; Andrieux, Claude; Doré, Joël; Corthier, Gérard; Furet, Jean-Pierre; Rigottier-Gois, Lionel

    2008-07-15

    The objective of this study was to determine i) if Camembert cheese micro-organisms could be detected in fecal samples after regular consumption by human subjects and ii) the consequence of this consumption on global metabolic activities of the host colonic microbiota. An open human protocol was designed where 12 healthy volunteers were included: a 2-week period of fermented products exclusion followed by a 4-weeks Camembert ingestion period where 2x40 g/day of Camembert cheese was consumed. Stools were collected from the volunteers before consumption, twice during the ingestion period (2nd and 4th week) and once after a wash out period of 2 weeks. During the consumption of Camembert cheese, high levels of Lactococcus lactis and Leuconostoc mesenteroides were measured in fecal samples using real-time quantitative PCR, reaching median values of 8.2 and 7.5 Log(10) genome equivalents/g of stool. For Ln. mesenteroides, persistence was observed 15 days after the end of Camembert consumption. The survival of Geotrichum candidum was also assessed and the fecal concentration reached a median level of 7.1 Log(10) CFU/g in stools. Except a decreasing trend of the nitrate reductase activity, no significant modification was shown in the metabolic activities during this study.

  10. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    Full Text Available INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124I-positron emission tomography (PET. Detection of systemic administration of virus was investigated with both (124I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05. In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9 plaque-forming unit (PFU/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic

  11. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  12. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Directory of Open Access Journals (Sweden)

    Giulia Breveglieri

    2015-01-01

    Full Text Available Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6 carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a the transgenic integration region is located in mouse chromosome 7; (b the expression of the transgene is tissue specific; (c as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin αmu-globin2/βhu-globin2 and, more importantly, (d the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia.

  13. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Science.gov (United States)

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  14. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  15. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  16. Micro-Organ Device

    Science.gov (United States)

    Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  17. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  18. Generation of human iPSC line from a patient with laterality defects and associated congenital heart anomalies carrying a DAND5 missense alteration

    Directory of Open Access Journals (Sweden)

    Fernando Cristo

    2017-12-01

    Full Text Available A human iPSC line was generated from exfoliated renal epithelial (ERE cells of a patient affected with Congenital Heart Disease (CHD and Laterality Defects carrying tshe variant p.R152H in the DAND5 gene. The transgene-free iPSCs were generated with the human OSKM transcription factor using the Sendai-virus reprogramming system. The established iPSC line had the specific heterozygous alteration, a stable karyotype, expressed pluripotency markers and generated embryoid bodies that can differentiate towards the three germ layers in vitro. This iPSC line offers a useful resource to study the molecular mechanisms of cardiomyocyte proliferation, as well as for drug testing.

  19. Mechanisms of nickel toxicity in microorganisms

    OpenAIRE

    Macomber, Lee; Hausinger, Robert P.

    2011-01-01

    Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological co...

  20. Pathogenic and opportunistic microorganisms in caves

    Directory of Open Access Journals (Sweden)

    Sanchez-Moral Sergio

    2010-01-01

    Full Text Available With today’s leisure tourism, the frequency of visits to many caves makes it necessary to know about possible potentially pathogenic microorganisms in caves, determine their reservoirs, and inform the public about the consequences of such visits. Our data reveal that caves could be a potential danger to visitors because of the presence of opportunistic microorganisms, whose existence and possible development in humans is currently unknown.

  1. Interleukin-6 production by human monocytes treated with granulocyte-macrophage colony-stimulating factor in the presence of lipopolysaccharide of oral microorganisms.

    Science.gov (United States)

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-06-01

    This study focused on the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and lipopolysaccharide of the putative periodontal pathogens Porphyromonas gingivalis or Fusobacterium nucleatum on IL-6 production by THP-1 cells (a human monocytic cell line). Resting THP-1 cells were alternatively treated with GM-CSF (50 IU/ml) and lipopolysaccharide of P. gingivalis or F. nucleatum, in varying concentrations for varying time periods. IL-6 production in supernatant fluids of treated cells was evaluated by an enzyme-linked immunosorbent assay (ELISA) and a reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate gene expression. Untreated THP-1 cells did not produce IL-6 as determined by ELISA. RT-PCR also failed to detect IL-6 mRNA in untreated THP-1 cells, indicating that IL-6 was not constitutively produced. After stimulation of THP-1 cells with lipopolysaccharide of F. nucleatum or P. gingivalis, IL-6 was produced, peaking at 4 h (200-300 pg/ml) and thereafter sharply declining by 8 h. When GM-CSF was added together with lipopolysaccharide of P. gingivalis or F. nucleatum, there was a synergistic quantitative increase in production of IL-6 as measured by ELISA as compared with lipopolysaccharide alone. IL-6 mRNA was detected by RT-PCR, 15 min after stimulation with lipopolysaccharide of either P. gingivalis or F. nucleatum. GM-CSF supplementation with lipopolysaccharide of P. gingivalis shortened the transcription of IL-6 mRNA to 5 min, a shift which was not observed with lipopolysaccharide of F. nucleatum, possibly indicating a different mechanism of initiation of transcription. Production of IL-6 by GM-CSF-treated THP-1 cells in the presence of lipopolysaccharide of oral microorganisms may provide a model for studying the role of macrophages in acute and chronic periodontal diseases, including the clinical periodontal exacerbation as observed in chemotherapy patients receiving GM-CSF for bone marrow recovery.

  2. Literature review of human microbes' interaction with plants

    Science.gov (United States)

    Maguire, B., Jr.

    1980-01-01

    Human carried microorganisms, which cannot practically be excluded from human supporting agricultural systems of extra terrestrial stations, are considered. These microorganisms damage the plants on which the people depend for oxygen and food. The inclusion of carefully screened or constructed, but more or less normal, phylloplane and rhizosphere microbial communities is studied.

  3. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  4. Fossil Microorganisms in Archaean

    Science.gov (United States)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  5. Diffuse glomerular nodular lesions in diabetic pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha, an inheritant diabetic gene in humans.

    Directory of Open Access Journals (Sweden)

    Satoshi Hara

    Full Text Available Glomerular nodular lesions, known as Kimmelstiel-Wilson nodules, are a pathological hallmark of progressive human diabetic nephropathy. We have induced severe diabetes in pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha (HNF1α P291fsinsC, a maturity-onset diabetes of the young type-3 (MODY3 gene in humans. In this model, glomerular pathology revealed that formation of diffuse glomerular nodules commenced as young as 1 month of age and increased in size and incidence until the age of 10 months, the end of the study period. Immunohistochemistry showed that the nodules consisted of various collagen types (I, III, IV, V and VI with advanced glycation end-product (AGE and Nε-carboxymethyl-lysine (CML deposition, similar to those in human diabetic nodules, except for collagen type I. Transforming growth factor-beta (TGF-β was also expressed exclusively in the nodules. The ultrastructure of the nodules comprised predominant interstitial-type collagen deposition arising from the mesangial matrices. Curiously, these nodules were found predominantly in the deep cortex. However, diabetic pigs failed to show any of the features characteristic of human diabetic nephropathy; e.g., proteinuria, glomerular basement membrane thickening, exudative lesions, mesangiolysis, tubular atrophy, interstitial fibrosis, and vascular hyalinosis. The pigs showed only Armanni-Ebstein lesions, a characteristic tubular manifestation in human diabetes. RT-PCR analysis showed that glomeruli in wild-type pigs did not express endogenous HNF1α and HNF1β, indicating that mutant HNF1α did not directly contribute to glomerular nodular formation in diabetic pigs. In conclusion, pigs harboring the dominant-negative mutant human MODY3 gene showed reproducible and distinct glomerular nodules, possibly due to AGE- and CML-based collagen accumulation. Although the pathology differed in several respects from that of human glomerular nodular lesions, the

  6. Bioplastics from microorganisms.

    Science.gov (United States)

    Luengo, José M; García, Belén; Sandoval, Angel; Naharro, Germán; Olivera, Elías R

    2003-06-01

    The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.

  7. Gut Microorganisms Found Necessary for Successful Cancer Therapy | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer Humans play host to trillions of microorganisms that help our bodies perform basic functions, like digestion, growth, and fighting disease. In fact, bacterial cells outnumber the human cells in our bodies by 10 to 1.1 The tens of trillions of microorganisms thriving in our intestines are known as gut microbiota, and those that are not harmful to

  8. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Esquivel, D.M.S.; Barros, H.G. de P.L. de.

    1985-01-01

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author) [pt

  9. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    Science.gov (United States)

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  10. Inactivation of Microorganisms

    Science.gov (United States)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  11. Properties of thermophilic microorganisms

    International Nuclear Information System (INIS)

    Ljungdahl, L.G.

    1984-01-01

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 47 0 C and 70 0 C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  12. Metal-microorganism interactions

    International Nuclear Information System (INIS)

    Andres, Y.; Thouand, G.; Redercher, S.; Boualam, M.; Texier, A.Cl.; Hoeffer, R.

    1997-01-01

    The physico-chemical procedures of treating the metalliferous effluents are not always adapted to de polluting the slightly concentrated industrial wastes. An alternative idea was advanced, implying the ability of some microorganisms to fix in considerable amounts the metal ions present in aqueous solutions, possibly in a selective way. This approach has been investigated thoroughly during the last 30 years, particularly from a mechanistic point of view. The advantage of the microorganisms lies mainly in the large diversity of bacteria and in their chemical state dependent interaction with metals, as well as, in the possibilities of developing their selective and quantitative separation properties. A biomass from Mycobacterium smegmatis, an acidic alcoholic resistant bacteria, has been used to prepare a bio-sorption support allowing the preferential sorption of thorium as compared to uranium and lanthanum. These studies have been extended to biological polymers such as chitosan and to studies related to bioaccumulation mechanisms and/or to the microbial resistances towards metals

  13. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Deitch

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1. There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease.

  14. Microorganisms of Grape Berries

    Directory of Open Access Journals (Sweden)

    Kántor Attila

    2017-12-01

    Full Text Available Grape surface is an unstable habitat that changes greatly according to the stage of grape ripening. Different bacteria and yeasts can colonise the surface of grape berry and the diversity of microorganisms depends on the stage of ripening, pesticide application and health condition. The aim of this study was to study the microflora of the surface of grape berries. Altogether, 19 grape samples from Slovakia were collected. The spread plate method was applied and a 100 μL inoculum of each dilution (10−2, 10−3 was plated on TSA, MEA, and MRS agar for isolation of microorganisms from grapes. Proteins were extracted from cells by ethanol/formic acid extraction procedure. MALDI-TOF Mass Spectrometry was used for identification of microorganisms. In total, 11 genera of Gram-negative bacteria, 11 of Gram-positive bacteria and nine of yeasts were identified. Among 200 isolates, Gram-negative, Gram-positive bacteria and yeasts represented 11%, 27% and 62% of the total number of isolates studied. The most common genera of isolated yeasts were Hanseniaspora (37%, Metschnikowia (31%, and Rhodotorula (10%. The most frequently isolated among Gram-negative bacteria were Acinetobacter (22%, Pseudomonas (22% and Sphingomonas (13%. The most common genera of Gram-positive bacteria were Bacillus (20%, Lactobacillus (19%, Leuconostoc and Staphylococcus (11%, respectively.

  15. Overview of Recent Activities on Safety Culture and Human and Organizational Factors Carried Out at the Joint Research Centre of the European Commission

    International Nuclear Information System (INIS)

    Stručić, M.; Manna, G.

    2016-01-01

    The Institute for Energy and Transport (IET) of the Joint Research Centre (JRC) of the European Commission (EC) is since more than ten years active in the field of Safety Culture (SC) and Human and Organizational Factors (HOF). Several activities related to SC and HOF have been and are carried out in the frame of the EU Nuclear Safety Clearinghouse for Operating Experience Feedback (Clearinghouse). The Clearinghouse was established in 2008 to enhance nuclear safety through the lessons learned from NPP events, and to provide help in Operational Experience Feedback (OEF) process primarily to nuclear safety Regulatory Authorities and to their Technical Support Organizations within the EU. Additionally to these activities, during the Fukushima accident, Clearinghouse has been regularly providing reports on the status and progress of the accident to the EU Regulatory Authorities. Moreover, experts, selected from the JRC staffing, were directly engaged in the EU-wide risk and safety assessments of nuclear power plants known as “the Stress Tests”.

  16. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor.

    Directory of Open Access Journals (Sweden)

    Mathilda Eriksson

    Full Text Available Virus-like particles (VLPs consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV VLPs carrying the entire human Prostate Specific Antigen (PSA (PSA-MPyVLPs for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs. Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4(+ and CD8(+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4(+ and CD8(+ cells with a low induction of anti-VLP antibodies.

  17. Establishment of a new human pre-B acute lymphoblastic leukemia cell line (KMO-90) with 1;19 translocation carrying p53 gene alterations.

    Science.gov (United States)

    Sotomatsu, M; Hayashi, Y; Kawamura, M; Yugami, S; Shitara, T

    1993-10-01

    A new human pre-B acute lymphoblastic leukemia cell line (KMO-90) was established from the bone marrow sample of a 12-year-old girl with acute lymphoblastic leukemia (ALL) carrying 1;19 chromosome translocation. KMO-90 cells expressed HLA-DR, CD10, CD19, and CD22 antigens. These cells had also cytoplasmic immunoglobulin lacking surface immunoglobulin, indicating that these had a pre-B phenotype. Chromosome analysis of this cell line showed 48, XX, +8, +19, t(1;19)(q23;p13). Southern blot analysis showed the same sized rearrangements of the E2A gene in KMO-90 cells as those in the original leukemic cells. By means of reverse transcriptase-polymerase chain reaction analysis, we detected E2A/PBX1 fusion transcripts in KMO-90 cells. KMO-90 is useful when studying the role of the 1;19 translocation in the etiology of pre-B ALL. Furthermore, we studied alterations of the p53 gene in this cell line by polymerase chain reaction, single-strand conformation polymorphism analysis. KMO-90 cells were identified to have a point mutation at codon 177 (CCC-->TCC) of the p53 gene, suggesting that alterations of the p53 gene may have an important role in the establishment of this cell line.

  18. Murine Polyomavirus Virus-Like Particles Carrying Full-Length Human PSA Protect BALB/c Mice from Outgrowth of a PSA Expressing Tumor

    Science.gov (United States)

    Eriksson, Mathilda; Andreasson, Kalle; Weidmann, Joachim; Lundberg, Kajsa; Tegerstedt, Karin

    2011-01-01

    Virus-like particles (VLPs) consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV) VLPs carrying the entire human Prostate Specific Antigen (PSA) (PSA-MPyVLPs) for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs). Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4+ and CD8+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4+ and CD8+ cells with a low induction of anti-VLP antibodies. PMID:21858228

  19. Rapid Population Growth and Human Carrying Capacity: Two Perspectives. World Bank Staff Working Papers No. 690 and Population and Development Series No. 15.

    Science.gov (United States)

    Mahar, Dennis J., Ed.; And Others

    Two perspectives on carrying capacity and population growth are examined. The first perspective, "Carrying Capacity and Rapid Population Growth: Definition, Cases, and Consequences" (Robert Muscat), explores the possible meanings of the idea of carrying capacity under developing country conditions, looks at historical and present-day cases of…

  20. Functional microorganisms for functional food quality.

    Science.gov (United States)

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  1. In vivo investigations of genetically modified microorganisms using germ-free rats

    DEFF Research Database (Denmark)

    Lund jacobsen, Bodil

    Risk evaluation of genetically modified microorganism (GMMO) in relation to human health effects brings into consideration the ability of the microorganism to survive and colonise the gastrointestinal tract and the potential gene transfer to the resident microbiota. Different biological containment...

  2. Atmospheric Sampling of Microorganisms with UAS

    Science.gov (United States)

    Schmale, D. G., III

    2017-12-01

    Many microorganisms relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. A few have crossed continents. New technologies are needed to study the movement of microorganisms in the atmosphere. We have used unmanned aircraft systems (UAS) to study the transport of microorganisms tens to hundreds of meters above the ground. These UAS are equipped with unique devices for collecting microbes in the atmosphere during flight. Autonomous systems enable teams of UAS to perform complex atmospheric sampling tasks, and coordinate flight missions with one another. Data collected with UAS can be used to validate and improve disease forecasting models along highways in the sky, connecting transport scales across farms, states, and continents. Though terrestrial environments are often considered a major contributor to atmospheric microbial aerosols, little is known about aquatic sources of microbial aerosols. Droplets containing microorganisms can aerosolize from the water surface, liberating them into the atmosphere. We are using teams of unmanned surface vehicles (USVs) and UAS to study the aerosolization of microbes from aquatic environments. Controlled flume studies using highspeed video have allowed us to observe unique aerosolization phenomena that can launch microbes out of the water and into the air. Unmanned systems may be used to excite the next generation of biologists and engineers, and raise important ethical considerations about the future of human-robot interactions.

  3. New micro-organism

    Energy Technology Data Exchange (ETDEWEB)

    Takakuwa, Masayoshi; Hashimoto, Gotaro

    1987-09-12

    Invention relates with a new organism for the coal liquefying desulfurization. This micro-organism conducts a good sporulation on a culture medium which contains a coal as an only carbon source. It belongs to Penicillium and named Penicillium MT-6001 registered at Fermentation Research Institute No. 8463. Coal powder is thrown into a reaction vessel which accommodated a culture solution of this bacteria, and the surface of the solution is covered with liquid paraffin; coal powder is treated of liquefaction for about 5 hours while maintaining the anaerobic condition and slowly agitating to form a transparent solution layer on the surface of the reactor together with liquid paraffin. Liquefied product shows an analysis pattern similar to naphthenic petroleum containing a lipid with polar radical. (2 figs)

  4. Proteolysis in hyperthermophilic microorganisms

    Directory of Open Access Journals (Sweden)

    Donald E. Ward

    2002-01-01

    Full Text Available Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.

  5. Thermophilic microorganisms in biomining.

    Science.gov (United States)

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  6. Functional Basis of Microorganism Classification.

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with

  7. Functional Basis of Microorganism Classification

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned

  8. Radioresistant microorganisms and food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1976-01-01

    This paper deals with Micrococcus radiodurans, Arthrobacter radiotolerance, etc., which were isolated and discovered as radioresistant microorganisms. As for the explanation of the mechanism of radioresistance of these microorganisms, the consideration that these organisms have marked repair power of the damaged DNA and have many opportunity to repair the damaged DNA because of their long fission term were cited. The relationship between the radioresistance of microorganisms and food irradiation was also mentioned.

  9. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    -tolerant enzymes, natural products of potential use in human health management and environmental bioremediation using solvent-tolerant microorganisms are some of the potential biotechnological applications of these deep-sea microbes....

  10. Optical Carry Adder.

    Science.gov (United States)

    1987-03-01

    AOM’s) with the deflected beam as the modulator "on" state. These AOM’s ( TeO2 crystals, manufactured by Newport E.O. Systems) have high deflection...caused by the slow acoustic propagation (4.2 - 105 cm/s for TeO2 ), but this delay can be minimized by placing the laser beam close to the acoustic...dependent jitter in the optical carry to below 1 ns, the total carry path must be less than 30 cm long (or 20 cm in glass , 14 cm in LiNbO 3). Thus, a 32

  11. Polysaccharides from Extremophilic Microorganisms

    Science.gov (United States)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  12. Mechanisms of nickel toxicity in microorganisms

    Science.gov (United States)

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  13. Assessment of microorganisms from Indonesian Oil Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  14. Secretion of human epidermal growth factor (EGF) in autotrophic culture by a recombinant hydrogen-utilizing bacterium, Pseudomonas pseudoflava, carrying broad-host-range EGF secretion vector pKSEGF2.

    OpenAIRE

    Hayase, N; Ishiyama, A; Niwano, M

    1994-01-01

    We constructed the broad-host-range human epidermal growth factor (EGF) secretion plasmid pKSEGF2 by inserting the Escherichia coli tac promoter, the signal sequence of Pseudomonas stutzeri amylase, and the synthesized EGF gene into the broad-host-range vector pKT230. E. coli JM109 carrying pKSEGF2 secreted EGF into the periplasm and the culture medium under the control of the tac promoter. Pseudomonas aeruginosa PAO1161 carrying pKSEGF2 and Pseudomonas putida AC10 carrying pKSEGF2 secreted E...

  15. Modelling and application of the inactivation of microorganism

    International Nuclear Information System (INIS)

    Oğuzhan, P.; Yangılar, F.

    2013-01-01

    Prevention of consuming contaminated food with toxic microorganisms causing infections and consideration of food protection and new microbial inactivation methods are obligatory situations. Food microbiology is mainly related with unwanted microorganisms spoiling foods during processing and transporting stages and causing diseases. Determination of pathogen microorganisms is important for human health to define and prevent dangers and elongate shelf life. Inactivation of pathogen microorganisms can provide food security and reduce nutrient losses. Microbial inactivation which is using methods of food protection such as food safety and fresh. With this aim, various methods are used such as classical thermal processes (pasteurisation, sterilisation), pressured electrical field (PEF), ionised radiation, high pressure, ultrasonic waves and plasma sterilisation. Microbial inactivation modelling is a secure and effective method in food production. A new microbiological application can give useful results for risk assessment in food, inactivation of microorganisms and improvement of shelf life. Application and control methods should be developed and supported by scientific research and industrial applications

  16. 40 CFR 725.67 - Applications to exempt new microorganisms from this part.

    Science.gov (United States)

    2010-07-01

    ...) The effects of the new microorganism on health and the environment. (ii) The magnitude of exposure of human beings and the environment to the new microorganism. (iii) The benefits of the new microorganism... economic consequences of granting or denying the exemption, including effects on the national economy...

  17. WNT Inhibitory Activity of Malus Pumila miller cv Annurca and Malus domestica cv Limoncella Apple Extracts on Human Colon-Rectal Cells Carrying Familial Adenomatous Polyposis Mutations.

    Science.gov (United States)

    Riccio, Gennaro; Maisto, Maria; Bottone, Sara; Badolati, Nadia; Rossi, Giovanni Battista; Tenore, Gian Carlo; Stornaiuolo, Mariano; Novellino, Ettore

    2017-11-18

    Inhibitors of the Wingless-related Integration site (WNT)/β-catenin pathway have recently been under consideration as potential chemopreventive agents against Familial Adenomatous Polyposis (FAP). This autosomal-dominant syndrome is caused by germline mutations in the gene coding for the protein APC and leads to hyperactivation of the WNT/β-catenin signaling pathway, uncontrolled intestinal cell proliferation and formation of adenocarcinomas. The aim of the present work was to: (i) test, on in vitro cultures of cells carrying FAP mutations and on ex vivo biopsies of FAP patients, the WNT inhibitory activity of extracts from two common southern Italian apples, Malus pumila Miller cv. 'Annurca' and Malus domestica cv 'Limoncella'; (ii) identify the mechanisms underpinning their activities and; (iii) evaluate their potency upon gastrointestinal digestion. We here show that both Annurca and Limoncella apple extracts act as WNT inhibitors, mostly thanks to their polyphenolic contents. They inhibit the pathway in colon cells carrying FAP mutations with active dilutions falling in ranges close to consumer-relevant concentrations. Food-grade manufacturing of apple extracts increases their WNT inhibitory activity as result of the conversion of quercetin glycosides into the aglycone quercetin, a potent WNT inhibitor absent in the fresh fruit extract. However, in vitro simulated gastrointestinal digestion severely affected WNT inhibitory activity of apple extracts, as result of a loss of polyphenols. In conclusion, our results show that apple extracts inhibit the WNT pathway in colon cells carrying FAP mutations and represent a potential nutraceutical alternative for the treatment of this pathology. Enteric coating is advisable to preserve the activity of the extracts in the colon-rectal section of the digestive tract.

  18. WNT Inhibitory Activity of Malus Pumila miller cv Annurca and Malus domestica cv Limoncella Apple Extracts on Human Colon-Rectal Cells Carrying Familial Adenomatous Polyposis Mutations

    Directory of Open Access Journals (Sweden)

    Gennaro Riccio

    2017-11-01

    Full Text Available Inhibitors of the Wingless-related Integration site (WNT/β-catenin pathway have recently been under consideration as potential chemopreventive agents against Familial Adenomatous Polyposis (FAP. This autosomal-dominant syndrome is caused by germline mutations in the gene coding for the protein APC and leads to hyperactivation of the WNT/β-catenin signaling pathway, uncontrolled intestinal cell proliferation and formation of adenocarcinomas. The aim of the present work was to: (i test, on in vitro cultures of cells carrying FAP mutations and on ex vivo biopsies of FAP patients, the WNT inhibitory activity of extracts from two common southern Italian apples, Malus pumila Miller cv. ‘Annurca’ and Malus domestica cv ‘Limoncella’; (ii identify the mechanisms underpinning their activities and; (iii evaluate their potency upon gastrointestinal digestion. We here show that both Annurca and Limoncella apple extracts act as WNT inhibitors, mostly thanks to their polyphenolic contents. They inhibit the pathway in colon cells carrying FAP mutations with active dilutions falling in ranges close to consumer-relevant concentrations. Food-grade manufacturing of apple extracts increases their WNT inhibitory activity as result of the conversion of quercetin glycosides into the aglycone quercetin, a potent WNT inhibitor absent in the fresh fruit extract. However, in vitro simulated gastrointestinal digestion severely affected WNT inhibitory activity of apple extracts, as result of a loss of polyphenols. In conclusion, our results show that apple extracts inhibit the WNT pathway in colon cells carrying FAP mutations and represent a potential nutraceutical alternative for the treatment of this pathology. Enteric coating is advisable to preserve the activity of the extracts in the colon-rectal section of the digestive tract.

  19. Carrying on the Good Fight: Summary Paper from Think Tank 2000--Advancing the Civil and Human Rights of People with Disabilities from Diverse Cultures.

    Science.gov (United States)

    National Council on Disability, Washington, DC.

    This paper summarizes a May 2000 conference about advancing the civil and human rights of people with disabilities from diverse cultures. The conference included people with disabilities from diverse cultures and members of national civil rights organizations. The conference identified five priority areas for attention: (1) cultivating leadership…

  20. Sortilin-Related Receptor Expression in Human Neural Stem Cells Derived from Alzheimer’s Disease Patients Carrying the APOE Epsilon 4 Allele

    Directory of Open Access Journals (Sweden)

    Alen Zollo

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia in the elderly; important risk factors are old age and inheritance of the apolipoprotein E4 (APOE4 allele. Changes in amyloid precursor protein (APP binding, trafficking, and sorting may be important AD causative factors. Secretase-mediated APP cleavage produces neurotoxic amyloid-beta (Aβ peptides, which form lethal deposits in the brain. In vivo and in vitro studies have implicated sortilin-related receptor (SORL1 as an important factor in APP trafficking and processing. Recent in vitro evidence has associated the APOE4 allele and alterations in the SORL1 pathway with AD development and progression. Here, we analyzed SORL1 expression in neural stem cells (NSCs from AD patients carrying null, one, or two copies of the APOE4 allele. We show reduced SORL1 expression only in NSCs of a patient carrying two copies of APOE4 allele with increased Aβ/SORL1 localization along the degenerated neurites. Interestingly, SORL1 binding to APP was largely compromised; this could be almost completely reversed by γ-secretase (but not β-secretase inhibitor treatment. These findings may yield new insights into the complex interplay of SORL1 and AD pathology and point to NSCs as a valuable tool to address unsolved AD-related questions in vitro.

  1. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene.

    Science.gov (United States)

    Liu, Senquan; Ye, Zhaohui; Gao, Yongxing; He, Chaoxia; Williams, Donna W; Moliterno, Alison; Spivak, Jerry; Huang, He; Cheng, Linzhao

    2017-01-01

    Activating point mutations in the MPL gene encoding the thrombopoietin receptor are found in 3%-10% of essential thrombocythemia (ET) and myelofibrosis patients. Here, we report the derivation of induced pluripotent stem cells (iPSCs) from an ET patient with a heterozygous MPL V501L mutation. Peripheral blood CD34 + progenitor cells were reprogrammed by transient plasmid expression of OCT4, SOX2, KLF4, c-MYC plus BCL2L1 (BCL-xL) genes. The derived line M494 carries a MPL V501L mutation, displays typical iPSC morphology and characteristics, are pluripotent and karyotypically normal. Upon differentiation, the iPSCs are able to differentiate into cells derived from three germ layers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans

    DEFF Research Database (Denmark)

    Dolejska, Monika; Villa, Laura; Hasman, Henrik

    2013-01-01

    were compared using restriction fragment length polymorphism (RFLP), plasmid multilocus sequence typing (pMLST) and hybridization with repN, qnrS1, qnrB19 or blaCTX-M-1 probes. Plasmids pKT58A and pHHA45 were sequenced using the 454-Genome Sequencer FLX platform on a library constructed from plasmid...... DNA purified from the respective E. coli transformants.Results Three types of IncN plasmids carrying blaCTX-M-1, qnrS1 and qnrB19 genes were identified in strains isolated from the Czech Republic, Poland, Slovakia, Denmark, Italy and the Netherlands, corresponding to pMLST sequence type (ST) 1, ST3...

  3. Engineering photosynthesis in plants and synthetic microorganisms.

    Science.gov (United States)

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.

  4. Identification of Microorganisms by Modern Analytical Techniques.

    Science.gov (United States)

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  5. Baculovirus-mediated expression and isolation of human ribosomal phosphoprotein P0 carrying a GST-tag in a functional state

    International Nuclear Information System (INIS)

    Abo, Yohichi; Hagiya, Akiko; Naganuma, Takao; Tohkairin, Yukiko; Shiomi, Kunihiro; Kajiura, Zenta; Hachimori, Akira; Uchiumi, Toshio; Nakagaki, Masao

    2004-01-01

    We constructed an overexpression system for human ribosomal phosphoprotein P0, together with P1 and P2, which is crucially important for translation. Genes for these proteins, fused with the glutathione S-transferase (GST)-tag at the N-terminus, were inserted into baculovirus and introduced to insect cells. The fusion proteins, but not the proteins without the tag, were efficiently expressed into cells as soluble forms. The fusion protein GST.P0 as well as GST.P1/GST.P2 was phosphorylated in cells as detected by incorporation of 32 P and reactivity with monoclonal anti-phosphoserine antibody. GST.P0 expressed in insect cells, but not the protein obtained in Escherichia coli, had the ability to form a complex with P1 and P2 proteins and to bind to 28S rRNA. Moreover, the GST.P0-P1-P2 complex participated in high eEF-2-dependent GTPase activity. Baculovirus expression systems appear to provide recombinant human P0 samples that can be used for studies on the structure and function

  6. A novel mouse model carrying a human cytoplasmic dynein mutation shows motor behavior deficits consistent with Charcot-Marie-Tooth type 2O disease.

    Science.gov (United States)

    Sabblah, Thywill T; Nandini, Swaran; Ledray, Aaron P; Pasos, Julio; Calderon, Jami L Conley; Love, Rachal; King, Linda E; King, Stephen J

    2018-01-29

    Charcot-Marie-Tooth disease (CMT) is a peripheral neuromuscular disorder in which axonal degeneration causes progressive loss of motor and sensory nerve function. The loss of motor nerve function leads to distal muscle weakness and atrophy, resulting in gait problems and difficulties with walking, running, and balance. A mutation in the cytoplasmic dynein heavy chain (DHC) gene was discovered to cause an autosomal dominant form of the disease designated Charcot-Marie-Tooth type 2 O disease (CMT2O) in 2011. The mutation is a single amino acid change of histidine into arginine at amino acid 306 (H306R) in DHC. In order to understand the onset and progression of CMT2, we generated a knock-in mouse carrying the corresponding CMT2O mutation (H304R/+). We examined H304R/+ mouse cohorts in a 12-month longitudinal study of grip strength, tail suspension, and rotarod assays. H304R/+ mice displayed distal muscle weakness and loss of motor coordination phenotypes consistent with those of individuals with CMT2. Analysis of the gastrocnemius of H304R/+ male mice showed prominent defects in neuromuscular junction (NMJ) morphology including reduced size, branching, and complexity. Based on these results, the H304R/+ mouse will be an important model for uncovering functions of dynein in complex organisms, especially related to CMT onset and progression.

  7. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase.

    Science.gov (United States)

    Andrews, Rachel E; Galileo, Deni S; Martin-DeLeon, Patricia A

    2015-11-01

    Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca(2+) efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca(2+), and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca(2+) ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca(2+)-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca(2+) concentration ([Ca(2+)]c) in capacitated sperm than at low [Ca(2+)]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca(2+)/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at

  8. Genotypic evaluation of etravirine sensitivity of clinical human immunodeficiency virus type 1 (HIV-1) isolates carrying resistance mutations to nevirapine and efavirenz.

    Science.gov (United States)

    Oumar, A A; Jnaoui, K; Kabamba-Mukadi, B; Yombi, J C; Vandercam, B; Goubau, P; Ruelle, J

    2010-01-01

    Etravirine is a second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) with a pattern of resistance mutations quite distinct from the current NNRTIs. We collected all routine samples of HIV-1 patients followed in the AIDS reference laboratory of UCLouvain (in 2006 and 2007) carrying resistance-associated mutations to nevirapine (NVP) or efavirenz (EFV). The sensitivity to Etravirine was estimated using three different drug resistance algorithms: ANRS (July 2008), IAS (December 2008) and Stanford (November 2008). We also verified whether the mutations described as resistance mutations are not due to virus polymorphisms by the study of 58 genotypes of NNRTI-naive patients. Sixty one samples harboured resistance to NVP and EFV: 41/61 had at least one resistance mutation to Etravirine according to ANRS-IAS algorithms; 42/61 samples had at least one resistance mutation to Etravirine according to the Stanford algorithm. 48 and 53 cases were fully sensitive to Etravirine according to ANRS-IAS and Stanford algorithms, respectively. Three cases harboured more than three mutations and presented a pattern of high-degree resistance to Etravirine according to ANRS-IAS algorithm, while one case harboured more than three mutations and presented high degree resistance to Etravirine according to the Stanford algorithm. The V1061 and V179D mutations were more frequent in the ARV-naive group than in the NNRTI-experienced one. According to the currently available algorithms, Etravirine can still be used in the majority of patients with virus showing resistance to NVP and/or EFV, if a combination of other active drugs is included.

  9. Human factors in the safe operation of nuclear power reactors. Survey of research carried out through the Commission of the European Communities

    International Nuclear Information System (INIS)

    Ancarani, A.; Reijen, G. van; Amendola, A.; Mancini, G.

    1983-01-01

    A survey is made of the study and development of approaches to model operators in routine operation and accident sequences. Particular attention is given to the application of simulators. Simulators as tools to improve safety in nuclear power plant operation can be used in two ways: for training and requalification of operators, and for assistance during routine and abnormal events. Whereas the second application is still in its infancy, training simulators of various degrees of complexity and fidelity are widely used. They range from reduced scope to replica models, or can take the form of modular mini-simulators for studying single parts of the plant. The best reliance on a simulator of any kind will be ensured when the definitions of a method for measuring relevant quantities under well-defined conditions (normal and abnormal) will have been established and agreed upon. Results are also given of a study on human factors in relation to risk management in different electricity production processes. This study derives information from the experience of the staff of power stations and analyses management responsibilities and the functions of operating personnel; both aspects have been put in perspective. (author)

  10. Answers to the questions about food irradiation. Concerning results of animal experiments in the specified integrated research. Data carrying a problem in human health were obtained?

