WorldWideScience

Sample records for human cardiac myocytes

  1. De Novo Human Cardiac Myocytes for Medical Research: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Veronique Hamel

    2017-01-01

    Full Text Available The advent of cellular reprogramming technology has revolutionized biomedical research. De novo human cardiac myocytes can now be obtained from direct reprogramming of somatic cells (such as fibroblasts, from induced pluripotent stem cells (iPSCs, which are reprogrammed from somatic cells, and from human embryonic stem cells (hESCs. Such de novo human cardiac myocytes hold great promise for in vitro disease modeling and drug screening and in vivo cell therapy of heart disease. Here, we review the technique advancements for generating de novo human cardiac myocytes. We also discuss several challenges for the use of such cells in research and regenerative medicine, such as the immature phenotype and heterogeneity of de novo cardiac myocytes obtained with existing protocols. We focus on the recent advancements in addressing such challenges.

  2. Expression of androgen-binding protein (ABP) in human cardiac myocytes.

    Science.gov (United States)

    Schock, H W; Herbert, Z; Sigusch, H; Figulla, H R; Jirikowski, G F; Lotze, U

    2006-04-01

    Cardiomyocytes are known to be androgen targets. Changing systemic steroid levels are thought to be linked to various cardiac ailments, including dilated cardiomyopathy (DCM). The mode of action of gonadal steroid hormones on the human heart is unknown to date. In the present study, we used high-resolution immunocytochemistry on semithin sections (1 microm thick), IN SITU hybridization, and mass spectrometry to investigate the expression of androgen-binding protein (ABP) in human myocardial biopsies taken from male patients with DCM. We observed distinct cytoplasmic ABP immunoreactivity in a fraction of the myocytes. IN SITU hybridization with synthetic oligonucleotide probes revealed specific hybridization signals in these cells. A portion of the ABP-positive cells contained immunostaining for androgen receptor. With SELDI TOF mass spectrometry of affinity purified tissue extracts of human myocardium, we confirmed the presence of a 50 kDa protein similar to ABP. Our observations provide evidence of an intrinsic expression of ABP in human heart. ABP may be secreted from myocytes in a paracrine manner perhaps to influence the bioavailabity of gonadal steroids in myocardium.

  3. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  4. Characterization of human septic sera induced gene expression modulation in human myocytes

    OpenAIRE

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera....

  5. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response

    International Nuclear Information System (INIS)

    Icli, Basak; Bharti, Ajit; Pentassuglia, Laura; Peng, Xuyang; Sawyer, Douglas B.

    2012-01-01

    Highlights: ► ErbB4 localizes to cardiac myocyte nuclei as a full-length receptor. ► Cardiac myocytes express predominantly JM-a/CYT-1 ErbB4. ► Myocyte p53 activation in response to doxorubicin requires ErbB4 activity. -- Abstract: The intracellular domain of ErbB4 receptor tyrosine kinase is known to translocate to the nucleus of cells where it can regulate p53 transcriptional activity. The purpose of this study was to examine whether ErbB4 can localize to the nucleus of adult rat ventricular myocytes (ARVM), and regulate p53 in these cells. We demonstrate that ErbB4 does locate to the nucleus of cardiac myocytes as a full-length protein, although nuclear location occurs as a full-length protein that does not require Protein Kinase C or γ-secretase activity. Consistent with this we found that only the non-cleavable JM-b isoform of ErbB4 is expressed in ARVM. Doxorubicin was used to examine ErbB4 role in regulation of a DNA damage response in ARVM. Doxorubicin induced p53 and p21 was suppressed by treatment with AG1478, an EGFR and ErbB4 kinase inhibitor, or suppression of ErbB4 expression with small interfering RNA. Thus ErbB4 localizes to the nucleus as a full-length protein, and plays a role in the DNA damage response induced by doxorubicin in cardiac myocytes.

  6. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.

    Science.gov (United States)

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José

    2013-11-01

    Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.

  7. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  8. Signaling Pathways in Cardiac Myocyte Apoptosis

    Science.gov (United States)

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  9. IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB

    International Nuclear Information System (INIS)

    Maldonado, Carola; Cea, Paola; Adasme, Tatiana; Collao, Andres; Diaz-Araya, Guillermo; Chiong, Mario; Lavandero, Sergio

    2005-01-01

    Hyperosmotic stress stimulates a rapid and pronounced apoptosis in cardiac myocytes which is attenuated by insulin-like growth factor-1 (IGF-1). Because in these cells IGF-1 induces intracellular Ca 2+ increase, we assessed whether the cyclic AMP response element-binding protein (CREB) is activated by IGF-1 through Ca 2+ -dependent signalling pathways. In cultured cardiac myocytes, IGF-1 induced phosphorylation (6.5 ± 1.0-fold at 5 min), nuclear translocation (30 min post-stimulus) and DNA binding activity of CREB. IGF-1-induced CREB phosphorylation was mediated by MEK1/ERK, PI3-K, p38-MAPK, as well as Ca 2+ /calmodulin kinase and calcineurin. Exposure of cardiac myocytes to hyperosmotic stress (sorbitol 600 mOsm) decreased IGF-1-induced CREB activation Moreover, overexpression of a dominant negative CREB abolished the anti-apoptotic effects of IGF-1. Our results suggest that IGF-1 activates CREB through a complex signalling pathway, and this transcription factor plays an important role in the anti-apoptotic action of IGF-1 in cultured cardiac myocytes

  10. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Dorota Jeziorowska

    2017-06-01

    Full Text Available Human induced pluripotent stem cells (iPSCs represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D or, more recently, on monolayer culture (2D. We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response or IWP2 (inhibitor of Wnt production. We firstly found that the level of Troponin T (TNNT2 expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies.

  11. Protective effect of eicosapentaenoic acid on ouabain toxicity in neonatal rat cardiac myocytes

    International Nuclear Information System (INIS)

    Hallaq, H.; Leaf, A.; Sellmayer, A.; Smith, T.W.

    1990-01-01

    Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3 endash 5 days in culture medium enriched with 5 μM arachidonic acid had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3 endash 5 days with 5 μM eicosapentaenoic acid completely prevented the toxic effects of ouabain at 0.1 mM. No differences in bumetanide-inhibitable 86 Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 ± 29 and 757 ± 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels were preserved. Incubating the myocytes with eicosapentaenoic acid for 3 endash 5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospolipids of the myocytes

  12. Design-based stereological estimation of the total number of cardiac myocytes in histological sections

    DEFF Research Database (Denmark)

    Brüel, Annemarie; Nyengaard, Jens Randel

    2005-01-01

    in LM sections using design-based stereology. MATERIALS AND METHODS: From formalin-fixed left rat ventricles (LV) isotropic uniformly random sections were cut. The total number of myocyte nuclei per LV was estimated using the optical disector. Two-microm-thick serial paraffin sections were stained......BACKGROUND: Counting the total number of cardiac myocytes has not previously been possible in ordinary histological sections using light microscopy (LM) due to difficulties in defining the myocyte borders properly. AIM: To describe a method by which the total number of cardiac myocytes is estimated...... with antibodies against cadherin and type IV collagen to visualise the intercalated discs and the myocyte membranes, respectively. Using the physical disector in "local vertical windows" of the serial sections, the average number of nuclei per myocyte was estimated.RESULTS: The total number of myocyte nuclei...

  13. Study on the effect of hypoxia on apoptosis of cultured newly born rat cardiac myocytes

    International Nuclear Information System (INIS)

    Su Weidong; Li Huiqiang; Yao Zhi

    2005-01-01

    Objective: To investigate the possible hypoxia-mediated cellular apoptosis after ischemic cardiac injury via a model of cultured newly born rat cardiac myocytes. Methods: Cardiac myocytes cultures from newly born rats (1-3d) were examined for apoptosis with HE stain and flow cytometry after cultured 96h and again examined after exposure to hypoxic environment for 16h. Results: Apoptotic changes were evident in the hypoxic culture cells. The HE stain revealed cellular shrinkage, nuclear chromosomal condensation with cytoplasmic eosinophilia. Also, distinct apoptosis peak was observed in the flow cytometry. Conclusion: This experiment proved that hypoxic model of cardiac myocyte culture showed definite apoptosis of the cells. (authors)

  14. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  15. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  16. Stochastic Alternating Dynamics for Synchronous EAD-Like Beating Rhythms in Cultured Cardiac Myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ning; ZHANG Hui-Min; LIU Zhi-Qiang; DING Xue-Li; YANG Ming-Hao; GU Hua-Guang; REN Wei

    2009-01-01

    Dissolved cardiac myocytes can couple together and generate synchronous beatings in culture. We observed a synchronized early after-depolarization(EAD)-like rhythm in cultured cardiac myocytes and reproduced the experimental observation in a network mathematical model whose dynamics are close to a Hopf bifurcation. The mechanism for this EAD-like rhythm is attributed to noised-induced stochastic alternatings between the focus and the limit cycle. These results provide novel understandings for pathological heart rhythms like the early immature beatings.

  17. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  18. Novel protective role of endogenous cardiac myocyte P2X4 receptors in heart failure.

    Science.gov (United States)

    Yang, Tiehong; Shen, Jian-bing; Yang, Ronghua; Redden, John; Dodge-Kafka, Kimberly; Grady, James; Jacobson, Kenneth A; Liang, Bruce T

    2014-05-01

    Heart failure (HF), despite continuing progress, remains a leading cause of mortality and morbidity. P2X4 receptors (P2X4R) have emerged as potentially important molecules in regulating cardiac function and as potential targets for HF therapy. Transgenic P2X4R overexpression can protect against HF, but this does not explain the role of native cardiac P2X4R. Our goal is to define the physiological role of endogenous cardiac myocyte P2X4R under basal conditions and during HF induced by myocardial infarction or pressure overload. Mice established with conditional cardiac-specific P2X4R knockout were subjected to left anterior descending coronary artery ligation-induced postinfarct or transverse aorta constriction-induced pressure overload HF. Knockout cardiac myocytes did not show P2X4R by immunoblotting or by any response to the P2X4R-specific allosteric enhancer ivermectin. Knockout hearts showed normal basal cardiac function but depressed contractile performance in postinfarct and pressure overload models of HF by in vivo echocardiography and ex vivo isolated working heart parameters. P2X4R coimmunoprecipitated and colocalized with nitric oxide synthase 3 (eNOS) in wild-type cardiac myocytes. Mice with cardiac-specific P2X4R overexpression had increased S-nitrosylation, cyclic GMP, NO formation, and were protected from postinfarct and pressure overload HF. Inhibitor of eNOS, L-N(5)-(1-iminoethyl)ornithine hydrochloride, blocked the salutary effect of cardiac P2X4R overexpression in postinfarct and pressure overload HF as did eNOS knockout. This study establishes a new protective role for endogenous cardiac myocyte P2X4R in HF and is the first to demonstrate a physical interaction between the myocyte receptor and eNOS, a mediator of HF protection. © 2014 American Heart Association, Inc.

  19. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  20. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors.

    Science.gov (United States)

    Patel, Hemal H; Head, Brian P; Petersen, Heidi N; Niesman, Ingrid R; Huang, Diane; Gross, Garrett J; Insel, Paul A; Roth, David M

    2006-07-01

    The role of caveolae, membrane microenvironments enriched in signaling molecules, in myocardial ischemia is poorly defined. In the current study, we used cardiac myocytes prepared from adult rats to test the hypothesis that opioid receptors (OR), which are capable of producing cardiac protection in vivo, promote cardiac protection in cardiac myocytes in a caveolae-dependent manner. We determined protein expression and localization of delta-OR (DOR) using coimmunohistochemistry, caveolar fractionation, and immunoprecipitations. DOR colocalized in fractions with caveolin-3 (Cav-3), a structural component of caveolae in muscle cells, and could be immunoprecipitated by a Cav-3 antibody. Immunohistochemistry confirmed plasma membrane colocalization of DOR with Cav-3. Cardiac myocytes were subjected to simulated ischemia (2 h) or an ischemic preconditioning (IPC) protocol (10 min ischemia, 30 min recovery, 2 h ischemia) in the presence and absence of methyl-beta-cyclodextrin (MbetaCD, 2 mM), which binds cholesterol and disrupts caveolae. We also assessed the cardiac protective effects of SNC-121 (SNC), a selective DOR agonist, on cardiac myocytes with or without MbetaCD and MbetaCD preloaded with cholesterol. Ischemia, simulated by mineral oil layering to inhibit gas exchange, promoted cardiac myocyte cell death (trypan blue staining), a response blunted by SNC (37 +/- 3 vs. 59 +/- 3% dead cells in the presence and absence of 1 muM SNC, respectively, P protective effects of IPC or SNC, resulting in cell death comparable to that of the ischemic group. By contrast, SNC-induced protection was not abrogated in cells incubated with cholesterol-saturated MbetaCD, which maintained caveolae structure and function. These findings suggest a key role for caveolae, perhaps through enrichment of signaling molecules, in contributing to protection of cardiac myocytes from ischemic damage.

  1. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    Science.gov (United States)

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into

  2. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  3. Extraction of the 3D local orientation of myocytes in human cardiac tissue using X-ray phase-contrast micro-tomography and multi-scale analysis.

    Science.gov (United States)

    Varray, François; Mirea, Iulia; Langer, Max; Peyrin, Françoise; Fanton, Laurent; Magnin, Isabelle E

    2017-05-01

    This paper presents a methodology to access the 3D local myocyte arrangements in fresh human post-mortem heart samples. We investigated the cardiac micro-structure at a high and isotropic resolution of 3.5 µm in three dimensions using X-ray phase micro-tomography at the European Synchrotron Radiation Facility. We then processed the reconstructed volumes to extract the 3D local orientation of the myocytes using a multi-scale approach with no segmentation. We created a simplified 3D model of tissue sample made of simulated myocytes with known size and orientations, to evaluate our orientation extraction method. Afterwards, we applied it to 2D histological cuts and to eight 3D left ventricular (LV) cardiac tissue samples. Then, the variation of the helix angles, from the endocardium to the epicardium, was computed at several spatial resolutions ranging from 3.6 3  mm 3 to 112 3  µm 3 . We measure an increased range of 20° to 30° from the coarsest resolution level to the finest level in the experimental samples. This result is in line with the higher values measured from histology. The displayed tractography demonstrates a rather smooth evolution of the transmural helix angle in six LV samples and a sudden discontinuity of the helix angle in two septum samples. These measurements bring a new vision of the human heart architecture from macro- to micro-scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Optimal Population of Embryonic Stem Cells in "Hanging Drop" Culture for in-vitro Differentiation to Cardiac Myocytes

    OpenAIRE

    MIWA, Keiko; LEE, Jong-Kook; HIDAKA, Kyoko; SHI, Rong-qian; MORISAKI, Takayuki; KODAMA, Itsuo

    2002-01-01

    Pluripotent embryonic stem (ES) cells differentiate to cardiac myocytes in vitro by many other previous reports demonstrated "hanging-drop" method. In this study, the number of ES cells in each hanging-drop plays an important role in the cultivation of cardiac myocytes. We examined the optimal hanging-drop size to obtain embryonic stem cell-derived cardiac cells (ESCMs) in vitro using specific labeled mouse ES cells (hCGP7) which were stably transfected with the enhanced green fluorescent pro...

  5. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility

    Science.gov (United States)

    McCain, Megan L.; Yuan, Hongyan; Pasqualini, Francesco S.; Campbell, Patrick H.

    2014-01-01

    Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize contractility when the extracellular matrix becomes stiffer due to conditions such as fibrosis. To test this, we engineered neonatal rat ventricular myocytes into rectangles mimicking the 2-D profiles of healthy and hypertrophied myocytes on hydrogels with moderate (13 kPa) and high (90 kPa) elastic moduli. Actin alignment was unaffected by matrix elasticity, but sarcomere content was typically higher on stiff gels. Microtubule polymerization was higher on stiff gels, implying increased intracellular elastic modulus. On moderate gels, myocytes with moderate aspect ratios (∼7:1) generated the most peak systolic work compared with other cell shapes. However, on stiffer gels, low aspect ratios (∼2:1) generated the most peak systolic work. To compare the relative contributions of intracellular vs. extracellular elasticity to contractility, we developed an analytical model and used our experimental data to fit unknown parameters. Our model predicted that matrix elasticity dominates over intracellular elasticity, suggesting that the extracellular matrix may potentially be a more effective therapeutic target than microtubules. Our data and model suggest that myocytes with lower aspect ratios have a functional advantage when the elasticity of the extracellular matrix decreases due to conditions such as fibrosis, highlighting the role of the extracellular matrix in cardiac disease. PMID:24682394

  6. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-01-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  7. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  8. YY1 Protects Cardiac Myocytes from Pathologic Hypertrophy by Interacting with HDAC5

    Science.gov (United States)

    Dockstader, Karen; McKinsey, Timothy A.

    2008-01-01

    YY1 is a transcription factor that can repress or activate the transcription of a variety of genes. Here, we show that the function of YY1 as a repressor in cardiac myocytes is tightly dependent on its ability to interact with histone deacetylase 5 (HDAC5). YY1 interacts with HDAC5, and overexpression of YY1 prevents HDAC5 nuclear export in response to hypertrophic stimuli and the increase in cell size and re-expression of fetal genes that accompany pathological cardiac hypertrophy. Knockdown of YY1 results in up-regulation of all genes present during fetal development and increases the cell size of neonatal cardiac myocytes. Moreover, overexpression of a YY1 deletion construct that does not interact with HDAC5 results in transcription activation, suggesting that HDAC5 is necessary for YY1 function as a transcription repressor. In support of this relationship, we show that knockdown of HDAC5 results in transcription activation by YY1. Finally, we show that YY1 interaction with HDAC5 is dependent on the HDAC5 phosphorylation domain and that overexpression of YY1 reduces HDAC5 phosphorylation in response to hypertrophic stimuli. Our results strongly suggest that YY1 functions as an antihypertrophic factor by preventing HDAC5 nuclear export and that up-regulation of YY1 in human heart failure may be a protective mechanism against pathological hypertrophy. PMID:18632988

  9. Intermittent Hypoxia Causes Inflammation and Injury to Human Adult Cardiac Myocytes.

    Science.gov (United States)

    Wu, Jing; Stefaniak, Joanna; Hafner, Christina; Schramel, Johannes Peter; Kaun, Christoph; Wojta, Johann; Ullrich, Roman; Tretter, Verena Eva; Markstaller, Klaus; Klein, Klaus Ulrich

    2016-02-01

    Intermittent hypoxia may occur in a number of clinical scenarios, including interruption of myocardial blood flow or breathing disorders such as obstructive sleep apnea. Although intermittent hypoxia has been linked to cardiovascular and cerebrovascular disease, the effect of intermittent hypoxia on the human heart is not fully understood. Therefore, in the present study, we compared the cellular responses of cultured human adult cardiac myocytes (HACMs) exposed to intermittent hypoxia and different conditions of continuous hypoxia and normoxia. HACMs were exposed to intermittent hypoxia (0%-21% O2), constant mild hypoxia (10% O2), constant severe hypoxia (0% O2), or constant normoxia (21% O2), using a novel cell culture bioreactor with gas-permeable membranes. Cell proliferation, lactate dehydrogenase release, vascular endothelial growth factor release, and cytokine (interleukin [IL] and macrophage migration inhibitory factor) release were assessed at baseline and after 8, 24, and 72 hours of exposure. A signal transduction pathway finder array was performed to determine the changes in gene expression. In comparison with constant normoxia and constant mild hypoxia, intermittent hypoxia induced earlier and greater inflammatory response and extent of cell injury as evidenced by lower cell numbers and higher lactate dehydrogenase, vascular endothelial growth factor, and proinflammatory cytokine (IL-1β, IL-6, IL-8, and macrophage migration inhibitory factor) release. Constant severe hypoxia showed more detrimental effects on HACMs at later time points. Pathway analysis demonstrated that intermittent hypoxia primarily altered gene expression in oxidative stress, Wnt, Notch, and hypoxia pathways. Intermittent and constant severe hypoxia, but not constant mild hypoxia or normoxia, induced inflammation and cell injury in HACMs. Cell injury occurred earliest and was greatest after intermittent hypoxia exposure. Our in vitro findings suggest that intermittent hypoxia

  10. Effect of PPAR γ activators on hypertrophic cardiac myocytes in vitro

    International Nuclear Information System (INIS)

    Wu Shimin; Zhou Xin; Ye Ping; Wang Qiong; Gao Yue; Liu Yongxue

    2004-01-01

    Objective: To investigate the effects of peroxisome proliferator-activated receptor γ (PPAR γ) activators pioglitazone and 15-deoxy-Δ 12,14 prostaglandin J 2 (15d-PGJ 2 ) on hypertrophic cardiac myocytes (MC) of neonatal rats in vitro. Methods; With the stimulation of angiotensin II(Ang II), a model of hypertrophy of MC was established. With the method of reverse transcription-polymerase chain reaction (RT-PCR), mRNA expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was amplified; with the aid of NIH Image J software the surface area of MC was analyzed and with 3 H-leucine incorporation, the synthesizing rate of protein in MC was measured. Results: Increases in surface area of MC, mRNA expression of ANP and BNP and 3 H-leucine incorporation in MC were observed in the model of cardiac hypertrophy. Pioglitazone and 15d-PGJ 2 , two kinds of PPAR γ activators, inhibited the above changes in a dose-dependent manner. Conclusion: It is suggested that PPAR γ activators inhibit hypertrophy of cardiac myocytes and PPAR γ-dependent pathway be involved in the inhibitory course

  11. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  12. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  13. Formulation and in vitro interaction of rhodamine-B loaded PLGA nanoparticles with cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Antranik Jonderian

    2016-12-01

    Full Text Available This study aims to characterize rhodamine B (Rh B loaded poly(D,L-lactide-co-glycolide (PLGA nanoparticles (NPs and their interactions with cardiac myocytes. PLGA NPs were formulated using single emulsion solvent evaporation technique. The influence of varying parameters such as the stabilizer concentration, the sonication time, and the organic to aqueous ratio were investigated. The diameter, the dispersity, the encapsulation efficiency and the zeta potential of the optimized nanoparticles were about 184 nm, 0.19, 40% and -21.7 mV respectively. In vitro release showed that 29% of the Rh B was released within the first 8 hours. Scanning electron microscopy (SEM measurements performed on the optimized nanoparticles showed smooth surface and spherical shapes. No significant cytotoxic or apoptotic effects were observed on fetal cardiac myocytes after 24 and 48 hours of exposure with concentrations up to 200 µg/mL. The kinetic of the intracellular uptake was confirmed by confocal microscopy and cells took up PLGA NPs within the first hours. Interestingly, our data show an increase in the nanoparticles’ uptake with time of exposure. Taken together, we demonstrate for the first time that the designed NPs can be used as potential probes for drug delivery in cardiac myocytes.

  14. PGC-1α accelerates cytosolic Ca2+ clearance without disturbing Ca2+ homeostasis in cardiac myocytes

    International Nuclear Information System (INIS)

    Chen, Min; Wang, Yanru; Qu, Aijuan

    2010-01-01

    Energy metabolism and Ca 2+ handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1α in cardiac Ca 2+ signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1α via adenoviral transduction. Our data shows that overexpressing PGC-1α improved myocyte contractility without increasing the amplitude of Ca 2+ transients, suggesting that myofilament sensitivity to Ca 2+ increased. Interestingly, the decay kinetics of global Ca 2+ transients and Ca 2+ waves accelerated in PGC-1α-expressing cells, but the decay rate of caffeine-elicited Ca 2+ transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA2a), but not Na + /Ca 2+ exchange (NCX) contribute to PGC-1α-induced cytosolic Ca 2+ clearance. Furthermore, PGC-1α induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1α did not disturb cardiac Ca 2+ homeostasis, because SR Ca 2+ load and the propensity for Ca 2+ waves remained unchanged. These data suggest that PGC-1α can ameliorate cardiac Ca 2+ cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1α-calcium handing pathway sheds new light on the role of PGC-1α in the therapy of cardiac diseases.

  15. Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes.

    Science.gov (United States)

    Lin, Z X; Holtzer, S; Schultheiss, T; Murray, J; Masaki, T; Fischman, D A; Holtzer, H

    1989-06-01

    Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating

  16. The Toxicity Mechanisms of Action of Aβ25–35 in Isolated Rat Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Beiru Zhang

    2014-08-01

    Full Text Available β-Amyloid (Aβ is deposited in neurons and vascular cells of the brain and is characterized as a pathologic feature of Alzheimer’s disease (AD. Recently studies have reported that there is an association between cardiovascular risk factors and AD, however the mechanism of this association is still uncertain. In this study we observed Aβ had an effect on cardiovascular cells. We represent as a major discovery that Aβ25–35 had toxicity on isolated rat cardiac myocytes by impacting the cytoskeleton assembly and causing ER stress, ultimately contributing to the apoptosis of the myocytes. Importantly, the activation of ER stress and subsequent cellular dysfunction and apoptosis by Aβ25–35 was regulated by the MAPK pathway, which could be prevented by inhibition of p38 via pharmacological inhibitors. It was noteworthy that Aβ25–35 played a critical role in cardiac myocytes, suggesting that Alzheimer’s disease (AD had a relation with the heart and understanding of these associations in future will help search for effective treatment strategies.

  17. Magnitude of Alloresponses to MHC Class I/II Expressing Human Cardiac Myocytes is Limited by their Intrinsic Ability to Process and Present Antigenic Peptides

    Directory of Open Access Journals (Sweden)

    Aftab A. Ansari

    2003-01-01

    Full Text Available In this investigation we have explored the relationship between the weak allogenicity of cardiac myocytes and their capacity to present allo-antigens by examining the ability of a human cardiac myocyte cell line (W-1 to process and present nominal antigens. W-1 cells (HLA-A*0201 and HLA-DR β1*0301 pulsed with the influenza A matrix 1 (58-66 peptide (M1 were able to serve as targets for the HLA-A*0201 restricted CTL line PG, specific for M1-peptide. However, PG-CTLs were unable to lyse W-1 target cells infected with a recombinant vaccinia virus expressing the M1 protein (M1-VAC. Pretreatment of these M1-VAC targets with IFN-γ partially restored their ability to process and present the M1 peptide. However, parallel studies demonstrated that IFN-γ pretreated W-1's could not process tetanus toxin (TT or present the TT(830-843 peptide to HLA-DR3 restricted TT-primed T cells. Semi-quantitative RT-PCR measurements revealed significantly lower constitutive levels of expression for MHC class I, TAP-1/2, and LMP-2/7 genes in W-1s that could be elevated by pretreatment with IFN-γ to values equal to or greater than those expressed in EBV-PBLs. However, mRNA levels for the genes encoding MHC class II, Ii, CIITA, and DMA/B were markedly lower in both untreated and IFN-γ pretreated W-1s relative to EBV-PBLs. Furthermore, pulse-chase analysis of the corresponding genes revealed significantly lower protein levels and longer half-life expression in W-1s relative to EBV-PBLs. These results suggest that weak allogenicity of cardiac myocytes may be governed by their limited expression of MHC genes and gene products critical for antigen processing and presentation.

  18. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  19. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min, E-mail: chenminyx@gmail.com [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Yunnan Centers for Diseases Prevention and Control, Kunming 650022 (China); Wang, Yanru [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Qu, Aijuan [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  20. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model.

    Science.gov (United States)

    Krogh-Madsen, Trine; Christini, David J

    2017-09-01

    Accumulation of intracellular Na + is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na + concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na + concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na + ] i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na + ] i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na + ] i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na + ] i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na + ] i may play complex roles in cellular and tissue-level cardiac dynamics.

  1. EMMPRIN mediates beta-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes.

    OpenAIRE

    Siwik Deborah A; Kuster Gabriela M; Brahmbhatt Jamin V; Zaidi Zaheer; Malik Julia; Ooi Henry; Ghorayeb Ghassan

    2008-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) expression is increased in myocardium from patients with dilated cardiomyopathy and animal models of heart failure. However little is known about the regulated expression or functional role of EMMPRIN in the myocardium. In rat cardiac cells EMMPRIN is expressed on myocytes but not endothelial cells or fibroblasts. Therefore we tested the hypothesis that EMMPRIN expression regulates matrix metalloproteinase (MMP) activity in rat ventricu...

  2. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin.

    Science.gov (United States)

    Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun

    2017-08-01

    Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.

  3. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes.

    Science.gov (United States)

    Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra

    2017-12-01

    Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.

  4. S100A6 is a negative regulator of the induction of cardiac genes by trophic stimuli in cultured rat myocytes

    International Nuclear Information System (INIS)

    Tsoporis, J.N.; Marks, A.; Haddad, A.; O'Hanlon, D.; Jolly, S.; Parker, T.G.

    2005-01-01

    S100A6 (calcyclin), a member of the S100 family of EF-hand Ca 2+ binding proteins, has been implicated in the regulation of cell growth and proliferation. We have previously shown that S100B, another member of the S100 family, is induced postinfarction and limits the hypertrophic response of surviving cardiac myocytes. We presently report that S100A6 expression is also increased in the periinfarct zone of rat heart postinfarction and in cultured neonatal rat myocytes by treatment with several trophic agents, including platelet-derived growth factor (PDGF), the α 1 -adrenergic agonist phenylephrine (PE), and angiotensin II (AII). Cotransfection of S100A6 in cultured neonatal rat cardiac myocytes inhibits induction of the cardiac fetal gene promoters skeletal α-actin (skACT) and β-myosin heavy chain (β-MHC) by PDGF, PE, AII, and the prostaglandin F 2α (PGF 2α ), induction of the S100B promoter by PE, and induction of the α-MHC promoter by triiodothyronine (T3). By contrast, S100B cotransfection selectively inhibited only PE induction of skACT and β-MHC promoters. Fluorescence microscopy demonstrated overlapping intracellular distribution of S100B and S100A6 in transfected myocytes and in postinfarct myocardium but heterodimerization of the two proteins could not be detected by co-immunoprecipitation. We conclude that S100A6 may function as a global negative modulator of differentiated cardiac gene expression comparable to its putative role in cell cycle progression of dividing cells

  5. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    Science.gov (United States)

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  6. The timing statistics of spontaneous calcium release in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Mesfin Asfaw

    Full Text Available A variety of cardiac arrhythmias are initiated by a focal excitation that disrupts the regular beating of the heart. In some cases it is known that these excitations are due to calcium (Ca release from the sarcoplasmic reticulum (SR via propagating subcellular Ca waves. However, it is not understood what are the physiological factors that determine the timing of these excitations at both the subcellular and tissue level. In this paper we apply analytic and numerical approaches to determine the timing statistics of spontaneous Ca release (SCR in a simplified model of a cardiac myocyte. In particular, we compute the mean first passage time (MFPT to SCR, in the case where SCR is initiated by spontaneous Ca sparks, and demonstrate that this quantity exhibits either an algebraic or exponential dependence on system parameters. Based on this analysis we identify the necessary requirements so that SCR occurs on a time scale comparable to the cardiac cycle. Finally, we study how SCR is synchronized across many cells in cardiac tissue, and identify a quantitative measure that determines the relative timing of SCR in an ensemble of cells. Using this approach we identify the physiological conditions so that cell-to-cell variations in the timing of SCR is small compared to the typical duration of an SCR event. We argue further that under these conditions inward currents due to SCR can summate and generate arrhythmogenic triggered excitations in cardiac tissue.

  7. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses

    International Nuclear Information System (INIS)

    Nan, Changlong; Li, Yuejin; Jean-Charles, Pierre-Yves; Chen, Guozhen; Kreymerman, Alexander; Prentice, Howard; Weissbach, Herbert; Huang, Xupei

    2010-01-01

    Research highlights: → Deficiency of MsrA in the heart renders myocardial cells more sensitive to oxidative stress. → Mitochondrial damage happens in the heart lacking MsrA. → More protein oxidation in myocardial cells lacking MsrA. → MsrA protects the heart against oxidative stress. -- Abstract: Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA -/- ) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA -/- mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA -/- cardiac myocytes. MsrA -/- cardiac myocytes also show a significant decrease in contractility after oxidative stress using H 2 O 2 . Corresponding changes in Ca 2+ transients are observed in MsrA -/- cardiomyocytes treated with 2 Hz stimulation or with H 2 O 2 . Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA -/- mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA -/- mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

  8. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure

    NARCIS (Netherlands)

    M. Rosa-Garrido (Manuel); Chapski, D.J. (Douglas J.); Schmitt, A.D. (Anthony D.); Kimball, T.H. (Todd H.); Karbassi, E. (Elaheh); Monte, E. (Emma); Balderas, E. (Enrique); Pellegrini, M. (Matteo); Shih, T.-T. (Tsai-Ting); Soehalim, E. (Elizabeth); D.A. Liem (David); Ping, P. (Peipei); N.J. Galjart (Niels); Ren, S. (Shuxun); Wang, Y. (Yibin); Ren, B. (Bing); Vondriska, T.M. (Thomas M.)

    2017-01-01

    textabstractBACKGROUND: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined.METHODS: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation

  9. The experimental study of reporter probe 131I-FIAU in neonatal cardiac myocytes after transfer of herpes simplex virus type 1 thymidine kinase reporter gene by different vectors

    International Nuclear Information System (INIS)

    Yin Xiaohua; Lan Xiaoli; Wang Ruihua; Liu Ying; Zhang Yongxue

    2009-01-01

    Objective: Reporter gene imaging is a promising approach for noninvasive monitoring of cardiac gene therapy. In the present study, the recombinant plasmid and adenoviral vector carrying reporter gene. herpes simplex virus type 1 thymidine kinase (HSV1-tk), were constructed and transferred into nee-natal cardiac myocytes, and a series of in vitro studies were carried out on the cells transferred to evaluate the uptake of radiolabeled reporter probe and to compare both vectors for cardiac reporter gene imaging. Methods: Neonatal cardiac myocytes were obtained from rat heart by single collagenase digestion. HSVI-tk. chosen as the reporter gene.was inserted into adenovirus vector (Ad5-tk) and plasmid (pDC316-tk), thus it could be transferred into neonatal cardiac myocytes. Recombinant adenovirus containing enhanced green fluorescent protein (Ad5-EGFP) was used as control. Recombinant plasmid was coated with lipofectamine TM 2000 (pDC316-tk/lipoplex). The specific reporter probe of HSV1-tk, 2'-fluoro-2'-deoxy-l-β-D-arabinofuranosyl-uracil (FAU), was labeled with 131 I by solid phase oxidation with lodogen. Product wag purified on a reverse. phase Sep-Pak C18 column and the radiochemical purity wag then assessed. The accumulation of it in the transferred cardiac myocytes wag detected as uptake rate. Furthermore, mRNA expression of HSV1-tk was detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), while its protein expression wag located by immunocytochemistry. Results: FAU could be labeled with 131 I and the labeling efficiency was (53.82 ±2.05)%. The radiochemical purity was (94.85 ± 1.76)% after purification, and it kept stable in vitro for at least 24h. Time-dependent increase of the ac- cumulation of 131 I-FIAU was observed in both Ad5-tk group and pDC316-tk/lipoplex group. and the highest uptake rate occurred at 5h, with peak values of (12.55 ± 0.37)% and (2.09 ± 0.34)% respectively. However, it also indicated that greater

  10. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    Science.gov (United States)

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  11. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-09-14

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes.

  12. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) to Monitor Compound Effects on Cardiac Myocyte Signaling Pathways.

    Science.gov (United States)

    Guo, Liang; Eldridge, Sandy; Furniss, Mike; Mussio, Jodie; Davis, Myrtle

    2015-09-01

    There is a need to develop mechanism-based assays to better inform risk of cardiotoxicity. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are rapidly gaining acceptance as a biologically relevant in vitro model for use in drug discovery and cardiotoxicity screens. Utilization of hiPSC-CMs for mechanistic investigations would benefit from confirmation of the expression and activity of cellular pathways that are known to regulate cardiac myocyte viability and function. This unit describes an approach to demonstrate the presence and function of signaling pathways in hiPSC-CMs and the effects of treatments on these pathways. We present a workflow that employs protocols to demonstrate protein expression and functional integrity of signaling pathway(s) of interest and to characterize biological consequences of signaling modulation. These protocols utilize a unique combination of structural, functional, and biochemical endpoints to interrogate compound effects on cardiomyocytes. Copyright © 2015 John Wiley & Sons, Inc.

  13. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications.

    Science.gov (United States)

    Yoshida, Yoshinori; Yamanaka, Shinya

    2017-06-09

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem cells, such as the capacity of self-renewal and differentiation into many types of cells, including cardiac myocytes. Although initially the reprogramming efficiency was low, several improvements in reprogramming methods have achieved robust and efficient generation of iPSCs without genomic insertion of transgenes. iPSCs display clonal variations in epigenetic and genomic profiles and cellular behavior in differentiation. iPSC-derived cardiac myocytes (iPSC cardiac myocytes) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models, and are useful for drug discovery and toxicology testing. In addition, iPSC cardiac myocytes can help with patient stratification in regard to drug responsiveness. Furthermore, they can be used as source cells for cardiac regeneration in animal models. Here, we review recent progress in iPSC technology and its applications to cardiac diseases. © 2017 American Heart Association, Inc.

  14. Comparative study of cellular kinetics of reporter probe [{sup 131}I]FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China)], E-mail: lxl730724@hotmail.com; Yin Xiaohua; Wang Ruihua; Liu Ying [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China) and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China)], E-mail: zhyx1229@163.com

    2009-02-15

    Aim: Reporter gene imaging is a promising approach for noninvasive monitoring of cardiac gene therapy. In this study, HSV1-tk (herpes simplex virus type 1 thymidine kinase) and FIAU (2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyl-5-iodouracil) were used as the reporter gene and probe, respectively. Cellular uptakes of radiolabeled FIAU of neonatal rat cardiac myocytes transferred with HSV1-tk were compared between two vectors, adenovirus and liposome. The aims of this study were to choose the better vector and to provide a theoretical basis for good nuclide images. Methods: Neonatal cardiac myocytes were obtained from rat heart by single collagenase digestion. HSV1-tk inserted into adenovirus vector (recombinant adenovirus type 5, Ad5-tk) and plasmid (pDC316-tk) coated with Lipofectamine 2000 (pDC316-tk/lipoplex) were developed; thus, HSV1-tk could be transferred into neonatal cardiac myocytes. FAU (2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyluracil) was labeled with {sup 131}I, and the product was assessed after purification with reversed-phase Sep-Pak C-18 column. The uptake rates of [{sup 131}I]FIAU in the transferred cardiac myocytes at different times (0.5, 1, 2, 3, 4 and 5 h) were detected. Furthermore, mRNA expression and protein expression of HSV1-tk were detected by semiquantitative reverse-transcriptase polymerase chain reaction and immunocytochemistry. Results: FAU could be labeled with {sup 131}I, and the labeling efficiency and radiochemical purity rates were 53.82{+-}2.05% and 94.85{+-}1.76%, respectively. Time-dependent increase of the accumulation of [{sup 131}I]FIAU was observed in both the Ad5-tk group and the pDC316/lipoplex group, and the highest uptake rate occurred at 5 h, with peak values of 12.55{+-}0.37% and 2.09{+-}0.34%, respectively. Greater uptakes of [{sup 131}I]FIAU in Ad5-tk-infected cells compared with pDC316/lipoplex-transfected ones occurred at all the time points (t=12.978-38.253, P<.01). The exogenous gene

  15. Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    SANDOR GYÖRKE

    2004-01-01

    Full Text Available Calsequestrin (CASQ2 is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR. Mutations in the cardiac calsequestrin gene (CASQ2 have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca2+-induced Ca2+ release (CICR and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.

  16. Variations in Local Calcium Signaling in Adjacent Cardiac Myocytes of the Intact Mouse Heart Detected with Two-Dimensional Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Karin P Hammer

    2015-01-01

    Full Text Available Dyssynchronous local Ca release within individual cardiac myocytes has been linked to cellular contractile dysfunction. Differences in Ca kinetics in adjacent cells may also provide a substrate for inefficient contraction and arrhythmias. In a new approach we quantify variation in local Ca transients between adjacent myocytes in the whole heart.Langendorff-perfused mouse hearts were loaded with Fluo-8 AM to detect Ca and Di-4-ANEPPS to visualize cell membranes. A spinning disc confocal microscope with a fast camera allowed us to record Ca signals within an area of 465 µm by 315 µm with an acquisition speed of 55 fps. Images from multiple transients recorded at steady state were registered to their time point in the cardiac cycle to restore averaged local Ca transients with a higher temporal resolution. Local Ca transients within and between adjacent myocytes were compared with regard to amplitude, time to peak and decay at steady state stimulation (250 ms cycle length.Image registration from multiple sequential Ca transients allowed reconstruction of high temporal resolution (2.4 ±1.3ms local CaT in 2D image sets (N= 4 hearts, n= 8 regions. During steady state stimulation, spatial Ca gradients were homogeneous within cells in both directions and independent of distance between measured points. Variation in CaT amplitudes was similar across the short and the long side of neighboring cells. Variations in TAU and TTP were similar in both directions. Isoproterenol enhanced the CaT but not the overall pattern of spatial heterogeneities.Here we detected and analyzed local Ca signals in intact mouse hearts with high temporal and spatial resolution, taking into account 2D arrangement of the cells. We observed significant differences in the variation of CaT amplitude along the long and short axis of cardiac myocytes. Variations of Ca signals between neighboring cells may contribute to the substrate of cardiac remodeling.

  17. Cardiac Myocyte Diversity and a Fibroblast Network in the Junctional Region of the Zebrafish Heart Revealed by Transmission and Serial Block-Face Scanning Electron Microscopy

    KAUST Repository

    Lafontant, Pascal J.

    2013-08-23

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart. © 2013 Lafontant et al.

  18. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart.