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2007-01-01

    Experts of Food and Agriculture Organization (FAO)/ International Atomic Energy Agency (IAEA)/ World Health Organization (WHO) committee obtained their conclusion in 1980 that food irradiated with <10 kGy of radiation is safe for human health, which is now globally approved. However, in Japan, there have been still opposite opinions based on the doubt in the title on the safety of irradiated food. In this paper, the author answers those questions as he was a member to arrange the Research in the title for food irradiation. Described are data presentation and explanation about results of toxicity studies of diets added with irradiated materials of: weight reductions in rat ovary by irradiated potato (ip) in chronic studies, and in mouse testicle and ovary of F3 generation from the ancestor mice kept on diet with irradiated onion (io); bone malformation in mice by io; and reduction of body weight gain in female rats by ip and increase of mortality of male rats by ip. These are analyzed on the aspects of radiation dose-response, sustained tendency of results throughout the living period or generation, and apparent abnormality by other factors; and normal variation due to individual difference is pointed out to contribute to these findings. The safety test of irradiated food has been conducted valid not only in animal experiments but also other tests like genotoxicity and analysis of radiation-degraded products. (R.T.)

  11. Medical Significance of Microorganisms in Spacecraft Environment

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  12. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    Science.gov (United States)

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  13. Ultraviolet-Mediated Activation of Photo toxins from Peganum Harmala L. Seedlings to Control both Human-and Phyto-Pathogenic Microorganisms and Tumor Cells

    International Nuclear Information System (INIS)

    Kord, M.; Khafagi, I.; Dewedar, A.

    2003-01-01

    The medicinal plant Peganum harmala L. (zygophyllaceae) contains a number of Beta-carboline alkaloids, which are photosensitizers to bacteria, yeasts and eukaryotic cells in the presence of sunlight and artificial sources of long-wave UV radiation (365 nm). Ultraviolet irradiation of ten-day old aseptically germinated Peganum harmala inoculated on bacterial and yeast bioassay plates elicits strong phototoxic antimicrobials. Callus as well as crude methanol extracts of in vitro cultures were also investigated for the accumulation of photosensitizers. High performance liquid chromatographic analyses of irradiated and control tissues followed by fluorescent detection at 302 nm revealed the formation of serotonin (5-hydroxytryptamine) in irradiated tissues only. Eluted compounds detected at 330 nm revealed more than ten-fold accumulation of harmine, isoharmine and harmol in irradiated tissues. Moreover, several simple beta-carboline alkaloids were produced through irradiation with UV such as harmalanine and harmalacidine. UV-induced phototoxicity was proven against phyto pathogenic bacteria and human-pathogenic bacteria and yeasts. Photo-induced cytotoxicity was observed from two different toxicity bioassays, which are Artemia saline and potato discs tumor assay. The selective UV-dependent biological activities may imply a pharmacological potential of Peganum harmala in the control of infectious diseases and tumor tissues

  14. Volatilization of Po by microorganisms at laboratory culture experiments

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Yoshinaga, C.; Fukuda, A.

    2005-01-01

    The previous experiments proved the volatility of polonium form culture medium in which microorganisms were propagated from seed of seawater, river water or pond water, therefore we did not know what kind of species are responsible to Po volatility. To search microorganisms, which concerned with Po emission we carried out culture experiments using known microorganisms. Three microorganisms were examined; Escherichia coli K-12, Bacillus subtilis and Chromobacterium violaceum. The microorganisms were pre-cultured in LB medium at 30 degree C and a small portion of the pre-cultured was transferred to a culture bottle in which LB medium and 208 Po tracer were contained. The culture was done at 30 degree C with shaking the culture bottle and air passed through a filter was introduced. The Po volatilized was transferred into the trap vials in which scintillator for liquid scintillation counting (LSC) was contained. The Po activity was measured by LSC. All of the microorganisms examined volatilized Po but their ability was quite different each other. Highest ability was observed on Chromobacterium violaceum and then Escherichia coli K-12 followed by Bacillus subtilis, the relative magnitude of the ability was 10 2 , 10, 1, respectively. Chromobacterium violaceum and Escherichia coli K-12 showed high volatility for the first 24 h but Escherichia coli K-12 showed a decrease thereafter. However high volatility was continued on Chromobacterium violaceum during the culture. The low culture temperature suppressed Po volatility, supporting biologically mediated Po emission from the culture.

  15. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    Directory of Open Access Journals (Sweden)

    Sarah I. Bonnet

    2017-06-01

    Full Text Available Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP, with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  16. Biofuel production by recombinant microorganisms

    Science.gov (United States)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  17. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  18. Venturing into new realms? Microorganisms in space.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Cockell, Charles; Rettberg, Petra

    2016-09-01

    One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Sterilization of Microorganisms by Ozone and Ultrasound

    Science.gov (United States)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  20. Microorganisms .

    African Journals Online (AJOL)

    ) and heat/pH-shift treatments. This technique resulted in 47% enzyme yield with a purification fac- tor of 12. Technique II which involved two extraction steps by' aqueous two - phase system. (APS) coupled with UF resulted in 62 % enzyme ...

  1. The useful micro-organism

    International Nuclear Information System (INIS)

    1970-01-01

    Can man survive civilization? Academician Ivan Malek, Director of the Institute of Microbiology in Prague, a member of the Agency's Scientific Advisory Committee and for many years an adviser to the Food and Agriculture Organization, the World Health Organization and UNESCO, believes he can, But he also considers that if man is to survive he must study and use all the resources at his disposal - including the micro-organisms of the planet earth. (author)

  2. Secondary metabolites from marine microorganisms.

    Science.gov (United States)

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  3. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  4. PROBIOTICS BASED ON TRANSGENIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    S. А. Starovoitova

    2012-02-01

    Full Text Available Modern tendencies of recombinant microorganisms creation for obtaining on their basis a new effective biopreparations (probiotics with wider spectrum of biological and therapeutic properties were considered. A lot of attention was focused on the main genera of perspective bacteria for creation of recombinant probiotics particularly: Lactococcus, Bifidobac terium,Bacillus, Escherichia. The main created Ukrainian and foreign gene-modified strains, that are widely used today in creation of effective recombinant biopreparations were characterized. Some fundamental directions and methods of gene-modified strains obtaining, which are used in getting effective biopreparations that used for therapy and prophylactic illness were reported, under which this group of pharmaceutical drugs were not used earlier. The safety matters of probiotics using on basis of genemodified strains were examined. Medical and veterinary biopreparations on basis of recombinant microorganisms could be used directly and effectively for therapy and prophylaxis of different illness, beginning from disbacteriosis up to cardiovascular diseases. It is related with some probiotic microorganisms ability for lowering of serum cholesterol at the host organism.

  5. Microorganisms as sources of oils

    Directory of Open Access Journals (Sweden)

    Thevenieau France

    2013-11-01

    Full Text Available A number of microorganism belonging to the genera of yeast, fungi, bacteria and microalgae have ability to accumulate substantial amounts of oil, sometimes up to an even in excess of 70% of their biomass weight under specific cultivation conditions. For nearly 100 years, the commercial opportunities of using microorganisms as sources of oils have been continuously examined. Although it was evident that microbial oils could never compete commercially with the major commodity plant oils, there were commercially opportunities for the production of some of the higher valued oils. Today, with the great progress of metabolic and genetic engineering, the developments are focus on the high value oils containing important polyunsaturated or specific fatty acids. Such oils have the potential to be used in different applications area as food, feed and oleochemistry. This review is covering the related researches about different oleaginous microorganisms for lipids production and microbial oils biosynthesis process. In add, the lipid metabolism, metabolic engineering strategies to increase lipid production and the economics of microbial oils production are introduced.

  6. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the

  7. Microorganisms as bioindicators of pollutants in soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada

    2010-01-01

    Full Text Available Microorganisms are the predominant portion of the soil's biological phase and they are indicators of soil health and quality. Soil microorganisms a take part in degradation of organic and inorganic compounds, b their activity, number and diversity may serve as bioindicators of toxic effects on soil biological activity, c some microbial species may be used for soil bioremediation and d some sensitive microbes are used in eco-toxicity tests. The primary microbial population starts to decompose herbicides several days after their arrival into the soil. The secondary population produces induced enzymes and decomposes herbicides after a period of adaptation. Certain microbial groups are indifferent to the applied herbicides. Effect of heavy metals on soil microbial activity depends on the element, their concentration, microbial species, as well as physical and chemical soil properties. Toxic level of individual pollutants depends on their origin and composition. However, combined application of chemicals makes room for the occurrence of synergistic toxic effects detrimental for the ecosystem and human health. .

  8. Prevalence of pathogenic microorganisms in the oral cavity and their ...

    African Journals Online (AJOL)

    This study was conducted to determine the incidence of pathogenic microorganisms associated with dental caries and antimicrobial susceptibility test of some common dentifrice sold in Kano metropolis. A total of 50 samples were used in this study. The samples were taken using swab from human oral mucosa. The swabs ...

  9. Plant Growth-Promoting Microorganisms for Environmental Sustainability.

    Science.gov (United States)

    Abhilash, P C; Dubey, Rama Kant; Tripathi, Vishal; Gupta, Vijai K; Singh, Harikesh B

    2016-11-01

    Agrochemicals used to meet the needs of a rapidly growing human population can deteriorate the quality of ecosystems and are not affordable to farmers in low-resource environments. Here, we propose the use of plant growth-promoting microorganisms (PGPMs) as a tool for sustainable food production without compromising ecosystems services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Production of effective microorganism using halal- based sources: A ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Key words: Component, effective microorganisms (EM), agriculture, halal-based source. INTRODUCTION. In recent years, with focus on feeding a rapidly growing human population, Malaysia has jeopardized the environ- ment and its natural resources, which are already under great stress. Consequently ...

  11. 40 CFR 725.85 - Microorganism identity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  12. [Ants as carriers of microorganisms in hospital environments].

    Science.gov (United States)

    Pereira, Rogério Dos Santos; Ueno, Mariko

    2008-01-01

    Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35 degrees C for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci 23.1%, filamentous fungi 6.7% and yeast 0.5%. Thus, it can be inferred that ants may be one of the agents responsible for disseminating microorganisms in hospital environments.

  13. Use of Probiotic Microorganisms for Bio-Protective Aims

    Directory of Open Access Journals (Sweden)

    Filiz YANGILAR

    2015-03-01

    Full Text Available It was known that some diseases can be treated as the result of the use of antibiotics in certain periods and at certain dosages while inactivating and deteriorating normal microorganisms performing useful activities in human metabolism (in especially intestinal flora. It was occured that after the use of antibiotics, some defects can be seen resulting from antibiotics (such as allergy, diarrhea, gas formation etc. With this aim, nutraceutics and functional food have gained importance over the last years and consumers began to be interested in probiotics, natural antioxidants, dietary fibres, products with low calorie and cholesterol contents, especially the products containing probioticbacteria. Bacteriocins produced by probiotic bacteria can play important roles as food protective and safeguarding since they can compete with unwanted or pathogen microorganisms survive in the media and colonize in intestines. In this review, is aimed to emphasis bioprotective compounds, advantages and disadvantages of biopreservation method and the importance of the mechanisms of probiotic microorganisms.

  14. Effects of Atrazine on Soil Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2006-01-01

    Full Text Available Effects of the herbicide atrazine on soil microorganisms was investigated. Trials were set up in laboratory, on a clay loam soil. Atrazine was applied at 8.0, 40.0 and 80.0 mg/kg soil rates. The abundance of total microorganisms, fungi, actinomycetes, cellulolytic microorganisms and amino-heterotrophs was recorded. Soil samples were collected 1, 7, 14, 21, 30 and 60 days after atrazine treatment for microbiological analyses.The results showed that the intensity of atrazine effect on soil microorganisms depended on treatment rate, exposure time and group of microorganisms. Atrazine had an inhibiting effect on cellulolytic microorganisms and amino-heterotrophs. Initially, it inhibited fungiand actinomycetes but its effect turned into a stimulating one once a population recovered. Atrazine had a stimulating effect on total abundance of microorganisms.

  15. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  16. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Eduardo J. Gudiña

    2016-02-01

    Full Text Available Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens, and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  17. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    Science.gov (United States)

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral

  18. Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A) from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene.

    Science.gov (United States)

    Meraviglia, Viviana; Benzoni, Patrizia; Landi, Sara; Murano, Carmen; Langione, Marianna; Motta, Benedetta M; Baratto, Serena; Silipigni, Rosamaria; Di Segni, Marina; Pramstaller, Peter P; DiFrancesco, Dario; Gazzerro, Elisabetta; Barbuti, Andrea; Rossini, Alessandra

    2018-03-01

    Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3), encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs) from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies. Resource table. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Examining the Resilience of Crop Production, Livestock Carrying Capacity, and Woodland Density in a Rural Zimbabwean Socio-Ecological System Using Agent-Based Models Representing Human Management Decisions

    Science.gov (United States)

    Eitzel Solera, M. V.; Neves, K.; Veski, A.; Solera, J.; Omoju, O. E.; Mawere Ndlovu, A.; Wilson, K.

    2016-12-01

    As climate change increases the pressures on arid ecosystems by changing timing and amount of rainfall, understanding the ways in which human management choices affect the resilience of these systems becomes key to their sustainability. On marginal farmland in Mazvihwa, Midlands Province, the historical carrying capacity of livestock has been consistently surprisingly high. We explore this phenomenon by building an agent-based model in NetLogo from a wealth of long-term data generated by the community-based participatory research team of The Muonde Trust, a Zimbabwean non-governmental organization. We combine the accumulated results of 35 years of indigenous and local knowledge with national datasets such as rainfall records. What factors keep the carrying capacity high? What management choices can maintain crops, livestock, and woodland at levels necessary for the community's survival? How do these choices affect long-term sustainability, and does increasing resilience at one scale reduce resilience at another scale? We use our agent-based model to explore the feedbacks between crops, livestock, and woodland and the impacts of various human choices as well as temporal and spatial ecological variation. By testing different scenarios, we disentangle the complex interactions between these components. We find that some factors out of the community's control can strongly affect the sustainability of the system through times of drought, and that supplementary feed may maintain livestock potentially at the expense of other resources. The challenges to resilience encountered by the farmers in Mazvihwa are not unique - many indigenous and rural people face drought and the legacies of colonialism, which contribute to lowered resilience to external challenges such as climate change, epidemics, and political instability. Using the agent-based model as a tool for synthesis and exploration initiates discussion about resilience-enhancing management choices for Mazvihwa's farmer-researchers.

  20. Marine microorganisms. Umi no biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, U. (Hiroshima University, Hiroshima (Japan). Faculty of Applied Biological Science)

    1992-11-10

    This paper explains properties, interactions, and activities of marine microorganisms. Marine bacteria include bacteria of vibrio family of arteromonas genus, luminous bacteria, and aerobic photosynthetic bacteria. Majority of marine bacteria is halophilic, and many proliferate at 5[degree]C or lower. Some of them can proliferate at 20[degree]C to 30[degree]C, or as high temperature as 80[degree]C and higher. Spongiaria and tumicata have many symbiotic microorganisms, and genes equivalent to luminous bacteria genes were discovered in DNA of light emitting organs in luminous fishes. It was verified that animal groups in upwelling zones are supported by bacteria that assimilate inorganics supplied from ocean bottoms. Marine bacteria decompose almost all of organics brought in from land to sea, and those produced in sea. Marine bacteria engage in complex interrelations with other organisms for competition, antagonism, parasitism, and symbiosis. The bacteria make antibacterial substances, anti-algae bacteria, enzyme inhibitors, toxins, pharmacologically active substances, and such physiologically active substances as deposition promoting substances to undersea structures including shells and barnacles, and deposition blocking substances. 53 refs., 3 figs.

  1. Biotransformation of citrus aromatics nootkatone and valencene by microorganisms.

    Science.gov (United States)

    Furusawa, Mai; Hashimoto, Toshihiro; Noma, Yoshiaki; Asakawa, Yoshinori

    2005-11-01

    Biotransformations of the sesquiterpene ketone nootkatone from the crude drug Alpiniae Fructus and grapefruit oil, and the sesquiterpene hydrocarbon valencene from Valencia orange oil were carried out with microorganisms such as Aspergillus niger, Botryosphaeria dothidea, and Fusarium culmorum to afford structurally interesting metabolites. Their stereostructures were established by a combination of high-resolution NMR spectral and X-ray crystallographic analysis and chemical reaction. Metabolic pathways of compounds and by A. niger are proposed.

  2. Study of radioresistance of microorganisms

    International Nuclear Information System (INIS)

    Olbrichova, D.

    1983-01-01

    Strain radiosensitivity was evaluated on the basis of the determination of inactivation curve parameters and the determination of the D 10 value. The course of curves was investigated for two 60 Co sources, RCHM-gamma-20 (USSR) with an activity of 2.54x10 14 Bq and AECL (type J-6000, Canada) with an activity of 4.92x10 16 Bq. The curve parameters were determined for microorganisms in buffer medium and for cultures in dehydrated condition. Coccus germs were irradiated with doses of 1, 2, 3, 4, 5 and 6 kGy and aerobic sporulates with doses of 3, 6, 9, 12 and 15 kGy. For comparing the resistance of isolated strains the t-test was used. The most resistant of the isolated strains were Bacillus cereus, Bacillus subtilis, Bacillus pumilus and Bacillus megatherium. (E.S.)

  3. Some estimates of the continuous cultivation of microorganisms

    Directory of Open Access Journals (Sweden)

    G. V. Alekseev

    2017-01-01

    Full Text Available The proteins, fats and carbohydrates received by the person traditionally from animal and vegetable sources don't cover all increasing needs of mankind any more today. At the same time proteins and fats of microorganisms with success can replace proteins and fats of a traditional origin. As protein producers microorganisms at the high content of protein in biomass and high growth rate of microorganisms have certain advantages. The present article is devoted to questions of numerical modeling of processes of cultivation of microorganisms. On the basis of the known model offered Mono in which saturation of growth rate of culture at increase in initial concentration of a substratum of S0 is considered the system of the differential equations describing the happening processes in that number before achievement of stationarity is written down. At the same time dependence of separate sizes, the systems entering the equations is insufficiently studied at change of parameters of process. The behavior of all system at violation of regulations is of interest or at unauthorized change of one of parameters. For studying of these questions numerical modeling is carried out and the basic picture of change of chemostate curves in these conditions is received

  4. Biodegradation of oil palm empty fruit bunch by composite micro-organisms

    International Nuclear Information System (INIS)

    Yusri Atan; Mat Rasol Awang; Mohammed Omar; Azizah Hashim; Tamikazu Kume; Shoji Hashimoto

    1998-01-01

    A comparison study on the comparative biodegradation ability on EFB by five groups of composite micro-organisms [Organomine, Thomas, Ohres C, Ohres II and micro-organisms from POME (palm oil mill effluent)] has been performed with the aim of producing a compost at a faster rate than that by natural biodegradation. The experiment was carried out by mixing 50 gram EFB (dry weight basis) with 3% ammonium sulphate to which was added 1% composite micro-organisms and water to produce a composting media of moisture content about 60%. Respiration of composite micro-organisms as well as from decomposition of EFB releasing CO sub 2. The choice of useful micro-organisms was based on its ability to degrade EFB as reflected by higher evolution rate of CO sub 2 released and retaining higher percentage of nitrogen in the final product

  5. The functional role of microorganisms in soil biocenoses in Ignalina NPP region

    International Nuclear Information System (INIS)

    Bagdanavichiene, Z.; Budavichiene, I.; Ramanauskiene, Z.

    1995-01-01

    Studies on group structure of soil microorganisms as well as regularities of changes in cellulotic activity in marsh biotopes of pine and birch forests in the littoral district of lake Drukshiai were carried out. The activity and directness of microorganisms, as well as dissociation rate of cellulose in soil depending on the changes of climatic conditions were evaluated. The effect of climate factors and thermal pollution on the activity of microorganisms and rate of cellulose degradation in soil was revealed in the standard area (Shashkai) near the disposal canal of Ignalina NPP. (author). 11 refs., 2 tabs., 3 figs

  6. Effective Microorganisms: Myth or reality?

    Directory of Open Access Journals (Sweden)

    Aníbal F. Cóndor_Golec

    2013-04-01

    Full Text Available Th e increase in population has lead to intensifi cation of agricultural systems. Due to the use of pesticides the productivity of agricultural systems has increased but environmental deterioration and unsustainable systems are the consequences of these ways of management. Th e environmentally friendly Eff ective Microorganisms (EM technology claims an enormous amount of benefi ts (claimed by the companies. Th e use of EM as an addictive to manure or as a spray directly in the fi elds may increase the microfauna diversity of the soil and many benefi ts are derived from that increase. It seems that suffi cient information is available about this new technology. Th e aim of this project is to make an analysis of the literature about EM and answer the following questions: 1 how much is known about EM?, 2 how much research is done on EM?, 3 what are the principals of EM?, what are the socio-economic implications of EM?. We want to answer these questions in order to publish the facts about EM and its socio-economic implications.

  7. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  8. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  9. Production of gaba (γ - aminobutyric acid by microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    2012-12-01

    Full Text Available GABA (γ-aminobutyric acid is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB, which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  10. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  11. Cell surface hydrophobicity of dental plaque microorganisms in situ.

    OpenAIRE

    Rosenberg, M; Judes, H; Weiss, E

    1983-01-01

    The cell surface hydrophobicity of bacteria obtained directly from human tooth surfaces was assayed by measuring their adherence to liquid hydrocarbons. Fresh samples of supragingival dental plaque were washed and dispersed in buffer. Adherence of the plaque microorganisms to hexadecane, octane, and xylene was tested turbidimetrically and by direct microscopic observation. The results clearly show that the vast majority of bacteria comprising dental plaque exhibit pronounced cell surface hydr...

  12. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  13. Biofouling of marbles by oxygenic photosynthetic microorganisms.

    Science.gov (United States)

    Karaca, Zeki; Öztürk, Ayten; Çolak, Emel

    2015-08-01

    Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.

  14. Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene

    Directory of Open Access Journals (Sweden)

    Viviana Meraviglia

    2018-03-01

    Full Text Available Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3, encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies.Resource tableImage 1Unique stem cell lines identifierEURACi001-AEURACi002-AEURACi003-AAlternative names of stem cell linesB2CAV3 (EURACi001-AL1CAV3 (EURACi002-AN1CAV3 (EURACi003-AInstitutionInstitute for Biomedicine, Eurac ResearchContact information of distributorAlessandra Rossini (alessandra.rossini@eurac.eduType of cell linesiPSCsOriginHumanCell sourcePeripheral blood mononuclear cells (PBMCsMethod of reprogrammingElectroporation of episomal vectors (pCXLE hOCT3/4-shp53-F, pCXLE-hSK, and pCXLE-hULMultiline rationaleNon-isogenic cell lines obtained from patients with mutations in the same gene (CAV3Gene modificationNOType of modificationSpontaneous mutationsAssociated diseaseCaveolinopathiesGene/locusHeterozygous CAV3 c.Δ184–192 (EURACi001-AHeterozygous CAV3 c.303 TGG > TGC (EURACi002-AHeterozygous CAV3 c.233 ACG > AAG (EURACi003-AMethod of modificationN/AName of transgene or resistanceN/AInducible/constitutive systemN/ADate archived/stock dateJanuary 2016 (EURACi001-ASeptember 2016 (EURACi002-AMay 2016 (EURACi003-ACell line repository/bankN/AEthical approvalPeripheral blood was collected from patients after signing the informed consent provided by Cell Line and DNA Biobank from Patients Affected by Genetic Diseases, member of the

  15. Potential applications of plant probiotic microorganisms in agriculture and forestry

    Directory of Open Access Journals (Sweden)

    Luciana Porto de Souza Vandenberghe

    2017-07-01

    Full Text Available Agriculture producers, pushed by the need for high productivity, have stimulated the intensive use of pesticides and fertilizers. Unfortunately, negative effects on water, soil, and human and animal health have appeared as a consequence of this indiscriminate practice. Plant probiotic microorganisms (PPM, also known as bioprotectants, biocontrollers, biofertilizers, or biostimulants, are beneficial microorganisms that offer a promising alternative and reduce health and environmental problems. These microorganisms are involved in either a symbiotic or free-living association with plants and act in different ways, sometimes with specific functions, to achieve satisfactory plant development. This review deals with PPM presentation and their description and function in different applications. PPM includes the plant growth promoters (PGP group, which contain bacteria and fungi that stimulate plant growth through different mechanisms. Soil microflora mediate many biogeochemical processes. The use of plant probiotics as an alternative soil fertilization source has been the focus of several studies; their use in agriculture improves nutrient supply and conserves field management and causes no adverse effects. The species related to organic matter and pollutant biodegradation in soil and abiotic stress tolerance are then presented. As an important way to understand not only the ecological role of PPM and their interaction with plants but also the biotechnological application of these cultures to crop management, two main approaches are elucidated: the culture-dependent approach where the microorganisms contained in the plant material are isolated by culturing and are identified by a combination of phenotypic and molecular methods; and the culture-independent approach where microorganisms are detected without cultivating them, based on extraction and analyses of DNA. These methods combine to give a thorough knowledge of the microbiology of the studied

  16. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  17. How honey bees carry pollen

    Science.gov (United States)

    Matherne, Marguerite E.; Anyanwu, Gabriel; Leavey, Jennifer K.; Hu, David L.

    2017-11-01

    Honey bees are the tanker of the skies, carrying thirty percent of their weight in pollen per foraging trip using specialized orifices on their body. How do they manage to hang onto those pesky pollen grains? In this experimental study, we investigate the adhesion force of pollen to the honeybee. To affix pollen to themselves, honey bees form a suspension of pollen in nectar, creating a putty-like pollen basket that is skewered by leg hairs. We use tensile tests to show that the viscous force of the pollen basket is more than ten times the honeybee's flight force. This work may provide inspiration for the design of robotic flying pollinators.

  18. Uric acid in plants and microorganisms: Biological applications and genetics - A review.

    Science.gov (United States)

    Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M

    2017-09-01

    Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  19. Uric acid in plants and microorganisms: Biological applications and genetics - A review

    Directory of Open Access Journals (Sweden)

    Rehab M. Hafez

    2017-09-01

    Full Text Available Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  20. Selection of potential microorganism for sago starch fermentation

    Directory of Open Access Journals (Sweden)

    RUTH MELLIAWATI

    2006-02-01

    Full Text Available Fermentation process of sago starch for the production of bioproduct requires potential microorganism that have ability to hydrolyze sago starch. The purpose of this research was to get the potential of amylolytic microorganisms for their capability of amyloglucosidase activity and to know the sugar strains of the fermentation result. Eleven amylolytic microorganisms (9 strains of mold and 2 strains of yeast were obtained from the collection Research Centre for Biotechnology – Indonesian Institute of Sciences (LIPI, Cibinong-Bogor were used. The selection step was carried out based on their capability of starch hydrolysis to reducing sugar. The best result indicates that the production of reducing sugar reached the highest 18.485 ppm and amyloglucosidase activities was 3.583 units by KTU-1 strain. The highest total acid obtained was 5.85 mg/mL by Rhizopus IFO.R5442. The cell biomass was obtained between 0.5 to 1.74 g dry weight/100 mL and pH of the final fermentation (72 h were 3.57 to 8.38.

  1. Tapping uncultured microorganisms through metagenomics for drug ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Microorganisms are major source of bioactive natural products, and several ... This review highlights the recent methodologies, limitations, and applications of metagenomics for the discovery of new drugs.

  2. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    sunny t

    2015-09-18

    Sep 18, 2015 ... microorganisms with all three enzymatic activities, thereby establishing these techniques as ... supplemented at 1% with vegetable oils, including olive (OLI) ..... cepacia lipase for biodiesel fuel production from soybean oil.

  3. Microorganisms' mediated reduction of β-ketoesters

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Whole cells usually express a multitude of enzymatic activities; therefore an ... Each microorganism was cultivated for the biomass development on specific medium ..... Ketoester reductase for conversion of keto acid esters to ...

  4. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  5. Defensive properties of pyrrolizidine alkaloids against microorganisms

    NARCIS (Netherlands)

    Joosten, L.; Van Veen, J.A.

    2011-01-01

    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores

  6. Genetic fingerprint of microorganisms associated with the ...

    Indian Academy of Sciences (India)

    inviting range of elements which microorganisms use in their ... ization and degradation of organic binders leading to struc- tural damage (Herrera et al. 2004). Microbial solubilization of materials involves the produc- ... architectural cement.

  7. No evidential correlation between veterinary antibiotic degradation ability and resistance genes in microorganisms during the biodegradation of doxycycline.

    Science.gov (United States)

    Wen, Xin; Wang, Yan; Zou, Yongde; Ma, Baohua; Wu, Yinbao

    2018-01-01

    Biodegradation of antibiotic residues in the environment by microorganisms may lead to the generation of antibiotic resistance genes (ARGs), which are of great concern to human health. The aim of this study was to determine whether there is a relationship between the ability to degrade antibiotic doxycycline (DOX) and the development of resistance genes in microorganisms. We isolated and identified ten bacterial strains from a vegetable field that had received long-term manure application as fertilizer and were capable of surviving in a series of DOX concentrations (25, 50, 80, and 100mg/L). Our results showed no evidential correlation between DOX degradation ability and the development of resistance genes among the isolated microorganisms that had high DOX degradation capability (P > 0.05). This was based on the fact that Escherichia sp. and Candida sp. were the most efficient bacterial strains to degrade DOX (92.52% and 91.63%, respectively), but their tetracycline resistance genes showed a relatively low risk of antibiotic resistance in a 7-day experiment. Moreover, the tetM of the ribosomal protection protein genes carried by these two preponderant bacteria was five-fold higher than that carried by other isolates (P genes of three isolates, except for Escherichia sp. and Candida sp., showed remarkable negative correlations (P < 0.05), mainly because tetG markedly increased during the DOX degradation process. Our results concluded that the biodegradation of antibiotic residues may not necessarily lead to the development of ARGs in the environment. In addition, the two bacteria that we isolated, namely, Escherichia sp. and Candida sp., are potential candidates for the engineering of environmentally friendly bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Using natural biomass microorganisms for drinking water denitrification.

    Science.gov (United States)

    Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton

    2018-07-01

    Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    OpenAIRE

    Ima Yudha Perwira; Kiwako S. Araki; Motoki Kubo; Dinesh Adhikari

    2016-01-01

    Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC) and total nitrogen (TN) in 427 agricultural soils. The soil bacterial biomass was generally p...

  10. Application of thermotolerant microorganisms for biofertilizer preparation.

    Science.gov (United States)

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  11. Microorganism identification technique using radioactive and fluorescent agent

    International Nuclear Information System (INIS)

    Silman, R.E.

    1983-01-01

    A method for identifying microorganisms is claimed. An emissive agent is added to a specimen of microorganisms to produce a mix of emissive products. These products are detected and characteristic pattern functioning as an identifier for the microorganisms is derived. The identifier is then compared with identifiers representing known microorganisms

  12. Food fermentations: Microorganisms with technological beneficial use

    DEFF Research Database (Denmark)

    Bourdichon, François; Casaregola, Serge; Farrokh, Choreh

    2012-01-01

    Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on “the history of use”, “traditional food”, or “general recognition of safety”. Authoritative lists of microorganism......, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature....... cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables...

  13. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    Science.gov (United States)

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  14. Complete Genome Sequence of a Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Harboring a Multidrug Resistance IncA/C Plasmid and a blaCMY-2-Carrying IncF Plasmid.

    Science.gov (United States)

    Silva, Claudia; Calva, Edmundo; Calva, Juan J; Wiesner, Magdalena; Fernández-Mora, Marcos; Puente, José L; Vinuesa, Pablo

    2015-11-12

    Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.

  15. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  16. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the experiences......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...... with risk assessment of these organisms in each Nordic country....

  17. Functional Properties of Microorganisms in Fermented Foods

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Tamang

    2016-04-01

    Full Text Available Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.

  18. Adaptation and monitoring of microorganisms in petroleum industry wastewater nitrification processes

    Directory of Open Access Journals (Sweden)

    A. Madero

    1998-07-01

    Full Text Available Biological removal of ammonia nitrogen is carried out in two successive stages, nitrification and denitrification. This work studied the nitrification process on microorganisms isolated from different aquifer sources: a eutrophicate pond and residual waters from two treatment plants (petrochemical and domestic

  19. Isolation and characterization of microorganisms and volatiles associated with Moroccan saffron during different processing treatments.

    Science.gov (United States)

    Fancello, Francesco; Petretto, Giacomo; Sanna, Maria Lina; Pintore, Giorgio; Lage, Mounira; Zara, Severino

    2018-05-20

    Saffron may be spoiled by a variety of microorganisms during cultivation, harvesting, and post harvesting. As saffron can be dried and stored in different ways, this preliminary study explored the natural microbiota present in Moroccan saffron when subjected to different drying techniques. An analysis of the carotenoid-derived volatiles present in the saffron was also carried out. The culturable microbiota of the saffron samples dried using different methods, namely in the shade (also called natural), in the sun, or in the oven, were studied using classical and molecular approaches. The effect of the drying methods on head-space chemical volatiles was also determined. Eighty-two isolates grown in the different culture media were chosen from the colonies, and genotype analysis grouped the microorganisms into 58 clusters, revealing a wide diversity. Out of the 82 isolates, 75 belonged to the Bacillaceae family. The other isolates were distributed within the Dietziaceae, Paenibacillaceae and Carnobacteriaceae families. The dominant species was Bacillus simplex, which was detected in all samples, regardless of the drying method used. Lysinibacillus macroides was dominant in the sun-dried saffron. No pathogens were isolated, but an isolate belonging to Dietzia maris, a potential human pathogenic species, was detected. The biodiversity indexes were linked to the drying method and generally decreased as the intensity of the treatment increased. The results of this preliminary work show that the different drying methods strongly influenced the microbiota and affect the saffron volatile profile. Further analysis will be needed to determine possible effects of selected microbiota on saffron volatiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Translational metagenomics and the human resistome: confronting the menace of the new millennium

    OpenAIRE

    Willmann, Matthias; Peter, Silke

    2016-01-01

    The increasing threat of antimicrobial resistance poses one of the greatest challenges to modern medicine. The collection of all antimicrobial resistance genes carried by various microorganisms in the human body is called the human resistome and represents the source of resistance in pathogens that can eventually cause life-threatening and untreatable infections. A deep understanding of the human resistome and its multilateral interaction with various environments is necessary for developing ...

  1. Pesticides in Soil: Effects on Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2007-01-01

    Full Text Available Since their discovery to the present day, pesticides have been an inevitable segment of agricultural production and efforts have been made to synthesize compounds that would share a required efficacy along with selectivity, sufficient persistence on the object of protection and favourable toxicological and ecotoxicological characteristics so as to minimize their effect on the environment.When a pesticide gets into soil after application, it takes part in a number of physical, chemical and biological processes that depend not only on the compound itself, but a number of other factors as well, such as: physical, chemical and biological characteristics of soil; climatic factors, equipment used, method of application, method of storage, handling and disposal of waste, site characteristics (proximity of ground and underground waters, biodiversity and sensitivity of the environment. Microorganisms play an important role in pesticide degradation as they are able to utilize the biogenic elements from those compounds, as well as energy for their physiological processes. On the other hand, pesticides are more or less toxic substances that can have adverse effect on populations of microorganisms and prevent their development, reduce their abundance, deplete their taxonomic complexity and create communities with a lower level of diversity and reduced physiological activity.The article discusses complex interactions between pesticides and microorganisms in soil immediately after application and over the ensuing period. Data on changes in the abundance of some systematic and physiological groups of microorganisms, their microbial biomass and enzymatic activity caused under pesticide activity are discussed as indicators of these processes.

  2. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    Science.gov (United States)

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  3. Antibiotic Sensitivity Pattern of Microorganisms Isolated from ...

    African Journals Online (AJOL)

    Antibiotic sensitivity pattern of microorganisms isolated from smoked and frozen fishes sold in Benin and Warri metropolis were investigated. Adopting microbiological standard techniques, the results of the bacterial counts and fungal counts ranged from 5.4 x 106 (Ekpan market) to 25.1 x 106 (Ekpan market) and 1.1 x 105 ...

  4. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  5. False identification of other microorganisms as Staphylococcus ...

    African Journals Online (AJOL)

    Methods: 507 microorganisms which have been previously identified as S. aureus in 8 States in Southern Nigeria through characteristic morphology on blood agar, Gram staining, growth and fermentation on Mannitol Salt Agar and coagulase formation were collected. All the isolates were identified in this study through ...

  6. Host Defense against Opportunist Microorganisms Following Trauma.

    Science.gov (United States)

    1979-06-01

    Guide for Laboratory Animal, Resources, National Academy of Sciences - National Research Council. I ii t ___ ii A- KNOWLEDMENT The investigators express...and Candida albicans are the microorganisms which are most frequently associated with septic complica- tions in thermally injured patients. Management

  7. Ecophysiology of microorganisms in microbial elctrolysis cells

    NARCIS (Netherlands)

    Croese, E.

    2012-01-01

    One of the main challenges for improvement of the microbial electrolysis cell (MEC) has been the reduction of the cost of the cathode catalyst. As catalyst at the cathode, microorganisms offer great possibilities. Previous research has shown the principle possibilities for the biocathode for H2

  8. Ecology and metagenomics of soil microorganisms

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Head, I. M.; Prosser, J. I.; Schloter, M.; Smalla, K.; Tebbe, C. C.

    2011-01-01

    Roč. 78, č. 1 (2011), s. 1-2 ISSN 0168-6496 R&D Projects: GA MŠk LC06066; GA MŠk(CZ) LA10001 Institutional research plan: CEZ:AV0Z50200510 Keywords : microorganism * bioremediation * biogenesis of soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.408, year: 2011

  9. Novel genome alteration system for microorganisms

    NARCIS (Netherlands)

    Daran, J.G.; Geertman, J.M.; Bolat, I.

    2015-01-01

    The invention relates to a set of targeting constructs, comprising a first construct comprising a recognition site for an endonuclease, a first region of homology with a target gene of a microorganism, and a first part of a selection marker, and a second construct comprising a second part of the

  10. The influence of selected nanomaterials on microorganisms

    Czech Academy of Sciences Publication Activity Database

    Brandeburová, P.; Birošová, L.; Vojs, M.; Kromka, Alexander; Gál, M.; Tichý, J.; Híveš, J.; Mackul´ak, T.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 525-530 ISSN 0026-9247 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : nanomaterials * nanotechnologies * microorganisms * toxicity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.282, year: 2016

  11. Artifical Microorganism Infection in Aviation Kerosene

    Directory of Open Access Journals (Sweden)

    Dušan Vallo

    2004-12-01

    Full Text Available The fuel used in the aviation engineering has to be clean and dry, it may not contain mechanical impurities and water. Water inaviation kerosene may occur in soluble and insoluble form. The danger inheres in the insoluble form, which may drop out in the crystallineform and cause various failures, such as those caused by mechanical impurities. The water assists in the biological matter formation createdby various species of microorganisms (bacteria, mould fungi and yeast. The microorganisms, present in water phase occurring on thebottom of tanks or on the interface water phase – kerosene, grow and reproduce and subsequently may pollute (impair the fuel by thebiomass or by the products of their metabolism. There is a possibility to infect the fuel artificially by a selected reference microorganismstrain, which usually occur in contaminated fuel, or by microorganisms which cause a biological contamination of aviation kerosene.Out of the selected reference strains used in the experiments, the reference strains of Proteus vulgaris, Sacharamyces cerevisiae andClostridium perfringens were not cultivated in the sterile aviation kerosene and the propagating nutrient medium. The aviation kerosene actsas a biocide medium for the presented reference microorganism strains.

  12. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    , and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1...

  13. [Sorption of microorganisms by fiber materials].

    Science.gov (United States)

    Nikovskaia, G N; Gordienko, A S; Globa, L I

    1986-01-01

    Candida guilliermondii and Escherichia coli cells were adsorbed on glass and basalt fibres with a similar specific surface, but with a different charge. The quantity of adsorbed microorganisms did not depend on the type and charge of a fibre surface. However, cells were adsorbed faster and more firmly on positively charged and uncharged fibres than on negatively charged fibres.

  14. Doppler speedometer for micro-organisms

    International Nuclear Information System (INIS)

    Penkov, F.; Tuleushev, A.; Lisitsyn, V.; Kim, S.; Tuleushev, Yu.

    1996-01-01

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the P entium . Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  15. Targeting of detoxification potential of microorganisms and plants for cleaning environment polluted by organochlorine pesticides

    Directory of Open Access Journals (Sweden)

    M.V. Kurashvili

    2016-09-01

    Full Text Available The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of specially selected plants and microorganisms. Initial degradation of pesticides carry out by microorganisms; the forming dehalogenated products easily uptake by the plants and undergo oxidative degradation via plant detoxification enzymes. This approach can complete degradation of toxicants and their mineralization into nontoxic compounds. In the presented work the results of using selected strains from genera Pseudomonas and plants phytoremediators in the model experiments are given. It has been shown that the using developed technological approach effectively decreased degree of pollution in artificially polluted soil samples.

  16. Recombinant Saccharomyces cerevisiae expressing P450 in artificial digestive systems : A model for biodetoxication in the human digestive environment

    NARCIS (Netherlands)

    Blanquet, S.; Meunier, J.P.; Minekus, M.; Marol-Bonnin, S.; Alric, M.

    2003-01-01

    The use of genetically engineered microorganisms such as bacteria or yeasts as live vehicles to carry out bioconversion directly in the digestive environment is an important challenge for the development of innovative biodrugs. A system that mimics the human gastrointestinal tract was combined with

  17. Granulocyte-Macrophage Colony-Stimulating Factor Amplification of Interleukin-1β and Tumor Necrosis Factor Alpha Production in THP-1 Human Monocytic Cells Stimulated with Lipopolysaccharide of Oral Microorganisms

    OpenAIRE

    Baqui, A. A. M. A.; Meiller, Timothy F.; Chon, Jennifer J.; Turng, Been-Foo; Falkler, William A.

    1998-01-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1β and TNF-α production following GM-CSF suppl...

  18. A combination of exosomes carrying TSA derived from HLA-A2-positive human white buffy coat and polyI:C for use as a subcellular antitumor vaccination.

    Science.gov (United States)

    Ren, Wei-na; Chang, Chun-kang; Fan, Hua-hua; Guo, Fang; Ren, Ya-na; Yang, Jie; Guo, Juan; Li, Xiao

    2011-01-01

    To improve its antitumor effect, we used human leukocyte antigen -A2 (HLA-A2)-positive human dendritic cell (DC)-derived DEXs (DC-derived exosomes) to support NY-ESO-1 antigen and polyI:C, with the aim of increasing the proliferation of specific cytotoxic T lymphocytes (CTL) in transgenic mice. Mature dendritic cells derived from peripheral blood mononuclear cells (PBMC) were isolated from the blood of healthy adults with positive HLA-2A. Using centrifuge and membrane ultrafiltration, EXO (exosomes) were extracted from the supernatant of DCs secretions. Transgenic C57 mice were immunized with human-derived tumor testis antigen NY-ESO-1/EXO, with or without polyI:C. Mice were sacrificed four weeks after immunization, and spleen cells were isolated and tested for function. The experiments included antigen-specific CTL proliferation, as tested by dimerization and antitumor effects for K562 cells as well as melanoma, tested at different ratios of effected cells:target cells (0:1, 10:1, 50:1, and 100:1). Dimerization experiments indicated that the effect of DEX/TSA (tumor specific antigens) + PolyI:C was 2.36 ± 1.10% and the control was 0.38 ± 0.31%, while the effect of DEX/TSA was 1.97 ± 0.63% and the control was 0.36 ± 0.07%. Antitumor effects by DEX/TSA: PolyI:C for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 11.14 ± 1.36%, 14.17 ± 0.62%, 15.71 ± 2.48%, and 24.31 ± 2.91%, respectively, for K562 cells. The antitumor effects for DEX/TSA for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 12.23 ± 2.25%, 13.10 ± 1.57%, 15.27 ± 2.93%, and 19.87 ± 2.72%, respectively, for K562 cells. With ratios of 10:1 and 100:1, the antitumor effects of DEX/TSA + PolyI:C were better than for the DEX/TSA group (P TSA derived from healthy human blood positive for HLA-A2 is a promising strategy for developing new subcellular antitumor vaccination.

  19. UV inactivation of pathogenic and indicator microorganisms

    International Nuclear Information System (INIS)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-01-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts

  20. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  1. Rheological behavior of raw natural rubber coagulated by microorganisms

    Directory of Open Access Journals (Sweden)

    Zhifen Wang

    2014-01-01

    Full Text Available Tests of the strain sweep, frequency sweep and stress relaxation for raw natural rubber coagulated by microorganisms (NR-m and raw natural rubber coagulated by acid (NR-a were carried out with the use of a rubber process analyzer (RPA. The results showed that the storage torque, complex viscosity of NR-m were higher than those of NR-a while the loss factor was lower. The effect of temperature on viscosity of raw NR was studied following the Arrhenious-Frenkel-Eyring model. The viscous flow behavior of NR-m was poorer than those of NR-a. Furthermore, stress relaxation measurements of raw NR showed a longer period of relaxation for NR-m.

  2. Coronary Artery-Bypass-Graft Surgery Increases the Plasma Concentration of Exosomes Carrying a Cargo of Cardiac MicroRNAs: An Example of Exosome Trafficking Out of the Human Heart with Potential for Cardiac Biomarker Discovery.

    Directory of Open Access Journals (Sweden)

    Costanza Emanueli

    Full Text Available Exosome nanoparticles carry a composite cargo, including microRNAs (miRs. Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG surgery, we investigated if: 1 exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2 circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn, the current "gold standard" surrogate biomarker of myocardial damage.The concentration of exosome-sized nanoparticles was determined in serial plasma samples. Cardiac-expressed (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-210, non-cardiovascular (miR-122 and quality control miRs were measured in whole plasma and in plasma exosomes. Linear regression analyses were employed to establish the extent to which the circulating individual miRs, exosomes and exosomal cardiac miR correlated with cTn-I. Cardiac-expressed miRs and the nanoparticle number increased in the plasma on completion of surgery for up to 48 hours. The exosomal concentration of cardiac miRs also increased after CABG. Cardiac miRs in the whole plasma did not correlate significantly with cTn-I. By contrast cTn-I was positively correlated with the plasma exosome level and the exosomal cardiac miRs.The plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients.

  3. Influence of near ultraviolet light on microorganisms

    International Nuclear Information System (INIS)

    Fraikin, G.Y.A.; Rubin, L.B.

    1980-01-01

    Our results and the recent literature data on the biological action of near ultraviolet light (300-380 nm) are examined in the review. Factual material is presented on the principles governing the manifestation of the following effects of near ultraviolet light in microorganisms: inactivation, delayed growth, photoreactivation, photoprotection, photoinduced sporulation (in fungi), and carotene synthesis. The mature and possible mechanisms of the effects examined are discussed

  4. Chemosensing in microorganisms to practical biosensors

    OpenAIRE

    Ghosh, Surya K.; Kundu, Tapanendu; Sain, Anirban

    2012-01-01

    Microorganisms like bacteria can sense concentration of chemo-attractants in its medium very accurately. They achieve this through interaction between the receptors on their cell surface and the chemo-attractant molecules (like sugar). But the physical processes like diffusion set some limits on the accuracy of detection which was discussed by Berg and Purcell in the late seventies. We have a re-look at their work in order to assess what insight it may offer towards making efficient, practica...

  5. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    Directory of Open Access Journals (Sweden)

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  6. [Succession of chitinolytic microorganisms in chernozem soil].

    Science.gov (United States)

    Manucharova, N A; Belova, E V; Vorob'ev, A V; Polianskaia, L M; Stepanov, A L

    2005-01-01

    The chitinolytic prokaryotic and eukaryotic microbial complex of chernozem soil has been investigated in the course of a succession initiated by the introduction of chitin and humidification. The dynamics of the cell numbers of chitinolytic microorganisms and of their biomass was assessed by fluorescent microscopy and by inoculation of selective media. Emission of carbon dioxide and nitrous oxide, as well as dinitrogen fixation, was assessed by gas chromatography. It was found that, when the succession was initiated by the introduction of both chitin and humidification, it resulted in greater cell numbers and biomass of chitinolytic microorganisms and higher levels of CO2 and N2O emission and of nitrogen fixation than when the succession was initiated by humidification alone. As compared to the control samples, a significant (twofold) increase in the prokaryote cell number and biomass was found on the fourth day of the succession initiated by humidification and introduction of chitin. One week after the initiation of succession, the fungal biomass and length of mycelium were twice as high as those in the control samples. These results led to the conclusion that chitin utilization in chernozem soil starts during the initial stages of succession and is performed by both prokaryotic and eukaryotic microorganisms.

  7. Selection of mesophilic microorganisms with biodesulfuration capacity

    International Nuclear Information System (INIS)

    Madero, A; Mogollon, L. I; Mora, A.L; Osorio, L.F

    1998-01-01

    The development of bio desulfurization (BDS) processes for hydrocarbons requires fast and reliable methods for the screening of microorganisms. This work shows the results of the screening process for indigenous Colombian strains with a BDS potential capacity. The main criteria for the screening were the qualitative and quantitative determination of 2-hydroxybiphenyl (2-HBP) as the typical metabolite of the 4S specific pathway. Microorganisms were cultured by two methodologies, A and B, using DBT as the model compound. The quantitative determination of metabolites was made by HPLC. Thirteen strains were evaluated, including the strain Rhodococcus rhodocrous IGTS8, by methods A and B. In method A, the inoculum was exposed to DBT since the beginning of the culture. Method B, employed two stages: (i) Growth period under limiting sulfur conditions, (ii) Transforming period, in which the pre-grown inoculum was exposed to the organic sulfur substrate. The culture of mesophilic microorganisms isolated by method B, served to find a mechanism for the organic sulfur metabolism, and the evaluation of the sulfur removal capability of five indigenous strains. In the cultures of these strains, 2- hydroxybiphenyl (2-HBP) was detected as a byproduct of DBT metabolism, both qualitatively and quantitatively

  8. Consumerism and the Sister Carrie's American Dream%Consumerism and the Sister Carrie''s American Dream

    Institute of Scientific and Technical Information of China (English)

    卢亚丽

    2017-01-01

    From the aspect of consumerism to this text analyze Sister Carrie's"American dream"destruction. The author wholly and deeply analyzes the embodiment of consumerism in Dreiser's Sister Carrie and Dreiser's outlook and values under the effect of consumerism. To prove that the reason for destruction of Carrie's American dream is consumerism.

  9. Magnetotaxy in microorganisms of Rio de Janeiro region: an overview

    International Nuclear Information System (INIS)

    Barros, H.G. de P.L. de; Esquivel, D.M.S.

    1983-01-01

    Some characteristics of several magnetotactic microorganisms found in sediments collected in Rio de Janeiro region are presented. The study of magnetic characteristics of these microorganisms indicate some general properties of the magnetotaxy phenomenons. (L.C.) [pt

  10. Energetics of load carrying in Nepalese porters.

    Science.gov (United States)

    Bastien, Guillaume J; Schepens, Bénédicte; Willems, Patrick A; Heglund, Norman C

    2005-06-17

    Nepalese porters routinely carry head-supported loads equal to 100 to 200% of their body weight (Mb) for many days up and down steep mountain footpaths at high altitudes. Previous studies have shown that African women carry head-supported loads of up to 60% of their Mb far more economically than army recruits carrying equivalent loads in backpacks. Here we show that Nepalese porters carry heavier loads even more economically than African women. Female Nepalese porters, for example, carry on average loads that are 10% of their Mb heavier than the maximum loads carried by the African women, yet do so at a 25% smaller metabolic cost.

  11. Role of soil micro-organisms in the sorption of radionuclides in organic systems

    International Nuclear Information System (INIS)

    Parekh, N.R.; Potter, E.D.; Poskitt, J.M.; Dodd, B.A.; Sanchez, A.

    2004-01-01

    Although the fraction of radionuclides linked to soil organic matter and soil microorganisms may be relatively small when compared to the amount bound to the mineral constituents, (mostly irreversibly bound), this fraction is of great importance as it remains readily exchangeable and is thus available for plant uptake. Many studies have measured the uptake of radionuclides by organic soils but the role of soil micro-organisms may have been masked by the presence of even small amounts of clay minerals occurring in these soils. We have carried out a series of experiments using a biologically active, 'mineral-free' organic soil produced under laboratory conditions, to determine the potential of soil micro-organisms to accumulate radionuclides Cs-134 and Sr-85. Biological uptake and release was differentiated from abiotic processes by comparing experimental results with inoculated and non-inoculated sterile organic material. We have investigated the role of different clay minerals, competing potassium and calcium ions, and changes in temperature on the sorption of Cs and Sr isotopes. The results from studies so far show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material, microorganisms also influence the importance of chemical factors (e.g. adsorption to clay minerals) which may play a secondary role in these highly organic systems. In further experiments we hope to define the precise role of specific soil micro-organisms in these organic systems. (author)

  12. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium. Final report

    International Nuclear Information System (INIS)

    Maue, G.; Stroetmann, I.; Dott, W.; Taute, T.; Winkler, A.; Pekdeger, A.

    1996-01-01

    Within this research project the influence of autochthonous mirco-organisms on immobilization and remobilization of Technetium and Selenium was investigated. Both redoxsensitive radionuclides are part of the waste of nuclear fuel (Tc app. 6%). Former investigations have shown, that immobilization behaviour of both elements could be influenced by micro-organisms. It has not been known, if the autochthonous (or in situ) organisms from greater depth do also have an influence on radionuclide mobility. The autochthonous populations of micro-organisms in deep sediments and their influence on the migration of Tc and Se were investigated in this study. For this reason recirculation column experiments were carried out. Absolutely sterile and anaerobic handling was necessary for the sampling and the further treatment of the sediments and waters used in the experiments. Therefore special methods for sampling, storage and handling had been developed. The results of recirculation column test with autochthonous micro-organisms were compared with sterile parallel tests and were verified with the results of an elaborated version of the hydrogeochemical equilibration code PHREEQE. It was shown that the autochthonous micro-organisms had only very little influence on the migration behaviour. The reason is the very low population (less than 10 E+6 CFU). Nevertheless it has to be taken into consideration, that conventional laboratory experiments for the estimation of the retention capacities of sediments for hazardous waste lead to an overestimation, if the sediments are contaminated with allochthonous micro-organisms (CFU=colony forming units). (orig.) [de

  13. Carrying capacity: the tradition and policy implications of limits

    Directory of Open Access Journals (Sweden)

    Virginia Deane Abernethy

    2001-01-01

    Full Text Available ABSTRACT: Within just the last few centuries, science and technology have enlarged human capabilities and population size until humans now take, for their own use, nearly half of the Earth's net terrestrial primary production. An ethical perspective suggests that potentials to alter, or further increase, humanity's use of global resources should be scrutinized through the lenses of self-interested foresightedness and respect for non-human life. Without overtly invoking ethics, studies of the carrying capacity achieve just this objective. Carrying capacity is an ecological concept that expresses the relationship between a population and the natural environment on which it depends for ongoing sustenance. Carrying capacity assumes limits on the number of individuals that can be supported at a given level of consumption without degrading the environment and, therefore, reducing future carrying capacity. That is, carrying capacity addresses long-term sustainability. Worldviews differ in the importance accorded to the carrying capacity concept. This paper addresses three worldviews - ecological, romantic, and entrepreneurial - and explores the ethics and the policy implications of their contrasting perspectives.

  14. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature

    Science.gov (United States)

    Fijan, Sabina

    2014-01-01

    Probiotics are defined as live microorganisms, which when administered in adequate amounts, confer a health benefit on the host. Health benefits have mainly been demonstrated for specific probiotic strains of the following genera: Lactobacillus, Bifidobacterium, Saccharomyces, Enterococcus, Streptococcus, Pediococcus, Leuconostoc, Bacillus, Escherichia coli. The human microbiota is getting a lot of attention today and research has already demonstrated that alteration of this microbiota may have far-reaching consequences. One of the possible routes for correcting dysbiosis is by consuming probiotics. The credibility of specific health claims of probiotics and their safety must be established through science-based clinical studies. This overview summarizes the most commonly used probiotic microorganisms and their demonstrated health claims. As probiotic properties have been shown to be strain specific, accurate identification of particular strains is also very important. On the other hand, it is also demonstrated that the use of various probiotics for immunocompromised patients or patients with a leaky gut has also yielded infections, sepsis, fungemia, bacteraemia. Although the vast majority of probiotics that are used today are generally regarded as safe and beneficial for healthy individuals, caution in selecting and monitoring of probiotics for patients is needed and complete consideration of risk-benefit ratio before prescribing is recommended. PMID:24859749

  15. The interaction pattern of murine serum ficolin-A with microorganisms

    DEFF Research Database (Denmark)

    Hummelshøj, Tina; Ma, Ying Jie; Munthe-Fog, Lea

    2012-01-01

    microorganisms (N = 45) and compared the binding profile with human serum ficolin-2 and ficolin-3. Ficolin-A was able to bind Gram-positive bacteria strains including E. faecalis, L. monocytogenes and some S. aureus strains, but not to the investigated S. agalactiae (Group B streptococcus) strains. Regarding...

  16. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Science.gov (United States)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including the concentration and the characteristics of the infectious agent. Thus, a thorough knowledge of the microorganisms aboard spacecraft is essential in mitigating infectious disease risk to the crew. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The translation of 16S ribosomal DNA sequencing for the identification of bacteria from the SWAB experiment to nominal operations has increased bacterial speciation of environmental isolates from previous flights three fold compared to previous conventional methodology. The incorporation of molecular-based DNA fingerprinting using repetitive sequence-based polymerase chain reaction (rep-PCR) into the capabilities of the laboratory has provided a methodology to track microorganisms between crewmembers and their environment. Both 16S ribosomal DNA

  17. Contamination of cell phones by pathogenic microorganisms: Comparison between hospital staff and college students

    Directory of Open Access Journals (Sweden)

    PURNIMA R. CHITLANGE

    2014-11-01

    Full Text Available Chitlange PR. 2014. Contamination of cell phones by pathogenic microorganisms: Comparison between hospital staff and college students. Nusantara Bioscience 6: 203-206. Cell phone (CP is a long range portable electronic device. The cell phone is constantly exposed to arrays of micro organisms, making it a harbour and breeding ground for microbes especially those associated with skin. The adult human is covered with approximately 2m2 of skin with area supporting about 106 bacteria. To check whether the cell phone act as a vector for transmission of various pathogens, a potential study was carried out in microbiology department of Shri Radhakisan Laxminarayan Toshniwal College of Science, Akola. Total 20 cell samples were screened. Two parameters were considered: College students and hospital staff. The isolated bacteria Staphylococcus aureus, E. coli, Pseudomonas sp., Bacillus subtilis, Aerobacter aerogenes, Salmonella, Shigella, Streptococci, P. vulgaris were identified on the basis of morphological and cultural characteristics. The main aim of present study was to check the contamination by bacterial pathogens on cell phones and also to check role of cell phone for transmission of pathogens from person to person or not.

  18. MICROORGANISMS ANTIBIOTIC SENSITIVITY DETERMINATION IN URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    Shapovalova O.V.

    2016-06-01

    Full Text Available Introduction. Nowadays Urinary tract infections (UTI are considered to be the most common bacterial infections. Escherichia coli is the most frequently uropathogen. Other microorganisms of the genera Enterococcus, Klebsiella, Enterobacter, Proteus, Morganella, Citrobacter, Serratia, Pseudomonas, Streptococcus, Staphylococcus, Candida are also isolated with variable frequency. In recent years there has been a decreasing tendency of the causative agents of UTI sensitivity to various antibiotics, which causes growth of an inefficiency treatment risk. In connection with the above the investigations were carried out with the purpose to identify the actual causative agents of bacteriuria and their sensitivity to antibiotics and antifungal drugs. Materials and methods. Bacteriological examination of urine was performed at 42 patients of SI "Sytenko Institute of Spine and Joint Pathology, AMS of Ukraine" clinic. The bacteriological method for determining the number of bacteria in the test material, cultural and bacterioscopic methods for identifying microorganisms and disk-diffusion method for sensitivity of microorganisms to antibiotics determining were used. The clinical material for the study was an average portion of the morning urine or urine collected by catheter. The biological material collection and bacteriological examination was carried by quantitative method, the isolated microorganisms identification and their sensitivity to antibiotics determining was performed by standard methods in accordance with current guidelines. We used the following antibiotics group to determine the microorganisms sensitivity: penicillin, cephalosporin, karbapenems, tetracyclines, aminoglycoside, fluoroquinolones, oxazolidinones, macrolides, lincosamides, glycopeptides, antifungal antibiotics. Results and discussion. During the biological material study 55 isolates of bacterial and fungal pathogens were obtained. The microorganisms’ concentration in urine was in

  19. Consumerism and the Sister Carrie's American Dream

    Institute of Scientific and Technical Information of China (English)

    卢亚丽

    2017-01-01

    From the aspect of consumerism to this text analyze Sister Carrie's"American dream"destruction. The author wholly and deeply analyzes the embodiment of consumerism in Dreiser's Sister Carrie and Dreiser's outlook and values under the effect of consumerism. To prove that the reason for destruction of Carrie's American dream is consumerism.

  20. Local Dynamic Stability Associated with Load Carrying

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-03-01

    Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

  1. EFFECT OF FOOD-MICROORGANISMS ON GAMMA-AMINOBUTYRIC ACID PRODUCTION BY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Jozef Hudec

    2012-02-01

    Full Text Available Lactic acid bacteria (LAB are nice targets in order to study γ-aminobutyric acid (GABA production that has been reported to be effective in order to reduce blood pressure in experimental animals and human beings. In this study, we aimed to γ-aminobutyric acid (GABA production in aerobical and anaerobical conditions, using different sources of microorganisms. The highest selectivity of GABA from precursor L-monosodium glutamate (82.22% has been reported using of microorganisms from banana, and with addition of pyridoxal-5-phosphate (P-5-P. For augmentation of selectivity the application of the further stimulating factors of GABA biosynthesis is needed.

  2. [Evolution of pathogenic micro-organisms as a challenge for medicine].

    Science.gov (United States)

    Vaara, Martti

    2009-01-01

    Successful parasitic micro-organisms are able to adapt to the circumstances of the host's organ system, and it is usually not expedient for them to kill their host. Under selection pressure, the evolution of micro-organisms is vastly quicker that that of man. The selection pressure brought about by rapid ecological changes and alterations associated with human action provides for the development of new, dangerous pathogens and transformation of familiar pathogens to become more dangerous. Progress in molecular biology has thus far not yielded as many new tools for the treatment of infectious diseases as the hopes were in the early 2000's.

  3. Microbiological efficacy of lomefloxacin and other drug's regarding microorganisms isolated from the human conjunctiva Atividade biocida da lomefloxacina em relação aos microorganismos isolados de conjuntiva humana

    Directory of Open Access Journals (Sweden)

    Ana Luísa Hofling-Lima

    2001-04-01

    Full Text Available Purpose: To evaluate and compare the in vitro susceptibility of human conjunctival bacterial isolates to various antimicrobial agents, including lomefloxacin, other fluoroquinolones (ciprofloxacin, norfloxacin, and ofloxacin, aminoglycosides (gentamicin, tobramycin, and amicacin, and cephalosporin (cephalothin. Methods: Antibiotic susceptibility tests conducted over a period of 27 months with 613 bacterial isolates from the conjunctiva were retrospectively analyzed. Results: In relation to the total number of positive isolates, the fluoroquinolones showed greater in vitro effectiveness than the other analyzed antibiotics. All bacterial isolates showed significantly higher susceptibility to ciprofloxacin than to lomefloxacin. Conclusion: The fluoroquinolones are not only equally effective against all conjunctival bacterial isolates, but they also show superior antimicrobial activity in comparison to aminoglycosides and cephalothin. These results suggest that fluoroquinolones, such as lomefloxacin, can be beneficially prescribed for conjunctival infections and also as prophylaxis in ocular surgery.Objetivo: Avaliar e comparar a atividade biocida in vitro de bactérias isoladas da conjuntiva humana à lomefloxacina, a outras fluorquinolonas (ciprofloxacina, norfloxacina e ofloxacina, aos aminoglicosídeos (gentamicina, tobramicina e amicacina e à cefalosporina (cefalotina. Métodos: Foram analisados retrospectivamente os resultados dos antibio-gramas realizados no período de 27 meses com 613 bactérias isoladas da conjuntiva. Resultados: A eficácia in vitro das quinolonas de acordo com o total dos isolamentos positivos foi superior em relação aos outros antibióticos avaliados. A suscetibilidade do total de bactérias à ciprofloxacina foi significantemente mais alta quando comparada à lomefloxacina. Conclusão: Os resultados praticamente equivalentes da suscetibilidade de bactérias isoladas da conjuntiva a fluorquinolonas, associado

  4. Influence of environmental pollution with creosote oil or its vapors on biomass and selected physiological groups of microorganisms

    Science.gov (United States)

    Krzyśko-Łupicka, Teresa; Cybulska, Krystyna; Kołosowski, Paweł; Telesiński, Arkadiusz; Sudoł, Adam

    2017-11-01

    Survival of microorganisms in soils from treatment facility and landfill of wooden railway sleepers contaminated with creosote oil as well as in two types of soils with different content of organic carbon, treated with creosote oil vapors, was assessed. Microbiological assays including determination of: the biomass of living microorganisms method and the number of proteolytic, lipolytic and amylolytic microorganisms were carried out under laboratory conditions. Chromatography analysis of the soil extract from railway sleepers treatment facility was performed using GC/MS. The highest biomass and the number of tested microorganisms were determined in soils from wooden railway sleepers landfill, while the lowest in soil from the railway sleepers treatment facility. Vapors of creosote oil, regardless of the soil type, significantly increased only the number of lipolytic bacteria.

  5. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  6. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  7. Screening of biosurfactants from cloud microorganisms

    Science.gov (United States)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  8. Impact of microorganism on polonium volatilization

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Fukuda, A.; Yoshinaga, C.

    2007-01-01

    Volatilization of polonium by microorganisms, Chromobacterium violaceum, Escherichia coli and Bacillus subtilis was examined for pure cultures in LB medium at 30 deg C, showing relative Po emission intensity 100, 10 and 1, respectively. Chromobacterium violaceum pre-cultured in LB medium without Po and suspended in water with Po showed high Po volatilization in spite of poor nutriment condition. Antibiotics inhibit volatilization of Po and cultivation at low temperature greatly reduced volatilization. The results strongly support the biological effects on Po volatilization. (author)

  9. Microbial biogeography: putting microorganisms on the map.

    Science.gov (United States)

    Martiny, Jennifer B Hughes; Bohannan, Brendan J M; Brown, James H; Colwell, Robert K; Fuhrman, Jed A; Green, Jessica L; Horner-Devine, M Claire; Kane, Matthew; Krumins, Jennifer Adams; Kuske, Cheryl R; Morin, Peter J; Naeem, Shahid; Ovreås, Lise; Reysenbach, Anna-Louise; Smith, Val H; Staley, James T

    2006-02-01

    We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.

  10. Microorganisms and biomolecules in space hard environment

    Science.gov (United States)

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  11. Microorganisms as Indicators of Soil Health

    DEFF Research Database (Denmark)

    Nielsen, M. N.; Winding, A.; Binnerup, S.

    ecosystem parameters representing policy relevant end points. It is further recommended to identify a specific minimum data set for specific policy relevant end points, to carefully establish baseline values, to improve scientific knowledge on biodiversity and modelling of soil data, and to implement new......Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...... indicators into soil monitoring programmes as they become applicable....

  12. MICROORGANISMS: A MARVELOUS SOURCE OF SINGLE CELL PROTEINS

    Directory of Open Access Journals (Sweden)

    Agam Nangul

    2013-08-01

    Full Text Available The increasing global population living below the poverty line is driving the scientific community to search for non-conventional protein sources that can replace conventional expensive ones. Microbial proteins, or single-cell protein (SCP, represent a potential future nutrient source for human food and animal feed. These microbial proteins can be grown rapidly on substrates with minimum dependence on soil, water and climate conditions. They can be produced from algae, fungi and bacteria the chief sources of SCP. It is convenient to use microorganisms for production of SCP as they grow rapidly and have high protein content. Industrially, they can be produced from algal biomass, yeast, fungi. There are several other ways of getting SCP as well. Despite numerous advantages of SCP, they have disadvantages and toxic effects too, especially related to mycotoxins and bacterial toxins.

  13. Testing Method of Degrading Heavy Oil Pollution by Microorganisms

    Science.gov (United States)

    Wu, Qi; Zhao, Lin; Ma, Aijin

    2018-01-01

    With the development of human society, we are more and more relying on the petrochemical energy. The use of petrochemical energy not only brings us great convenience, but is also accompanied by a series of environmental pollution problems, especially oil pollution. Since it is impractical to restore all pollution problems, the proper use of some remedial measures, under the guidance of functional orientation, may be sufficient to minimize the risk of persistent and diffusing pollutants. In recent years, bioremediation technology has been gradually developed into a promising stage and has played a crucial role in the degradation of heavy oil pollution. Specially, microbes in the degradation of heavy oil have made a great contribution. This paper mainly summarizes the different kinds of microorganisms for degrading heavy oil and the detection method for degradation efficiency of heavy oil pollution.

  14. Prevalence of the pathogen microorganisms in raw cow milk

    Directory of Open Access Journals (Sweden)

    Angelovski Ljupco

    2009-11-01

    Full Text Available The aim of this study was to study the prevalence of Salmonella spp., Listeria spp., Staphylococcus spp. and E. coli in the raw cow milk. In this study 133 milk-tank samples from several milk collecting points were analysed. After the tests the following prevalence was detected: for Listeria spp. 13 positive samples (9.77%, with 9 Listeria monocytogenes samples confirmed (6.76%. Salmonella spp. was not detected in any of the the samples. The biggest presence was detected for Staphylococcus spp. with 113 positive samples (85.0%. Further testes has shown prevalence of coagulase-positive staphylococci of 73% (97 positive samples. Escherichia coli was confirmed in 57 samples (46.0%. The results from this study clearly indicate that pathogen microorganisms which are important for the human health can be found in the raw cow milk and their presence can be potential hazard for contamination of the milk-processing establishments.

  15. Evaluation of carrying capacity and territorial environmental sustainability

    Directory of Open Access Journals (Sweden)

    Giuseppe Ruggiero

    2012-09-01

    Full Text Available Land use has a great impact on environmental quality, use of resources, state of ecosystems and socio-economic development. Land use can be considered sustainable if the environmental pressures of human activities do not exceed the ecological carrying capacity. A scientific knowledge of the capability of ecosystems to provide resources and absorb waste is a useful and innovative means of supporting territorial planning. This study examines the area of the Province of Bari to estimate the ecosystems’ carrying capacity, and compare it with the current environmental pressures exerted by human activities. The adapted methodology identified the environmentally sustainable level for one province.