    Science.gov (United States)

    Granata, Riccarda; Trovato, Letizia; Gallo, Maria Pia; Destefanis, Silvia; Settanni, Fabio; Scarlatti, Francesca; Brero, Alessia; Ramella, Roberta; Volante, Marco; Isgaard, Jorgen; Levi, Renzo; Papotti, Mauro; Alloatti, Giuseppe; Ghigo, Ezio

    2009-07-15

    The hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) stimulates GH synthesis and release in the pituitary. GHRH also exerts proliferative effects in extrapituitary cells, whereas GHRH antagonists have been shown to suppress cancer cell proliferation. We investigated GHRH effects on cardiac myocyte cell survival and the underlying signalling mechanisms. Reverse transcriptase-polymerase chain reaction analysis showed GHRH receptor (GHRH-R) mRNA in adult rat ventricular myocytes (ARVMs) and in rat heart H9c2 cells. In ARVMs, GHRH prevented cell death and caspase-3 activation induced by serum starvation and by the beta-adrenergic receptor agonist isoproterenol. The GHRH-R antagonist JV-1-36 abolished GHRH survival action under both experimental conditions. GHRH-induced cardiac cell protection required extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt activation and adenylyl cyclase/cAMP/protein kinase A signalling. Isoproterenol strongly upregulated the mRNA and protein of the pro-apoptotic inducible cAMP early repressor, whereas GHRH completely blocked this effect. Similar to ARVMs, in H9c2 cardiac cells, GHRH inhibited serum starvation- and isoproterenol-induced cell death and apoptosis through the same signalling pathways. Finally, GHRH improved left ventricular recovery during reperfusion and reduced infarct size in Langendorff-perfused rat hearts, subjected to ischaemia-reperfusion (I/R) injury. These effects involved PI3K/Akt signalling and were inhibited by JV-1-36. Our findings suggest that GHRH promotes cardiac myocyte survival through multiple signalling mechanisms and protects against I/R injury in isolated rat heart, indicating a novel cardioprotective role of this hormone.

  19. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

    Science.gov (United States)

    Chia, Karin K M; Liu, Chia-Chi; Hamilton, Elisha J; Garcia, Alvaro; Fry, Natasha A; Hannam, William; Figtree, Gemma A; Rasmussen, Helge H

    2015-08-15

    Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo. Copyright © 2015 the American Physiological Society.

  20. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling.

    Science.gov (United States)

    Hu, L W; Benvenuti, L A; Liberti, E A; Carneiro-Ramos, M S; Barreto-Chaves, M L M

    2003-12-01

    The present study assessed the possible involvement of the renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) in thyroxine (T4)-induced cardiac hypertrophy. Hemodynamic parameters, heart weight (HW), ratio of HW to body weight (HW/BW), and myocyte width were evaluated in absence of thyroid hormone (hypothyroidism) and after T4 administration. Male Wistar rats were used. Some were subjected to thyroidectomies, whereas hyperthyroidism was induced in others via daily intraperitoneal injection of T4 (25 or 100 microg x 100 g BW(-1) x day(-1)) for 7 days. In some cases, T4 administration was combined with the angiotensin I-converting enzyme inhibitor enalapril (Ena), with the angiotensin type 1 (AT1) receptor blocker losartan (Los) or with the beta-adrenergic blocker propanolol (Prop). Hemodynamics and morphology were then evaluated. Systolic blood pressure (SBP) was not altered by administration of either T4 alone or T4 in combination with the specific inhibitors. However, SBP decreased significantly in hypothyroid rats. An increased heart rate was seen after administration of either T4 alone or T4 in combination with either Los or Ena. Although the higher dose of T4 significantly increased HW, HW/BW increased in both T4-treated groups. Ena and Prop inhibited the increase in HW or HW/BW in hyperthyroid rats. Morphologically, both T4 dose levels significantly increased myocyte width, an occurrence prevented by RAS or SNS blockers. There was a good correlation between changes in HW/BW and myocyte width. These results indicate that T4-induced cardiac hypertrophy is associated with both the SNS and the RAS.

  1. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations

    International Nuclear Information System (INIS)

    Yamada, Shigeyuki; Zhang Xiuquan; Kadono, Toshie; Matsuoka, Nobuhiro; Rollins, Douglas; Badger, Troy; Rodesch, Christopher K.; Barry, William H.

    2009-01-01

    Aims: Our goal was to determine if clinically relevant concentrations of aqueous extract of cigarette smoke (CSE) have direct deleterious effects on ventricular myocytes during simulated ischemia, and to investigate the mechanisms involved. Methods: CSE was prepared with a smoking chamber. Ischemia was simulated by metabolic inhibition (MI) with cyanide (CN) and 0 glucose. Adult rabbit and mouse ventricular myocyte [Ca 2+ ] i was measured by flow cytometry using fluo-3. Mitochondrial [Ca 2+ ] was measured with confocal microscopy, and Rhod-2 fluorescence. The mitochondrial permeability transition (MPT) was detected by TMRM fluorescence and myocyte contracture. Myocyte oxidative stress was quantified by dichlorofluorescein (DCF) fluorescence with confocal microscopy. Results: CSE 0.1% increased myocyte contracture caused by MI. The nicotine concentration (HPLC) in 0.1% CSE was 15 ng/ml, similar to that in humans after smoking cigarettes. CSE 0.1% increased mitochondrial Ca 2+ uptake, and increased the susceptibility of mitochondria to the MPT. CSE 0.1% increased DCF fluorescence in isolated myocytes, and increased [Ca 2+ ] i in paced myocytes exposed to 2.0 mM CN, 0 glucose (P-MI). These effects were inhibited by the superoxide scavenger Tiron. The effect of CSE on [Ca 2+ ] i during P-MI was also prevented by ranolazine. Conclusions: CSE in clinically relevant concentrations increases myocyte [Ca 2+ ] i during simulated ischemia, and increases myocyte susceptibility to the MPT. These effects appear to be mediated at least in part by oxidative radicals in CSE, and likely contribute to the effects of cigarette smoke to increase myocardial infarct size, and to decrease angina threshold

  2. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease.

    Science.gov (United States)

    Larsen, Hege E; Lefkimmiatis, Konstantinos; Paterson, David J

    2016-12-14

    Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron's ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.

  3. Validation of an in vitro contractility assay using canine ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  4. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes.

    Science.gov (United States)

    Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H

    2014-03-01

    L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Mechanisms of IhERG/IKr Modulation by α1-Adrenoceptors in HEK293 Cells and Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Janire Urrutia

    2016-12-01

    Full Text Available Background: The rapid delayed rectifier K+ current (IKr, carried by the hERG protein, is one of the main repolarising currents in the human heart and a reduction of this current increases the risk of ventricular fibrillation. α1-adrenoceptors (α1-AR activation reduces IKr but, despite the clear relationship between an increase in the sympathetic tone and arrhythmias, the mechanisms underlying the α1-AR regulation of the hERG channel are controversial. Thus, we aimed to investigate the mechanisms by which α1-AR stimulation regulates IKr. Methods: α1-adrenoceptors, hERG channels, auxiliary subunits minK and MIRP1, the non PIP2-interacting mutant D-hERG (with a deletion of the 883-894 amino acids in the C-terminal and the non PKC-phosphorylable mutant N-terminal truncated-hERG (NTK-hERG were transfected in HEK293 cells. Cell membranes were extracted by centrifugation and the different proteins were visualized by Western blot. Potassium currents were recorded by the patch-clamp technique. IKr was recorded in isolated feline cardiac myocytes. Results: Activation of the α1-AR reduces the amplitude of IhERG and IKr through a positive shift in the activation half voltage, which reduces the channel availability at physiological membrane potentials. The intracellular pathway connecting the α1-AR to the hERG channel in HEK293 cells includes activation of the Gαq protein, PLC activation and PIP2 hydrolysis, activation of PKC and direct phosphorylation of the hERG channel N-terminal. The PKC-mediated IKr channel phosphorylation and subsequent IKr reduction after α1-AR stimulation was corroborated in feline cardiac myocytes. Conclusions: These findings clarify the link between sympathetic nervous system hyperactivity and IKr reduction, one of the best characterized causes of torsades de pointes and ventricular fibrillation.

  6. Gene transfer, expression, and sarcomeric incorporation of a headless myosin molecule in cardiac myocytes: evidence for a reserve in myofilament motor function

    Science.gov (United States)

    Vandenboom, Rene; Herron, Todd; Favre, Elizabeth; Albayya, Faris P.

    2011-01-01

    The purpose of this study was to implement a living myocyte in vitro model system to test whether a motor domain-deleted headless myosin construct could be incorporated into the sarcomere and affect contractility. To this end we used gene transfer to express a “headless” myosin heavy chain (headless-MHC) in complement with the native full-length myosin motors in the cardiac sarcomere. An NH2-terminal Flag epitope was used for unique detection of the motor domain-deleted headless-MHC. Total MHC content (i.e., headless-MHC + endogenous MHC) remained constant, while expression of the headless-MHC in transduced myocytes increased from 24 to 72 h after gene transfer until values leveled off at 96 h after gene transfer, at which time the headless-MHC comprised ∼20% of total MHC. Moreover, immunofluorescence labeling and confocal imaging confirmed expression and demonstrated incorporation of the headless-MHC in the A band of the cardiac sarcomere. Functional measurements in intact myocytes showed that headless-MHC modestly reduced amplitude of dynamic twitch contractions compared with controls (P < 0.05). In chemically permeabilized myocytes, maximum steady-state isometric force and the tension-pCa relationship were unaltered by the headless-MHC. These data suggest that headless-MHC can express to 20% of total myosin and incorporate into the sarcomere yet have modest to no effects on dynamic and steady-state contractile function. This would indicate a degree of functional tolerance in the sarcomere for nonfunctional myosin molecules. PMID:21112946

  7. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes

    OpenAIRE

    Lu, Fang-Min; Hilgemann, Donald W.

    2017-01-01

    The Na/K pump exports cytoplasmic Na ions while importing K ions, and its activity is thought to be affected by restricted intracellular Na diffusion in cardiac myocytes. Lu and Hilgemann find instead that the pump can enter an inactivated state and that inactivation can be relieved by cytoplasmic Na.

  8. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    Full Text Available Left atrial enlargement in mitral regurgitation (MR predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown.This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD, and 6 purchased samples from normal subjects (NC. We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that "NFAT in cardiac hypertrophy" pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1 were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC.Differentially expressed genes in the "NFAT in cardiac hypertrophy" pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.

  9. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael

    2007-01-01

    that phosphorylates p90 Ribosomal S6 Kinase, a ubiquitous and versatile mediator of ERK1/2 signal transduction. Moreover, the beta-arrestin2-dependent ERK1/2 signal supports intact proliferation of cardiac myocytes. In contrast to G(q)-activated ERK1/2, and in keeping with its failure to translocate to the nucleus...

  10. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes.

    Science.gov (United States)

    Zimmermann, W H; Fink, C; Kralisch, D; Remmers, U; Weil, J; Eschenhagen, T

    2000-04-05

    A technique is presented that allows neonatal rat cardiac myocytes to form spontaneously and coherently beating 3-dimensional engineered heart tissue (EHT) in vitro, either as a plane biconcaval matrix anchored at both sides on Velcro-coated silicone tubes or as a ring. Contractile activity was monitored in standard organ baths or continuously in a CO(2) incubator for up to 18 days (=26 days after casting). Long-term measurements showed an increase in force between days 8 and 18 after casting and stable forces thereafter. At day 10, the twitch amplitude (TA) of electrically paced EHTs (average length x width x thickness, 11 x 6 x 0.4 mm) was 0.51 mN at length of maximal force development (L(max)) and a maximally effective calcium concentration. EHTs showed typical features of neonatal rat heart: a positive force-length and a negative force-frequency relation, high sensitivity to calcium (EC(50) 0.24 mM), modest positive inotropic (increase in TA by 46%) and pronounced positive lusitropic effect of isoprenaline (decrease in twitch duration by 21%). Both effects of isoprenaline were sensitive to the muscarinic receptor agonist carbachol in a pertussis toxin-sensitive manner. Adenovirus-mediated gene transfer of beta-galactosidase into EHTs reached 100% efficiency. In summary, EHTs retain many of the physiological characteristics of rat cardiac tissue and allow efficient gene transfer with subsequent force measurement. Copyright 2000 John Wiley & Sons, Inc.

  11. Control of cytoplasmic and nuclear protein kinase A by phosphodiesterases and phosphatases in cardiac myocytes

    Science.gov (United States)

    Haj Slimane, Zeineb; Bedioune, Ibrahim; Lechêne, Patrick; Varin, Audrey; Lefebvre, Florence; Mateo, Philippe; Domergue-Dupont, Valérie; Dewenter, Matthias; Richter, Wito; Conti, Marco; El-Armouche, Ali; Zhang, Jin; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2014-01-01

    Aims The cAMP-dependent protein kinase (PKA) mediates β-adrenoceptor (β-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes. Methods and results Cytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. β-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus. Conclusion Our study reveals a differential integration of cytoplasmic and nuclear PKA responses to β-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to β-AR stimulation. PMID:24550350

  12. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Hilgemann, Donald W

    2017-07-03

    Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when

  13. KChIP2 regulates the cardiac Ca2+ transient and myocyte contractility by targeting ryanodine receptor activity.

    Directory of Open Access Journals (Sweden)

    Drew M Nassal

    Full Text Available Pathologic electrical remodeling and attenuated cardiac contractility are featured characteristics of heart failure. Coinciding with these remodeling events is a loss of the K+ channel interacting protein, KChIP2. While, KChIP2 enhances the expression and stability of the Kv4 family of potassium channels, leading to a more pronounced transient outward K+ current, Ito,f, the guinea pig myocardium is unique in that Kv4 expression is absent, while KChIP2 expression is preserved, suggesting alternative consequences to KChIP2 loss. Therefore, KChIP2 was acutely silenced in isolated guinea pig myocytes, which led to significant reductions in the Ca2+ transient amplitude and prolongation of the transient duration. This change was reinforced by a decline in sarcomeric shortening. Notably, these results were unexpected when considering previous observations showing enhanced ICa,L and prolonged action potential duration following KChIP2 loss, suggesting a disruption of fundamental Ca2+ handling proteins. Evaluation of SERCA2a, phospholamban, RyR, and sodium calcium exchanger identified no change in protein expression. However, assessment of Ca2+ spark activity showed reduced spark frequency and prolonged Ca2+ decay following KChIP2 loss, suggesting an altered state of RyR activity. These changes were associated with a delocalization of the ryanodine receptor activator, presenilin, away from sarcomeric banding to more diffuse distribution, suggesting that RyR open probability are a target of KChIP2 loss mediated by a dissociation of presenilin. Typically, prolonged action potential duration and enhanced Ca2+ entry would augment cardiac contractility, but here we see KChIP2 fundamentally disrupts Ca2+ release events and compromises myocyte contraction. This novel role targeting presenilin localization and RyR activity reveals a significance for KChIP2 loss that reflects adverse remodeling observed in cardiac disease settings.

  14. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and fibroblasts.

    Science.gov (United States)

    Nayak, Alok Ranjan; Shajahan, T K; Panfilov, A V; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as [Formula: see text], the fibroblast resting-membrane potential, the fibroblast conductance [Formula: see text], and the MF gap-junctional coupling [Formula: see text]. Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as [Formula: see text], and [Formula: see text], and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity [Formula: see text] decreases as a function of [Formula: see text], for zero-sided and one-sided couplings; however, for two-sided coupling, [Formula: see text] decreases initially and then increases as a function of [Formula: see text], and, eventually, we observe that conduction failure occurs for low values of [Formula: see text]. In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling [Formula: see text] or [Formula: see text]. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac

  15. Mechanical analysis of single myocyte contraction in a 3-D elastic matrix.

    Directory of Open Access Journals (Sweden)

    John Shaw

    Full Text Available Cardiac myocytes experience mechanical stress during each heartbeat. Excessive mechanical stresses under pathological conditions cause functional and structural remodeling that lead to heart diseases, yet the precise mechanisms are still incompletely understood. To study the cellular and molecular level mechanotransduction mechanisms, we developed a new 'cell-in-gel' experimental system to exert multiaxial (3-D stresses on a single myocyte during active contraction.Isolated myocytes are embedded in an elastic hydrogel to simulate the mechanical environment in myocardium (afterload. When electrically stimulated, the in-gel myocyte contracts while the matrix resists shortening and broadening of the cell, exerting normal and shear stresses on the cell. Here we provide a mechanical analysis, based on the Eshelby inclusion problem, of the 3-D strain and stress inside and outside the single myocyte during contraction in an elastic matrix.(1 The fractional shortening of the myocyte depends on the cell's geometric dimensions and the relative stiffness of the cell to the gel. A slender or softer cell has less fractional shortening. A myocyte of typical dimensions embedded in a gel of similar elastic stiffness can contract only 20% of its load-free value. (2 The longitudinal stress inside the cell is about 15 times the transverse stress level. (3 The traction on the cell surface is highly non-uniform, with a maximum near its ends, showing 'hot spots' at the location of intercalated disks. (4 The mechanical energy expenditure of the myocyte increases with the matrix stiffness in a monotonic and nonlinear manner.Our mechanical analyses provide analytic solutions that readily lend themselves to parametric studies. The resulting 3-D mapping of the strain and stress states serve to analyze and interpret ongoing cell-in-gel experiments, and the mathematical model provides an essential tool to decipher and quantify mechanotransduction mechanisms in cardiac

  16. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine

    International Nuclear Information System (INIS)

    Perez-Cortes, E.J.; Islas, A.A.; Arevalo, J.P.; Mancilla, C.; Monjaraz, E.; Salinas-Stefanon, E.M.

    2015-01-01

    The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (I to ) and the molecular correlate, the K v 4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular I to and of CHO cells co-transfected with human K v 4.3 and its accessory subunit hKChIP2C by whole-cell voltage-clamp. Mefloquine inhibited rat I to and hK v 4.3 + KChIP2C currents in a concentration-dependent manner with a limited voltage dependence and similar potencies (IC 50 = 8.9 μM and 10.5 μM for cardiac myocytes and K v 4.3 channels, respectively). In addition, mefloquine did not affect the activation of either current but significantly modified the hK v 4.3 steady-state inactivation and recovery from inactivation. The effects of this drug was compared with that of 4-aminopyridine (4-AP), a well-known potassium channel blocker and its binding site does not seem to overlap with that of 4-AP. - Highlights: • Mefloquine inhibited ventricular I to and hK v 4.3 channels. IC 50 = 8.9 and 10.5 μM. • Inactivation and recovery from inactivation in the hK v 4.3 channels were modified by mefloquine. • Mefloquine displayed a higher affinity for the inactivated state. • The binding site for mefloquine may be located in the extracellular side of the channel.

  17. Towards an integrative computational model of the guinea pig cardiac myocyte

    Directory of Open Access Journals (Sweden)

    Laura Doyle Gauthier

    2012-07-01

    Full Text Available The local control theory of excitation-contraction (EC coupling asserts that regulation of calcium (Ca2+ release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs trigger openings of small clusters of ryanodine receptors (RyRs co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, it’s functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically-based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally-observed causal relationship between action potential (AP shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue-level electro-mechanical function.

  18. Toward an integrative computational model of the Guinea pig cardiac myocyte.

    Science.gov (United States)

    Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

  19. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets?

    Science.gov (United States)

    Johnson, Robert D; Camelliti, Patrizia

    2018-03-15

    The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.

  20. Global Optimization of Ventricular Myocyte Model to Multi-Variable Objective Improves Predictions of Drug-Induced Torsades de Pointes

    Directory of Open Access Journals (Sweden)

    Trine Krogh-Madsen

    2017-12-01

    Full Text Available In silico cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.

  1. Image Processing Techniques for Assessing Contractility in Isolated Adult Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Carlos Bazan

    2009-01-01

    The physiologic application of the methodology is evaluated by assessing overall contraction in enzymatically dissociated adult rat cardiocytes. Our results demonstrate the effectiveness of the proposed approach in characterizing the true, two-dimensional, “shortening” in the contraction process of adult cardiocytes. We compare the performance of the proposed method to that of a popular edge detection system in the literature. The proposed method not only provides a more comprehensive assessment of the myocyte contraction process but also can potentially eliminate historical concerns and sources of errors caused by myocyte rotation or translation during contraction. Furthermore, the versatility of the image processing techniques makes the method suitable for determining myocyte shortening in cells that usually bend or move during contraction. The proposed method can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease modeling, transgeneity, or other common applications to mammalian cardiocytes.

  2. Modeling the Effects of β1-Adrenergic Receptor Blockers and Polymorphisms on Cardiac Myocyte Ca2+ Handling

    Science.gov (United States)

    Amanfu, Robert K.

    2014-01-01

    β-Adrenergic receptor blockers (β-blockers) are commonly used to treat heart failure, but the biologic mechanisms governing their efficacy are still poorly understood. The complexity of β-adrenergic signaling coupled with the influence of receptor polymorphisms makes it difficult to intuit the effect of β-blockers on cardiac physiology. While some studies indicate that β-blockers are efficacious by inhibiting β-adrenergic signaling, other studies suggest that they work by maintaining β-adrenergic responsiveness. Here, we use a systems pharmacology approach to test the hypothesis that in ventricular myocytes, these two apparently conflicting mechanisms for β-blocker efficacy can occur concurrently. We extended a computational model of the β1-adrenergic pathway and excitation-contraction coupling to include detailed receptor interactions for 19 ligands. Model predictions, validated with Ca2+ and Förster resonance energy transfer imaging of adult rat ventricular myocytes, surprisingly suggest that β-blockers can both inhibit and maintain signaling depending on the magnitude of receptor stimulation. The balance of inhibition and maintenance of β1-adrenergic signaling is predicted to depend on the specific β-blocker (with greater responsiveness for metoprolol than carvedilol) and β1-adrenergic receptor Arg389Gly polymorphisms. PMID:24867460

  3. Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model.

    Science.gov (United States)

    Despa, Sanda; Sharma, Savita; Harris, Todd R; Dong, Hua; Li, Ning; Chiamvimonvat, Nipavan; Taegtmeyer, Heinrich; Margulies, Kenneth B; Hammock, Bruce D; Despa, Florin

    2014-08-21

    Chronic hypersecretion of the pancreatic hormone amylin is common in humans with obesity or prediabetic insulin resistance and induces amylin aggregation and proteotoxicity in the pancreas. We recently showed that hyperamylinemia also affects the cardiovascular system. Here, we investigated whether amylin aggregates interact directly with cardiac myocytes and whether controlling hyperamylinemia protects the heart. By Western blot, we found abundant amylin aggregates in lysates of cardiac myocytes from obese patients, but not in controls. Aggregated amylin was elevated in failing hearts, suggesting a role in myocyte injury. Using rats overexpressing human amylin in the pancreas (HIP rats) and control myocytes incubated with human amylin, we show that amylin aggregation at the sarcolemma induces oxidative stress and Ca(2+) dysregulation. In time, HIP rats developed cardiac hypertrophy and left-ventricular dilation. We then tested whether metabolites with antiaggregation properties, such as eicosanoid acids, limit myocardial amylin deposition. Rats were treated with an inhibitor of soluble epoxide hydrolase, the enzyme that degrades endogenous eicosanoids. Treatment doubled the blood concentration of eicosanoids, which drastically reduced incorporation of aggregated amylin in cardiac myocytes and blood cells, without affecting pancreatic amylin secretion. Animals in the treated group showed reduced cardiac hypertrophy and left-ventricular dilation. The cardioprotective mechanisms included the mitigation of amylin-induced cardiac oxidative stress and Ca(2+) dysregulation. The results suggest blood amylin as a novel therapeutic target in diabetic heart disease and elevating blood levels of antiaggregation metabolites as a pharmacological strategy to reduce amylin aggregation and amylin-mediated cardiotoxicity. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  4. Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner

    Science.gov (United States)

    Stauffer, Brian L.; Dockstader, Karen; Russell, Gloria; Hijmans, Jamie; Walker, Lisa; Cecil, Mackenzie; Demos-Davies, Kimberly; Medway, Allen; McKinsey, Timothy A.; Sucharov, Carmen C.

    2015-01-01

    YY1 can activate or repress transcription of various genes. In cardiac myocytes in culture YY1 has been shown to regulate expression of several genes involved in myocyte pathology. YY1 can also acutely protect the heart against detrimental changes in gene expression. In this study we show that cardiac over-expression of YY1 induces pathologic cardiac hypertrophy in male mice, measured by changes in gene expression and lower ejection fraction/fractional shortening. In contrast, female animals are protected against pathologic gene expression changes and cardiac dysfunction. Furthermore, we show that YY1 regulates, in a sex-specific manner, the expression of mammalian enable (Mena), a factor that regulates cytoskeletal actin dynamics and whose expression is increased in several models of cardiac pathology, and that Mena expression in humans with heart failure is sex-dependent. Finally, we show that sex differences in YY1 expression are also observed in human heart failure. In summary, this is the first work to show that YY1 has a sex-specific effect in the regulation of cardiac pathology. PMID:25935483

  5. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  6. Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes

    NARCIS (Netherlands)

    Casini, Simona; Verkerk, Arie O.; van Borren, Marcel M. G. J.; van Ginneken, Antoni C. G.; Veldkamp, Marieke W.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2009-01-01

    AIMS: Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes, is unresolved. We studied

  7. β1-adrenergic regulation of rapid component of delayed rectifier K+ currents in guinea-pig cardiac myocytes.

    Science.gov (United States)

    Wang, Sen; Xu, Di; Wu, Ting-Ting; Guo, Yan; Chen, Yan-Hong; Zou, Jian-Gang

    2014-05-01

    Human ether-à-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current (IKr), which is crucial for repolarization of cardiac action potential. Patients with hERG‑associated long QT syndrome usually develop tachyarrhythmias during physical and/or emotional stress, both known to stimulate adrenergic receptors. The present study aimed to investigate a putative functional link between β1-adrenergic stimulation and IKr in guinea-pig left ventricular myocytes and to analyze how IKr is regulated following activation of the β1-adrenergic signaling pathway. The IKr current was measured using a whole-cell patch-clamp technique. A selective β1-adrenergic receptor agonist, xamoterol, at concentrations of 0.01-100 µM decreased IKr in a concentration-dependent manner. The 10 µM xamoterol-induced inhibition of IKr was attenuated by the protein kinase A (PKA) inhibitor KT5720, the protein kinase C (PKC) inhibitor chelerythrine, and the phospholipase (PLC) inhibitor U73122, indicating involvement of PKA, PKC and PLC in β1-adrenergic inhibition of IKr. The results of the present study indicate an association between IKr and the β1-adrenergic receptor in arrhythmogenesis, involving the activation of PKA, PKC and PLC.

  8. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    Science.gov (United States)

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  9. Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones.

    Science.gov (United States)

    Horackova, M; Huang, M H; Armour, J A

    1994-05-01

    To determine the capacity of ATP to modify cardiomyocytes directly or indirectly via peripheral autonomic neurones, the effects of various purinergic agents were studied on long term cultures of adult guinea pig ventricular myocytes and their co-cultures with extracardiac (stellate ganglion) or intrinsic cardiac neurones. Ventricular myocytes and cardiac neurones were enzymatically dissociated and plated together or alone (myocytes only). Myocyte cultures were used for experiments after three to six weeks. The electrical and contractile properties of cultured myocytes and myocyte-neuronal networks were investigated. The spontaneous beating frequency of ventricular myocytes co-cultured with stellate ganglion neurones increased by approximately 140% (p under control conditions, but when beta adrenergic receptors of tetrodotoxin sensitive neural responses were blocked, ATP induced greater augmentation (> 100%). In contrast, ATP induced much smaller effects in non-innervated myocyte cultures (approximately 26%, p UTP > MSATP > beta gamma ATP > alpha beta ATP. Adenosine (10(-4) M) attenuated the beating frequency of myocytes in both types of co-culture, while not significantly affecting non-innervated myocyte cultures. The experimental model used in this study showed that extrinsic and intrinsic cardiac neurones which possess P2 receptors can greatly enhance cardiac myocyte contractile rate when activated by ATP. Since adenosine reduced contractile rate in both types of co-cultures while not affecting non-innervated myocytes, it is concluded that some of these neurones possess P1 receptors.

  10. Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes

    DEFF Research Database (Denmark)

    Väremo, Leif; Henriksen, Tora Ida; Scheele, Camilla

    2017-01-01

    BACKGROUND: Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). The close association between obesity and T2D makes it difficult to isolate specific effects attributed to the disease alone. Therefore, here we set out to identify and characterize...... in sphingolipid metabolism was transcriptionally regulated. CONCLUSIONS: Our findings identify inherent characteristics in myocytes, as a memory of the in vivo phenotype, without the influence from a diabetic or obese extracellular environment, highlighting their importance in the development of T2D....... intrinsic properties of myocytes, associated independently with T2D or obesity. METHODS: We generated and analyzed RNA-seq data from primary differentiated myotubes from 24 human subjects, using a factorial design (healthy/T2D and non-obese/obese), to determine the influence of each specific factor...

  11. Cardiac integrins the ties that bind.

    Science.gov (United States)

    Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L

    1998-01-01

    An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.

  12. Repressive histone methylation regulates cardiac myocyte cell cycle exit.

    Science.gov (United States)

    El-Nachef, Danny; Oyama, Kyohei; Wu, Yun-Yu; Freeman, Miles; Zhang, Yiqiang; Robb MacLellan, W

    2018-05-22

    Mammalian cardiac myocytes (CMs) stop proliferating soon after birth and subsequent heart growth comes from hypertrophy, limiting the adult heart's regenerative potential after injury. The molecular events that mediate CM cell cycle exit are poorly understood. To determine the epigenetic mechanisms limiting CM cycling in adult CMs (ACMs) and whether trimethylation of lysine 9 of histone H3 (H3K9me3), a histone modification associated with repressed chromatin, is required for the silencing of cell cycle genes, we developed a transgenic mouse model where H3K9me3 is specifically removed in CMs by overexpression of histone demethylase, KDM4D. Although H3K9me3 is found across the genome, its loss in CMs preferentially disrupts cell cycle gene silencing. KDM4D binds directly to cell cycle genes and reduces H3K9me3 levels at these promotors. Loss of H3K9me3 preferentially leads to increased cell cycle gene expression resulting in enhanced CM cycling. Heart mass was increased in KDM4D overexpressing mice by postnatal day 14 (P14) and continued to increase until 9-weeks of age. ACM number, but not size, was significantly increased in KDM4D expressing hearts, suggesting CM hyperplasia accounts for the increased heart mass. Inducing KDM4D after normal development specifically in ACMs resulted in increased cell cycle gene expression and cycling. We demonstrated that H3K9me3 is required for CM cell cycle exit and terminal differentiation in ACMs. Depletion of H3K9me3 in adult hearts prevents and reverses permanent cell cycle exit and allows hyperplastic growth in adult hearts in vivo. Copyright © 2017. Published by Elsevier Ltd.

  13. Atrial SERCA2a Overexpression Has No Affect on Cardiac Alternans but Promotes Arrhythmogenic SR Ca2+ Triggers.

    Science.gov (United States)

    Nassal, Michelle M J; Wan, Xiaoping; Laurita, Kenneth R; Cutler, Michael J

    2015-01-01

    Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that atrial SERCA2a overexpression will decrease cardiac alternans and arrhythmias. Adult rat isolated atrial myocytes where divided into three treatment groups 1) Control, 2) SERCA2a overexpression (Ad.SERCA2a) and 3) SERCA2a inhibition (Thapsigargin, 1μm). Intracellular Ca2+ was measured using Indo-1AM and Ca2+ alternans (Ca-ALT) was induced with a standard ramp pacing protocol. As predicted, SR Ca2+ reuptake was enhanced with SERCA2a overexpression (poverexpression or inhibition when compared to controls (p = 0.73). In contrast, SERCA2a overexpression resulted in increased premature SR Ca2+ (SCR) release compared to control myocytes (28% and 0%, p overexpression in atrial myocytes can increase SCR, which may be arrhythmogenic.

  14. 3-OST-7 regulates BMP-dependent cardiac contraction.

    Directory of Open Access Journals (Sweden)

    Shiela C Samson

    2013-12-01

    Full Text Available The 3-O-sulfotransferase (3-OST family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4 expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.

  15. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    Science.gov (United States)

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  16. α-Catenin localization and sarcomere self-organization on N-cadherin adhesive patterns are myocyte contractility driven.

    Directory of Open Access Journals (Sweden)

    Anant Chopra

    Full Text Available The N-cadherin (N-cad complex plays a crucial role in cardiac cell structure and function. Cadherins are adhesion proteins linking adjacent cardiac cells and, like integrin adhesions, are sensitive to force transmission. Forces through these adhesions are capable of eliciting structural and functional changes in myocytes. Compared to integrins, the mechanisms of force transduction through cadherins are less explored. α-catenin is a major component of the cadherin-catenin complex, thought to provide a link to the cell actin cytoskeleton. Using N-cad micropatterned substrates in an adhesion constrainment model, the results from this study show that α-catenin localizes to regions of highest internal stress in myocytes. This localization suggests that α-catenin acts as an adaptor protein associated with the cadherin mechanosensory apparatus, which is distinct from mechanosensing through integrins. Myosin inhibition in cells bound by integrins to fibronectin-coated patterns disrupts myofibiril organization, whereas on N-cad coated patterns, myosin inhibition leads to better organized myofibrils. This result indicates that the two adhesion systems provide independent mechanisms for regulating myocyte structural organization.

  17. Sildenafil preserves diastolic relaxation after reduction by L-NAME and increases phosphodiesterase-5 in the intercalated discs of cardiac myocytes and arterioles

    Directory of Open Access Journals (Sweden)

    Silvia Elaine Ferreira-Melo

    2011-01-01

    Full Text Available OBJECTIVES: We investigated the influence of sildenafil on cardiac contractility and diastolic relaxation and examined the distribution of phosphodiesterase-5 in the hearts of hypertensive rats that were treated with by NG-nitro-L-arginine methyl ester (L-NAME. METHODS: Male Wistar rats were treated with L-NAME and/or sildenafil for eight weeks. The Langendorff method was used to examine the effects of sildenafil on cardiac contractility and diastolic relaxation. The presence and location of phosphodiesterase-5 and phosphodiesterase-3 were assessed by immunohistochemistry, and cGMP plasma levels were measured by ELISA. RESULTS: In isolated hearts, sildenafil prevented the reduction of diastolic relaxation (dP/dt that was induced by L-NAME. In addition, phosphodiesterase-5 immunoreactivity was localized in the intercalated discs between the myocardial cells. The staining intensity was reduced by L-NAME, and sildenafil treatment abolished this reduction. Consistent with these results, the plasma levels of cGMP were decreased in the L-NAME-treated rats but not in rats that were treated with L-NAME + sildenafil. CONCLUSION: The sildenafil-induced attenuation of the deleterious hemodynamic and cardiac morphological effects of L-NAME in cardiac myocytes is mediated (at least in part by the inhibition of phosphodiesterase-5.

  18. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling.

    Science.gov (United States)

    Das, Anindita; Xi, Lei; Kukreja, Rakesh C

    2005-04-01

    We investigated the effect of sildenafil in protection against necrosis or apoptosis in cardiomyocytes. Adult mouse ventricular myocytes were treated with sildenafil (1 or 10 microM) for 1 h before 40 min of simulated ischemia (SI). Necrosis was determined by trypan blue exclusion and lactate dehydrogenase release following SI alone or plus 1 or 18 h of reoxygenation (RO). Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling assay and mitochondrial membrane potential measured using a fluorescent probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1). Sildenafil reduced necrosis as indicated by decrease in trypan blue-positive myocytes and leakage of lactate dehydrogenase compared with untreated cells after either SI or SI-RO. The number of terminal deoxynucleotidyl transferase-mediated nick end labeling-positive myocytes or loss of JC-1 fluorescence following SI and 18 h of RO was attenuated in the sildenafil-treated group with concomitant inhibition of caspase 3 activity. An early increase in Bcl-2 to Bax ratio with sildenafil treatment was also observed in myocytes after SI-RO. The increase of Bcl-2 expression by sildenafil was inhibited by nitric-oxide synthase (NOS) inhibitor, L-nitro-amino-methyl-ester. The drug also enhanced mRNA and protein content of inducible NOS (iNOS) and endothelial NOS (eNOS) in the myocytes. Sildenafil-induced protection against necrosis and apoptosis was absent in the myocytes derived from iNOS knock-out mice and was attenuated in eNOS knock-out myocytes. The up-regulation of Bcl-2 expression by sildenafil was also absent in iNOS-deficient myocytes. Reverse transcription-PCR, Western blots, and immunohistochemical assay confirmed the expression of phosphodiesterase-5 in mouse cardiomyocytes. These data provide strong evidence for a direct protective effect of sildenafil against necrosis and apoptosis through NO signaling pathway. The results may have possible

  19. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction

    Science.gov (United States)

    Beaumont, Eric; Southerland, Elizabeth M.; Hardwick, Jean C.; Wright, Gary L.; Ryan, Shannon; Li, Ying; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  20. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  1. Stochastic Simulation of Cardiac Ventricular Myocyte Calcium Dynamics and Waves

    OpenAIRE

    Tuan, Hoang-Trong Minh; Williams, George S. B.; Chikando, Aristide C.; Sobie, Eric A.; Lederer, W. Jonathan; Jafri, M. Saleet

    2011-01-01

    A three dimensional model of calcium dynamics in the rat ventricular myocyte was developed to study the mechanism of calcium homeostasis and pathological calcium dynamics during calcium overload. The model contains 20,000 calcium release units (CRUs) each containing 49 ryanodine receptors. The model simulates calcium sparks with a realistic spontaneous calcium spark rate. It suggests that in addition to the calcium spark-based leak, there is an invisible calcium leak caused by the stochastic ...

  2. Astragaloside IV Prevents Cardiac Remodeling in the Apolipoprotein E-Deficient Mice by Regulating Cardiac Homeostasis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiong-Zhi Li

    2017-12-01

    Full Text Available Background: Hypercholesterolemia is a risk factor for the development of cardiac hypertrophy. Astragaloside IV (AST-IV possesses cardiovascular protective properties. We hypothesize that AST-IV prevents cardiac remodeling with hypercholesterolemia via modulating tissue homeostasis and alleviating oxidative stress. Methods: The ApoE-/- mice were treated with AST-IV at 1 or 10 mg/kg for 8 weeks. The blood lipids tests, echocardiography, and TUNEL were performed. The mRNA expression profile was detected by real-time PCR. The myocytes size and number, and the expressions of proliferation (ki67, senescence (p16INK4a, oxidant (NADPH oxidase 4, NOX4 and antioxidant (superoxide dismutase, SOD were observed by immunofluorescence staining. Results: Neither 1 mg/kg nor 10 mg/kg AST-IV treatment could decrease blood lipids in ApoE-/- mice. However, the decreased left ventricular ejection fraction (LVEF and fractional shortening (FS in ApoE–/– mice were significantly improved after AST-IV treatment. The cardiac collagen volume fraction declined nearly in half after AST-IV treatment. The enlarged myocyte size was suppressed, and myocyte number was recovered, and the alterations of genes expressions linked to cell cycle, proliferation, senescence, p53-apoptosis pathway and oxidant-antioxidants in the hearts of ApoE-/- mice were reversed after AST-IV treatment. The decreased ki67 and increased p16INK4a in the hearts of ApoE-/- mice were recovered after AST-IV treatment. The percentages of apoptotic myocytes and NOX4-positive cells in AST-IV treated mice were decreased, which were consistent with the gene expressions. Conclusion: AST-IV treatment could prevent cardiac remodeling and recover the impaired ventricular function induced by hypercholesterolemia. The beneficial effect of AST-IV might partly be through regulating cardiac homeostasis and anti-oxidative stress.

  3. Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation.

    Directory of Open Access Journals (Sweden)

    Daniel Biermann

    Full Text Available The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12. Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3 revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.

  4. Numerical Analysis of the Effect of T-tubule Location on Calcium Transient in Ventricular Myocytes

    Science.gov (United States)

    George, Uduak Z.; Wang, Jun; Yu, Zeyun

    2013-01-01

    Intracellular calcium (Ca2+) signaling in cardiac myocytes is vital for proper functioning of the heart. Understanding the intracellular Ca2+ dynamics would give an insight into the functions of normal and diseased hearts. In the current study, spatiotemporal Ca2+ dynamics is investigated in ventricular myocytes by considering Ca2+ release and re-uptake via sarcolemma and transverse tubules (T-tubules), Ca2+ diffusion and buffering in the cytosol, and the blockade of Ca2+ activities associated with the sarcoplasmic reticulum. This study is carried out using a three dimensional (3D) geometric model of a branch of T-tubule extracted from the electron microscopy (EM) images of a partial ventricular myocyte. Mathematical modeling is done by using a system of partial differential equations involving Ca2+ , buffers, and membrane channels. Numerical simulation results suggest that a lack of T-tubule structure at the vicinity of the cell surface could increase the peak time of Ca2+ concentration in myocytes. The results also show that T-tubules and mobile buffers play an important role in the regulation of Ca2+ transient in ventricular myocytes. PMID:24212025

  5. Effects of adding intravenous nicorandil to standard therapy on cardiac sympathetic nerve activity and myocyte dysfunction in patients with acute decompensated heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Ichikawa, Shuichi [Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Suzuki, Yasuyuki; Matsumoto, Naoya [Nihon University School of Medicine, Department of Cardiology, Tokyo (Japan); Sato, Yuichi [Health Park Clinic, Department of Imaging, Takasaki, Gunma (Japan)

    2015-04-01

    Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, improves cardiac sympathetic nerve activity (CSNA) in ischemic heart disease or chronic heart failure. However, its effects on CSNA and myocyte dysfunction in acute heart failure (AHF) remain unclear. We investigated the effects of adding intravenous nicorandil to standard therapy on CSNA and myocyte dysfunction in AHF. We selected 70 patients with mild to moderate nonischemic AHF who were treated with standard conventional therapy soon after admission. Thirty-five patients were assigned to additionally receive intravenous nicorandil (4-12 mg/h; group A), whereas the remaining patients continued their current drug regimen (group B). Delayed total defect score (TDS), delayed heart to mediastinum count (H/M) ratio, and washout rate (WR) were determined by {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy within 3 days of admission and 4 weeks later. High sensitivity troponin T (hs-TnT) level was also measured at the same time points. After treatment, MIBG scintigraphic parameters significantly improved in both groups. However, the extent of the changes in these parameters in group A significantly exceeded the extent of the changes in group B [TDS -11.3 ± 4.3 in group A vs -4.0 ± 6.0 in group B (p < 0.01); H/M ratio 0.31 ± 0.16 vs 0.14 ± 0.16 (p < 0.01); WR -13.8 ± 7.8 % vs -6.1 ± 8.9 % (p < 0.01)]. The hs-TnT level decreased significantly from 0.052 ± 0.043 to 0.041 ± 0.033 ng/ml (p < 0.05) in group A, but showed no significant change in group B. Moreover, in both groups, no relationships between the extent of changes in MIBG parameters and hs-TnT level were observed. Adding intravenous nicorandil to standard therapy provides additional benefits for CSNA and myocyte dysfunction over conventional therapy alone in AHF patients. Furthermore, the mechanisms of improvement in CSNA and myocyte dysfunction after nicorandil treatment in AHF patients were distinct. (orig.)

  6. RSK3 is required for concentric myocyte hypertrophy in an activated Raf1 model for Noonan syndrome.

    Science.gov (United States)

    Passariello, Catherine L; Martinez, Eliana C; Thakur, Hrishikesh; Cesareo, Maria; Li, Jinliang; Kapiloff, Michael S

    2016-04-01

    Noonan syndrome (NS) is a congenital disorder resulting from mutations of the Ras-Raf signaling pathway. Hypertrophic cardiomyopathy associated with RAF1 "RASopathy" mutations is a major risk factor for heart failure and death in NS and has been attributed to activation of MEK1/2-ERK1/2 mitogen-activated protein kinases. We recently discovered that type 3 p90 ribosomal S6 kinase (RSK3) is an ERK effector that is required, like ERK1/2, for concentric myocyte hypertrophy in response to pathological stress such as pressure overload. In order to test whether RSK3 also contributes to NS-associated hypertrophic cardiomyopathy, RSK3 knock-out mice were crossed with mice bearing the Raf1(L613V) human NS mutation. We confirmed that Raf1(L613V) knock-in confers a NS-like phenotype, including cardiac hypertrophy. Active RSK3 was increased in Raf1(L613V) mice. Constitutive RSK3 gene deletion prevented the Raf1(L613V)-dependent concentric growth in width of the cardiac myocyte and attenuated cardiac hypertrophy in female mice. These results are consistent with RSK3 being an important mediator of ERK1/2-dependent growth in RASopathy. In conjunction with previously published data showing that RSK3 is important for pathological remodeling of the heart, these data suggest that targeting of this downstream MAP-kinase pathway effector should be considered in the treatment of RASopathy-associated hypertrophic cardiomyopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Increased sarcolemmal Na+/H+ exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block

    NARCIS (Netherlands)

    van Borren, Marcel M. G. J.; Vos, Marc A.; Houtman, Marien J. C.; Antoons, Gudrun; Ravesloot, Jan H.

    2013-01-01

    Dogs with compensated biventricular hypertrophy due to chronic atrioventricular block (cAVB), are more susceptible to develop drug-induced Torsade-de-Pointes arrhythmias and sudden cardiac death. It has been suggested that the increased Na+ influx in hypertrophied cAVB ventricular myocytes

  8. Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties.

    Directory of Open Access Journals (Sweden)

    Daniel M Lombardo

    2016-08-01

    Full Text Available Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF. A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP morphology, action potential duration (APD restitution and conduction velocity (CV restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy.

  9. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    Science.gov (United States)

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  10. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  11. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Grabner, Alexander; Hermann, Laura; Richter, Beatrice; Schmitz, Karin; Fischer, Dagmar-Christiane; Yanucil, Christopher; Faul, Christian; Haffner, Dieter

    2017-09-01

    Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  12. Improving cardiac myocytes performance by CNTs platforms

    Directory of Open Access Journals (Sweden)

    Valentina eMartinelli

    2013-09-01

    Full Text Available The application of nanotechnology to the cardiovascular system has increasingly caught scientists’ attention as a potentially powerful tool for the development of new generation devices able to interface, repair or boost the performance of cardiac tissue. Carbon nanotubes (CNTs are considered as promising materials for nanomedicine applications in general and have been recently tested towards excitable cell growth. CNTs are cylindrically shaped structures made up of rolled-up graphene sheets, with unique electrical, thermal and mechanical properties, able to effectively conducting electrical current in electrochemical interfaces. CNTs-based scaffolds have been recently found to support the in vitro growth of cardiac cells: in particular, their ability to improve cardiomyocytes proliferation, maturation and electrical behavior are making CNTs extremely attractive for the development and exploitation of interfaces able to impact on cardiac cells physiology and function.

  13. Functions of PDE3 Isoforms in Cardiac Muscle

    Science.gov (United States)

    Movsesian, Matthew; Ahmad, Faiyaz

    2018-01-01

    Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses. PMID:29415428

  14. Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Yu

    Full Text Available Apamin is commonly used as a small-conductance Ca2+-activated K+ (SK current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear.To test the hypothesis that apamin does not inhibit any major cardiac ion currents.We studied human embryonic kidney (HEK 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration.Ca2+ currents (CACNA1c+CACNB2b were not affected by apamin (500 nM (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS, but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008. Na+ currents (SCN5A were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS, but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018. None of the major K+ currents (IKs, IKr, IK1 and Ito were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20]; [37] to 23 [18]; [32] pA/pF; KCNH2+KCNE2, from 28 [24]; [30] to 27 [24]; [29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]. Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both.Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

  15. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  16. Pharmacological targeting of CDK9 in cardiac hypertrophy.

    Science.gov (United States)

    Krystof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, Jirí

    2010-07-01

    Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.

  17. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ca(2+ release events in cardiac myocytes up close: insights from fast confocal imaging.

    Directory of Open Access Journals (Sweden)

    Vyacheslav M Shkryl

    Full Text Available The spatio-temporal properties of Ca(2+ transients during excitation-contraction coupling and elementary Ca(2+ release events (Ca(2+ sparks were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca(2+ sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca(2+ sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical. Ca(2+ spark recording in line scan mode at 40,000 lines/s uncovered step-like increases of [Ca(2+]i. 2-D imaging of Ca(2+ transients revealed an asynchronous activation of release sites and allowed the sequential recording of Ca(2+ entry through surface membrane Ca(2+ channels and subsequent activation of Ca(2+-induced Ca(2+ release. With a latency of 2.5 ms after application of an electrical stimulus, Ca(2+ entry could be detected that was followed by SR Ca(2+ release after an additional 3 ms delay. Maximum Ca(2+ release was observed 4 ms after the beginning of release. The timing of Ca(2+ entry and release was confirmed by simultaneous [Ca(2+]i and membrane current measurements using the whole cell voltage-clamp technique. In atrial cells activation of discrete individual release sites of the j-SR led to spatially restricted Ca(2+ release events that fused into a peripheral ring of elevated [Ca(2+]i that subsequently propagated in a wave-like fashion towards the center of the cell. In ventricular myocytes asynchronous Ca(2+ release signals from discrete sites with no preferential subcellular location preceded the whole-cell Ca(2+ transient. In summary, ultra-fast confocal imaging allows investigation of Ca(2+ signals with a time resolution similar to patch clamp technique, however in a less invasive fashion.

  19. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  20. Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching.

    Science.gov (United States)

    Kojima, Kensuke; Moriguchi, Hiroyuki; Hattori, Akihiro; Kaneko, Tomoyuki; Yasuda, Kenji

    2003-11-01

    We have developed a new method that enables agar microstructures to be used to cultivate cells and that allows cell network patterns to be controlled. The method makes use of non-contact three-dimensional photo-thermal etching with a 1480 nm infrared focused laser beam, which is strongly absorbed by water and agar gel, to form the shapes of agar microstructures. It allows microstructures to be easily formed in an agar layer within a few minutes, with cell-culture holes formed by the spot heating of a 100 mW laser and tunnels by the tracing of a 100 microm s(-1), 40 mW laser. We cultivated rat cardiac myocytes in adjacent microstructures and observed synchronized beating in them 90 min after they had made physical contact. Our results indicate that the system can make and use microstructures for cell-network cultivation in a minimal amount of time without any expensive microfabrication facilities or complicated procedures.

  1. Cardiac time intervals by tissue Doppler imaging M-mode echocardiography

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor

    2016-01-01

    for myocardial myocytes to achieve an LV pressure equal to that of aorta increases, resulting in a prolongation of the isovolumic contraction time (IVCT). Furthermore, the ability of myocardial myocytes to maintain the LV pressure decreases, resulting in reduction in the ejection time (ET). As LV diastolic...... of whether the LV is suffering from impaired systolic or diastolic function. A novel method of evaluating the cardiac time intervals has recently evolved. Using tissue Doppler imaging (TDI) M-mode through the mitral valve (MV) to estimate the cardiac time intervals may be an improved method reflecting global...

  2. Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Angela Di Baldassarre

    2018-05-01

    Full Text Available Human-induced pluripotent stem cells (hiPSCs are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.

  3. Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications.

    Science.gov (United States)

    Di Baldassarre, Angela; Cimetta, Elisa; Bollini, Sveva; Gaggi, Giulia; Ghinassi, Barbara

    2018-05-25

    Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.

  4. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    Science.gov (United States)

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  5. Modulation of KCNQ1 alternative splicing regulates cardiac IKs and action potential repolarization.

    Science.gov (United States)

    Lee, Hsiang-Chun; Rudy, Yoram; Po-Yuan, Phd; Sheu, Sheng-Hsiung; Chang, Jan-Gowth; Cui, Jianmin

    2013-08-01

    Slow delayed-rectifier potassium current (IKs) channels, made of the pore-forming KCNQ1 and auxiliary KCNE1 subunits, play a key role in determining action potential duration (APD) in cardiac myocytes. The consequences of drug-induced KCNQ1 splice alteration remain unknown. To study the modulation of KCNQ1 alternative splicing by amiloride and the consequent changes in IKs and action potentials (APs) in ventricular myocytes. Canine endocardial, midmyocardial, and epicardial ventricular myocytes were isolated. Levels of KCNQ1a and KCNQ1b as well as a series of splicing factors were quantified by using the reverse transcriptase-polymerase chain reaction and Western blot. The effect of amiloride-induced changes in the KCNQ1b/total KCNQ1 ratio on AP was measured by using whole-cell patch clamp with and without isoproterenol. With 50 μmol/L of amiloride for 6 hours, KCNQ1a at transcriptional and translational levels increased in midmyocardial myocytes but decreased in endo- and epicardial myocytes. Likewise, changes in splicing factors in midmyocardial were opposite to that in endo- and epicardial myocytes. In midmyocardial myocytes amiloride shortened APD and decreased isoproterenol-induced early afterdepolarizations significantly. The same amiloride-induced effects were demonstrated by using human ventricular myocyte model for AP simulations under beta-adrenergic stimulation. Moreover, amiloride reduced the transmural dispersion of repolarization in pseudo-electrocardiogram. Amiloride regulates IKs and APs with transmural differences and reduces arrhythmogenicity through the modulation of KCNQ1 splicing. We suggested that the modulation of KCNQ1 splicing may help prevent arrhythmia. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Distribution of beta-adrenergic receptors in failing human myocardium. Implications for mechanisms of down-regulation

    International Nuclear Information System (INIS)

    Murphree, S.S.; Saffitz, J.E.

    1989-01-01

    The density of beta-adrenergic receptors is reduced in crude membranes prepared from failing human myocardium. We used quantitative autoradiography of radioligand binding sites in intact tissue slices to determine whether the total tissue content of receptors is reduced and to characterize the transmural distribution of receptors in cardiac myocytes and the coronary vasculature in hearts obtained from nine cardiac transplant patients with severe congestive failure. Binding of [125Iodo]cyanopindolol to transmural slices of human myocardium was rapid, saturable, stereoselective, and displaceable by agonists and antagonists with an appropriate rank order of potency. Binding isotherms in four normal and nine failing ventricles showed a significant reduction in the total tissue content of beta-receptors in failing myocardium (38.3 +/- 2.0 fmol/mg protein) compared with normal tissue (52.4 +/- 1.7 fmol/mg protein, p = 0.038). In the normal ventricles, the greatest receptor density was observed autoradiographically in myocytic regions of the subendocardium. Receptor density of the coronary arterioles was approximately 70% of that in adjacent myocytic regions. The density of binding sites in both myocytic regions and arterioles was diminished in all regions of the failing ventricles, but down-regulation was due primarily to a selective reduction of beta-receptors of subendocardial myocytes (63 +/- 5% of subepicardial receptor density vs. 115 +/- 6% in controls, p less than 0.0001). These observations indicate that down-regulation occurs nonuniformly in the transmural distribution and thus is likely not related simply to elevated circulating catecholamine levels

  8. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  9. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  10. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model

    Science.gov (United States)

    Kanani, S.; Pumir, A.; Krinsky, V.

    2008-01-01

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  11. Phos-tag-based analysis of myosin regulatory light chain phosphorylation in human uterine myocytes.

    Directory of Open Access Journals (Sweden)

    Hector N Aguilar

    Full Text Available The 'phosphate-binding tag' (phos-tag reagent enables separation of phospho-proteins during SDS-PAGE by impeding migration proportional to their phosphorylation stoichiometry. Western blotting can then be used to detect and quantify the bands corresponding to the phospho-states of a target protein. We present a method for quantification of data regarding phospho-states derived from phos-tag SDS-PAGE. The method incorporates corrections for lane-to-lane loading variability and for the effects of drug vehicles thus enabling the comparison of multiple treatments by using the untreated cellular set-point as a reference. This method is exemplified by quantifying the phosphorylation of myosin regulatory light chain (RLC in cultured human uterine myocytes.We have evaluated and validated the concept that, when using an antibody (Ab against the total-protein, the sum of all phosphorylation states in a single lane represents a 'closed system' since all possible phospho-states and phosphoisotypes are detected. Using this approach, we demonstrate that oxytocin (OT and calpeptin (Calp induce RLC kinase (MLCK- and rho-kinase (ROK-dependent enhancements in phosphorylation of RLC at T18 and S19. Treatment of myocytes with a phorbol ester (PMA induced phosphorylation of S1-RLC, which caused a mobility shift in the phos-tag matrices distinct from phosphorylation at S19.We have presented a method for analysis of phospho-state data that facilitates quantitative comparison to a reference control without the use of a traditional 'loading' or 'reference' standard. This analysis is useful for assessing effects of putative agonists and antagonists where all phospho-states are represented in control and experimental samples. We also demonstrated that phosphorylation of RLC at S1 is inducible in intact uterine myocytes, though the signal in the resting samples was not sufficiently abundant to allow quantification by the approach used here.

  12. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Pharmacological targeting of CDK9 in cardiac hypertrophy

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, J.

    2010-01-01

    Roč. 30, č. 4 (2010), s. 646-666 ISSN 0198-6325 R&D Projects: GA ČR GA204/08/0511; GA ČR GA301/09/1832; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : P-TEFb * cardiac myocyte * cardiac hypertrophy Subject RIV: CE - Biochemistry Impact factor: 10.228, year: 2010

  14. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  15. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  16. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation.

    Science.gov (United States)

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-12-08

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H 2 O 2 ) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H 2 O 2 , resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H 2 O 2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H 2 O 2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H 2 O 2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H 2 O 2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H 2 O 2 -induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H 2 O 2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury.

  17. Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3.

    Science.gov (United States)

    Cheung, Joseph Y; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Tilley, Douglas G; Gao, Erhe; Koch, Walter J; Rabinowitz, Joseph; Klotman, Paul E; Khalili, Kamel; Feldman, Arthur M

    2015-08-01

    Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy. © 2015 Wiley Periodicals, Inc.

  18. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.

    2010-01-01

    % (P depression of ANP mRNA expression in cultured HL-1 atrial myocytes. The data suggest that obesity and altered cardiac lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function....

  19. Sarcolemmal cardiac K(ATP) channels as a target for the cardioprotective effects of the fluorine-containing pinacidil analogue, flocalin.

    Science.gov (United States)

    Voitychuk, Oleg I; Strutynskyi, Ruslan B; Yagupolskii, Lev M; Tinker, Andrew; Moibenko, Olexiy O; Shuba, Yaroslav M

    2011-02-01

    A class of drugs known as K(ATP) -channel openers induce cardioprotection. This study examined the effects of the novel K(ATP) -channel opener, the fluorine-containing pinacidil derivative, flocalin, on cardiac-specific K(ATP) -channels, excitability of native cardiac myocytes and on the ischaemic heart. The action of flocalin was investigated on: (i) membrane currents through cardiac-specific K(ATP) -channels (I(KATP) ) formed by K(IR) 6.2/SUR2A heterologously expressed in HEK-293 cells (HEK-293(₆.₂/₂A) ); (ii) excitability and intracellular Ca²(+) ([Ca²(+) ](i) ) transients of cultured rat neonatal cardiac myocytes; and (iii) functional and ultrastructural characteristics of isolated guinea-pig hearts subjected to ischaemia-reperfusion. Flocalin concentration-dependently activated a glibenclamide-sensitive I(KATP) in HEK-293(₆.₂/₂A) cells with an EC₅₀= 8.1 ± 0.4 µM. In cardiac myocytes, flocalin (5 µM) hyperpolarized resting potential by 3-5 mV, markedly shortened action potential duration, reduced the amplitude of [Ca²(+) ](i) transients by 2-3-fold and suppressed contraction. The magnitude and extent of reversibility of these effects depended on the type of cardiac myocytes. In isolated hearts, perfusion with 5 µmol·L⁻¹ flocalin, before inducing ischaemia, facilitated restoration of contraction during reperfusion, decreased the number of extrasystoles, prevented the appearance of coronary vasoconstriction and reduced damage to the cardiac tissue at the ultrastructural level (state of myofibrils, membrane integrity, mitochondrial cristae structure). Flocalin induced potent cardioprotection by activating cardiac-type K(ATP) -channels with all the benefits of the presence of fluorine group in the drug structure: higher lipophilicity, decreased toxicity, resistance to oxidation and thermal degradation, decreased metabolism in the organism and prolonged therapeutic action. © 2011 The Authors. British Journal of Pharmacology © 2011 The

  20. Transcription Factors in Heart: Promising Therapeutic Targets in Cardiac Hypertrophy

    OpenAIRE

    Kohli, Shrey; Ahuja, Suchit; Rani, Vibha

    2011-01-01

    Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. Thi...

  1. Macrophage microRNA-155 promotes cardiac hypertrophy and failure

    NARCIS (Netherlands)

    Heymans, Stephane; Corsten, Maarten F.; Verhesen, Wouter; Carai, Paolo; van Leeuwen, Rick E. W.; Custers, Kevin; Peters, Tim; Hazebroek, Mark; Stöger, Lauran; Wijnands, Erwin; Janssen, Ben J.; Creemers, Esther E.; Pinto, Yigal M.; Grimm, Dirk; Schürmann, Nina; Vigorito, Elena; Thum, Thomas; Stassen, Frank; Yin, Xiaoke; Mayr, Manuel; de Windt, Leon J.; Lutgens, Esther; Wouters, Kristiaan; de Winther, Menno P. J.; Zacchigna, Serena; Giacca, Mauro; van Bilsen, Marc; Papageorgiou, Anna-Pia; Schroen, Blanche

    2013-01-01

    Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this

  2. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    Science.gov (United States)

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights

  3. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    Science.gov (United States)

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  4. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  5. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-12-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  6. Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study.

    Directory of Open Access Journals (Sweden)

    Jussi T Koivumäki

    Full Text Available Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca²+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL ion currents, accounts for the heterogeneity of intracellular Ca²+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR. Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca²+ dynamics: 1 the biphasic increment during the upstroke of the Ca²+ transient resulting from the delay between the peripheral and central SR Ca²+ release, and 2 the relative contribution of SL Ca²+ current and SR Ca²+ release to the Ca²+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca²+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca²+ release sites define the interface between Ca²+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca²+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca²+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca²+ signaling. Thus, the model provides a useful framework for future

  7. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    Science.gov (United States)

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  8. Cardiac rhabdomyoma associated with tuberosclerosis complex in a newborn

    Directory of Open Access Journals (Sweden)

    Birgin Torer

    2016-03-01

    Full Text Available Cardiac rhabdomyomas are the most comman cardiac tumors in children. They are hamartomatous benign tumors composed of myocytes. They often presents as multiple lesions involving the ventricular cavities. Rhabdomyomas are usually detected in utero by fetal echocardiography. Although patients with cardiac rhabdomyomas are generally asymptomatic these tumors may cause heart failure, severe arrhyhmias and sudden death. Cardiac rhabdomyomas are often associated with tuberosclerosis and they may be the earliest manifestation of tuberosclerosis. Here, we report a newborn infant with antenatally detected cardiac rhabdomyomas associated with tuberosclerosis and we want to emphasize that other diagnostic features of tuberosclerosis should be evaluated in patients with cardiac rhabdomyomas. [Cukurova Med J 2016; 41(0.100: 56-59

  9. Effect of Ca2+ Efflux Pathway Distribution and Exogenous Ca2+ Buffers on Intracellular Ca2+ Dynamics in the Rat Ventricular Myocyte: A Simulation Study

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Orchard, C.

    2014-01-01

    Roč. 2014, č. 2014 (2014), s. 920208 ISSN 2314-6133 Grant - others:GA MZd NT14301 Institutional support: RVO:61388998 Keywords : calcium efflux * calcium buffers * cardiac myocyte * computer model Subject RIV: BO - Biophysics Impact factor: 1.579, year: 2014

  10. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  11. Rapid Estrogen Receptor-Mediated Mechanisms Determine the Sexually Dimorphic Sensitivity of Ventricular Myocytes to 17β-Estradiol and the Environmental Endocrine Disruptor Bisphenol A

    Science.gov (United States)

    Belcher, Scott M.; Chen, Yamei; Yan, Sujuan

    2012-01-01

    Previously we showed that 17β-estradiol (E2) and/or the xenoestrogen bisphenol A (BPA) alter ventricular myocyte Ca2+ handing, resulting in increased cardiac arrhythmias in a female-specific manner. In the present study, the roles of estrogen receptors (ER) in mediating the rapid contractile and arrhythmogenic effects of estrogens were examined. Contractility was used as an index to assess the impact of E2 or BPA on Ca2+ handling in rodent ventricular myocytes. The concentration-response curve for the stimulatory effects of BPA and E2 on female myocyte was inverted-U shaped. Detectable effects for each compound were observed at 10−12 m, and the most efficacious concentrations for each were at 10−9 m. Sensitivity to E2 and BPA was not observed in male myocytes and was abolished in myocytes from ovariectomized females. Analysis using protein-conjugated E2 suggests that these rapid actions are induced by membrane-associated receptors. Analysis using selective ER agonists and antagonists and a genetic ERβ knockout mouse model showed that ERα and ERβ have opposing actions in myocytes and that the balance between ERβ and ERα signaling is the prime regulator of the sex-specific sensitivity toward estrogens. The response of female myocytes to E2 and BPA is dominated by the stimulatory ERβ-mediated signaling, and the absence of BPA and E2 responsiveness in males is due to a counterbalancing-suppressive action of ERα. We conclude that the sex-specific sensitivity of myocytes to estrogens and the rapid arrhythmogenic effects of BPA and estradiol in the female heart are regulated by the balance between ERα and ERβ signaling. PMID:22166976

  12. Preliminary assessment of cardiac short term safety and efficacy of manganese chloride for cardiovascular magnetic resonance in humans

    Directory of Open Access Journals (Sweden)

    Kalaf Jose M

    2011-01-01

    Full Text Available Abstract Background Manganese based agents are intracellular and accumulate inside myocytes allowing for different imaging strategies compared to gadolinium contrasts. While previous agents release manganese very slowly in the circulation, MnCl2 allows for rapid Mn2+ uptake in myocytes, creating a memory effect that can be potentially explored. Data on animal models are very encouraging but the safety and efficacy of this approach in humans has not yet been investigated. Therefore, our objectives were to study the safety and efficacy of a rapid infusion of manganese chloride (MnCl2 for cardiovascular magnetic resonance (CMR in humans. Methods Fifteen healthy volunteers underwent a CMR scan on a 1.5 T scanner. Before the infusion, cardiac function was calculated and images of a short axis mid-ventricular slice were obtained using a 2D and 3D gradient-echo inversion recovery (GRE-IR sequence, a phase-sensitive IR sequence and a single breath-hold segmented IR prepared steady-state precession acquisition for T1 calculations. MnCl2 was infused over three minutes at a total dose of 5 μMol/kg. Immediately after the infusion, and at 15 and 30 minutes later, new images were obtained and cardiac function re-evaluated. Results There was a significant decrease in T1 values compared to baseline, sustained up to 30 minutes after the MnCl2 infusion (pre,839 ± 281 ms; 0 min, 684 ± 99; 15 min, 714 ± 168; 30 min, 706 ± 172, P = 0.003. The 2D and 3D GRE-IR sequence showed the greatest increase in signal-to-noise ratio compared to the other sequences (baseline 6.6 ± 4.2 and 9.7 ± 5.3; 0 min, 11.3 ± 4.1 and 15.0 ± 8.7; 15 min, 10.8 ± 4.0 and 16.9 ± 10.2; 30 min, 10.6 ± 5.2 and 16.5 ± 8.3, P 2 with no major adverse events, despite all reporting transient facial flush. Conclusions In the short term, MnCl2 appears safe for human use. It effectively decreases myocardium T1, maintaining this effect for a relatively long period of time and allowing for the

  13. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

    Science.gov (United States)

    Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P

    2013-06-15

    Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Acute desensitization of acetylcholine and endothelin-1 activated inward rectifier K+ current in myocytes from the cardiac atrioventricular node.

    Science.gov (United States)

    Choisy, Stéphanie C M; James, Andrew F; Hancox, Jules C

    2012-07-06

    The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Electrophysiological effects of Chinese medicine Shen song Yang xin (SSYX) on Chinese miniature swine heart and isolated guinea pig ventricular myocytes.

    Science.gov (United States)

    Feng, Li; Gong, Jing; Jin, Zhen-yi; Li, Ning; Sun, Li-ping; Wu, Yi-ling; Pu, Jie-lin

    2009-07-05

    Shen song Yang xin (SSYX) is a compound of Chinese medicine with the effect of increasing heart rate (HR). This study aimed to evaluate its electrophysiological properties at heart and cellular levels. The Chinese miniature swines were randomly assigned to two groups, administered with SSYX or placebo for 4 weeks (n = 8 per group). Cardiac electrophysiological study (EPS) was performed before and after drug administration. The guinea pig ventricular myocytes were enzymatically isolated and whole cell voltage-clamp technique was used to evaluate the effect of SSYX on cardiac action potential (AP). SSYX treatment accelerated the HR from (141.8 +/- 36.0) beats per minute to (163.0 +/- 38.0) beats per minute (P = 0.013) without changing the other parameters in surface electrocardiogram. After blockage of the autonomic nervous system with metoprolol and atropin, SSYX had no effect on intrinsic HR (IHR), but decreased corrected sinus node recovery time (CSNRT) and sinus atrium conducting time (SACT). Intra cardiac EPS showed that SSYX significantly decreased the A-H and A-V intervals as well as shortened the atrial (A), atrioventricular node (AVN) and ventricular (V) effective refractory period (ERP). In isolated guinea pig ventricular myocytes, the most obvious effect of SSYX on action potential was a shortening of the action potential duration (APD) without change in shape of action potential. The shortening rates of APD(30), APD(50) and APD(90) were 19.5%, 17.8% and 15.3%, respectively. The resting potential (Em) and the interval between the end of APD(30) and APD(90) did not significantly change. The present study demonstrates that SSYX increases the HR and enhances the conducting capacity of the heart in the condition of the intact autonomic nervous system. SSYX homogenously decreases the ERP of the heart and shortens the APD of the myocytes, suggesting its antiarrhythmic effect without proarrhythmia.

  16. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    Science.gov (United States)

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  17. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Timothy J Cashman

    Full Text Available Hypertrophic cardiomyopathy (HCM is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS, which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and

  18. Inhibition of cardiac sodium currents by toluene exposure

    Science.gov (United States)

    Cruz, Silvia L; Orta-Salazar, Gerardo; Gauthereau, Marcia Y; Millan-Perez Peña, Lourdes; Salinas-Stefanón, Eduardo M

    2003-01-01

    Toluene is an industrial solvent widely used as a drug of abuse, which can produce sudden sniffing death due to cardiac arrhythmias. In this paper, we tested the hypothesis that toluene inhibits cardiac sodium channels in Xenopus laevis oocytes transfected with Nav1.5 cDNA and in isolated rat ventricular myocytes. In oocytes, toluene inhibited sodium currents (INa+) in a concentration-dependent manner, with an IC50 of 274 μM (confidence limits: 141–407μM). The inhibition was complete, voltage-independent, and slowly reversible. Toluene had no effect on: (i) the shape of the I–V curves; (ii) the reversal potential of Na+; and (iii) the steady-state inactivation. The slow recovery time constant from inactivation of INa+ decreased with toluene exposure, while the fast recovery time constant remained unchanged. Block of INa+ by toluene was use- and frequency-dependent. In rat cardiac myocytes, 300 μM toluene inhibited the sodium current (INa+) by 62%; this inhibition was voltage independent. These results suggest that toluene binds to cardiac Na+ channels in the open state and unbinds either when channels move between inactivated states or from an inactivated to a closed state. The use- and frequency-dependent block of INa+ by toluene might be responsible, at least in part, for its arrhythmogenic effect. PMID:14534149

  19. Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes

    OpenAIRE

    Ibarra, J.; Morley, G.E.; Delmar, M.

    1991-01-01

    The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. ...

  20. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.

    Science.gov (United States)

    Shy, Diana; Gillet, Ludovic; Abriel, Hugues

    2013-04-01

    The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. AKAP-scaffolding proteins and regulation of cardiac physiology

    Science.gov (United States)

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  2. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    Science.gov (United States)

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  3. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  4. TVP1022 Protects Neonatal Rat Ventricular Myocytes against Doxorubicin-Induced Functional Derangements

    Science.gov (United States)

    Berdichevski, Alexandra; Meiry, Gideon; Milman, Felix; Reiter, Irena; Sedan, Oshra; Eliyahu, Sivan; Duffy, Heather S.; Youdim, Moussa B.; Binah, Ofer

    2010-01-01

    Our recent studies demonstrated that propargylamine derivatives such as rasagiline (Azilect, Food and Drug Administration-approved anti-Parkinson drug) and its S-isomer TVP1022 protect cardiac and neuronal cell cultures against apoptotic-inducing stimuli. Studies on structure-activity relationship revealed that their neuroprotective effect is associated with the propargylamine moiety, which protects mitochondrial viability and prevents apoptosis by activating Bcl-2 and protein kinase C-ε and by down-regulating the proapoptotic protein Bax. Based on the established cytoprotective and neuroprotective efficacies of propargylamine derivatives, as well as on our recent study showing that TVP1022 attenuates serum starvation-induced and doxorubicin-induced apoptosis in neonatal rat ventricular myocytes (NRVMs), we tested the hypothesis that TVP1022 will also provide protection against doxorubicin-induced NRVM functional derangements. The present study demonstrates that pretreatment of NRVMs with TVP1022 (1 μM, 24 h) prevented doxorubicin (0.5 μM, 24 h)-induced elevation of diastolic [Ca2+]i, the slowing of [Ca2+]i relaxation kinetics, and the decrease in the rates of myocyte contraction and relaxation. Furthermore, pretreatment with TVP1022 attenuated the doxorubicin-induced reduction in the protein expression of sarco/endoplasmic reticulum calcium (Ca2+) ATPase, Na+/Ca2+ exchanger 1, and total connexin 43. Finally, TVP1022 diminished the inhibitory effect of doxorubicin on gap junctional intercellular coupling (measured by means of Lucifer yellow transfer) and on conduction velocity, the amplitude of the activation phase, and the maximal rate of activation (dv/dtmax) measured by the Micro-Electrode-Array system. In summary, our results indicate that TVP1022 acts as a novel cardioprotective agent against anthracycline cardiotoxicity, and therefore potentially can be coadmhence, the inistered with doxorubicin in the treatment of malignancies in humans. PMID:19915070

  5. Model of excitation-contraction coupling of rat neonatal ventricular myocytes.

    Science.gov (United States)

    Korhonen, Topi; Hänninen, Sandra L; Tavi, Pasi

    2009-02-01

    The neonatal rat ventricular myocyte culture is one of the most popular experimental cardiac cell models. To our knowledge, the excitation-contraction coupling (ECC) of these cells, i.e., the process linking the electrical activity to the cytosolic Ca2+ transient and contraction, has not been previously analyzed, nor has it been presented as a complete system in detail. Neonatal cardiomyocytes are in the postnatal developmental stage, and therefore, the features of their ECC differ vastly from those of adult ventricular myocytes. We present the first complete analysis of ECC in these cells by characterizing experimentally the action potential and calcium signaling and developing the first mathematical model of ECC in neonatal cardiomyocytes that we know of. We show that in comparison to adult cardiomyocytes, neonatal cardiomyocytes have long action potentials, heterogeneous cytosolic Ca2+ signals, weaker sarcoplasmic reticulum Ca2+ handling, and stronger sarcolemmal Ca2+ handling, with a significant contribution by the Na+/Ca2+ exchanger. The developed model reproduces faithfully the ECC of rat neonatal cardiomyocytes with a novel description of spatial cytosolic [Ca2+] signals. Simulations also demonstrate how an increase in the cell size (hypertrophy) affects the ECC in neonatal cardiomyocytes. This model of ECC in developing cardiomyocytes provides a platform for developing future models of cardiomyocytes at different developmental stages.

  6. Cardiac cAMP: production, hydrolysis, modulation and detection

    Directory of Open Access Journals (Sweden)

    Cédric eBOULARAN

    2015-10-01

    Full Text Available Cyclic adenosine 3’,5’-monophosphate (cAMP modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors’ signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.

  7. Cardiac Dysrhythmias and Neurological Dysregulation: Manifestations of Profound Hypomagnesemia

    Directory of Open Access Journals (Sweden)

    Sagger Mawri

    2017-01-01

    Full Text Available Magnesium is the second most common intracellular cation and serves as an important metabolic cofactor to over 300 enzymatic reactions throughout the human body. Among its various roles, magnesium modulates calcium entry and release from sarcoplasmic reticulum and regulates ATP pumps in myocytes and neurons, thereby regulating cardiac and neuronal excitability. Therefore, deficiency of this essential mineral may result in serious cardiovascular and neurologic derangements. In this case, we present the clinical course of a 76-year-old woman who presented with marked cardiac and neurological signs and symptoms which developed as a result of severe hypomagnesemia. The patient promptly responded to magnesium replacement once the diagnosis was established. We herein discuss the clinical presentation, pathophysiology, diagnosis, and management of severe hypomagnesemia and emphasize the implications of magnesium deficiency in the cardiovascular and central nervous systems. Furthermore, this case highlights the importance of having high vigilance for hypomagnesemia in the appropriate clinical setting.

  8. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  9. Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    Science.gov (United States)

    Verkerk, Arie O.; Geuzebroek, Guillaume S. C.; Veldkamp, Marieke W.; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins. PMID:22754533

  10. The AKAP Cypher/Zasp contributes to β-adrenergic/PKA stimulation of cardiac CaV1.2 calcium channels.

    Science.gov (United States)

    Yu, Haijie; Yuan, Can; Westenbroek, Ruth E; Catterall, William A

    2018-06-04

    Stimulation of the L-type Ca 2+ current conducted by Ca V 1.2 channels in cardiac myocytes by the β-adrenergic/protein kinase A (PKA) signaling pathway requires anchoring of PKA to the Ca V 1.2 channel by an A-kinase anchoring protein (AKAP). However, the AKAP(s) responsible for regulation in vivo remain unknown. Here, we test the role of the AKAP Cypher/Zasp in β-adrenergic regulation of Ca V 1.2 channels using physiological studies of cardiac ventricular myocytes from young-adult mice lacking the long form of Cypher/Zasp (LCyphKO mice). These myocytes have increased protein levels of Ca V 1.2, PKA, and calcineurin. In contrast, the cell surface density of Ca V 1.2 channels and the basal Ca 2+ current conducted by Ca V 1.2 channels are significantly reduced without substantial changes to kinetics or voltage dependence. β-adrenergic regulation of these L-type Ca 2+ currents is also significantly reduced in myocytes from LCyphKO mice, whether calculated as a stimulation ratio or as net-stimulated Ca 2+ current. At 100 nM isoproterenol, the net β-adrenergic-Ca 2+ current conducted by Ca V 1.2 channels was reduced to 39 ± 12% of wild type. However, concentration-response curves for β-adrenergic stimulation of myocytes from LCyphKO mice have concentrations that give a half-maximal response similar to those for wild-type mice. These results identify Cypher/Zasp as an important AKAP for β-adrenergic regulation of cardiac Ca V 1.2 channels. Other AKAPs may work cooperatively with Cypher/Zasp to give the full magnitude of β-adrenergic regulation of Ca V 1.2 channels observed in vivo. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  11. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  12. A new classifier-based strategy for in-silico ion-channel cardiac drug safety assessment

    Directory of Open Access Journals (Sweden)

    Hitesh eMistry

    2015-03-01

    Full Text Available There is currently a strong interest in using high-throughput in-vitro ion-channel screening data to make predictions regarding the cardiac toxicity potential of a new compound in both animal and human studies. A recent FDA think tank encourages the use of biophysical mathematical models of cardiac myocytes for this prediction task. However, it remains unclear whether this approach is the most appropriate. Here we examine five literature data-sets that have been used to support the use of four different biophysical models and one statistical model for predicting cardiac toxicity in numerous species using various endpoints. We propose a simple model that represents the balance between repolarisation and depolarisation forces and compare the predictive power of the model against the original results (leave-one-out cross-validation. Our model showed equivalent performance when compared to the four biophysical models and one statistical model. We therefore conclude that this approach should be further investigated in the context of early cardiac safety screening when in-vitro potency data is generated.

  13. Pathological links between stroke and cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    Shaila Ghanekar; Sydney Corey; Trenton Lippert; Cesar V.Borlongan

    2017-01-01

    There may be a pathological connection between cardiac failure and ischemic stroke.In this article we describe pertinent research that demonstrates subsequent death of cardiac and neural myocytes in the post ischemic stroke brain.Current stroke therapy overlooks the connection between cardiac and cerebrovascular events and fails to address the shared risk factors.Current pre-clinical stroke investigations have provided evidence that suggests the presence of an indirect cell death pathway in which toxic molecules emanate from the stroke brain and trigger cardiac cell death.On the other hand,other studies highlight the presence of a reverse cell death cascade in which toxic molecules from the heart,following cardiac arrest,travel to the brain and induce ischemic cell death.Further examination of these putative cell death pathways between ischemic stroke and cardiac arrest will prompt the advancement of innovative treatments specifically targeting both diseases,leading to ameliorated clinical results of patients diagnosed with heart failure and ischemic stroke.

  14. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  15. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction.

    Science.gov (United States)

    Sharp, Thomas E; Schena, Giana J; Hobby, Alexander R; Starosta, Timothy; Berretta, Remus M; Wallner, Markus; Borghetti, Giulia; Gross, Polina; Yu, Daohai; Johnson, Jaslyn; Feldsott, Eric; Trappanese, Danielle M; Toib, Amir; Rabinowitz, Joseph E; George, Jon C; Kubo, Hajime; Mohsin, Sadia; Houser, Steven R

    2017-11-10

    Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×10 7 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU + cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve

  16. Radioimmunoassay of human cardiac tropomyosin in acute myocardial infarction

    International Nuclear Information System (INIS)

    Cummins, P.; McGurk, B.; Littler, W.A.

    1981-01-01

    Tropomyosin was prepared from fresh human myocardium and antisera raised in rabbits. A sensitive radioimmunoassay was developed for the detection of human cardiac 125 I-labelled tropomyosin in human sera down to levels of 1 ng/ml. Values for human cardiac tropomyosin in normal patients ranged from less than 1 to 3 ng/ml. In 18 patients with acute myocardial infarction all had elevated tropomyosin levels ranging from 41 to above 200 ng/ml with a mean peak level of 101 ng/ml. In this study there were no false positive or false negative results. In the initial stages of infarction the time course of appearance and peak levels of cardiac tropomyosin, total creatine kinase and creatine kinase MB isoenzyme were similar. Although total creatine kinase and creatine kinase MB isoenzyme levels were normal after 72 h in patients with single, uncomplicated infarction, cardiac tropomyosin levels were still significantly elevated above normal after this time, being 30-60% of peak values. Radioimmunoassay of human cardiac tropomyosin may prove useful in the diagnosis and in the management of patients with acute myocardial infarction, particularly in the long-term postinfarction period. (author)

  17. Capillary/myocyte mismatch in the heart in renal failure--a role for erythropoietin?

    Science.gov (United States)

    Amann, K; Buzello, M; Simonaviciene, A; Miltenberger-Miltenyi, G; Koch, A; Nabokov, A; Gross, M L; Gless, B; Mall, G; Ritz, E

    2000-07-01

    Chronic renal failure is characterized by remodeling of the heart with left ventricular hypertrophy (increasing oxygen demand) and capillary deficit leading to capillary/myocyte mismatch (decreasing oxygen supply). Erythropoietin (Epo) has known angiogenic properties causing endothelial cell activation, migration and sprouting, mediated at least in part via the JAK/STAT (Janus kinase/signal transducers and activators of transcription) pathway. In uraemic cardiac hypertrophy the presence of diminished capillary supply implies that capillary growth does not keep pace with development of hypertrophy. To investigate whether this was due to a deficit of the angiogenic hormone Epo we examined whether Epo levels are altered and whether an increase in haematocrit by administration of rhEpo influences capillary supply, i.e. capillary/myocyte mismatch in experimental renal failure. Male Spraque-Dawley rats were either subjected to partial renal ablation or sham operation. Only modest amounts of renal tissue were removed so that the rats were not anemic. Subgroups of rats received either human (rh)Epo alone or in combination with unspecific antihypertensive treatment (dihydralazine plus furosemide) in order to control the Epo induced rise in blood pressure. Capillary supply was measured stereologically as capillary length per volume myocardium using the orientator method. Capillary length density was reduced by approximately 25% after partial renal ablation (3237+/-601 vs 4293+/-501 mm/mm(3) in controls). It was not statistically different in animals with partial renal ablation+rhEpo+antihypertensive treatment (3620+/-828 mm/mm(3)) compared to partial ablation alone. The study shows that lack of Epo does not cause, or contribute to, the deficit of capillary growth in the hypertrophied left ventricle of rats with renal failure. In addition, a rise in haematocrit is not accompanied by beneficial effects on alterations of cardiovascular structure in experimental renal failure.