  16. Metatranscriptomics of the human gut microbiome

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas

    2011-01-01

    Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes ...... that there is a division of labor between the bacterial species in the human gut microbiome.......Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes...... in the human genome by more than 100 to 1. How these organisms contribute to and affect human health is poorly understood, but the emerging field of metagenomics promises a more comprehensive and complete understanding of the human microbiome. In the European-funded Metagenomics of the Human Intestinal Tract...

  17. Influência da co-agregação entre Candida. albicans e Lactobacillus acidophilus na capacidade de adesão destes microrganismos às células epiteliais vaginais humanas (CEVH = Influence of the co-aggregation between Candida. albicans e Lactobacillus acidophilus on the adhesion capacity these microorganisms in the human ephitelial vaginal cells (HEVC

    Directory of Open Access Journals (Sweden)

    Simone Américo Etgeton

    2011-07-01

    Full Text Available Este trabalho teve por objetivo avaliar a influência da co-agregação in vitro entre Candida albicans e Lactobacillus acidophilus na capacidade de adesão destes microrganismos às células epiteliais vaginais humanas (CEVH. Foram utilizados um isolado vaginal de C. albicans e uma cepa ATCC de L. acidophilus. Uma suspensão de cada microrganismo isoladamente e do coagregado foram incubados com as CEVH obtidas de uma doadora saudável. Foram feitos esfregaços por cristal violeta e Papanicolaou, e o número de leveduras, lactobacilos ou coagregados aderidos às células foi contado (em 300 células superficiais-CS e 300 intermediárias-CI. A Microscopia eletrônica de varredura (MEV foi realizada em todas as situações dos ensaios.Leveduras e lactobacilos aderiram fortemente as CEVH, tanto em CS quanto em CI. A coagregação levou a um aumento na capacidade de adesão das leveduras (p 0,05. Havendo correlação com o que acontece in vivo, probióticos à base de L. acidophillus e mesmo uma flora lactobacilar vaginal não surtiriam efeito protetor contra a adesão de C. albicans as CEVH e do possível desenvolvimento de candidíase vulvovaginal.This work has aimed to evaluate the influence of the L. acidophilus and Candida albicans co-aggregation on the adhesion capacity this microorganisms in the human ephitelial vaginal cells (HEVC. One vaginal isolated of C. albicans and one ATCC strain of L. acidophilus was used. A suspension of the isolated and co-aggregated microorganisms was incubated with HVEC obtained from a healthy donor. After one hour, smears were made with crystal violet and Papanicolaou, and the number of yeasts adhered to HVEC was evaluated (300 superficial-SC and 300 intermediate cells-IC. Scanning electron microscopy (SEM was made in all situations of the assays. Yeasts and lactobacilli adhered strongly to the HEVC, both SC and IC. The co-aggregation there was an increase in the adhesion capacity of the yeasts (p 0

  18. Northern blot analysis to investigate the abundance of microorganisms

    International Nuclear Information System (INIS)

    Krause, D.O.

    2005-01-01

    Modern molecular microbial ecology has its origins in the analysis of informative macromolecules. Zuckerkandl and Pauling proposed that certain macromolecules are relatively free from evolutionary pressure and may be considered a molecular document of the evolutionary history of the organism that carries the molecule. In their paper, they proposed that the sequence difference of a molecule is proportional to the evolutionary distance between the organisms; the greater the sequence differences the greater the evolutionary distance. A significant breakthrough with this approach in microbial systematics resulted from the work of Woese and Fox who used oligonucleotide cataloguing of 16S-rRNA to delineate the phylogenetic relationships between microorganisms. By using this approach, it was possible to demonstrate that all life on earth could be divided into three kingdoms: eukarya, procarya and archaea. The unique findings of this research was that the archaea, made up of many methanogenic and thermophilic microorganisms, were probably the most ancient life forms on earth and were not bacteria at all. One of the first applications of rRNA genes was the recovery of unique 5S-rRNA sequences from the Yellowstone hot spring. Even though the statistical utility of the short 5S sequences was limited, it demonstrated that there was a great deal of uncultured diversity within the ecosystem. This uncultured diversity was demonstrated to be highly significant when clone libraries were constructed from the Yellowstone hot spring. Universal PCR primers were used to amplify 16S-rDNA from the microbial community, and these mixed amplicons were cloned into a vector. Each insert, potentially representing a different species, was sequenced giving a snapshot of microbial diversity in the sample. A unique feature of the rRNAs is that they are hierarchical molecules. This means that there are regions where the molecules is highly conserved, others where the sequence is variable, and even

  19. Identification of periodontopathogen microorganisms by PCR technique

    Directory of Open Access Journals (Sweden)

    Milićević Radovan

    2008-01-01

    Full Text Available INTRODUCTION Periodontitis is an inflammatory disease of the supporting tissues of teeth and is a major cause of tooth loss in adults. The onset and progression of periodontal disease is attributed to the presence of elevated levels of a consortium of pathogenic bacteria. Gram negative bacteria, mainly strict anaerobes, play the major role. OBJECTIVE The present study aimed to assess the presence of the main types of microorganisms involved in the aetiopathogenesis of periodontal disease: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Treponema denticola, Tanerella forsythia and Prevotella intermedia in different samples collected from the oral cavity of 90 patients diagnosed with periodontitis. METHOD Bacterial DNA detection was performed in diverse biological materials, namely in dental plaque, gingival tissue and saliva, by means of multiplex PCR, a technique that allows simultaneous identification of two different bacterial genomes. RESULTS In the dental plaque of the periodontitis patients, Treponema denticola dominated. In the gingival tissue, Tannerella forsythia and Treponema denticola were the microbiota most frequently detected, whilst in saliva Treponema denticola and Eikenella corrodens were found with the highest percentage. CONCLUSION The identification of microorganisms by multiplex PCR is specific and sensitive. Rapid and precise assessment of different types of periodontopathogens is extremely important for early detection of the infection and consequently for the prevention and treatment of periodontal disease. In everyday clinical practice, for routine bacterial evaluation in patients with periodontal disease, the dental plaque is the most suitable biological material, because it is the richest in periodontal bacteria.

  20. Bioremediation of trinitrotolulene by a ruminal microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin; Williamson, K.J.; Craig, A.M. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    2,4,6-trinitrotoluene (TNT) has been widely used for the production of explosives because of its low boiling point, high stability, low impact sensitivity, and safe manufacture. More than 1,100 military facilities, each potentially contaminated with munitions waste, are expected to require treatment of more than one million cubic yards of contaminated soils. The cost associated with remediation of these sites has been estimated to be in excess of $1.5 billion. Recently, researchers have studied ruminal microorganisms in relation to their ability to degrade xenobiotic compounds. Many of these organisms are strict anaerobes with optimal redox potentials as low as -420 mV. Ruminal organisms have been shown capable of destroying some pesticides, such as parathion, p-nitrophenol, and biphenyl-type compounds; thiono isomers, and nitrogen-containing heterocyclic plant toxins such as the pyrrolizidine alkaloids. Many of these compounds have structures similar to TNT. A TNT-degrading ruminal microorganism has been isolated from goat rumen fluid with successive enrichments on triaminotoluene (TAT) and TNT. The isolate, designated G.8, utilizes nitrate and lactate as the primary energy source. G.8 was able to tolerate and metabolite levels of TNT up to the saturation point of 125 mg/l.

  1. Measuring Social carrying Capacity: An Exploratory Study

    OpenAIRE

    López-Bonilla, Jesús Manuel; López-Bonilla, Luis Miguel

    2007-01-01

    The tourist carrying capacity commands a growing interest given that it is closely linked with sustainable tourist development. The justification of the utility of this concept is given by means of a simple and efficient methodological proposal, by analysing the social carrying capacity. To this end, an empirical application is carried out in the Western Andalusia. In some of the cases analysed, the satisfaction of the tourist is found to decline when the levels of the tourist use are higher ...

  2. Human Plasma Very Low Density Lipoprotein Carries Indian Hedgehog

    NARCIS (Netherlands)

    Queiroz, Karla C. S.; Tio, Rene A.; Zeebregts, Clark J.; Bijlsma, Maarten F.; Zijlstra, Felix; Badlou, Bahram; de Vries, Marcel; Ferreira, Carmen V.; Spek, C. Arnold; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2010-01-01

    Hedgehog is one of the major morphogens and fulfils critical functions in both the development and maintenance of the vasculature. Hedgehog is highly hydrophobic and its diffusion toward target tissues remains only partly understood. In Drosophila, hedgehog transport via lipophorins is relevant for

  3. Human Plasma Very Low Density Lipoprotein Carries Indian Hedgehog

    NARCIS (Netherlands)

    Queiroz, Karla C. S.; Tio, Rene A.; Zeebregts, Clark J.; Bijlsma, Maarten F.; Zijlstra, Felix; Badlou, Bahram; de Vries, Marcel; Ferreira, Carmen V.; Spek, C. Arnold; Peppelenbosch, Maikel P.; Rezaee, Farhad

    Hedgehog is one of the major morphogens and fulfils critical functions in both the development and maintenance of the vasculature. Hedgehog is highly hydrophobic and its diffusion toward target tissues remains only partly understood. In Drosophila, hedgehog transport via lipophorins is relevant for

  4. The Concept of Carrying Capacity in Tourism

    Directory of Open Access Journals (Sweden)

    Josef Zelenka

    2014-05-01

    Full Text Available Carrying capacity is often pragmatically, theoretically as well as purely intuitively considered as a concept in the context of tourism sustainability. The carrying capacity application has the greatest potential in protected areas, in frequently visited cultural and natural attractions, and in relation to sustaining of the lifestyle of the local community and tourism destination potential in general. Despite its importance, partial applications, determination of basic theoretical principles, and specifying connection to the other theoretical concepts in tourism (particularly destination life cycle, LAC concept, visitors management, there still is a rightful opinion of some authors suggesting that there is no consistent theory of tourism carrying capacity. This theory would be the base for sophisticated practical carrying capacity applications. This paper is therefore focused on introduction of the theoretical concept of carrying capacity, which can be discussed and possibly further elaborated.

  5. Human impacts on Antarctic ecosystems: do not forget the microorganisms!

    OpenAIRE

    Hughes, Kevin; Verleyen, Elie; Vyverman, Wim; Obbels, Dagmar; Willems, Anne; Stelmach Pessi, Igor; Laughinghouse IV, Haywood; Wilmotte, Annick

    2013-01-01

    The tiny and microscopic creatures that are the permanent inhabitants of the Antarctic continent are often overlooked in environmental impact assessments and when new management and protection strategies are designed. This lack of consideration is probably due to their small size and the need of sophisticated molecular methods to study their diversity, evolution and geographic distribution. However, considerable progress has been made in the field of molecular diversity in the last two dec...

  6. MRSA carrying mecC in captive mara

    DEFF Research Database (Denmark)

    Gongora, Carmen Espinosa; Harrison, Ewan M; Moodley, Arshnee

    2015-01-01

    C-carrying MRSA ST130 clone is widespread in a variety of unrelated hosts in Denmark. Since the mara at Copenhagen Zoo have limited contact with humans and other animal species, it remains unclear whether mara are natural hosts of ST130 or acquired this lineage from unknown sources. The broad host range of MRSA...

  7. Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control.

    Science.gov (United States)

    Pagnier, Isabelle; Merchat, Michèle; La Scola, Bernard

    2009-06-01

    Cooling towers provide a favorable environment for the proliferation of microorganisms. Cooling towers generate a biofilm and often aerosolize contaminated water, thereby increasing the risk of microorganism dissemination by human inhalation. This pathogen dissemination was first revealed by the epidemics of Legionnaires' disease that were directly related to the presence of cooling towers, and since then, the ecology of Legionella pneumophila has been well studied. Each country has specific standards regarding the acceptable amount of microorganisms in cooling tower systems. However, those standards typically only concern L. pneumophila, even though many other microorganisms can also be isolated from cooling towers, including protozoa, bacteria and viruses. Microbiological control of the cooling tower system can be principally achieved by chemical treatments and also by improving the system's construction. Several new treatments are being studied to improve the efficiency of disinfection. However, as most of these treatments continue to focus solely on L. pneumophila, reports of other types of pathogens continue to increase. Therefore, how their dissemination affects the human populous health should be addressed now.

  8. Mechanisms of hexavalent chromium resistance and removal by microorganisms.

    Science.gov (United States)

    Joutey, Nezha Tahri; Sayel, Hanane; Bahafid, Wifak; El Ghachtouli, Naïma

    2015-01-01

    Chromium has been and is extensively used worldwide in multiple industrial processes and is routinely discharged to the environment from such processes. Therefore, this heavy metal is a potential threat to the environment and to public health, primarily because it is non-biodegradable and environmentally persistent. Chromium exists in several oxidation states, the most stable of which are trivalent Cr(Ill) and hexavalent Cr(VI) species. Each species possesses its own individual chemical characteristics and produces its own biological effects. For example, Cr (Ill) is an essential oligoelement for humans, whereas Cr(VI) is carcinogenic and mutagenic. Several chemical methods are used to remove Cr(VI) from contaminated sites. Each of these methods has advantages and disadvantages. Currently, bioremediation is often the preferred method to deal with Cr contaminated sites, because it is eco-friendly, cost-effective and is a "natural" technology. Many yeast, bacterial and fungal species have been assessed for their suitability to reduce or remove Cr(VI) contamination. The mechanisms by which these microorganisms resist and reduce Cr(VI) are variable and are species dependent. There are several Cr-resistance mechanisms that are displayed by microorganisms. These include active efflux of Cr compounds, metabolic reduction of Cr(VI) to Cr (ill), and either intercellular or extracellular prec1p1tation. Microbial Cr (VI) removal typically involves three stages: binding of chromium to the cell surface, translocation of chromium into the cell, and reduction of Cr(VI) to Cr (ill). Cr(VI) reduction by microorganisms may proceed on the cell surface, outside the cell, or intracellularly, either directly via chromate reductase enzymes, or indirectly via metabolite reduction of Cr(VI). The uptake of chromium ions is a biphasic process. The primary step is known as biosorption, a metabolic energyindependent process. Thereafter, bioaccumulation occurs, but is much slower, and is

  9. Combining nonthermal technologies to control foodborne microorganisms.

    Science.gov (United States)

    Ross, Alexander I V; Griffiths, Mansel W; Mittal, Gauri S; Deeth, Hilton C

    2003-12-31

    Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned.

  10. Heterogeneity in isogenic populations of microorganisms

    DEFF Research Database (Denmark)

    Pedersen, Anne Egholm

    heterogeneity was detected when the culture had been propagated according to the guidelines of the Copenhagen School of Bacterial Growth Physiology. The L. lactis GFP reporter strain was more challenging to analyze. The population profile for this reporter strain was shown to be dependent on the type of medium...... values for quantifiable variables are used. The reproducibility of an experiment could thus be affected by the presence of subpopulations or high levels of phenotypic variations. Ole Maaløe and colleagues did in the late 1950’ties observe that the growth rate, RNA, DNA and protein synthesis and cell...... factor per unit of time. The use of a balanced growing culture is a cornerstone in the Copenhagen School of Bacterial Growth Physiology headed by Ole Maaløe. Due to the size of the microorganism it is challenging to measure a quantifiable variable in a single cell. However, fluorescence, whether being...

  11. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms

    Directory of Open Access Journals (Sweden)

    Estelle Lebègue

    2018-02-01

    Full Text Available Polydiacetylene (PDA inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.

  12. Pathogenic microorganisms of medicinal herbal drugs

    Directory of Open Access Journals (Sweden)

    Stević Tatjana

    2012-01-01

    Full Text Available All the parts of plants (root, leaf, flower naturally have a high level of microorganisms, bacteria and fungi, especially molds. Microbial contamination could be a result of inappropriate harvesting, cleaning of the raw plant material, unhygienic processing of the plants, unsuitable transport and storage. After examination of over 40 dried medicinal plant species, the lowest microbial quality was determined for Maydis stigma, Mentha leaf and herb, Equisetum herb, Calendula flower, Urtica leaf, Melissa leaf, Serpylli herb, Chamomilla flower etc. Although mixed infections are recorded with different types of fungus, Fusarium was observed as the most dominant genus in most of the tested drugs, followed by Aspergillus and Alternaria. In addition to these fungi species from the following genera were identified: Phoma, Cephalosporium, Nigrospora, Cladosporium, Epicoccum, Gliocladium, Myrothecium, Cercospora, Phomopsis, Verticillium, Dreschlera (=Bipolaris, Rhizoctonia, Septoria, Trichoderma, Curvularia, Stachybotrys, Trichothecium, Puccinia, Botrytis, Mucor and Rhizopus sp., depending on plant species.

  13. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  15. Estimating the recreational carrying capacity of a lowland river section.

    Science.gov (United States)

    Lorenz, Stefan; Pusch, Martin T

    2012-01-01

    Recreational boating represents a major human use of inland waters in many regions. However, boating tourism may affect the ecological integrity of surface waters in multiple ways. In particular, surface waves produced by boating may disturb freshwater invertebrates, such as interrupting the filtration activity of benthic mussels. As mussels may significantly contribute to self-purification, disturbance may have crucial impacts on water quality, and thus on water tourism. In this paper we calculate the carrying capacity of a river section for sustainable boating tourism based on the preservation of water quality. This approach is complemented by spatial and social approaches for carrying capacity estimates. The ecological carrying capacity significantly decreases with lower water levels during summer. Hence, the analysis of variables that influence the river's carrying capacity allows the formation of recommendations for management measures that integrate social, touristic and ecological aspects.

  16. Identification of subsurface microorganisms at Yucca Mountain

    International Nuclear Information System (INIS)

    Stetzenbach, L.D.

    1994-01-01

    Bacteria isolated from ground water samples taken from 31 springs during 1993 were collected and processed according to procedures described in earlier reports. These procedures required aseptic collection of surface water samples in sterile screw-capped containers, transportation to the HRC microbiology laboratory, and culture by spread plating onto R2A medium. The isolates were further processed for identification using a gas chromatographic analysis of fatty acid methyl esters (FAME) extracted from cell membranes. This work generated a presumptive identification of 113 bacterial species distributed among 45 genera using a database obtained from Microbial ID, Inc., Newark, Delaware (MIDI). A preliminary examination of the FAME data was accomplished using cluster analysis and principal component analysis software obtained from MIDI. Typically, bacterial strains that cluster at less than 10 Euclidian distance units have fatty acid patterns consistent among members of the same species. Thus an organism obtained from one source can be recognized if it is isolated again from the same or any other source. This makes it possible to track the distribution of organisms and monitor environmental conditions or fluid transport mechanisms. Microorganisms are seldom found as monocultures in natural environments. They are more likely to be closely associated with other genera with complementary metabolic requirements. An understanding of the indigenous microorganism population is useful in understanding subtle changes in the environment. However, classification of environmental organisms using traditional methods is not ideal because differentiation of species with small variations or genera with very similar taxonomic characteristics is beyond the capabilities of traditional microbiological methods

  17. Interactions of phytoplankton, zooplankton and microorganisms

    Science.gov (United States)

    Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.

    We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.

  18. System for identification of microorganism and detection of infectious disorder

    DEFF Research Database (Denmark)

    2013-01-01

    Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1...... topoisomerase from one or more microorganism(s) or infectious agent(s), and incubating said substrate with said sample, or extracts or preparations from the sample, so that the substrate is processed by said topoisomerase if said microorganism(s) or infectious agent(s) is present in the sample. Finally......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...

  19. Parallelization of Reversible Ripple-carry Adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock

    2009-01-01

    The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme...... wherein $m$ parallel $k$-bit reversible ripple-carry adders are combined to form a reversible $mk$-bit \\emph{ripple-block carry adder} with logic depth $\\mathcal{O}(m+k)$ for a \\emph{minimal} logic depth $\\mathcal{O}(\\sqrt{mk})$, thus improving on the $mk$-bit ripple-carry adder logic depth $\\mathcal...

  20. Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms

    Directory of Open Access Journals (Sweden)

    Valarini Pedro J.

    2002-01-01

    Full Text Available The soil quality was evaluated following the addition of organic matter and microorganisms to a clay loam soil collected in Aranjuez (Madrid under controlled conditions of temperature and moisture, and over a period of three months. The following treatments were carried out: soil (control; soil + 50 t/ha of animal manure (E50; soil + 50 t/ha of animal manure + 30l/ha of effective microorganisms (E50EM; soil + 30 t/ha of combination of various green crop residues and weeds (RC30 and soil + 30 t/ha of combination of various green crop residues and weeds + 30l/ha of effective microorganisms (RC30EM. The soil samples were taken before and after the incubation and analysed using physical, chemical and microbiological parameters. A significant increase in the production of polysaccharides and alkaline phosphatase and esterase enzymes in the treatments E50EM and RC30EM was observed, being in direct correlation with the humification of the organic matter, with the water retention at field capacity, and with the cationic exchange capacity (CEC. It can be concluded that the incorporation of microorganisms EM potentialized the soil biological activity and improved physico-chemical soil properties, contributing to a quick humification of fresh organic matter. Those findings were proved by microbiological activities of exopolysaccharides by alcaline phosphatase and esterase enzymes, which can be used as earlier and integral soil health indicators.

  1. Assessment of soil properties by organic matter and EM-microorganism incorporation

    Directory of Open Access Journals (Sweden)

    Valarini P. J.

    2003-01-01

    Full Text Available Properties of a claim loam soil, collected in Aranjuez (Madrid and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control; soil + 50 t ha-1 of animal manure (E50; soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM; soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30 and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM. Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.

  2. PERFORMANCE, CARCASS YIELD AND LITTER QUALITY OF BROILERS RAISED ON LITTERS TREATED WITH MICRO-ORGANISMS

    Directory of Open Access Journals (Sweden)

    Dayane Prado da Cruz

    2013-03-01

    Full Text Available The present paper aimed at evaluating the effect of adding beneficial micro-organisms to the litters on litter quality, performance and carcass yield for broilers. A total of 240 one-day chicks were used, and randomly distributed in blocks with four treatments and four replications. The following treatments were carried out in the housing: Treatment 1 – Control with weekly spraying of water on the litters; Treatment 2 – Litter treated with a mixture of inoculated and fermented meal by micro-organisms and weekly spraying of water; Treatment 3 – Litter treated by weekly spraying of micro-organisms; Treatment 4 – Litter treated with the same mixture of meals from treatment two and weekly spraying of micro-organisms. Performance was evaluated by the feed consumption, weight gain, feed conversion, viability and carcass, breast and leg yield. From litter samples, pH, dry matter, ashes and nitrogen were evaluated. No differences were found among the treatments. In the conditions the animals were raised, it can be concluded that the treatment on the litter does not affect performance, carcass yield and quality of the litter for broilers.

  3. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    Science.gov (United States)

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  4. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium in different aquifer materials. Final report

    International Nuclear Information System (INIS)

    Rueden, H.; Maue, G.; Stroetmann, I.; Hornemann, C.; Seichter, M.; Pekdeger, A.; Taute, T.; Winkler, A.; Lange, D.; Majerczyk, D.; Meyer, T.

    1998-01-01

    In this research project the influence of autochthonous micro-organisms on immobilisation and remobilization of Technetium and Selenium was investigated. Both radionuclides are part of the nuclear fuel waste (Tc app. 6%). Former investigations have shown, that immobilisation behaviour of both elements can be influenced by micro-organisms. The autochthonous population of micro-organisms in deep sediments and their influence on immobilisation of Tc and Se was investigated in this study. For this reason recirculation column tests were carried out. Absolutely sterile and anaerobic handling is necessary handling the sediments and waters used for the experiments. Special methods for sampling, storage and handling were developed. More than 30 sediments have been investigated. The number of colony forming units (CFU) has always been relatively low (less than E+06 CFU). The results of recirculation column tests with autochthonous micro-organisms were compared with sterilized (Co-60) parallel tests and were verified with the results of hydrochemical equilibration code PHREEQUE. Instead of the allochthonous micro-orgamisms the autochthonous organisms showed no significant fixation of the radionuclides due to microbial activity. This is true for various temperatures of 10 C (aquifer temperature) and 20 C (normal laboratory temperature). An addition of an inoculum of the autochthonous micro-organisms developed at breeding temperature of 10 and 20 C had no influence on the radionuclide mobility. Performing conventional laboratory experiments you have to consider an overestimated retardation capacity because of an inevitable contamination with allochthonous micro-organisms. (orig.) [de

  5. Gun Carrying by High School Students in Boston, MA: Does Overestimation of Peer Gun Carrying Matter?

    Science.gov (United States)

    Hemenway, David; Vriniotis, Mary; Johnson, Renee M.; Miller, Matthew; Azrael, Deborah

    2011-01-01

    This paper investigates: (1) whether high school students overestimate gun carrying by their peers, and (2) whether those students who overestimate peer gun carrying are more likely to carry firearms. Data come from a randomly sampled survey conducted in 2008 of over 1700 high school students in Boston, MA. Over 5% of students reported carrying a…

  6. Enhancement of uranium-accumulating ability of microorganisms by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Takashi; Nakajima, Akira; Tsuruta, Takehiko [Miyazaki Medical Coll., Kiyotake (Japan)

    1998-01-01

    Some microorganisms having excellent ability to accumulate uranium were isolated, from soil and water systems in and around the Ningyo-toge Station of Power Reactor and Nuclear Fuel Development Corporation. The enhancement of uranium-accumulating ability of microorganisms by electron-beam irradiation was examined, and the ability of JW-046 was increased 3-5% by the irradiation. The irradiation affect the growth of some of microorganisms tested. (author)

  7. Plasma inactivation of food-related microorganisms in liquids

    International Nuclear Information System (INIS)

    Marsili, Lisa; Espie, Steven; Anderson, J.G.John G.; MacGregor, S.J.Scott J.

    2002-01-01

    This paper reports on a plasma process that inactivates microorganisms in liquids through the application of high-voltage pulses. These pulses result in breakdown of the gas and liquid layers, producing many active species such as UV photons, ozone, free radicals and free electrons. Several test microorganisms representing a range of problematic microorganisms were investigated. Significant reductions in microbial population were achieved, demonstrating the effectiveness of using the plasma discharge process to treat contaminated liquids

  8. Use of specific microorganisms for in-situ sanitation of long-standing pollution sites. Final report

    International Nuclear Information System (INIS)

    Dengler, D.

    1988-07-01

    Laboratory and semi-industrial experiments were carried out in order to find out whether soils contaminated with mineral oil can be regenerated by stimulating microbial growth or by introducing additional oil-degrading microorganisms into the soil. In addition, methods were tested in which contaminants are wasted out with the aid of tensides. (orig.) [de

  9. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: state of the science and future opportunities

    Science.gov (United States)

    Natural waters provide habitats for various groups of fecal indicator organisms (FIOs) and pathogenic microorganisms originating from animal manures and animal waste. A number of watershed modeling works have been carried out to have a better understanding to the fate and transport of fecal indicato...

  10. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  11. Esterase screening using whole cells of Brazilian soil microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Simone M.; Oliveira, Luciana G. de; Marsaioli, Anita J., E-mail: anita@iqm.unicamp.b [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    A miniaturized enzymatic assay using fluorescent probes to reveal esterase producing microorganisms was optimized and applied to screen 64 soil bacterial strains. The best results were validated using traditional non-fluorogenic assays with acetyl and propanoyl phenylethanol to confirm the miniaturized results. The most active microorganisms belong to the genus Bacillus showing esterase activity and good enantiomeric ratios for the resolution of phenylethanol derivatives (E > 30). Part of the microorganisms are kept in our laboratory in glycerol or freezedried and the best microorganisms will be deposited in the CBMAI/CPQBA/UNICAMP culture collection. (author)

  12. [Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms].

    Science.gov (United States)

    Volova, T G; Barashkov, V A

    2010-01-01

    The study was conducted to determine the biological value of proteins synthesized by hydrogen-oxidizing microorganisms--the hydrogen bacteria Alcaligenes eutrophus Z1 and Ralstonia eutropha B5786 and the CO-resistant strain of carboxydobacterium Seliberia carboxydohydrogena Z1062. Based on a number of significant parameters characterizing the biological value of a product, the proteins of hydrogen-oxidizing microorganisms have been found to occupy an intermediate position between traditional animal and plant proteins. The high total protein in biomass of these microorganisms, their complete amino acid content, and availability to proteolytic enzymes allow for us to consider these microorganisms as potential protein producers.

  13. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  14. Potencial de biodegradação de microcistinas por microrganismos Biodegradation potential of microcystins by microorganisms

    Directory of Open Access Journals (Sweden)

    Francine Kuriama

    2012-06-01

    Full Text Available Para minimizar os problemas relacionados à ocorrência de cianobactéria em águas destinadas ao consumo humano há necessidade de se realizar estudos de alternativas técnicas de tratamento com destaque aos biofilmes com potencial de degradação de microcistinas (MC. O presente trabalho teve como objetivo avaliar o potencial de degradação de MC pela bactéria Sphingosinicella microcystinivorans B9, diferentes cepas de leveduras e bactérias probióticas. O teste foi efetuado com extrato de MC e diferentes quantidades de biovolume e densidade celular dos microrganismos. Os tratamentos foram mantidos a 27ºC com rotação de 100 rpm e as amostras para análise de MC e contagem dos microrganismos foram retiradas após 0 e 96 horas de contato. A bactéria B9 apresentou maior degradação de MC, chegando a 98% após 96 horas.To minimize problems related to the occurrence of cyanobacteria in water for human consumption there is need to investigate alternative treatment techniques with emphasis on biofilms with the potential degradation of microcystins (MC. This study aimed to evaluate the potential degradation of MC by bacteria Sphingosinicella microcystinivorans B9, different strains of yeast and probiotic bacteria. The test was carried out with the extract obtained from strain Microcystis sp. In the tests biomass and cultures of microorganisms were used and the treatments were maintained at 27ºC with 100 rpm. Samples for analysis of MC and for counting the microorganisms were collected at 0 and 96 hours. The bacterium B9 presented the highest potential of degradation of MC reaching 98% after 96 hours.

  15. Effective Microorganisms As An Alternative To Antibiotics

    International Nuclear Information System (INIS)

    HEGAZY, E.S.R.

    2013-01-01

    Nowadays the production of safe and healthy food becomes a continuous and growing demand from the professional public and consumers. Therefore new additives have been increased for positively affecting meat production and quality with no adverse effect on human health. Since decades antibiotics have been used in poultry production as therapeutic agents to treat bacterial infection that decrease performance and caused diseases. However, due to negative effects of using antibiotics on animal's health and production such as residue in the final products, development of bacterial resistance, accumulation in poultry excretion with consequent environmental pollution (Edens,2003)an increasing interest in finding alternatives to antibiotics becomes necessity. Probiotics are live microbial feed supplement which have beneficial influence on: intestinal microflora balance (Kabir et al., 2005); immune response (Nayebpor et al., 2007 and Apata, 2008); serum total cholesterol and triglycerides (Ignatova et al., 2009) in addition to fat and cholesterol content of the chicken meat and yolk (Mansoup, 2011).On the other hand proved that probiotics improved economic efficiency and performance index (Awad et al.,2009). Poultry required fat in the diet as a source of essential fatty 1 acids to improve the absorption of fat-soluble vitamins, increases the palatability of the rations, and increase the efficiency of the consumed energy. Furthermore, it reduces the passage rate of the digesta in the gastrointestinal tract which allows a better absorption of all nutrients present in the diet (Baiao and Lara, 2005). The recent increment in the prices of oils as well as their wide use to raise the energy levels in poultry diet (El-Gendy, 1993) forced us to search for new cheap alternatives with high energy value not used for human feeding. Use of oxidized oil (Anjume et al., 2004 and Karamouz et al., 2009), sun flower oil production wastes (Alizadeh et al., 2012) or semi-refined oils

  16. Final report for Assembling Microorganisms into Energy Converting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Ozgur

    2018-03-26

    The goal of this project was to integrate microorganisms capable of reversible energy transduction in response to changing relative humidity with non-biological materials to create hybrid energy conversion systems. While plants and many other biological organisms have developed structures that are extraordinarily effective in converting changes in relative humidity into mechanical energy, engineered energy transduction systems rarely take advantage of this powerful phenomenon. Rather than developing synthetic materials that can convert changes in relative humidity in to mechanical energy, we developed approaches to assemble bacterial spores into larger materials. These materials can convert energy from evaporation of water in dry atmospheric conditions, which we demonstrated by building energy harvesters from these materials. We have also developed experiments to investigate the interaction of water with the spore material, and to determine how this interaction imposes limits on energy conversion. In addition, we carried out theoretical calculations to investigate the limits imposed by the environmental conditions to the power available in the energy harvesting process. These calculations took into account heat and water vapor transfer in the atmosphere surrounding the spore based materials. Overall, our results suggest that biomolecular materials are promising candidates to convert energy from evaporation.

  17. Nosocomial infections in human immunodeficiency virus type 1 (HIV-1 infected and AIDS patients: major microorganisms and immunological profile Infecções hospitalares em pacientes infectados com HIV-1 e com AIDS: principais microrganismos e perfil imunológico

    Directory of Open Access Journals (Sweden)

    C. Panis

    2009-03-01

    Full Text Available Antiretroviral therapy advances have proportioned to AIDS patients a survival increase. At the same time, the permanence of the seropositive people in the nosocomial environment becomes common not only by the adverse reactions caused by this therapy, but also by several opportunistic diseases that take them into and out of hospital environment. During the hospital permanence, the patients expose their impaired immune system to the nosocomial virulent microorganisms, and acquire destructive nosocomial infections that sometimes can be lethal. Among several hospital syndromes described, little is known about infections in immunocompromised patients and how their immune system is able to determine the course of the infection. The objective of this study was to describe the major microorganisms involved in the nosocomial infections of HIV-1 seropositive patients associated with their immunological status. The survey was carried out with the Hospital Infection Control Service records, from University Hospital, Londrina, Paraná, Southern of Brazil, during the period from July 2003 to July 2004. From all the cases studied (n=969, 24 patients (2.5% had AIDS diagnosis and a half of them was women with the mean of CD4+ T cells counts of 158/mm³. The main topography of the infection was pulmonary (50.0% and the main isolated microorganisms were Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. A major incidence of infection was observed in patients with CD4+ T cells counts lower than 50/mm³. The study of the relationship between the impairment of the immune system and infectious agents could provide a better healthcare of people living with HIV/AIDS and advances into the nosocomial infection control systems.Avanços na terapia anti-retroviral têm proporcionado aos pacientes com AIDS um aumento na sobrevida. Ao mesmo tempo, a permanência de pacientes soropositivos no ambiente nosocomial torna-se comum não só pelos efeitos colaterais

  18. Abstraction carrying code and resource-awareness

    OpenAIRE

    Hermenegildo, Manuel V.; Albert Albiol, Elvira; López García, Pedro; Puebla Sánchez, Alvaro Germán

    2005-01-01

    Proof-Carrying Code (PCC) is a general approach to mobile code safety in which the code supplier augments the program with a certifícate (or proof). The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eíñcient, and automatic than generating the original proof. Abstraction Carrying Code (ACC) is an enabling technology for PCC in which an abstract mod...

  19. Glyphosate-Degrading Microorganisms from Industrial Activated Sludge

    OpenAIRE

    Balthazor, Terry M.; Hallas, Laurence E.

    1986-01-01

    A plating medium was developed to isolate N-phosphonomethylglycine (glyphosate)-degrading microorganisms, with glyphosate as the sole phosphorus source. Two industrial biosystems treating glyphosate wastes contained elevated microbial counts on the medium. One purified isolate metabolized glyphosate to aminomethylphosphonic acid, mineralizing this accumulating intermediate during log growth. This microorganism has been identified as a Flavobacterium species.

  20. Microorganisms associated with the spoilage of avocado pear ...

    African Journals Online (AJOL)

    The microorganisms associated with the spoilage of Avocado pear, Persea americana fruits, purchased fresh from various markets in Benin City were investigated. The pour plate method was used for the isolation. A total of nine species of microorganisms were isolated and identified in this study. They comprise of seven ...