  18. The H{sub 1}–H{sub 2} domain of the α{sub 1} isoform of Na{sup +}–K{sup +}–ATPase is involved in ouabain toxicity in rat ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Chen; Li, Jun-xia; Guo, Hui-cai; Zhang, Li-nan; Guo, Wei; Meng, Jing; Wang, Yong-li, E-mail: wangyongli@gmail.com

    2012-07-01

    The composition of different isoforms of Na{sup +}-K{sup +}-ATPase (NKA, Na/K pump) in ventricular myocytes is an important factor in determining the therapeutic effect and toxicity of cardiac glycosides (CGs) on heart failure. The mechanism whereby CGs cause these effects is still not completely clear. In the present study, we prepared two site-specific antibodies (SSA78 and WJS) against the H{sub 1}–H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA in rat heart, respectively, and compared their influences on the effect of ouabain (OUA) in isolated rat ventricular myocytes. SSA78 or WJS, which can specifically bind with the α{sub 1} or α{sub 2} isoform, were assessed with enzyme linked immunosorbent assay (ELISA), Western blot and immunofluorescent staining methods. Preincubation of myocytes with SSA78 inhibited low OUA affinity pump current but not high OUA affinity pump current, reduced the rise in cytosolic calcium concentration ([Ca{sup 2+}]{sub i}), attenuated mitochondrial Ca{sup 2+} overload, restored mitochondrial membrane potential reduction, and delayed the decrease of the myocardial contractile force as well as the occurrence of arrhythmic contraction induced by high concentrations (1 mM) but not low concentrations (1 μM) of OUA. Similarly, preincubation of myocytes with WJS inhibited high OUA affinity pump current, reduced the increase of [Ca{sup 2+}]{sub i} and the contractility induced by 1 μM but not that induced by 1 mM OUA. These results indicate that the H{sub 1}–H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity in rat ventricular myocytes, and inhibitors for this binding site may be used as an adjunct to CGs treatment for cardiovascular disease. -- Highlights: ► We prepared two antibodies against the H{sub 1}-H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA. ► The H{sub 1}-H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity. ► The H{sub 1}-H{sub 2

  19. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

    Science.gov (United States)

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A; Hamilton, Elisha J; Figtree, Gemma A; Rasmussen, Helge H

    2015-09-01

    Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. Copyright © 2015 the American Physiological Society.

  20. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) has been shown to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) through G proteins or G protein-independently through beta-arrestin2 in cellular expression systems. As activation mechanisms may greatly influence the biological...... effects of ERK1/2 activity, differential activation of the AT(1)R in its native cellular context could have important biological and pharmacological implications. To examine if AT(1)R activates ERK1/2 by G protein-independent mechanisms in the heart, we used the [Sar(1), Ile(4), Ile(8)]-AngII ([SII] Ang......II) analogue in native preparations of cardiac myocytes and beating hearts. We found that [SII] AngII does not activate G(q)-coupling, yet stimulates the beta-arrestin2-dependent ERK1/2. The G(q)-activated pool of ERK1/2 rapidly translocates to the nucleus, while the beta-arrestin2-scaffolded pool remains...

  1. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  2. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes

    DEFF Research Database (Denmark)

    Nielsen, Signe Holm; Mouton, Alan J.; DeLeon-Pennell, Kristine Y.

    2017-01-01

    matrix (ECM) scar formation to replace necrotic myocytes. While ECM accumulation following MI is termed cardiac fibrosis, this is a generic term that does not differentiate between ECM accumulation that occurs in the infarct region to form a scar that is structurally necessary to preserve left ventricle...

  3. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  4. The role of mitochondria for the regulation of cardiac alternans

    Directory of Open Access Journals (Sweden)

    Stela M Florea

    2010-11-01

    Full Text Available Electromechanical and Ca alternans is a beat-to-beat alternation of action potential duration, contraction strength and Ca transient amplitude observed in cardiac myocytes at regular stimulation frequency. Ca alternans is a multifactorial process that is causally linked to cardiac arrhythmias. At the cellular level, conditions that increase fractional release from the sarcoplasmic reticulum or reduce diastolic Ca sequestration favor the occurrence of alternans. Mitochondria play a significant role in cardiac excitation-contraction coupling and Ca signaling by providing the energy for contraction and ATP-dependent processes and possibly by serving as Ca buffering organelles. Here we tested the hypothesis that impairment of mitochondrial function generates conditions that favor the occurrence of Ca alternans. Alternans were elicited by electrical pacing (>1 Hz in single cat atrial myocytes and intracellular Ca ([Ca]i was measured with the fluorescent Ca indicator Indo-1. The degree of alternans was quantified as the alternans ratio (AR=1-S/L, where S/L is the ratio of the small to the large amplitude of a pair of alternating Ca transients. Dissipation of mitochondrial membrane potential (with FCCP as well as inhibition of mitochondrial F1/F0-ATP synthase (oligomycin, electrontransport chain (rotenone, antimycin, CN-, Ca-dependent dehydrogenases and mitochondrial Ca uptake or extrusion, all enhanced AR and lowered the threshold for the occurrence of Ca alternans. The data indicate that impairment of mitochondrial function adversely affects cardiac Ca cycling leading to proarrhythmic Ca alternans.

  5. Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130.

    Science.gov (United States)

    Olivas, Antoinette; Gardner, Ryan T; Wang, Lianguo; Ripplinger, Crystal M; Woodward, William R; Habecker, Beth A

    2016-01-13

    Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons

  6. Decrease in coronary vascular volume in systole augments cardiac contraction.

    Science.gov (United States)

    Willemsen, M J; Duncker, D J; Krams, R; Dijkman, M A; Lamberts, R R; Sipkema, P; Westerhof, N

    2001-08-01

    Coronary arterial inflow is impeded and venous outflow is increased as a result of the decrease in coronary vascular volume due to cardiac contraction. We evaluated whether cardiac contraction is influenced by interfering with the changes of the coronary vascular volume over the heart cycle. Length-tension relationships were determined in Tyrode-perfused rat papillary muscle and when coronary vascular volume changes were partly inhibited by filling it with congealed gelatin or perfusing it with a high viscosity dextran buffer. Also, myocyte thickening during contraction was reduced by placing a silicon tube around the muscle. Increasing perfusion pressure from 8 to 80 cmH2O, increased developed tension by approximately 40%. When compared with the low perfusion state, developed tension of the gelatin-filled vasculature was reduced to 43 +/- 6% at the muscle length where the muscle generates the largest developed tension (n = 5, means +/- SE). Dextran reduced developed tension to 73 +/- 6% (n = 6). The silicon tube, in low perfusion state, reduced the developed tension to 83 +/- 7% (n = 4) of control. Time-control and oxygen-lowering experiments show that the findings are based on mechanical effects. Thus interventions to prevent myocyte thickening reduce developed tension. We hypothesize that when myocyte thickening is prevented, intracellular pressure increases and counteracts the force produced by the contractile apparatus. We conclude that emptying of the coronary vasculature serves a physiological purpose by facilitating cardiomyocyte thickening thereby augmenting force development.

  7. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  8. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    Science.gov (United States)

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Jamb and jamc are essential for vertebrate myocyte fusion.

    Directory of Open Access Journals (Sweden)

    Gareth T Powell

    2011-12-01

    Full Text Available Cellular fusion is required in the development of several tissues, including skeletal muscle. In vertebrates, this process is poorly understood and lacks an in vivo-validated cell surface heterophilic receptor pair that is necessary for fusion. Identification of essential cell surface interactions between fusing cells is an important step in elucidating the molecular mechanism of cellular fusion. We show here that the zebrafish orthologues of JAM-B and JAM-C receptors are essential for fusion of myocyte precursors to form syncytial muscle fibres. Both jamb and jamc are dynamically co-expressed in developing muscles and encode receptors that physically interact. Heritable mutations in either gene prevent myocyte fusion in vivo, resulting in an overabundance of mononuclear, but otherwise overtly normal, functional fast-twitch muscle fibres. Transplantation experiments show that the Jamb and Jamc receptors must interact between neighbouring cells (in trans for fusion to occur. We also show that jamc is ectopically expressed in prdm1a mutant slow muscle precursors, which inappropriately fuse with other myocytes, suggesting that control of myocyte fusion through regulation of jamc expression has important implications for the growth and patterning of muscles. Our discovery of a receptor-ligand pair critical for fusion in vivo has important implications for understanding the molecular mechanisms responsible for myocyte fusion and its regulation in vertebrate myogenesis.

  10. c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy.

    Science.gov (United States)

    Sanada, Fumihiro; Kim, Junghyun; Czarna, Anna; Chan, Noel Yan-Ki; Signore, Sergio; Ogórek, Barbara; Isobe, Kazuya; Wybieralska, Ewa; Borghetti, Giulia; Pesapane, Ada; Sorrentino, Andrea; Mangano, Emily; Cappetta, Donato; Mangiaracina, Chiara; Ricciardi, Mario; Cimini, Maria; Ifedigbo, Emeka; Perrella, Mark A; Goichberg, Polina; Choi, Augustine M; Kajstura, Jan; Hosoda, Toru; Rota, Marcello; Anversa, Piero; Leri, Annarosa

    2014-01-03

    Hypoxia favors stem cell quiescence, whereas normoxia is required for stem cell activation, but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. Here, we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot re-enter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggest that a pool of functionally competent CSCs persists in the senescent heart and that this stem cell compartment can promote myocyte regeneration effectively, partly correcting the aging myopathy.

  11. An endogenously produced fragment of cardiac myosin-binding protein C is pathogenic and can lead to heart failure.

    Science.gov (United States)

    Razzaque, Md Abdur; Gupta, Manish; Osinska, Hanna; Gulick, James; Blaxall, Burns C; Robbins, Jeffrey

    2013-08-16

    A stable 40-kDa fragment is produced from cardiac myosin-binding protein C when the heart is stressed using a stimulus, such as ischemia-reperfusion injury. Elevated levels of the fragment can be detected in the diseased mouse and human heart, but its ability to interfere with normal cardiac function in the intact animal is unexplored. To understand the potential pathogenicity of the 40-kDa fragment in vivo and to investigate the molecular pathways that could be targeted for potential therapeutic intervention. We generated cardiac myocyte-specific transgenic mice using a Tet-Off inducible system to permit controlled expression of the 40-kDa fragment in cardiomyocytes. When expression of the 40-kDa protein is induced by crossing the responder animals with tetracycline transactivator mice under conditions in which substantial quantities approximating those observed in diseased hearts are reached, the double-transgenic mice subsequently experience development of sarcomere dysgenesis and altered cardiac geometry, and the heart fails between 12 and 17 weeks of age. The induced double-transgenic mice had development of cardiac hypertrophy with myofibrillar disarray and fibrosis, in addition to activation of pathogenic MEK-ERK pathways. Inhibition of MEK-ERK signaling was achieved by injection of the mitogen-activated protein kinase (MAPK)/ERK inhibitor U0126. The drug effectively improved cardiac function, normalized heart size, and increased probability of survival. These results suggest that the 40-kDa cardiac myosin-binding protein C fragment, which is produced at elevated levels during human cardiac disease, is a pathogenic fragment that is sufficient to cause hypertrophic cardiomyopathy and heart failure.

  12. Technetium-99m labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylp ropylamino)-piperidine and iodine-123 metaiodobenzylguanidine for studying cardiac adrenergic function: a comparison of the uptake characteristics in vascular smooth muscle cells and neonatal cardiac myocytes, and an investigation in rats

    International Nuclear Information System (INIS)

    Samnick, Samuel; Scheuer, Claudia; Muenks, Sven; El-Gibaly, Amr M.; Menger, Michael D.; Kirsch, Carl-Martin

    2004-01-01

    In developing technetium-99m-based radioligands for in vivo studies of cardiac adrenergic neurons, we compared the uptake characteristics of the 99m Tc-labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylpropylamino)-piperidine ( 99m Tc-FBPBAT) with those of the clinically established meta-[ 123 I]iodobenzylguanidine ( 123 I-MIBG) in rat vascular smooth muscle cells and neonatal cardiac myocytes. Furthermore, the cardiac and extracardiac uptake of both radiopharmaceuticals was assessed in intact rats and in rats pretreated with various α- and β-adrenoceptor drugs, and adrenergic reuptake blocking agents. The uptake of 99m Tc-FBPBAT and 123 I-MIBG into vascular smooth muscle cells and neonatal cardiac myocytes was rapid; more than 85% of the radioactivity accumulation into the cells occurring within the first 3 minutes. Radioactivity uptake after a 60-minute incubation at 37 degree sign C (pH 7.4) varied from 15% to 65% of the total loaded activity per million cells. In all cases, 99m Tc-FBPBAT showed the higher uptake, relative to 123 I-MIBG, at any given cell concentration. The cellular uptake of 99m Tc-FBPBAT was lower at 4 degree sign C and 20 degree sign C than at 37 degree sign C. In contrast, the 123 I-MIBG uptake was only slightly temperature dependent. Inhibition experiments confirmed that the cellular uptake of 123 I-MIBG is mediated by the uptake-I carrier, whereas α 1 - and β 1 -adrenoceptors were predominantly involved in the uptake of 99m Tc-FBPBAT into the cardiovascular tissues. Biodistribution studies in rats showed that 99m Tc-FBPBAT accumulated in myocardium after intravenous injection. Radioactivity in rat heart amounted to 2.32% and 1.91% of the injected dose per gram at 15 and 60 minutes postinjection, compared with 3.10% and 2.21% injected dose per gram of tissue (%ID/g) in the experiment with 123 I-MIBG, respectively. Prazosin, urapidil, and metoprolol were as effective as treatment with other adrenergic

  13. Technetium-99m labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylp ropylamino)-piperidine and iodine-123 metaiodobenzylguanidine for studying cardiac adrenergic function: a comparison of the uptake characteristics in vascular smooth muscle cells and neonatal cardiac myocytes, and an investigation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Samnick, Samuel E-mail: rassam@uniklinik-saarland.de; Scheuer, Claudia; Muenks, Sven; El-Gibaly, Amr M.; Menger, Michael D.; Kirsch, Carl-Martin

    2004-05-01

    In developing technetium-99m-based radioligands for in vivo studies of cardiac adrenergic neurons, we compared the uptake characteristics of the {sup 99m}Tc-labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylpropylamino)-piperidine ({sup 99m}Tc-FBPBAT) with those of the clinically established meta-[{sup 123}I]iodobenzylguanidine ({sup 123}I-MIBG) in rat vascular smooth muscle cells and neonatal cardiac myocytes. Furthermore, the cardiac and extracardiac uptake of both radiopharmaceuticals was assessed in intact rats and in rats pretreated with various {alpha}- and {beta}-adrenoceptor drugs, and adrenergic reuptake blocking agents. The uptake of {sup 99m}Tc-FBPBAT and {sup 123}I-MIBG into vascular smooth muscle cells and neonatal cardiac myocytes was rapid; more than 85% of the radioactivity accumulation into the cells occurring within the first 3 minutes. Radioactivity uptake after a 60-minute incubation at 37 degree sign C (pH 7.4) varied from 15% to 65% of the total loaded activity per million cells. In all cases, {sup 99m}Tc-FBPBAT showed the higher uptake, relative to {sup 123}I-MIBG, at any given cell concentration. The cellular uptake of {sup 99m}Tc-FBPBAT was lower at 4 degree sign C and 20 degree sign C than at 37 degree sign C. In contrast, the {sup 123}I-MIBG uptake was only slightly temperature dependent. Inhibition experiments confirmed that the cellular uptake of {sup 123}I-MIBG is mediated by the uptake-I carrier, whereas {alpha}{sub 1}- and {beta}{sub 1}-adrenoceptors were predominantly involved in the uptake of {sup 99m}Tc-FBPBAT into the cardiovascular tissues. Biodistribution studies in rats showed that {sup 99m}Tc-FBPBAT accumulated in myocardium after intravenous injection. Radioactivity in rat heart amounted to 2.32% and 1.91% of the injected dose per gram at 15 and 60 minutes postinjection, compared with 3.10% and 2.21% injected dose per gram of tissue (%ID/g) in the experiment with {sup 123}I

  14. Peripheral vasodilatation determines cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Bada, A A; Svendsen, J H; Secher, N H

    2012-01-01

    In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral...... arterial ATP infusion at rest. Exercise and ATP infusion increased cardiac output, leg blood flow and vascular conductance (P heart rate by up to 54 beats min(−1), cardiac output did not change in any of the three...... demonstrate that the elevated cardiac output during steady-state exercise is regulated by the increase in skeletal muscle blood flow and venous return to the heart, whereas the increase in heart rate appears to be secondary to the regulation of cardiac output....

  15. SMOOTH MYOCYTES AND COLLAGENOUS FIBERS OF THE URINARY BLADDER OF RATS IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Nadiya Tokaruk

    2015-12-01

    Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine   Key words: diabetes mellitus; smooth myocytes; collagenous fibers.   Introduction. Diabetes mellitus (DM causes diabetic cystopathy, which is associated with detrusor dysfunction and the content of collagenous fibers. The results of the performed studies are ambiguous and often contradictory, requiring objective data which could be obtained on the basis of the simultaneous determination of relative areas of smooth myocytes and collagenous fibers and their ultrastructural study. Objective: To determine the peculiarities of the structural and metric organization of smooth myocytes and collagenous fibers of the urinary bladder (UB of rats during different stages of DM. Materials and methods. DM was modeled by streptozotocin in Wistar rats. Relative areas of the studied structures were defined on digital images of histological sections of UB stained by Mason using the original automatic way. Smooth myocytes were studied ultrastructurally. Results. During the 14th-28th day of DM development the percent of collagenous fibers area decreases and the percentage of smooth myocytes area of UB wall increases. The expanding of intercellular spaces and the development of vacuolar degeneration of myocytes are observed. During the 42nd-56th days the percentage of collagenous fibers area increases and the percentage of the area of smooth myocytes decreases. Ultrastructurally subsiding of vacuolar dystrophy, short-term baloon dystrophy, the appearance of dark myocytes, moderate karyorrhexis were observed. During the 70th day of the experiment the percentage of collagenous fibers and smooth myocytes areas does not change significantly, most dark myocytes are involutive, there are local fibrosis and myocyte sequestration areas. Conclusions. Ultrastructural changes are characterized by a pronounced polymorphism and have a chronological relationship. Author’s worked out original method of determination of the

  16. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Zhou, Heng; Xu, Dachun; Shan, Tichao; Zhang, Fan; Guo, Yuan; Chen, Yuguo; Wu, Dawei

    2015-01-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  17. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  18. In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart.

    Science.gov (United States)

    Shimozawa, Togo; Hirokawa, Erisa; Kobirumaki-Shimozawa, Fuyu; Oyama, Kotaro; Shintani, Seine A; Terui, Takako; Kushida, Yasuharu; Tsukamoto, Seiichi; Fujii, Teruyuki; Ishiwata, Shin'ichi; Fukuda, Norio

    2017-03-01

    The cardiac pump function is a result of a rise in intracellular Ca 2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca 2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

  20. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts.

    Science.gov (United States)

    Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R

    2018-01-01

    The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.

  1. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    Science.gov (United States)

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  2. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Green, Charlotte Jane; Pedersen, Maria; Pedersen, Bente K

    2011-01-01

    To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes....

  3. Development of cardiac conduction system in mammals with a focus on the anatomical, functional and medical/genetical aspects

    Czech Academy of Sciences Publication Activity Database

    Sedmera, David

    2007-01-01

    Roč. 5, - (2007), s. 115-123 ISSN 1214-021X Institutional research plan: CEZ:AV0Z50450515 Keywords : myocyte * AV junction * Wolf- Parkinson -White syndrome * ventricular CCS * cardiac disease Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  4. Tetrodotoxin Sensitivity of the Vertebrate Cardiac Na+ Current

    Directory of Open Access Journals (Sweden)

    Jaakko Haverinen

    2011-11-01

    Full Text Available Evolutionary origin and physiological significance of the tetrodotoxin (TTX resistance of the vertebrate cardiac Na+ current (INa is still unresolved. To this end, TTX sensitivity of the cardiac INa was examined in cardiac myocytes of a cyclostome (lamprey, three teleost fishes (crucian carp, burbot and rainbow trout, a clawed frog, a snake (viper and a bird (quail. In lamprey, teleost fishes, frog and bird the cardiac INa was highly TTX-sensitive with EC50-values between 1.4 and 6.6 nmol·L−1. In the snake heart, about 80% of the INa was TTX-resistant with EC50 value of 0.65 μmol·L−1, the rest being TTX-sensitive (EC50 = 0.5 nmol·L−1. Although TTX-resistance of the cardiac INa appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na+ channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.

  5. The benefits of the Atlas of Human Cardiac Anatomy website for the design of cardiac devices.

    Science.gov (United States)

    Spencer, Julianne H; Quill, Jason L; Bateman, Michael G; Eggen, Michael D; Howard, Stephen A; Goff, Ryan P; Howard, Brian T; Quallich, Stephen G; Iaizzo, Paul A

    2013-11-01

    This paper describes how the Atlas of Human Cardiac Anatomy website can be used to improve cardiac device design throughout the process of development. The Atlas is a free-access website featuring novel images of both functional and fixed human cardiac anatomy from over 250 human heart specimens. This website provides numerous educational tutorials on anatomy, physiology and various imaging modalities. For instance, the 'device tutorial' provides examples of devices that were either present at the time of in vitro reanimation or were subsequently delivered, including leads, catheters, valves, annuloplasty rings and stents. Another section of the website displays 3D models of the vasculature, blood volumes and/or tissue volumes reconstructed from computed tomography and magnetic resonance images of various heart specimens. The website shares library images, video clips and computed tomography and MRI DICOM files in honor of the generous gifts received from donors and their families.

  6. Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts.

    Science.gov (United States)

    Zlatanova, Ivana; Pinto, Cristina; Silvestre, Jean-Sébastien

    2016-01-01

    The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.

  7. Immune modulation of cardiac repair and regeneration: the art of mending broken hearts

    Directory of Open Access Journals (Sweden)

    Ivana Zlatanova

    2016-10-01

    Full Text Available The accumulation of immune cells is amongst the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of pre-existing cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin-6 and interleukin-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.

  8. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes

    DEFF Research Database (Denmark)

    Väremo, Leif; Scheele, Camilla; Broholm, Christa

    2015-01-01

    -analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism......Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome...

  9. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    Science.gov (United States)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  10. Specificity of secreted proteomes from cardiac stem cells and neonatal myocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.

    2009-01-01

    Roč. 276, Suppl.1 (2009), s. 346 ISSN 1742-464X. [FEBS Congress /34./. 04.07.2009-09.07.2009, Prague] Institutional research plan: CEZ:AV0Z40310501 Keywords : cardiac stem cells * secreted paracrine/autocrine factors * proteomics Subject RIV: CB - Analytical Chemistry, Separation

  11. Preserved cardiac function despite marked impairment of cAMP generation.

    Directory of Open Access Journals (Sweden)

    Mei Hua Gao

    Full Text Available So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca(2+ handling or myofilament response to Ca(2+ using agents that do not affect cAMP. Although left ventricular (LV function is tightly linked to adenylyl cyclase (AC activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca(2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca(2+ handling alone.We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut. Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001, but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca(2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca(2+ transients in response to isoproterenol (p = 0.0001. AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03 and reduced expression of phospholamban protein (p = 0.01.LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca(2+ handling - effects that occur despite diminished cAMP.

  12. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Directory of Open Access Journals (Sweden)

    Irene Cuadrado

    Full Text Available Inhibition of Extracellular Matrix degradation by nitric oxide (NO induces cardiac protection against coronary ischemia/reperfusion (IR. Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN stimulates enzymatic activation of matrix metalloproteinases (MMPs in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2 knockout (KO mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9, in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF. NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6. The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5, or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  13. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Science.gov (United States)

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  14. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Marchesi Bozi

    2013-04-01

    Full Text Available OBJECTIVES: The present study was performed to investigate 1 whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2 whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. METHODS: Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM, sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05. RESULTS: Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. CONCLUSION: Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties.

  15. A model approach to the adaptation of cardiac structure by mechanical feedback in the environment of the cell

    NARCIS (Netherlands)

    Arts, M.G.J.; Prinzen, F.W.; Snoeckx, L.H.E.H.; Reneman, R.S.

    1995-01-01

    The uniformity of the mechanical load of the cardiac fibers in the wall is maintained by continuous remodeling. In this proposed model the myocyte changes direction in optimizing systolic sarcomere shortening. Early systolic stretch and contractility increases the mass of contractile proteins.

  16. Non-invasive, kinetic measurements of [3H]nitrendipine binding to isolated rat myocytes by condensed phase radioluminescence

    International Nuclear Information System (INIS)

    Tscharner, V. von; Bailey, I.A.

    1983-01-01

    The binding of 3 H-labelled drug molecules to membranes of living cells give rise to photon emission from tryptophan residues at proteinaceous binding sites. This phenomenon, called condensed phase radioluminescence, has been used to measure non-invasively the kinetics of [ 3 H]nitrendipine binding and dissociation on the same samples of cultured beating cardiac myocytes. Signal arose only from bound drug molecules. Binding was monoexponential (tau = 5.5 min) as was dissociation (14.3 min). Preincubating cells with non-radioactive nifedipine reduced the amplitude and rate of [ 3 H]nitrendipine but not of [ 3 H]dihydroalprenolol binding. The potential uses of this phenomenon are discussed. (Auth.)

  17. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  18. Intravital imaging of cardiac function at the single-cell level.

    Science.gov (United States)

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  19. Characterization of human cardiac myosin heavy chain genes

    International Nuclear Information System (INIS)

    Yamauchi-Takihara, K.; Sole, M.J.; Liew, J.; Ing, D.; Liew, C.C.

    1989-01-01

    The authors have isolated and analyzed the structure of the genes coding for the α and β forms of the human cardiac myosin heavy chain (MYHC). Detailed analysis of four overlapping MYHC genomic clones shows that the α-MYHC and β-MYHC genes constitute a total length of 51 kilobases and are tandemly linked. The β-MYHC-encoding gene, predominantly expressed in the normal human ventricle and also in slow-twitch skeletal muscle, is located 4.5 kilobases upstream of the α-MYHC-encoding gene, which is predominantly expressed in normal human atrium. The authors have determined the nucleotide sequences of the β form of the MYHC gene, which is 100% homologous to the cardiac MYHC cDNA clone (pHMC3). It is unlikely that the divergence of a few nucleotide sequences from the cardiac β-MYHC cDNA clone (pHMC3) reported in a MYHC cDNA clone (PSMHCZ) from skeletal muscle is due to a splicing mechanism. This finding suggests that the same β form of the cardiac MYHC gene is expressed in both ventricular and slow-twitch skeletal muscle. The promoter regions of both α- and β-MYHC genes, as well as the first four coding regions in the respective genes, have also been sequenced. The sequences in the 5'-flanking region of the α- and β-MYHC-encoding genes diverge extensively from one another, suggesting that expression of the α- and β-MYHC genes is independently regulated

  20. Inhibition of the cardiac inward rectifier potassium currents by KB-R7943.

    Science.gov (United States)

    Abramochkin, Denis V; Alekseeva, Eugenia I; Vornanen, Matti

    2013-09-01

    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCXrectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models. © 2013.

  1. Radioimmunoassay of human cardiac tropomyosin in acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, P; McGurk, B; Littler, W A [Queen Elizabeth Hospital, Birmingham (UK)

    1981-03-01

    Tropomyosin was prepared from fresh human myocardium and antisera raised in rabbits. A sensitive radioimmunoassay was developed for the detection of human cardiac /sup 125/I-labelled tropomyosin in human sera down to levels of 1 ng/ml. Values for human cardiac tropomyosin in normal patients ranged from less than 1 to 3 ng/ml. In 18 patients with acute myocardial infarction all had elevated tropomyosin levels ranging from 41 to above 200 ng/ml with a mean peak level of 101 ng/ml. In this study there were no false positive or false negative results. In the initial stages of infarction the time course of appearance and peak levels of cardiac tropomyosin, total creatine kinase and creatine kinase MB isoenzyme were similar. Although total creatine kinase and creatine kinase MB isoenzyme levels were normal after 72 h in patients with single, uncomplicated infarction, cardiac tropomyosin levels were still significantly elevated above normal after this time, being 30-60% of peak valuctional hourly rate of absorption and the plasma /sup 32/P radioactivity at 60 min corrected for extracellular fluid volume provided the best app elements, the characteristics of which are determined by employing the Lagrange multiplier concept. Unknowns of the resulting simultaneous equation consist of usual nodal displacements of the whole stru element codes. Therefore, FAST should be useful in several areas for which all other codes are too unwieldy and expensivnt makers was established, in which the investigations and studies have started.

  2. Constant infusion transpulmonary thermodilution for the assessment of cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Calbet, J A L; Mortensen, Stefan; Munch, G D W

    2016-01-01

    To determine the accuracy and precision of constant infusion transpulmonary thermodilution cardiac output (CITT-Q) assessment during exercise in humans, using indocyanine green (ICG) dilution and bolus transpulmonary thermodilution (BTD) as reference methods, cardiac output (Q) was determined......: 6.1-11.1%). In conclusion, cardiac output can be precisely and accurately determined with constant infusion transpulmonary thermodilution in exercising humans....

  3. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  4. Coupling primary and stem cell–derived cardiomyocytes in an in vitro model of cardiac cell therapy

    Science.gov (United States)

    Aratyn-Schaus, Yvonne; Pasqualini, Francesco S.; Yuan, Hongyan; McCain, Megan L.; Ye, George J.C.; Sheehy, Sean P.; Campbell, Patrick H.

    2016-01-01

    The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell–derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell–cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell–cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes. PMID:26858266

  5. Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies.

    Science.gov (United States)

    Miyanishi, Hiroshi; Okubo, Kataaki; Nobata, Shigenori; Takei, Yoshio

    2013-01-01

    Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP), and their receptor, guanylyl cyclase (GC)-A have attracted attention of many basic and clinical researchers because of their potent renal and cardiovascular actions. In this study, we used medaka, Oryzias latipes, as a model species to pursue the physiological functions of NPs because it is a suitable model for developmental analyses. Medaka has two ligands, BNP and C-type NP3 (CNP3) (but not ANP), that have greater affinity for the two O. latipes GC-A receptors (OLGC), OLGC7 and OLGC2, respectively. CNP3 is the ancestral molecule of cardiac NPs. Initially, we examined developmental expression of cardiac NP/receptor combinations, BNP/OLGC7 and CNP3/OLGC2, using quantitative real-time PCR and in situ hybridization. BNP and CNP3 mRNA increased at stages 25 (onset of ventricular formation) and 22 (appearance of heart anlage), respectively, whereas both receptor mRNAs increased at as early as stage 12. BNP/OLGC7 transcripts were found in arterial/ventricular tissues and CNP3/OLGC2 transcripts in venous/atrial tissues by in situ hybridization. Thus, BNP and CNP3 can act locally on cardiac myocytes in a paracrine/autocrine fashion. Double knockdown of BNP/OLGC7 genes impaired ventricular development by causing hypoplasia of ventricular myocytes as evidenced by reduced bromodeoxyuridine incorporation. CNP3 knockdown induced hypertrophy of atria and activated the renin-angiotensin system. Collectively, it appears that BNP is important for normal ventricular, whereas CNP3 is important for normal atrial development and performance, a role usually taken by ANP in other vertebrates. The current study provides new insights into the role of cardiac NPs in cardiac development in vertebrates.

  6. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts

    Science.gov (United States)

    Markes, Alexander R.; Okundaye, Amenawon O.; Qu, Zhilin; Mende, Ulrike; Choi, Bum-Rak

    2018-01-01

    Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair. PMID:29715271

  7. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tae Yun Kim

    Full Text Available Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs and/or cardiac fibroblasts (CFs and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair.

  8. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload

    NARCIS (Netherlands)

    Shimano, Masayuki; Ouchi, Noriyuki; Nakamura, Kazuto; van Wijk, Bram; Ohashi, Koji; Asaumi, Yasuhide; Higuchi, Akiko; Pimentel, David R.; Sam, Flora; Murohara, Toyoaki; van den Hoff, Maurice J. B.; Walsh, Kenneth

    2011-01-01

    Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial

  9. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    Science.gov (United States)

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca 2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure. NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously

  10. LRRC10 is required to maintain cardiac function in response to pressure overload.

    Science.gov (United States)

    Brody, Matthew J; Feng, Li; Grimes, Adrian C; Hacker, Timothy A; Olson, Timothy M; Kamp, Timothy J; Balijepalli, Ravi C; Lee, Youngsook

    2016-01-15

    We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis. Copyright © 2016 the American Physiological Society.

  11. Cardiac spheroids as promising in vitro models to study the human heart microenvironment

    DEFF Research Database (Denmark)

    Polonchuk, Liudmila; Chabria, Mamta; Badi, Laura

    2017-01-01

    Three-dimensional in vitro cell systems are a promising alternative to animals to study cardiac biology and disease. We have generated three-dimensional in vitro models of the human heart ("cardiac spheroids", CSs) by co-culturing human primary or iPSC-derived cardiomyocytes, endothelial cells an...

  12. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes.

    Science.gov (United States)

    Fields, Laura A; Koschinski, Andreas; Zaccolo, Manuela

    2016-07-01

    In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. COMPARISON OF CARDIAC BIOMARKERS AND ECHOCARDIOGRAPHY IN DIAGNOSING MYOCARDITIS

    Directory of Open Access Journals (Sweden)

    Nimi Bharathan

    2017-03-01

    Full Text Available BACKGROUND Conventional methods used to diagnose or rule out myocarditis is not useful in detecting cardiac myocyte injury in clinically suspected cases. Endomyocardial biopsy and histopathological examination is not feasible in most government hospitals in India. Sensitive parameters have yet to be found out. The study was conducted to find out whether diagnosis of myocarditis in clinically suspected cases can be done by measurement of serum levels of cardiac troponinI (cTnI and MB isoform of creatine kinase (CK-MB. MATERIALS AND METHODS 19 patients with clinically suspected myocarditis were screened for CK-MB activity and cTnI. Echocardiography, ECG and IgM for leptospirosis were also checked in these patients. RESULTS cTnI was elevated in 10 out of 19 patients with clinically suspected myocarditis. CK-MB was elevated in 7 patients. CONCLUSION Elevation of cTnI level in blood can be taken as an indicator of cardiac muscle cell injury in suspected cases of myocarditis.

  14. Thin filament length in the cardiac sarcomere varies with sarcomere length but is independent of titin and nebulin.

    Science.gov (United States)

    Kolb, Justin; Li, Frank; Methawasin, Mei; Adler, Maya; Escobar, Yael-Natalie; Nedrud, Joshua; Pappas, Christopher T; Harris, Samantha P; Granzier, Henk

    2016-08-01

    Thin filament length (TFL) is an important determinant of the force-sarcomere length (SL) relation of cardiac muscle. However, the various mechanisms that control TFL are not well understood. Here we tested the previously proposed hypothesis that the actin-binding protein nebulin contributes to TFL regulation in the heart by using a cardiac-specific nebulin cKO mouse model (αMHC Cre Neb cKO). Atrial myocytes were studied because nebulin expression has been reported to be most prominent in this cell type. TFL was measured in right and left atrial myocytes using deconvolution optical microscopy and staining for filamentous actin with phalloidin and for the thin filament pointed-end with an antibody to the capping protein Tropomodulin-1 (Tmod1). Results showed that TFLs in Neb cKO and littermate control mice were not different. Thus, deletion of nebulin in the heart does not alter TFL. However, TFL was found to be ~0.05μm longer in the right than in the left atrium and Tmod1 expression was increased in the right atrium. We also tested the hypothesis that the length of titin's spring region is a factor controlling TFL by studying the Rbm20(ΔRRM) mouse which expresses titins that are ~500kDa (heterozygous mice) and ~1000kDa (homozygous mice) longer than in control mice. Results revealed that TFL was not different in Rbm20(ΔRRM) mice. An unexpected finding in all genotypes studied was that TFL increased as sarcomeres were stretched (~0.1μm per 0.35μm of SL increase). This apparent increase in TFL reached a maximum at a SL of ~3.0μm where TFL was ~1.05μm. The SL dependence of TFL was independent of chemical fixation or the presence of cardiac myosin-binding protein C (cMyBP-C). In summary, we found that in cardiac myocytes TFL varies with SL in a manner that is independent of the size of titin or the presence of nebulin. Copyright © 2016. Published by Elsevier Ltd.

  15. Dynamic Action Potential Restitution Contributes to Mechanical Restitution in Right Ventricular Myocytes From Pulmonary Hypertensive Rats.

    Science.gov (United States)

    Hardy, Matthew E L; Pervolaraki, Eleftheria; Bernus, Olivier; White, Ed

    2018-01-01

    We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na + -channel blocker (5 μM) ranolazine or the intracellular Ca 2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus

  16. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    Science.gov (United States)

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evidence of specialized tissue in human interatrial septum: histological, immunohistochemical and ultrastructural findings.

    Science.gov (United States)

    Mitrofanova, Lubov B; Gorshkov, Andrey N; Lebedev, Dmitry S; Mikhaylov, Evgeny N

    2014-01-01

    There is a paucity of information on structural organization of muscular bundles in the interatrial septum (IAS). The aim was to investigate histologic and ultrastructural organization of muscular bundles in human IAS, including fossa ovalis (FO) and flap valve. Macroscopic and light microscopy evaluations of IAS were performed from postmortem studies of 40 patients. Twenty three IAS specimens underwent serial transverse sectioning, and 17--longitudinal sectioning. The transverse sections from 10 patients were immunolabeled for HCN4, Caveolin3 and Connexin43. IAS specimens from 6 other patients underwent electron microscopy. In all IAS specimens sections the FO, its rims and the flap valve had muscle fibers consisting of working cardiac myocytes. Besides the typical cardiomyocytes there were unusual cells: tortuous and horseshoe-shaped intertangled myocytes, small and large rounded myocytes with pale cytoplasm. The cells were aggregated in a definite structure in 38 (95%) cases, which was surrounded by fibro-fatty tissue. The height of the structure on transverse sections positively correlated with age (P = 0.03) and AF history (P = 0.045). Immunohistochemistry showed positive staining of the cells for HCN4 and Caveolin3. Electron microscopy identified cells with characteristics similar to electrical conduction cells. Specialized conduction cells in human IAS have been identified, specifically in the FO and its flap valve. The cells are aggregated in a structure, which is surrounded by fibrous and fatty tissue. Further investigations are warranted to explore electrophysiological characteristics of this structure.

  18. Evidence of specialized tissue in human interatrial septum: histological, immunohistochemical and ultrastructural findings.

    Directory of Open Access Journals (Sweden)

    Lubov B Mitrofanova

    Full Text Available There is a paucity of information on structural organization of muscular bundles in the interatrial septum (IAS. The aim was to investigate histologic and ultrastructural organization of muscular bundles in human IAS, including fossa ovalis (FO and flap valve.Macroscopic and light microscopy evaluations of IAS were performed from postmortem studies of 40 patients. Twenty three IAS specimens underwent serial transverse sectioning, and 17--longitudinal sectioning. The transverse sections from 10 patients were immunolabeled for HCN4, Caveolin3 and Connexin43. IAS specimens from 6 other patients underwent electron microscopy.In all IAS specimens sections the FO, its rims and the flap valve had muscle fibers consisting of working cardiac myocytes. Besides the typical cardiomyocytes there were unusual cells: tortuous and horseshoe-shaped intertangled myocytes, small and large rounded myocytes with pale cytoplasm. The cells were aggregated in a definite structure in 38 (95% cases, which was surrounded by fibro-fatty tissue. The height of the structure on transverse sections positively correlated with age (P = 0.03 and AF history (P = 0.045. Immunohistochemistry showed positive staining of the cells for HCN4 and Caveolin3. Electron microscopy identified cells with characteristics similar to electrical conduction cells.Specialized conduction cells in human IAS have been identified, specifically in the FO and its flap valve. The cells are aggregated in a structure, which is surrounded by fibrous and fatty tissue. Further investigations are warranted to explore electrophysiological characteristics of this structure.

  19. Overexpression Myocardial Inducible Nitric Oxide Synthase Exacerbates Cardiac Dysfunction and Beta-Adrenergic Desensitization in Experimental Hypothyroidism☆,☆☆

    Science.gov (United States)

    Shao, Qun; Cheng, Heng-Jie; Callahan, Michael F.; Kitzman, Dalane W; Li, Wei-Min; Cheng, Che Ping

    2015-01-01

    Background Altered nitric oxide synthase (NOS) has been implicated in the pathophysiology of heart failure (HF). Recent evidence links hypothyroidism to the pathology of HF. However, the precise mechanisms are incompletely understood. The alterations and functional effects of cardiac NOS in hypothyroidism are unknown. We tested the hypothesis that hypothyroidism increases cadiomyocyte inducible NOS (iNOS) expression, which plays an important role in hypothyroidism-induced depression of cardiomyocyte contractile properties, [Ca2+]i transient ([Ca2+]iT), and β-adrenergic hyporesponsiveness. Methods and Results We simultaneously evaluated LV functional performance and compared myocyte three NOS, β-adrenergic receptors (AR) and SERCA2a expressions and assessed cardiomyocyte contractile and [Ca2+]iT responses to β-AR stimulation with and without pretreatment of iNOS inhibitor (1400W, 10−5 mol/L) in 26 controls and 26 rats with hypothyroidism induced by methimazole (~30 mg/kg/day for 8 weeks in the drinking water). Compared with controls, in hypothyroidism, total serum T3 and T4 were significantly reduced followed by significantly decreased LV contractility (EES) with increased LV time constant of relaxation. These LV abnormalities were accompanied by concomitant significant decreases in myocyte contraction (dL/dtmax), relaxation (dR/dtmax), and [Ca2+]iT. In hypothyroidism, isoproterenol (10−8 M) produced significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. These changes were associated with decreased β1-AR and SERCA2a, but significantly increased iNOS. Moreover, only in hypothyroidism, pretreatment with iNOS inhibitor significantly improved basal and isoproterenol-stimulated myocyte contraction, relaxation and [Ca2+]iT. Conclusions Hypothyroidism produces intrinsic defects of LV myocyte force-generating capacity and relaxation with β-AR desensitization. Up-regulation of cadiomyocyte iNOS may promote progressive cardiac dysfunction in

  20. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    Science.gov (United States)

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  1. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    Science.gov (United States)

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  2. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis.