  1. the economic importance of microorganism in food processing

    African Journals Online (AJOL)

    BSN

    This paper attempts to highlight the Economic Importance of microorganisms in food processing and manufacturing; it goes further to differentiate between the desirable ... Desirable importance are those cost saving and revenue generating activities ... Microorganism (yeast) play very useful role in the Bakery industries.

  2. 78 FR 42451 - Animal Feeds Contaminated With Salmonella Microorganisms

    Science.gov (United States)

    2013-07-16

    .... FDA-2013-N-0253] Animal Feeds Contaminated With Salmonella Microorganisms AGENCY: Food and Drug... revoking an advisory opinion on animal feeds contaminated with Salmonella microorganisms. This action is... articulated in a final compliance policy guide (CPG) on Salmonella in food for animals. DATES: This rule is...

  3. Effects of heat-activated persulfate oxidation on soil microorganisms

    DEFF Research Database (Denmark)

    Tsitonaki, Aikaterini; Smets, Barth F.; Bjerg, Poul Løgstrup

    2008-01-01

    /L). The results emphasize the necessity of using multiple toxicity assays and indigenous cultures in order to realistically assess the potential effects of in situ chemical oxidation on soil microorganisms. A comparison to other studies suggests that the effects of activated persulfate on soil microorganisms...

  4. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  5. Peat soils stabilization using Effective Microorganisms (EM)

    Science.gov (United States)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  6. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  7. Snow as a habitat for microorganisms

    Science.gov (United States)

    Hoham, Ronald W.

    1989-01-01

    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked.

  8. Cyanide utilization and degradation by microorganisms.

    Science.gov (United States)

    Knowles, C J

    1988-01-01

    Various microorganisms can produce (cyanogenesis) or degrade cyanide. They degrade cyanide either to detoxify it, or to use it as a source of nitrogen for growth. Significant amounts of cyanide are formed as a secondary metabolite by a wide range of fungi and a few bacteria by decarboxylation of glycine. When cyanide has been formed by the snow mould fungus it is degraded by conversion to carbon dioxide and ammonia via an unknown pathway. In contrast, cyanogenic bacteria either do not further catabolize cyanide or they convert it into beta-cyanoalanine by addition to cysteine or O-acetylserine. Several non-cyanogenic fungi that are pathogens of cyanogenic plants are known to degrade cyanide by hydration to formamide by the enzyme cyanide hydratase. Such fungi can be immobilized and used in packed-cell columns to continuously detoxify cyanide. ICI Biological Products Business market a preparation of spray-dried fungal mycelia, 'CYCLEAR', to detoxify industrial wastes. Novo Industri have also introduced a cyanidase preparation to convert cyanide directly into formate and ammonia. Bacteria have been isolated that use cyanide as a source of nitrogen for growth. Because cyanide, as KCN or NaCN, is toxic for growth, the bacteria (Pseudomonas fluorescens) have to be grown in fed-batch culture with cyanide as the limiting nutrient. Cyanide is converted to carbon dioxide and ammonia (which is then assimilated) by an NADH-linked cyanide oxygenase system.

  9. Tracking microorganisms and gene in the environment

    International Nuclear Information System (INIS)

    Atlas, R.M.; Sayler, G.S.

    1988-01-01

    Studies have been conducted to determine the sensitivities and limitations of various methods for determining the fate of genetically engineered microorganisms (GEMs) and their genes in the environment. Selective viable plate count procedures can be designed to detect the introduced organisms with high sensitivity; but they are restricted by potential mutations affecting the expression of the selective characteristic in the introduced organism, the occurrence of the particular selective characteristic in the indigenous organisms, and the need to culture the organism. The accuracy of this approach is greatly improved by colony hybridization procedures that use a specific gene probe to detect the introduced genes, but this approach is still only as sensitive as the plating procedure. Direct extraction of DNA from environmental samples, coupled with dot blot hybridization with radiolabeled probe DNA or solution hybridization, gives a high degree of both sensitivity and precision. This approach does not require culturing of the organism; and even if an introduced gene moves into a new organism or if the introduced organism is viable but nonculturable, the gene probe methods will detect the persistence of the introduced genes in the environment. Efficient direct DNA extraction methods have been developed and tested following in vitro experimental additions of GEMs to sediment and water samples

  10. Survival of microorganisms representing the three Domains of life inside the International Space Station

    Science.gov (United States)

    Francesco, Canganella; Giovanna, Bianconi

    2007-09-01

    The present work was mainly focused to study the response of representative non pathogenic microorganisms to the environment inside the space vehicle at different mission stages (10, 56, and 226 days) within the frame of the Italian ENEIDE mission, from Feb to Oct 2005. Microorganisms were chosen according to their phylogenetic position and cell structures; they were representatives of the three taxonomic domains and belonged to different ecosystems (food, soil, intestinal tract, plants, deep-sea). They were the followings: Thermococcus guaymasensis (Domain Archaea); Saccharomyces cerevisiae (Domain Eucarya); Escherichia coli, Bacillus subtilis, Lactobacillus acidophilus, Enterococcus faecium, Pseudomonas fluorescens, and Rhizobium tropici (Domain Bacteria). As main environmental parameters we were interested in: a) space radiations; b) microgravity; c) temperature. The response of microorganisms was investigated in terms of survival rates, cell structure modifications, and genomic damages. The survival of cells was affected by both radiation doses and intrinsec cell features. As expected, only samples kept on the ISS for 226 days showed significant levels of mortality. Asfar as regard the effect on cell structures, these samples showed also remarkable morphological changes, particularly for Escherichia coli, Enterococcus faecium, and Saccharomyces cerevisiae. The data collected allowed to get new insights into the biological traits of microorganisms exposed to space environment during the flight on a spacecraft. Moreover, the result obtained may be important for the improvement of human conditions aboard space vehicles (nutraceuticals for astronauts and disinfections of ISS modules) and also for the potential development of closed systems devoted to vegetable productions and organic recycling.

  11. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  12. Contamination of cell phones by pathogenic microorganisms: Comparison between hospital staff and college students

    OpenAIRE

    PURNIMA R. CHITLANGE

    2014-01-01

    Chitlange PR. 2014. Contamination of cell phones by pathogenic microorganisms: Comparison between hospital staff and college students. Nusantara Bioscience 6: 203-206. Cell phone (CP) is a long range portable electronic device. The cell phone is constantly exposed to arrays of micro organisms, making it a harbour and breeding ground for microbes especially those associated with skin. The adult human is covered with approximately 2m2 of skin with area supporting about 106 bacteria. To check wh...

  13. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Surahmanto

    2012-09-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermented with some types of microorganisms at different temperatures. The experiment was designed as Split Plot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and the sub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis, Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productions was in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L. fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Control treatment at 35°C (0.37 g/kg DM.

  14. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Y. Yanti

    2014-10-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermentedwith some types of microorganisms at different temperatures. The experiment was designed as SplitPlot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and thesub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis,Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productionswas in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L.fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Controltreatment at 35°C (0.37 g/kg DM.

  15. [Leaching of nonferrous metals from copper-smelting slag with acidophilic microorganisms].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V

    2013-01-01

    The leaching process of copper and zinc from copper converter slag with sulphuric solutions of trivalent iron sulphate obtained using the association of acidophilic chemolithotrophic microorganisms was investigated. The best parameters of chemical leaching (temperature 70 degrees C, an initial concentration of trivalent iron in the leaching solution of 10.1 g/L, and a solid-phase content in the suspension of 10%) were selected. Carrying out the process under these parameters resulted in the recovery of 89.4% of copper and 39.3% of zinc in the solution. The possibility of the bioregeneration of trivalent iron in the solution obtained after the chemical leaching of slag by iron-oxidizingacidophilic chemolithotrophic microorganisms without inhibiting their activity was demonstrated.

  16. Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration

    Science.gov (United States)

    Qian, Yinge; Willeke, Klaus; Ulevicius, Vidmantas; Grinshpun, Sergey A.; Donnelly, Jean

    Bioaerosol samplers need to be calibrated for the microorganisms of interest. The Aerosizer, a relatively new aerodynamic size spectrometer, is shown to be a suitable dynamic instrument for the evaluation and calibration of such samplers in the laboratory, prior to their use in the field. It provides the necessary reference count against which the microbiological response of the sampler can be compared. It measures the health-significant aerodynamic diameters of microorganisms down to 0.5 μm, thus including most of the bacteria, fungi and pollen found in outdoor and indoor air environments. Comparison tests with a laser size spectrometer indicate that the suspension of microorganisms needs to be washed several times before aerosolization to avoid coating of the airborne microorganisms with nutrients and microbial slime from the suspension, and to reduce the residue particles to sizes below the lowest size of the aerosolized microorganisms.

  17. Biodiesel production by various oleaginous microorganisms from organic wastes.

    Science.gov (United States)

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    Afuape

    2013-07-03

    Jul 3, 2013 ... production of flowers, apomixis (Nassar et al., 2000; ... In order to increase the stress tolerance capacity of ... stress-related procedure due to the activities of auxin ... the evaluation of the transgenic lines for rate of OES .... Some transgenic lines carrying the 35S-AOX fragment amplified using 35S303F1 and.

  19. Infections That Pets Carry (For Parents)

    Science.gov (United States)

    ... how to protect your family from infections. How Pets Spread Infections Like people, all animals carry germs . Illnesses common among housepets — ... get an infection that can be passed to people. Safely Caring for Your Pet Here are some tips to help your family ...

  20. Construction of expression vectors carrying mouse peroxisomal ...

    African Journals Online (AJOL)

    The aim of this study was to construct expression vectors carrying mouse peroxisomal protein gene (PEP-cDNA) in prokaryotic and mammalian expression vectors in ... pGEX6p2-PEP and pUcD3-FLAG-PEP constructed vectors were transformed into the one shot TOP10 and JM105 bacterial competent cells, respectively.

  1. Magnetoacoustic waves in current-carrying plasmas

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1980-04-01

    The results of theoretical and experimental investigations of the characteristics of magnetoacoustic waves in non-uniform, current-carrying plasmas are reviewed. Dissipative MHD and collisionless theories are considered. Also discussed is the use of magnetoacoustic waves in plasma diagnostics and plasma heating

  2. Construction of expression vectors carrying mouse peroxisomal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... The aim of this study was to construct expression vectors carrying mouse peroxisomal protein gene. (PEP-cDNA) in prokaryotic and mammalian expression vectors in chimeric cDNA types, encompassing. GST and FLAG with PEP-cDNA. PEP-cDNA was sub-cloned in pGEX6p2 prokaryotic expression ...

  3. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    Afuape

    2013-07-03

    Jul 3, 2013 ... Organized embryogenic callus development: In our experiment, somatic embryos were developed from leaf lobes collected from transgenic cassava lines carrying the AtAOX1a gene. Immature leaf lobes measuring about 1 to 6 mm obtained from about six weeks old in vitro derived plants were used.

  4. Formation of methylamine by rumen microorganisms

    International Nuclear Information System (INIS)

    Itabashi, Hisao; Kandatsu, Makoto.

    1978-01-01

    An unknown ninhydrin positive peak on the chromatograms of amino acid analyzer of alkalified rumen fluid distillate of goats was isolated as DNP-derivative and identified as methylamine. Under normal feeding condition, its concentration in the rumen ranged 0.1-3.9 mgN/100 ml of rumen fluid and the proportion of methylamine in total volatile base, or apparent ammonia, ranged 0.5-13% during post-feeding. When ammonium salt was administered into the rumen with hay-concentrate ration, these values were increased up to 8.1 mgN/100 ml and 25.8% respectively. Concentrations of ammonia and methylamine when aspartic acid or alanine was administered into the rumen in place of concentrate mixture (control) were not markedly different from the control. In the case of arginine, glutamic acid or glycine administration, these concentrations were depressed as compared to the control. There were no distinct differences in the concentration of methylamine between the faunated and unfaunated goats. 14 C from 14 C-chlorella protein hydrolyzates, U- 14 C-alanine, 2- 14 C-glycine or 14 C-sodium bicarbonate was incorporated into methylamine in invitro incubation with rumen micro-organisms. When the washed suspensions of rumen bacteria or protozoa were incubated with 14 C-chlorella protein hydrolyzates, the radioactivity in methylamine appeared only in the case of bacteria suspensions. After the addition of 15 N-ammonium citrate into the rumen, the incorporation of 15 N into methylamine was observed during 1-9 hr. (auth.)

  5. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.

    Science.gov (United States)

    Phillips, Theresa M; Seech, Alan G; Lee, Hung; Trevors, Jack T

    2005-08-01

    The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (< 500 mg/kg) concentrations of HCH in soil. Information on the effects of inorganic nutrients, organic carbon sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.

  6. Autecology of microorganisms of typical Ecuador biotopes.

    Science.gov (United States)

    Tashyrev, O B; Pidgorskyi, V S; Toro, Miguel Naranjo; Gualoto, Miguel; Gladka, G V; Tashyreva, H O; Rokitko, P V; Romanovskaya, V A

    2014-01-01

    34 strains of aerobic chemoorganotrophic microorganisms were isolated from 23 soil and plant samples selected from highland biotopes of Ecuador-Andes massif (Papallacta, 4020 m), ash at the foot of the volcano Tungurahua, mountainous jungle (La Favorita, 1600 m), as well as in humid tropic botanical garden (state Puyo, 950 m). In mountain jungle samples the high number of bacteria--10(5)-10(7) CFU/g of sample were represented by 2-5 morphotypes. In highland (4020 m) samples the bacterial counts made from 10(2) to 10(7) CFU/g of sample. The current study describes resistance of isolated strains to high salinity, UV radiation and toxic metal ions. The majority of isolated strains were halotolerant. Isolates from volcanic ash showed high resistance level to UV radiation--LD99,99 made 1000-1440 J/m2; resistance level for isolates from the soil of Puyo Botanical Garden and isolates from rock lichen (Papallacta) LD99,99 made 1160 and 800 J/m2 respectively. Strains isolated from mountain jungle (La Favorita) showed lower UV-resistance. In highland biotopes of Ecuador occurred bacteria resistant to toxic metal ions. The highest resistance to Hg2+ was shown by isolate of lichen from mountain jungle, the maximal growth concentration was 0.025 g/L; to Cr(VI)--by isolate from lichen rock massif--3,0 g/L. Correlation between metal-resistance, halotolerace and UV resistance for studied strains was not detected, probably because of different microbial cell damage/repair mechanisms under the action of these factors.

  7. Antibiotic Sensitivity Pattern of Microorganisms Isolated from ...

    African Journals Online (AJOL)

    ISSN: 0189 1731. Available online at ... Marketing of fish in Nigeria is mostly carried out by local fish .... 8 (34.8). E. coli. 8 (17.8). 4 (18.2). 4 (17.4). Pseudomonas sp. 4 (8.9). 3 (13.6). 1 (4.4) .... related mould generally grow faster and are more ...

  8. Research on Water Resources Design Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Guanghua Qin

    2016-04-01

    Full Text Available Water resources carrying capacity (WRCC is a recently proposed management concept, which aims to support sustainable socio-economic development in a region or basin. However, the calculation of future WRCC is not well considered in most studies, because water resources and the socio-economic development mode for one area or city in the future are quite uncertain. This paper focused on the limits of traditional methods of WRCC and proposed a new concept, water resources design carrying capacity (WRDCC, which incorporated the concept of design. In WRDCC, the population size that the local water resources can support is calculated based on the balance of water supply and water consumption, under the design water supply and design socio-economic development mode. The WRDCC of Chengdu city in China is calculated. Results show that the WRDCC (population size of Chengdu city in development modeI (II, III will be 997 ×104 (770 × 104, 504 × 104 in 2020, and 934 × 104 (759 × 104, 462 × 104 in 2030. Comparing the actual population to the carrying population (WRDCC in 2020 and 2030, a bigger gap will appear, which means there will be more and more pressure on the society-economic sustainable development.

  9. SP/RULINA (ARTHROSPIRA: AN EDIBLE MICROORGANISM: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martba Sáncbez

    2003-06-01

    Full Text Available Spirulina is a photosynthetic, filamentous, helical-shaped, multicellular and green-blue microalga. The two most important species of which are Spirulina maxima and Spirulina platensis. For these microórgarusms cell division occurs by binary fission. Since this material contains chlorophyll a, Jike higher plants, botanists classify it as a microalgae belonging to Cyanophyceae class; but according to bacteriologists it is a bacteria dueto its prokaryotic structure. Before Columbus, Mexicans (Aztecs exploited this microorganism as human food; presently, African tribes (Kanembu use it for the same purpose. Its chemical composition includes proteins (55%-70%, carbohydrates (15%-25%, essential fatty acids (18%, vitamins, minerals and pigments like carotenes, chlorophyll a and phycocyanin. The last one is used in food and cosmetic industries. Spirulina is considered as an excellent food, lacking toxicity and having corrective properties against viral attacks, anemia, tumor growth and malnUtrition. It has been reported in literature that the use of these microalgae as animal food supplement implies enhancement of the yellow coloration of skin and eggs yo !k in poultry and flaDlÍOgos, growth acceleration, sexual maturation and increase of fertility in cattle.

  10. Review: Micro-organic contaminants in groundwater in China

    Science.gov (United States)

    Dong, Weihong; Xie, Wei; Su, Xiaosi; Wen, Chuanlei; Cao, Zhipeng; Wan, Yuyu

    2018-03-01

    Micro-organic contaminants (MOs) in groundwater, which may have adverse effects on human health and ecosystems worldwide, are gaining increased attention in China. A great deal of research has been conducted to investigate their sources, occurrences and behavior in aquifers. This paper reviews the main sources, distribution, concentrations and behavior of a wide range of MOs in groundwater in China. These MOs include well-established persistent organic pollutants—polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), endocrine disrupting chemicals (poly brominated diphenyl ethers (PBDEs), phthalic acid esters (PAEs), bisphenol A (BPA)—and some contaminants of emerging concern such as pharmaceutical and personal care products (antibiotics, caffeine, shampoos) and perfluorinated compounds (PFCs). The results reveal that the main MOs in groundwater are PAHs, organochlorine pesticides (OCPs), PBDEs, PAEs, and antibiotics. Moreover, some PFCs such as perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) have only recently been observed in groundwater as emerging organic contaminants. Additionally, most MOs are distributed in populated and industrialized areas such as the southeast coast of China. Finally, industrial emissions, wastewater treatment plant effluents and agricultural wastewater are found to be dominant sources of MOs in groundwater. Based on the existing pollution levels, regulation and amelioration of MOs are warranted.

  11. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    Science.gov (United States)

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  12. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    Science.gov (United States)

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  13. Fate of indicator microorganisms under nutrient management plan conditions.

    Science.gov (United States)

    Bradford, Scott A; Segal, Eran

    2009-01-01

    Nutrient management plans (NMPs) for application of wastewater from concentrated animal feeding operations are designed to meet crop water and nutrient requirements, but implicitly assume that pathogenic microorganisms in the wastewater will be retained and die-off in the root zone. A NMP was implemented on a field plot to test this assumption by monitoring the fate of several fecal indicator microorganisms (Enterococcus, fecal coliforms, somatic coliphage, and total Escherichia coli). When well-water and wastewater were applied to meet measured evapotranspiration (ET), little advective transport of the indicator microorganisms occurred below the root zone and the remaining microorganisms rapidly died-off (within 1 mo). Additional experiments were conducted in the laboratory to better quantify microorganism transport and survival in the field soil. Batch survival experiments revealed much more rapid die-off rates for the bacterial indicator microorganisms in native than in sterilized soil, suggesting that biotic factors controlled survival. Saturated column experiments with packed field soil, demonstrated much greater transport potential for somatic coliphage than bacterial indicators (Enterococcus and total E. coli) and that the retention rates for the indicator microorganisms were not log-linear with depth. A worst case transport scenario of ponded infiltration on a large undistributed soil column from the field was also initiated and indicator microorganisms were not detected in the column outflow or in the soil at a depth of 65 cm. All of these observations support the hypothesis that a NMP at this site will protect groundwater supplies from microorganism contamination, especially when applied water and wastewater meet ET.

  14. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    Science.gov (United States)

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  15. Influence of microorganisms on the alteration of glasses

    International Nuclear Information System (INIS)

    Besnainou, B.; Libert, M.F.

    1997-01-01

    Under specific conditions, microorganisms may enhance the alteration process of basaltic glass. However bacterial activity in the near field of a glass container would be possible only in environmental conditions provide nutrients and energetic substrates for bacterial growth. Depending of these conditions, microorganisms can: - modify the pH or the medium, - consume or produce soluble organic acids. To qualify the long term behaviour of glass, in presence of microorganisms, a qualitative and quantitative estimation of microbial activity potentialities and their consequences is needed. This must be achieved in studying the availability of the chemical species in the environment. (authors)

  16. Placarding of road vehicles carrying radioactive materials

    International Nuclear Information System (INIS)

    1977-09-01

    The purpose of this Code is to give guidance on the placarding requirements for vehicles carrying radioactive materials by road in Great Britain and on the continent of Europe. Additional placards may be required regarding dangerous properties other than radioactivity. The labelling of packages for transport is dealt with in AECP 1030. This Code deals with two aspects of road vehicle placarding:-(a) placarding on the outside of road vehicles in Great Britain and on the continent of Europe, (b) a fireproof placard fixed in the driver's cab. Responsibility for placarding the vehicle rests with the carrier, but in practice the consignor may need to provide the placards. (U.K.)

  17. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms

    NARCIS (Netherlands)

    Petrik, M.; Haas, H. de; Laverman, P.; Schrettl, M.; Franssen, G.M.; Blatzer, M.; Decristoforo, C.

    2014-01-01

    (68)Ga-triacetylfusarinine C ((68)Ga-TAFC) and (68)Ga-ferrioxamine E ((68)Ga-FOXE) showed excellent targeting properties in Aspergillus fumigatus rat infection model. Here, we report on the comparison of specificity towards different microorganisms and human lung cancer cells (H1299).The in vitro

  18. The evaluation of the classical Kirby-Bauer antibiogram method for the determination of antibiotic resistant microorganisms in tap water

    Directory of Open Access Journals (Sweden)

    Siedlecka Agata

    2017-01-01

    Full Text Available Water supply systems are the main source of potable water for many inhabitants. The European Union and Polish laws demand high quality of tap water, but the aspect of antibiotic resistant bacteria (ARB is not mentioned. The special emphasis is placed on the presence of pathogenic microorganisms in water, determining by the presence of chosen indicators. Although these regulations provide quite good quality of drinking water, the neglect of resistance vectors could lead to a serious threat to human health. In this study the randomly chosen sample of water from the Wroclaw water supply system was tested in order to evaluate the usefulness of Kirby-Bauer antibiogram method for the assessment of the presence of ARB. The susceptibility testing with 6 chosen antibiotics was performed on bacterial strains isolated from the sample. The diameters of growth inhibition zones were measured and the preliminary identification of strains was carried out, including Gram staining and bacterial cellular morphologies assessments. Although full recognition of the drug resistance phenomenon demands the identification of bacterial species for the comparison with susceptibility testing guidelines, this preliminary research could answer the question, whether the Kirby-Bauer method is sufficient for investigations of ARB dwelling in Wroclaw tap water or the other solution should be applied.

  19. Analysis and control of macro - and microorganisms interactions for missions of different duration

    Science.gov (United States)

    Somova, L.; Pechurkin, N.

    In developing different t pes of life support systems for use in space or extremey environments Earth, researchers should pay attention to the functional state and stability of such systems. Special attention has been given to the interactions between macro- and microorganisms. Microorganisms are considered the most suitable indicators of a system's health and its component links. We can divide all space missions into types by which the behavior of man microbe interactions may be categorized: short missions and long ones. For short missions sanitary and hygiene procedures can be used to control the microflora of open and / or physico -chemical systems of life support. F r more prolonged missions hygieneo provisions may become inadequate and opportunistic infection occur rapidly. In general we should understand that the task of maintaining the heals of human being under conditions of stress is not only a question of sanitation and hygiene, but also a problem of the ecological balance within the habitat.

  20. The pathogenic microorganisms in papanicolaou vaginal smears and correlation with inflammation.

    Directory of Open Access Journals (Sweden)

    Esmat Barouti

    2013-03-01

    Full Text Available Non-specific cervicitis or inflammatory changes in a smear report are common which are usually unclear for clinical approaches. To investigate the frequency of inflammation and pathogenic vaginal microorganisms in cervical smears among an Iranian population sample.This cross-sectional study was carried out on Pap smear samples of women referred to gynecological clinic of Taleghani Hospital in Tehran, Iran, between October 2008 and March 2009. This study was conducted on 528 conventional Papanicolaou cervical smears. The frequency and severity of inflammation and prevalence of bacterial vaginosis (BV, Trichomonas vaginalis (TV, and vaginal candidiasis (VC was determined in the samples. Also co-infection of the microorganisms in Pap samples was evaluated. percentage, mean±standard deviation of the outcome parameters were calculated. The comparison between data was performed with the Pearson's chi square or Fisher's exact test.The prevalence of BV, VC, and TV in Pap samples was 17%, 11%, and 0.4% respectively. Overall, the prevalence of these microorganisms in women of reproductive age was higher than menopausal women. There was a significant association between VC and the presence of inflammation in our samples.Based on our results, inflammation in the Pap smears can suggest an infection of VC and the patients should be considered for proper VC treatment.

  1. Antibiotic cytotoxic effects of microorganisms isolated from Jachymov uranium mines

    International Nuclear Information System (INIS)

    Fuska, J.; Fuskova, A.

    1982-01-01

    Microorganisms were isolated from old relinquished uranium mines in Jachymov; they had been growing for several decades in darkness in temperatures of 5 to 12 degC and relative humidity from 80 to 100%. The concentration of uranium salts in mine waters varied from 10 -4 to 10 -5 g.l -1 , that of Rn in the atmosphere was from 0.04 to 40 Bq.l -1 . Of 324 cultures, 18.8% inhibited the growth of Bacillus subtilis, Escherichia coli and Candida pseudotropicalis and 16.6% that of HeLa cells. The frequency of microorganisms inhibiting the growth of HeLa or Ehrlich ascites cells was markedly higher in this set of cultures than among microorganisms kept in culture collections or isolated from other natural habitats. About 10% of the isolated cultures were mycelia sterilia. The following antibiotics were isolated from microorganisms obtained from uranium mines: frequentin, vermiculin, vermicillin, vermistatin, cytostipin and duclauxin. (author)

  2. High throughput screening method for assessing heterogeneity of microorganisms

    NARCIS (Netherlands)

    Ingham, C.J.; Sprenkels, A.J.; van Hylckama Vlieg, J.E.T.; Bomer, Johan G.; de Vos, W.M.; van den Berg, Albert

    2006-01-01

    The invention relates to the field of microbiology. Provided is a method which is particularly powerful for High Throughput Screening (HTS) purposes. More specific a high throughput method for determining heterogeneity or interactions of microorganisms is provided.

  3. SELECTION OF MICROORGANISMS FOR FERMENTATION OF MEAT MATERIALS

    Directory of Open Access Journals (Sweden)

    Danylenko S. G.

    2014-08-01

    Full Text Available Principal criteria for the selection of microorganisms with a wide range of biological and technological properties for fermentation of raw meats are considered. Attention is paid to the main groups of microorganisms such as Micrococсus, Staphylococcus, Lactobacillus, Bifidobacterium and Propionibacterium which are promising for creation of bacterial preparations. To create bacterial preparations, the basic criteria of selection for microorganisms were determined as follows: the ability of microorganisms to be developed within the specific ecological niche (raw meat materials and their influence on flavor characteristics of the final product under the conditions of intensification of production technologies of meat products. Methods used for search and retrieval of technologically promising strains from different natural sources (fresh meats, minced meats, meat, dairy and sour-milk products, vegetables, fruit, brines and mixtures for salting are considered.

  4. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  5. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    Science.gov (United States)

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.

  6. Effect of Microorganisms in the Bioremediation of Spent Engine Oil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    interaction of these factors as suitable conditions are provided (Rahman et al., ... Magnesium, Copper, Zinc, Lead, Cadmium and so on from the wear and tear of the ..... microorganisms would also require essential nutrients as hydrocarbons ...

  7. Anisotropic structures of some microorganisms studied by polarization microscopy

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk

    2014-01-01

    Roč. 59, č. 5 (2014), s. 363-368 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : Polarization microscopy * microorganism Subject RIV: EE - Microbiology, Virology Impact factor: 1.000, year: 2014

  8. A device for continuous microscopic examination of aquatic microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.

    The device consists of a sealed microscopic mount provided with an inlet for liquid medium and an outlet, permitting continuous flow of the liquid. It permits observation of development of marine microorganisms such as thraustochytrids for 3 d...

  9. isolation and identification of the microorganisms most prevalent

    African Journals Online (AJOL)

    problems presenting in eye clinics on a daily basis. With one or two ... microorganisms most prevalent in external eye infections in Owerri urban (as seen Mercy Eye clinic). With the aid of sterile .... through personal contacts. Consequently, the.

  10. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  11. Isolation and screening of microorganisms from a gari fermentation ...

    African Journals Online (AJOL)

    Isolation and screening of microorganisms from a gari fermentation process for starter culture development. Vinodh A Edward, Moutairou Egounlety, Melanie Huch, Petrus J Van Zyl, Suren Singh, Naledzani D Nesengani, Vetja M Haakuria, Charles MAP Franz ...

  12. Evaluation of different phosphorus sources to the Rumen microorganisms by the radiophosphorus incorporation (32P)

    International Nuclear Information System (INIS)

    Vitti, D.M.S.S.; Abdalla, A.L.; Silva Filho, J.C. da

    1990-01-01

    'In vitro' assays were carried out to evaluate the phosphorus utilization from dicalcium phosphate and rock phosphates from Patos de Minas, Tapira and Finos de Tapira. Rumen samples (500 ml) were collected from a fistulated steer and aliquots were incubated for 4 hours with 0,1 μCi 32 p (Na 2 HPO 4 ) in a medium containing the phosphorus sources. After centrifugation, microorganisms were separated and phosphorus incorporation determined. The mean values were 0.137; 0.128; 0.116 and 0.113 mg for Patos, dicalcium phosphate, Tapira and Finos, respectively. There was significant effect of treatment (P [pt

  13. Performance, carcass yield and litter quality of broilers raised on litters treated with micro-organisms

    OpenAIRE

    Cruz,Dayane Prado da; Otutumi,Luciana Kazue; Piau Júnior,Ranulfo; Cervantes,Rodrigo Panucci; Mezalira,Taniara Suelen; Gerônimo,Edson

    2013-01-01

    The present paper aimed at evaluating the effect of adding beneficial micro-organisms to the litters on litter quality, performance and carcass yield for broilers. A total of 240 one-day chicks were used, and randomly distributed in blocks with four treatments and four replications. The following treatments were carried out in the housing: Treatment 1 – Control with weekly spraying of water on the litters; Treatment 2 – Litter treated with a mixture of inoculated and fermented meal by micro-o...

  14. Investigation of sea microorganisms of the genus Alteromonas by 31P-NMR of high resolution

    International Nuclear Information System (INIS)

    Ivanova, E.P.; Isakov, V.V.; Mikhajlov, V.V.; Sokolova, S.V.; Gorshkova, N.M.; Fedosov, Yu.V.; Kiprianova, E.A.

    1993-01-01

    Comparative analysis of the 31 P-NMR spectra of intact cells of bacteria belonging to the genus Alteromonas, the producers of alkaline phosphatase was carried out. Differences in the content of phosphate-containing compounds were detected in individual species of the genus Alteromonas. By comparing the data on 31 P-NMR spectra, the electron micrographs and phosphatase activities, the possibility of revealing the presence of capsules was shown. Peculiar features of the 31 P-NMR spectra of alteromonades, as compared with other taxonomic groups of microorganisms, have been discussed

  15. Description of bioremediation of soils using the model of a multistep system of microorganisms

    Science.gov (United States)

    Lubysheva, A. I.; Potashev, K. A.; Sofinskaya, O. A.

    2018-01-01

    The paper deals with the development of a mathematical model describing the interaction of a multi-step system of microorganisms in soil polluted with oil products. Each step in this system uses products of vital activity of the previous step to feed. Six different models of the multi-step system are considered. The equipping of the models with coefficients was carried out from the condition of minimizing the residual of the calculated and experimental data using an original algorithm based on the Levenberg-Marquardt method in combination with the Monte Carlo method for the initial approximation finding.

  16. Isolation of microorganisms for biological control the moniliophthora roreri

    OpenAIRE

    suarez contreras, liliana yanet; Rangel Riaño, Alba Luz

    2014-01-01

    Moniliophlhora roreri is the causal agent of cocoa Moniliasis, which produces losses of up to 60% of the crop, as it affects only its commercial product, the cob. Biological control appears as an alternative management, using endophytic microorganisms. The reason because of this research came up was that it was aimed to isolate microorganisms with antagonist potential for biological control towards the phytopathogen M. roreri in Norte de Santander. This is done through isolation and identifica...

  17. Microorganisms having enhanced tolerance to inhibitors and stress

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  18. Microorganisms -indicators of the level of soil pollution with lead

    OpenAIRE

    Stavreva Veselinovska, Snezana

    2011-01-01

    Environmental pollution with heavy metals present a real threat to wildlife because the metals cannot be naturally decomposed as is the case with organic pollutants, and as such they can survive in the environment while accumulating the heavy metals in different parts. Pollution with metals can affect different organisms in the environment, such as microorganisms, plants and animals, but the degree of toxicity depends on the species. Microorganisms have different mechanisms of coping with...

  19. The microorganisms as a renewable source of ecological clean fuel

    International Nuclear Information System (INIS)

    Shalygo, N.V.; Mel'nikov, S.S.; Manankina, E.E.; Budakova, E.A.; Kolyago, V.M.

    2006-01-01

    Five families of microorganisms (Bacillaceae, Rhodospirillaceae, Cyanophyceae, Chlorophyceae and Euglenophyceae) as hydrogen producers were tested and the conditions that are necessary for hydrogen photoproduction were investigated. It was shown, that the most effective producers of hydrogen were Rhodobacter spheroides, Clostridium sp.; Euglena gracilis var. bacillaris and Chlamydomonas reinhardtii. Addition of glucose, iron and vanadium salts resulted in the increase of hydrogen production. Polycultures consisted of two or three microorganisms were more effective hydrogen producers compared to separate monocultures. (authors)

  20. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  1. Swimming of Microorganisms Viewed from String and Membrane Theories

    OpenAIRE

    Kawamura, Masako; Sugamoto, Akio; Nojiri, Shin'ichi

    1993-01-01

    Swimming of microorganisms is studied from a viewpoint of extended objects (strings and membranes) swimming in the incompressible f luid of low Reynolds number. The flagellated motion is analyzed in two dimensional fluid, by using the method developed in the ciliated motion with the Joukowski transformation. Discussion is given on the conserved charges and the algebra which are associated with the area (volume)- preserving diffeomorphisms giving the swimming motion of microorganisms. It is al...

  2. Evolution, Metabolism and Biotechnological Usage of Methylotrophic Microorganisms

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Methylotrophs – aerobic chemoheterotrophic microorganisms submitted by cocci and bacilli mobile forms, are inhabitants of reservoirs and soils of various type, where there are going on various processes of decomposition of organic substances with formation of the one-carbon С1-compounds and some С2-, and С3-compounds, capable to be assimilated by methylotrophs. These microorganisms assimilating carbon on ribuloso-5-monophospate and serine pathways, are allocated from soil ground, the sewage c...