    Directory of Open Access Journals (Sweden)

    Andrea Perne

    2009-12-01

    Full Text Available Cardiac glycosides are Na(+/K(+-pump inhibitors widely used to treat heart failure. They are also highly cytotoxic, and studies have suggested specific anti-tumor activity leading to current clinical trials in cancer patients. However, a definitive demonstration of this putative anti-cancer activity and the underlying molecular mechanism has remained elusive.Using an unbiased transcriptomics approach, we found that cardiac glycosides inhibit general protein synthesis. Protein synthesis inhibition and cytotoxicity were not specific for cancer cells as they were observed in both primary and cancer cell lines. These effects were dependent on the Na(+/K(+-pump as they were rescued by expression of a cardiac glycoside-resistant Na(+/K(+-pump. Unlike human cells, rodent cells are largely resistant to cardiac glycosides in vitro and mice were found to tolerate extremely high levels.The physiological difference between human and mouse explains the previously observed sensitivity of human cancer cells in mouse xenograft experiments. Thus, published mouse xenograft models used to support anti-tumor activity for these drugs require reevaluation. Our finding that cardiac glycosides inhibit protein synthesis provides a mechanism for the cytotoxicity of CGs and raises concerns about ongoing clinical trials to test CGs as anti-cancer agents in humans.

  3. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase.

    Science.gov (United States)

    Dal-Secco, Daniela; DalBó, Silvia; Lautherbach, Natalia E S; Gava, Fábio N; Celes, Mara R N; Benedet, Patricia O; Souza, Adriana H; Akinaga, Juliana; Lima, Vanessa; Silva, Katiussia P; Kiguti, Luiz Ricardo A; Rossi, Marcos A; Kettelhut, Isis C; Pupo, André S; Cunha, Fernando Q; Assreuy, Jamil

    2017-07-01

    G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore

  4. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    Science.gov (United States)

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  5. Comprehensive analyses of ventricular myocyte models identify targets exhibiting favorable rate dependence.

    Directory of Open Access Journals (Sweden)

    Megan A Cummins

    2014-03-01

    Full Text Available Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP. The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz and fast (2 Hz rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of

  6. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  7. Cardiac-specific activation of Cre expression at late fetal development

    International Nuclear Information System (INIS)

    Opherk, Jan P.; Yampolsky, Peter; Hardt, Stefan E.; Schoels, Wolfgang; Katus, Hugo A.; Koenen, Michael; Zehelein, Joerg

    2007-01-01

    In a first step towards dissecting molecular mechanisms that contribute to the development of cardiac diseases, we have generated transgenic mice that express a Cre-GFP fusion protein under the transcriptional control of a 4.3 kb murine cardiac Troponin I gene (cTnI) promoter. Cre-GFP expression, similar in three transgenic lines, is described in one line. In mouse embryos, transgenic for the Cre-GFP and ROSA lacZ reporter allele, first Cre-mediated recombination appeared at 16.5 dpc selectively at the heart. Like the endogenous cTnI gene, transgenic Cre expression showed a slow rise through fetal development that increased neonatally. Bitransgenic hearts, stained at 30 days of age, showed intense signals in ventricular and atrial myocytes while no recombination occurred in other tissues. The delayed onset of Cre activity in cTnI-Cre mice could provide a useful genetic tool to evaluate the function of loxP targeted cardiac genes without interference of recombination during early heart development

  8. Antimyosin imaging in cardiac transplant rejection

    International Nuclear Information System (INIS)

    Johnson, L.L.; Cannon, P.J.

    1991-01-01

    Fab fragments of antibodies specific for cardiac myosin have been labeled with indium-111 and injected intravenously into animals and into patients with heart transplants. The antibodies, developed by Khaw, Haber, and co-workers, localize in cardiac myocytes that have been damaged irreversibly by ischemia, myocarditis, or the rejection process. After clearance of the labeled antibody from the cardiac blood pool, planar imaging or single photon emission computed tomography is performed. Scintigrams reveal the uptake of the labeled antimyosin in areas of myocardium undergoing transplant rejection. In animal studies, the degree of antimyosin uptake appears to correlate significantly with the degree of rejection assessed at necropsy. In patients, the correlation between scans and pathologic findings from endomyocardial biopsy is not as good, possibly because of sampling error in the endomyocardial biopsy technique. The scan results at 1 year correlate with either late complications (positive) or benign course (negative). Current limitations of the method include slow blood clearance, long half-life of indium-111, and hepatic uptake. Overcoming these limitations represents a direction for current research. It is possible that from these efforts a noninvasive approach to the diagnosis and evaluation of cardiac transplantation may evolve that will decrease the number of endomyocardial biopsies required to evaluate rejection. This would be particularly useful in infants and children. 31 references

  9. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min

    2013-01-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  10. Modulation of membrane potential by an acetylcholine-activated potassium current in trout atrial myocytes

    DEFF Research Database (Denmark)

    Molina, C.E.; Gesser, Hans; Llach, A.

    2007-01-01

    mV from 4.3 pA/pF to 27 pA/pF with an EC50 of 45 nM in atrial myocytes. Moreover, 3 nM ACh increased the slope conductance of Im fourfold, shifted its reversal potential from -78 ± 3 to -84 ± 3 mV, and stabilized the resting membrane potential at -92 ± 4 mV. ACh also shortened the action potential...... hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at -120...... of an inwardly rectifying K+ current can modulate the membrane potential in the trout atrial myocytes and stabilize the resting membrane potential. teleost heart; IK,ACh; cholinergic modulation; action potential...

  11. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    NARCIS (Netherlands)

    Homburger, J.R. (Julian R.); Green, E.M. (Eric M.); Caleshu, C. (Colleen); Sunitha, M.S. (Margaret S.); Taylor, R.E. (Rebecca E.); Ruppel, K.M. (Kathleen M.); Metpally, R.P.R. (Raghu Prasad Rao); S.D. Colan (Steven); M. Michels (Michelle); Day, S.M. (Sharlene M.); I. Olivotto (Iacopo); Bustamante, C.D. (Carlos D.); Dewey, F.E. (Frederick E.); Ho, C.Y. (Carolyn Y.); Spudich, J.A. (James A.); Ashley, E.A. (Euan A.)

    2016-01-01

    textabstractMyosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac

  12. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  13. Dynamic Changes in Sarcoplasmic Reticulum Structure in Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Amanda L. Vega

    2011-01-01

    sarcoplasmic reticulum (SR and the sarcolemma where Ca2+ release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca2+] during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.

  14. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  15. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...

  16. The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.

    Science.gov (United States)

    Iaizzo, Paul A

    2016-12-01

    Pre- and post-evaluations of implantable cardiac devices require innovative and critical testing in all phases of the design process. The Visible Heart ® Project was successfully launched in 1997 and 3 years later the Atlas of Human Cardiac Anatomy website was online. The Visible Heart ® methodologies and Atlas website can be used to better understand human cardiac anatomy, disease states and/or to improve cardiac device design throughout the development process. To date, Visible ® Heart methodologies have been used to reanimate 75 human hearts, all considered non-viable for transplantation. The Atlas is a unique free-access website featuring novel images of functional and fixed human cardiac anatomies from >400 human heart specimens. Furthermore, this website includes education tutorials on anatomy, physiology, congenital heart disease and various imaging modalities. For instance, the Device Tutorial provides examples of commonly deployed devices that were present at the time of in vitro reanimation or were subsequently delivered, including: leads, catheters, valves, annuloplasty rings, leadless pacemakers and stents. Another section of the website displays 3D models of vasculature, blood volumes, and/or tissue volumes reconstructed from computed tomography (CT) and magnetic resonance images (MRI) of various heart specimens. A new section allows the user to interact with various heart models. Visible Heart ® methodologies have enabled our laboratory to reanimate 75 human hearts and visualize functional cardiac anatomies and device/tissue interfaces. The website freely shares all images, video clips and CT/MRI DICOM files in honour of the generous gifts received from donors and their families. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  17. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Human cardiac telocytes: 3D imaging by FIB-SEM tomography.

    Science.gov (United States)

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-11-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    Science.gov (United States)

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  20. Depletion of Tip60 from In Vivo Cardiomyocytes Increases Myocyte Density, Followed by Cardiac Dysfunction, Myocyte Fallout and Lethality.

    Directory of Open Access Journals (Sweden)

    Joseph B Fisher

    Full Text Available Tat-interactive protein 60 (Tip60, encoded by the Kat5 gene, is a member of the MYST family of acetyltransferases. Cancer biology studies have shown that Tip60 induces the DNA damage response, apoptosis, and cell-cycle inhibition. Although Tip60 is expressed in the myocardium, its role in cardiomyocytes (CMs is unclear. Earlier studies here showed that application of cardiac stress to globally targeted Kat5+/-haploinsufficient mice resulted in inhibition of apoptosis and activation of the CM cell-cycle, despite only modest reduction of Tip60 protein levels. It was therefore of interest to ascertain the effects of specifically and substantially depleting Tip60 from CMs using Kat5LoxP/-;Myh6-Cre mice in the absence of stress. We report initial findings using this model, in which the effects of specifically depleting Tip60 protein from ventricular CMs, beginning at early neonatal stages, were assessed in 2-12 week-old mice. Although 5'-bromodeoxyuridine immunostaining indicated that CM proliferation was not altered at any of these stages, CM density was increased in 2 week-old ventricles, which persisted in 4 week-old hearts when TUNEL staining revealed inhibition of apoptosis. By week 4, levels of connexin-43 were depleted, and its patterning was dysmorphic, concomitant with an increase in cardiac hypertrophy marker expression and interstitial fibrosis. This was followed by systolic dysfunction at 8 weeks, after which extensive apoptosis and CM fallout occurred, followed by lethality as mice approached 12 weeks of age. In summary, chronic depletion of Tip60 from the ventricular myocardium beginning at early stages of neonatal heart development causes CM death after 8 weeks; hence, Tip60 protein has a crucial function in the heart.

  1. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-06-15

    The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.

  2. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine.

    Science.gov (United States)

    Burridge, Paul W; Sharma, Arun; Wu, Joseph C

    2015-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.

  3. Leonurine (SCM-198) improves cardiac recovery in rat during chronic infarction.

    Science.gov (United States)

    Liu, XinHua; Pan, LiLong; Gong, QiHai; Zhu, YiZhun

    2010-12-15

    Leonurine, an alkaloid typically found in Herba leonuri, is known to have both antioxidant and cardioprotective properties. In the present study, we investigated the cardioprotective mechanism of leonurine the in vivo rat model of chronic myocardial ischemia and in vitro H9c2 cardiac myocyte model of oxidative stress. Myocardial ischemia was induced by ligating the left anterior descending coronary artery. Rats were divided into sham, myocardial ischemia+saline, and myocardial ischemia+leonurine (15 mg/kg/day). Cardiac function was recorded by catheterization. Apoptosis-related factor vascular endothelial growth factor (VEGF), survivin, Bcl-2 and Bax and pro-survival signaling pathways Akt, hypoxia inducible factor (HIF)-1α were measured by Western blotting or RT-PCR. Our results showed leonurine significantly improved myocardial function as evidenced by the decreased left ventricle end-diastolic pressure and the increased +dP/dt. Interestingly, leonurine increased the phosphorylation of Akt, the protein and gene expression of Bcl-2, but it reduced the protein and gene expression of Bax in vivo. Meanwhile leonurine significantly increased Akt phosphorylation in a concentration-dependent manner in H9c2 cardiac myocyte induced by oxidative stress in vitro, which was abolished by a phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. Furthermore, leonurine not only increased the expression of HIF-1α but also the expression of survivin and VEGF. The results of present study demonstrated, for the first time that leonurine has potent anti-apoptotic effects after chronic myocardial ischemia mediated by activating the PI3K/Akt signaling pathway. Angiogenic mechanisms may be partially responsible for such an effect, which needs to be studied further. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Bollano, Entela; Lindegaard, Marie L S

    2003-01-01

    Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport....../ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased...... across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P hearts. Histological examinations...

  5. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    Science.gov (United States)

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  7. Protein kinase-dependent oxidative regulation of the cardiac Na+–K+ pump: evidence from in vivo and in vitro modulation of cell signalling

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-01-01

    The widely reported stimulation of the cardiac Na+–K+ pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na+ levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits and reduced myocardial O2•−-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na+–K+ pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na+ in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure. PMID:23587884

  8. Expression of a novel cardiac-specific tropomyosin isoform in humans

    International Nuclear Information System (INIS)

    Denz, Christopher R.; Narshi, Aruna; Zajdel, Robert W.; Dube, Dipak K.

    2004-01-01

    Tropomyosins are a family of actin binding proteins encoded by a group of highly conserved genes. Humans have four tropomyosin-encoding genes: TPM1, TPM2, TPM3, and TPM4, each of which is known to generate multiple isoforms by alternative splicing, promoters, and 3 ' end processing. TPM1 is the most versatile and encodes a variety of tissue specific isoforms. The TPM1 isoform specific to striated muscle, designated TPM1α, consists of 10 exons: 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b. In this study, using RT-PCR with adult and fetal human RNAs, we present evidence for the expression of a novel isoform of the TPM1 gene that is specifically expressed in cardiac tissues. The new isoform is designated TPM1κ and contains exon 2a instead of 2b. Ectopic expression of human GFP.TPM1κ fusion protein can promote myofibrillogenesis in cardiac mutant axolotl hearts that are lacking in tropomyosin

  9. Reciprocal Modulation of IK1-INa Extends Excitability in Cardiac Ventricular Cells.

    Science.gov (United States)

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (I K1 ) and the fast inward sodium current (I Na ) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for I K1 -I Na reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, G K1 , of the inwardly rectifying potassium current, and G Na , of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of G K1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal G K1 -G Na modulation and unlike those due to independent modulation of G Na alone, indicating that G K1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent G Na modulation and for tandem changes in G K1 -G Na , suggesting that G Na is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on G K1 -G Na is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both G K1 and the intercellular gap junction conductance, G gj , were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of G K1 rendered cardiac fibers inexcitable at higher levels of G K1 whereas tandem G K1 -G Na

  10. TNF-α- Mediated-p38-Dependent Signaling Pathway Contributes to Myocyte Apoptosis in Rats Subjected to Surgical Trauma

    Directory of Open Access Journals (Sweden)

    Huaxing Wu

    2015-03-01

    Full Text Available Background: The accumulation of cytokines in the plasma after trauma can induce myocyte apoptosis. We aimed to identify which cytokine(s present in the plasma responsible for myocyte apoptosis, and delineated the signal transduction mechanism in rats subjected to surgical trauma. Methods: Rats were randomized into two groups: control and trauma groups, which was divided into five subgroups: posttraumatic 0, 3, 6, 12, and 24 h subgroups. Cardiomyocytes isolated from traumatized rats were incubated with one of the factors for 12 h (normal plasma; Cytomix; TNF-α; IL-1β; IFN-γ; trauma plasma; anti-TNF-α antibody; SB203580. Myocyte apoptosis, cytokine levels, and MAPKs activation, as the primary experimental outcomes, were measured by TUNEL, flow cytometry, ELISA and Western blot, respectively. Results: Myocyte apoptosis was induced by surgical trauma during the early stage after trauma. Accompanying this change, plasma TNF-α, IL-1β, and IFN-γ levels were elevated in traumatized rats. Incubation of traumatized cardiomyocytes with cytomix or TNF-α alone induced myocyte apoptosis, and increased the activation of p38 and ERK1/2. Myocyte apoptosis and p38 activation were elevated in traumatized cardiomyocytes with trauma plasma, and these increases were partly abolished by anti-TNF-α antibody or SB203580. Conclusion: Our study demonstrated that there exists the TNF-α-mediated-p38-dependent signaling pathway that contributed to posttraumatic myocyte apoptosis of rats undergoing surgical trauma.

  11. L-Type Calcium Channel Inhibition Contributes to the Proarrhythmic Effects of Aconitine in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    Full Text Available Aconitine (ACO is well-known for causing lethal ventricular tachyarrhythmias. While cardiac Na+ channel opening during repolarization has long been documented in animal cardiac myocytes, the cellular effects and mechanism of ACO in human remain unexplored. This study aimed to assess the proarrhythmic effects of ACO in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs. ACO concentration-dependently (0.3 ~ 3.0 μM shortened the action potentials (AP durations (APD in ventricular-like hiPSC-CMs by > 40% and induced delayed after-depolarization. Laser-scanning confocal calcium imaging analysis showed that ACO decreased the duration and amplitude of [Ca2+]i transients and increased in the beating frequencies by over 60%. Moreover, ACO was found to markedly reduce the L-type calcium channel (LTCC currents (ICa,L in hiPSC-CMs associated with a positive-shift of activation and a negative shift of inactivation. ACO failed to alter the peak and late Na+ currents (INa in hiPSC-CMs while it drastically increased the late INa in Guinea-pig ventricular myocytes associated with enhanced activation/delayed inactivation of INa at -55 mV~ -85 mV. Further, the effects of ACO on ICa,L, INa and the rapid delayed rectifier potassium current (Ikr were validated in heterologous expression systems by automated voltage-clamping assays and a moderate suppression of Ikr was observed in addition to concentration-dependent ICa,L inhibition. Lastly, increased beating frequency, decreased Ca2+ wave and shortened field potential duration were recorded from hiPSC-CMs by microelectrode arrays assay. In summary, our data demonstrated that LTCC inhibition could play a main role in the proarrhythmic action of ACO in human cardiomyocytes.

  12. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  13. Cardiac pathology in chronic alcoholics: A preliminary study

    Directory of Open Access Journals (Sweden)

    P Vaideeswar

    2014-01-01

    Full Text Available Background: Ethyl alcohol exerts both positive and negative effects on the cardiovascular system. Alcoholic cardiomyopathy, produced by direct or indirect mechanisms, is well-documented. An important, but seldom appreciated effect is an increase in iron deposition in the myocardium, which can add to the cardiac dysfunction. The present study was planned to document the pathological features and iron levels in the cardiac tissue of patients who were chronic alcoholics and correlate these characteristics with the liver pathology and iron content. Materials and Methods: An autopsy-based prospective study of 40 consecutive patients compared with ten age matched controls (no history of alcohol intake. Histopathological changes like the morphology of the cardiac myocytes, degree of fibrosis (interstitial, interfiber, perivascular, and replacement, presence of inflammatory cells, increased capillary network, and adipose tissue deposition were noted and graded. These were also correlated with the liver pathology. The iron content in the heart and liver were measured by using calorimetry. Results: All cases had increased epicardial adipose tissue with epicardial and endocardial fibrosis, prominence of interstitial and interfiber fibrosis, myofiber degeneration, and increased capillary network; this was particularly prominent in patients with cirrhosis. Elemental iron level in heart tissue was raised in the cases relative to controls. Conclusions: Alcohol produces subclinical changes in the myocardium, with an increased iron content, which may be the forerunner for subsequent clinical cardiac dysfunction.

  14. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.

    Science.gov (United States)

    Ali, Ramez M; Al Kury, Lina T; Yang, Keun-Hang Susan; Qureshi, Anwar; Rajesh, Mohanraj; Galadari, Sehamuddin; Shuba, Yaroslav M; Howarth, Frank Christopher; Oz, Murat

    2015-04-01

    Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Regulation of inward rectifier potassium current ionic channel remodeling by AT1 -Calcineurin-NFAT signaling pathway in stretch-induced hypertrophic atrial myocytes.

    Science.gov (United States)

    He, Jionghong; Xu, Yanan; Yang, Long; Xia, Guiling; Deng, Na; Yang, Yongyao; Tian, Ye; Fu, Zenan; Huang, Yongqi

    2018-05-02

    Previous studies have shown that the activation of angiotensin II receptor type I (AT 1 ) is attributed to cardiac remodeling stimulated by increased heart load, and that it is followed by the activation of the calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway. Additionally, AT 1 has been found to be a regulator of cardiocyte ionic channel remodeling, and calcineurin-NFAT signals participate in the regulation of cardiocyte ionic channel expression. A hypothesis therefore follows that stretch stimulation may regulate cardiocyte ionic channel remodeling by activating the AT 1 -calcineurin-NFAT pathway. Here, we investigated the role of the AT 1 -calcineurin-NFAT pathway in the remodeling of inward rectifier potassium (I k1 ) channel, in addition to its role in changing action potential, in stretch-induced hypertrophic atrial myocytes of neonatal rats. Our results showed that increased stretch significantly led to atrial myocytes hypertrophy; it also increased the activity of calcineurin enzymatic activity, which was subsequently attenuated by telmisartan or cyclosporine-A. The level of NFAT 3 protein in nuclear extracts, the mRNA and protein expression of Kir2.1 in whole cell extracts, and the density of I k1 were noticeably increased in stretched samples. Stretch stimulation significantly shortened the action potential duration (APD) of repolarization at the 50% and 90% level. Telmisartan, cyclosporine-A, and 11R-VIVIT attenuated stretch-induced alterations in the levels of NFAT 3 , mRNA and protein expression of Kir2.1, the density of I k1 , and the APD. Our findings suggest that the AT 1 -calcineurin-NFAT signaling pathway played an important role in regulating I k1 channel remodeling and APD change in stretch-induced hypertrophic atrial myocytes of neonatal rats. This article is protected by copyright. All rights reserved.

  16. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    Directory of Open Access Journals (Sweden)

    Palade Philip T

    2010-11-01

    Full Text Available Abstract Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR in cardiac myocytes, with voltage clamp (VC studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR, and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo. Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU, in which resides the mechanistic basis of CICR. The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel. It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its

  17. Enhanced basal contractility but reduced excitation-contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity.

    Science.gov (United States)

    Tang, Mingxin; Zhang, Xiaoying; Li, Yingxin; Guan, Yinzheng; Ai, Xiaojie; Szeto, Christopher; Nakayama, Hiroyuki; Zhang, Hongyu; Ge, Shuping; Molkentin, Jeffery D; Houser, Steven R; Chen, Xiongwen

    2010-08-01

    Cardiac remodeling during heart failure development induces a significant increase in the activity of the L-type Ca(2+) channel (Cav1.2). However, the effects of enhanced Cav1.2 activity on myocyte excitation-contraction (E-C) coupling, cardiac contractility, and its regulation by the beta-adrenergic system are not clear. To recapitulate the increased Cav1.2 activity, a double transgenic (DTG) mouse model overexpressing the Cavbeta2a subunit in a cardiac-specific and inducible manner was established. We studied cardiac (in vivo) and myocyte (in vitro) contractility at baseline and upon beta-adrenergic stimulation. E-C coupling efficiency was evaluated in isolated myocytes as well. The following results were found: 1) in DTG myocytes, L-type Ca(2+) current (I(Ca,L)) density, myocyte fractional shortening (FS), peak Ca(2+) transients, and sarcoplasmic reticulum (SR) Ca(2+) content (caffeine-induced Ca(2+) transient peak) were significantly increased (by 100.8%, 48.8%, 49.8%, and 46.8%, respectively); and 2) cardiac contractility evaluated with echocardiography [ejection fraction (EF) and (FS)] and invasive intra-left ventricular pressure (maximum dP/dt and -dP/dt) measurements were significantly greater in DTG mice than in control mice. However, 1) the cardiac contractility (EF, FS, dP/dt, and -dP/dt)-enhancing effect of the beta-adrenergic agonist isoproterenol (2 microg/g body wt ip) was significantly reduced in DTG mice, which could be attributed to the loss of beta-adrenergic stimulation on contraction, Ca(2+) transients, I(Ca,L), and SR Ca(2+) content in DTG myocytes; and 2) E-C couplng efficiency was significantly lower in DTG myocytes. In conclusion, increasing Cav1.2 activity by promoting its high-activity mode enhances cardiac contractility but decreases E-C coupling efficiency and the adrenergic reserve of the heart.

  18. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  19. Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Maria Micaela Molina-Navarro

    Full Text Available BACKGROUND: Dilated cardiomyopathy (DCM is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. METHODS AND RESULTS: Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT. The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples validated the gene expression of SCN2B (p < 0.0001, KCNJ5 (p < 0.05, KCNJ8 (p < 0.05, CLIC2 (p < 0.05, and CACNB2 (p < 0.05. Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. CONCLUSION: This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.

  20. Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK.

    Science.gov (United States)

    Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti

    2011-07-01

    Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.

  1. Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes.

    Science.gov (United States)

    Anderson, Robert H; Ho, Siew Yen; Sanchez-Quintana, Damian; Redmann, Klaus; Lunkenheimer, Paul P

    2006-06-01

    There is lack of consensus concerning the three-dimensional arrangement of the myocytes within the ventricular muscle masses. Bioengineers are seeking to model the structure of the heart. Although the success of such models depends on the accuracy of the anatomic evidence, most of them have been based on concepts that are far from anatomical reality, which ignore many significant previous accounts of anatomy presented over the past 400 years. During the 19th century, Pettigrew emphasized that the heart was built on the basis of a modified blood vessel rather than in the form of skeletal muscles. This fact was reemphasized by Lev and Simkins as well as Grant in the 20th century, but the caveats listed by these authors have been ignored by proponents of two current concepts, which state either that the myocardium is arranged in the form of a "unique myocardial band," or that the walls of the ventricles are sequestrated in uniform fashion by laminar sheets of fibrous tissue extending from epicardium to endocardium. These two concepts are themselves incompatible and are further at variance with the majority of anatomic studies, which have emphasized the regional heterogeneity to be found in the three-dimensional packing of the myocytes within a supporting matrix of fibrous tissue. We reemphasize the significance of this three-dimensional muscular mesh, showing how the presence of intruding aggregates of myocytes extending in oblique transmural fashion also contends against the notion that all myocytes are orientated with their long axes parallel to the epicardial and enodcardial surfaces.

  2. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  3. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability.

    Directory of Open Access Journals (Sweden)

    Paul W Burridge

    2011-04-01

    Full Text Available The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC, including hiPSC generated from CD34(+ cord blood using non-viral, non-integrating methods.We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5% oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89% of cardiac troponin I(+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.

  4. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    International Nuclear Information System (INIS)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-01-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion–reaction equations presented by Izu et al (2001 Biophys. J. 80 103–20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca 2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca 2+ leak in the form of Ca 2+ quarks, increase the probability of occurrence of spontaneous Ca 2+ waves even with smaller SR Ca 2+ stores, accelerate Ca 2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca 2+ wave model under HF conditions provides a new view of Ca 2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca 2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF

  5. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    Science.gov (United States)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-06-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca2+ leak in the form of Ca2+ quarks, increase the probability of occurrence of spontaneous Ca2+ waves even with smaller SR Ca2+ stores, accelerate Ca2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca2+ wave model under HF conditions provides a new view of Ca2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  6. Enhanced basal late sodium current appears to underlie the age-related prolongation of action potential duration in guinea pig ventricular myocytes.

    Science.gov (United States)

    Song, Yejia; Belardinelli, Luiz

    2017-12-14

    Aging hearts have prolonged QT interval and are vulnerable to oxidative stress. Because the QT interval indirectly reflects the action potential duration (APD), we examined the hypotheses that 1) the APD of ventricular myocytes increases with age; 2) the age-related prolongation of APD is due to an enhancement of basal late Na + current (I NaL ); 3) inhibition of I NaL may protect aging hearts from arrhythmogenic effects of hydrogen peroxide (H 2 O 2 ). Experiments were performed on ventricular myocytes isolated from one-month (young) and one-year (old) guinea pigs (GPs). The APD of myocytes from old GPs was significantly longer than that from young GPs and was shortened by the I NaL inhibitors GS967 and tetrodotoxin. The magnitude of I NaL was significantly larger in myocytes from old than from young GPs. The CaMKII inhibitors KN-93 and AIP and the Na V 1.5-channel blocker MTSEA blocked the I NaL . There were no significant differences between myocytes from young and old GPs in L-type Ca 2+ current and the rapidly- and slowly-activating delayed rectifier K + currents, although the inward rectifier K + current was slightly decreased in myocytes from old GPs. H 2 O 2 induced more early afterdepolarizations in myocytes from old than from young GPs. The effect of H 2 O 2 was attenuated by GS967. The results suggest that 1) the APD of myocytes from old GPs is prolonged, 2) a CaMKII-mediated increase in Na V 1.5-channel I NaL is responsible for the prolongation of APD, and 3) Inhibition of I NaL may be beneficial for maintaining electrical stability under oxidative stress in myocytes of old GPs.

  7. Optical mapping of optogenetically shaped cardiac action potentials

    Science.gov (United States)

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  8. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    Science.gov (United States)

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  9. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone.

    Science.gov (United States)

    Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E

    2015-08-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  10. Human technology after cardiac epigenesis. Artificial heart versus cardiac transplantation.

    Science.gov (United States)

    Losman, J G

    1977-09-24

    Cardiovascular disease is the chief cause of death in technologically advanced countries and accounts for more than 50% of all deaths in the USA. For a patient with end-stage cardiac failure the only treatment presently available is organ replacement, either by transplantation or by the use of a mechanical heart. Transplantation has demonstrated its value: survival of more than 8 years and restoration of a normal quality of life to patients who were in end-stage cardiac decompensation. However, the prospect of routine clinical application of an artificial heart remains distant. The development of a totally implantable artificial heart still presents a series of challenging engineering problems with regard to strict constraints of size, weight, blood-material compatibility, adaptability of output to demand, efficiency and reliability of the power supply, and safety if nuclear fuel is used. The totally artificial heart is presently not an alternative to the cardiac allograft, but could provide short-term support for patients awaiting cardiac transplantation.

  11. Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6

    DEFF Research Database (Denmark)

    Scheele, Camilla; Nielsen, Søren; Broholm, Christa

    2012-01-01

    isolated satellite cells from skeletal muscle of people that were healthy (He), obese (Ob) or were obese and had type 2 diabetes (DM), and differentiated them in vitro into myocytes. Down-regulation of IL-6Rα was conserved in Ob myocytes. In addition, acute IL-6 administration for 30, 60 and 120 minutes......Obesity and type 2 diabetes are associated with chronically elevated systemic levels of IL-6, a pro-inflammatory cytokine with a role in skeletal muscle metabolism that signals through the IL-6 receptor (IL-6Rα). We hypothesized that skeletal muscle in obesity-associated type 2 diabetes develops...... a resistance to IL-6. By utilizing western blot analysis, we demonstrate that IL-6Rα protein was down regulated in skeletal muscle biopsies from obese persons with and without type 2 diabetes. To further investigate the status of IL-6 signaling in skeletal muscle in obesity-associated type 2 diabetes, we...

  12. In silico prediction of sex-based differences in human susceptibility to cardiac ventricular tachyarrhythmias

    Directory of Open Access Journals (Sweden)

    Pei-Chi eYang

    2012-09-01

    Full Text Available Sex-based differences in human susceptibility to cardiac ventricular tachyarrhythmias likely result from the emergent effects of multiple intersecting processes that fundamentally differ in male and female hearts. Included are measured differences in the genes encoding key cardiac ion channels and effects of sex steroid hormones to acutely modify electrical activity. At the genome scale, human females have recently been shown to have lower expression of genes encoding key cardiac repolarizing potassium currents and connexin43, the primary ventricular gap junction subunit. Human males and females also have distinct sex steroid hormones. Here, we developed mathematical models for male and female ventricular human heart cells by incorporating experimentally determined genomic differences and effects of sex steroid hormones into the O’Hara-Rudy model. These male and female model cells and tissues then were used to predict how various sex-based differences underlie arrhythmia risk. Genomic-based differences in ion channel expression were alone sufficient to determine longer female cardiac action potential durations (APD in both epicardial and endocardial cells compared to males. Subsequent addition of sex steroid hormones exacerbated these differences, as testosterone further shortened APDs, while estrogen and progesterone application resulted in disparate effects on APDs. Our results indicate that incorporation of experimentally determined genomic differences from human hearts in conjunction with sex steroid hormones are consistent with clinically observed differences in QT interval, T-wave shape and morphology, and critically, in the higher vulnerability of adult human females to Torsades de Pointes type arrhythmias. The model suggests that female susceptibility to alternans stems from longer female action potentials, while reentrant arrhythmia derives largely from sex-based differences in conduction play an important role in arrhythmia

  13. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway.

    Science.gov (United States)

    Liu, Zhong-wei; Wang, Jun-kui; Qiu, Chuan; Guan, Gong-chang; Liu, Xin-hong; Li, Shang-jian; Deng, Zheng-rong

    2015-03-01

    Matrine is an alkaloid from Sophora alopecuroides L, which has shown a variety of pharmacological activities and potential therapeutic value in cardiovascular diseases. In this study we examined the protective effects of matrine against diabetic cardiomyopathy (DCM) in rats. Male SD rats were injected with streptozotocin (STZ) to induce DCM. One group of DCM rats was pretreated with matrine (200 mg·kg(-1)·d(-1), po) for 10 consecutive days before STZ injection. Left ventricular function was evaluated using invasive hemodynamic examination, and myocardiac apoptosis was assessed. Primary rat myocytes were used for in vitro experiments. Intracellular ROS generation, MDA content and GPx activity were determined. Real-time PCR and Western blotting were performed to detect the expression of relevant mRNAs and proteins. DCM rats exhibited abnormally elevated non-fasting blood glucose levels at 4 weeks after STZ injection, and LV function impairment at 16 weeks. The cardiac tissues of DCM rats showed markedly increased apoptosis, excessive ROS production, and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling. Pretreatment with matrine significantly decreased non-fasting blood glucose levels and improved LV function in DCM rats, which were associated with reducing apoptosis and ROS production, and suppressing TLR-4/MyD-88/caspase-8/caspase-3 signaling in cardiac tissues. Incubation in a high-glucose medium induced oxidative stress and activation of TLR-4/MyD-88 signaling in cultured myocytes in vitro, which were significantly attenuated by pretreatment with N-acetylcysteine. Excessive ROS production in DCM activates the TLR-4/MyD-88 signaling, resulting in cardiomyocyte apoptosis, whereas pretreatment with matrine improves cardiac function via suppressing ROS/TLR-4 signaling pathway.

  14. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current.

    Science.gov (United States)

    Dallas, Mark L; Yang, Zhaokang; Boyle, John P; Boycott, Hannah E; Scragg, Jason L; Milligan, Carol J; Elies, Jacobo; Duke, Adrian; Thireau, Jérôme; Reboul, Cyril; Richard, Sylvain; Bernus, Olivier; Steele, Derek S; Peers, Chris

    2012-10-01

    Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.

  15. Histone deacetylase inhibition reduces cardiac Connexin43 expression and gap junction communication

    Directory of Open Access Journals (Sweden)

    Qin eXu

    2013-04-01

    Full Text Available Histone deactylase (HDAC inhibitors are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDAC inhibitors on the functional expression of cardiac gap junctions (GJ are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA and vorinostat (VOR on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43 expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin-immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (>= 100 nM. These two hydroxamate pan-HDAC inhibitors exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g. phosphorylation, acetylation, gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDAC inhibitors may help avoid the potential negative cardiovascular effects of pan-HDACI.

  16. Insulin antagonises pigment epithelium-derived factor (PEDF)-induced modulation of lineage commitment of myocytes and heterotrophic ossification.

    Science.gov (United States)

    Carnagarin, Revathy; Elahy, Mina; Dharmarajan, Arun M; Dass, Crispin R

    2017-12-16

    Extensive bone defects arising as a result of trauma, infection and tumour resection and other bone pathologies necessitates the identification of effective strategies in the form of tissue engineering, gene therapy and osteoinductive agents to enhance the bone repair process. PEDF is a multifunctional glycoprotein which plays an important role in regulating osteoblastic differentiation and bone formation. PEDF treatment of mice and human skeletal myocytes at physiological concentration inhibited myogenic differentiation and activated Erk1/2 MAPK- dependent osteogenic transdifferentiation of myocytes. In mice, insulin, a promoter of bone regeneration, attenuated PEDF-induced expression of osteogenic markers such as osteocalcin, alkaline phosphatase and mineralisation for bone formation in the muscle and surrounding adipose tissue. These results provide new insights into the molecular aspects of the antagonising effect of insulin on PEDF-dependent modulation of the differentiation commitment of musculoskeletal environment into osteogenesis, and suggest that PEDF may be developed as an effective clinical therapy for bone regeneration as its heterotopic ossification can be controlled via co-administration of insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Embryonic cardiac morphometry in Carnegie stages 15-23, from the Complutense University of Madrid Institute of Embryology Human Embryo Collection.

    Science.gov (United States)

    Arráez-Aybar, L A; Turrero-Nogués, A; Marantos-Gamarra, D G

    2008-01-01

    We performed a morphometric study of cardiac development on human embryos to complement the scarce data on human embryonic cardiac morphometry and to attempt to establish, from these, algorithms describing cardiac growth during the second month of gestation. Thirty human embryos from Carnegie stages 15-23 were included in the study. Shrinkage and compression effects from fixation and inclusion in paraffin were considered in our calculations. Growth of the cardiac (whole heart) volume and volume of ventricular myocardium through the Carnegie stages were analysed by ANOVA. Linear correlation was used to describe the relationship between the ventricular myocardium and cardiac volumes. Comparisons of models were carried out through the R2 statistic. The relationship volume of ventricular myocardium versus cardiac volume is expressed by the equation: cardiac volume = 0.6266 + 2.4778 volume of ventricular myocardium. The relationship cardiac volume versus crown-rump length is expressed by the equation: cardiac volume = 1.3 e(0.126 CR length), where e is the base of natural logarithms. At a clinical level, these results can contribute towards the establishment of a normogram for cardiac development, useful for the design of strategies for early diagnosis of congenital heart disease. They can also help in the study of embryogenesis, for example in the discussion of ventricular trabeculation. Copyright 2007 S. Karger AG, Basel.

  18. Art27 interacts with GATA4, FOG2 and NKX2.5 and is a novel co-repressor of cardiac genes.

    Directory of Open Access Journals (Sweden)

    Daniel R Carter

    Full Text Available Transcription factors play a crucial role in regulation of cardiac biology. FOG-2 is indispensable in this setting, predominantly functioning through a physical interaction with GATA-4. This study aimed to identify novel co-regulators of FOG-2 to further elaborate on its inhibitory activity on GATA-4. The Art27 transcription factor was identified by a yeast-2-hybrid library screen to be a novel FOG-2 protein partner. Characterisation revealed that Art27 is co-expressed with FOG-2 and GATA-4 throughout cardiac myocyte differentiation and in multiple structures of the adult heart. Art27 physically interacts with GATA-4, FOG-2 and other cardiac transcription factors and by this means, down-regulates their activity on cardiac specific promoters α-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide. Regulation of endogenous cardiac genes by Art27 was shown using microarray analysis of P19CL6-Mlc2v-GFP cardiomyocytes. Together these results suggest that Art27 is a novel transcription factor that is involved in downregulation of cardiac specific genes by physically interacting and inhibiting the activity of crucial transcriptions factors involved in cardiac biology.

  19. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix.

    Science.gov (United States)

    Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K

    1994-10-01

    Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.

  20. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?

    Science.gov (United States)

    Havekes, Bas; Sauerwein, Hans P

    2010-11-01

    To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.

  1. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  2. Pulmonary and cardiac pathology in sudden unexpected death in epilepsy (SUDEP).

    Science.gov (United States)

    Nascimento, Fábio A; Tseng, Zian H; Palmiere, Cristian; Maleszewski, Joseph J; Shiomi, Takayuki; McCrillis, Aileen; Devinsky, Orrin

    2017-08-01

    To review studies on structural pulmonary and cardiac changes in SUDEP cases as well as studies showing pulmonary or cardiac structural changes in living epilepsy patients. We conducted electronic literature searches using the PubMed database for articles published in English, regardless of publication year, that included data on cardiac and/or pulmonary structural abnormalities in SUDEP cases or in living epilepsy patients during the postictal period. Fourteen postmortem studies reported pulmonary findings in SUDEP cases. Two focused mainly on assessing lung weights in SUDEP cases versus controls; no group difference was found. The other 12 reported descriptive autopsy findings. Among all SUDEP cases with available descriptive postmortem pulmonary examination, 72% had pulmonary changes, most often pulmonary edema/congestion, and, less frequently, intraalveolar hemorrhage. Eleven studies reported on cardiac pathology in SUDEP. Cardiac abnormalities were found in approximately one-fourth of cases. The most common findings were myocyte hypertrophy and myocardial fibrosis of various degrees. Among living epilepsy patients, postictal pulmonary pathology was the most commonly reported pulmonary abnormality and the most common postictal cardiac abnormality was transient left ventricular dysfunction - Takotsubo or neurogenic stunned myocardium. Cardiac and pulmonary pathological abnormalities are frequent among SUDEP cases, most commonly pulmonary edema/congestion and focal interstitial myocardial fibrosis. Most findings are not quantified, with subjective elements and undefined interobserver reliability, and lack of controls such as matched epilepsy patients who died from other causes. Further, studies have not systematically evaluated potential confounding factors, including postmortem interval to autopsy, paramedic resuscitation and IV fluids administration, underlying heart/lung disease, and risk factors for cardiac or pulmonary disease. Prospective studies with

  3. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload.

    Science.gov (United States)

    Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo

    2015-08-01

    Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity

    NARCIS (Netherlands)

    den Hartogh, Sabine C.; Passier, Petrus Christianus Johannes Josephus

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC)

  5. Metabolic determinants of electrical failure in ex-vivo canine model of cardiac arrest: evidence for the protective role of inorganic pyrophosphate.

    Directory of Open Access Journals (Sweden)

    Junko Shibayama

    Full Text Available Deterioration of ventricular fibrillation (VF into asystole or severe bradycardia (electrical failure heralds a fatal outcome of cardiac arrest. The role of metabolism in the timing of electrical failure remains unknown.To determine metabolic factors of early electrical failure in an ex-vivo canine model of cardiac arrest (VF+global ischemia.Metabolomic screening was performed in left ventricular biopsies collected before and after 0.3, 2, 5, 10 and 20 min of VF and global ischemia. Electrical activity was monitored via plunge needle electrodes and pseudo-ECG. Four out of nine hearts exhibited electrical failure at 10.1±0.9 min (early-asys, while 5/9 hearts maintained VF for at least 19.7 min (late-asys. As compared to late-asys, early-asys hearts had more ADP, less phosphocreatine, and higher levels of lactate at some time points during VF/ischemia (all comparisons p<0.05. Pre-ischemic samples from late-asys hearts contained ∼25 times more inorganic pyrophosphate (PPi than early-asys hearts. A mechanistic role of PPi in cardioprotection was then tested by monitoring mitochondrial membrane potential (ΔΨ during 20 min of simulated-demand ischemia using potentiometric probe TMRM in rabbit adult ventricular myocytes incubated with PPi versus control group. Untreated myocytes experienced significant loss of ΔΨ while in the PPi-treated myocytes ΔΨ was relatively maintained throughout 20 min of simulated-demand ischemia as compared to control (p<0.05.High tissue level of PPi may prevent ΔΨm loss and electrical failure at the early phase of ischemic stress. The link between the two protective effects may involve decreased rates of mitochondrial ATP hydrolysis and lactate accumulation.

  6. Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel alpha2delta-1 subunit in cardiac excitation-contraction coupling.

    Science.gov (United States)

    Tuluc, Petronel; Kern, Georg; Obermair, Gerald J; Flucher, Bernhard E

    2007-06-26

    L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.

  7. Modulation of contraction by intracellular Na+ via Na(+)-Ca2+ exchange in single shark (Squalus acanthias) ventricular myocytes.

    Science.gov (United States)

    Näbauer, M; Morad, M

    1992-01-01

    1. The effect of direct alteration of intracellular Na+ concentration on contractile properties of whole-cell clamped shark ventricular myocytes was studied using an array of 256 photodiodes to monitor the length of the isolated myocytes. 2. In myocytes dialysed with Na(+)-free solution, the voltage dependence of Ca2+ current (ICa) and contraction were similar and bell shaped. Contractions activated at all voltages were completely suppressed by nifedipine (5 microM), and failed to show significant tonic components, suggesting dependence of the contraction on Ca2+ influx through the L-type Ca2+ channel. 3. In myocytes dialysed with 60 mM Na+, a ICa-dependent and a ICa-independent component of contraction could be identified. The Ca2+ current-dependent component was prominent in voltages between -30 to +10 mV. The ICa-independent contractions were maintained for the duration of depolarization, increased with increasing depolarization between +10 to +100 mV, and were insensitive to nifedipine. 4. In such myocytes, repolarization produced slowly decaying inward tail currents closely related to the time course of relaxation and the degree of shortening prior to repolarization. 5. With 60 mM Na+ in the pipette solution, positive clamp potentials activated decaying outward currents which correlated to the size of contraction. These outward currents appeared to be generated by the Na(+)-Ca(2+)-exchanger since they depended on the presence of intracellular Na+, and were neither suppressed by nifedipine nor by K+ channel blockers. 6. The results suggest that in shark (Squalus acanthias) ventricular myocytes, which lack functionally relevant Ca2+ release pools, both Ca2+ channel and the Na(+)-Ca2+ exchanger deliver sufficient Ca2+ to activate contraction, though the effectiveness of the latter mechanism was highly dependent on the [Na+]i. PMID:1338467

  8. Acute alteration of cardiac ECG, action potential, I{sub Kr} and the human ether-a-go-go-related gene (hERG) K{sup +} channel by PCB 126 and PCB 77

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Hyeong; Park, Won Sun; Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr

    2012-07-01

    Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K{sup +} current (I{sub Kr}) of guinea pigs' hearts, and hERG K{sup +} current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD{sub 90}), and 50% of repolarization (APD{sub 50}) (P < 0.05) without changing the action potential duration at 20% (APD{sub 20}). PCB 77 decreased APD{sub 20} (P < 0.05) without affecting QTc, APD{sub 90}, and APD{sub 50}. The PCB 126 increased the I{sub Kr} in guinea-pig ventricular myocytes held at 36 °C and hERG K{sup +} current amplitude at the end of the voltage steps in voltage-dependent mode (P < 0.05); however, PCB 77 did not change the hERG K{sup +} current amplitude. The PCB 77 increased the diastolic Ca{sup 2+} and decreased Ca{sup 2+} transient amplitude (P < 0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD{sub 90} possibly by increasing I{sub Kr}, while PCB 77 decreased the APD{sub 20} possibly by other modulation related with intracellular Ca{sup 2+}. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca{sup 2+}, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K{sup +} current and I{sub Kr}.

  9. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  10. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  11. Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion.

    Science.gov (United States)

    Carter, W J; Benjamin, W S; Faas, F H

    1982-04-15

    The effect of T3 (3,3',5-tri-iodothyronine) on protein turnover in skeletal and cardiac muscle was measured in intact rats by means of a 6 h [14C]tyrosine-infusion technique. Treatment with 25-30 micrograms of T3/100 g body wt. daily for 4-7 days increased the fractional rate of protein synthesis in skeletal muscle. Since the fractional growth rate of the muscle was decreased or unchanged, T3 treatment increased the rate of muscle protein breakdown. These findings suggest that increased protein degradation is an important factor in decreasing skeletal-muscle mass in hyperthyroidism. In contrast with skeletal muscle, T3 treatment for 7 days caused an equivalent increase in the rate of cardiac muscle growth and protein synthesis. This suggests that hyperthyroidism does not increase protein breakdown in heart muscle as it does in skeletal muscle. The failure of T3 to increase proteolysis in heart muscle may be due to a different action on the cardiac myocyte or to systemic effects of T3 which increase cardiac work.

  12. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3β signaling

    International Nuclear Information System (INIS)

    Tateishi, Kento; Ashihara, Eishi; Honsho, Shoken; Takehara, Naofumi; Nomura, Tetsuya; Takahashi, Tomosaburo; Ueyama, Tomomi; Yamagishi, Masaaki; Yaku, Hitoshi; Matsubara, Hiroaki; Oh, Hidemasa

    2007-01-01

    Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3β may be crucial modulators for hCSC maintenance in human heart

  13. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity.

    Science.gov (United States)

    Den Hartogh, Sabine C; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC) reporter lines have been valuable for the identification, selection, and expansion of cardiac progenitor cells and their derivatives, and for our current understanding of the underlying molecular mechanisms. In order to further advance the use of hPSCs in the fields of regenerative medicine, disease modeling, and preclinical drug development in cardiovascular research, it is crucial to identify functionally distinct cardiac subtypes and to study their biological signaling events and functional aspects in healthy and diseased conditions. In this review, we discuss the various strategies that have been followed to generate and study fluorescent reporter lines in hPSCs and provide insights how these reporter lines contribute to a better understanding and improvement of cell-based therapies and preclinical drug and toxicity screenings in the cardiac field. © AlphaMed Press.

  14. Raman probing of lipids, proteins, and mitochondria in skeletal myocytes: a case study on obesity

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Nikelshparg, Evelina I.; Prats, Clara

    2017-01-01

    We propose a novel approach to assess simultaneously lipid composition in lipid droplets, the redox state of cytochromes, and the relative amount of [Fe–S] clusters in the electron transport chain in the mitochondria of skeletal myocytes by means of near-infrared Raman spectroscopy. Mitochondria...... technique allows to estimate qualitatively the relative amount of cholesterol and unsaturated lipids, ordering of lipid phase in lipid droplets, changes in the redox state of c-type and b-type cytochromes, and the relative amount of [Fe–S] clusters in the mitochondria of intact myocytes. The proposed...

  15. The Ku Protein Complex Interacts with YY1, Is Up-Regulated in Human Heart Failure, and Represses α Myosin Heavy-Chain Gene Expression

    Science.gov (United States)

    Sucharov, Carmen C.; Helmke, Steve M.; Langer, Stephen J.; Perryman, M. Benjamin; Bristow, Michael; Leinwand, Leslie

    2004-01-01

    Human heart failure is accompanied by repression of genes such as α myosin heavy chain (αMyHC) and SERCA2A and the induction of fetal genes such as βMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human αMyHC promoter. We have now identified a region of the αMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human αMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases αMyHC mRNA expression and increases skeletal α-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the αMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human αMyHC promoter during heart failure. PMID:15367688

  16. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.

    Science.gov (United States)

    Bundgaard, Henning; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Huang, Yifei; Chia, Karin K M; Hunyor, Stephen N; Figtree, Gemma A; Rasmussen, Helge H

    2010-12-21

    inhibition of L-type Ca(2+) current contributes to negative inotropy of β(3) adrenergic receptor (β(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed to high cardiac myocyte Na(+) levels and upregulation of the β(3) AR in heart failure. we voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (I(p)) as the shift in holding current induced by ouabain. The synthetic β(3) AR agonists BRL37344 and CL316,243 and the natural agonist norepinephrine increased I(p). Pump stimulation was insensitive to the β(1)/β(2) AR antagonist nadolol and the protein kinase A inhibitor H-89 but sensitive to the β(3) AR antagonist L-748,337. Blockade of nitric oxide synthase abolished pump stimulation and an increase in fluorescence of myocytes loaded with a nitric oxide-sensitive dye. Exposure of myocytes to β(3) AR agonists decreased β(1) Na(+)-K(+) pump subunit glutathionylation, an oxidative modification that causes pump inhibition. The in vivo relevance of this was indicated by an increase in myocardial β(1) pump subunit glutathionylation with elimination of β(3) AR-mediated signaling in β(3) AR(-/-) mice. The in vivo effect of BRL37344 on contractility of the nonfailing and failing heart in sheep was consistent with a beneficial effect of Na(+)-K(+) pump stimulation in heart failure. the β(3) AR mediates decreased β(1) subunit glutathionylation and Na(+)-K(+) pump stimulation in the heart. Upregulation of the receptor in heart failure may be a beneficial mechanism that facilitates the export of excess Na(+).

  17. Regulatory effect of connexin 43 on basal Ca2+ signaling in rat ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available BACKGROUND: It has been found that gap junction-associated intracellular Ca(2+ [Ca(2+](i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca(2+ signaling, in particular the basal [Ca(2+](i activities, is unclear. METHODS AND RESULTS: Global and local Ca(2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY, respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43 with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca(2+ transients and local Ca(2+ sparks in monolayer NRVMs and Ca(2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP(3 butyryloxymethyl ester and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca(2+ signal and LY uptake by gap uncouplers, whereas blockade of IP(3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca(2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca(2+ signaling regulation in cardiomyocytes. CONCLUSIONS: These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca(2

  18. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    Science.gov (United States)

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  19. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  20. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    Background -Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counter-regulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ co-receptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3 and further that neutralizing endoglin activity promotes BMP9 activity. Methods -We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We utilized the thoracic aortic constriction (TAC) induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. Results -BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates Type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and an siRNA approach. In BMP9 -/- mice subjected to TAC, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to TAC with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 compared to vehicle treated controls. Since endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to TAC induced heart failure limits collagen production, increases BMP9 protein levels, and increases

  1. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  2. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  3. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  4. Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis

    Science.gov (United States)

    Li, Jian; Pucéat, Michel; Perez-Terzic, Carmen; Mery, Annabelle; Nakamura, Kimitoshi; Michalak, Marek; Krause, Karl-Heinz; Jaconi, Marisa E.

    2002-01-01

    Calreticulin (crt) is an ubiquitously expressed and multifunctional Ca2+-binding protein that regulates diverse vital cell functions, including Ca2+ storage in the ER and protein folding. Calreticulin deficiency in mice is lethal in utero due to defects in heart development and function. Herein, we used crt − / − embryonic stem (ES) cells differentiated in vitro into cardiac cells to investigate the molecular mechanisms underlying heart failure of knockout embryos. After 8 d of differentiation, beating areas were prominent in ES-derived wild-type (wt) embryoid bodies (EBs), but not in ES-derived crt − / − EBs, despite normal expression levels of cardiac transcription factors. Crt − / − EBs exhibited a severe decrease in expression and a lack of phosphorylation of ventricular myosin light chain 2 (MLC2v), resulting in an impaired organization of myofibrils. Crt − / − phenotype could be recreated in wt cells by chelating extracellular or cytoplasmic Ca2+ with EGTA or BAPTA, or by inhibiting Ca2+/calmodulin-dependent kinases (CaMKs). An imposed ionomycin-triggered cystolic-free Ca2+ concentration ([Ca2+]c) elevation restored the expression, phosphorylation, and insertion of MLC2v into sarcomeric structures and in turn the myofibrillogenesis. The transcription factor myocyte enhancer factor C2 failed to accumulate into nuclei of crt − / − cardiac cells in the absence of ionomycin-triggered [Ca2+]c increase. We conclude that the absence of calreticulin interferes with myofibril formation. Most importantly, calreticulin deficiency revealed the importance of a Ca2+-dependent checkpoint critical for early events during cardiac myofibrillogenesis. PMID:12105184

  5. Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content

    Science.gov (United States)

    Vaughan, Roger A.; Gannon, Nicholas P.; Carriker, Colin R.

    2015-01-01

    Beetroot (甜菜 tián cài) juice consumption is of current interest for improving aerobic performance by acting as a vasodilator and possibly through alterations in skeletal muscle metabolism and physiology. This work explored the effects of a commercially available beetroot supplement on metabolism, gene expression, and mitochondrial content in cultured myocytes. C2C12 myocytes were treated with various concentrations of the beetroot supplement for various durations. Glycolytic metabolism and oxidative metabolism were quantified via measurement of extracellular acidification and oxygen consumption, respectively. Metabolic gene expression was measured using quantitative reverse transcription–polymerase chain reaction, and mitochondrial content was assessed with flow cytometry and confocal microscopy. Cells treated with beetroot exhibited significantly increased oxidative metabolism, concurrently with elevated metabolic gene expression including peroxisome proliferator-activated receptor gamma coactivator-1 alpha, nuclear respiratory factor 1, mitochondrial transcription factor A, and glucose transporter 4, leading to increased mitochondrial biogenesis. Our data show that treatment with a beetroot supplement increases basal oxidative metabolism. Our observations are also among the first to demonstrate that beetroot extract is an inducer of metabolic gene expression and mitochondrial biogenesis. These observations support the need for further investigation into the therapeutic and pharmacological effects of nitrate-containing supplements for health and athletic benefits. PMID:26870674

  6. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  7. Species-dependent adaptation of the cardiac Na+/K+ pump kinetics to the intracellular Na+ concentration.

    Science.gov (United States)

    Lewalle, Alexandre; Niederer, Steven A; Smith, Nicolas P

    2014-12-15

    The Na(+)/K(+) ATPase (NKA) plays a critical role in maintaining ionic homeostasis and dynamic function in cardiac myocytes, within both the in vivo cell and in silico models. Physiological conditions differ significantly between mammalian species. However, most existing formulations of NKA used to simulate cardiac function in computational models are derived from a broad range of experimental sources spanning many animal species. The resultant inability of these models to discern species-specific features is a significant obstacle to achieving a detailed quantitative and comparative understanding of physiological behaviour in different biological contexts. Here we present a framework for characterising the steady-state NKA current using a biophysical mechanistic model specifically designed to provide a mechanistic explanation of the NKA flux supported by self-consistent species-specific data. We thus compared NKA kinetics specific to guinea- pig and rat ventricular myocytes. We observe that the apparent binding affinity for sodium in the rat is significantly lower, whereas the overall pump cycle rate is doubled, in comparison to the guinea pig. This sensitivity of NKA to its regulatory substrates compensates for the differences in Na(+) concentrations between the cell types. NKA is thereby maintained within its dynamic range over a wide range of pacing frequencies in these two species, despite significant disparities in sodium concentration. Hence, by replacing a conventional generic NKA model with our rat-specific NKA formula into a whole-cell simulation, we have, for the first time, been able to accurately reproduce the action potential duration and the steady-state sodium concentration as functions of pacing frequency. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  8. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  9. Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

    International Nuclear Information System (INIS)

    Bao, L J; Zhu, Y M; Liu, W Y; Pu, Z B; Magnin, I E; Croisille, P; Robini, M

    2009-01-01

    Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.

  10. Laser microdissection and capture of pure cardiomyocytes and fibroblasts from infarcted heart regions: perceived hyperoxia induces p21 in peri-infarct myocytes.

    Science.gov (United States)

    Kuhn, Donald E; Roy, Sashwati; Radtke, Jared; Khanna, Savita; Sen, Chandan K

    2007-03-01

    Myocardial infarction caused by ischemia-reperfusion in the coronary vasculature is a focal event characterized by an infarct-core, bordering peri-infarct zone and remote noninfarct zone. Recently, we have reported the first technique, based on laser microdissection pressure catapulting (LMPC), enabling the dissection of infarction-induced biological responses in multicellular regions of the heart. Molecular mechanisms in play at the peri-infarct zone are central to myocardial healing. At the infarct site, myocytes are more sensitive to insult than robust fibroblasts. Understanding of cell-specific responses in the said zones is therefore critical. In this work, we describe the first technique to collect the myocardial tissue with a single-cell resolution. The infarcted myocardium was identified by using a truncated hematoxylin-eosin stain. Cell elements from the infarct, peri-infarct, and noninfarct zones were collected in a chaotropic RNA lysis solution with micron-level surgical precision. Isolated RNA was analyzed for quality by employing microfluidics technology and reverse transcribed to generate cDNA. Purity of the collected specimen was established by real-time PCR analyses of cell-specific genes. Previously, we have reported that the oxygen-sensitive induction of p21/Cip1/Waf1/Sdi1 in cardiac fibroblasts in the peri-infarct zone plays a vital role in myocardial remodeling. Using the novel LMPC technique developed herein, we confirmed that finding and report for the first time that the induction of p21 in the peri-infarct zone is not limited to fibroblasts but is also evident in myocytes. This work presents the first account of an analytical technique that applies the LMPC technology to study myocardial remodeling with a cell-type specific resolution.

  11. Hypertrophy of neurons within cardiac ganglia in human, canine, and rat heart failure: the potential role of nerve growth factor.

    Science.gov (United States)

    Singh, Sanjay; Sayers, Scott; Walter, James S; Thomas, Donald; Dieter, Robert S; Nee, Lisa M; Wurster, Robert D

    2013-08-19

    Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm(2); Phearts (767.80±18.37 versus 650.23±9.84 μm(2); Pneurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm(2); Pneurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia.

  12. Bile acids induce arrhythmias in human atrial myocardium--implications for altered serum bile acid composition in patients with atrial fibrillation.

    Science.gov (United States)

    Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk

    2013-11-01

    High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, pursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.

  13. [Virus-like inclusions in the myocytes of the skeletal muscle in lateral amyotrophic sclerosis].

    Science.gov (United States)

    Musaeva, L S; Sakharova, A V; Zavalishin, I A

    2004-01-01

    Microscopic examination of musculus gastrocnemius biopsies was made in four cases of sporadic lateral amyotrophic sclerosis (LAS). The validity of the clinical diagnosis was confirmed by detected neurotrophic atrophy of the muscular fibers typical for LAS. Electron microscopic study revealed virus-like inclusions 200-450 nm in size in sarcoplasm of myocytes of all the patients. The inclusions consist of lined cells of hexagonal shape at the distance of 37-41 nm from each other. The inclusions resemble enteroviruses but are not identical to them both by size and structure of their elements. There were also specific ultrastructural changes of myocytes corresponding to viral infection. The above virus-like inclusions should be considered as specific structures formed as a result of metabolic shifts caused by productive action on the cell of infective or unknown factor.

  14. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling.

    Science.gov (United States)

    Horn, Margaux A; Trafford, Andrew W

    2016-04-01

    Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Integrative Analysis of PRKAG2 Cardiomyopathy iPS and Microtissue Models Identifies AMPK as a Regulator of Metabolism, Survival, and Fibrosis

    Directory of Open Access Journals (Sweden)

    J. Travis Hinson

    2016-12-01

    Full Text Available AMP-activated protein kinase (AMPK is a metabolic enzyme that can be activated by nutrient stress or genetic mutations. Missense mutations in the regulatory subunit, PRKAG2, activate AMPK and cause left ventricular hypertrophy, glycogen accumulation, and ventricular pre-excitation. Using human iPS cell models combined with three-dimensional cardiac microtissues, we show that activating PRKAG2 mutations increase microtissue twitch force by enhancing myocyte survival. Integrating RNA sequencing with metabolomics, PRKAG2 mutations that activate AMPK remodeled global metabolism by regulating RNA transcripts to favor glycogen storage and oxidative metabolism instead of glycolysis. As in patients with PRKAG2 cardiomyopathy, iPS cell and mouse models are protected from cardiac fibrosis, and we define a crosstalk between AMPK and post-transcriptional regulation of TGFβ isoform signaling that has implications in fibrotic forms of cardiomyopathy. Our results establish critical connections among metabolic sensing, myocyte survival, and TGFβ signaling.

  16. Computational study of ‘HUB’ microRNA in human cardiac diseases

    Science.gov (United States)

    Krishnan, Remya; Nair, Achuthsankar S.; Dhar, Pawan K.

    2017-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs ~22 nucleotides long that do not encode for proteins but have been reported to influence gene expression in normal and abnormal health conditions. Though a large body of scientific literature on miRNAs exists, their network level profile linking molecules with their corresponding phenotypes, is less explored. Here, we studied a network of 191 human miRNAs reported to play a role in 30 human cardiac diseases. Our aim was to study miRNA network properties like hubness and preferred associations, using data mining, network graph theory and statistical analysis. A total of 16 miRNAs were found to have a disease node connectivity of >5 edges (i.e., they were linked to more than 5 diseases) and were considered hubs in the miRNAcardiac disease network. Alternatively, when diseases were considered as hubs, >10 of miRNAs showed up on each ‘disease hub node’. Of all the miRNAs associated with diseases, 19 miRNAs (19/24= 79.1% of upregulated events) were found to be upregulated in atherosclerosis. The data suggest micro RNAs as early stage biological markers in cardiac conditions with potential towards microRNA based therapeutics. PMID:28479745

  17. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  18. Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes

    DEFF Research Database (Denmark)

    Stengl, Milan; Volders, Paul G A; Thomsen, Morten Bækgaard

    2003-01-01

    In guinea-pig ventricular myocytes, in which the deactivation of slowly activating delayed rectifier potassium current (IKs) is slow, IKs can be increased by rapid pacing as a result of incomplete deactivation and subsequent current accumulation. Whether accumulation of IKs occurs in dogs, in which...

  19. In vitro transdifferentiation of umbilical cord stem cells into cardiac myocytes: Role of growth factors

    Directory of Open Access Journals (Sweden)

    Rasha A.M. Khattab

    2013-04-01

    Full Text Available Recently, stem cell based cell therapy has become a realistic option to replace damaged cardiomyocytes. Most studies on stem cell transplantation therapy have focused on the use of undifferentiated stem cells. There is a strong possibility that some cardiogenic differentiation of the stem cell in vitro prior to transplantation would result in higher engraftment efficiency, as well as enhanced myocardial regeneration and recovery of heart function. In this study we aimed to define the conditions for ex-vivo differentiation of cord blood stem cells to cardiomyocytes and endothelial cells. These conditions include the combination of vascular endothelial growth factor (VEGF; basic fibroblast growth factor (FGF-2 and platelet derived growth factor AB (PDGF-AB. Forty cord blood samples were included in this work. In this work, the percentage of CD34+ cells, CD31+ cells and CD34/31+ cells in mononuclear cells (MNC suspension was counted prior to culture (day zero, and day 10 in the different growth factor cocktails used as well as the control tube, from which the fold increase of CD34+ cells, CD31+ cells and CD34/31+ cells was calculated. Detection of cardiac troponin I in the cultured cells to confirm cardiac differentiation was done at day 10 using Mouse anti-troponin I monoclonal antibody. From the present study, it was concluded that the growth factor cocktail in protocol 2 (FGF2+VEGF+PDGF-AB gives better in vitro trans-differentiation of stem/progenitor cells in umbilical cord blood into cardiomyocytes and endothelial cells than the cytokines cocktail in protocol 1 (FGF2+VEGF alone.

  20. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  1. Morphometric and biochemical characteristics of short-term effects of ethanol on rat cardiac muscle.

    Science.gov (United States)

    Mihailović, D; Nikolić, J; Bjelaković, B B; Stanković, B N; Bjelaković, G

    1999-11-01

    Alcoholism is a very important cause of congestive cardiomyopathy in man. The aim of this study was to examine a short-term effect of ethanol in rat cardiac muscle, using histologic, morphometric and biochemical methods. Experiments were carried out in Wistar male albino rats, divided into two groups: the control group consisting of eight animals receiving tap water, and the experimental group comprising eight animals received ethyl alcohol for ten days, in a single daily dose of 3 g ethanol/kg body weight, per os, using esophageal intubation. The mean volume weighted nuclear volume of cardiac myocytes was estimated by point sampled intercept method, by objective x 100. The mean cubed nuclear intercept length was multiplied by pi and divided by 3. For biochemical analysis, a 10% water tissue homogenate from the left ventricle was made. In the experimental group, the mean volume-weighted nuclear volume (15.08 +/- 5.20 microm3) was significantly lower than in the control group (51.32 +/- 7.83 microm3) (p energy production.

  2. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  3. Safe Oral Triiodo-L-Thyronine Therapy Protects from Post-Infarct Cardiac Dysfunction and Arrhythmias without Cardiovascular Adverse Effects.

    Directory of Open Access Journals (Sweden)

    Viswanathan Rajagopalan

    Full Text Available A large body of evidence suggests that thyroid hormones (THs are beneficial for the treatment of cardiovascular disorders. We have shown that 3 days of triiodo-L-thyronine (T3 treatment in myocardial infarction (MI rats increased left ventricular (LV contractility and decreased myocyte apoptosis. However, no clinically translatable protocol is established for T3 treatment of ischemic heart disease. We hypothesized that low-dose oral T3 will offer safe therapeutic benefits in MI.Adult female rats underwent left coronary artery ligation or sham surgeries. T3 (~6 μg/kg/day was available in drinking water ad libitum immediately following MI and continuing for 2 month(s (mo. Compared to vehicle-treated MI, the oral T3-treated MI group at 2 mo had markedly improved anesthetized Magnetic Resonance Imaging-based LV ejection fraction and volumes without significant negative changes in heart rate, serum TH levels or heart weight, indicating safe therapy. Remarkably, T3 decreased the incidence of inducible atrial tachyarrhythmias by 88% and improved remodeling. These were accompanied by restoration of gene expression involving several key pathways including thyroid, ion channels, fibrosis, sympathetic, mitochondria and autophagy.Low-dose oral T3 dramatically improved post-MI cardiac performance, decreased atrial arrhythmias and cardiac remodeling, and reversed many adverse changes in gene expression with no observable negative effects. This study also provides a safe and effective treatment/monitoring protocol that should readily translate to humans.

  4. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake.

    Science.gov (United States)

    Schooley, James F; Namboodiri, Aryan M A; Cox, Rachel T; Bünger, Rolf; Flagg, Thomas P

    2014-12-09

    There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1-10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca(2+) uptake. Moreover, pretreatment of cells with the mitochondrial Ca(2+) uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca(2+) uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.

  5. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  6. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach.

    Science.gov (United States)

    Iborra-Egea, Oriol; Gálvez-Montón, Carolina; Roura, Santiago; Perea-Gil, Isaac; Prat-Vidal, Cristina; Soler-Botija, Carolina; Bayes-Genis, Antoni

    2017-01-01

    Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post

  7. Interpolation of vector fields from human cardiac DT-MRI

    International Nuclear Information System (INIS)

    Yang, F; Zhu, Y M; Rapacchi, S; Robini, M; Croisille, P; Luo, J H

    2011-01-01

    There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.

  8. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    Science.gov (United States)

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  9. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  10. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis.

    Directory of Open Access Journals (Sweden)

    Kapka Miteva

    Full Text Available BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs. They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.

  11. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes.

    Directory of Open Access Journals (Sweden)

    Nathan J Palpant

    Full Text Available Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes.We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo.Zebrafish (Danio rerio were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs was used as a model for in vitro cardiac development.In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin.These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects.

  12. Bone marrow support of the heart in pressure overload is lost with aging.

    Science.gov (United States)

    Sopko, Nikolai A; Turturice, Benjamin A; Becker, Mitchell E; Brown, Chase R; Dong, Feng; Popović, Zoran B; Penn, Marc S

    2010-12-21

    Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response. To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging. Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice. BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.

  13. The absence of 2,3-diphosphoglycerate from myocytes, hepatocytes and adipocytes.

    Science.gov (United States)

    Reddy, W J; Burns, A H

    1976-04-23

    Myocytes, hepatocytes and adipocytes were prepared from heart, liver and epididymal fat pad of the rat. No detectable level of 2,3-diphosphoglycerate was found. Evidence is also presented which indicates the absence from these cells of 2,3-diphosphoglycerate mutase and 2,3-diphosphoglycerate phosphatase. Previous findings by others of the presence of 2,3-diphosphoglycerate and 2,3-diphosphoglycerate mutase probably resulted from erythrocytes sequestered in the tissue.

  14. Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart.

    Directory of Open Access Journals (Sweden)

    Ivan V Kazbanov

    2014-11-01

    Full Text Available Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF, which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements.

  15. Inhibition of cAMP-Dependent PKA Activates β2-Adrenergic Receptor Stimulation of Cytosolic Phospholipase A2 via Raf-1/MEK/ERK and IP3-Dependent Ca2+ Signaling in Atrial Myocytes.

    Science.gov (United States)

    Pabbidi, M R; Ji, X; Maxwell, J T; Mignery, G A; Samarel, A M; Lipsius, S L

    2016-01-01

    We previously reported in atrial myocytes that inhibition of cAMP-dependent protein kinase (PKA) by laminin (LMN)-integrin signaling activates β2-adrenergic receptor (β2-AR) stimulation of cytosolic phospholipase A2 (cPLA2). The present study sought to determine the signaling mechanisms by which inhibition of PKA activates β2-AR stimulation of cPLA2. We therefore determined the effects of zinterol (0.1 μM; zint-β2-AR) to stimulate ICa,L in atrial myocytes in the absence (+PKA) and presence (-PKA) of the PKA inhibitor (1 μM) KT5720 and compared these results with atrial myocytes attached to laminin (+LMN). Inhibition of Raf-1 (10 μM GW5074), phospholipase C (PLC; 0.5 μM edelfosine), PKC (4 μM chelerythrine) or IP3 receptor (IP3R) signaling (2 μM 2-APB) significantly inhibited zint-β2-AR stimulation of ICa,L in-PKA but not +PKA myocytes. Western blots showed that zint-β2-AR stimulation increased ERK1/2 phosphorylation in-PKA compared to +PKA myocytes. Adenoviral (Adv) expression of dominant negative (dn) -PKCα, dn-Raf-1 or an IP3 affinity trap, each inhibited zint-β2-AR stimulation of ICa,L in + LMN myocytes compared to control +LMN myocytes infected with Adv-βgal. In +LMN myocytes, zint-β2-AR stimulation of ICa,L was enhanced by adenoviral overexpression of wild-type cPLA2 and inhibited by double dn-cPLA2S505A/S515A mutant compared to control +LMN myocytes infected with Adv-βgal. In-PKA myocytes depletion of intracellular Ca2+ stores by 5 μM thapsigargin failed to inhibit zint-β2-AR stimulation of ICa,L via cPLA2. However, disruption of caveolae formation by 10 mM methyl-β-cyclodextrin inhibited zint-β2-AR stimulation of ICa,L in-PKA myocytes significantly more than in +PKA myocytes. We conclude that inhibition of PKA removes inhibition of Raf-1 and thereby allows β2-AR stimulation to act via PKCα/Raf-1/MEK/ERK1/2 and IP3-mediated Ca2+ signaling to stimulate cPLA2 signaling within caveolae. These findings may be relevant to the remodeling of

  16. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

    Science.gov (United States)

    White, Caroline N; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Figtree, Gemma A; Rasmussen, Helge H

    2010-04-30

    Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

  17. Skeletal Myocyte Types and Vascularity in the Black Sicilian Pig

    OpenAIRE

    S. Velotto; E. Varricchio; M. R. Di Prisco; T. Stasi; A. Crasto

    2007-01-01

    The objective of this study was to verify the presence of giant fibres in the Black Sicilian pig skeletal muscle and to evaluate the effect of sex on histochemical and morphometric characteristics of the myocytes (myofibres) as well as vascularity of the muscle. Twenty Black Sicilian pigs (10 males, 10 females) from a farm in Sicily (Italy) were slaughtered at two years of age. Muscle tissues were obtained from three muscles: psoas major, longissimus dorsi, and trapezius. Myofibres were stain...

  18. Knock-in mice harboring a Ca(2+) desensitizing mutation in cardiac troponin C develop early onset dilated cardiomyopathy.

    Science.gov (United States)

    McConnell, Bradley K; Singh, Sonal; Fan, Qiying; Hernandez, Adriana; Portillo, Jesus P; Reiser, Peter J; Tikunova, Svetlana B

    2015-01-01

    The physiological consequences of aberrant Ca(2+) binding and exchange with cardiac myofilaments are not clearly understood. In order to examine the effect of decreasing Ca(2+) sensitivity of cTnC on cardiac function, we generated knock-in mice carrying a D73N mutation (not known to be associated with heart disease in human patients) in cTnC. The D73N mutation was engineered into the regulatory N-domain of cTnC in order to reduce Ca(2+) sensitivity of reconstituted thin filaments by increasing the rate of Ca(2+) dissociation. In addition, the D73N mutation drastically blunted the extent of Ca(2+) desensitization of reconstituted thin filaments induced by cTnI pseudo-phosphorylation. Compared to wild-type mice, heterozygous knock-in mice carrying the D73N mutation exhibited a substantially decreased Ca(2+) sensitivity of force development in skinned ventricular trabeculae. Kaplan-Meier survival analysis revealed that median survival time for knock-in mice was 12 weeks. Echocardiographic analysis revealed that knock-in mice exhibited increased left ventricular dimensions with thinner walls. Echocardiographic analysis also revealed that measures of systolic function, such as ejection fraction (EF) and fractional shortening (FS), were dramatically reduced in knock-in mice. In addition, knock-in mice displayed electrophysiological abnormalities, namely prolonged QRS and QT intervals. Furthermore, ventricular myocytes isolated from knock-in mice did not respond to β-adrenergic stimulation. Thus, knock-in mice developed pathological features similar to those observed in human patients with dilated cardiomyopathy (DCM). In conclusion, our results suggest that decreasing Ca(2+) sensitivity of the regulatory N-domain of cTnC is sufficient to trigger the development of DCM.

  19. Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation.

    Science.gov (United States)

    Glasscock, Edward; Voigt, Niels; McCauley, Mark D; Sun, Qiang; Li, Na; Chiang, David Y; Zhou, Xiao-Bo; Molina, Cristina E; Thomas, Dierk; Schmidt, Constanze; Skapura, Darlene G; Noebels, Jeffrey L; Dobrev, Dobromir; Wehrens, Xander H T

    2015-09-01

    Voltage-gated Kv1.1 channels encoded by the Kcna1 gene are traditionally regarded as being neural-specific with no known expression or intrinsic functional role in the heart. However, recent studies in mice reveal low-level Kv1.1 expression in heart and cardiac abnormalities associated with Kv1.1-deficiency suggesting that the channel may have a previously unrecognized cardiac role. Therefore, this study tests the hypothesis that Kv1.1 channels are associated with arrhythmogenesis and contribute to intrinsic cardiac function. In intra-atrial burst pacing experiments, Kcna1-null mice exhibited increased susceptibility to atrial fibrillation (AF). The atria of Kcna1-null mice showed minimal Kv1 family ion channel remodeling and fibrosis as measured by qRT-PCR and Masson's trichrome histology, respectively. Using RT-PCR, immunocytochemistry, and immunoblotting, KCNA1 mRNA and protein were detected in isolated mouse cardiomyocytes and human atria for the first time. Patients with chronic AF (cAF) showed no changes in KCNA1 mRNA levels relative to controls; however, they exhibited increases in atrial Kv1.1 protein levels, not seen in paroxysmal AF patients. Patch-clamp recordings of isolated human atrial myocytes revealed significant dendrotoxin-K (DTX-K)-sensitive outward current components that were significantly increased in cAF patients, reflecting a contribution by Kv1.1 channels. The concomitant increases in Kv1.1 protein and DTX-K-sensitive currents in atria of cAF patients suggest that the channel contributes to the pathological mechanisms of persistent AF. These findings provide evidence of an intrinsic cardiac role of Kv1.1 channels and indicate that they may contribute to atrial repolarization and AF susceptibility.

  20. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology.

    Directory of Open Access Journals (Sweden)

    Sebastian Schaaf

    Full Text Available Human embryonic stem cell (hESC progenies hold great promise as surrogates for human primary cells, particularly if the latter are not available as in the case of cardiomyocytes. However, high content experimental platforms are lacking that allow the function of hESC-derived cardiomyocytes to be studied under relatively physiological and standardized conditions. Here we describe a simple and robust protocol for the generation of fibrin-based human engineered heart tissue (hEHT in a 24-well format using an unselected population of differentiated human embryonic stem cells containing 30-40% α-actinin-positive cardiac myocytes. Human EHTs started to show coherent contractions 5-10 days after casting, reached regular (mean 0.5 Hz and strong (mean 100 µN contractions for up to 8 weeks. They displayed a dense network of longitudinally oriented, interconnected and cross-striated cardiomyocytes. Spontaneous hEHT contractions were analyzed by automated video-optical recording and showed chronotropic responses to calcium and the β-adrenergic agonist isoprenaline. The proarrhythmic compounds E-4031, quinidine, procainamide, cisapride, and sertindole exerted robust, concentration-dependent and reversible decreases in relaxation velocity and irregular beating at concentrations that recapitulate findings in hERG channel assays. In conclusion this study establishes hEHT as a simple in vitro model for heart research.

  1. Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids

    Directory of Open Access Journals (Sweden)

    Steven D. Forsythe

    2018-04-01

    Full Text Available IntroductionEnvironmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S. have suffered from exposures to lead in drinking water or other heavy metals in food or the earth, while there is a high possibility of further places to suffer such exposures in the near future.MethodsWe employed bioengineered 3D human liver and cardiac organoids to screen a panel of environmental toxins (lead, mercury, thallium, and glyphosate, and charted the response of the organoids to these compounds. Liver and cardiac organoids were exposed to lead (10 µM–10 mM, mercury (200 nM–200 µM, thallium (10 nM–10 µM, or glyphosate (25 µM–25 mM for a duration of 48 h. The impacts of toxin exposure were then assessed by LIVE/DEAD viability and cytotoxicity staining, measuring ATP activity and determining IC50 values, and determining changes in cardiac organoid beating activity.ResultsAs expected, all of the toxins induced toxicity in the organoids. Both ATP and LIVE/DEAD assays showed toxicity in both liver and cardiac organoids. In particular, thallium was the most toxic, with IC50 values of 13.5 and 1.35 µM in liver and cardiac organoids, respectively. Conversely, glyphosate was the least toxic of the four compounds, with IC50 values of 10.53 and 10.85 mM in liver and cardiac organoids, respectively. Additionally, toxins had a negative influence on cardiac organoid beating activity as well. Thallium resulting in the most significant decreases in beating rate, followed by mercury, then glyphosate, and finally, lead. These results suggest that the 3D organoids have significant utility to be deployed in additional toxicity screening applications, and future development of treatments to mitigate exposures.Conclusion3D organoids have significant utility to be

  2. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies

    Directory of Open Access Journals (Sweden)

    Karina O. Brandão

    2017-09-01

    Full Text Available It is now a decade since human induced pluripotent stem cells (hiPSCs were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.

  3. Immunosuppression in cardiac graft rejection: A human in vitro model to study the potential use of new immunomodulatory drugs

    International Nuclear Information System (INIS)

    Crescioli, Clara; Squecco, Roberta; Cosmi, Lorenzo; Sottili, Mariangela; Gelmini, Stefania; Borgogni, Elisa; Sarchielli, Erica; Scolletta, Sabino; Francini, Fabio; Annunziato, Francesco; Vannelli, Gabriella Barbara; Serio, Mario

    2008-01-01

    CXCL10-CXCR3 axis plays a pivotal role in cardiac allograft rejection, so that targeting CXCL10 without inducing generalized immunosuppression may be of therapeutic significance in allotransplantation. Since the role of resident cells in cardiac rejection is still unclear, we aimed to establish reliable human cardiomyocyte cultures to investigate Th1 cytokine-mediated response in allograft rejection. We used human fetal cardiomyocytes (Hfcm) isolated from fetal hearts, obtained after legal abortions. Hfcm expressed specific cardiac lineage markers, specific cardiac structural proteins, typical cardiac currents and generated ventricular action potentials. Thus, Hfcm represent a reliable in vitro tool for allograft rejection research, since they resemble the features of mature cells. Hfcm secreted CXCL10 in response to IFNγ and TNFαα; this effect was magnified by cytokine combination. Cytokine synergy was associated to a significant TNFα-induced up-regulation of IFNγR. The response of Hfcm to some currently used immunosuppressive drugs compared to rosiglitazone, a peroxisome proliferator-activated receptor γ agonist and Th1-mediated response inhibitor, was also evaluated. Only micophenolic acid and rosiglitazone halved CXCL10 secretion by Hfcm. Given the pivotal role of IFNγ-induced chemokines in Th1-mediated allograft rejection, these preliminary results suggest that the combined effects of immunosuppressive agents and rosiglitazone could be potentially beneficial to patients receiving heart transplants

  4. Cell differentiation in cardiac myxomas: confocal microscopy and gene expression analysis after laser capture microdissection.

    Science.gov (United States)

    Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni

    2018-05-22

    Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.

  5. Response of cardiac endothelial nitric oxide synthase to plasma viscosity modulation in acute isovolemic hemodilution

    Directory of Open Access Journals (Sweden)

    Kanyanatt Kanokwiroon

    2014-01-01

    Full Text Available Background: Endothelial nitric oxide synthase (eNOS is generally expressed in endocardial cells, vascular endothelial cells and ventricular myocytes. However, there is no experimental study elucidating the relationship between cardiac eNOS expression and elevated plasma viscosity in low oxygen delivery pathological conditions such as hemorrhagic shock-resuscitation and hemodilution. This study tested the hypothesis that elevated plasma viscosity increases cardiac eNOS expression in a hemodilution model, leading to positive effects on cardiac performance. Materials and Methods: Two groups of golden Syrian hamster underwent an acute isovolemic hemodilution where 40% of blood volume was exchanged with 2% (low-viscogenic plasma expander [LVPE] or 6% (high-viscogenic plasma expander [HVPE] of dextran 2000 kDa. In control group, experiment was performed without hemodilution. All groups were performed in awake condition. Experimental parameters, i.e., mean arterial blood pressure (MAP, heart rate, hematocrit, blood gas content and viscosity, were measured. The eNOS expression was evaluated by eNOS Western blot analysis. Results: After hemodilution, MAP decreased to 72% and 93% of baseline in the LVPE and HVPE, respectively. Furthermore, pO 2 in the LVPE group increased highest among the groups. Plasma viscosity in the HVPE group was significantly higher than that in control and LVPE groups. The expression of eNOS in the HVPE group showed higher intensity compared to other groups, especially compared with the control group. Conclusion: Our results demonstrated that cardiac eNOS has responded to plasma viscosity modulation with HVPE and LVPE. This particularly supports the previous studies that revealed the positive effects on cardiac function in animals hemodiluted with HVPE.