  3. Cryptococcus neoformans carried by Odontomachus bauri ants

    Directory of Open Access Journals (Sweden)

    Mariana Santos de Jesus

    2012-06-01

    Full Text Available Cryptococcus neoformans is the most common causative agent of cryptococcosis worldwide. Although this fungus has been isolated from a variety of organic substrates, several studies suggest that hollow trees constitute an important natural niche for C. neoformans. A previously surveyed hollow of a living pink shower tree (Cassia grandis positive for C. neoformans in the city of Rio de Janeiro, Brazil, was chosen for further investigation. Odontomachus bauri ants (trap-jaw ants found inside the hollow were collected for evaluation as possible carriers of Cryptococcus spp. Two out of 10 ants were found to carry phenoloxidase-positive colonies identified as C. neoformans molecular types VNI and VNII. The ants may have acted as a mechanical vector of C. neoformans and possibly contributed to the dispersal of the fungi from one substrate to another. To the best of our knowledge, this is the first report on the association of C. neoformans with ants of the genus Odontomachus.

  4. Synergistic interface behavior of strontium adsorption using mixed microorganisms.

    Science.gov (United States)

    Hu, Wenyuan; Dong, Faqin; Yang, Guangmin; Peng, Xin; Huang, Xiaojun; Liu, Mingxue; Zhang, Jing

    2017-08-10

    The proper handling of low-level radioactive waste is crucial to promote the sustainable development of nuclear power. Research into the mechanism for interactions between bacterium and radionuclides is the starting point for achieving successful remediation of radionuclides with microorganisms. Using Sr(II) as a simulation radionuclide and the mixed microorganisms of Saccharomyces cerevisiae and Bacillus subtilis as the biological adsorbent, this study investigates behavior at the interface between Sr(II) and the microorganisms as well as the mechanisms governing that behavior. The results show that the optimal ratio of mixed microorganisms is S. cerevisiae 2.0 g L -1 to B. subtilis 0.05 g L -1 , and the optimal pH is about 6.3. Sr(II) biosorption onto the mixed microorganisms is spontaneous and endothermic in nature. The kinetics and the equilibrium isotherm data of the biosorption process can be described with pseudo-second-order equation and the Langmuir isotherm equation, respectively. The key interaction between the biological adsorbent and Sr(II) involves shared electronic pairs arising from chemical reactions via bond complexation or electronic exchange, and spectral and energy spectrum analysis show that functional groups (e.g., hydroxyl, carboxyl, amino, amide) at the interface between the radionuclide and the mixed microorganisms are the main active sites of the interface reactions.

  5. AIRBORNE MICROORGANISMS IN BROILER PROCESSING PLANTS.

    Science.gov (United States)

    KOTULA, A W; KINNER, J A

    1964-05-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft(3) of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed.

  6. Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef.

    Science.gov (United States)

    Midelet, Graziella; Carpentier, Brigitte

    2002-08-01

    The quantity of microorganisms that may be transferred to a food that comes into contact with a contaminated surface depends on the density of microorganisms on the surface and on the attachment strengths of the microorganisms on the materials. We made repeated contacts between pieces of meat and various surfaces (stainless steel and conveyor belt materials [polyvinyl chloride and polyurethane]), which were conditioned with meat exudate and then were contaminated with Listeria monocytogenes, Staphylococcus sciuri, Pseudomonas putida, or Comamonas sp. Attachment strengths were assessed by the slopes of the two-phase curves obtained by plotting the logarithm of the number of microorganisms transferred against the order number of the contact. These curves were also used to estimate the microbial population on the surface by using the equation of A. Veulemans, E. Jacqmain, and D. Jacqmain (Rev. Ferment. Ind. Aliment. 25:58-65, 1970). The biofilms were characterized according to their physicochemical surface properties and structures. Their exopolysaccharide-producing capacities were assessed from biofilms grown on polystyrene. The L. monocytogenes biofilms attached more strongly to polymers than did the other strains, and attachment strength proved to be weaker on stainless steel than on the two polymers. However, in most cases, it was the population of the biofilms that had the strongest influence on the total number of CFU detached. Although attachment strengths were weaker on stainless steel, this material, carrying a smaller population of bacteria, had a weaker contaminating capacity. In most cases the equation of Veulemans et al. revealed more bacteria than did swabbing the biofilms, and it provided a better assessment of the contaminating potential of the polymeric materials studied here.

  7. Main Concerns of Pathogenic Microorganisms in Meat

    Science.gov (United States)

    Nørrung, Birgit; Andersen, Jens Kirk; Buncic, Sava

    Although various foods can serve as sources of foodborne illness, meat and meat products are important sources of human infections with a variety of foodborne pathogens, i.e. Salmonella spp., Campylobacter jejuni/coli, Yersinia enterocolitica, Verotoxigenic E. coli and, to some extent, Listeria monocytogenes. All these may be harboured in the gastrointestinal tract of food-producing animals. The most frequent chain of events leading to meat-borne illness involves food animals, which are healthy carriers of the pathogens that are subsequently transferred to humans through production, handling and consumption of meat and meat products. Occurrences of Salmonella spp., C. jejuni/coli, Y. enterocolitica and Verotoxigenic E. coli in fresh red meat vary relatively widely, although most often are between 1 and 10%, depending on a range of factors including the organism, geographical factors, farming and/or meat production practices.

  8. Screening and Isolation of Associated Bioactive Microorganisms from Fasciospongia cavernosa from of Visakhapatnam Coast, Bay of Bengal

    Directory of Open Access Journals (Sweden)

    P. Shamsher Kumar

    2012-01-01

    Full Text Available Nature, especially the marine environment, provides the most effective drugs used in human therapy. Among the metazoans, the marine sponges produce the most potent and highly selective bioactive secondary metabolites. These animals (or their associated symbiotic microorganisms synthesize secondary metabolites whose activity and selectivity has developed during their long evolutionary history. During the course of exploitation of these resources two marine sponges, Fasciospongia cavernosa doc var.brown (dark brown Fasciospongia cavernosa doc var.yellow (yellow collected from the visakhapatnam coast of Bay of Bengal were investigated in order to assess the potential of these microorganisms for the production of antimicrobial compounds. The aqueous and organic extracts of both the sponges showed broad spectrum antibiotic activity. In this study a total of 178 microorganisms were isolated from different parts of two sponges and most of them from middle part of the sponge. The isolates were investigated in order to assess the potential of these microorganisms for the production of antimicrobial compounds. Testing for antimicrobial activities were performed against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, fungi (Candida albicans, Aspergillus niger and 10 pathogenic organisms. Resulting mean diameter of inhibition zones revealed isolates B4 & B6 were the most potent of all the isolates. The present study has revealed the presence of high numbers of diverse culturable microorganisms associated with the marine sponges from Visakhapatnam Coast of Bay of Bengal as well as their potential to produce bioactive metabolites.

  9. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  10. Detecting Vessels Carrying Migrants Using Machine Learning

    Science.gov (United States)

    Sfyridis, A.; Cheng, T.; Vespe, M.

    2017-10-01

    Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  11. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  12. DETECTING VESSELS CARRYING MIGRANTS USING MACHINE LEARNING

    Directory of Open Access Journals (Sweden)

    A. Sfyridis

    2017-10-01

    Full Text Available Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  13. Influence of temperature on the fixation and penetration of silver during the chalcopyrite leaching using moderate thermophilic microorganisms

    International Nuclear Information System (INIS)

    Cancho, L.; Blazquez, M. L.; Munoz, J. A.; Gonzalez, F.; Ballester, A.

    2004-01-01

    Bio leaching of chalcopyrite using mesophilic microorganisms considerable improves in the presence of silver. However, the studies carried out with moderate thermophilic microorganisms do not show a significant improvement with regard to the use of mesophilic bacteria. The main objective of the present work has been to study the silver fixation on chalcopyrite ar 35 and 45 degree centigree and its influence on the microbiological attack. Different observations using SEM, EDS microanalysis and concentration profiles using electron microprobe have been carried out. The study of the different samples showed that silver fixation was more favourable at 35 degree centigree than at 45 degree centigree. In addition, bacterial action improved silver penetration through attack cracks. (Author)

  14. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  15. Sperm immobilization by dental focus microorganisms.

    Science.gov (United States)

    Linossier, A; Thumann, A; Bustos-Obregon, E

    1982-01-01

    Focal infections and their ability to produce alterations in different tissues have been in dispute for long time. The purpose of this work was to observe "in vitro" the effect of an Escherichia coli filtrate obtained from open pulpar necrosis on human sperm motility. It was observed that the E. coli filtrate produced a loss in sperm motility. The immobilizating factor was studied and characterized as a heat-stable, resistant to lyophilization and non-dializable substance, which could via blood stream reach the male reproductive system and affect sperm motility.

  16. Can `loss and damage' carry the load?

    Science.gov (United States)

    Verchick, Robert R. M.

    2018-05-01

    Even assuming a heroic rush towards carbon reduction and adaptation, some regions of the world will be hammered hard by climate impacts. Thus, a global consensus now sees the need for a supplemental plan to deal with the kind of harms that cannot be avoided-what Parties call `loss and damage'. For a loss-and-damage plan to work, it must be capable of carrying the load, the load being whatever minimal standards that morality and political consensus require. But if residual risk climbs too high, it will fall short of even the most basic expectations. The Paris Agreement calls for holding the rise in global average temperature to `well below 2°C above pre-industrial levels', while working to limit the increase to 1.5°C. How much difference is in that half-degree? From the point of view of residual risk, quite a lot. According to a 2016 study published by the European Geosciences Union, a jump from 1.5°C to 2°C could produce outsize impacts, particularly in tropical latitudes. That difference could mark the line between a plan that is politically and morally defensible and one that is not. At the very least, the difference is enough to inform the design and expectations of any future plan. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  17. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains.

    Science.gov (United States)

    Taheur, Fadia Ben; Fedhila, Kais; Chaieb, Kamel; Kouidhi, Bochra; Bakhrouf, Amina; Abrunhosa, Luís

    2017-06-19

    A strategy to reduce the deleterious effects of mycotoxins is to use dietary supplements that contain microorganisms that bind mycotoxins and decrease their gastrointestinal absorption. Novel strains were isolated from a Kefir culture and assessed for their mycotoxin adsorption and biotransformation ability. The most active strains were identified using DNA sequencing, and the stability of microorganism/mycotoxin complexes was evaluated using buffer solutions to simulate the pH conditions in the gastrointestinal tract. Our results showed that the microorganism consortium of Kefir grains adsorbed 82 to 100% of aflatoxin B1 (AFB1), zearalenone (ZEA) and ochratoxin A (OTA) when cultivated in milk. The main strains that were capable of mycotoxin adsorption were identified as Lactobacillus kefiri, Kazachstania servazzii and Acetobacter syzygii. The strain L. kefiri KFLM3 was the most active, adsorbing 80 to 100% of the studied mycotoxins when cultivated in milk. Nonetheless, the strain K. servazzii KFGY7 retained more mycotoxin after the desorption experiments (65, 69 and 67% for AFB1, OTA and ZEA, respectively). These findings suggest that Kefir consumption may help to reduce gastrointestinal absorption of these mycotoxins and consequently reduce their toxic effects. The isolated strains may be of interest for the development of fermented dairy products for human consumption that have a new probiotic characteristic, the adsorption of mycotoxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. OPTICAL AND DIELECTRIC SENSORS BASED ON ANTIMICROBIAL PEPTIDES FOR MICROORGANISMS DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Rafael Ramos Silva

    2014-08-01

    Full Text Available Antimicrobial peptides (AMPs are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories.

  19. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    Directory of Open Access Journals (Sweden)

    Ima Yudha Perwira

    2016-08-01

    Full Text Available Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC and total nitrogen (TN in 427 agricultural soils. The soil bacterial biomass was generally positively correlated with TC and TN contents in the soil, but some soils had a low bacterial biomass despite containing high amounts of TC and TN. Soils of two fields (fields A and B with low bacterial biomass but high TC and TN contents were investigated. Long-term pesticide use (dichloropropane-dichloropropene and fosthiazate in field A and chloropicrin in field B appeared to have contributed to the low bacterial biomass observed in these soils. Soil from field A was treated with different organic materials and incubated for 1 month under laboratory conditions. The bacterial biomass in field A soil was enhanced in treatments containing organic materials rich in TN. Application of organic materials stimulated the growth of microorganisms with the potential to bioremediate pesticide-polluted soils.

  20. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    Science.gov (United States)

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  1. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    Science.gov (United States)

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  2. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Zoumpopoulou, Georgia; Foligné, Benoit; Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer's health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut-brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.

  3. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches

    Directory of Open Access Journals (Sweden)

    Konstantinos ePapadimitriou

    2015-02-01

    Full Text Available Over the past decades the food industry has been revolutionized towards the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut-brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.

  4. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches

    Science.gov (United States)

    Papadimitriou, Konstantinos; Zoumpopoulou, Georgia; Foligné, Benoit; Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms. PMID:25741323

  5. [Relationships between air conditioning, airborne microorganisms and health].

    Science.gov (United States)

    Parat, S; Perdrix, A; Baconnier, P

    1999-01-01

    Concurrently with the increase of air-conditioning, potentially severe or frequent new diseases have emerged, giving rise to social and economical consequences. The first part of this work is a state of the art review of the relationships between air-conditioning, airborne microorganisms and health, through a technical, metrological and medical approach. The second part presents four studies performed in this field. Two of them deal with the relationship between airborne microorganisms and technical features of air-conditioning. Measurements performed on actual sites demonstrated the benefit of using high efficiency filters and low risk components in air-conditioning systems. The third study was aimed to look for a relationship between airborne microorganisms and sick building syndrome symptoms. Statistical analyses of individual data revealed significant associations between airborne bacteria or fungi and symptoms. These results may be the first step in determining a dose-response relationship, in order to define threshold limit values in this field. In the fourth study, the contribution of particle counting in assessing exposure to airborne microorganisms was explored by monitoring simultaneous variations of microbial and particle concentrations. The results showed that associating particle counting may allow to detect microbial variations instantaneously, and therefore improve the assessment of exposure to airborne microorganisms.

  6. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.

    Science.gov (United States)

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  7. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    Directory of Open Access Journals (Sweden)

    Lizeth Manuela Avellaneda-Torres

    2014-12-01

    Full Text Available A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP, Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS of ribosomal DNA for fungi. Multivariate statistical analysis (MVA was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  8. Role of Microorganisms in the Removal of Radionuclides from Soil

    International Nuclear Information System (INIS)

    Bashandy, A.S.

    2007-01-01

    Resistance to radio nuclides and their accumulation by bacteria is a wide spread phenomenon that can be explored for the improvement of the environment. Metal resistant bacteria have developed very efficient and varying mechanisms for tolerating high levels of. toxic metals and thus hold potential for controlling heavy metal pollution. This property has been successfully applied for metal removal from soil. A total of 59 microorganisms were isolated from 5 locations in Sinai Desert. The microorganisms were examined for resistance to strontium, cobalt and cesium by spot technique on two kinds of media containing metals, Nutrient agar and King B agar. The resistant microorganisms were identified morphologically by Gram stain. The microorganisms were resistant to Sr and Cs at concentrations up to 200 mg/I and while Co proved to be toxic at a concentration of 100 mg/ I. The mechanisms of metal resistance to high concentrations were studied. Evidence show that the isolated microorganisms can uptake high concentrations of the studied elements. The results also, indicated that no binding proteins are released in the environment of the studied isolate

  9. Cybernetic modeling of adaptive prediction of environmental changes by microorganisms.

    Science.gov (United States)

    Mandli, Aravinda R; Modak, Jayant M

    2014-02-01

    Microorganisms exhibit varied regulatory strategies such as direct regulation, symmetric anticipatory regulation, asymmetric anticipatory regulation, etc. Current mathematical modeling frameworks for the growth of microorganisms either do not incorporate regulation or assume that the microorganisms utilize the direct regulation strategy. In the present study, we extend the cybernetic modeling framework to account for asymmetric anticipatory regulation strategy. The extended model accurately captures various experimental observations. We use the developed model to explore the fitness advantage provided by the asymmetric anticipatory regulation strategy and observe that the optimal extent of asymmetric regulation depends on the selective pressure that the microorganisms experience. We also explore the importance of timing the response in anticipatory regulation and find that there is an optimal time, dependent on the extent of asymmetric regulation, at which microorganisms should respond anticipatorily to maximize their fitness. We then discuss the advantages offered by the cybernetic modeling framework over other modeling frameworks in modeling the asymmetric anticipatory regulation strategy. Copyright © 2013. Published by Elsevier Inc.

  10. Mini-review: Inhibition of biofouling by marine microorganisms.

    Science.gov (United States)

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  11. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    Science.gov (United States)

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  12. Microbial genome-enabled insights into plant-microorganism interactions.

    Science.gov (United States)

    Guttman, David S; McHardy, Alice C; Schulze-Lefert, Paul

    2014-12-01

    Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.

  13. Organotins and microorganisms. Yuki suzu kagobutsu to biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, S.; Onogi, H. (Okayama Univ., Okayama (Japan). Faculty of Pharmaceutical Sciences)

    1992-08-10

    Tributyltin (TBT) and triphenyltin have higher toxicity than other organotin compounds and are used as biocides, but in recent years the pollution of water and aquatic organisms has become a social problem. This paper describes the interaction between organotin compounds and microorganisms, centering on the decomposition of TBT. Part of microalgae whose activity is promoted by light or nutritive salts within an aquatic environment play an important role in TBT decomposition. Diatoms, and dinoflagellataes are mentioned as the examples. Moreover, an example in which microorganisms promote the transformation of inorganotin compounds to dimethyltin or trimethyltin is given. However, it is pointed out in this paper that the action of microorganisms relates greatly to the continuance of existence of organotins in environments, but the degradation efficiency is considered to be very low and prevention against pollution is of primary importance. 32 refs., 2 figs., 3 tabs.

  14. Microscale interactions between earthworms and microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Zirbes, L.

    2012-01-01

    Full Text Available Microorganisms are well adapted to their soil microhabitat where they live together in consortia, interacting with other living members, including earthworms. This literature review consists of four sections that focus on microscale interactions between earthworms and microorganisms. The first part is devoted to nephridia symbiosis. Recent discoveries show that Verminephrobacter spp. is present as a symbiont in earthworm nephridia. The second section deals with earthworm food preference and focuses on the major hypotheses of foraging strategies. The third section presents evidence of gut symbionts and highlights the need for additional studies in this field. The last section of this review explains why microorganism activities are enhanced in burrows and casts of earthworms.

  15. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Gonzalez-Barreiro, O.; Rioboo, C.; Herrero, C.; Cid, A.

    2006-01-01

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  16. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barreiro, O. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Rioboo, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Herrero, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Cid, A. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain)]. E-mail: cid@udc.es

    2006-11-15

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.

  17. Colonization of compacted backfill materials by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, L.M.; Stroes-Gascoyne, S.; Miller, S.H.; Hamon, C.J.; Dixon, D.A

    1997-11-01

    Experiments were carried out to investigate the occurrence of pore clogging in backfill by bacterial activity. Four differently prepared and treated backfill materials were used to determine the effects of the quality and preparation method of the backfill materials on the occurrence of pore clogging. The backfills were compacted in permeameters which were infused with either groundwater or sterile distilled water. A constant pressure was applied to increase the rate of saturation. Results showed different inflow rates for the four materials despite the use of the same packing method for each specimen, the same dry density for each backfill and indications of similar initial pore volumes. These differences were likely caused by the fact that the two slowest-flowing permeameters contained a mixture of Na-bentonite and illitic shale simulating a glacial lake clay. Hydraulic conductivities measured ranged from 5 x 10{sup -11} m/s to 5 x 10{sup -12} m/s for the backfills containing glacial lake clay and 4 x 10{sup -12} m/s to 9 s 10{sup -13} m/s for the backfills containing a mixture of Na-bentonite and illitic shale. Weekly samples of outflow from the permeameters were analyzed microbially. Aerobic heterotrophs were low initially but stabilized around 10{sup 6} to 10{sup 7} colony forming units (CFU)/mL after about one week. Anaerobic heterotrophs stabilized at around 10{sup 2} to 10{sup 3} CFU/mL. Sulphate-reducing bacteria (SRB) were measured by the most probable number (MPN) method. Results showed low initial numbers but they stabilized around 10{sup 4} MPN/mL after one to two months. No significant numbers of aerobic or anaerobic sulphur oxidizing bacteria were found. Enumeration of methanogens indicated that they were generally present in the permeameters that contained non-autoclaved backfill. Results are partially inconclusive because of the lack of confirmation of methane gas present in the headspace of part of the MPN culture tubes. Microbial pore clogging

  18. Colonization of compacted backfill materials by microorganisms

    International Nuclear Information System (INIS)

    Lucht, L.M.; Stroes-Gascoyne, S.; Miller, S.H.; Hamon, C.J.; Dixon, D.A.

    1997-11-01

    Experiments were carried out to investigate the occurrence of pore clogging in backfill by bacterial activity. Four differently prepared and treated backfill materials were used to determine the effects of the quality and preparation method of the backfill materials on the occurrence of pore clogging. The backfills were compacted in permeameters which were infused with either groundwater or sterile distilled water. A constant pressure was applied to increase the rate of saturation. Results showed different inflow rates for the four materials despite the use of the same packing method for each specimen, the same dry density for each backfill and indications of similar initial pore volumes. These differences were likely caused by the fact that the two slowest-flowing permeameters contained a mixture of Na-bentonite and illitic shale simulating a glacial lake clay. Hydraulic conductivities measured ranged from 5 x 10 -11 m/s to 5 x 10 -12 m/s for the backfills containing glacial lake clay and 4 x 10 -12 m/s to 9 s 10 -13 m/s for the backfills containing a mixture of Na-bentonite and illitic shale. Weekly samples of outflow from the permeameters were analyzed microbially. Aerobic heterotrophs were low initially but stabilized around 10 6 to 10 7 colony forming units (CFU)/mL after about one week. Anaerobic heterotrophs stabilized at around 10 2 to 10 3 CFU/mL. Sulphate-reducing bacteria (SRB) were measured by the most probable number (MPN) method. Results showed low initial numbers but they stabilized around 10 4 MPN/mL after one to two months. No significant numbers of aerobic or anaerobic sulphur oxidizing bacteria were found. Enumeration of methanogens indicated that they were generally present in the permeameters that contained non-autoclaved backfill. Results are partially inconclusive because of the lack of confirmation of methane gas present in the headspace of part of the MPN culture tubes. Microbial pore clogging was not evident for the two fastest

  19. The hair follicle mites (Demodex spp.). Could they be vectors of pathogenic microorganisms?

    Science.gov (United States)

    Wolf, R; Ophir, J; Avigad, J; Lengy, J; Krakowski, A

    1988-01-01

    The hair follicle mites Demodex folliculorum and D. brevis are the most common permanent ectoparasites of Man. Ordinarily they are harmless to their human host and appear to be of no medical significance. We present, however, an unusual finding regarding this mite, namely, that in a potassium hydroxide mount of a skin scraping from a mycotic plaque we found numerous Demodex mites containing inside them spores of Microsporum canis. This could mean that the putatively inoffensive Demodex has the potential to ingest various microorganisms that are found in its niche and transport them to other areas of the skin or possibly to other individuals.

  20. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  1. The database on transgenic luminescent microorganisms as an instrument of studying a microbial component of closed ecosystems

    Science.gov (United States)

    Boyandin, A. N.; Lankin, Y. P.; Kargatova, T. V.; Popova, L. Y.; Pechurkin, N. S.

    Luminescent transgenic microorganisms are widely used for study of microbial communities' functioning including closed ones. Bioluminescence is of high sensitive to effects of different environmental factors. Integration of lux-genes into different metabolic ways allows studying many aspects of microorganisms' life permitting to carry out measurements in situ. There is much information about applications of bioluminescent bacteria in different researches. But for effective using these data their summarizing and accumulation in common source is required. Therefore an information system on characteristics of transgenic microorganisms with cloned lux-genes was created. The database and client software related were developed. A database structure includes information on common characteristics of cloned lux-genes, their sources and properties, on regulation of gene expression in bacterial cells, on dependence of bioluminescence manifestation on biotic, abiotic and anthropogenic environmental factors. The database also can store description of changes in bacterial populations depending on environmental changes. The database created allows storing and using bibliographic information and also links to web sites of world collections of microorganisms. Internet publishing software permitting to open access to the database through the Internet is developed.

  2. Chemical Composition of Mentha spicata L. subsp. tomentosa and M. pulegium L., and their Antimicrobial Activity on Strong Pathogen Microorganisms

    Directory of Open Access Journals (Sweden)

    Emre SEVİNDİK

    2017-03-01

    Full Text Available Mentha L., recognized as a medical and aromatic plant, is a general name affiliated to mint species and belongs to Labiatae family. Some species are used as fresh vegetables in the Turkish kitchen and they can also be used in salads. In addition, some species have been used as a spice in food. In this study, chemical composition and antimicrobial activity towards some pathogenics (gram + and gram - microorganisms of the essential oils Mentha spicata L. subsp. tomentosa (Briq. Harley, Mentha pulegium L. grown under West Anatolian ecological conditions were investigated. Extractions were carried out with Clevenger apparatus and essential oil composition was determined by Gas Chromatography-Mass Spectrometry (GC-MS. Microorganisms used for the antimicrobial studies were Methicillin-resistant Staphylococcus aureus (MRSA, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa, Enterecoccus faecium DSM 13590, Escherichia coli Q157:H7 and Bacillus cereus CCM99.  As a result, M. pulegium and M. spicata subsp. tomentosa were found to be rich in piperitenone oxide: 72.77% and 28.84%, respectively. Each of the oils was found to possess antimicrobial properties against test microorganisms. Essential oils obtained from Mentha species give positive effect on all microorganisms.

  3. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca; Scoma, Alberto; Michoud, Gregoire; Aulenta, Federico; Boon, Nico; Borin, Sara; Kalogerakis, Nicolas; Daffonchio, Daniele

    2017-01-01

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  4. Effect of enhanced UV-B radiation on motile microorganisms

    International Nuclear Information System (INIS)

    Haeder, D.P.

    1985-02-01

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.) [de

  5. Stethoscopes as potential intrahospital carriers of pathogenic microorganisms.

    Science.gov (United States)

    Campos-Murguía, Alejandro; León-Lara, Ximena; Muñoz, Juan M; Macías, Alejandro E; Alvarez, José A

    2014-01-01

    Stethoscopes can take part in the transmission of health care-associated infections. We cultured 112 stethoscopes by direct imprint on blood agar to estimate the prevalence of potentially pathogenic microorganisms. Forty-eight (47%) produced 50 potentially pathogenic microorganisms; from these, 43 (86%) were Staphylococcus aureus, of which 18 (42%) were methicillin-resistant S. aureus. We concluded that stethoscopes should be considered as potential fomites and must be disinfected routinely before and after each patient contact. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  6. Collective Motion of Micro-organisms from Field Theoretical Viewpoint

    OpenAIRE

    Nojiri, Shin'ichi; Kawamura, Masako; Sugamoto, Akio

    1995-01-01

    We analyze the collective motion of micro-organisms in the fluid and consider the problem of the red tide. The red tide is produced by the condensation of the micro-organisms, which might be a similar phenomenon to the condensation of the strings. We propose a model of the generation of the red tide. By considering the interaction between the micro- organisms mediated by the velocity fields in the fluid, we derive the Van der Waals type equation of state, where the generation of the red tide ...

  7. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Andrade Carolina M.M.C.

    1999-01-01

    Full Text Available Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those microorganisms growing from 70oC to 100°C and to indicate potential opportunities for useful applications derived from these features.

  8. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca

    2017-05-13

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  9. 2.3. Global-scale atmospheric dispersion of microorganisms

    Science.gov (United States)

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  10. Viruses, Other Pathogenic Microorganisms and Esophageal Cancer.

    Science.gov (United States)

    Xu, Wenji; Liu, Zhongshu; Bao, Quncha; Qian, Zhikan

    2015-05-01

    Esophageal cancer (EC) is the eighth most prevalent malignant tumor and the sixth leading cause of cancer mortality throughout the world. Despite the technical developments in diagnosis and treatment, the 5-year survival rate is still low. The etiology of EC remains poorly understood; multiple risk factors may be involved and account for the great variation in EC incidence in different geographic regions. Infection with carcinogenetic pathogens has been proposed as a risk factor for EC. This review explores the recent studies on the association of human papillomavirus (HPV), Epstein-Barr virus (EBV), Helicobacter pylori and esophageal bacterial biota with EC. Among the above-mentioned pathogens, HPV most likely contributes to esophageal squamous cell carcinoma (ESCC) in high-risk populations. New techniques are being applied to studies on the role of infection in EC, which will inevitably bring novel ideas to the field in the near future. Multiple meta-analyses support the finding of a higher HPV detection rate in regions associated with high risk for ESCC compared to low-risk areas. A potential role of HPV in the rise of esophageal adenocarcinoma (EAC) was proposed recently. However, further studies are required before a firm conclusion can be drawn. Less work has been done in studying the association between EBV and ESCC, and the results are quite controversial. H. pylori infection is found to be inversely related to EC, which is probably due to the reduced incidence of gastroesophageal reflux disease. Analysis of the esophageal bacterial biota revealed distinct clusters of bacteria in normal and diseased esophagi. A type II microbiome rich in Gram-negative bacteria potentially contributes to EAC by inducing chronic inflammation. Novel findings from such studies as these may benefit public health by justifying anti-infection measures to prevent EC.

  11. Formigas como veiculadoras de microrganismos em ambiente hospitalar Ants as carriers of microorganisms in hospital environments

    Directory of Open Access Journals (Sweden)

    Rogério dos Santos Pereira

    2008-10-01

    Full Text Available Existe preocupação sobre as reais possibilidades de agravos à saúde pública que possam ser causados pela veiculação de agentes patogênicos através de formigas urbanas. O presente trabalho teve por objetivo isolar e identificar os microrganismos associados às formigas em ambiente hospitalar. Foram coletadas 125 formigas, da mesma espécie, em diferentes unidades de um Hospital Universitário. Cada formiga foi coletada com swab embebido em solução fisiológica e transferida para um tubo com caldo Brain Heart Infusion e incubados 35ºC por 24 horas. A partir de cada tubo, com crescimento, foram realizadas inoculações, em meios específicos, para isolamento dos microrganismos. As formigas apresentaram alta capacidade de veiculação de grupos de microrganismos, sendo que 63,5% das cepas eram bacilos Gram positivos produtores de esporos, 6,3% eram bacilos Gram negativos, cocos Gram positivos corresponderam a 23,1% das cepas, 6,7% eram fungos filamentosos e 0,5% eram leveduras. Desta forma, pode-se inferir que as formigas podem ser um dos responsáveis pela disseminação de microrganismos em ambientes hospitalares.Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35ºC for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci

  12. Elongamento do enxerto de tendões do músculo grácial e semitendinoso humanos: estudo realizado em cadáveres de adultos jovens Graft semitendinosus and gracilis human muscle tendons elongation: a study carried out on young adult human cadavers

    Directory of Open Access Journals (Sweden)

    Sérgio Rocha Piedade

    2005-01-01

    Full Text Available Na cirurgia de reconstrução do ligamento cruzado anterior do joelho, os enxertos de tendões autólogos são a principal opção como substitutos ligamentares. Entretanto, uma das razões da falha da reconstrução ligamentar com tecidos moles é o estiramento ou elongamento do enxerto com o tempo. Neste trabalho, foram ensaiados oito tendões do músculo grácil e oito do músculo semitendinoso humanos, obtidos de quatro cadáveres do sexo masculino, com idade média de 24,5 anos. Cada tendão foi submetido a uma deformação relativa constante de 2,5% durante 600 s, com registro contínuo do relaxamento de força. A seguir, o tendão retornava ao seu comprimento inicial e era mantido num período de repouso de 300 s. Após este intervalo, um segundo ensaio, semelhante ao primeiro, era realizado. A velocidade de carregamento empregada foi de 10% do comprimento inicial do corpo de prova por segundo. Foram obtidos valores de força inicial, com 300 s e 600 s nos dois ensaios. A análise estatística sugere um comportamento mecânico mais uniforme para o tendão do músculo semitendinoso quando comparado ao tendão do músculo grácil.In the anterior cruciate ligament knee surgery reconstruction, autologous tendons graft remains as a main option as substitutive ligaments. However time effect on graft elongation is the main reason of ligament reconstruction failure. Traction tests have been performed on eight gracilis as well as on eight semitendinosus human muscles tendons obtained from four male cadavers at an average of 24.5 years. Each tendon specimen has been submitted to a deformation of 2.5% of its initial length for a time interval of 600 s with continuous recording of the corresponding force relaxation. The tendon specimen was then kept at rest for 300 s as soon as it returned to its initial length. The same specimen was then submitted to a similar test. Deformation rate for both tests was 10% of its initial length per second. Initial

  13. Characterisation of microorganisms responsible for EBPR in a ...

    African Journals Online (AJOL)

    The results indicated that micro-organisms were selected by the repeated anaerobic-aerobic process and some non-phosphorus accumulating organisms were eliminated. The cultured strains obtained from acclimated sludges were purified and their DNA was amplified using F27 and R1522 to 1.5 kb; the gene sequences ...

  14. Characterization of the dominant microorganisms responsible for the ...

    African Journals Online (AJOL)

    Nsiho (white kenkey) is a type of kenkey, a sour stiff dumpling, produced from fermented maize meal in Ghana. The dominant microorganisms responsible for the fermentation of nsiho were characterized by analysing samples from four traditional production sites at Anum in the Eastern Region of Ghana. During 48 h of ...

  15. Method and apparatus for detecting micro-organisms

    International Nuclear Information System (INIS)

    Mirsky, J.

    1976-01-01

    A method and apparatus is described for determining the presence and quantity of microorganisms, such as bacteria, fungi and yeast, in a given sample. The apparatus includes two sealed containers, a portion of which may be penetrated by a sharp instrument, as for example, glass vials with flexible septum tops. One container includes a radioactive nutrient medium which is capable of supporting the life process of the microorganism whose presence is being tested. The second container includes a liquid scintillation solution which absorbs the product of metabolism of the organisms. The sample is introduced into the first sealed container, for example, by means of a standard syringe. Any microorganisms present will consume the radioactive nutrient and as a result produce radioactive waste. Means are then applied to penetrate the containers and allow the flow of the radioactive metabolic product from the first container to the second container while preventing any contamination from the ambient. The liquid scintillation solution will emit light in proportion to the amount of the product of metabolism collected from the first container. This light may be detected by standard liquid scintillation counters, thus providing a qualitative and quantitative measure of the microorganism in the tested sample

  16. Methods for identifying lipoxygenase producing microorganisms on agar plates

    NARCIS (Netherlands)

    Nyyssola, A.; Heshof, R.; Haarmann, T.; Eidner, J.; Westerholm-Parvinen, A.; Langfelder, K.; Kruus, K.; Graaff, de L.H.; Buchert, J.

    2012-01-01

    Plate assays for lipoxygenase producing microorganisms on agar plates have been developed. Both potassium iodide-starch and indamine dye formation methods were effective for detecting soybean lipoxygenase activity on agar plates. A positive result was also achieved using the beta-carotene bleaching

  17. Antibiotic cytotoxic effects of microorganisms isolated from Jachymov uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Fuska, J.; Fuskova, A. (Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta); Jilek, R. (Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia))

    1982-01-01

    Microorganisms were isolated from old relinquished uranium mines in Jachymov; they had been growing for several decades in darkness in temperatures of 5 to 12 degC and relative humidity from 80 to 100%. The concentration of uranium salts in mine waters varied from 10/sup -4/ to 10/sup -5/ g.l/sup -1/, that of Rn in the atmosphere was from 0.04 to 40 Bq.l/sup -1/. Of 324 cultures, 18.8% inhibited the growth of Bacillus subtilis, Escherichia coli and Candida pseudotropicalis and 16.6% that of HeLa cells. The frequency of microorganisms inhibiting the growth of HeLa or Ehrlich ascites cells was markedly higher in this set of cultures than among microorganisms kept in culture collections or isolated from other natural habitats. About 10% of the isolated cultures were mycelia sterilia. The following antibiotics were isolated from microorganisms obtained from uranium mines: frequentin, vermiculin, vermicillin, vermistatin, cytostipin and duclauxin.

  18. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms.

    NARCIS (Netherlands)

    Sipkema, D.; Holmes, B.; Nichols, S.A.; Blanch, H.W.

    2009-01-01

    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were

  19. Susceptibility of some oral microorganisms to chlorhexidine and paramonochlorophenol

    OpenAIRE

    Amorim,Crystiane Venditi Gomes do; Aun,Carlos Eduardo; Mayer,Marcia Pinto Alves

    2004-01-01

    Since the use of antimicrobial agents is required in endodontic therapies, this study aimed at determining the minimum inhibitory concentrations (MICs) of chlorhexidine digluconate and paramonochlorophenol (PMC) against microorganisms commonly found in endodontic infections. Both agents were tested by agar dilution tests against Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Candida albicans, Prevotella intermedia, Porphyromonas gingivalis, Porphyromon...

  20. Identification of anaerobic microorganisms for converting kitchen waste to biogas

    International Nuclear Information System (INIS)

    Amirhossein Malakahmad; Shahrom Mohd Zain; Noor Ezlin Ahmad Basri; Shamsul Rahman Mohamed Kutty; Mohd Hasnain Isa

    2010-01-01

    Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system. (Author)

  1. Effects of temperature on biological activity of permafrost microorganisms.

    Science.gov (United States)

    Kalyonova, L F; Novikova, M A; Subbotin, A M; Bazhin, A S

    2015-04-01

    The number and viability of microorganism specimens Bacillus spp. isolated from permafrost soil remained unchanged after incubation at temperatures of -16-37°C. Experiments on F1 CBA/Black-6 mice showed that incubation of bacteria at -5°C for 72 h promotes a decrease in their toxicity and an increase in their immunostimulating effect.

  2. Microorganisms from hands of traditional Chinese medical doctors ...

    African Journals Online (AJOL)

    Background: In a central hospital, the heavy clinical workload makes one to overlook its hazard to health and can to a large extent promote the transmission of pathogenic microorganisms. It is not uncommon however, to observe practices that deviate from normal standards of hygiene. Hand contact between doctors of TCM ...

  3. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  4. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    International Nuclear Information System (INIS)

    Rahman, M. Azizur; Hassler, Christel

    2014-01-01

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As V , which is thermodynamically stable in oxic waters, and As III , which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As V , biotransform it to As III , then biomethylate it to methylarsenic (MetAs) forms. Although As III is more toxic than As V , As III is much more easily excreted from the cells than As V . Therefore, majority of researchers consider the reduction of As V to As III as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA V , dimethylarsonate; DMA V , and trimethylarsenic oxide; TMAO V ) and trimethylarsine (TMAO III ). However, biomethylation by microorganisms also produces monomethylarsenite (MMA III ) and dimethylarsenite (DMA III ), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data

  5. Effect of effective microorganisms on broiler chicken performance ...

    African Journals Online (AJOL)

    A study was conducted between January and March 2001 to assess the effects of Effective Microorganisms (EM) as feed additive in broiler chicken production on growth performance. The experiment involved 210 day-old broiler chicks which were randomly allocated to 14 pens of 15 birds each. There were seven ...

  6. General Purpose Segmentation for Microorganisms in Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Sebastian H. Nesgaard; Moeslund, Thomas B.; Rankl, Christian

    2014-01-01

    In this paper, we propose an approach for achieving generalized segmentation of microorganisms in mi- croscopy images. It employs a pixel-wise classification strategy based on local features. Multilayer percep- trons are utilized for classification of the local features and is trained for each sp...

  7. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. Azizur, E-mail: Mohammad.Rahman@uts.edu.au [Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007 (Australia); Hassler, Christel [Marine and Lake Biogeochemistry, Institute F. A. Forel, University of Geneva, 10 rte de Suisse, Versoix, 1290 Switzerland (Switzerland)

    2014-01-15

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As{sup V}, which is thermodynamically stable in oxic waters, and As{sup III}, which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As{sup V}, biotransform it to As{sup III}, then biomethylate it to methylarsenic (MetAs) forms. Although As{sup III} is more toxic than As{sup V}, As{sup III} is much more easily excreted from the cells than As{sup V}. Therefore, majority of researchers consider the reduction of As{sup V} to As{sup III} as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA{sup V}, dimethylarsonate; DMA{sup V}, and trimethylarsenic oxide; TMAO{sup V}) and trimethylarsine (TMAO{sup III}). However, biomethylation by microorganisms also produces monomethylarsenite (MMA{sup III}) and dimethylarsenite (DMA{sup III}), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data.

  8. Isolation and identification of the microorganisms most prevalent in ...

    African Journals Online (AJOL)

    Infections of the external eye account for a significant percentage of ocular inflammations, some of which lead to visual losses as result of corneal involvement. This study purely isolated and identified the microorganisms most prevalent in external eye infections in Owerri urban (as seen Mercy Eye clinic). With the aid of ...

  9. Fossil Microorganisms in Archaean deposits of Northern Karelia

    Science.gov (United States)

    Astafieva, M. M.; Hoover, R. B.; Rozanov, A. Y.; Vrevskiy, A. B.

    2005-01-01

    Newly found biomorphic microstructures from the Upper Archaean (lopian) rocks from Northern Karelia are described. The presence of various microorganisms of bacterial nature and even cyanobacteria (and possibly eukaryotic forms) is suggested. The necessity of employing methods of electron microscopy, as well as traditional methods, while studying the very early manifestations of life in Archaean and Early Proterozoic is noted.

  10. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    Science.gov (United States)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  11. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  12. Rate of biodegradation of crude oil by microorganisms isolated from ...

    African Journals Online (AJOL)

    The rate of biodegradation of crude oil by micro-organisms isolated from crude oil sludge environment in Eket, Akwa Ibom State of Nigeria was studied. Mineral salt medium supplemented with crude oil was used and three most abundant species isolated from a crude oil sludged soil - Micrococcus varians, Bacillus subtilis ...

  13. [Long-term storage of obligate anaerobic microorganisms in glycerol].

    Science.gov (United States)

    Briukhanov, A I; Netrusov, A I

    2006-01-01

    We evaluated the possibility of storing the cultures of obligate anaerobic microorganisms (clostridia. acetogenic and sulfate-reducing bacteria, and methanogenic archaea) in 25% glycerol at -70 degrees C for a long time (up to 3 years). This method of storage is adequate to preserve cell viability in most obligate anaerobes.

  14. Mitigating cyanobacterial blooms: how effective are 'effective microorganisms'?

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Tolman, Y.; Euwe, M.

    2009-01-01

    This study examined the effects of 'Effective Microorganisms (EM)' on the growth of cyanobacteria, and their ability to terminate cyanobacterial blooms. The EM was tested in the form of 'mudballs' or 'Bokashi-balls', and as a suspension (EM-A) in laboratory experiments. No growth inhibition was

  15. Biomechanical, Physiological, and Agility Performance of Soldiers Carrying Loads: A Comparison of the Modular Lightweight Load Carrying Equipment and a Lightning Packs, LLC, Prototype

    Science.gov (United States)

    2016-12-27

    angle, hip angle, and sagittal plane hip moments. In terms of energy harvesting and production during walking, the current weight penalty of carrying...MODULAR LIGHTWEIGHT LOAD CARRYING EQUIPMENT) HUMAN FACTORS ENGINEERING U.S. Army Natick Soldier Research, Development and Engineering Center ATTN...pack type and walking speed at a 0% grade. .......................................................35  vii Table 20: Means (SE) of the mean and

  16. Addition of waste and introduction of microorganisms after 45 years of soil degradation

    Directory of Open Access Journals (Sweden)

    Adriana Avelino Santos

    Full Text Available ABSTRACT The construction of hydroelectric power plants (HPP may result in environmental problems, such as extensive areas of exposed subsoil and conditions of extreme degradation. These areas require alternative that minimize impact and allow partial recovery of their ecosystem functions and vegetation. This study aimed to evaluate the effects of residue addition (organic/macrophytes - OR and inorganic/ash - AR, hydrogel, and inoculation of microorganisms in degraded soil, cultivated with Jatropha curcas, through fertility and microbial activity. A conserved Cerrado ("savannah" soil was the source of microorganisms - mainly mycorrhizal fungi. The experiment was conducted for 12 months (during 2010/2011 at the farm of UNESP-School of Engineering/Campus of Ilha Solteira, Selvíria-MS, Brazil, installed in an area where the soil was degraded during the HPP construction, in the 1960s. The experimental design was complete randomized blocks, using a 2×2×4 factorial scheme, i.e., two inoculation treatments (with and without, two hydrogel treatments (with and without, and four residue treatments to introduce the J. curcas (OR, AR, OR + AR, and control without residues, with four replicates and five plants evaluated per replicate. The soil fertility analyses, quantification of microbial biomass carbon (MBC, and released C as CO2 (CO2-C, microbial quotient (qMic, and metabolic quotient (qCO2 were carried out 12 months after planting. The fertility positively responded to the addition of OR and OR + AR, with an increase in pH and SB and reduction in Al and H + Al. The inoculation of soil microorganisms associated with OR and OR + AR residue treatments raised the released CO2-C, MBC, and qMic. The addition of hydrogel combined with OR treatment contributed to the increase in the values of MBC and qMic.

  17. Identification of microorganisms associated with corrosion of offshore oil production systems

    Science.gov (United States)

    Sørensen, Ketil; Grigoryan, Aleksandr; Holmkvist, Lars; Skovhus, Torben; Thomsen, Uffe; Lundgaard, Thomas

    2010-05-01

    Microbiologically influenced corrosion (MIC) poses a major challenge to oil producers and distributors. The annual cost associated with MIC-related pipeline failures and general maintenance and surveillance of installations amounts to several billion dollar in the oil production sector alone. Hence, large efforts are undertaken by some producers to control and monitor microbial growth in pipelines and other installations, and extensive surveillance programs are carried out in order to detect and quantify potential MIC-promoting microorganisms. Traditionally, efforts to mitigate and survey microbial growth in oil production systems have focused on sulfate-reducing Bacteria (SRB), and microorganisms have usually been enumerated by the culture-dependent MPN (most probable number) -technique. Culture-independent molecular tools yielding much more detailed information about the microbial communities have now been implemented as a reliable tool for routine surveillance of oil production systems in the North Sea. This has resulted in new and hitherto unattainable information regarding the distribution of different microorganisms in hot reservoirs and associated oil production systems. This presentation will provide a review of recent insights regarding thermophilic microbial communities and their implication for steel corrosion in offshore oil production systems. Data collected from solids and biofilms in different corroded pipelines and tubes indicate that in addition to SRB, other groups such as methanogens and sulfate-reducing Archaea (SRA) are also involved in MIC. In the hot parts of the system where the temperature approaches 80 ⁰C, SRA closely related to Archaeoglobus fulgidus outnumber SRB by several orders of magnitude. Methanogens affiliated with the genus Methanothermococcus were shown to completely dominate the microbial community at the metal surface in a sample of highly corroded piping. Thus, the microbial communities associated with MIC appear to be more

  18. Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.

    1995-07-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At the Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Particular attention was paid to heavy crude oils from Venezuela, California, Alabama, Arkansas, Wyoming, Alaska, and other oil producing areas. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between {open_quotes}biodegraded{close_quotes} and {open_quotes}biotreated{close_quotes} oils. Preliminary results indicate the introduced microorganisms may become the dominant species in the bioconversion of oils. These studies also indicate the biochemical interactions between crude oils and microorganisms follow distinct trends, characterized by a group of chemical markers. Core-flooding experiments have shown significant additional crude oil recoveries are achievable with thermophilic microorganisms at elevated temperatures similar to those found in oil reservoirs. In addition, the biochemical treatment of crude oils has technological applications in downstream processing of crude oils such as in upgrading of low grade oils and the production of hydrocarbon based detergents.

  19. Exosomes carrying immunoinhibitory proteins and their role in cancer.

    Science.gov (United States)

    Whiteside, T L

    2017-09-01

    Recent emergence of exosomes as information carriers between cells has introduced us to a new previously unknown biological communication system. Multi-directional cross-talk mediated by exosomes carrying proteins, lipids and nucleic acids between normal cells, cells harbouring a pathogen or cancer and immune cells has been instrumental in determining outcomes of physiological as well as pathological conditions. Exosomes play a key role in the broad spectrum of human diseases. In cancer, tumour-derived exosomes carry multiple immunoinhibitory signals, disable anti-tumour immune effector cells and promote tumour escape from immune control. Exosomes delivering negative signals to immune cells in cancer, viral infections, autoimmune or other diseases may interfere with therapy and influence outcome. Exosomes can activate tissue cells to produce inhibitory factors and thus can suppress the host immune responses indirectly. Exosomes also promise to be non-invasive disease biomarkers with a dual capability to provide insights into immune dysfunction as well as disease progression and outcome. © 2017 British Society for Immunology.

  20. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Agnieszka Joanna Brodowska

    2017-10-01

    Full Text Available The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum on a heterogeneous matrix (juniper berries, cardamom seeds initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively. Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min and contact time (up to 20 min. The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  1. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics.

    Science.gov (United States)

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata; Pietrzak, Anna

    2016-01-01

    Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles.

  2. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Science.gov (United States)

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  3. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    O. V. Syshchykova

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil. Keywords: microorganisms, nitrogen compounds, technozems, mining recultivation.

  4. Evidence Report: Risk of Adverse Health Effects Due to Host-Microorganism Interactions

    Science.gov (United States)

    Ott, C. Mark; Oubre, Cherie; Wallace, Sarah; Mehta, Satish; Pierson, Duane

    2016-01-01

    While preventive measures limit the presence of many medically significant microorganisms during spaceflight missions, microbial infection of crewmembers cannot be completely prevented. Spaceflight experiments over the past 50 years have demonstrated a unique microbial response to spaceflight culture, although the mechanisms behind those responses and their operational relevance were unclear. In 2007, the operational importance of these microbial responses was emphasized as the results of an experiment aboard STS-115 demonstrated that the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) increased in virulence in a murine model of infection. The experiment was reproduced in 2008 aboard STS-123 confirming this finding. In response to these findings, the Institute of Medicine of the National Academies recommended that NASA investigate this risk and its potential impact on the health of the crew during spaceflight. NASA assigned this risk to the Human Research Program. To better understand this risk, evidence has been collected and reported from both spaceflight analog systems and actual spaceflight including Mir, Space Shuttle, and ISS missions. Although the performance of virulence studies during spaceflight are challenging and often impractical, additional information has been and continues to be collected to better understand the risk to crew health. Still, the uncertainty concerning the extent and severity of these alterations in host-microorganism interactions is very large and requires more investigation as the focus of human spaceflight shifts to longer-duration exploration class missions.

  5. Integrated oxide graphene based device for laser inactivation of pathogenic microorganisms

    Science.gov (United States)

    Grishkanich, Alexsandr; Ruzankina, Julia; Afanasyev, Mikhail; Paklinov, Nikita; Hafizov, Nail

    2018-02-01

    We develop device for virus disinfection of pathogenic microorganisms. Viral decontamination can be carried out due to hard ultraviolet irradiation and singlet oxygen destroying the genetic material of a virus capsid. UV rays can destroy DNA, leading to the formation of dimers of nucleic acids. This practically does not occur in tissues, tk. UV rays penetrate badly through them, however, the viral particles are small and UV can destroy their genetic material, RNA / DNA and the virus can not replicate. It is with the construction of the ultraviolet laser water disinfection system (UFLOV) based on the continuous and periodic pulsed ultraviolet laser sources (pump) binds to solve sterility and depyrogenation of water. It has been established that small doses of UV irradiation stimulate reproduction, and large doses cause the death of pathogenic microorganisms. The effect of a dose of ultraviolet is the result of photochemical action on the substance of a living bacterial cell or virion. Also complex photodynamic laser inactivation on graphene oxide is realized.

  6. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates

    Science.gov (United States)

    Reisser, Julia; Shaw, Jeremy; Hallegraeff, Gustaaf; Proietti, Maira; Barnes, David K. A.; Thums, Michele; Wilcox, Chris; Hardesty, Britta Denise; Pattiaratchi, Charitha

    2014-01-01

    Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7–24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded ‘epiplastic’ coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated. PMID:24941218

  7. Compatibility and survivorship of four beneficial microorganism used in boils in agriculture

    Directory of Open Access Journals (Sweden)

    Villacís-Aldaz Luis

    2016-05-01

    Full Text Available Compatibility and survival of a mixture of beneficial microorganisms in a biol used in agriculture were evaluated in order to generate new sustainable production technologies. The study was carried out in an agro ecological farm of the Provincial Government of Tungurahua. Survival and compatibility of Trichoderma harzianum, Metarhizium anisopliae, Beauveria bassiana and Paecilomyces lilacinus in a homemade boil were evaluated. Treatments consisted in adding 0 mL (T0, 50 mL (T1, 100 mL (T2 or 150 mL (T3 of a microorganism combination in 20 L biol. At day 30, higher population of Metarrhizium, Trichoderma and Beauveria was observed in T3 (9.1x105 UPC/mL biol at pH 3.80. At day 60, higher population was verified in T2 (2,1x106 UPC/mL at pH 4.95. Genera Paecilomyces and Beauveria were not observed growing together, suggesting a possible incompatibility between them.

  8. Research Concerning Use of Long-Term Preservation Techniques for Microorganisms

    Directory of Open Access Journals (Sweden)

    Adriana Dalila Criste

    2014-10-01

    Full Text Available From the large number of methods used for storage of microorganisms, the more effective methods are long-term cryopreservation and lyophilization. The temperature change rate, controls transport of water around cell membranes and indirectly likelihood of intracellular freezing. If the cooling is too fast, the membranes cannot carry water out of the cell and freezing inside. Each cell has an optimum cooling rate, while the survival of very low absolute except that cryoprotector is present to reduce freezing damage.In the present study we proposed to determine the efficiency of some techniques on long term microorganisms conservation as cryopreservation and freeze-drying and the influence of cryoprotectants used in various concentrations on survival rate of bacterial strains during cryopreservtion at -80 ° C in freezer and - 196 ° C in liquid nitrogen. These 7 bacterial strains used for this work came from our collection of cultures, and are represented by Escherichia coli, Klebsiella pneumonie, Staphylococcus aureus, Bacillus cereus, Salmonella enterica., Pseudomonas aeruginosa, Lactobacillus casei. The cryoprotectant used are: dimethyl sulphoxide (DMSO at a concentration of 5% and 10%, ethylene glycol (EG at a concentration of 5% and 10%, glycerol(Gl at a concentration of 5% and 10%, propylene glycol (PG at a concentration of 5% to 10%.

  9. Characteristics of Microorganism's Fouling on Lithium Adsorbents in Okgye Harbor, Gangneung, Korea

    Science.gov (United States)

    Kim, J.; Yoon, H.; Kong, M.; Yoon, B.; Ryu, J.; Chung, K.; Kim, B.

    2013-12-01

    Marine microorganisms bring about serious ramification for nautical industry such as marine construction. Interaction of bacteria and phytoplankton causes biofouling to marine environments. To understand the marine microorganism's reaction on the inorganic surface, the experimental work carried out in pilot plant for lithium recovery field at Okgye Harbor, Gangneung, Korea through seasonal interval. To inquiry into the surface's effect for lithium recovery adsorbents by bacterial communities and phytoplankton, disk type inorganic adsorbents were immersed in same site at depth of 5 m for 7 days, 14 days and 21 days. Culturable marine bacteria were isolated and identified by 16S rRNA sequencing. Also, size and shape of marine organisms and the adsorption circumstance were investigated by SEM and CLSM (confocal laser scanning microscope). At longer exposure time of adsorbents, increase the bacterial number of individual. Vibrio sp., represented dominant species of biofouling after 21 days and marine phytoplankton increased 7 times after 7 days. Size of phytoplankton were about 50 ~ 100 μm in 0.25 mm2 area of lithium adsorbents. To increase lithium recovery rate of lithium adsorbents and to minimize the biofouling effects, it is necessary to conduct consistently field monitoring. Acknowledgments This research was supported by the national research project titled 'The Development of Technology for Extraction of Resources Dissolved in Seawater' of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Ocean and Fisheries.

  10. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates.

    Directory of Open Access Journals (Sweden)

    Julia Reisser

    Full Text Available Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7-24.3 mm, median = 3.2 mm from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded 'epiplastic' coccolithophores (7 genera, bryozoans, barnacles (Lepas spp., a dinoflagellate (Ceratium, an isopod (Asellota, a marine worm, marine insect eggs (Halobates sp., as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated.

  11. PEF and UV combined system for pathogen microorganisms inactivation in liquid food products

    Energy Technology Data Exchange (ETDEWEB)

    Cramariuc, R [Competence Center in Electrostatics and Electrotechnologies, Bucharest (Romania); Popa, M; Mitelut, A; Geicu, M [University of Agronomic Science and Veterinary Medicine, Bucharest (Romania); Tudorache, A; Brinduse, E; Kontek, A; Fotescu, L [Research and Development Institute in Viticulture and Vinification Valea Calugareasca (Romania); Cramariuc, B [IT Center for Science and Technology, Bucharest (Romania); Nisiparu, L, E-mail: raducramariuc@yahoo.com [Carol Davila University of Medicine and Pharmacy, Bucharest (Romania)

    2011-06-23

    Pulsed electrical field (PEF) treatment is a non-thermal food preservation technology based on the use of the electrical field in impulses applied in order to inactivate and control pathogen microorganisms in foods. This technology is highly appreciated for its ability to prolong the shelf life of the treated product without the use of heat and also for its ability to preserve the product's sensory qualities and nutritional value as well as for the microbiological control of the treated products. This paper presents the PEF and UV treatment methods, or a combination between the two, for microbe inactivation in liquid products. The experiments were carried out using yeasts, lactic bacteria and acetic bacteria in the following systems: stand-alone treatments (PEF or UV) or in combination (UV+PEF or PEF+UV). The results of these experiments showed that one can obtain total inactivation of microorganisms using the combined UV+PEF system, thus leading to the possibility of increasing liquid food products quality as compared to the quality obtained using thermal pasteurization.

  12. PEF and UV combined system for pathogen microorganisms inactivation in liquid food products

    Science.gov (United States)

    Cramariuc, R.; Popa, M.; Tudorache, A.; Brînduşe, E.; Kontek, A.; Mitelut, A.; Fotescu, L.; Cramariuc, B.; Geicu, M.; Nisiparu, L.

    2011-06-01

    Pulsed electrical field (PEF) treatment is a non-thermal food preservation technology based on the use of the electrical field in impulses applied in order to inactivate and control pathogen microorganisms in foods. This technology is highly appreciated for its ability to prolong the shelf life of the treated product without the use of heat and also for its ability to preserve the product's sensory qualities and nutritional value as well as for the microbiological control of the treated products. This paper presents the PEF and UV treatment methods, or a combination between the two, for microbe inactivation in liquid products. The experiments were carried out using yeasts, lactic bacteria and acetic bacteria in the following systems: stand-alone treatments (PEF or UV) or in combination (UV+PEF or PEF+UV). The results of these experiments showed that one can obtain total inactivation of microorganisms using the combined UV+PEF system, thus leading to the possibility of increasing liquid food products quality as compared to the quality obtained using thermal pasteurization.

  13. PEF and UV combined system for pathogen microorganisms inactivation in liquid food products

    International Nuclear Information System (INIS)

    Cramariuc, R; Popa, M; Mitelut, A; Geicu, M; Tudorache, A; Brinduse, E; Kontek, A; Fotescu, L; Cramariuc, B; Nisiparu, L

    2011-01-01

    Pulsed electrical field (PEF) treatment is a non-thermal food preservation technology based on the use of the electrical field in impulses applied in order to inactivate and control pathogen microorganisms in foods. This technology is highly appreciated for its ability to prolong the shelf life of the treated product without the use of heat and also for its ability to preserve the product's sensory qualities and nutritional value as well as for the microbiological control of the treated products. This paper presents the PEF and UV treatment methods, or a combination between the two, for microbe inactivation in liquid products. The experiments were carried out using yeasts, lactic bacteria and acetic bacteria in the following systems: stand-alone treatments (PEF or UV) or in combination (UV+PEF or PEF+UV). The results of these experiments showed that one can obtain total inactivation of microorganisms using the combined UV+PEF system, thus leading to the possibility of increasing liquid food products quality as compared to the quality obtained using thermal pasteurization.

  14. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows.

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    Full Text Available The ruminal microbial community is a unique source of enzymes that underpin the conversion of cellulosic biomass. In this study, the microbial consortia adherent on solid digesta in the rumen of Jersey cattle were subjected to an activity-based metagenomic study to explore the genetic diversity of carbohydrolytic enzymes in Jersey cows, with a particular focus on cellulases and xylanases. Pyrosequencing and bioinformatic analyses of 120 carbohydrate-active fosmids identified genes encoding 575 putative Carbohydrate-Active Enzymes (CAZymes and proteins putatively related to transcriptional regulation, transporters, and signal transduction coupled with polysaccharide degradation and metabolism. Most of these genes shared little similarity to sequences archived in databases. Genes that were predicted to encode glycoside hydrolases (GH involved in xylan and cellulose hydrolysis (e.g., GH3, 5, 9, 10, 39 and 43 were well represented. A new subfamily (S-8 of GH5 was identified from contigs assigned to Firmicutes. These subfamilies of GH5 proteins also showed significant phylum-dependent distribution. A number of polysaccharide utilization loci (PULs were found, and two of them contained genes encoding Sus-like proteins and cellulases that have not been reported in previous metagenomic studies of samples from the rumens of cows or other herbivores. Comparison with the large metagenomic datasets previously reported of other ruminant species (or cattle breeds and wallabies showed that the rumen microbiome of Jersey cows might contain differing CAZymes. Future studies are needed to further explore how host genetics and diets affect the diversity and distribution of CAZymes and utilization of plant cell wall materials.

  15. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  16. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  17. Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry.

    Science.gov (United States)

    de Oliveira, Jonatas Rafael; de Castro, Vinicius Carlos; das Graças Figueiredo Vilela, Polyana; Camargo, Samira Esteves Afonso; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2013-08-15

    With the emergence of strains resistant to conventional antibiotics, it is important to carry studies using alternative methods to control these microorganisms causing important infections, such as the use of products of plant origin that has demonstrated effective antimicrobial activity besides biocompatibility. Therefore, this study aimed to evaluate the antimicrobial activity of plant extracts of Equisetum arvense L., Glycyrrhiza glabra L., Punica granatum L. and Stryphnodendron barbatimam Mart. against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Candida albicans, Candida tropicalis, and Candida glabrata, and to analyze the cytotoxicity of these extracts in cultured murine macrophages (RAW 264.7). Antimicrobial activity of plant extracts was evaluated by microdilution method based on Clinical and Laboratory Standards Institute (CLSI), M7-A6 and M27-A2 standards. The cytotoxicity of concentrations that eliminated the microorganisms was evaluated by MTT colorimetric method and by quantification of proinflammatory cytokines (IL-1β and TNF-α) using ELISA. In determining the minimum microbicidal concentration, E. arvense L., P. granatum L., and S. barbatimam Mart. extracts at a concentration of 50 mg/mL and G. glabra L. extract at a concentration of 100 mg/mL, were effective against all microorganisms tested. Regarding cell viability, values were 48% for E. arvense L., 76% for P. granatum L, 86% for S. barbatimam Mart. and 79% for G. glabra L. at the same concentrations. About cytokine production after stimulation with the most effective concentrations of the extracts, there was a significant increase of IL-1β in macrophage cultures treated with S. barbatimam Mart. (3.98 pg/mL) and P. granatum L. (7.72 pg/mL) compared to control (2.20 pg/mL) and a significant decrease of TNF-α was observed in cultures treated with G. glabra L. (4.92 pg/mL), S. barbatimam Mart. (0.85 pg/mL), E. arvense L. (0.83 pg/mL), and P. granatum L. (0.00 pg

  18. Concept and Connotation of Water Resources Carrying Capacity in Water Ecological Civilization Construction

    Science.gov (United States)

    Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua

    2018-01-01

    Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.

  19. Physician accessories: Doctor, what you carry is every patient′s worry?

    Directory of Open Access Journals (Sweden)

    Pandey Anita

    2010-10-01

    Full Text Available Background: Nosocomial infections are on the rise worldwide and many a times they are carried by the health care personnel. Accessories used by physicians and healthcare personnel can be a potential source of nosocomial infection. Materials and Methods: We designed a survey with the aim to investigate the prevalence of microbial flora of accessories such as pens, stethoscopes, cell phones and white coat used by the physicians working in a tertiary care hospital. Observations: It was observed that 66% of the pens, 55% of the stethoscopes, 47.61% of the cell phones and 28.46% of the white coats used by the doctors were colonized with various microorganisms. Staphylococcus spp. was the predominant isolate followed by Escherichia coli. Methicillin resistance in Staphylococcus aureus was also found, which was a matter of concern. Conclusions: Awareness of appropriate hand hygiene is important in order to prevent potential transmission to patients.

  20. Search for and characterization of microorganisms in deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, Vanessa

    2011-01-01

    Over the past 50 years, the scientific community has shown a growing interest for deep geological compartments. However, these ecosystems remain largely unknown due to their inaccessibility. The aim of the present thesis was double; the first aim was to characterize, from a microbiological perspective, four terrestrial Triassic sedimentary formations located between 1700 and 2000 m depth in the Parisian Basin and collected by the ANDRA during a deep drilling campaign in 2008, and the second aim was to study the combined effects of temperature, pressure and salinity on the metabolic activity of anaerobic prokaryotes in order to predict their reaction to geological burial. Incubations in a large variety of media were carried out in order to stimulate the growth of the main trophic types found in such environments such as methanogens, fermenters and bacteria reducing sulphur compounds, however, no viable and cultivable microorganisms could be isolated. In parallel, a molecular approach was used to i) compare the efficacy of several DNA extractions methods and ii) analyse the bacterial diversity, using DGGE (Denaturing Gel Gradient Electrophoresis) and cloning, present in rock inner cores conserved either at atmospheric pressure or under pressure, in their initial states and following incubations in various media. The genetic exploration of these samples revealed a very low biomass and a poor diversity composed mainly of aerobic and mesophilic members of the Bacteria domain, a priori unadapted to such a deep, hot, saline and anoxic environment. This unexpected microbial community also found in many subsurface ecosystems as well as in extreme ecosystems could have partially originated from a paleo-recharge of the Trias aquifer with cold waters coming from the melting of ice formed during the last Pleistocene glaciation. The second objective was to study the combined effects of temperature (40, 55 and 70 C), pressure (1, 90 and 180 bars) and salinity (13, 50, 110, 180

  1. Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms.

    Directory of Open Access Journals (Sweden)

    Elvira Mächler

    Full Text Available Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species' identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary.

  2. Raft-like membrane domains in pathogenic microorganisms.

    Science.gov (United States)

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Synthesis of biosurfactants and their advantages to microorganisms and mankind.

    Science.gov (United States)

    Cameotra, Swaranjit Singh; Makkar, Randhir S; Kaur, Jasminder; Mehta, S K

    2010-01-01

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures--lipopeptides, glycolipids, neutral lipids and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. The low water solubility of these hydrophobic compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential applications in bioremediation. Not only are the biosurfactants useful in a variety of industrial processes, they are also of vital importance to the microbes in adhesion, emulsification, bioavailability, desorption and defense strategy. These interesting facts are discussed in this chapter.

  4. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    Science.gov (United States)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  5. The complexity of wine: clarifying the role of microorganisms.

    Science.gov (United States)

    Tempère, Sophie; Marchal, Axel; Barbe, Jean-Christophe; Bely, Marina; Masneuf-Pomarede, Isabelle; Marullo, Philippe; Albertin, Warren

    2018-05-01

    The concept of wine complexity has gained considerable interest in recent years, both for wine consumers and wine scientists. As a consequence, some research programs concentrate on the factors that could improve the perceived complexity of a wine. Notably, the possible influence of microbiological factors is particularly investigated. However, wine complexity is a multicomponent concept not easily defined. In this review, we first describe the actual knowledge regarding wine complexity, its perception, and wine chemical composition. In particular, we emphasize that, contrary to expectations, the perception of wine complexity is not related to wine chemical complexity. Then, we review the impact of wine microorganisms on wine complexity, with a specific focus on publications including sensory analyses. While microorganisms definitively can impact wine complexity, the underlying mechanisms and molecules are far from being deciphered. Finally, we discuss some prospective research fields that will help improving our understanding of wine complexity, including perceptive interactions, microbial interactions, and other challenging phenomena.

  6. Impacts of Triclosan in Grey water on Soil Microorganisms

    International Nuclear Information System (INIS)

    Harrow, D.I; Felker, J.M; Baker, K.H

    2011-01-01

    The use of grey water for irrigation is becoming a common practice in arid regions such as the Southwestern US, the Middle East, Australia, and China. While grey water supplies nutrients to soil ecosystems, the possible impact of trace contaminants, particularly pharmaceuticals and personal care products, has not been determined. This paper examined the impact of triclosan, an antibacterial agent commonly added to consumer products, on microbial populations and microbial diversity in soil irrigated with grey water. While there was no change in the total number of heterotrophic microorganisms in the soil, both the types and the antibiotic resistance of the microorganisms were significantly influenced by triclosan. The proportion of the microbial isolates resistant to antibiotics increased while at the same time, overall diversity of the microbial community decreased.

  7. Role and functions of beneficial microorganisms in sustainable aquaculture.

    Science.gov (United States)

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  8. Ecological aspects of microorganisms inhabiting uranium mill tailings

    Science.gov (United States)

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  9. Food environments select microorganisms based on selfish energetic behavior

    Directory of Open Access Journals (Sweden)

    Diego eMora

    2013-11-01

    Full Text Available Nutrient richness, and specifically the abundance of mono- and disaccharides that characterize several food matrixes, such as milk and grape juice, has allowed the speciation of lactic acid bacteria and yeasts with a high fermentation capacity instead of energetically favorable respiratory metabolism. In these environmental contexts, rapid sugar consumption and lactic acid or ethanol production, accumulation and tolerance, together with the ability to propagate in the absence of oxygen, are several of the ‘winning’ traits that have apparently evolved and become specialized to perfection in these fermenting microorganisms. Here, we summarize and discuss the evolutionary context that has driven energetic metabolism in food-associated microorganisms, using the dairy species Lactococcus lactis and Streptococcus thermophilus among prokaryotes and the bakers’ yeast Saccharomyces cerevisiae among eukaryotes as model organisms.

  10. The plastic-associated microorganisms of the North Pacific Gyre.

    Science.gov (United States)

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Microorganism and filamentous fungi drive evolution of plant synapses.

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  12. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  13. Biosynthesis of Nanoparticles by Microorganisms and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiangqian Li

    2011-01-01

    Full Text Available The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of inorganic nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by using different microorganisms, and their applications in many cutting-edge technological areas have been explored. This paper highlights the recent developments of the biosynthesis of inorganic nanoparticles including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, and other typical nanoparticles. Different formation mechanisms of these nanoparticles will be discussed as well. The conditions to control the size/shape and stability of particles are summarized. The applications of these biosynthesized nanoparticles in a wide spectrum of potential areas are presented including targeted drug delivery, cancer treatment, gene therapy and DNA analysis, antibacterial agents, biosensors, enhancing reaction rates, separation science, and magnetic resonance imaging (MRI. The current limitations and future prospects for the synthesis of inorganic nanoparticles by microorganisms are discussed.

  14. [Pattern of growth and metabolism of thermotolerant microorganisms on media containing carbohydrates and hydrocarbons].

    Science.gov (United States)

    Kvasnikov, E I; Isakova, D M; Eliseeva, G S; Loiko, Z I

    1977-01-01

    Experiments were carried out to examine the growth and metabolism of thermotolerant yeast Candida tropicalis K-41 and bacteria Micrococcus freudenreichii that do not have a single temperature point but instead have an optimal temperature plateau at which the growth rate and biosynthetic activity remain unaltered or change insignificantly. Upon transition from the carbohydrate to the hydrocarbon pattern of nutrition these microorganisms show significant changes in metabolic processes: optimal concentration of biotin in the medium decreases significantly; the synthesis of riboflavin, nicotinic and pantothenic acids increases in yeast; the synthesis of nicotinic acid, biotin and vitamin B12 increases in bacteria. During microbial cultivation on hydrocarbons the content of cell lipids grows; yeast accumulate actively phospholipids and free fatty acids; bacteria build up intensively waxes and phospholipids. With the near-maximal growth rate the total synthesis of lipids decreases on carbohydrates and increases drastically on hydrocarbons, primarily at the expense of the above fractions.

  15. Activation of inoculum microorganism from dairy cattle feces

    Science.gov (United States)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  16. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    OpenAIRE

    Avellaneda-Torres,Lizeth Manuela; Pulido,Claudia Patricia Guevara; Rojas,Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as ...

  17. Isolation of Electrogenic Microorganisms with Potential to Reduce Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Alexander Mora Collazos

    2017-01-01

    Full Text Available Isolation of cultivable microorganisms was made from the biofilm formed on the anode of a microbial fuel cell put into operation for 30 days; isolated microorganisms were evaluated for their ability to produce energy and reduce the hexavalent chromium Cr (VI. Five microorganisms were isolated, which were characterized by analysis of 16S rRNA gene, placing them in four bacterial genera: Exiguobacterium (CrMFC1, Acinetobacter (CrMFC2, Aeromonas (CrMFC3 and CrMFC5 and Serratia (CrMFC4. All isolates showed electrogenic activity and ability to reduce hexavalent chromium; the Acinetobacter CrMFC1 strain showed the best electrochemical performance registering a maximum power density of 18.61 mW/m2; the other strains showed values of maximum power density between 4.6 mW/m2and 7.1 mW/m2. Strains Aeromonas CrMFC5 and Exiguobacterium CrMFC1 showed the best rates of chromium reduction being able to reduce 100 % of the Cr (VI in less than 24 hours, the Aeromonas CrMFC5 strain was the most efficient, reducing 100 % of Cr (VI in 10 hours; the other strains reduced 100% of the contaminant after 28 to 30 hours. The microorganisms isolated in this study are hardly known for their electrogenic capacity and for reducing Cr (VI; however, show promise for their use in combined systems involving energy production system coupled to bioremediation of chromium contaminated water.

  18. Screening and characterization of useful microorganisms to arsenic removal

    OpenAIRE

    宮武, 宗利; 林, 幸男

    2007-01-01

    Microorganisms were isolated from soil and their arsenic removal abilities were evaluated. Seven out of the 100 isolated strains showed more than 20% arsenic removal. Time courses of arsenic removal and cell growth were investigated in three of these isolated strains. Although the growth rates were different, the dependence of arsenic removal on cell growth was similar in three strains (A-84, 88, 89). Strain A-89 showed highest arsenic removal rate of 63% after first day. Strain A-88 was best...

  19. Uptake of nourseothricin by the producing microorganism, Streptomyces noursei

    International Nuclear Information System (INIS)

    Roeder, B.; Graefe, U.

    1985-01-01

    The uptake of 14 C-(U)-nourseothricin by stationary phase mycelium of Streptomyces noursei JA 3890b-NG 13/14 was demonstrated. An energy-dependent transport system appears to be involved in the transport of the antibiotic. Relatively large quantities of the antibiotic were adsorbed to the surface of mycelium. Degradation of nourseothricin by the producing microorganism was not detectable. (author)

  20. The effect of adhesion on survival and growth of microorganisms

    International Nuclear Information System (INIS)

    Bar-Or, Y.

    1990-01-01

    Adhesion of microorganisms to solid surfaces or water/air interfaces can significantly influence cellular metabolic activity, development and viability. Attachment is of advantage particularly for organisms growing under oligotrophic or otherwise extreme conditions. However, the ability to detach and migrate is of vital importance when prevailing conditions become too harsh or in situations of population explosion. Adhesion can cause alterations in the physical and chemical properties of substratum surfaces as well, by means of degradation, aggregation, emulsification etc. (author) 48 refs

  1. Does nanobiotechnology create new tools to combat microorganisms?

    DEFF Research Database (Denmark)

    Zielinska-Górska, Marlena K.; Sawosz, Ewa; Górski, Konrad

    2017-01-01

    Antimicrobial resistance is still a crucial global problem related to the overuse of antibiotics and natural microorganism capability for rapid horizontal evolution. Even new generations of drugs are not able to overcome bacterial defence mechanisms. A novel solution for this immense medical...... challenge can be nanomaterials. Researchers indicate that modern nanoforms can effectively support and perhaps in the long-term replace traditional bactericidal agents. Because of their unique physicochemical properties, nanotechnology products can exert multiple actions against bacteria, which might...

  2. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    Science.gov (United States)

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  3. Coal Enrichment Methods by Using Microorganisms and Their Metabolites

    Directory of Open Access Journals (Sweden)

    Małgorzata Deska

    2018-03-01

    Full Text Available The aim of this study is to review the literature on the methods of low-rank coal enrichment by using microorganisms and their metabolites. Effective bio-beneficiation technologies for low-rank coals in the future are also suggested throughout this paper. An extensive literature review highlights recent advances in bio-beneficiation technologies for low rank coals. This paper presents the state of the art in the field of the bio-beneficiation technology - carbon leaching with the aid of microorganisms, especially fungi. The knowledge of the low-rank coals leaching is an important step to meet the carbon eco-requirements and improve the economics of mining companies. There are several reasons to investigate microbial activities towards coal. This paper presents the current state of knowledge concerning bioleaching of coal. Thus, in view of the increasing importance of hard coal as a raw material and energy source, it seems hopeful to study the potential of microorganisms to modify the low-rank coal structure.

  4. Detection of extracellular proteases from microorganisms on agar plates

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1996-12-01

    Full Text Available We present herein an improved assay for detecting the presence of extracellular proteases from microorganisms on agar plates. Using different substrates (gelatin, BSA, hemoglobin incorporated into the agar and varying the culture medium composition, we were able to detect proteolytic activities from Pseudomonas aeruginosa, Micrococcus luteus and Serratia marcescens as well as the influence that these components displayed in the expression of these enzymes. For all microorganisms tested we found that in agar-BHI or yeast extract medium containing gelatin the sensitivity of proteinase detection was considerably greater than in BSA-agar or hemoglobin-agar. However, when BSA or hemoglobin were added to the culture medium, there was an increase in growth along with a marked reduction in the amount of proteinase production. In the case of M. luteus the incorporation of glycerol in BHI or yeast extract gelatin-agar induced protease liberation. Our results indicate that the technique described here is of value for detecting extracellular proteases directly in the culture medium, by means of a qualitative assay, simple, inexpensive, straight forward method to assess the presence of the proteolytic activity of a given microorganism colony with great freedom in substrate selection.

  5. MICROORGANISMS IN SELECTED CONFECTIONARY PRODUCTS DURING THE MANUFACTURING PROCESS

    Directory of Open Access Journals (Sweden)

    Jana Petrová

    2015-02-01

    Full Text Available The aim of our study was to evaluate the microbiological quality confectionery products during production. A total of 135 samples were analyzed: 45 samples of the punch balls, 45 Venček samples and 45 samples French cubes from home, school and private production. For microorganism cultivation VRBL agar for the isolation of coliform bacteria, DRBC and DG18 for microscopic fungi and yeasts, Plate Count Agar for total viable count, Meat peptone agar for mesophilic aerobic bacteria, XLD agar for Salmonella sp. and Baird Parker agar for Staphylococcus aureus were used. Following microbiological parameters were tested: total viable count, mesophilic anaerobic microorganisms, coliform bacteria, yeast and microscopic filamentous fungi, Salmonella spp. and Staphylococcus aureus. Products are assessed according to the limit values of the number of microorganisms contained in the Codex Alimentary of the Slovak Republic. The overall assessment of the microbiological quality of the punch balls, we found that two samples from school factory and one sample from private producer did not meet CA SR for the total viable count. Comparing the microbiological quality of Venček with CA SR, we found that one sample of home production did not meet the requirements for this type of product. All the tested samples were Staphylococcus aureus and Salmonella spp. negative. Comparing the results of the samples with French cubes CA SR, we found that all the samples satisfy requirements.

  6. Periodontopathic microorganisms in peripheric blood after scaling and root planing.

    Science.gov (United States)

    Lafaurie, Gloria Inés; Mayorga-Fayad, Isabel; Torres, María Fernanda; Castillo, Diana Marcela; Aya, Maria Rosario; Barón, Alexandra; Hurtado, Paola Andrea

    2007-10-01

    The objective of this study was to evaluate the frequency of periodontopathic and other subgingival anaerobic and facultative bacteria in the bloodstream following scaling and root planing (SRP). Forty-two patients with severe generalized chronic periodontitis (GChP) and generalized aggressive periodontitis (GAgP) were included in the study. Four samples of peripheric blood were drawn from the cubital vein at different times: Pre-treatment: immediately before the SRP procedure (T1), immediately after treatment (T2), 15 min. post-treatment (T3) and 30 min. post-treatment (T4). In order to identify the presence of microorganisms in blood, subcultures were conducted under anaerobic conditions. 80.9% of the patients presented positive cultures after SRP and it occurred more frequently immediately after treatment; however, 19% of the patients still had microorganisms in the bloodstream 30 min. after the procedure. The periodontopathic microorganisms more frequently identified were Porphyromonas gingivalis and Micromonas micros. Campylobacter spp., Eikenella corrodens, Tannerella forsythensis, Fusobacterium spp. and Prevotella intermedia were isolated less often. Actinomyces spp. were also found frequently during bacteraemia after SRP. SRP induced bacteraemia associated with anaerobic bacteria, especially in patients with periodontal disease.

  7. The diversity of microorganisms associated with Acromyrmex leafcutter ants

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2002-05-01

    Full Text Available Abstract Background Molecular biological techniques are dramatically changing our view of microbial diversity in almost any environment that has so far been investigated. This study presents a systematic survey of the microbial diversity associated with a population of Acromyrmex leafcutter ants. In contrast to previous studies on social insects, which targeted specific groups of symbionts occurring in the gut (termites, Tetraponera ants or in specialised cells (Camponotus ants the objective of our present study was to do a total screening of all possible micro-organisms that can be found inside the bodies of these leafcutter ants. Results We amplified, cloned and sequenced SSU rRNA encoding gene fragments from 9 microbial groups known to have insect-associated representatives, and show that: (1 representatives of 5 out of 9 tested groups are present, (2 mostly several strains per group are present, adding up to a total of 33 different taxa. We present the microbial taxa associated with Acromymex ants in a phylogenetic context (using sequences from GenBank to assess and illustrate to which known microorganisms they are closely related. The observed microbial diversity is discussed in the light of present knowledge on the evolutionary history of Acromyrmex leafcutter ants and their known mutualistic and parasitic symbionts. Conclusions The major merits of the screening approach documented here is its high sensitivity and specificity, which allowed us to identify several microorganisms that are promising candidates for further study of their interactions with Acromyrmex leafcutter ants or their gardens.

  8. Development of Novel Drugs from Marine Surface Associated Microorganisms

    Directory of Open Access Journals (Sweden)

    Suhelen Egan

    2010-03-01

    Full Text Available While the oceans cover more than 70% of the Earth’s surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds (“bioactives” to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds (“antimicrobials”, may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta- genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.

  9. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  10. Characterization of Microorganisms Isolated from Petroleum Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    Adriana Criste

    2016-02-01

    Full Text Available Bioremediation has received a great deal of attention, and bacteria isolated from polluted soil can be usedin that process. In this study, we performed an evaluation of the physiological groups of microorganisms fromsoil contaminated with petroleum. Bacterial strains were isolated from contaminated soil using the selectiveenrichment technique. Minimal Salt Media was used for serial dilutions to determine viable cell count. Thenumber of total viable cells and different types of microorganisms in the original sample was determined by serialdilution, agar plating procedure using selective media. The plates were incubated at 300C for 24-72 hours. Distinctcolonies growing on each plate were selected, and stored at freezing temperatures. The bacterial colonies werethen identified by Gram staining and biochemical tests. Following our research, it was observed that although thetotal microbial load of soil is relatively close in value, there are differences regarding the physiological group ofmicroorganisms. In the oil contaminated soil sample the largest group of microorganisms was the nitrous nitrifyingbacteria followed by nitrate bacteria. All bacterial strains that were isolated from soil samples contaminated withhydrocarbons but also the Pseudomonas putida and Bacillus subtillis strains can use diesel fuel as a food source.With the increase of diesel fuel concentration from culture medium, the majority of the bacterial strains that wereused in our experiments showed an increased value of absorbance. This fact suggests that these strains can be usedin bioremediation processes.

  11. Antimicrobial activity of jasmine oil against oral microorganisms

    Science.gov (United States)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  12. Antimicrobial activity of different disinfectants against cariogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Esra UZER CELIK

    Full Text Available Abstract The aim of this study was to assess the in vitro antimicrobial effects of chlorhexidine digluconate (CHX, polyhexamethylene biguanide (PHBM, and octenidine dihydrochloride (OCT on cariogenic microorganisms by using their minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC. CHX, PHBM, and OCT were diluted in distilled water to the final test concentrations. Using the in-tube dilution method, Streptococcus mutans, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Actinomyces viscosus were cultivated on blood agar and Mueller–Hinton broth (MHB at 37°C for 48 h. They were read using a spectrophotometer to detect MIC. To determine MBC, samples in the range of the turbidity threshold after 24 h were transferred onto blood agar and evaluated for growth after 24 h. Different MICs and MBCs were observed in all disinfectants against each microorganism. The lowest MIC and MBC against S. mutans (60 mg/L were obtained from PHBM. The lowest values against L. rhamnosus (15 mg/L, 30 mg/L, A. viscosus (30 mg/L, and L. acidophilus (15 mg/L, 30 mg/L were determined by OCT. PHBM and OCT have the potential to be replaced with CHX because they were effective against cariogenic microorganisms.

  13. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  14. Preparation of microorganism free carrier for biofertilizer product

    International Nuclear Information System (INIS)

    Latiffah Norddin; Maizatul Akmam Mhd Nasir; Phua Choo Kwai Hoe

    2007-01-01

    Biofertilizer has been identified as an alternative or complementary to chemical fertilizer to increase soil fertility and crop production in sustainable farming. Biofertilizers are products containing living cells of different types of known microorganisms that may increase crop productivity through N2 fixation, phosphate solubilization or stimulation of plant growth by synthesising phytohormones. A good biofertilizer product needs a good carrier or substrate. A good carrier is free from microbial contamination and can optimise the growth of the biofertilizer microorganisms. Compost is commonly used as carrier or substrate for biofertilizer microorganisms. In the present study, compost produced by Nuclear Malaysia using the Natural Farming was used as a carrier for the biofertilizer products. Gamma irradiation has been used to produce a ?clean? or sterile carrier. The sterilization effect of the carrier was checked by using serial dilution technique. Carriers that were irradiated at 50 kGy of gamma irradiation were found to be sterile. The shelf life of the sterile carriers was also determined. After six months the compost carriers were still free from microbial contamination. (Author)

  15. Microorganisms as potential vectors of the migration of radionuclides?

    International Nuclear Information System (INIS)

    Yves, A.

    1998-01-01

    The aims of our work are the study of the sorption of radionuclides by bacteria as the first step in the microorganism-metal interaction. The latter involves the fixation of ions on a surface layer and it results in the immobilization of the metal, thus possibly being the primary step of bioaccumulation. After a rapid presentation of the direct and indirect mechanisms of the interactions, we shall present our experiments of radionuclide biosorption by bacteria. A salient feature of biosorption is the selectivity of the adsorption of some radionuclides from a composed solution. For example, Andres et al. (1993, 1995) have shown that Mycobacterium smegmatis, from a composed solution containing uranium, thorium, lanthanum, europium and ytterbium, selectively adsorbs thorium ions. The sequence of preferential fixation is: Th 4+ > UO 2 2+ > La 3+ = Eu 3+ = Yb 3+ . This selectivity is a function of the cell wall organization and of the speciation of the metal in the solution. Yet, each species of bacteria has characteristic and specific cell wall layer composition and organization. Moreover, the culture and the environmental conditions change the surface layer properties. Another parameter in the migration of radionuclides is the transfer from the soil to the microorganisms. In column experiments, Gd, and likely the rare earths, in general, adsorbed on sand can be removed with a suspension of bacteria (Thouand and Andres 1997). These examples will be discussed and serve as a basis to illustrate the diversity of the interactions between microorganisms and radionuclides

  16. Environment purification using microorganisms. Biseibutsu ni yoru kankyo joka

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H [Asahi Glass Co. Ltd., Tokyo (Japan); Harada, S

    1993-12-01

    Technologies to purify polluted soils vary with kinds of pollutants, spread of pollution, and shapes of water veins. A method is used often that several wells are drilled in a polluted area, and water is circulated between upstream wells and downstream wells, where activities of microorganisms living in that particular environment are utilized to biodegrade the pollutants. This technology is called bioremediation. This paper deals with soil pollution by chemical substances, and describes development of a technology to remove pollution caused by PCB and petroleum which is thought difficult to apply the bioremediation technology among environment purifying technologies using microorganisms. The bioremediation of petroleum pollution assumes petroleum pollution on seashores. Discussions have been given on separation from sea water of petroleum decomposing microorganisms to be used in the bioremediation, and the number of petroleum decomposing bacteria in seas near Japan. As a result, it was made clear that a few kinds of bacteria will suffice for decomposition of main components in a mixture as complex as petroleum. 5 refs., 4 figs.

  17. The plastic-associated microorganisms of the North Pacific Gyre

    International Nuclear Information System (INIS)

    Carson, Henry S.; Nerheim, Magnus S.; Carroll, Katherine A.; Eriksen, Marcus

    2013-01-01

    Highlights: • Microorganisms mediate processes affecting the fate and impacts of marine plastic. • North Pacific Gyre (NPG) plastics were examined with scanning-electron microscopy. • Bacillus bacteria and pennate diatoms dominated the NPG plastic fouling community. • Bacterial abundance was patchily distributed but increased on foamed polystyrene. • Diatom abundance increased on rough surfaces and at sites with high plastic density. -- Abstract: Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm −2 ) and pennate diatoms (1097 ± 154 mm −2 ) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution

  18. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience.

    Science.gov (United States)

    Peixoto, Raquel S; Rosado, Phillipe M; Leite, Deborah Catharine de Assis; Rosado, Alexandre S; Bourne, David G

    2017-01-01

    The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium . Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting

  19. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model.

    Science.gov (United States)

    Chang, Robert; Nam, Jae; Sun, Wei

    2008-06-01

    A novel targeted application of tissue engineering is the development of an in vitro pharmacokinetic model for drug screening and toxicology. An in vitro pharmacokinetic model is needed to realistically and reliably predict in vivo human response to drug administrations and potential toxic exposures. This paper details the fabrication process development and adaptation of microfluidic devices for the creation of such a physiologically relevant pharmacokinetic model. First, an automated syringe-based, layered direct cell writing (DCW) bioprinting process creates a 3D microorgan that biomimics the cell's natural microenvironment with enhanced functionality. Next, soft lithographic micropatterning techniques are used to fabricate a microscale in vitro device to house the 3D microorgan. This paper demonstrates the feasibility of the DCW process for freeform biofabrication of 3D cell-encapsulated hydrogel-based tissue constructs with defined reproducible patterns, direct integration of 3D constructs onto a microfluidic device for continuous perfusion drug flow, and characterization of 3D tissue constructs with predictable cell viability/proliferation outcomes and enhanced functionality over traditional culture methods.

  20. Selected medicinal plants used in herbal industries; their toxicity against pathogenic microorganisms

    International Nuclear Information System (INIS)

    Fazal, H.; Ahmad, M.; Abbasi, B.H.

    2012-01-01

    Multi-drug resistant strains of fungi and bacteria are imposing the need for new drugs. Reliable natural sources with minor side effects are needed to control anti-human pathogenic invaders specially bacteria. Given the demands for natural products that are inherently safe and environmentally compatible, the advancement in antimicrobial potential has provided a better alternative to synthetic resistance antibiotics. In the present investigation such types of medicinal plants were selected for analyses that are used by local herbal practioners for multiple diseases. Thirty three extracts of Achillea millefolium, Acorus calamus, Arnebia nobilis, Fumaria indica, Gymnema sylvestre, Origanum vulgare, Paeonia emodi, Peganum harmala, Psoralea corylifolia, Rauwolfia serpentina and Vetiveria zizanioides in chloroform, ethanol and hexane were investigated for their antimicrobial potential. These extracts were tested against eight microorganisms including four gram negative bacterial strains viz., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi, three gram positive bacterial strains Staphylococcus aureus, Bacillus subtilis and Bacillus cereus and a fungal strain viz., Candida albicans. Majority of the extracts showed marked antimicrobial potential against the tested microorganisms. (author)

  1. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  2. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India.

    Science.gov (United States)

    Naik, Onkar A; Shashidhar, Ravindranath; Rath, Devashish; Bandekar, Jayant R; Rath, Archana

    2018-03-01

    Marine fish species were analyzed for culturable and total metagenomic microbial diversity, antibiotic resistance (AR) pattern, and horizontal gene transfer in culturable microorganisms. We observed a high AR microbial load of 3 to 4 log CFU g -1 . Many fish pathogens like Providencia, Staphylococcus, Klebsiella pneumoniae, Enterobacter, Vagococcus, and Aeromonas veronii were isolated. Photobacterium and Vibrio were two major fish and human pathogens which were identified in the fish metagenome. Other pathogens that were identified were Shewanella, Acinetobacter, Psychrobacter, and Flavobacterium. Most of these pathogens were resistant to multiple antibiotics such as erythromycin, kanamycin, neomycin, streptomycin, penicillin, cefotaxime, bacitracin, rifampicin, trimethoprim, ciprofloxacin, and doxycycline with a high multiple antibiotic resistance index of 0.54-0.77. The fish microflora showed high prevalence of AR genes like bla TEM , Class I integron, tetA, aph(3')-IIIa, ermB, aadA, and sul1. Nineteen of 26 AR isolates harbored Class I integrons showing high co-resistance to trimethoprim, kanamycin, doxycycline, and cefotaxime. Mobile R-plasmids from 6 of the 12 AR pathogens were transferred to recipient E. coli after conjugation. The transconjugants harbored the same R-plasmid carrying bla CTX-M , dfr1, tetA, bla TEM , and cat genes. This study confirms that fish is a potential carrier of AR pathogens which can enter the human gut via food chain. To the best of our knowledge, this is the first study in the Indian subcontinent reporting a direct evidence of spread of AR pathogens to humans from specific marine fish consumption.

  3. 30 CFR 56.16014 - Operator-carrying overhead cranes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operator-carrying overhead cranes. 56.16014 Section 56.16014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16014 Operator-carrying overhead cranes. Operator-carrying overhead cranes shall...

  4. 30 CFR 57.16014 - Operator-carrying overhead cranes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operator-carrying overhead cranes. 57.16014 Section 57.16014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16014 Operator-carrying overhead cranes. Operator-carrying overhead cranes shall...

  5. 46 CFR 111.105-35 - Vessels carrying coal.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Vessels carrying coal. 111.105-35 Section 111.105-35...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-35 Vessels carrying coal. (a) The following are Class II, Division 1, (Zone 10 or Z) locations on a vessel that carries coal: (1) The interior of each coal...

  6. Threshold Dynamics of a Stochastic Chemostat Model with Two Nutrients and One Microorganism

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2017-01-01

    Full Text Available A new stochastic chemostat model with two substitutable nutrients and one microorganism is proposed and investigated. Firstly, for the corresponding deterministic model, the threshold for extinction and permanence of the microorganism is obtained by analyzing the stability of the equilibria. Then, for the stochastic model, the threshold of the stochastic chemostat for extinction and permanence of the microorganism is explored. Difference of the threshold of the deterministic model and the stochastic model shows that a large stochastic disturbance can affect the persistence of the microorganism and is harmful to the cultivation of the microorganism. To illustrate this phenomenon, we give some computer simulations with different intensity of stochastic noise disturbance.

  7. INFLUENCE OF TECHNOGENIC LANDSCAPES RECULTIVATION ON FUNCTIONING OF SOIL MICROORGANISMS COMMUNITIES WHICH TAKE PART IN TRANSFORMATION OF NITROGEN COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Syshchykova Oksana Vitalyevna

    2014-04-01

    Full Text Available It is established that mining recultivation of tailings dams slimes promotes restoration of numerical structure of soil microorganisms community which take part in processes of nitrogen compounds transformation. The certificate of that is number restoration of the organotrophic bacteria of a nitrogen cycle to 0.3 million CFU/g of soil and increase by 2-3 times of streptomycetes quantity in blankets. The received results of quantitative structure of the microorganisms which are taking part in processes of nitrogen mineral compounds transformation in the chernozem usual allow to claim that in blankets the number of microorganisms makes 3.89 and 2.33 million CFU/g soil. It should be noted that the best conditions for microflora development are formed on slime with drawing 50 cm of loess-like loam and 30 cm of a fertile layer. The microorganism quantity on the specified monitoring area increases by 3-4 times in the soil of a fertile layer and by 1.3-1.6 times in loess-like loam in comparison with slime without recultivation. Increase of microbiological processes intensity, extremely important, considering strengthening of ecosystems self-regulation functions. It is established high level of microbiological transformation of organic substance, the indicator is made 7.3-11.1 in the edatopes of the recultivated slimes. Increasing indicators of microbiological transformation and mineralization of organic compounds in the technozems confirm restoration of a slimes biogenity at carrying out of recultivation that promotes an intensification of mineralization processes and assimilation by plants nitrogen compounds in the soil.

  8. Biogenic amines degradation by microorganisms isolated from cheese

    Directory of Open Access Journals (Sweden)

    Irena Butor

    2017-01-01

    Full Text Available The aim of this study was the isolation and characterization of microorganisms able to degrade biogenic amines and their identification. Individual microorganisms were obtained by isolation from commercially available foodstuffs and food produced in the technological laboratories of Faculty of Technology, Tomas Bata University in Zlín and subsequently identified by MALDI-TOF MS. The results of MALDI-TOF MS identification were verified by 16S rRNA sequenation. In this work was studied the ability of 5 bacterial strains positive to biogenic amines degradation isolated from dairy products to decrease biogenic amines content in vitro and quantified reduction in the concentration of biogenic amines tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine and tyramine. The level of degradation (decrease of biogenic amines was determined on the base of the ability to grow in media with biogenic amines as the sole source carbon and nitrogen. The isolated strains with the ability of degradation of one or more biogenic amines were cultured in medium supplemented with relevant biogenic amines, the media derivatized with dansyl chloride and these amines separated by HPLC at a wavelength of 254 nm. From five tested strains identified as Bacillus subtilis, Bacillus pumilus, Enterobacter cloacae, Rhizobium radiobacter and Acinetobacter pitii, isolated from gouda type cheese, the greatest ability of degradation was observed in Bacillus subtilis, which was capable to degrade almost all amount of histamine, cadaverine and putrescine. Other four strains showed a lower rate of degradation than Bacillus subtilis, but the ability to degrade biogenic amines with these microorganisms was still significant.

  9. Insolubilization of technetium by microorganisms in waterlogged soils

    International Nuclear Information System (INIS)

    Ishii, Nobuyoshi; Tagami, Keiko

    2003-01-01

    In order to clarify the technetium behavior in paddy field ecosystem, insolubilization of technetium in the water covering waterlogged soils was studied. Fourteen soils collected from paddy fields (9 samples) and upland fields (5 samples) were waterlogged for 7 days. After the collection of water covering the waterlogged soils, a radio tracer 95m TcO 4 - was added to the water. After 4 days incubation of the water, the tracer was separated into four fractions: insoluble, pertechnetate, cationic, and other forms of technetium. On an average, 13% of the 95m TcO 4 - changed to insoluble forms and the maximum ratio of the insolubilization was 76%. This result shows that insolubilization of technetium can occur in the water covering the waterlogged soils. Subsequently, mechanisms of Tc insolubilization were studied using the sample that showed the maximum insolubilization of Tc among the soil samples. When microorganisms were removed from the water by filtration, insoluble forms of Tc decreased to 3.6%. In contrast, the insolubilization ratio increased to 86% by the addition of organic substrates. The insolubilization, therefore, was caused by microorganisms. Furthermore, the addition of antibiotics on bacteria resulted in 23% of the insolubilization, while the antibiotic on fungi did not affect on the insolubilization. If the insolubilization were caused by biosorption, the insolubilization ratio would not decrease for the sample added antibiotics on bacteria. Therefore, these results suggest that the insolubilization of technetium is caused by bioaccumulation of living bacteria. Because the cultures with 95m TcO 4 - were incubated under aerobic conditions, technetium-insolubilizing microorganisms would presumably be aerobic bacteria. (author)

  10. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    Science.gov (United States)

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  11. Surfactant producing TNT-degrading microorganisms for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyov, A.; Marchenko, A.; Rudneva, O.; Borovick, R. [Research Center for Toxicology and Hygienic Regulation of Biopreparations, Serpukhov, Moscow region (Russian Federation); Radosevich, M. [Univ. of Delaware, Newark (United States). Dept. of Plant and Soil Sciences

    2003-07-01

    In general the biodegradation of nitroaromatic hydrocarbons is influenced by their bioavailability. 2,4,6-trinitrotoluene is very poorly soluble in water. TNT is easily adsorbed to clay or humus fractions in the soil, and pass very slowly to the aqueous phase, where microorganisms metabolize it. Biosurfactants that increase TNT solubility and improve its bioavailability can thereby accelerate degradation. Pure cultures of microorganisms-TNT degraders were isolated by the method of enrichment cultures from samples of different-type soil contaminated by TNT (soddy-podzol, black earth, and gray forest ones). From 28 soil samples 35 isolates of microorganisms degrading TNT were taken. The isolated soil samples had been tested for availability of microbial activity towards TNT. By10 g of air-dried soil, 10 ml of distilled water, and 2 mg of TNT were placed into 750 ml shaken flasks. The flasks were incubated at 150 rev/min and 24 C. Glucose, sodium succinate or sodium acetate had been used as co-substrates. The ability of the strains to produce surfactants was studied by drop collapsing test and direct measuring of surface tension of cultural liquid after cultivation with TNT. Cells of the strains were cultivated on solid and liquid nutrient media. For drop collapsing test the cells were cultivated on solid nutrient media; the separated colonies were suspended in distilled water. Drop sustainability test ws conducted on a standard 96-well plates coated with a thin layer of vaseline oil. Surface tension of cultural liquid ws measured after cultivation of strains in the presence of TNT with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. (orig.)

  12. Effectiveness of chitosan against wine-related microorganisms.

    Science.gov (United States)

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  13. Application of microorganism to in-situ leaching mining

    International Nuclear Information System (INIS)

    Yu, Runlan; Sato, Kazuhiko; Nagara, Shuichi; Yamana, Satoshi

    1998-01-01

    In-situ leaching (ISL) technique has come into the spotlight recently because of its low production costs and low environmental impact. In China, development and application of economical ISL techniques are also being studied. To design a pilot scale ISL 'bioreactor' in China, applicability of microorganisms to ISL mining was evaluated at Ningyo Toge Works as a part of Scientist Exchange Program of the Science and Technology Agency. An overview of the indirect bio-ISL method with iron oxidizing bacteria, Thiobacillus ferroxidans (TF), and results from experiment to determine factors for the ISL 'bioreactor' are discussed. (author)

  14. Purification of soil contaminated by oil with microorganisms

    Directory of Open Access Journals (Sweden)

    Maira Kazankapova

    2013-05-01

    Full Text Available The paper presents the results of studying the influence of strains of Pseudomonas mendoсina H-3 and Oscillatoria С-3 on soil contaminated with petroleum and hydrocarbons. The changes in chemical composition of hydrocarbons were determined. The influence of strain on the soil was studied by IR spectroscopy and chromatography. It was found that microorganisms can break down paraffinic and aromatic petroleum hydrocarbons.

  15. Stringy and Membranic Theory of Swimming of Micro-organisms

    OpenAIRE

    Kawamura, Masako; Nojiri, Shin'ichi; Sugamoto, Akio

    1996-01-01

    When the swimming of micro-organisms is viewed from the string and membrane theories coupled to the velocity field of the fluid, a number of interesting results are derived; 1) importance of the area (or volume) preserving algebra, 2) usefulness of the $N$-point Reggeon (membranic) amplitudes, and of the gas to liquid transition in case of the red tide issues, 3) close relation between the red tide issue and the generation of Einstein gravity, and 4) possible understanding of the three differ...

  16. Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.

    Science.gov (United States)

    Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree

    2017-01-01

    Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC

  17. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  18. Analysis of bioremediation of pesticides by soil microorganisms

    Science.gov (United States)

    Ruml, Tomas; Klotz, Dietmar; Tykva, Richard

    1995-10-01

    The application of new pesticides requires careful monitoring of their distribution in the environment. The effect of the soil microflora on the stability of the [14C]- labelled juvenoid hormone analogue W-328 was estimated. The micro-organisms from two different soil samples were isolated and tested for their ability to decompose W-328. One bacterial strain, yeast and mold isolates, exhibited the degradation activity. The growth characteristics such as pH and temperature optima were determined. The degradation products were estimated using HPLC.

  19. Effect of Mixing on Microorganism Growth in Loop Bioreactors

    Directory of Open Access Journals (Sweden)

    A. M. Al Taweel

    2012-01-01

    Full Text Available The impact of mixing on the promotion of microorganism growth rate has been analyzed using a multiphase forced-circulation pipe-loop reactor model capable of identifying conditions under which it is possible to convert natural gas into Single-Cell Protein. The impact of mixing in the interphase mass transfer was found to exert a critical role in determining the overall productivity of the bioreactor, particularly at the high cell loadings needed to reduce the capital costs associated with the large-scale production needed for the production of relatively low-value SCP in a sustainable manner.

  20. Microbial and biochemical studies on phytase enzyme in some microorganisms

    International Nuclear Information System (INIS)

    Abdelbary, N.A.

    1997-01-01

    Mixed calcium and magnesium salts of phytic acid myoinositol hexa phosphoric acid are widely distributed in food stuffs of plant origin, they may bind essential proteins, phospholipids and microelements to form indigestible compounds. In this concern, destruction of phytic acid and its salts by different methods is very important, one of them is by using microbial phytase. This study aims to produce phytase enzyme from microorganisms and study the best conditions of production and purification and also the properties of the partially purified phytase. 22 figs., 29 tabs., 61 refs