  6. Transport of beta-blockers and calcium antagonists by diffusion in cat myocardium

    DEFF Research Database (Denmark)

    Haunsø, Stig; Sejrsen, Per; Svendsen, Jesper Hastrup

    1991-01-01

    Beta-blockers and calcium antagonists have been claimed to possess cardioprotective properties. This study addresses the question of whether a significant amount of these drugs will reach the cardiac myocytes during no-flow ischemia, where solute transport depends solely on diffusion. In anesthet......Beta-blockers and calcium antagonists have been claimed to possess cardioprotective properties. This study addresses the question of whether a significant amount of these drugs will reach the cardiac myocytes during no-flow ischemia, where solute transport depends solely on diffusion...

  7. Cardiac Effects of Attenuating Gsα - Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Marcus R Streit

    Full Text Available Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option.We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05 and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02. No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01 and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001. In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation.Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure.

  8. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila.

    Science.gov (United States)

    Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2018-01-17

    The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  9. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  10. Detection of cardiac activity changes from human speech

    Science.gov (United States)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  11. A mathematical model for active contraction in healthy and failing myocytes and left ventricles.

    Directory of Open Access Journals (Sweden)

    Li Cai

    Full Text Available Cardiovascular disease is one of the leading causes of death worldwide, in particular myocardial dysfunction, which may lead to heart failure eventually. Understanding the electro-mechanics of the heart will help in developing more effective clinical treatments. In this paper, we present a multi-scale electro-mechanics model of the left ventricle (LV. The Holzapfel-Ogden constitutive law was used to describe the passive myocardial response in tissue level, a modified Grandi-Pasqualini-Bers model was adopted to model calcium dynamics in individual myocytes, and the active tension was described using the Niederer-Hunter-Smith myofilament model. We first studied the electro-mechanics coupling in a single myocyte in the healthy and diseased left ventricle, and then the single cell model was embedded in a dynamic LV model to investigate the compensation mechanism of LV pump function due to myocardial dysfunction caused by abnormality in cellular calcium dynamics. The multi-scale LV model was solved using an in-house developed hybrid immersed boundary method with finite element extension. The predictions of the healthy LV model agreed well with the clinical measurements and other studies, and likewise, the results in the failing states were also consistent with clinical observations. In particular, we found that a low level of intracellular Ca2+ transient in myocytes can result in LV pump function failure even with increased myocardial contractility, decreased systolic blood pressure, and increased diastolic filling pressure, even though they will increase LV stroke volume. Our work suggested that treatments targeted at increased contractility and lowering the systolic blood pressure alone are not sufficient in preventing LV pump dysfunction, restoring a balanced physiological Ca2+ handling mechanism is necessary.

  12. Sub-cellular Electrical Heterogeneity Revealed by Loose Patch Recording Reflects Differential Localization of Sarcolemmal Ion Channels in Intact Rat Hearts

    Directory of Open Access Journals (Sweden)

    Igor V. Kubasov

    2018-02-01

    Full Text Available The cardiac action potential (AP is commonly recoded as an integral signal from isolated myocytes or ensembles of myocytes (with intracellular microelectrodes and extracellular macroelectrodes, respectively. These signals, however, do not provide a direct measure of activity of ion channels and transporters located in two major compartments of a cardiac myocyte: surface sarcolemma and the T-tubule system, which differentially contribute to impulse propagation and excitation-contraction (EC coupling. In the present study we investigated electrical properties of myocytes within perfused intact rat heart employing loose patch recording with narrow-tip (2 μm diameter extracellular electrodes. Using this approach, we demonstrated two distinct types of electric signals with distinct waveforms (single peak and multi-peak AP; AP1 and AP2, respectively during intrinsic pacemaker activity. These two types of waveforms depend on the position of the electrode tip on the myocyte surface. Such heterogeneity of electrical signals was lost when electrodes of larger pipette diameter were used (5 or 10 μm, which indicates that the electric signal was assessed from a region of <5 μm. Importantly, both pharmacological and mathematical simulation based on transverse (T-tubular distribution suggested that while the AP1 and the initial peak of AP2 are predominantly attributable to the fast, inward Na+ current in myocyte's surface sarcolemma, the late components of AP2 are likely representative of currents associated with L-type Ca2+ channel and Na+/Ca2+ exchanger (NCX currents which are predominantly located in T-tubules. Thus, loose patch recording with narrow-tip pipette provides a valuable tool for studying cardiac electric activity on the subcellular level in the intact heart.

  13. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure.

    Science.gov (United States)

    Marques, Francine Z; Prestes, Priscilla R; Byars, Sean G; Ritchie, Scott C; Würtz, Peter; Patel, Sheila K; Booth, Scott A; Rana, Indrajeetsinh; Minoda, Yosuke; Berzins, Stuart P; Curl, Claire L; Bell, James R; Wai, Bryan; Srivastava, Piyush M; Kangas, Antti J; Soininen, Pasi; Ruohonen, Saku; Kähönen, Mika; Lehtimäki, Terho; Raitoharju, Emma; Havulinna, Aki; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Ala-Korpela, Mika; Kettunen, Johannes; McGlynn, Maree; Kelly, Jason; Wlodek, Mary E; Lewandowski, Paul A; Delbridge, Lea M; Burrell, Louise M; Inouye, Michael; Harrap, Stephen B; Charchar, Fadi J

    2017-06-14

    Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2 -knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2 -knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis -eQTL for LCN2 expression. Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential.

    Directory of Open Access Journals (Sweden)

    Francesca Oltolina

    Full Text Available A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM. We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.

  15. Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes

    Czech Academy of Sciences Publication Activity Database

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Šimurdová, M.; Šimurda, J.

    2014-01-01

    Roč. 65, č. 4 (2014), s. 497-509 ISSN 0867-5910 Grant - others:GA MZd NT14301 Institutional support: RVO:61388998 Keywords : ethanol * rat ventricular myocyte * rat ventricular action potential model Subject RIV: BO - Biophysics Impact factor: 2.386, year: 2014

  16. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat

    International Nuclear Information System (INIS)

    Qiu Tong; Xie Ping; Liu Ying; Li Guangyu; Xiong Qian; Hao Le; Li Huiying

    2009-01-01

    Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD 50 (14 μg MC-LReq kg -1 body weight) and 1LD 50 (87 μg MC-LReq kg -1 body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD 50 dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD 50 not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously, complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil

  17. Quantitative analysis of the Ca2+ -dependent regulation of delayed rectifier K+ current IKs in rabbit ventricular myocytes.

    Science.gov (United States)

    Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M

    2017-04-01

    [Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or

  18. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  19. Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha.

    Science.gov (United States)

    Petkova-Kirova, Polina S; Gursoy, Erdal; Mehdi, Haider; McTiernan, Charles F; London, Barry; Salama, Guy

    2006-05-01

    Mice that overexpress the inflammatory cytokine tumor necrosis factor-alpha in the heart (TNF mice) develop heart failure characterized by atrial and ventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias, and increased mortality (males > females). Abnormalities in Ca2+ handling, prolonged action potential duration (APD), calcium alternans, and reentrant atrial and ventricular arrhythmias were previously observed with the use of optical mapping of perfused hearts from TNF mice. We therefore tested whether altered voltage-gated outward K+ and/or inward Ca2+ currents contribute to the altered action potential characteristics and the increased vulnerability to arrhythmias. Whole cell voltage-clamp recordings of K+ currents from left ventricular myocytes of TNF mice revealed an approximately 50% decrease in the rapidly activating, rapidly inactivating transient outward K+ current Ito and in the rapidly activating, slowly inactivating delayed rectifier current IK,slow1, an approximately 25% decrease in the rapidly activating, slowly inactivating delayed rectifier current IK,slow2, and no significant change in the steady-state current Iss compared with controls. Peak amplitudes and inactivation kinetics of the L-type Ca2+ current ICa,L were not altered. Western blot analyses revealed a reduction in the proteins underlying Kv4.2, Kv4.3, and Kv1.5. Thus decreased K+ channel expression is largely responsible for the prolonged APD in the TNF mice and may, along with abnormalities in Ca2+ handling, contribute to arrhythmias.

  20. Contribution of two-pore K+ channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Chai, Sam; Wan, Xiaoping; Nassal, Drew M; Liu, Haiyan; Moravec, Christine S; Ramirez-Navarro, Angelina; Deschênes, Isabelle

    2017-06-01

    Two-pore K + (K 2p ) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K 2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K 2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K 2p channels in the heart. Comparing quantitative PCR expression of K 2p channels between human heart tissue and iPSC-CMs revealed K 2p 1.1, K 2p 2.1, K 2p 5.1, and K 2p 17.1 to be higher expressed in cHVT, whereas K 2p 3.1 and K 2p 13.1 were higher in iPSC-CMs. Notably, K 2p 17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K 2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K 2p 2.1, K 2p 3.1, K 2p 6.1, and K 2p 17.1. Here, we report the expression level of 10 human K 2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K 2p 17.1 as significantly reduced in niHF tissues and K 2p 4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K 2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K + (K 2p ) channels are traditionally regarded as merely background leak channels in myriad

  1. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model.

    Science.gov (United States)

    Wei, Qin; Bian, Yeping; Yu, Fuchao; Zhang, Qiang; Zhang, Guanghao; Li, Yang; Song, Songsong; Ren, Xiaomei; Tong, Jiayi

    2016-11-01

    Chronic intermittent hypoxia is considered to play an important role in cardiovascular pathogenesis during the development of obstructive sleep apnea (OSA). We used a well-described OSA rat model induced with simultaneous intermittent hypoxia. Male Sprague Dawley rats were individually placed into plexiglass chambers with air pressure and components were electronically controlled. The rats were exposed to intermittent hypoxia 8 hours daily for 5 weeks. The changes of cardiac structure and function were examined by ultrasound. The cardiac pathology, apoptosis, and fibrosis were analyzed by H&E staining, TUNNEL assay, and picosirius staining, respectively. The expression of inflammation and fibrosis marker genes was analyzed by quantitative real-time PCR and Western blot. Chronic intermittent hypoxia/low pressure resulted in significant increase of left ventricular internal diameters (LVIDs), end-systolic volume (ESV), end-diastolic volume (EDV), and blood lactate level and marked reduction in ejection fraction and fractional shortening. Chronic intermittent hypoxia increased TUNNEL-positive myocytes, disrupted normal arrangement of cardiac fibers, and increased Sirius stained collagen fibers. The expression levels of hypoxia induced factor (HIF)-1α, NF-kB, IL-6, and matrix metallopeptidase 2 (MMP-2) were significantly increased in the heart of rats exposed to chronic intermittent hypoxia. In conclusion, the left ventricular function was adversely affected by chronic intermittent hypoxia, which is associated with increased expression of HIF-1α and NF-kB signaling molecules and development of cardiac inflammation, apoptosis and fibrosis. © 2016 by the Journal of Biomedical Research. All rights reserved.

  2. Association of cardiac myosin binding protein-C with the ryanodine receptor channel: putative retrograde regulation?

    Science.gov (United States)

    Stanczyk, Paulina J; Seidel, Monika; White, Judith; Viero, Cedric; George, Christopher H; Zissimopoulos, Spyros; Lai, F Anthony

    2018-06-21

    The cardiac muscle ryanodine receptor-Ca 2+ release channel (RyR2) constitutes the sarcoplasmic reticulum (SR) Ca 2+ efflux mechanism that initiates myocyte contraction, while cardiac myosin binding protein-C (cMyBP-C) mediates regulation of acto-myosin cross-bridge cycling. In this report, we provide the first evidence for the presence of direct interaction between these two proteins, forming a RyR2:cMyBP-C complex. The C-terminus of cMyBP-C binds with the RyR2 N-terminus in mammalian cells and is not mediated by a fibronectin-like domain. Notably, we detected complex formation between both recombinant cMyBP-C and RyR2, as well as with the native proteins in cardiac tissue. Cellular Ca 2+ dynamics in HEK293 cells is altered upon co-expression of cMyBP-C and RyR2, with lowered frequency of RyR2-mediated spontaneous Ca 2+ oscillations, suggesting cMyBP-C exerts a potential inhibitory effect on RyR2-dependent Ca 2+ release. Discovery of a functional RyR2 association with cMyBP-C provides direct evidence for a putative mechanistic link between cytosolic soluble cMyBP-C and SR-mediated Ca 2+ release, via RyR2. Importantly, this interaction may have clinical relevance to the observed cMyBP-C and RyR2 dysfunction in cardiac pathologies, such as hypertrophic cardiomyopathy. © 2018. Published by The Company of Biologists Ltd.

  3. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    Science.gov (United States)

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  4. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  5. Direct Cardiac Reprogramming: Advances in Cardiac Regeneration

    Directory of Open Access Journals (Sweden)

    Olivia Chen

    2015-01-01

    Full Text Available Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.

  6. Impaired Na⁺-dependent regulation of acetylcholine-activated inward-rectifier K⁺ current modulates action potential rate dependence in patients with chronic atrial fibrillation.

    Science.gov (United States)

    Voigt, Niels; Heijman, Jordi; Trausch, Anne; Mintert-Jancke, Elisa; Pott, Lutz; Ravens, Ursula; Dobrev, Dobromir

    2013-08-01

    Shortened action-potential duration (APD) and blunted APD rate adaptation are hallmarks of chronic atrial fibrillation (cAF). Basal and muscarinic (M)-receptor-activated inward-rectifier K(+) currents (IK1 and IK,ACh, respectively) contribute to regulation of human atrial APD and are subject to cAF-dependent remodeling. Intracellular Na(+) ([Na(+)]i) enhances IK,ACh in experimental models but the effect of [Na(+)]i-dependent regulation of inward-rectifier K(+) currents on APD in human atrial myocytes is currently unknown. Here, we report a [Na(+)]i-dependent inhibition of outward IK1 in atrial myocytes from sinus rhythm (SR) or cAF patients. In contrast, IK,ACh activated by carbachol, a non-selective M-receptor agonist, increased with elevation of [Na(+)]i in SR. This [Na(+)]i-dependent IK,ACh regulation was absent in cAF. Including [Na(+)]i dependence of IK1 and IK,ACh in a recent computational model of the human atrial myocyte revealed that [Na(+)]i accumulation at fast rates inhibits IK1 and blunts physiological APD rate dependence in both groups. [Na(+)]i-dependent IK,ACh augmentation at fast rates increased APD rate dependence in SR, but not in cAF. These results identify impaired Na(+)-sensitivity of IK,ACh as one potential mechanism contributing to the blunted APD rate dependence in patients with cAF. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes". Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    Science.gov (United States)

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  8. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index

    Directory of Open Access Journals (Sweden)

    Richard E. Tracy

    2011-01-01

    Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.

  9. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    Directory of Open Access Journals (Sweden)

    José Manuel Calderón-Montaño

    2014-01-01

    Full Text Available Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies.

  10. Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart

    Science.gov (United States)

    Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai

    2018-02-01

    The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.

  11. Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    Science.gov (United States)

    Feaster, Tromondae K; Cadar, Adrian G; Wang, Lili; Williams, Charles H; Chun, Young Wook; Hempel, Jonathan E; Bloodworth, Nathaniel; Merryman, W David; Lim, Chee Chew; Wu, Joseph C; Knollmann, Björn C; Hong, Charles C

    2015-12-04

    The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing. © 2015 American Heart Association, Inc.

  12. Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification

    Directory of Open Access Journals (Sweden)

    Eugene K. Lee

    2017-11-01

    Full Text Available Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC-derived cardiomyocytes and three-dimensional engineered cardiac tissue constructs to better recapitulate human heart function and drug responses. As these new platforms become increasingly sophisticated and high throughput, the drug screens result in larger multidimensional datasets. Improved automated analysis methods must therefore be developed in parallel to fully comprehend the cellular response across a multidimensional parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS electrically paced at a range of frequencies and exposed to a library of compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a classification model that can automatically predict the mechanistic action of an unknown cardioactive drug.

  13. Mechanisms Involved in Secondary Cardiac Dysfunction in Animal Models of Trauma and Hemorrhagic Shock.

    Science.gov (United States)

    Wilson, Nick M; Wall, Johanna; Naganathar, Veena; Brohi, Karim; De'Ath, Henry D

    2017-10-01

    Clinical evidence reveals the existence of a trauma-induced secondary cardiac injury (TISCI) that is associated with poor patient outcomes. The mechanisms leading to TISCI in injured patients are uncertain. Conversely, animal models of trauma hemorrhage have repeatedly demonstrated significant cardiac dysfunction following injury, and highlighted mechanisms through which this might occur. The aim of this review was to provide an overview of the animal studies describing TISCI and its pathophysiology.Basic science models of trauma show evidence of innate immune system activation via Toll-like receptors, the exact protagonists of which remain unclear. Shortly following trauma and hemorrhage, cardiomyocytes upregulate gene regulatory protein and inflammatory molecule expression including nuclear factor kappa beta, tumor necrosis factor alpha, and interleukin-6. This is associated with expression of membrane bound adhesion molecules and chemokines leading to marked myocardial leukocyte infiltration. This cell activation and infiltration is linked to a rise in enzymes that cause oxidative and nitrative stress and subsequent protein misfolding within cardiomyocytes. Such protein damage may lead to reduced contractility and myocyte apoptosis. Other molecules have been identified as cardioprotective following injury. These include p38 mitogen-activated protein kinases and heat shock proteins.The balance between increasing damaging mediators and a reduction in cardio-protective molecules appears to define myocardial function following trauma. Exogenous therapeutics have been trialled in rodents with promising abilities to favorably alter this balance, and subsequently lead to improved cardiac function.

  14. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Pluripotent stem cell-derived cardiac progenitor cells (CPCs have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations. OBJECTIVE: Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells. METHOD AND RESULT: To test the hypothesis, we cocultured mouse embryonic stem (ES cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1(+ PDGFRa(+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5(+ and Isl1(+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR(+ PDGFRa(+ CPCs from human ES cells. CONCLUSIONS: Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.

  15. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  16. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification.

    Science.gov (United States)

    Malliaras, Konstantinos; Vakrou, Styliani; Kapelios, Chris J; Nanas, John N

    2016-11-01

    The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.

  17. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.

    2014-01-01

    human beta cardiac myosin S1. We also compare load-velocity curves for wild-type motors with load-velocity curves of mutant forms that cause hypertrophic or dilated-cardiomyopathy (HCM or DCM), in order to understand the effects of mutations on the contractile cycle at the single molecule level....

  18. Dual-gated cardiac PET-clinical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani [Turku PET Centre, PO BOX 52, Turku (Finland); Durand-Schaefer, Nicolas [General Electric Medical Systems, Buc (France); Pietilae, Mikko [Turku University Hospital, Department of Internal Medicine, Turku (Finland); Kiss, Jan [Turku University Hospital, Department of Surgery, Turku (Finland)

    2010-03-15

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  19. Dual-gated cardiac PET-clinical feasibility study

    International Nuclear Information System (INIS)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani; Durand-Schaefer, Nicolas; Pietilae, Mikko; Kiss, Jan

    2010-01-01

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  20. Myocyte specific overexpression of myoglobin impairs angiogenesis after hind-limb ischemia.

    Science.gov (United States)

    Hazarika, Surovi; Angelo, Michael; Li, Yongjun; Aldrich, Amy J; Odronic, Shelley I; Yan, Zhen; Stamler, Jonathan S; Annex, Brian H

    2008-12-01

    In preclinical models of peripheral arterial disease the angiogenic response is typically robust, though it can be impaired in conditions such as hypercholesterolemia and diabetes where the endothelium is dysfunctional. Myoglobin (Mb) is expressed exclusively in striated muscle cells. We hypothesized that myocyte specific overexpression of myoglobin attenuates ischemia-induced angiogenesis even in the presence of normal endothelium. Mb overexpressing transgenic (MbTg, n=59) and wild-type (WT, n=56) C57Bl/6 mice underwent unilateral femoral artery ligation/excision. Perfusion recovery was monitored using Laser Doppler. Ischemia-induced changes in muscle were assessed by protein and immunohistochemistry assays. Nitrite/nitrate and protein-bound NO, and vasoreactivity was measured. Vasoreactivity was similar between MbTg and WT. In ischemic muscle, at d14 postligation, MbTg increased VEGF-A, and activated eNOS the same as WT mice but nitrate/nitrite were reduced whereas protein-bound NO was higher. MbTg had attenuated perfusion recovery at d21 (0.37+/-0.03 versus 0.47+/-0.02, P<0.05), d28 (0.40+/-0.03 versus 0.50+/-0.04, P<0.05), greater limb necrosis (65.2% versus 15%, P<0.001), a lower capillary density, and greater apoptosis versus WT. Increased Mb expression in myocytes attenuates angiogenesis after hind-limb ischemia by binding NO and reducing its bioavailability. Myoglobin can modulate the angiogenic response to ischemia even in the setting of normal endothelium.

  1. Protection of myocytes against free radical-induced damage by accelerated turnover of the glutathione redox cycle

    NARCIS (Netherlands)

    Le, C. T.; Hollaar, L.; van der Valk, E. J.; Franken, N. A.; van Ravels, F. J.; Wondergem, J.; van der Laarse, A.

    1995-01-01

    The primary defence mechanism of myocytes against peroxides and peroxide-derived peroxyl and alkoxyl radicals is the glutathione redox cycle. The purpose of the present study was to increase the turnover rate of this cycle by stimulating the glutathione peroxidase catalysed reaction (2GSH-->GSSG),

  2. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells.

    Science.gov (United States)

    Zhan, Yongkun; Sun, Xiaolei; Li, Bin; Cai, Huanhuan; Xu, Chen; Liang, Qianqian; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yin, Lianhua; Sheng, Wei; Huang, Guoying; Sun, Aijun; Ge, Junbo; Sun, Ning

    2018-04-01

    PRKAG2 cardiac syndrome is a distinct form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular pre-excitation and progressive cardiac conduction disorder. However, it remains unclear how mutations in the PRKAG2 gene give rise to such a complicated disease. To investigate the underlying molecular mechanisms, we generated disease-specific hiPSC-derived cardiomyocytes from two brothers both carrying a heterozygous missense mutation c.905G>A (R302Q) in the PRKAG2 gene and further corrected the R302Q mutation with CRISPR-Cas9 mediated genome editing. Disease-specific hiPSC-cardiomyocytes recapitulated many phenotypes of PRKAG2 cardiac syndrome including cellular enlargement, electrophysiological irregularities and glycogen storage. In addition, we found that the PRKAG2-R302Q mutation led to increased AMPK activities, resulting in extensive glycogen deposition and cardiomyocyte hypertrophy. Finally we confirmed that disrupted phenotypes of PRKAG2 cardiac syndrome caused by the specific PRKAG2-R302Q mutation can be alleviated by small molecules inhibiting AMPK activity and be rescued with CRISPR-Cas9 mediated genome correction. Our results showed that disease-specific hiPSC-CMs and genetically-corrected hiPSC-cardiomyocytes would be a very useful platform for understanding the pathogenesis of, and testing autologous cell-based therapies for, PRKAG2 cardiac syndrome. Copyright © 2018. Published by Elsevier Ltd.

  3. Computational model based approach to analysis ventricular arrhythmias: Effects of dysfunction calcium channels

    Science.gov (United States)

    Gulothungan, G.; Malathi, R.

    2018-04-01

    Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet

  4. Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure.

    Directory of Open Access Journals (Sweden)

    Beatriz Trenor

    Full Text Available Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na(+ current (I(NaL is relevant and is currently under investigation. In this study we examined the role of I(NaL in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of I(NaL. A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human I(NaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for I(NaL in the prolongation of action potential duration (APD, triangulation of the shape of the AP, and changes in Ca(2+ transient. A mechanistic investigation of intracellular Na(+ accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na(+/K(+ pump, the Na(+/Ca(2+ exchanger and I(NaL. The results of the simulations also showed that in failing myocytes, the enhancement of I(NaL increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the I(NaL prolong APD and alter Ca(2+ transient facilitating the development of early afterdepolarizations. An enhanced I(NaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca(2+](i homeostasis of failing myocytes.

  5. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

    Science.gov (United States)

    Wengrowski, Anastasia M; Wang, Xin; Tapa, Srinivas; Posnack, Nikki Gillum; Mendelowitz, David; Kay, Matthew W

    2015-02-01

    Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  6. Old cogs, new tricks: a scaffolding role for connexin43 and a junctional role for sodium channels?

    Science.gov (United States)

    Veeraraghavan, Rengasayee; Poelzing, Steven; Gourdie, Robert G

    2014-04-17

    Cardiac conduction is the process by which electrical excitation is communicated from cell to cell within the heart, triggering synchronous contraction of the myocardium. The role of conduction defects in precipitating life-threatening arrhythmias in various disease states has spurred scientific interest in the phenomenon. While the understanding of conduction has evolved greatly over the last century, the process has largely been thought to occur via movement of charge between cells via gap junctions. However, it has long been hypothesized that electrical coupling between cardiac myocytes could also occur ephaptically, without direct transfer of ions between cells. This review will focus on recent insights into cardiac myocyte intercalated disk ultrastructure and their implications for conduction research, particularly the ephaptic coupling hypothesis. Published by Elsevier B.V.

  7. Reference values for total blood volume and cardiac output in humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.R. [Indiana Univ., South Bend, IN (United States). Division of Liberal Arts and Sciences

    1994-09-01

    Much research has been devoted to measurement of total blood volume (TBV) and cardiac output (CO) in humans but not enough effort has been devoted to collection and reduction of results for the purpose of deriving typical or {open_quotes}reference{close_quotes} values. Identification of normal values for TBV and CO is needed not only for clinical evaluations but also for the development of biokinetic models for ultra-short-lived radionuclides used in nuclear medicine (Leggett and Williams 1989). The purpose of this report is to offer reference values for TBV and CO, along with estimates of the associated uncertainties that arise from intra- and inter-subject variation, errors in measurement techniques, and other sources. Reference values are derived for basal supine CO and TBV in reference adult humans, and differences associated with age, sex, body size, body position, exercise, and other circumstances are discussed.

  8. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells.

    Science.gov (United States)

    Szaraz, Peter; Gratch, Yarden S; Iqbal, Farwah; Librach, Clifford L

    2017-08-09

    Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this

  9. Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart.

    Directory of Open Access Journals (Sweden)

    Simon R Foster

    Full Text Available G protein-coupled receptors (GPCRs are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2 as well as Tas1r1 and Tas1r3 (comprising the umami receptor are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and by in situ hybridization can be visualized across the myocardium in isolated cardiac cells. Tas1r1 gene-targeted mice (Tas1r1(Cre/Rosa26(tdRFP strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart.

  10. Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells

    NARCIS (Netherlands)

    Gaetani, Roberto; Yin, Christopher; Srikumar, Neha; Braden, Rebecca; Doevendans, Pieter A; Sluijter, Joost P G; Christman, Karen L

    2016-01-01

    The use of biomaterials has been demonstrated as a viable strategy to promote cell survival and cardiac repair. However, limitations on combinational cell-biomaterial therapies exist, as cellular behavior is influenced by the microenvironment and physical characteristics of the material. Among the

  11. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy

    Science.gov (United States)

    Ismahil, Mohamed Ameen; Hamid, Tariq; Haberzettl, Petra; Gu, Yan; Chandrasekar, Bysani; Srivastava, Sanjay; Bhatnagar, Aruni

    2011-01-01

    Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with vehicle-fed mice, acrolein-fed mice exhibited significant (P acrolein adduct formation indicative of physical translocation of ingested acrolein to the heart. Acrolein also induced myocyte hypertrophy (∼2.2-fold increased myocyte area, P acrolein-exposed hearts, along with upregulated gene expression of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β. Long-term oral exposure to acrolein, at an amount within the range of human unsaturated aldehyde intake, induces a phenotype of dilated cardiomyopathy in the mouse. Human exposure to acrolein may have analogous effects and raise consideration of an environmental, aldehyde-mediated basis for heart failure. PMID:21908791

  12. Quantitative analysis of the Ca2+‐dependent regulation of delayed rectifier K+ current I Ks in rabbit ventricular myocytes

    Science.gov (United States)

    Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora

    2017-01-01

    Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft

  13. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes.

    Science.gov (United States)

    Hansen, Peter S; Clarke, Ronald J; Buhagiar, Kerrie A; Hamilton, Elisha; Garcia, Alvaro; White, Caroline; Rasmussen, Helge H

    2007-03-01

    The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.

  14. Cardiac troponins--Translational biomarkers in cardiology: Theory and practice of cardiac troponin high-sensitivity assays.

    Science.gov (United States)

    Adamcova, Michaela; Popelova-Lencova, Olga; Jirkovsky, Eduard; Simko, Fedor; Gersl, Vladimir; Sterba, Martin

    2016-01-01

    Tn is a unique translational biomarker in cardiology whose potential has not been diminished in the new era of high sensitive assays. cTns can be valuable markers in cardiac diseases as well as in infectious diseases and respiratory diseases. Furthermore, the role of cTns is growing in the routine evaluation of cardioxicity and in determining the efficacy/safety ratio of novel cardioprotective strategies in clinical settings. cTns can detect myocardial injury not only in a wide spectrum of laboratory animals in experimental studies in vivo, but also in isolated heart models or cardiomyocytes in vitro. The crucial issue regarding the cross-species usage of cardiac troponin investigation remains the choice of cardiac troponin testing. This review summarizes the recent proteomic data on aminoacid sequences of cTnT and cTnI in various species, as well as selected analytical characteristics of human cardiac troponin high-sensitivity assays. Due to the highly phylogenetically conserved structure of troponins, the same bioindicator can be investigated using the same method in both clinical and experimental cardiology, thus contributing to a better understanding of the pathogenesis of cardiac diseases as well as to increased effectiveness of troponin use in clinical practice. Measuring cardiac troponins using commercially available human high-sensitivity cardiac troponin tests with convenient antibodies selected on the basis of adequate proteomic knowledge can solve many issues which would otherwise be difficult to address in clinical settings for various ethical and practical reasons. Our survey could help elaborate the practical guidelines for optimizing the choice of cTns assay in cardiology. © 2016 International Union of Biochemistry and Molecular Biology.

  15. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    Science.gov (United States)

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  16. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  17. Thallium-201 myocardial scintigraphy and cardiac pool scintigraphy with technetium-99m labelled human serum albumin of complicated anomalous heart

    International Nuclear Information System (INIS)

    Tanaka, Minoru; Watanabe, Takashi; Murase, Mitsuya; Shimizu, Ken; Abe, Toshio

    1979-01-01

    Nuclear cardiology has been used in the diagnosis of congenital heart disease, but these studies have not shown the dramatic increase that has occurred in their use in coronary heart disease. In this report, thallium-201 myocardial scintigraphy and cardiac pool scintigraphy with technetium-99m labelled human serum albumin of 13 patients with complicated congenital heart disease were compared with contrast angiography. The application of these scanning methods to visualization of the size and shape of ventricle and interventricular septum was very useful. At times these methods give us the more accurate information about cardiac shape, especially of complicated anomalous heart, than contrast angiography. Of course these methods will never replace cardiac catheterization and contrast angiography. But these studies are non-invasive. So it was concluded that these scanning methods had better be applied in patients with complicated cardiac anomaly before invasive contrast angiography. (author)

  18. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal

  19. Effect of atrial natriuretic peptide on lipolysis in the mouse heart

    DEFF Research Database (Denmark)

    Bartels, Emil Daniel; Bisgaard, Line Stattau; Christoffersen, Christina

    2014-01-01

    -A (NPR-A), leading to cGMP-dependent phosphorylation of hormone-sensitive lipase. Cardiac myocytes express NPR-A and hormone-sensitive lipase. In the present study, we investigated whether ANP affects triglyceride stores in the heart. Subcutaneously implanted osmotic minipumps were used to administer ANP...... (125 or 500 ng/kg/min) or saline to obese leptin-deficient (ob/ob) mice or lean control mice (ob/+) for a week. ANP (500 ng/kg/min) reduced blood pressure but did not affect the cardiac triglyceride stores or mRNA expression of NPR-A and NPR-C. Also, deficiency of NPR-A did not affect the cardiac...... triglyceride content. Finally, addition of ANP to the culture medium (10−7 mol/l) increased cellular cGMP content (P=0.009) but did not affect triglyceride stores in HL-1 cardiac myocyte cultures. Hence, ANP does not affect triglyceride stores in the murine heart....

  20. Suppression of skeletal muscle signal using a crusher coil: A human cardiac (31) p-MR spectroscopy study at 7 tesla.

    Science.gov (United States)

    Schaller, Benoit; Clarke, William T; Neubauer, Stefan; Robson, Matthew D; Rodgers, Christopher T

    2016-03-01

    The translation of sophisticated phosphorus MR spectroscopy ((31)P-MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac (31)P spectra at 7T. We introduce the first surface-spoiling crusher coil for human cardiac (31)P-MRS at 7T. A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac (31)P-MRS at 7T. In a phantom, residual signals were 50 ± 10% with BISTRO (B1 -insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). A crusher coil is an SAR-efficient alternative for selectively suppressing skeletal muscle during cardiac (31)P-MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR-prohibitive, without compromising skeletal muscle suppression. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.

  1. Effects of gender, ejection fraction and weight on cardiac force development in patients undergoing cardiac surgery--an experimental examination.

    Science.gov (United States)

    Bening, Constanze; Weiler, Helge; Vahl, Christian-Friedrich

    2013-11-18

    It has long been recognized that differences exist between men and women in the impact of risc factors, symptoms, development and outcome of special diseases like the cardiovascular disease. Gender determines the cardiac baseline parameters like the number of cardiac myocyte, size and demand and may suggest differences in myofilament function among genders, which might be pronounced under pathological conditions. Does gender impact and maybe impair the contractile apparatus? Are the differences more prominent when other factors like weight, age, ejection fraction are added?Therefore we performed a study on 36 patients (21 male, 15 female) undergoing aortic valve replacement (AVR) or aortocoronary bypass operation (CABG) to examine the influence of gender, ejection fraction, surgical procedure and body mass index (BMI) on cardiac force development. Tissue was obtained from the right auricle and was stored in a special solution to prevent any stretching of the fibers. We used the skinned muscle fiber model and single muscle stripes, which were mounted on the "muscle machine" and exposed to a gradual increase of calcium concentration calculated by an attached computer program. 1.) In general female fibers show more force than male fibers: 3.9 mN vs. 2.0 mN (p = 0.03) 2.) Female fibers undergoing AVR achieved more force than those undergoing CABG operation: 5.7 mN vs. 2.8 mN (p = 0.02) as well as male fibers with AVR showed more force values compared to those undergoing CABG: 2.0 mN vs. 0.5 mN (p = 0.01). 3.) Male and female fibers of patients with EF > 55% developed significantly more force than from those with less ejection fraction than 30%: p = 0.002 for the male fibers (1.6 vs. 2.8 mN) and p = 0.04 for the female fibers (5.7 vs. 2.8 mN). 4.) Patients with a BMI between 18 till 25 develop significant more force than those with a BMI > 30: Females 5.1 vs. 2.6 mN; p 0.03, Males 3.8 vs. 0.8 mN; p 0.04). Our data suggest that female patients undergoing AVR or CABG

  2. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  3. Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    KAUST Repository

    Fink, Martin; Niederer, Steven A.; Cherry, Elizabeth M.; Fenton, Flavio H.; Koivumä ki, Jussi T.; Seemann, Gunnar; Thul, Rü diger; Zhang, Henggui; Sachse, Frank B.; Beard, Dan; Crampin, Edmund J.; Smith, Nicolas P.

    2011-01-01

    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field. © 2010 Elsevier Ltd.

  4. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V.

    1991-01-01

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in [ 3 H]glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 μM sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis

  5. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. (Univ. of South Florida, Tampa (USA))

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  6. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man.

    Science.gov (United States)

    van Opbergen, Chantal J M; van der Voorn, Stephanie M; Vos, Marc A; de Boer, Teun P; van Veen, Toon A B

    2018-05-07

    Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca 2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more 'humanized' model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. TVP1022 and propargylamine protect neonatal rat ventricular myocytes against doxorubicin-induced and serum starvation-induced cardiotoxicity.

    Science.gov (United States)

    Kleiner, Yana; Bar-Am, Orit; Amit, Tamar; Berdichevski, Alexandra; Liani, Esti; Maor, Gila; Reiter, Irina; Youdim, Moussa B H; Binah, Ofer

    2008-09-01

    We recently reported that propargylamine derivatives such as rasagiline (Azilect) and its S-isomer TVP1022 are neuroprotective. The aim of this study was to test the hypothesis that the neuroprotective agents TVP1022 and propargylamine (the active moiety of propargylamine derivatives) are also cardioprotective. We specifically investigated the protective efficacy of TVP1022 and propargylamine in neonatal rat ventricular myocytes (NRVM) against apoptosis induced by the anthracycline chemotherapeutic agent doxorubicin and by serum starvation. We demonstrated that pretreatment of NRVM cultures with TVP1022 or propargylamine attenuated doxorubicin-induced and serum starvation-induced apoptosis, inhibited the increase in cleaved caspase 3 levels, and reversed the decline in Bcl-2/Bax ratio. These cytoprotective effects were shown to reside in the propargylamine moiety. Finally, we showed that TVP1022 neither caused proliferation of the human cancer cell lines HeLa and MDA-231 nor interfered with the anti-cancer efficacy of doxorubicin. These results suggest that TVP1022 should be considered as a novel cardioprotective agent against ischemic insults and against anthracycline cardiotoxicity and can be coadministered with doxorubicin in the treatment of human malignancies.

  8. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers

    Directory of Open Access Journals (Sweden)

    Jung-Joon Cha

    2016-01-01

    Full Text Available Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells.

  9. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  10. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signaling in cardiac myocytes.

    Science.gov (United States)

    Bedioune, Ibrahim; Lefebvre, Florence; Lechêne, Patrick; Varin, Audrey; Domergue, Valérie; Kapiloff, Michael S; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2018-05-03

    β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. While the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP element repressor (ICER). Inhibition of PDE4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.

  11. Antiapoptotic Actions of Methyl Gallate on Neonatal Rat Cardiac Myocytes Exposed to H2O2

    Directory of Open Access Journals (Sweden)

    Sandhya Khurana

    2014-01-01

    Full Text Available Reactive oxygen species trigger cardiomyocyte cell death via increased oxidative stress and have been implicated in the pathogenesis of cardiovascular diseases. The prevention of cardiomyocyte apoptosis is a putative therapeutic target in cardioprotection. Polyphenol intake has been associated with reduced incidences of cardiovascular disease and better overall health. Polyphenols like epigallocatechin gallate (EGCG can reduce apoptosis of cardiomyocytes, resulting in better health outcomes in animal models of cardiac disorders. Here, we analyzed whether the antioxidant N-acetyl cysteine (NAC or polyphenols EGCG, gallic acid (GA or methyl gallate (MG can protect cardiomyocytes from cobalt or H2O2-induced stress. We demonstrate that MG can uphold viability of neonatal rat cardiomyocytes exposed to H2O2 by diminishing intracellular ROS, maintaining mitochondrial membrane potential, augmenting endogenous glutathione, and reducing apoptosis as evidenced by impaired Annexin V/PI staining, prevention of DNA fragmentation, and cleaved caspase-9 accumulation. These findings suggest a therapeutic value for MG in cardioprotection.

  12. A proton-activated, outwardly rectifying chloride channel in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Ma Zhiyong; Zhang Wei; Chen Liang; Wang Rong; Kan Xiaohong; Sun Guizhen; Liu Chunxi; Li Li; Zhang Yun

    2008-01-01

    Extracellular acidic pH-activated chloride channel I Cl,acid , has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize I Cl,acid in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for I Cl,acid revealed that EC 50 is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl - channel inhibitor DIDS (100 μM). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, I Cl,acid would play a role in regulation of EC function under these pathological conditions

  13. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  14. A dual potassium channel activator improves repolarization reserve and normalizes ventricular action potentials

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Di Diego, José M; Hansen, Rie Schultz

    2016-01-01

    in cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration. METHODS AND RESULTS: Ventricular myocytes were isolated and cultured for up to 48h. Current and voltage clamp recordings were made using patch...... of EADs. Our results suggest a potential benefit of K(+) current activators under conditions of reduced repolarization reserve including heart failure....

  15. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Suppression of skeletal muscle signal using a crusher coil: A human cardiac 31p‐MR spectroscopy study at 7 tesla

    Science.gov (United States)

    Clarke, William T.; Neubauer, Stefan; Robson, Matthew D.; Rodgers, Christopher T.

    2015-01-01

    Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac 31P‐MRS at 7T. Results In a phantom, residual signals were 50 ± 10% with BISTRO (B1‐insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). Conclusion A crusher coil is an SAR‐efficient alternative for selectively suppressing skeletal muscle during cardiac 31P‐MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR‐prohibitive, without compromising skeletal muscle suppression. Magn Reson Med 75:962–972, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:25924813

  17. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    OpenAIRE

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (...

  18. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  19. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    Science.gov (United States)

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  20. LIF is a contraction-induced myokine stimulating human myocyte proliferation

    DEFF Research Database (Denmark)

    Broholm, Christa; Laye, Matthew J; Brandt, Claus

    2011-01-01

    in skeletal muscle, but LIF was not detectable in plasma of the subjects. However, electrically stimulated cultured human myotubes produced and secreted LIF, suggesting that LIF is a myokine with local effects. The well-established exercise-induced signaling molecules PI3K, Akt and mTor contributed...... to the regulation of LIF in cultured human myotubes as chemical inhibition of PI3K and mTor and siRNA knockdown of Akt1 were independently sufficient to down regulate LIF. Human myoblast proliferation was increased by recombinant exogenous LIF and decreased by siRNA knockdown of the endogenous LIF receptor. Finally...

  1. New and emerging biomarkers in left ventricular systolic dysfunction--insight into dilated cardiomyopathy.

    Science.gov (United States)

    Gopal, Deepa M; Sam, Flora

    2013-08-01

    Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance, impaired contraction and dilation of the left ventricle (or both ventricles). Blood markers--known as "biomarkers"--allow insight into underlying pathophysiologic mechanisms and biologic pathways while predicting outcomes and guiding heart failure management and/or therapies. In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment, integrating these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones, and (h) renal biomarkers. Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure.

  2. Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions - Activin induces carp in smooth muscle cells

    NARCIS (Netherlands)

    de Waard, Vivian; van Achterberg, Tanja A. E.; Beauchamp, Nicholas J.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Objective-Cardiac ankyrin repeat protein (CARP) is a transcription factor-related protein that has been studied most extensively in the heart. In the present study, we investigated the expression and the potential function of CARP in human and murine atherosclerosis. Methods and Results-CARP

  3. Small and large animal models in cardiac contraction research: advantages and disadvantages.

    Science.gov (United States)

    Milani-Nejad, Nima; Janssen, Paul M L

    2014-03-01

    The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences. © 2013.

  4. The relationship between cardiac output and dynamic cerebral autoregulation in humans.

    Science.gov (United States)

    Deegan, B M; Devine, E R; Geraghty, M C; Jones, E; Ólaighin, G; Serrador, J M

    2010-11-01

    Cerebral autoregulation adjusts cerebrovascular resistance in the face of changing perfusion pressures to maintain relatively constant flow. Results from several studies suggest that cardiac output may also play a role. We tested the hypothesis that cerebral blood flow would autoregulate independent of changes in cardiac output. Transient systemic hypotension was induced by thigh-cuff deflation in 19 healthy volunteers (7 women) in both supine and seated positions. Mean arterial pressure (Finapres), cerebral blood flow (transcranial Doppler) in the anterior (ACA) and middle cerebral artery (MCA), beat-by-beat cardiac output (echocardiography), and end-tidal Pco(2) were measured. Autoregulation was assessed using the autoregulatory index (ARI) defined by Tiecks et al. (Tiecks FP, Lam AM, Aaslid R, Newell DW. Stroke 26: 1014-1019, 1995). Cerebral autoregulation was better in the supine position in both the ACA [supine ARI: 5.0 ± 0.21 (mean ± SE), seated ARI: 3.9 ± 0.4, P = 0.01] and MCA (supine ARI: 5.0 ± 0.2, seated ARI: 3.8 ± 0.3, P = 0.004). In contrast, cardiac output responses were not different between positions and did not correlate with cerebral blood flow ARIs. In addition, women had better autoregulation in the ACA (P = 0.046), but not the MCA, despite having the same cardiac output response. These data demonstrate cardiac output does not appear to affect the dynamic cerebral autoregulatory response to sudden hypotension in healthy controls, regardless of posture. These results also highlight the importance of considering sex when studying cerebral autoregulation.

  5. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice.

    Science.gov (United States)

    Hong, Fashui; Wu, Nan; Zhao, Xiangyu; Tian, Yusheng; Zhou, Yingjun; Chen, Ting; Zhai, Yanyu; Ji, Li

    2016-12-01

    In the past two decades, titanium dioxide nanoparticles (TiO 2 NPs) have been extensively used in medicine, food industry and other daily life, while their possible interactions with the their influence and human body on human health remain not well understood. Thus, the study was designed to examine whether long-term exposure to TiO 2 NPs cause myocardial dysfunction which is involved in cardiac lesions and alter expression of genes and proteins involving inflammatory response in the mouse heart. The findings showed that intragastric feeding for nine consecutive months with TiO 2 NPs resulted in titanium accumulation, infiltration of inflammatory cells and apoptosis of heart, reductions in net increases of body weight, cardiac indices of function (LV systolic pressure, maximal rate of pressure increase over time, maximal rate of pressure decrease over time and coronary flow), and increases in heart indices, cardiac indices of function (LV end-diastolic pressure and heart rate) in mice. TiO 2 NPs also decreased ATP production in the hearts. Furthermore, TiO 2 NPs increased expression of nuclear factor-κB, interleukin-lβ and tumour necrosis factor-α, and reduced expression of anti-inflammatory cytokines including suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the cardiac tissue. These results suggest that TiO 2 NPs may modulate the cardiac function and expression of inflammatory cytokines. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2917-2927, 2016. © 2016 Wiley Periodicals, Inc.

  6. Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model.

    Science.gov (United States)

    Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R

    2017-09-01

    Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017

  7. Cardiac regeneration using pluripotent stem cells—Progression to large animal models

    Directory of Open Access Journals (Sweden)

    James J.H. Chong

    2014-11-01

    Full Text Available Pluripotent stem cells (PSCs have indisputable cardiomyogenic potential and therefore have been intensively investigated as a potential cardiac regenerative therapy. Current directed differentiation protocols are able to produce high yields of cardiomyocytes from PSCs and studies in small animal models of cardiovascular disease have proven sustained engraftment and functional efficacy. Therefore, the time is ripe for cardiac regenerative therapies using PSC derivatives to be tested in large animal models that more closely resemble the hearts of humans. In this review, we discuss the results of our recent study using human embryonic stem cell derived cardiomyocytes (hESC-CM in a non-human primate model of ischemic cardiac injury. Large scale remuscularization, electromechanical coupling and short-term arrhythmias demonstrated by our hESC-CM grafts are discussed in the context of other studies using adult stem cells for cardiac regeneration.

  8. Chymase-dependent generation of angiotensin II from angiotensin-(1-12 in human atrial tissue.

    Directory of Open Access Journals (Sweden)

    Sarfaraz Ahmad

    Full Text Available Since angiotensin-(1-12 [Ang-(1-12] is a non-renin dependent alternate precursor for the generation of cardiac Ang peptides in rat tissue, we investigated the metabolism of Ang-(1-12 by plasma membranes (PM isolated from human atrial appendage tissue from nine patients undergoing cardiac surgery for primary control of atrial fibrillation (MAZE surgical procedure. PM was incubated with highly purified ¹²⁵I-Ang-(1-12 at 37°C for 1 h with or without renin-angiotensin system (RAS inhibitors [lisinopril for angiotensin converting enzyme (ACE, SCH39370 for neprilysin (NEP, MLN-4760 for ACE2 and chymostatin for chymase; 50 µM each]. ¹²⁵I-Ang peptide fractions were identified by HPLC coupled to an inline γ-detector. In the absence of all RAS inhibitor, ¹²⁵I-Ang-(1-12 was converted into Ang I (2±2%, Ang II (69±21%, Ang-(1-7 (5±2%, and Ang-(1-4 (2±1%. In the absence of all RAS inhibitor, only 22±10% of ¹²⁵I-Ang-(1-12 was unmetabolized, whereas, in the presence of the all RAS inhibitors, 98±7% of ¹²⁵I-Ang-(1-12 remained intact. The relative contribution of selective inhibition of ACE and chymase enzyme showed that ¹²⁵I-Ang-(1-12 was primarily converted into Ang II (65±18% by chymase while its hydrolysis into Ang II by ACE was significantly lower or undetectable. The activity of individual enzyme was calculated based on the amount of Ang II formation. These results showed very high chymase-mediated Ang II formation (28±3.1 fmol × min⁻¹ × mg⁻¹, n = 9 from ¹²⁵I-Ang-(1-12 and very low or undetectable Ang II formation by ACE (1.1±0.2 fmol×min⁻¹ × mg⁻¹. Paralleling these findings, these tissues showed significant content of chymase protein that by immunocytochemistry were primarily localized in atrial cardiac myocytes. In conclusion, we demonstrate for the first time in human cardiac tissue a dominant role of cardiac chymase in the formation of Ang II from Ang-(1-12.

  9. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  10. Pertussis toxin treatment attenuates some effects of insulin in BC3H-1 murine myocytes

    International Nuclear Information System (INIS)

    Luttrell, L.M.; Hewlett, E.L.; Romero, G.; Rogol, A.D.

    1988-01-01

    The effects of pertussis toxin (PT) treatment on insulin-stimulated myristoyl-diacylglycerol (DAG) generation, hexose transport, and thymidine incorporation were studied in differentiated BC3H-1 mycocytes. Insulin treatment caused a biphasic increase in myristoyl-DAG production which was abolished in myocytes treated with PT. There was no effect of PT treatment on basal (nonstimulated) myristoyl-DAG production. Insulin-stimulated hydrolysis of a membrane phosphatidylinositol glycan was blocked by PT treatment. ADP-ribosylation of BC3H-1 plasma membranes with [ 32 P]NAD revealed a 40-kDa protein as the major PT substrate in vivo and in vitro. The time course and dose dependence of the effects of PT on diacylglycerol generation correlated with the in vivo ADP-ribosylation of the 40-kDa substrate. Pertussis toxin treatment resulted in a 71% attenuation of insulin-stimulated hexose uptake without effect on either basal or phorbol ester-stimulated uptake. The stimulatory effects of insulin and fetal calf serum on [ 3 H]thymidine incorporation into quiescent myocytes were attenuated by 61 and 59%, respectively, when PT was added coincidently with the growth factors. Nonstimulated and EGF-stimulated [ 3 H]thymidine incorporation was unaffected by PT treatment. These data suggest that a PT-sensitive G protein is involved in the cellular signaling mechanisms of insulin

  11. Physiological changes in human cardiac sympathetic innervation and activity assessed by 123I-metaiodobenzylguanidine (MIBG) imaging

    International Nuclear Information System (INIS)

    Sakata, Kazuyuki; Iida, Kei; Mochizuki, Nao; Ito, Michitoshi; Nakaya, Yoshihiro

    2009-01-01

    Physiologic changes in the human sympathetic nervous system (SNS) may be associated with cardiovascular diseases, so the present study assessed the age and gender differences in global cardiac SNS in normal subjects. The 163 subjects (74 men, 89 women; age range 40-89 years) whose coronary arteriogram was normal, and who had no other cardiac or neurohormonal diseases, and no medication affecting the autonomic nervous system were included. All study subjects underwent metaiodobenzylguanidine imaging. Both initial and delayed heart-to-mediastinum (H/M) ratios had a significant gender difference and showed a progressive decrease with aging. In addition, the initial H/M ratio had a significant positive correlation with the delayed H/M ratio (r=0.89, P<0.0001). Females (50-59 years) demonstrated significantly higher delayed H/M ratio than males of the same age. After the age of 60, the delayed H/M ratio in females progressively decreased with aging, similar to males. As for the washout rate, both genders had a significantly progressive increase with aging. In addition, there was a significant decrease in the delayed H/M ratio in 10 females with surgical menopause compared with 15 age-matched females without surgical menopause. Cardiac SNS appears to be regulated by various physiological factors. (author)

  12. Human Cardiac 31P-MR Spectroscopy at 3 Tesla Cannot Detect Failing Myocardial Energy Homeostasis during Exercise

    Directory of Open Access Journals (Sweden)

    Adrianus J. Bakermans

    2017-11-01

    Full Text Available Phosphorus-31 magnetic resonance spectroscopy (31P-MRS is a unique non-invasive imaging modality for probing in vivo high-energy phosphate metabolism in the human heart. We investigated whether current 31P-MRS methodology would allow for clinical applications to detect exercise-induced changes in (patho-physiological myocardial energy metabolism. Hereto, measurement variability and repeatability of three commonly used localized 31P-MRS methods [3D image-selected in vivo spectroscopy (ISIS and 1D ISIS with 1D chemical shift imaging (CSI oriented either perpendicular or parallel to the surface coil] to quantify the myocardial phosphocreatine (PCr to adenosine triphosphate (ATP ratio in healthy humans (n = 8 at rest were determined on a clinical 3 Tesla MR system. Numerical simulations of myocardial energy homeostasis in response to increased cardiac work rates were performed using a biophysical model of myocardial oxidative metabolism. Hypertrophic cardiomyopathy was modeled by either inefficient sarcomere ATP utilization or decreased mitochondrial ATP synthesis. The effect of creatine depletion on myocardial energy homeostasis was explored for both conditions. The mean in vivo myocardial PCr/ATP ratio measured with 3D ISIS was 1.57 ± 0.17 with a large repeatability coefficient of 40.4%. For 1D CSI in a 1D ISIS-selected slice perpendicular to the surface coil, the PCr/ATP ratio was 2.78 ± 0.50 (repeatability 42.5%. With 1D CSI in a 1D ISIS-selected slice parallel to the surface coil, the PCr/ATP ratio was 1.70 ± 0.56 (repeatability 43.7%. The model predicted a PCr/ATP ratio reduction of only 10% at the maximal cardiac work rate in normal myocardium. Hypertrophic cardiomyopathy led to lower PCr/ATP ratios for high cardiac work rates, which was exacerbated by creatine depletion. Simulations illustrated that when conducting cardiac 31P-MRS exercise stress testing with large measurement error margins, results obtained under pathophysiologic

  13. Human Cardiac 31P-MR Spectroscopy at 3 Tesla Cannot Detect Failing Myocardial Energy Homeostasis during Exercise

    Science.gov (United States)

    Bakermans, Adrianus J.; Bazil, Jason N.; Nederveen, Aart J.; Strijkers, Gustav J.; Boekholdt, S. Matthijs; Beard, Daniel A.; Jeneson, Jeroen A. L.

    2017-01-01

    Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) is a unique non-invasive imaging modality for probing in vivo high-energy phosphate metabolism in the human heart. We investigated whether current 31P-MRS methodology would allow for clinical applications to detect exercise-induced changes in (patho-)physiological myocardial energy metabolism. Hereto, measurement variability and repeatability of three commonly used localized 31P-MRS methods [3D image-selected in vivo spectroscopy (ISIS) and 1D ISIS with 1D chemical shift imaging (CSI) oriented either perpendicular or parallel to the surface coil] to quantify the myocardial phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio in healthy humans (n = 8) at rest were determined on a clinical 3 Tesla MR system. Numerical simulations of myocardial energy homeostasis in response to increased cardiac work rates were performed using a biophysical model of myocardial oxidative metabolism. Hypertrophic cardiomyopathy was modeled by either inefficient sarcomere ATP utilization or decreased mitochondrial ATP synthesis. The effect of creatine depletion on myocardial energy homeostasis was explored for both conditions. The mean in vivo myocardial PCr/ATP ratio measured with 3D ISIS was 1.57 ± 0.17 with a large repeatability coefficient of 40.4%. For 1D CSI in a 1D ISIS-selected slice perpendicular to the surface coil, the PCr/ATP ratio was 2.78 ± 0.50 (repeatability 42.5%). With 1D CSI in a 1D ISIS-selected slice parallel to the surface coil, the PCr/ATP ratio was 1.70 ± 0.56 (repeatability 43.7%). The model predicted a PCr/ATP ratio reduction of only 10% at the maximal cardiac work rate in normal myocardium. Hypertrophic cardiomyopathy led to lower PCr/ATP ratios for high cardiac work rates, which was exacerbated by creatine depletion. Simulations illustrated that when conducting cardiac 31P-MRS exercise stress testing with large measurement error margins, results obtained under pathophysiologic conditions may

  14. Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer.

    Science.gov (United States)

    Blackwell, Daniel J; Zak, Taylor J; Robia, Seth L

    2016-09-20

    The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas.

    Science.gov (United States)

    Hamidi, Sofiane; Letourneur, Didier; Aid-Launais, Rachida; Di Stefano, Antonio; Vainchenker, William; Norol, Françoise; Le Visage, Catherine

    2014-04-01

    Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (prelease TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (pstress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.

  16. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Assessment of human MAPCs for stem cell transplantation and cardiac regeneration after myocardial infarction in SCID mice.

    Science.gov (United States)

    Dimomeletis, Ilias; Deindl, Elisabeth; Zaruba, Marc; Groebner, Michael; Zahler, Stefan; Laslo, Saskia M; David, Robert; Kostin, Sawa; Deutsch, Markus A; Assmann, Gerd; Mueller-Hoecker, Josef; Feuring-Buske, Michaela; Franz, Wolfgang M

    2010-11-01

    Clinical studies suggest that transplantation of total bone marrow (BM) after myocardial infarction (MI) is feasible and potentially effective. However, focusing on a defined BM-derived stem cell type may enable a more specific and optimized treatment. Multilineage differentiation potential makes BM-derived multipotent adult progenitor cells (MAPCs) a promising stem cell pool for regenerative purposes. We analyzed the cardioregenerative potential of human MAPCs in a murine model of myocardial infarction. Human MAPCs were selected by negative depletion of CD45(+)/glycophorin(+) BM cells and plated on fibronectin-coated dishes. In vitro, stem cells were analyzed by reverse transcription polymerase chain reaction. In vivo, we transplanted human MAPCs (5 × 10(5)) by intramyocardial injection after MI in severe combined immunodeficient (SCID) beige mice. Six and 30 days after the surgical procedure, pressure-volume relationships were investigated in vivo. Heart tissues were analyzed immunohistochemically. Reverse transcription polymerase chain reaction experiments on early human MAPC passages evidenced an expression of Oct-4, a stem cell marker indicating pluripotency. In later passages, cardiac markers (Nkx2.5, GATA4, MLC-2v, MLC-2a, ANP, cTnT, cTnI,) and smooth muscle cell markers (SMA, SM22α) were expressed. Transplantation of human MAPCs into the ischemic border zone after MI resulted in an improved cardiac function at day 6 (ejection fraction, 26% vs 20%) and day 30 (ejection fraction, 30% vs 23%). Confirmation of human MAPC marker vimentin in immunohistochemistry demonstrated that human MAPC integrated in the peri-infarct region. The proliferation marker Ki67 was absent in immunohistochemistry and teratoma formation was not found, indicating no tumorous potential of transplanted human MAPCs in the tumor-sensitive SCID model. Transplantation of human MAPCs after MI ameliorates myocardial function, which may be explained by trophic effects of human MAPCs. Lack of

  18. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir E Bondarenko

    Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of

  19. New and Emerging Biomarkers in Left Ventricular Systolic Dysfunction - Insight into Dilated Cardiomyopathy

    Science.gov (United States)

    Gopal, Deepa M.; Sam, Flora

    2013-01-01

    Background Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance and impaired contraction and dilation of the left (or both) ventricles. Blood markers – known as “biomarkers” allow insight into underlying pathophysiologic mechanisms and biologic pathways, while predicting outcomes and guiding heart failure management and/or therapies. Content In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment with clear interaction between these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones and (h) renal biomarkers. Summary Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure. PMID:23609585

  20. Triptolide Upregulates Myocardial Forkhead Helix Transcription Factor p3 Expression and Attenuates Cardiac Hypertrophy

    Science.gov (United States)

    Ding, Yuan-Yuan; Li, Jing-Mei; Guo, Feng-Jie; Liu, Ya; Tong, Yang-Fei; Pan, Xi-Chun; Lu, Xiao-Lan; Ye, Wen; Chen, Xiao-Hong; Zhang, Hai-Gang

    2016-01-01

    The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson’s trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes. PMID:27965581

  1. Pharmacological and physiological assessment of serotonin formation and degradation in isolated preparations from mouse and human hearts.

    Science.gov (United States)

    Gergs, Ulrich; Jung, Franziska; Buchwalow, Igor B; Hofmann, Britt; Simm, Andreas; Treede, Hendrik; Neumann, Joachim

    2017-12-01

    Using transgenic (TG) mice that overexpress the human serotonin (5-HT) 4a receptor specifically in cardiomyocytes, we wanted to know whether 5-HT can be formed and degraded in the mammalian heart and whether this can likewise lead to inotropic and chronotropic effects in this TG model. We noted that the 5-HT precursor 5-hydroxy-tryptophan (5-HTP) can exert inotropic and chronotropic effects in cardiac preparations from TG mice but not from wild-type (WT) mice; similar results were found in human atrial preparations as well as in intact TG animals using echocardiography. Moreover, by immunohistochemistry we could detect 5-HT metabolizing enzymes and 5-HT transporters in mouse hearts as well as in human atria. Hence, in the presence of an inhibitor of aromatic l-amino acid decarboxylase, the positive inotropic effects of 5-HTP were absent in TG and isolated human atrial preparations, and, moreover, inhibitors of enzymes involved in 5-HT degradation enhanced the efficacy of 5-HT in TG atria. A releaser of neurotransmitters increased inotropy in the isolated TG atrium, and this effect could be blocked by a 5-HT 4a receptor antagonist. Fluoxetine, an inhibitor of 5-HT uptake, elevated the potency of 5-HT to increase contractility in the TG atrium. In addition, inhibitors of organic cation and monoamine transporters apparently reduced the positive inotropic potency of 5-HT in the TG atrium. Hence, we tentatively conclude that a local production and degradation of 5-HT in the mammalian heart and more specifically in mammalian myocytes probably occurs. Conceivably, this formation of 5-HT and possibly impaired degradation may be clinically relevant in cases of unexplained tachycardia and other arrhythmias. NEW & NOTEWORTHY The present work suggests that inotropically active serotonin (5-HT) can be formed in the mouse and human heart and probably by cardiomyocytes themselves. Moreover, active degradation of 5-HT seems to occur in the mammalian heart. These findings may again

  2. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, H. L.; Bink-Boelkens, M. T.; Bezzina, C. R.; Viswanathan, P. C.; Beaufort-Krol, G. C.; van Tintelen, P. J.; van den Berg, M. P.; Wilde, A. A.; Balser, J. R.

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening; however, a

  3. Impact of titin strain on the cardiac slow force response.

    Science.gov (United States)

    Ait-Mou, Younss; Zhang, Mengjie; Martin, Jody L; Greaser, Marion L; de Tombe, Pieter P

    2017-11-01

    Stretch of myocardium, such as occurs upon increased filling of the cardiac chamber, induces two distinct responses: an immediate increase in twitch force followed by a slower increase in twitch force that develops over the course of several minutes. The immediate response is due, in part, to modulation of myofilament Ca 2+ sensitivity by sarcomere length (SL). The slowly developing force response, termed the Slow Force Response (SFR), is caused by a slowly developing increase in intracellular Ca 2+ upon sustained stretch. A blunted immediate force response was recently reported for myocardium isolated from homozygous giant titin mutant rats (HM) compared to muscle from wild-type littermates (WT). Here, we examined the impact of titin isoform on the SFR. Right ventricular trabeculae were isolated and mounted in an experimental chamber. SL was measured by laser diffraction. The SFR was recorded in response to a 0.2 μm SL stretch in the presence of [Ca 2+ ] o  = 0.4 mM, a bathing concentration reflecting ∼50% of maximum twitch force development at 25 °C. Presence of the giant titin isoform (HM) was associated with a significant reduction in diastolic passive force upon stretch, and ∼50% reduction of the magnitude of the SFR; the rate of SFR development was unaffected. The sustained SL stretch was identical in both muscle groups. Therefore, our data suggest that cytoskeletal strain may underlie directly the cellular mechanisms that lead to the increased intracellular [Ca 2+ ] i that causes the SFR, possibly by involving cardiac myocyte integrin signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Use of 5-Bromodeoxyuridine and irradiation for the estimation of the myoblast and myocyte content of primary rat heart cell cultures

    International Nuclear Information System (INIS)

    Masse, M.J.O.; Harary, I.

    1980-01-01

    A method for killing dividing cells was adapted for the elimination of dividing heart muscle cells (myoblasts) in cultures. We have used this method to demonstrate their presence and to estimate their number as well as the number of nondividing heart muscle cells (myocytes) in the neo-natal rat heart. Cells were cultivated in BUdR (5-bromodeoxyuridine) 10 -4 M for 3 days and then irradiated with long uv light. The selective elimination of dividing cells led to a loss of myosin Ca 2+ -activated ATPase in the cultures. The percent of ATPase left after irradiation was 32% of the control in cultures derived from 1-day postnatal rats and 48% in cultures from 4-day postnatal rats. This reflects an in vivo shift of myoblasts to myocytes in the muscle cell population as the rat ages

  5. Cardiac function studies

    International Nuclear Information System (INIS)

    Horn, H.J.

    1986-01-01

    A total of 27 patients were subjected tointramyocardial sequential scintiscanning (first pass) using 99m-Tc human serum albumin. A refined method is described that is suitable to analyse clinically relevant parameters like blood volume, cardiac output, ejection fraction, stroke volume, enddiastolic and endsystolic volumes as well as pulmonal transition time and uses a complete camaracomputer system adapted to the requirements of a routine procedure. Unless there is special hardware available, the method does not yet appear mature enough to be put into general practice. Its importance recently appeared in a new light due to the advent of particularly shortlived isotopes. For the time being, however, ECG-triggered equilibrium studies are to be preferred for cardiac function tests. (TRV) [de

  6. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  7. A Transcriptomic and Epigenomic Comparison of Fetal and Adult Human Cardiac Fibroblasts Reveals Novel Key Transcription Factors in Adult Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Malin K.B. Jonsson, PhD

    2016-12-01

    Full Text Available Cardiovascular disease remains the number one global cause of death and presents as multiple phenotypes in which the interplay between cardiomyocytes and cardiac fibroblasts (CFs has become increasingly highlighted. Fetal and adult CFs influence neighboring cardiomyocytes in different ways. Thus far, a detailed comparison between the two is lacking. Using a genome-wide approach, we identified and validated 2 crucial players for maintaining the adult primary human CF phenotype. Knockdown of these factors induced significant phenotypical changes, including senescence and reduced collagen gene expression. These may now represent novel therapeutic targets against deleterious functions of CFs in adult cardiovascular disease.

  8. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  9. HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes.

    Science.gov (United States)

    Meraviglia, Viviana; Bocchi, Leonardo; Sacchetto, Roberta; Florio, Maria Cristina; Motta, Benedetta M; Corti, Corrado; Weichenberger, Christian X; Savi, Monia; D'Elia, Yuri; Rosato-Siri, Marcelo D; Suffredini, Silvia; Piubelli, Chiara; Pompilio, Giulio; Pramstaller, Peter P; Domingues, Francisco S; Stilli, Donatella; Rossini, Alessandra

    2018-01-31

    SERCA2a is the Ca 2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.

  10. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    Science.gov (United States)

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Glutathionylation-Dependence of Na+-K+-Pump Currents Can Mimic Reduced Subsarcolemmal Na+ Diffusion

    OpenAIRE

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald?J.; Rasmussen, Helge?H.

    2016-01-01

    The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no know...

  12. Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.

    Science.gov (United States)

    Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Noble, Denis; Giles, Wayne

    2017-11-01

    In healthy mammalian hearts the action potential (AP) waveform initiates and modulates each contraction, or heartbeat. As a result, AP height and duration are key physiological variables. In addition, rate-dependent changes in ventricular AP duration (APD), and variations in APD at a fixed heart rate are both reliable biomarkers of electrophysiological stability. Present guidelines for the likelihood that candidate drugs will increase arrhythmias rely on small changes in APD and Q-T intervals as criteria for safety pharmacology decisions. However, both of these measurements correspond to the final repolarization of the AP. Emerging clinical evidence draws attention to the early repolarization phase of the action potential (and the J-wave of the ECG) as an additional important biomarker for arrhythmogenesis. Here we provide a mechanistic background to this early repolarization syndrome by summarizing the evidence that both the initial depolarization and repolarization phases of the cardiac action potential can exhibit distinct time- and voltage-dependent thresholds, and also demonstrating that both can show regenerative all-or-none behaviour. An important consequence of this is that not all of the dynamics of action potential repolarization in human ventricle can be captured by data from single myocytes when these results are expressed as 'repolarization reserve'. For example, the complex pattern of cell-to-cell current flow that is responsible for AP conduction (propagation) within the mammalian myocardium can change APD and the Q-T interval of the electrocardiogram alter APD stability, and modulate responsiveness to pharmacological agents (such as Class III anti-arrhythmic drugs). © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  13. Clinical comparison of cardiac blood pool visualization with technetium-99m red blood cells labeled in vivo and with technetium-99m human serum albumin

    International Nuclear Information System (INIS)

    Thrall, J.H.; Freitas, J.E.; Swanson, D.; Rogers, W.L.; Clare, J.M.; Brown, M.L.; Pitt, B.

    1978-01-01

    Technetium-99m red blood cells (Tc-RBC) labeled by an in vivo technique were compared with two preparations of Tc-99m human serum albumin (HSA) for cardiac blood-pool imaging. Relative distribution of the tracers was analyzed on end-diastolic frames of gated blood-pool studies and on whole-body (head to mid-thigh) anterior pinhole images. The Tc-RBC demonstrated greater relative percentage localization in the cardiac blood pool, higher target-to-background ratios in the left ventricle, and less liver concentration. For cardiac blood-pool imaging, Tc-RBC labeled by the in vivo approach appears to be superior to the two Tc-HSA preparations studied

  14. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  15. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  16. Composition and distribution of elements and ultrastructural topography of a human cardiac calculus.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Huang, Pei-Jung; Chu, Yu-Ting; Lin, Shan-Yang

    2013-04-01

    Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)-energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson's correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM-EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.

  17. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  18. Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 MIBG autoradiography and PGP 9.5 immunohistochemistry

    International Nuclear Information System (INIS)

    Jeon, T.J.; Lee, J.D.; Ha, J.-W.; Yang, W.I.; Cho, S.H.

    2000-01-01

    Doxorubicin is one of the most useful anticancer agents, but its repeated administration can induce irreversible cardiomyopathy as a major complication. The purpose of this study was to investigate doxorubicin toxicity on cardiac sympathetic neurons using iodine-131-metaiodobenzylguanidine (MIBG) and protein gene product (PGP) 9.5 immunohistochemistry, which is a marker of cardiac innervation. Wistar rats were treated with doxorubicin (2 mg/kg, i.v.) once a week for 4 (n=5), 6 (n=6) or 8 (n=7) weeks consecutively. Left ventricular ejection fraction (LVEF), calculated by M-mode echocardiography, was used as an indicator of cardiac function. Plasma noradrenaline (NA) concentration was measured by high-performance liquid chromatography (HPLC). 131 I-MIBG uptake of the left ventricular wall (24 ROIs) was measured by autoradiography. 131 I-MIBG uptake pattern was compared with histopathological results, the neuronal population on PGP 9.5 immunohistochemistry and the degree of myocyte damage assessed using a visual scoring system on haematoxylin and eosin and Masson's trichrome staining. LVEF was significantly decreased in the 8-week group (P 131 I-MIBG uptake ratio of subepicardium to subendocardium were significantly increased (P<0.05) in the 8-week group as compared with the control group. It may be concluded that radioiodinated MIBG is a reliable marker for the detection of cardiac adrenergic neuronal damage in doxorubicin-induced cardiomyopathy; it detects such damage earlier than do other clinical parameters and in this study showed a good correlation with the reduction in the neuronal population on PGP 9.5 stain. The subendocardial layer appeared to be more vulnerable to doxorubicin than the subepicardium. (orig.)

  19. Divergent Requirements for EZH1 in Heart Development Versus Regeneration.

    Science.gov (United States)

    Ai, Shanshan; Yu, Xianhong; Li, Yumei; Peng, Yong; Li, Chen; Yue, Yanzhu; Tao, Ge; Li, Chuanyun; Pu, William T; He, Aibin

    2017-07-07

    Polycomb repressive complex 2 is a major epigenetic repressor that deposits methylation on histone H3 on lysine 27 (H3K27me) and controls differentiation and function of many cells, including cardiac myocytes. EZH1 and EZH2 are 2 alternative catalytic subunits with partial functional redundancy. The relative roles of EZH1 and EZH2 in heart development and regeneration are unknown. We compared the roles of EZH1 versus EZH2 in heart development and neonatal heart regeneration. Heart development was normal in Ezh1 -/- ( Ezh 1 knockout) and Ezh2 f/f ::cTNT -Cre ( Ezh 2 knockout) embryos. Ablation of both genes in Ezh1 -/- ::Ezh2 f/f ::cTNT -Cre embryos caused lethal heart malformations, including hypertrabeculation, compact myocardial hypoplasia, and ventricular septal defect. Epigenome and transcriptome profiling showed that derepressed genes were upregulated in a manner consistent with total EZH dose. In neonatal heart regeneration, Ezh1 was required, but Ezh2 was dispensable. This finding was further supported by rescue experiments: cardiac myocyte-restricted re-expression of EZH1 but not EZH2 restored neonatal heart regeneration in Ezh 1 knockout. In myocardial infarction performed outside of the neonatal regenerative window, EZH1 but not EZH2 likewise improved heart function and stimulated cardiac myocyte proliferation. Mechanistically, EZH1 occupied and activated genes related to cardiac growth. Our work unravels divergent mechanisms of EZH1 in heart development and regeneration, which will empower efforts to overcome epigenetic barriers to heart regeneration. © 2017 American Heart Association, Inc.

  20. Human umbilical cord mesenchymal stromal cells suppress MHC class II expression on rat vascular endothelium and prolong survival time of cardiac allograft

    Science.gov (United States)

    Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng

    2014-01-01

    Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177

  1. Does a run/walk strategy decrease cardiac stress during a marathon in non-elite runners?

    Science.gov (United States)

    Hottenrott, Kuno; Ludyga, Sebastian; Schulze, Stephan; Gronwald, Thomas; Jäger, Frank-Stephan

    2016-01-01

    Although alternating run/walk-periods are often recommended to novice runners, it is unclear, if this particular pacing strategy reduces the cardiovascular stress during prolonged exercise. Therefore, the aim of the study was to compare the effects of two different running strategies on selected cardiac biomarkers as well as marathon performance. Randomized experimental trial in a repeated measure design. Male (n=22) and female subjects (n=20) completed a marathon either with a run/walk strategy or running only. Immediately after crossing the finishing line cardiac biomarkers were assessed in blood taken from the cubital vein. Before (-7 days) and after the marathon (+4 days) subjects also completed an incremental treadmill test. Despite different pacing strategies, run/walk strategy and running only finished the marathon with similar times (04:14:25±00:19:51 vs 04:07:40±00:27:15 [hh:mm:ss]; p=0.377). In both groups, prolonged exercise led to increased B-type natriuretic peptide, creatine kinase MB isoenzyme and myoglobin levels (pmarathon. Elevated cTnI concentrations were observable in only two subjects. B-type natriuretic peptide (r=-0.363; p=0.041) and myoglobin levels (r=-0.456; p=0.009) were inversely correlated with the velocity at the individual anaerobic threshold. Run/walk strategy compared to running only reported less muscle pain and fatigue (p=0.006) after the running event. In conclusion, the increase in cardiac biomarkers is a reversible, physiological response to strenuous exercise, indicating temporary stress on the myocyte and skeletal muscle. Although a combined run/walk strategy does not reduce the load on the cardiovascular system, it allows non-elite runners to achieve similar finish times with less (muscle) discomfort. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight.

    Science.gov (United States)

    Hughson, Richard L; Peterson, Sean D; Yee, Nicholas J; Greaves, Danielle K

    2017-11-01

    Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, P < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight

  3. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    Science.gov (United States)

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  4. Liberación de endotelina-1 por angiotensina ll en miocitos cardíacos aislados Angiotensin II-induced endothelin-1 release in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    María C. Villa-Abrille

    2006-06-01

    Full Text Available Muchos de los efectos de la angiotensina II (Ang II son mediados en realidad por la acción de endotelina (ET endógena liberada y/o producida en respuesta a la Ang II. En este trabajo evaluamos la interacción Ang II/ET-1, sus consecuencias en la contractilidad cardíaca y el papel de las especies reactivas del oxígeno (EROs. Se usaron cardiomiocitos aislados de gato. La Ang II, 1 nM, produjo un efecto inotrópico positivo (EIP de 31.8±3.8% que fue cancelado por inhibición de los receptores AT1, de los receptores de ET, del intercambiador Na+/H+ (NHE, del modo inverso del intercambiador Na+/Ca2+ (NCX o por el secuestro de EROs. La Ang II, 100 nM, produjo un EIP de 70.5±7.6% que fue cancelado por inhibición de los receptores AT1 y bloqueado en parte por inhibición de los receptores de ET, del NHE, del modo inverso del NCX o por el secuestro de EROs. La Ang II, 1 nM, incrementó el ARNm de la preproET-1 lo cual fue anulado por el bloqueo de los receptores AT1. Los resultados permiten concluir que el EIP de la Ang II es debido a la acción de la ET-1 endógena liberada/formada por la Ang II. La ET-1 produce: estimulación del NHE, activación del modo inverso del NCX y un consecuente EIP. Dentro de esta cascada también participarían los EROs.Many of the effects thought to be due to angiotensin II (Ang II are due to the release/formation of endothelin (ET. We tested whether Ang II elicits its positive inotropic effect (PIE by the action of endogenous ET-1 and the role played by the reactive oxygen species (ROS in this mechanism. Experiments were performed in cat isolated ventricular myocytes in which sarcomere shortening (SS was measured to asses contractility after pharmacological interventions and the effect of Ang II on inotropism were analyzed. Ang II 1 nM increased SS by 31.8±3.8% (p<0.05. This PIE was cancelled by AT1 receptor blockade, by ET-1 receptors blockade, by Na+/H+ exchanger (NHE inhibition, by reverse mode Na+/Ca2

  5. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    International Nuclear Information System (INIS)

    Duverger, James Elber; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-01-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction–diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh–Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation. (paper)

  6. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    Science.gov (United States)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  7. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    Science.gov (United States)

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  8. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Caioli, Silvia; Murdocca, Michela; Serafino, Annalucia; Girasole, Marco; Dinarelli, Simone; Longo, Giovanni; Pucci, Sabina; Botta, Annalisa; Novelli, Giuseppe; Zona, Cristina; Mango, Ruggiero; Sangiuolo, Federica

    2018-03-15

    Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  10. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    Science.gov (United States)

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  11. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland

  12. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury.

    Science.gov (United States)

    Sadi, Al Muktafi; Afroze, Talat; Siraj, M Ahsan; Momen, Abdul; White-Dzuro, Colin; Zarrin-Khat, Dorrin; Handa, Shivalika; Ban, Kiwon; Kabir, M Golam; Trivieri, Maria G; Gros, Robert; Backx, Peter; Husain, Mansoor

    2018-03-30

    Background: Heart failure (HF) is associated with reduced expression of plasma membrane Ca 2+ -ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) ex vivo , and HF following experimental myocardial infarction (MI) in vivo Methods and results: Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca 2+ -regulatory genes, and induced hypertrophy without significant differences in Ca 2+ transients or diastolic Ca 2+ concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy in vivo In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF. Conclusions: Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Curcumin as a potential protective compound against cardiac diseases.

    Science.gov (United States)

    Jiang, Shuai; Han, Jing; Li, Tian; Xin, Zhenlong; Ma, Zhiqiang; Di, Wencheng; Hu, Wei; Gong, Bing; Di, Shouyin; Wang, Dongjin; Yang, Yang

    2017-05-01

    Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mouse models of long QT syndrome

    Science.gov (United States)

    Salama, Guy; London, Barry

    2007-01-01

    Congenital long QT syndrome is a rare inherited condition characterized by prolongation of action potential duration (APD) in cardiac myocytes, prolongation of the QT interval on the surface electrocardiogram (ECG), and an increased risk of syncope and sudden death due to ventricular tachyarrhythmias. Mutations of cardiac ion channel genes that affect repolarization cause the majority of the congenital cases. Despite detailed characterizations of the mutated ion channels at the molecular level, a complete understanding of the mechanisms by which individual mutations may lead to arrhythmias and sudden death requires study of the intact heart and its modulation by the autonomic nervous system. Here, we will review studies of molecularly engineered mice with mutations in the genes (a) known to cause long QT syndrome in humans and (b) specific to cardiac repolarization in the mouse. Our goal is to provide the reader with a comprehensive overview of mouse models with long QT syndrome and to emphasize the advantages and limitations of these models. PMID:17038432

  15. Potential clinical relevance of the 'little brain' on the mammalian heart.

    Science.gov (United States)

    Armour, J A

    2008-02-01

    It is hypothesized that the heart possesses a nervous system intrinsic to it that represents the final relay station for the co-ordination of regional cardiac indices. This 'little brain' on the heart is comprised of spatially distributed sensory (afferent), interconnecting (local circuit) and motor (adrenergic and cholinergic efferent) neurones that communicate with others in intrathoracic extracardiac ganglia, all under the tonic influence of central neuronal command and circulating catecholamines. Neurones residing from the level of the heart to the insular cortex form temporally dependent reflexes that control overlapping, spatially determined cardiac indices. The emergent properties that most of its components display depend primarily on sensory transduction of the cardiovascular milieu. It is further hypothesized that the stochastic nature of such neuronal interactions represents a stabilizing feature that matches cardiac output to normal corporal blood flow demands. Thus, with regard to cardiac disease states, one must consider not only cardiac myocyte dysfunction but also the fact that components within this neuroaxis may interact abnormally to alter myocyte function. This review emphasizes the stochastic behaviour displayed by most peripheral cardiac neurones, which appears to be a consequence of their predominant cardiac chemosensory inputs, as well as their complex functional interconnectivity. Despite our limited understanding of the whole, current data indicate that the emergent properties displayed by most neurones comprising the cardiac neuroaxis will have to be taken into consideration when contemplating the targeting of its individual components if predictable, long-term therapeutic benefits are to accrue.

  16. Genetic engineering and therapy for inherited and acquired cardiomyopathies.

    Science.gov (United States)

    Day, Sharlene; Davis, Jennifer; Westfall, Margaret; Metzger, Joseph

    2006-10-01

    The cardiac myofilaments consist of a highly ordered assembly of proteins that collectively generate force in a calcium-dependent manner. Defects in myofilament function and its regulation have been implicated in various forms of acquired and inherited human heart disease. For example, during cardiac ischemia, cardiac myocyte contractile performance is dramatically downregulated due in part to a reduced sensitivity of the myofilaments to calcium under acidic pH conditions. Over the last several years, the thin filament regulatory protein, troponin I, has been identified as an important mediator of this response. Mutations in troponin I and other sarcomere genes are also linked to several distinct inherited cardiomyopathic phenotypes, including hypertrophic, dilated, and restrictive cardiomyopathies. With the cardiac sarcomere emerging as a central player for such a diverse array of human heart diseases, genetic-based strategies that target the myofilament will likely have broad therapeutic potential. The development of safe vector systems for efficient gene delivery will be a critical hurdle to overcome before these types of therapies can be successfully applied. Nonetheless, studies focusing on the principles of acute genetic engineering of the sarcomere hold value as they lay the essential foundation on which to build potential gene-based therapies for heart disease.

  17. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative

  18. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  19. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  20. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies

    DEFF Research Database (Denmark)

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P

    2016-01-01

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical...