WorldWideScience

Sample records for human cardiac microvascular

  1. Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins

    Directory of Open Access Journals (Sweden)

    Meina Shi

    2015-01-01

    Full Text Available Scutellarin (SCU is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant. Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs against hypoxia-reoxygenation (HR injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE. Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS. Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6, heat shock 60 kDa protein 1 (HSPD1, and chaperonin containing TCP1 subunit 6A isoform (CCT6A might play important roles in the effects of SCU.

  2. Renal and cardiac microvascular endothelium: injury and repair

    NARCIS (Netherlands)

    Oosterhuis, NR

    2016-01-01

    Injury to the capillary endothelium can be devastating for renal and cardiac function. To halt the progression of chronic kidney disease (CKD) and heart failure (HF) preservation of the microvascular endothelial cell (EC) function and structure is of great importance.1 Increasing knowledge about

  3. Renal and cardiac microvascular endothelium: injury and repair

    NARCIS (Netherlands)

    Oosterhuis, N.R.

    2016-01-01

    Injury to the capillary endothelium can be devastating for renal and cardiac function. To halt the progression of chronic kidney disease (CKD) and heart failure (HF) preservation of the microvascular endothelial cell (EC) function and structure is of great importance.1 Increasing knowledge about mic

  4. How to assess microvascular structure in humans.

    Science.gov (United States)

    Rizzoni, Damiano; Aalkjaer, Christian; De Ciuceis, Carolina; Porteri, Enzo; Rossini, Claudia; Rosei, Claudia Agabiti; Sarkar, Annamaria; Rosei, Enrico Agabiti

    2011-12-01

    Structural alterations of subcutaneous small resistance arteries, as indicated by an increased media to lumen ratio, are frequently present in hypertensive and/or diabetic patients. However, the evaluation of microvascular structure is not an easy task. Among the methods that may be applied to humans, plethysmographic evaluation of small arteries and wire or pressure micromyography were extensively used in the last decades. Media to lumen ratio of small arteries evaluated by micromyography was demonstrated to possess a strong prognostic significance; however, its extensive evaluation is limited by the invasiveness of the assessment, since a biopsy of subcutaneous fat is needed. Non-invasive approaches were then proposed, including capillaroscopy, which provides information about microvascular rarefaction. Recently, the interest of investigators has focused on the retinal microvascular bed. In particular, a non-invasive measurement of wall thickness to internal lumen ratio of retinal arterioles using scanning laser Doppler flowmetry has been recently introduced. Preliminary data suggest a fairly good agreement between this approach and micromyographic measurements, generally considered the gold standard approach. Therefore, the evaluation of microvascular structure is progressively moving from bench to bedside, and it could represent, in the immediate future, an evaluation to be performed in all hypertensive patients, in order to obtain a better stratification of cardiovascular risk. © 2011 Adis Data Information BV. All rights reserved.

  5. Microvascular hemodynamics in human hypothermic circulatory arrest and selective antegrade cerebral perfusion

    NARCIS (Netherlands)

    P.W.G. Elbers; A. Ozdemir; R.H. Heijmen; J. Heeren; M. van Iterson; E.P.A. van Dongen; C. Ince

    2010-01-01

    Objective: The behavior of the human microcirculation in the setting of cardiac arrest is largely unknown. Animal experiments have consistently revealed that global hemodynamics do not necessarily reflect microvascular perfusion. In addition, the time it takes for capillary blood flow to stop after

  6. Phase transition of the microvascular network architecture in human pathologies.

    Science.gov (United States)

    Bianciardi, Giorgio; Traversi, Claudio; Cattaneo, Ruggero; De Felice, Claudia; Monaco, Annalisa; Tosi, Gianmarco; Parrini, Stefano; Latini, Giuseppe

    2012-01-01

    We have investigated the microvascular pattern in acquired or genetic diseases in humans. The lower gingival and vestibular oral mucosa, as well as the optic nerve head, was chosen to characterize the vascular pattern complexity due to the simple accessibility and visibility Local fractal dimensions, fractal dimension of the minimum path and Lempel-Ziv complexity have been used as operational numerical tools to characterize the microvascular networks. In the normal healthy subjects microvascular networks show nonlinear values corresponding to the complexity of a diffusion limited aggregation (DLA) model, while in several acquired or genetic diseases they are approaching the ones of an invasion percolation model.

  7. Relation of cardiac troponin I and microvascular obstruction following ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Hallén, Jonas; Jensen, Jesper K; Buser, Peter

    2011-01-01

    Presence of microvascular obstruction (MVO) following primary percutaneous coronary intervention (pPCI) for ST-elevation myocardial infarction (STEMI) confers higher risk of left-ventricular remodelling and dysfunction. Measurement of cardiac troponin I (cTnI) after STEMI reflects the extent...

  8. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    Directory of Open Access Journals (Sweden)

    Emma L. Wilkinson

    2016-10-01

    Full Text Available Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1 levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes.

  9. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    Science.gov (United States)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P diabetic microangiopathy.

  10. Trigemino-cardiac reflex during microvascular trigeminal decompression in cases of trigeminal neuralgia.

    Science.gov (United States)

    Schaller, Bernhard

    2005-01-01

    The trigemino-cardiac reflex (TCR) is a well-recognized phenomenon consisting of bradycardia, arterial hypotension, apnea, and gastric hypermotility during ocular surgery or other manipulations in and around the orbit. Thus far, it could bee shown that central stimulation of the trigeminal nerve during transsphenoidal surgery and surgery for tumors in the cerebellopontine angle can lead to TCR. In cases of microvascular trigeminal decompression for trigeminal neuralgia, no data of the possible occurrence of TCR are available. TCR was defined as a drop in mean arterial blood pressure (MABP) and the heart rate (HR) of more than 20% to the baseline values before the stimulus and coinciding with the manipulation of the trigeminal nerve. Electronic anesthetic recorded perioperative HR and MABP values were reviewed retrospectively in 28 patients who received microvascular trigeminal decompression in cases of trigeminal neuralgia and were divided into two subgroups on the basis of occurrence of TCR during surgery. Of the 28 patients, 5 (18%) showed evidence of TCR during manipulation at the trigeminal radix by separation from microvascular structures. Their HR fell 46% and their MABP 57% during operative procedures near the trigeminal nerve as compared with levels immediately before the stimulus. After cessation of manipulation, HR and MABP returned (spontaneously) to levels before the stimulus. Risk factors of TCR were compared with results from the literature. In conclusion, the present results give evidence of TCR during manipulation of the central part of the trigeminal nerve during microvascular trigeminal decompression in cases of trigeminal neuralgia under a standardized anesthetic protocol.

  11. Microvascular permeability changes might explain cardiac tamponade after alcohol septal ablation for hypertrophic cardiomyopathy.

    Science.gov (United States)

    Hsu, Jen-Te; Hsiao, Ju-Feng; Chang, Jung-Jung; Chung, Chang-Min; Chang, Shih-Tai; Pan, Kuo-Li

    2014-04-01

    Various sequelae of alcohol septal ablation for hypertrophic obstructive cardiomyopathy have been reported. Of note, some cases of cardiac tamponade after alcohol septal ablation cannot be well explained. We describe the case of a 78-year-old woman with hypertrophic obstructive cardiomyopathy in whom cardiac tamponade developed one hour after alcohol septal ablation, probably unrelated to mechanical trauma. At that time, we noted a substantial difference in the red blood cell-to-white blood cell ratio between the pericardial effusion (1,957.4) and the peripheral blood (728.3). In addition to presenting the patient's case, we speculate that a possible mechanism for acute tamponade--alcohol-induced changes in microvascular permeability--is a reasonable explanation for cases of alcohol septal ablation that are complicated by otherwise-unexplainable massive pericardial effusions.

  12. Myocardial Microvascular Responsiveness During Acute Cardiac Sympathectomy Induced by Thoracic Epidural Anesthesia.

    Science.gov (United States)

    Bulte, Carolien S E; Boer, Christa; Hartemink, Koen J; Kamp, Otto; Heymans, Martijn W; Loer, Stephen A; de Marchi, Stefano F; Vogel, Rolf; Bouwman, R Arthur

    2017-02-01

    To evaluate the effect of acute cardiac sympathectomy by thoracic epidural anesthesia on myocardial blood flow and microvascular function. A prospective observational study. The study was conducted in a tertiary teaching hospital. Ten patients with a mean age of 48 years (range 22-63 years) scheduled for thoracic surgery. Myocardial contrast echocardiography was used to study myocardial blood flow and microvascular responsiveness at rest, during adenosine-induced hyperemia, and after sympathetic stimulation by the cold pressor test. Repeated measurements were performed without and with thoracic epidural anesthesia. An increased myocardial blood volume was observed with thoracic epidural anesthesia compared to baseline (from 0.08±0.02 to 0.10±0.03 mL/mL; p = 0.02). No difference existed in resting myocardial blood flow between baseline conditions and epidural anesthesia (0.85±0.24 v 1.03±0.27 mL/min/g, respectively). Hyperemia during thoracic epidural anesthesia increased myocardial blood flow to 4.31±1.07 mL/min/g (p = 0.0008 v baseline) and blood volume to 0.17±0.04 mL/mL (p = 0.005 baseline). After sympathetic stimulation, no difference in myocardial blood flow parameters was observed CONCLUSIONS: Acute cardiac sympathectomy by thoracic epidural anesthesia increased the blood volume in the myocardial capillary system. Also, thoracic epidural anesthesia increased hyperemic myocardial blood flow, indicating augmented endothelial-independent vasodilator capacity of the myocardium. Copyright © 2017. Published by Elsevier Inc.

  13. Microvascular network topology of the human retinal vessels.

    Science.gov (United States)

    Schröder, S; Brab, M; Schmid-Schönbein, G W; Reim, M; Schmid-Schönbein, H

    1990-01-01

    A quantitative analysis of blood flow in the human retinal vessels requires a detailed picture of the microvascular network topology. In order to lay the foundation for a quantitative microcirculatory network analysis of the human retina, a novel technique for tissue preparation and network characterization was developed. After injection of hydrogen peroxide into the human bulb, the microvasculature was filled with oxygen produced by endothelial catalase and visualized after embedding in a mixture of cedar oil and gum damar. The vessel topology was documented in the form of photomicrographs, which permitted complete reconstruction of the microvasculature on transparent overlays. By considering the complete capillary system it was possible to divide the retinal network into dichotomous, asymmetric arteriolar and venular trees. The Strahler ordering method, which considers both dichotomous and side branching configurations, was selected and applied to analyze the retinal vascular trees, using the capillaries as the zero order reference vessels. The number of vessel segments was found to be an approximate logarithmic function of the order number, in accordance with Horton's law. Vessel lengths within each order were found to be log-normal distributed, and median lengths for different orders could be approximated by a 2nd degree polynomial curve. Diameters within each order could be approximated by a Gaussian distribution, and the mean values for different orders could be expressed by an exponential curve. These data provide the basis for conductance, pressure and flow computations within the retinal microvessels.

  14. Hypertrophic cardiomyopathy: Cardiac structural and microvascular abnormalities as evaluated with multi-parametric MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Dong, E-mail: njmu_zyd@163.com [Department of Radiology, the First Affiliated Hospital with Nanjing Medical University (China); Li, Meijiao, E-mail: newgljyk@163.com [Department of Radiology, Peking University First Hospital (China); Qi, Liang, E-mail: qiliang1120@126.com [Department of Radiology, the First Affiliated Hospital with Nanjing Medical University (China); Wu, Chen-Jiang, E-mail: njmu_wcj@163.com [Department of Radiology, the First Affiliated Hospital with Nanjing Medical University (China); Wang, Xiaoying, E-mail: cjr.wangxiaoying@vip.163.com [Department of Radiology, Peking University First Hospital (China)

    2015-08-15

    Highlights: • LGE-present HCM had lower K{sup trans}, higher V{sub e} and MTT against LGE-absent HCM and normal group. • LGE-absent had significantly higher V{sub e} and MTT against normal group. • K{sup trans} was not changed between LGE-absent and normal group Microcirculatory dysfunction in HCM closely correlated to structural abnormality. - Abstract: Purpose: To determine the relationship between myocardial structural and microvascular abnormality in hypertrophic cardiomyopathy (HCM) by multi-parametric cardiac MRI. Materials and methods: Twenty-four HCM and eighteen controls were retrospectively included. Left ventricle mass (LVM), LV end-systolic and end-diastolic volume (LVESV, LVEDV), LV ejection fraction (LVEF), and 16-segment wall thickness at ES and ED (SESWT, SEDWT) were assessed with a 2D cine-MRI. Myocardial perfusion (reflected by K{sup trans}), interstitial volume (V{sub e}) and mean transmit time (MTT) were evaluated with a model-dependent dynamic contrast-enhanced MRI. Myocardial fibrosis was assessed with late gadolinium enhancement (LGE) imaging. Results: K{sup trans} was significantly decreased in LGE-present (0.74 ± 0.15 mL/g/min) against LGE-absent (0.55 ± 0.14 mL/g/min, p = 0.030) and normal group (0.81 ± 0.32 mL/g/min, p < 0.001), but was unchanged in LGE-absent against normal group (p > 0.05). V{sub e} and MTT were significantly increased in LGE-present (V{sub e}: 26.7 ± 15.7%; MTT: 28.6 ± 21.3 s) against LGE-absent (37.6 ± 18.3%; 49.8 ± 30.5 s) and normal group (19.7 ± 6.9%; 15.1 ± 3.9 s; all p < 0.001), and were significantly increased in LGE-absent against normal group (p < 0.001). LGE significantly correlated to K{sup trans}, V{sub e}, MTT, and SESWT (ρ = 0.232, −0.247, −0.443, and −0.207, respectively). K{sup trans} negatively correlated to SEDWT and SESWT (ρ = −0.224 and −0.231). V{sub e} and MTT positively correlated to SEDWT (V{sub e}: ρ = 0.223; MTT: ρ = 0.239) and SESWT (V{sub e}: ρ = 0.248; MTT:

  15. Translational Medicine Study on Cardiac Microvascular Endothelial Barrier Function and Myocardial Ischemia/Re-perfusion Injury

    Institute of Scientific and Technical Information of China (English)

    Yeong Yeh Lee

    2015-01-01

    Vascular endothelial barrier is defined as the ability of endothelial cells and their components that make up the microvascular wall structure in controlling the cellular components and marco-molecular substances in blood from penetrating vascular walls. It is the place for the selective exchange of oxygen, nutrients and metabolites, and has kernel effect in maintaining myocardial micro-environmental homeostasis. In clinic, microvascular permeability is commonly used as the index for evaluating endothelial barrier function. Myocardial microvascular endothelial cells, inter-endothelial connexin and basilar membrane (BM) interact synergically to constitute the basis for barrier function, which has a selective permeability effect on interaction between nutrient substances and other myocardial cell molecules. Increase of microvascular permeability is closely associated with cardiovascular events like coronary heart disease (CHD) and myocardial ischemia, and is the risk factor for CHD attack. And deep exploration of the mechanism of endothelial permeability and positive selection of new-type re-perfusion complementary drugs for alleviating endothelial permeability can be beneifcial in improving the prognosis of patients with acute myocardial infarction (AMI). Therefore, from the view of translational medicine, this study mainly summarized the increase of microvascular permeability and its pathological signiifcance after AMI, physiological and pathological mechanisms of regulating microvascular permeability and complementary therapies for AMI re-perfusion as well as microvascular endothelial barrier function, hoping to provide a basis for improving the prognosis of patients with AMI.

  16. Translational Medicine Study on Cardiac Microvascular Endothelial Barrier Function and Myocardial Ischemia/Re-perfusion Injury

    Directory of Open Access Journals (Sweden)

    Yeong Yeh Lee

    2015-09-01

    Full Text Available Vascular endothelial barrier is defined as the ability of endothelial cells and their components that make up the microvascular wall structure in controlling the cellular components and marco-molecular substances in blood from penetrating vascular walls. It is the place for the selective exchange of oxygen, nutrients and metabolites, and has kernel effect in maintaining myocardial micro-environmental homeostasis. In clinic, microvascular permeability is commonly used as the index for evaluating endothelial barrier function. Myocardial microvascular endothelial cells, inter-endothelial connexin and basilar membrane (BM interact synergically to constitute the basis for barrier function, which has a selective permeability effect on interaction between nutrient substances and other myocardial cell molecules. Increase of microvascular permeability is closely associated with cardiovascular events like coronary heart disease (CHD and myocardial ischemia, and is the risk factor for CHD attack. And deep exploration of the mechanism of endothelial permeability and positive selection of new-type re-perfusion complementary drugs for alleviating endothelial permeability can be beneficial in improving the prognosis of patients with acute myocardial infarction (AMI. Therefore, from the view of translational medicine, this study mainly summarized the increase of microvascular permeability and its pathological significance after AMI, physiological and pathological mechanisms of regulating microvascular permeability and complementary therapies for AMI re-perfusion as well as microvascular endothelial barrier function, hoping to provide a basis for improving the prognosis of patients with AMI.

  17. Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Angela Orecchia

    Full Text Available Histone deacetylases (HDAC are key enzymes in the epigenetic control of gene expression. Recently, inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis, colitis, airway inflammation and asthma. So far, little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins, the class III HDAC. In this study, we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC, a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol, a specific sirtuin inhibitor, in HDMEC response to pro-inflammatory cytokines. We found that, even though sirtinol treatment alone affected only long-term cell proliferation, it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNFα and interleukin (IL-1β. In fact, sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells, as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably, sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2, we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally, we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether, these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement.

  18. Early microvascular changes in the preterm neonate: a comparative study of the human and guinea pig.

    Science.gov (United States)

    Dyson, Rebecca M; Palliser, Hannah K; Lakkundi, Anil; de Waal, Koert; Latter, Joanna L; Clifton, Vicki L; Wright, Ian M R

    2014-09-17

    Dysfunction of the transition from fetal to neonatal circulatory systems may be a major contributor to poor outcome following preterm birth. Evidence exists in the human for both a period of low flow between 5 and 11 h and a later period of increased flow, suggesting a hypoperfusion-reperfusion cycle over the first 24 h following birth. Little is known about the regulation of peripheral blood flow during this time. The aim of this study was to conduct a comparative study between the human and guinea pig to characterize peripheral microvascular behavior during circulatory transition. Very preterm (≤28 weeks GA), preterm (29-36 weeks GA), and term (≥37 weeks GA) human neonates underwent laser Doppler analysis of skin microvascular blood flow at 6 and 24 h from birth. Guinea pig neonates were delivered prematurely (62 day GA) or at term (68-71 day GA) and laser Doppler analysis of skin microvascular blood flow was assessed every 2 h from birth. In human preterm neonates, there is a period of high microvascular flow at 24 h after birth. No period of low flow was observed at 6 h. In preterm animals, microvascular flow increased after birth, reaching a peak at 10 h postnatal age. Blood flow then steadily decreased, returning to delivery levels by 24 h. Preterm birth was associated with higher baseline microvascular flow throughout the study period in both human and guinea pig neonates. The findings do not support a hypoperfusion-reperfusion cycle in the microcirculation during circulatory transition. The guinea pig model of preterm birth will allow further investigation of the mechanisms underlying microvascular function and dysfunction during the initial extrauterine period.

  19. Gene expression microarray data from human microvascular endothelial cells supplemented with a low concentration of niacin

    Directory of Open Access Journals (Sweden)

    Jennifer M. Hughes-Large

    2016-03-01

    Full Text Available The systemic lipid modifying drug, niacin, can directly improve human microvascular endothelial cell angiogenic function under lipotoxic conditions, possibly through activation of niacin receptors “Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity” (Hughes-Large et al. 2014. Here we provide accompanying data collected using Affymetrix GeneChip microarrays to identify changes in gene expression in human microvascular endothelial cells treated with 10 μM niacin. Statistical analyses of robust multi-array average (RMA values revealed that only 16 genes exhibited greater than 1.3-fold differential expression. Of these 16, only 5 were identified protein coding genes, while 3 of the remaining 11 genes appeared to be small nuclear/nucleolar RNAs. Altered expression of EFCAB4B, NAP1L2, and OR13C8 was confirmed by real time quantitative PCR.

  20. Cardiac rehabilitation: a good measure to improve quality of life in peri- and postmenopausal women with microvascular angina

    Directory of Open Access Journals (Sweden)

    Wojciech Szot

    2015-05-01

    Full Text Available Cardiac Syndrome X (CSX was considered a stable coronary syndrome, yet due to its nature, CSX symptoms often have a great impact on patients’ Quality of Life (QoL. According to ESC 2013 stable coronary artery disease criteria, CSX was replaced by Microvascular Angina (MA.Unfortunately, most CSX or MA patients, after classical angina (involving main coronary vessels has been ruled out, often do not receive proper treatment. Indications for pharmacological treatment of MA patients were introduced only recently. Another problematic issue is that scientists describing the pathophysiology of both CSX and MA stress a lack of a deeper insight into the multifactorial etiology of the source of pain associated with this disease. In the presented article we have attempted to study the influence of cardiac rehabilitation (3 months programme on the QoL of patients recognized as suffering from MA, as well as to check if changes in myocardial perfusion in these patients at baseline and after completion of cardiac rehabilitation match changes in their QoL. Therefore, after screening 436 women for MA, we studied 55 of them who were confirmed as having MA and who agreed to participate in the study. Exercise tests, Myocardial Perfusion Imaging, and QoL questionnaires were studied at baseline and after completing 3 months period of cardiac rehabilitation. Results were subsequently compared, which showed a link between improved perfusion score in SPECT study and improved overall physical capacity, on one hand, and improved QoL score on the other. These results confirm that cardiac rehabilitation is a very useful treatment option for MA patients. It seems that training during cardiac rehabilitation is a very important factor (improved physical efficiency –> increase in self-belief, and that taking into consideration the multifactor pathophysiology of pain, it is connected with a better quality of life for MA patients.

  1. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Holst, Jens Juul; Rattigan, Stephen

    2014-01-01

    The insulinotropic gut hormone, glucagon-like-peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery...... in overnight fasted healthy young men. Microvascular recruitment was measured with real time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by co-infusion of octreotide. As a positive control, MVR and leg...

  2. The development of a dynamic model for microvascular research and practice using human placenta: a preliminary report.

    Science.gov (United States)

    Waterhouse, N; Moss, A L; Townsend, P L

    1985-07-01

    Human placenta has been investigated in an attempt to develop a non-animal model for microvascular research and practice, with a dynamic artificial circulation. Initial work has been encouraging and further development is in progress.

  3. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    Science.gov (United States)

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin

  4. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Moez Berrich

    Full Text Available Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs, namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host ECs vs feline (reservoir host ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2 in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human

  5. Ascorbic Acid Efflux from Human Brain Microvascular Pericytes: Role of Re-uptake

    OpenAIRE

    May, James M.; Qu, Zhi-chao

    2015-01-01

    Microvascular pericytes take up ascorbic acid on the ascorbate transporter SVCT2. Intracellular ascorbate then protects the cells against apoptosis induced by culture at diabetic glucose concentrations. To investigate whether pericytes might also provide ascorbate to the underlying endothelial cells, we studied ascorbate efflux from human pericytes. When loaded with ascorbate to intracellular concentrations of 0.8–1.0 mM, almost two-thirds of intracellular ascorbate effluxed from the cells ov...

  6. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    Insulin resistance is a major health risk and although exercise clearly improves skeletal muscle insulin sensitivity, the mechanisms are unclear. Here we show that initiation of a euglycemic hyperinsulinemic clamp four hours after single-legged exercise in humans increased microvascular perfusion...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand.......Insulin resistance is a major health risk and although exercise clearly improves skeletal muscle insulin sensitivity, the mechanisms are unclear. Here we show that initiation of a euglycemic hyperinsulinemic clamp four hours after single-legged exercise in humans increased microvascular perfusion...... the insulin stimulated increase in microvascular perfusion in both legs and abrogated the greater glucose uptake in the exercised compared with the rested leg. Skeletal muscle phosphorylation of TBC1D4 Ser(318) and Ser(704) and glycogen synthase activity were greater in the exercised leg before insulin...

  7. EGb 761 protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury and exerts inhibitory effect on ATM pathway.

    Science.gov (United States)

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan

    2016-12-14

    Ginkgo biloba extract (EGb 761) has been widely clinically used to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injuried MVECs were treated with EGb 761, then cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and the protein level of ATM, γ-H2AX, p53, Bax were measured. ATM siRNA was transfected to study the changes of protein in ATM pathway. EGb 761 presented protective effect on H/R-injuried MVECs with decreasing cell death, apoptosis and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, Bax. Overall, these findings verify EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on ATM pathway and apoptosis of EGb 761 via dampening ROS.

  8. Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells.

    Science.gov (United States)

    Liu, Yi; Ma, Yanzhuo; Wang, Rutao; Xia, Chenhai; Zhang, Rongqing; Lian, Kun; Luan, Ronghua; Sun, Lu; Yang, Lu; Lau, Wayne B; Wang, Haichang; Tao, Ling

    2011-10-01

    The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. However, no causative link has been established between increased AGEs and enhanced endothelial injury after ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and incubated with AGE-modified bovine serum albumin (BSA) or BSA. After AGE-BSA or BSA preculture, CMECs were subjected to simulated ischemia (SI)/reperfusion (R). AGE-BSA increased SI/R injury as evidenced by enhanced lactate dehydrogenase release and caspase-3 activity. Moreover, AGE-BSA significantly increased SI/R-induced oxidative/nitrative stress in CMECs (as measured by increased inducible nitric oxide synthase expression, total nitric oxide production, superoxide generation, and peroxynitrite formation) and increased SI/R-induced nitrative inactivation of thioredoxin-1 (Trx-1), an essential cytoprotective molecule. Supplementation of EUK134 (peroxynitrite decomposition catalyst), human Trx-1, or soluble receptor of advanced end product (sRAGE) (a RAGE decoy) in AGE-BSA precultured cells attenuated SI/R-induced oxidative/nitrative stress, reduced SI/R-induced Trx-1 nitration, preserved Trx-1 activity, and reduced SI/R injury. Our results demonstrated that AGEs may increase SI/R-induced endothelial injury by increasing oxidative/nitrative injury and subsequent nitrative inactivation of Trx-1. Interventions blocking RAGE signaling or restoring Trx activity may be novel therapies to mitigate endothelial ischemia/reperfusion injury in the diabetic population.

  9. Culture of mouse cardiac microvascular endothelial cells in vitro%小鼠心肌微血管内皮细胞的体外培养

    Institute of Scientific and Technical Information of China (English)

    陈桂秀; 杨明涛; 刘涛; 王浩宇; 刘康; 冯刚

    2013-01-01

    目的 建立小鼠心肌微血管内皮细胞培养体系.方法 4~6周的清洁级C57小鼠的心室肌,利用胰蛋白酶及Ⅱ型胶原酶消化过滤收集的滤液进行重新悬浮种植于明胶包被的培养瓶中,通过倒置电镜观察细胞的生长形态及生长状态,得出生长曲线,并利用免疫荧光鉴定(心肌微血管内皮细胞特异性抗原vWF)培养出的小鼠心肌微血管内皮细胞.结果 通过形态学观察及免疫荧光鉴定证实为小鼠心肌微血管内皮细胞.培养的小鼠心肌微血管内皮细胞第1、2天生长相对缓慢,而到第3、4天细胞呈对数生长,第6、7天细胞达到融合.结论 采用明胶包被培养瓶,通过机械剪切、蛋白酶消化、过滤方法,并进行了相关鉴定,可获得较纯的小鼠心肌微血管内皮细胞,这为研究心肌微血管内皮细胞的迁移、血管再生等提供了实验来源.%Objective To establish the culture system of mouse cardiac microvascular endothelial cells. Methods The ventricular muscle from 4 to 6 weeks of C57 mice was digested by trypsin and type II collagen, then filtered and collected the filtrate to grow in culture bottle that was used gelatin to envelop. The morphology and growth curve of mouse cardiac microvascular endothelial cells was investigated by using electron microscopy. The immunofluorescence was uesd to identify culture of mouse primary cardiac microvascular endothelial cells by the expression of factor vWF-related antigen. Results The mouse cardiac microvascular endothelial cells were demonstrated by morphological observation and immunofluorescence. Culture of mouse cardiac microvascular endothelial cells grow were relatively slowly in 1 to 2 day, grow ogarithmicly in 3 to 4 day, grow cell fusion in 6 to 7 day. Conclusion In the experiment, used gelatin to envelope culture bottle,We can obtain mouse cardiac microvascular endothelial cells with higher purity by mechanical shearing, protease digestion, filtering, and

  10. Decellularized Human Kidney Cortex Hydrogels Enhance Kidney Microvascular Endothelial Cell Maturation and Quiescence.

    Science.gov (United States)

    Nagao, Ryan J; Xu, Jin; Luo, Ping; Xue, Jun; Wang, Yi; Kotha, Surya; Zeng, Wen; Fu, Xiaoyun; Himmelfarb, Jonathan; Zheng, Ying

    2016-10-01

    The kidney peritubular microvasculature is highly susceptible to injury from drugs and toxins, often resulting in acute kidney injury and progressive chronic kidney disease. Little is known about the process of injury and regeneration of human kidney microvasculature, resulting from the lack of appropriate kidney microvascular models that can incorporate the proper cells, extracellular matrices (ECMs), and architectures needed to understand the response and contribution of individual vascular components in these processes. In this study, we present methods to recreate the human kidney ECM (kECM) microenvironment by fabricating kECM hydrogels derived from decellularized human kidney cortex. The majority of native matrix proteins, such as collagen-IV, laminin, and heparan sulfate proteoglycan, and their isoforms were preserved in similar proportions as found in normal kidneys. Human kidney peritubular microvascular endothelial cells (HKMECs) became more quiescent when cultured on this kECM gel compared with culture on collagen-I-assessed using phenotypic, genotypic, and functional assays; whereas human umbilical vein endothelial cells became stimulated on kECM gels. We demonstrate for the first time that human kidney cortex can form a hydrogel suitable for use in flow-directed microphysiological systems. Our findings strongly suggest that selecting the proper ECM is a critical consideration in the development of vascularized organs on a chip and carries important implications for tissue engineering of all vascularized organs.

  11. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  12. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available AIM: Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose. MATERIALS AND METHODS: CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay. RESULTS: ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs. CONCLUSION: Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  13. Isolation and Culture of Human Microvascular endothelium for comparison of the morphological and molecular characteristics of Microvascular endothelial cells under normal gravity against simulated micro gravity

    Directory of Open Access Journals (Sweden)

    Tholcopiyan L

    2010-01-01

    Full Text Available BACKGROUND: Vascular endothelial cells play a major role in wound healing and also in growth of the tumors. Angiogenesis can be a target for treating diseases that are due to either poor vascularisation or decreased blood supply as in stroke, ulcers, heart disease, etc or abnormal and increased vasculature like in tumours. Application of specific compounds that may inhibit or induce the creation of new blood vessels in the body may help in the treatment of such diseases (1. Ex vivo generation of blood vessels may offer an excellent alternative to the synthetic valves that are being currently used in cardiology. Micro gravity also referred to, as weightlessness is not essentially zero gravity but rather minimal gravity. According to cell type, micro gravity causes variety of changes in proliferation and differentiation of cells while also affecting the migration of cells and cellular functions (2, 3. Siamwala et al from AUKBC have already studied the effects of microgravity on the microvascular endothelial cells from bovine lung and macrovascular endothelial cells from the bovine pulmonary artery. It was observed that the proliferation and migration of macrovascular endothelial cells were increased in microgravity (4, 5. Nitric oxide production was also studied and observed that microgravity treatment did not change nitric oxide production by microvascular endothelial cells (4OBJECTIVE: Isolation and Comparison of culture characteristics of Human microvascular endothelium cultured conventionally and in novel nanomaterial scaffold and further study the morphological and molecular characteristics of microvascular endothelial cells under normal gravity against simulated micro gravityMATERIALS AND METHODS: The human Omentum samples were obtained using surgical procedures after informed consent. The microvascular endothelial cells were isolated following the protocol described by Scott et al (6.The isolated cells were seeded in two groups; Group I

  14. Relationship between different subpopulations of circulating CD4+ T lymphocytes and microvascular or systemic oxidative stress in humans.

    Science.gov (United States)

    De Ciuceis, Carolina; Agabiti-Rosei, Claudia; Rossini, Claudia; Airò, Paolo; Scarsi, Mirko; Tincani, Angela; Tiberio, Guido Alberto Massimo; Piantoni, Silvia; Porteri, Enzo; Solaini, Leonardo; Duse, Sarah; Semeraro, Francesco; Petroboni, Beatrice; Mori, Luigi; Castellano, Maurizio; Gavazzi, Alice; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2017-08-01

    Different components of the immune system, including innate and adaptive immunity (T effector lymphocytes and T regulatory lymphocytes - TREGs) may be involved in the development of hypertension, vascular injury and inflammation. However, no data are presently available in humans about possible relationships between T-lymphocyte subtypes and microvascular oxidative stress. Our objective was to investigate possible relationships between T-lymphocyte subtypes and systemic and microvascular oxidative stress in a population of normotensive subjects and hypertensive patients. In the present study we enrolled 24 normotensive subjects and 12 hypertensive patients undergoing an elective surgical intervention. No sign of local or systemic inflammation was present. All patients underwent a biopsy of subcutaneous fat during surgery. A peripheral blood sample was obtained before surgery for assessment of T lymphocyte subpopulations by flow cytometry and circulating indices of oxidative stress. A significant direct correlation was observed between Th1 lymphocytes and reactive oxygen species (ROS) production (mainly in microvessels). Additionally, significant inverse correlations were observed between ROS and total TREGs, or TREGs subtypes. Significant correlations were detected between circulating indices of oxidative stress/inflammation and indices of microvascular morphology/Th1 and Th17 lymphocytes. In addition, a significant inverse correlation was detected between TREGs in subcutaneous small vessels and C reactive protein. Our data suggest that TREG lymphocytes may be protective against microvascular damage, probably because of their anti-oxidant properties, while Th1-Th17 lymphocytes seem to exert an opposite effect, confirming an involvement of adaptive immune system in microvascular damage.

  15. Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sara; Castiglioni; Clelia; Caspani; Alessandra; Cazzaniga; Jeanette; AM; Maier

    2014-01-01

    AIM: To study the response to silver nanoparticles(Ag NP) of human microvascular endothelial cells, protagonists of angiogenesis. METHODS: We cultured human microvascular endothelial cells and endothelial colony-forming cells in their corresponding growth medium. Stock solutions of Ag NP were prepared in culture medium and sonicated before use. They were added at different concentrations and for different times to culture media. The toxicity of Ag NP was investigated by measuring the reduction of yellow tetrazolium salt to dark purple formazan(MTT assay) at 575 nm. After staining with trypan blue, cell proliferation was assessed by counting viable cells. The lactate dehydrogenase leakage assay was performed on culture media by following the oxidation of NADH to NAD+ and monitoring the reaction kinetically at 340 nm. Reactive oxygen species production was quantified using 2’-7’-dichlorofluorescein diacetate. The alkaline comet assay was performed after mixing the cells with low melting-point agarose. Electrophoresis was then conducted and the samples were stained with ethidium bromide and analyzed with a fluorescence microscope.RESULTS: Ag NP are cytotoxic in a dose and time dependent fashion for HMEC. At high concentrations, Ag NP determine loss of membrane integrity as demonstrated by the increased activity of lactate dehydrogenase in the culture medium. Ag NP rapidly stimulate the formation of free radicals. However, pre-incubation with Trolox, apocynin, or N-acetyl-L-cysteine, antioxidants which have different structure and act through different mechanisms, is not sufficient to prevent cytotoxicity. Ag NP also induce DNA damage dose-dependently, as shown by comet assay. When exposed to sublethal concentrations of Ag NP for long times, the cells remain viable but are growth retarded. Interestingly, removal of Ag NP partially rescues cell growth. Also genotoxicity is reversible upon removal of Ag NP from culture medium, suggesting that no permanent

  16. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells

    Science.gov (United States)

    Gräfe, C.; Slabu, I.; Wiekhorst, F.; Bergemann, C.; von Eggeling, F.; Hochhaus, A.; Trahms, L.; Clement, J. H.

    2016-06-01

    Crossing the blood-brain barrier is an urgent requirement for the treatment of brain disorders. Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool as carriers for therapeutics because of their physical properties, biocompatibility, and their biodegradability. In order to investigate the interaction of nanoparticles with endothelial cell layers in detail, in vitro systems are of great importance. Human brain microvascular endothelial cells are a well-suited blood-brain barrier model. Apart from generating optimal conditions for the barrier-forming cell units, the accurate detection and quantification of SPIONs is a major challenge. For that purpose we use magnetic particle spectroscopy to sensitively and directly quantify the SPION-specific iron content. We could show that SPION concentration depends on incubation time, nanoparticle concentration and location. This model system allows for further investigations on particle uptake and transport at cellular barriers with regard to parameters including particles’ shape, material, size, and coating.

  17. Human brain microvascular endothelial cells resist elongation due to shear stress.

    Science.gov (United States)

    Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C

    2015-05-01

    Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier.

  18. Slit2-Robo4 receptor responses inhibit ANDV directed permeability of human lung microvascular endothelial cells.

    Science.gov (United States)

    Gorbunova, Elena E; Gavrilovskaya, Irina N; Mackow, Erich R

    2013-08-01

    Hantaviruses nonlytically infect human endothelial cells (ECs) and cause edematous and hemorrhagic diseases. Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), and Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses enhance vascular endothelial growth factor directed EC permeability resulting in the disassembly of inter-endothelial cell adherens junctions (AJs). Recent studies demonstrate that Slit2 binding to Robo1/Robo4 receptors on ECs has opposing effects on AJ disassembly and vascular fluid barrier functions. Here we demonstrate that Slit2 inhibits ANDV and HTNV induced permeability and AJ disassembly of pulmonary microvascular ECs (PMECs) by interactions with Robo4. In contrast, Slit2 had no effect on the permeability of ANDV infected human umbilical vein ECs (HUVECs). Analysis of Robo1/Robo4 expression determined that PMECs express Robo4, but not Robo1, while HUVECs expressed both Robo4 and Robo1 receptors. SiRNA knockdown of Robo4 in PMECs prevented Slit2 inhibition of ANDV induced permeability demonstrating that Robo4 receptors determine PMEC responsiveness to Slit2. Collectively, this data demonstrates a selective role for Slit2/Robo4 responses within PMECs that inhibits ANDV induced permeability and AJ disassembly. These findings suggest Slit2s utility as a potential HPS therapeutic that stabilizes the pulmonary endothelium and antagonizes ANDV induced pulmonary edema.

  19. Human microvascular endothelial cell toxicity caused by Brazilian purpuric fever-associated strains of Haemophilus influenzae biogroup aegyptius.

    Science.gov (United States)

    Weyant, R S; Quinn, F D; Utt, E A; Worley, M; George, V G; Candal, F J; Ades, E W

    1994-02-01

    An in vitro cytotoxicity model that uses an immortalized human microvascular endothelial cell line (HMEC-1) differentiates Brazilian purpuric fever (BPF)-associated Haemophilus influenzae biogroup aegyptius (HAE) strains from non-BPF-associated HAE strains. Toxic strains produced a characteristic HMEC-1 phenotype at an MOI of 1000 bacteria/TCC to produce an observable effect. The cytotoxic phenotype was characterized by the presence of large clumps of HMEC-1 cells, which detached from the monolayer within 48 h of inoculation by HAE cells. The cytotoxic phenotype was observed with 100% of BPF-associated HAE (40/40) and 14% of non-BPF-associated HAE (8/57; P < .001). The ability to study a BPF-associated phenotype in vitro using human microvascular cells should enhance our knowledge of BPF pathogenesis.

  20. Eccentric exercise slows in vivo microvascular reactivity during brief contractions in human skeletal muscle.

    Science.gov (United States)

    Larsen, Ryan G; Hirata, Rogerio P; Madzak, Adnan; Frøkjær, Jens B; Graven-Nielsen, Thomas

    2015-12-01

    Unaccustomed exercise involving eccentric contractions results in muscle soreness and an overall decline in muscle function, however, little is known about the effects of eccentric exercise on microvascular reactivity in human skeletal muscle. Fourteen healthy men and women performed eccentric contractions of the dorsiflexor muscles in one leg, while the contralateral leg served as a control. At baseline, and 24 and 48 h after eccentric exercise, the following were acquired bilaterally in the tibialis anterior muscle: 1) transverse relaxation time (T2)-weighted magnetic resonance images to determine muscle cross-sectional area (mCSA) and T2; 2) blood oxygen level-dependent (BOLD) images during and following brief, maximal voluntary contractions (MVC) to monitor the hyperemic responses with participants positioned supine in a 3T magnet; 3) muscle strength; and 4) pain pressure threshold. Compared with the control leg, eccentric exercise resulted in soreness, decline in strength (∼20%), increased mCSA (∼7%), and prolonged T2 (∼7%) at 24 and 48 h (P eccentric exercise, such that time-to-peak (∼35%, P eccentric exercise may impede rapid adjustments in muscle blood flow at exercise onset and during activities involving brief bursts of muscle activation, which may impair O2 delivery and contribute to reduced muscle function after eccentric exercise. Copyright © 2015 the American Physiological Society.

  1. Infectomic Analysis of Gene Expression Profiles of Human Brain Microvascular Endothelial Cells Infected with Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Ambrose Jong

    2008-01-01

    Full Text Available In order to dissect the pathogenesis of Cryptococcus neoformans meningoencephalitis, a genomic survey of the changes in gene expression of human brain microvascular endothelial cells infected by C. neoformans was carried out in a time-course study. Principal component analysis (PCA revealed sigificant fluctuations in the expression levels of different groups of genes during the pathogen-host interaction. Self-organizing map (SOM analysis revealed that most genes were up- or downregulated 2 folds or more at least at one time point during the pathogen-host engagement. The microarray data were validated by Western blot analysis of a group of genes, including β-actin, Bcl-x, CD47, Bax, Bad, and Bcl-2. Hierarchical cluster profile showed that 61 out of 66 listed interferon genes were changed at least at one time point. Similarly, the active responses in expression of MHC genes were detected at all stages of the interaction. Taken together, our infectomic approaches suggest that the host cells significantly change the gene profiles and also actively participate in immunoregulations of the central nervous system (CNS during C. neoformans infection.

  2. A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct

    Science.gov (United States)

    Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.

    2017-01-01

    Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397

  3. Action of shiga toxin type-2 and subtilase cytotoxin on human microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    María M Amaral

    Full Text Available The hemolytic uremic syndrome (HUS associated with diarrhea is a complication of Shiga toxin (Stx-producing Escherichia coli (STEC infection. In Argentina, HUS is endemic and responsible for acute and chronic renal failure in children younger than 5 years old. The human kidney is the most affected organ due to the presence of very Stx-sensitive cells, such as microvascular endothelial cells. Recently, Subtilase cytotoxin (SubAB was proposed as a new toxin that may contribute to HUS pathogenesis, although its action on human glomerular endothelial cells (HGEC has not been described yet. In this study, we compared the effects of SubAB with those caused by Stx2 on primary cultures of HGEC isolated from fragments of human pediatric renal cortex. HGEC were characterized as endothelial since they expressed von Willebrand factor (VWF and platelet/endothelial cell adhesion molecule 1 (PECAM-1. HGEC also expressed the globotriaosylceramide (Gb3 receptor for Stx2. Both, Stx2 and SubAB induced swelling and detachment of HGEC and the consequent decrease in cell viability in a time-dependent manner. Preincubation of HGEC with C-9 -a competitive inhibitor of Gb3 synthesis-protected HGEC from Stx2 but not from SubAB cytotoxic effects. Stx2 increased apoptosis in a time-dependent manner while SubAB increased apoptosis at 4 and 6 h but decreased at 24 h. The apoptosis induced by SubAB relative to Stx2 was higher at 4 and 6 h, but lower at 24 h. Furthermore, necrosis caused by Stx2 was significantly higher than that induced by SubAB at all the time points evaluated. Our data provide evidence for the first time how SubAB could cooperate with the development of endothelial damage characteristic of HUS pathogenesis.

  4. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Megan C. Mladinich

    2017-07-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne Flavivirus that has emerged as the cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely persists in human bodily fluids for up to 6 months, is sexually transmitted, and traverses the placenta and the blood-brain barrier (BBB to damage neurons. Cells that support persistent ZIKV replication and mechanisms by which ZIKV establishes persistence remain enigmatic but central to ZIKV entry into protected neuronal compartments. The endothelial cell (EC lining of capillaries normally constrains transplacental transmission and forms the BBB, which selectively restricts access of blood constituents to neurons. We found that ZIKV (strain PRVABC59 persistently infects and continuously replicates in primary human brain microvascular ECs (hBMECs, without cytopathology, for >9 days and following hBMEC passage. ZIKV did not permeabilize hBMECs but was released basolaterally from polarized hBMECs, suggesting a direct mechanism for ZIKV to cross the BBB. ZIKV-infected hBMECs were rapidly resistant to alpha interferon (IFN-α and transiently induced, but failed to secrete, IFN-β and IFN-λ. Global transcriptome analysis determined that ZIKV constitutively induced IFN regulatory factor 7 (IRF7, IRF9, and IFN-stimulated genes (ISGs 1 to 9 days postinfection, despite persistently replicating in hBMECs. ZIKV constitutively induced ISG15, HERC5, and USP18, which are linked to hepatitis C virus (HCV persistence and IFN regulation, chemokine CCL5, which is associated with immunopathogenesis, as well as cell survival factors. Our results reveal that hBMECs act as a reservoir of persistent ZIKV replication, suggest routes for ZIKV to cross hBMECs into neuronal compartments, and define novel mechanisms of ZIKV persistence that can be targeted to restrict ZIKV spread.

  5. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    Full Text Available BACKGROUND: Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  6. ACTOVEGIN INFLUENCE ON METABOLIC AND VASOMOTOR FUNCTION OF MICROVASCULAR ENDOTHELIAL OF HUMAN SKIN

    Directory of Open Access Journals (Sweden)

    A. A. Fedorovich

    2010-01-01

    Full Text Available Aim. To evaluate effects of Actovegin (deproteinized hemoderivative on vasomotor and metabolic functions of microvascular skin endothelium in healthy volunteers during acute pharmacological test.Material and methods. 24 healthy male volunteers, aged 18-26 years (21,9±2,7, received Actovegin i.v. during 2 hour infusion through the left cubital vein. Right forearm skin laser Doppler flowmetry (LDF with wavelet analysis of the microcirculatory oscillations was used initially and after 2 hour Actovegin infusion to assess microvascular endothelial responses (microcirculatory blood flow changes to Actovegin. Saline infusion in 5 subjects used for control data receiving.Results. Actovegin significantly increased in maximal amplitude endothelial rhythm (at a frequency of 0.01 Hz by 76% (p<0,001 and functional contribution of microvascular endothelium in the overall level of tissue perfusion by 79% (p<0,001. Control saline infusion resulted in reduction of these indices by 52 and 54%, respectively. Actovegin also increased significantly myogenic rhythm amplitude (vascular tone reduction by 35% (p<0,05 and decreased diastolic blood pressure by 3 mm Hg (p=0,076, which is likely result of increased endothelium nitric oxide release.Conclusion. Microcirculatory oscillations at the frequency of 0.01 Hz reflect both vasomotor and metabolic function of microvascular endothelium. Actovegin improves oxygen and glucose tissue utilization as well as increases nitric oxide production with microvascular smooth muscle tone reduction.

  7. Neuregulin1-β decreases IL-1β-induced neutrophil adhesion to human brain microvascular endothelial cells.

    Science.gov (United States)

    Wu, Limin; Walas, Samantha; Leung, Wendy; Sykes, David B; Wu, Jiang; Lo, Eng H; Lok, Josephine

    2015-04-01

    Neuroinflammation contributes to the pathophysiology of diverse diseases including stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and multiple sclerosis, resulting in neurodegeneration and loss of neurological function. The response of the microvascular endothelium often contributes to neuroinflammation. One such response is the upregulation of endothelial adhesion molecules which facilitate neutrophil adhesion to the endothelium and their migration from blood to tissue. Neuregulin-1 (NRG1) is an endogenous growth factor which has been reported to have anti-inflammatory effects in experimental stroke models. We hypothesized that NRG1 would decrease the endothelial response to inflammation and result in a decrease in neutrophil adhesion to endothelial cells. We tested this hypothesis in an in vitro model of cytokine-induced endothelial injury, in which human brain microvascular endothelial cells (BMECs) were treated with IL-1β, along with co-incubation with vehicle or NRG1-β. Outcome measures included protein levels of endothelial ICAM-1, VCAM-1, and E-selectin, as well as the number of neutrophils that adhere to the endothelial monolayer. Our data show that NRG1-β decreased the levels of VCAM-1, E-selectin, and neutrophil adhesion to brain microvascular endothelial cells activated by IL1-β. These findings open new possibilities for investigating NRG1 in neuroprotective strategies in brain injury.

  8. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  9. Complicações microvasculares e disfunção autonômica cardíaca em pacientes com diabete melito tipo 1 Complicaciones microvasculares y disfunción autonómica cardíaca en pacientes con diabetes mellittus tipo 1 Microvascular complications and cardiac autonomic dysfunction in patients with diabetes mellitus type 1

    Directory of Open Access Journals (Sweden)

    Fernando K Almeida

    2011-06-01

    hallazgos sugestivos de NAC durante la realización de la prueba ergométrica (PE y nefropatía y retinopatía en pacientes con DM tipo 1. METHODS: Realizamos un estudio transversal con 84 pacientes con DM tipo 1. Todos los pacientes fueron sometidos a evaluación clínica y laboratorial y llevaron a cabo PE, siendo que aquellos que presentaron hallazgos sugestivos de isquemia miocárdica fueron excluidos del análisis de los datos (n = 3. La evaluación de complicaciones microvasculares (retinopatía y nefropatía se realizó en la muestra. RESULTS: Los pacientes con nefropatía y aquellos con retinopatía alcanzaron una frecuencia cardíaca (FC durante el nivel máximo de ejercicio (FC máxima menor y presentaron aumento menor de FC con relación al reposo (ΔFC pico cuando comparados con aquellos sin estas complicaciones. Estos pacientes también presentaron una menor reducción de la FC en el segundo y 4º minutos tras el final de la prueba (ΔFC recuperación 2 y 4 minutos. Tras la realización de análisis multivariado con control para los posibles factores de confusión, los ΔFC recuperación en dos y 4 minutos, FC máxima y el ΔFC pico permanecieron significativamente asociados a la retinopatía; y los ΔFC recuperación en el segundo y 4º minutos permanecieron asociados a la presencia de nefropatía. CONCLUSION: Se puede considerar la PE como un instrumento adicional para la detección precoz de NAC y para identificar pacientes en un mayor riesgo para complicaciones microvasculares de la diabetes.BACKGROUND: The presence of cardiac autonomic neuropathy (CAN in patients with diabetes mellitus (DM is associated with increased mortality and chronic microvascular complications of diabetes. OBJECTIVE: To investigate a possible association between specific findings of CAN during exercise testing (ET and nephropathy and retinopathy in patients with type 1 DM. METHODS: We conducted a cross-sectional study of 84 patients with type 1 DM. All patients underwent clinical

  10. Piperine Decreases Binding of Drugs to Human Plasma and Increases Uptake by Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Dubey, Raghvendra K; Leeners, Brigitte; Imthurn, Bruno; Merki-Feld, Gabriele Susanne; Rosselli, Marinella

    2017-09-26

    We previously reported that piperine, an active alkaloidal principal of black and long peppers, enhances drug bioavailability by inhibiting drug metabolism. Another mechanism influencing drug availability/uptake is its free fraction. Since piperine is highly lipophilic, we hypothesize that it could also interact with drugs through binding displacement and influence their bioavailability. Accordingly, using equilibrium dialysis, we investigated whether piperine alters the binding of model drug ligands, that is flunitrazepam, diazepam, warfarin, salicylic acid, propranolol, lidocaine, and disopyramide to human plasma (n = 4). Since alterations in binding influence drug disposition, we also studied the effects of piperine on the uptake of plasma bound (3) H-propranolol and (14) C-warfarin by cultured bovine brain microvascular endothelial cells (BMECs). Piperine (1-1000 μM) increased the free fraction (fu) of both albumin and alpha-acid glycoprotein bound drugs in a concentration-dependent manner (p < 0.01). Moreover, piperine (10 μM) increased the uptake of (3) H-propranolol and (14) C-warfarin by BMECs (p < 0.01). In conclusion, our findings provide the first evidence that piperine displaces plasma bound drugs from both albumin and alpha-acid glycoprotein and facilitates drug uptake across biological membranes (e.g. BMEC). Moreover, it is feasible that piperine may similarly facilitate the transport of drugs into tissues, in vivo, and alter both pharmacokinetics and pharmacodynamics of administered drugs. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Glucocorticoids Significantly Influence the Transcriptome of Bone Microvascular Endothelial Cells of Human Femoral Head

    Institute of Scientific and Technical Information of China (English)

    Qing-Sheng Yu; Wan-Shou Guo; Li-Ming Cheng; Yu-Feng Lu; Jian-Ying Shen; Ping Li

    2015-01-01

    Background:Appropriate expression and regulation of the transcriptome,which mainly comprise ofmRNAs and lncRNAs,are important for all biological and cellular processes including the physiological activities of bone microvascular endothelial cells (BMECs).Through an intricate intracellular signaling systems,the transcriptome regulates the pharmacological response of the cells.Although studies have elucidated the impact of glucocorticoids (GCs) cell-specific gene expression signatures,it remains necessary to comprehensively characterize the impact of lncRNAs to transcriptional changes.Methods:BMECs were divided into two groups.One was treated with GCs and the other left untreated as a paired control.Differential expression was analyzed with GeneSpring software V12.0 (Agilent,Santa Clara,CA,USA) and hierarchical clustering was conducted using Cluster 3.0 software.The Gene Ontology (GO) analysis was performed with Molecular Annotation System provided by CapitalBio Corporation.Results:Our results highlight the involvement of genes implicated in development,differentiation and apoptosis following GC stimulation.Elucidation of differential gene expression emphasizes the importance of regulatory gene networks induced by GCs.We identified 73 up-regulated and 166 down-regulated long noncoding RNAs,the expression of 107 of which significantly correlated with 172 mRNAs induced by hydrocortisone.Conclusions:Transcriptome analysis of BMECs from human samples was performed to identify specific gene networks induced by GCs.Our results identified complex RNA crosstalk underlying the pathogenesis of steroid-induced necrosis of femoral head.

  12. Evaluation of microvascular structure in humans: a 'state-of-the-art' document of the Working Group on Macrovascular and Microvascular Alterations of the Italian Society of Arterial Hypertension.

    Science.gov (United States)

    Virdis, Agostino; Savoia, Carmine; Grassi, Guido; Lembo, Giuseppe; Vecchione, Carmine; Seravalle, Gino; Taddei, Stefano; Volpe, Massimo; Rosei, Enrico Agabiti; Rizzoni, Damiano

    2014-11-01

    The evaluation of microvascular structure is, in general, not an easy task. Among the methods that may be applied to humans, plethysmographic evaluation of small arteries and wire or pressure micromyography were extensively used in the last decades. The media-to-lumen ratio of small arteries evaluated by micromyography was demonstrated to possess a strong prognostic significance; however, its extensive evaluation is limited by the local invasiveness of the assessment. Noninvasive approaches were then proposed, including capillaroscopy, which provides information about microvascular rarefaction. Recently, the interest of investigators was focused on the retinal microvascular bed. In particular, a noninvasive measurement of the wall-to-lumen ratio of retinal arterioles using scanning laser Doppler flowmetry has been introduced.Recent data suggest a rather good agreement between this approach and micromyographic measurements, generally considered the gold standard approach. Therefore, the evaluation of microvascular structure is progressively moving from bench to bedside, and it could represent, in the immediate future, an evaluation to be performed in all hypertensive patients, in order to obtain a better stratification of cardiovascular risk.

  13. Age-related microvascular degeneration in the human cerebral periventricular white matter

    NARCIS (Netherlands)

    Farkas, E; de Vos, RAI; Donka, G; Steur, ENJ; Mihaly, A; Luiten, PGM; Vos, Rob A.I. de

    2006-01-01

    Clinical studies have identified white matter (WM) lesions as hyperintensive regions in the MRI images of elderly patients. Since a cerebrovascular origin was attributed to such lesions, the present analysis set out to define the microvascular histopathologic changes in the periventricular WM in the

  14. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    Science.gov (United States)

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P < 0.01). Taken together, these data suggest that acute lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  15. Evidence of myocardial scarring and microvascular obstruction on cardiac magnetic resonance imaging in a series of patients presenting with myocardial infarction without obstructed coronary arteries.

    Science.gov (United States)

    Hermens, Jeannine A J M; van Es, Jan; von Birgelen, Clemens; Op den Akker, Jeroen W; Wagenaar, Lodewijk J

    2014-08-01

    Patients with acute chest pain, electrocardiographic ST-elevation and significant elevation of cardiac troponin but without obstructive coronary artery disease represent a diagnostic and therapeutic dilemma. Cardiac magnetic resonance imaging (CMR) can elucidate underlying alternative causes of troponin elevation including detection of (minor) myocardial infarction (MI) by identifying myocardial scarring as delayed enhancement. Of 77 patients, who were admitted between March 2009 and December 2012 with electrocardiographic (ECG) and biochemical evidence of acute MI without obstructive coronary artery disease, 45 patients underwent CMR that showed in 11/77 (14%) late gadolinium enhancement (LGE), compatible with myocardial scarring. We analyzed clinical, echocardiographic, and CMR data of these patients. Elevated troponin I levels were observed in all patients (median 1.3 ng/l, IQR 0.44-187) with median peak creatinine phosphokinase of 485 U/l (IQR 234-618). Echocardiographic wall motion abnormalities were detected in 8/11 (73%) patients; in 75% of these segments, ECG abnormalities were observed in corresponding leads. CMR detected LGE in the inferior (4/11), the inferolateral (5/11), the inferoseptal (2/11), the anterior (3/11), apical (3/11) and in the lateral segments (2/11). In addition, in all but two patients, these segments matched ECG abnormalities in corresponding leads. CMR identified microvascular obstruction in 4/11 (36%) patients. Patients with clinical, ECG, and biochemical signs of acute MI but unobstructed coronary arteries may have CMR-detectable myocardial scars. Information on myocardial scarring may help to make the diagnosis and draw therapeutic consequences. This case series underlines the value of contrast-enhanced CMR for myocardial tissue characterization.

  16. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells

    Science.gov (United States)

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-01-01

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs. PMID:27166184

  17. Statins suppress glucose-induced plasminogen activator inhibitor-1 expression by regulating RhoA and nuclear factor-κB activities in cardiac microvascular endothelial cells.

    Science.gov (United States)

    Ni, Xiao-Qing; Zhu, Jian-Hua; Yao, Ning-Hua; Qian, Juan; Yang, Xiang-Jun

    2013-01-01

    The aim of this study was to investigate the possible proinflammatory signaling pathways involved in statin inhibition of glucose-induced plasminogen activator inhibitor-1 (PAI-1) expression in cardiac microvascular endothelial cells (CMECs). Primary rat CMECs were grown in the presence of 5.7 or 23 mmol/L glucose. PAI-1 mRNA and protein expression levels were measured by realtime polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay, respectively. A pull-down assay was performed to determine RhoA activity. IκBα protein expression was measured by Western blotting, nuclear factor (NF)-κB activation was detected by electrophoretic mobility shift assay and its transcription activity was determined by a dual luciferase reporter gene assay. PAI-1 mRNA and protein expression levels were both increased with high glucose concentrations, but they were significantly suppressed by simvastatin and atorvastatin treatment (P statins (P statins may occur partly by regulating the RhoA/ROCK-NF-κB pathway. The multifunctional roles of statins may be particularly beneficial for patients with metabolic syndrome.

  18. Microvascular obstruction on delayed enhancement cardiac magnetic resonance imaging after acute myocardial infarction, compared with myocardial {sup 201}Tl and {sup 123}I-BMIPP dual SPECT findings

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Hiroaki [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Cardiology, Kainan Hospital, Yatomi (Japan); Isobe, Satoshi, E-mail: sisobe@med.nagoya-u.ac.jp [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Sakai, Shinichi [Department of Cardiology, Kainan Hospital, Yatomi (Japan); Yamada, Takashi [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Watanabe, Naoki; Miura, Manabu [Department of Cardiology, Kainan Hospital, Yatomi (Japan); Uchida, Yasuhiro; Kanashiro, Masaaki; Ichimiya, Satoshi [Department of Cardiology, Yokkaichi Municipal Hospital, Yokkaichi (Japan); Okumura, Takahiro; Murohara, Toyoaki [Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2015-08-15

    Highlights: • The percentage infarct size (%IS) was significantly greater in the microvascular obstruction (MO) group than in the non-MO group. • The percentage mismatch score (%MMS) on dual scintigraphy significantly correlated with the %IS and the percentage MO. • The %MMS was significantly greater in the non-MO group than in the MO group, and was an independent predictor for MO. - Abstract: Background: The hypo-enhanced regions within the hyper-enhanced infarct areas detected by cardiac magnetic resonance (CMR) imaging reflect microvascular obstruction (MO) after acute myocardial infarction (AMI). The combined myocardial thallium-201 ({sup 201}Tl)/iodine-123-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid ({sup 123}I-BMIPP) dual single-photon emission computed tomography (SPECT) is a useful tool for detecting myocardial reversibility after AMI. We evaluated whether MO could be an early predictor of irreversible myocardial damage in comparison with {sup 201}Tl and {sup 123}I-BMIPP dual SPECT findings in AMI patients. Methods: Sixty-two patients with initial AMI who successfully underwent coronary revascularization were enrolled. MO was defined by CMR imaging. Patients were divided into 2 groups as follows: MO group (n = 32) and non-MO group (n = 30). Scintigraphic defect scores were calculated using a 17-segment model with a 5-point scoring system. The mismatch score (MMS) was calculated as follows: the total sum of (Σ) {sup 123}I-BMIPP defect score minus Σ{sup 201}Tl defect score. The percentage mismatch score (%MMS) was calculated as follows: MMS/(Σ{sup 123}I-BMIPP score) × 100 (%). Results: The percentage infarct size (%IS) was significantly greater in the MO group than in the non-MO group (32.2 ± 13.8% vs. 18.3 ± 12.1%, p < 0.001). The %MMS significantly correlated with the %IS and the percentage MO (r = −0.26, p = 0.03; r = −0.45, p < 0.001, respectively). The %MMS was significantly greater in the non-MO group than in the MO group (45.4

  19. Effects ofPlasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sarah D Alessandro; Nicoletta Basilico; Mauro Prato

    2013-01-01

    Objective:To investigate the regulation of matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in human microvascular endothelium(HMEC-1) exposed to erythrocytes infected by different strains ofPlasmodium falciparum (P. falciparum).Methods:HMEC-1 cells were co-incubated for72 h with erythrocytes infected by late stage trophozoite of D10(chloroquine-sensitive) orW2(chloroquine-resistant)P. falciparum strains.Cell supernatants were then collected and the levels of pro- or active gelatinasesMMP-9 andMMP-2 were evaluated by gelatin zymography and densitometry.The release of pro-MMP-9,MMP-3,MMP-1 andTIMP-1 proteins was analyzed by western blotting and densitometry.Results:Infected erythrocytes inducedde novo proMMP-9 andMMP-9 release.Neither basal levels of proMMP-2 were altered, nor activeMMP-2 was found.MMP-3 andMMP-1 secretion was significantly enhanced, whereas basalTIMP-1 was unaffected.All effects were similar for both strains. Conclusions:P. falciparum parasites, either chloroquine-sensitive or -resistant, induce the release of activeMMP-9 protein from human microvascular endothelium, by impairing balances between proMMP-9 and its inhibitor, and by enhancing the levels of its activators.This work provides new evidence onMMP involvement in malaria, pointing atMMP-9 as a possible target in adjuvant therapy.

  20. Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: Neuroprotective role in maintaining blood brain barrier integrity.

    Science.gov (United States)

    Parikh, Neil U; Aalinkeel, R; Reynolds, J L; Nair, B B; Sykes, D E; Mammen, M J; Schwartz, S A; Mahajan, S D

    2015-10-22

    Methamphetamine (Meth) abuse can lead to the breakdown of the blood-brain barrier (BBB) integrity leading to compromised CNS function. The role of Galectins in the angiogenesis process in tumor-associated endothelial cells (EC) is well established; however no data are available on the expression of Galectins in normal human brain microvascular endothelial cells and their potential role in maintaining BBB integrity. We evaluated the basal gene/protein expression levels of Galectin-1, -3 and -9 in normal primary human brain microvascular endothelial cells (BMVEC) that constitute the BBB and examined whether Meth altered Galectin expression in these cells, and if Galectin-1 treatment impacted the integrity of an in-vitro BBB. Our results showed that BMVEC expressed significantly higher levels of Galectin-1 as compared to Galectin-3 and -9. Meth treatment increased Galectin-1 expression in BMVEC. Meth induced decrease in TJ proteins ZO-1, Claudin-3 and adhesion molecule ICAM-1 was reversed by Galectin-1. Our data suggests that Galectin-1 is involved in BBB remodeling and can increase levels of TJ proteins ZO-1 and Claudin-3 and adhesion molecule ICAM-1 which helps maintain BBB tightness thus playing a neuroprotective role. Galectin-1 is thus an important regulator of immune balance from neurodegeneration to neuroprotection, which makes it an important therapeutic agent/target in the treatment of drug addiction and other neurological conditions.

  1. Relationship Between Different Subpopulations of Circulating CD4+ T-lymphocytes and Microvascular Structural Alterations in Humans.

    Science.gov (United States)

    De Ciuceis, Carolina; Rossini, Claudia; Airò, Paolo; Scarsi, Mirko; Tincani, Angela; Tiberio, Guido Alberto Massimo; Piantoni, Silvia; Porteri, Enzo; Solaini, Leonardo; Duse, Sarah; Semeraro, Francesco; Petroboni, Beatrice; Mori, Luigi; Castellano, Maurizio; Gavazzi, Alice; Agabiti Rosei, Claudia; Agabiti Rosei, Enrico; Rizzoni, Damiano

    2017-01-01

    Different components of the immune system, including innate and adaptive immunity (T-effector lymphocytes and T-regulatory lymphocytes-TREGs) may be involved in the development of hypertension. In addition, it was demonstrated in animal models that TREGs may prevent angiotensin II-induced hypertension and vascular injury/inflammation. However, no data are presently available in humans about possible relationships between T-lymphocyte subtypes and microvascular structural alterations. For this purpose, in the present study, we enrolled 24 normotensive subjects and 12 hypertensive patients undergoing an elective surgical intervention. No sign of local or systemic inflammation was present. All patients underwent a biopsy of subcutaneous fat during surgery. Subcutaneous small resistance arteries were dissected and mounted on a wire myograph and the media to lumen ratio (M/L) was calculated. In addition, retinal arteriolar structure was evaluated noninvasively by scanning laser Doppler flowmetry. Capillary density in the nailfold, dorsum of the finger, and forearm were evaluated by videomicroscopy. A peripheral blood sample was obtained before surgery for assessment of T-lymphocyte subpopulations by flow cytometry. Significant negative correlations were observed between indices of microvascular structure (M/L of subcutaneous small arteries and wall to lumen ratio of retinal arterioles) and circulating TREG lymphocytes. A direct correlation was observed between M/L of subcutaneous small arteries and circulating Th17 lymphocytes. In addition, total capillary density was correlated with a TREG effector memory subpopulation. Our data suggest that some lymphocyte subpopulations may be related to microvascular remodeling, confirming previous animal data, and opening therapeutic possibilities. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Transcriptional network analysis for the regulation of left ventricular hypertrophy and microvascular remodeling.

    Science.gov (United States)

    Moreno-Moral, Aida; Mancini, Massimiliano; D'Amati, Giulia; Camici, Paolo; Petretto, Enrico

    2013-12-01

    Hypertension and cardiomyopathies share maladaptive changes of cardiac morphology, eventually leading to heart failure. These include left ventricular hypertrophy (LVH), myocardial fibrosis, and structural remodeling of coronary microcirculation, which is the morphologic hallmark of coronary microvascular dysfunction. To pinpoint the complex molecular mechanisms and pathways underlying LVH-associated cardiac remodeling independent of blood pressure effects, we employed gene network approaches to the rat heart. We used the Spontaneously Hypertensive Rat model showing many features of human hypertensive cardiomyopathy, for which we collected histological and histomorphometric data of the heart and coronary vasculature, and genome-wide cardiac gene expression. Here, we provide a large catalogue of gene co-expression networks in the heart that are significantly associated with quantitative variation in LVH, microvascular remodeling, and fibrosis-related traits. Many of these networks were significantly conserved to human idiopathic and/or ischemic cardiomyopathy patients, suggesting a potential role for these co-expressed genes in human heart disease.

  3. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  4. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity.

    Science.gov (United States)

    Palus, Martin; Vancova, Marie; Sirmarova, Jana; Elsterova, Jana; Perner, Jan; Ruzek, Daniel

    2017-07-01

    Alteration of the blood-brain barrier (BBB) is a hallmark of tick-borne encephalitis (TBE), a life-threating human viral neuroinfection. However, the mechanism of BBB breakdown during TBE, as well as TBE virus (TBEV) entry into the brain is unclear. Here, primary human microvascular endothelial cells (HBMECs) were infected with TBEV to study interactions with the BBB. Although the number of infected cells was relatively low in culture (10(6)pfu/ml). Infection did not induce any significant changes in the expression of key tight junction proteins or upregulate the expression of cell adhesion molecules, and did not alter the highly organized intercellular junctions between HBMECs. In an in vitro BBB model, the virus crossed the BBB via a transcellular pathway without compromising the integrity of the cell monolayer. The results indicate that HBMECs may support TBEV entry into the brain without altering BBB integrity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells.

    Science.gov (United States)

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J; Otterson, Mary F; Stoner, Gary D; Shaker, Reza; Rafiee, Parvaneh

    2015-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat's digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial cell-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer.

  6. Wave speed in human coronary arteries is not influenced by microvascular vasodilation: implications for wave intensity analysis.

    Science.gov (United States)

    Rolandi, M Cristina; De Silva, Kalpa; Lumley, Matthew; Lockie, Timothy P E; Clapp, Brian; Spaan, Jos A E; Perera, Divaka; Siebes, Maria

    2014-03-01

    Wave intensity analysis and wave separation are powerful tools for interrogating coronary, myocardial and microvascular physiology. Wave speed is integral to these calculations and is usually estimated by the single-point technique (SPc), a feasible but as yet unvalidated approach in coronary vessels. We aimed to directly measure wave speed in human coronary arteries and assess the impact of adenosine and nitrate administration. In 14 patients, the transit time Δt between two pressure signals was measured in angiographically normal coronary arteries using a microcatheter equipped with two high-fidelity pressure sensors located Δs = 5 cm apart. Simultaneously, intracoronary pressure and flow velocity were measured with a dual-sensor wire to derive SPc. Actual wave speed was calculated as DNc = Δs/Δt. Hemodynamic signals were recorded at baseline and during adenosine-induced hyperemia, before and after nitroglycerin administration. The energy of separated wave intensity components was assessed using SPc and DNc. At baseline, DNc equaled SPc (15.9 ± 1.8 vs. 16.6 ± 1.5 m/s). Adenosine-induced hyperemia lowered SPc by 40 % (p DNc remained unchanged, leading to marked differences in respective separated wave energies. Nitroglycerin did not affect DNc, whereas SPc transiently fell to 12.0 ± 1.2 m/s (p < 0.02). Human coronary wave speed is reliably estimated by SPc under resting conditions but not during adenosine-induced vasodilation. Since coronary wave speed is unaffected by microvascular dilation, the SPc estimate at rest can serve as surrogate for separating wave intensity signals obtained during hyperemia, thus greatly extending the scope of WIA to study coronary physiology in humans.

  7. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells.

    Science.gov (United States)

    Iwao, Beniko; Yara, Miki; Hara, Naomi; Kawai, Yuiko; Yamanaka, Tsuyoshi; Nishihara, Hiroshi; Inoue, Takeshi; Inazu, Masato

    2016-02-01

    In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and 54.1 ± 8.1 μM, respectively. Choline uptake was inhibited by choline, acetylcholine (ACh) and the choline analog hemicholinium-3 (HC-3). Various organic cations also interacted with the choline transport system. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed, while mRNA for high-affinity choline transporter 1 (CHT1) and organic cation transporters (OCTs) were not expressed in hBMECs. CTL1 and CTL2 proteins were localized to brain microvascular endothelial cells in human brain cortical sections. Both CTL1 and CTL2 proteins were expressed on the plasma membrane and mitochondria. CTL1 and CTL2 proteins are mainly expressed in plasma membrane and mitochondria, respectively. We conclude that choline is mainly transported via an intermediate-affinity choline transport system, CTL1 and CTL2, in hBMECs. These transporters are responsible for the uptake of extracellular choline and organic cations. CTL2 participate in choline transport mainly in mitochondria, and may be the major site for the control of choline oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. MicroRNA-223-3p inhibits the angiogenesis of ischemic cardiac microvascular endothelial cells via affecting RPS6KB1/hif-1a signal pathway.

    Directory of Open Access Journals (Sweden)

    Guo-Hua Dai

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in the angiogenesis and cardiovascular diseases; however, the details of miRNAs regulating mechanism of angiogenesis of ischemic cardiac microvascular endothelial cells (CMECs are not yet reported. METHODS AND RESULTS: This study analyzes the changes of the dynamic expression of miRNAs during the process of angiogenesis of ischemic CMECs by applying miRNA chip and real-time PCR for the first time. Compared with normal CMECs, ischemic CMECs have a specific miRNAs expression profile, in which mir-223-3p has the most significant up-regulation, especially during the process of migration and proliferation, while the up-regulation is the most significant during migration, reaching 11.02 times. Rps6kb1 is identified as a potential direct and functional target of mir-223-3p by applying bioinformatic prediction, real-time PCR and Western blot. Pathway analysis report indicates Rps6kb1 regulates the angiogenesis by participating into hif-1a signal pathway. Further analysis reveals that both the gene and protein expression of the downstream molecules VEGF, MAPK, PI3K and Akt of Rps6kb1/hif-1a signal pathway decrease significantly during the process of migration and proliferation in the ischemic CMECs. Therefore, it is confirmed that mir-223-3p inhibits the angiogenesis of CMECs, at least partly, via intervening RPS6KB1/hif-1a signal pathway and affecting the process of migration and proliferation. CONCLUSION: This study elucidates the miRNA regulating law in the angiogenesis of CMECs; mir-223-3p inhibits the process of migration and proliferation of ischemic CMECs probably via affecting RPS6KB1/hif-1a signal pathway, which in turn suppresses the angiogenesis. It is highly possible that mir-223-3p becomes a novel intervention core target in the treatment of angiogenesis of ischemic heart diseases.

  9. Microvascular obstruction on delayed enhancement cardiac magnetic resonance imaging after acute myocardial infarction, compared with myocardial (201)Tl and (123)I-BMIPP dual SPECT findings.

    Science.gov (United States)

    Mori, Hiroaki; Isobe, Satoshi; Sakai, Shinichi; Yamada, Takashi; Watanabe, Naoki; Miura, Manabu; Uchida, Yasuhiro; Kanashiro, Masaaki; Ichimiya, Satoshi; Okumura, Takahiro; Murohara, Toyoaki

    2015-08-01

    The hypo-enhanced regions within the hyper-enhanced infarct areas detected by cardiac magnetic resonance (CMR) imaging reflect microvascular obstruction (MO) after acute myocardial infarction (AMI). The combined myocardial thallium-201 ((201)Tl)/iodine-123-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid ((123)I-BMIPP) dual single-photon emission computed tomography (SPECT) is a useful tool for detecting myocardial reversibility after AMI. We evaluated whether MO could be an early predictor of irreversible myocardial damage in comparison with (201)Tl and (123)I-BMIPP dual SPECT findings in AMI patients. Sixty-two patients with initial AMI who successfully underwent coronary revascularization were enrolled. MO was defined by CMR imaging. Patients were divided into 2 groups as follows: MO group (n=32) and non-MO group (n=30). Scintigraphic defect scores were calculated using a 17-segment model with a 5-point scoring system. The mismatch score (MMS) was calculated as follows: the total sum of (Σ) (123)I-BMIPP defect score minus Σ(201)Tl defect score. The percentage mismatch score (%MMS) was calculated as follows: MMS/(Σ(123)I-BMIPP score)×100 (%). The percentage infarct size (%IS) was significantly greater in the MO group than in the non-MO group (32.2±13.8% vs. 18.3±12.1%, p<0.001). The %MMS significantly correlated with the %IS and the percentage MO (r=-0.26, p=0.03; r=-0.45, p<0.001, respectively). The %MMS was significantly greater in the non-MO group than in the MO group (45.4±42.4% vs. 13.3±28.0%, p=0.001), and was an independent predictor for MO (OR 0.97, 95%CI 0.94-0.99, p=0.02). Our results reconfirm that, in comparison with myocardial dual scintigraphy, MO is an important structural abnormality. CMR imaging is useful for the early detection of irreversible myocardial damage after AMI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  11. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  12. Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells.

    Science.gov (United States)

    Thangjam, Gagan S; Birmpas, Charalampos; Barabutis, Nektarios; Gregory, Betsy W; Clemens, Mary Ann; Newton, Joseph R; Fulton, David; Catravas, John D

    2016-05-15

    The ability of anti-heat shock protein 90 (Hsp90) drugs to attenuate NF-κB-mediated transcription is the major basis for their anti-inflammatory properties. While the molecular mechanisms underlying this effect are not clear, they appear to be distinct in human endothelial cells. We now show for the first time that type 2 sirtuin (Sirt-2) histone deacetylase binds human NF-κB target gene promoter and prevents the recruitment of NF-κB proteins and subsequent assembly of RNA polymerase II complex in human lung microvascular endothelial cells. Hsp90 inhibitors stabilize the Sirt-2/promoter interaction and impose a "transcriptional block," which is reversed by either inhibition or downregulation of Sirt-2 protein expression. Furthermore, this process is independent of NF-κB (p65) Lysine 310 deacetylation, suggesting that it is distinct from known Sirt-2-dependent mechanisms. We demonstrate that Sirt-2 is recruited to NF-κB target gene promoter via interaction with core histones. Upon inflammatory challenge, chromatin remodeling and core histone H3 displacement from the promoter region removes Sirt-2 and allows NF-κB/coactivator recruitment essential for RNA Pol II-dependent mRNA induction. This novel mechanism may have important implications in pulmonary inflammation.

  13. Cardiac, respiratory, and locomotor coordination during walking in humans.

    Science.gov (United States)

    Niizeki, K; Kawahara, K; Miyamoto, Y

    1996-01-01

    Interactions between locomotor, respiratory, and cardiac rhythms were investigated in human subjects (n = 11) walking on a treadmill. Investigation of the phase relationship between heart rate and gait signals revealed that cardiac rhythms were entrained to locomotor rhythms when both frequencies were close to an integer ratio. Coherence spectra were estimated between heartbeat fluctuation, respiratory, and gait signals, and their magnitudes were evaluated. The results suggest that the respiratory-induced fluctuation in heartbeat would vary depending on the strength of the cardiolocomotor coupling. The synchronization tends to occur for one or two specific phases in an individual subject, but there was some variation among subjects. When the subjects voluntarily synchronized their cadence with the cardiac rhythm, the heart rate and blood pressure varied depending on the phase lag within a cardiac cycle. The coordination of locomotor and cardiac rhythms is discussed.

  14. Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function

    Directory of Open Access Journals (Sweden)

    Forchhammer Lykke

    2012-03-01

    Full Text Available Abstract Background Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF after controlled wood smoke exposure. Methods In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia. Results The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM, low (1.51 ± 0.07 or high (1.61 ± 0.09 concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09. The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles. Conclusions Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

  15. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Pospischil Andreas

    2006-06-01

    Full Text Available Abstract Background Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and intestinal epithelial or endothelial tissue. This study examined for the first time the adherence ability of 50 E. sakazakii strains to the two epithelial cell lines HEp-2 and Caco-2, as well as the brain microvascular endothelial cell line HBMEC. Furthermore, the effects of bacterial culture conditions on the adherence behaviour were investigated. An attempt was made to characterize the factors involved in adherence. Results Two distinctive adherence patterns, a diffuse adhesion and the formation of localized clusters of bacteria on the cell surface could be distinguished on all three cell lines. In some strains, a mixture of both patterns was observed. Adherence was maximal during late exponential phase, and increased with higher MOI. The adhesion capacity of E. sakazakii to HBMEC cells was affected by the addition of blood to the bacteria growth medium. Mannose, hemagglutination, trypsin digestion experiments and transmission electron microscopy suggested that the adhesion of E. sakazakii to the epithelial and endothelial cells is mainly non-fimbrial based. Conclusion Adherence experiments show heterogeneity within different E. sakazakii strains. In agreement with studies on E. cloacae, we found no relationship between the adhesive capacities in E. sakazakii and the eventual production of specific fimbriae. Further studies will have to be carried out in order to determine the adhesin(s involved in the interaction of E. sakazakii with cells and to

  16. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  17. In vivo imaging of microvascular changes in inflammatory human skin induced by tape stripping and mosquito saliva using optical microangiography

    Science.gov (United States)

    Baran, Utku; Choi, Woo J.; Wang, Ruikang K.

    2015-03-01

    Tape stripping on human skin induces mechanical disruptions of the epidermal barrier that lead to minor skin inflammation which leads to temporary changes in microvasculature. On the other hand, when mosquitoes probe the skin for blood feeding, they inject saliva in dermal tissue. Mosquito saliva is known to exert various biological activities, such as dermal mast cell degranulation, leading to fluid extravasation and neutrophil influx. This inflammatory response remain longer than the tape stripping caused inflammation. In this study, we demonstrate the capabilities of swept-source optical coherence tomography (OCT) in detecting in vivo microvascular response of inflammatory human skin. Optical microangiography (OMAG), noninvasive volumetric microvasculature in vivo imaging method, has been used to track the vascular responses after tape stripping and mosquito bite. Vessel density has been quantified and used to correlate with the degree of skin irritation. The proved capability of OMAG technique in visualizing the microvasculature network under inflamed skin condition can play an important role in clinical trials of treatment and diagnosis of inflammatory skin disorders as well as studying mosquito bite's perception by the immune system and its role in parasite transmission.

  18. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature.

    Science.gov (United States)

    Demyanets, Svitlana; Kaun, Christoph; Pentz, Richard; Krychtiuk, Konstantin A; Rauscher, Sabine; Pfaffenberger, Stefan; Zuckermann, Andreas; Aliabadi, Arezu; Gröger, Marion; Maurer, Gerald; Huber, Kurt; Wojta, Johann

    2013-07-01

    Interleukin-33 (IL-33) is a recently described member of the IL-1 family of cytokines, which was identified as a ligand for the ST2 receptor. Components of the IL-33/ST2 system were shown to be expressed in normal and pressure overloaded human myocardium, and soluble ST2 (sST2) has emerged as a prognostic biomarker in myocardial infarction and heart failure. However, expression and regulation of IL-33 in human adult cardiac myocytes and fibroblasts was not tested before. In this study we found that primary human adult cardiac fibroblasts (HACF) and human adult cardiac myocytes (HACM) constitutively express nuclear IL-33 that is released during cell necrosis. Tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-1β significantly increased both IL-33 protein and IL-33 mRNA expression in HACF and HACM as well as in human coronary artery smooth muscle cells (HCASMC). The nuclear factor-κB (NF-κB) inhibitor dimethylfumarate inhibited TNF-α- and IL-1β-induced IL-33 production as well as nuclear translocation of p50 and p65 NF-κB subunits in these cells. Mitogen-activated protein/extracellular signal-regulated kinase inhibitor U0126 abrogated TNF-α-, IFN-γ-, and IL-1β-induced and Janus-activated kinase inhibitor I reduced IFN-γ-induced IL-33 production. We detected IL-33 mRNA in human myocardial tissue from patients undergoing heart transplantation (n=27) where IL-33 mRNA levels statistically significant correlated with IFN-γ (r=0.591, p=0.001) and TNF-α (r=0.408, p=0.035) mRNA expression. Endothelial cells in human heart expressed IL-33 as well as ST2 protein. We also reveal that human cardiac and vascular cells have different distribution patterns of ST2 isoforms (sST2 and transmembrane ST2L) mRNA expression and produce different amounts of sST2 protein. Both human macrovascular (aortic and coronary artery) and heart microvascular endothelial cells express specific mRNA for both ST2 isoforms (ST2L and sST2) and are a source for sST2 protein, whereas

  19. The benefits of the Atlas of Human Cardiac Anatomy website for the design of cardiac devices.

    Science.gov (United States)

    Spencer, Julianne H; Quill, Jason L; Bateman, Michael G; Eggen, Michael D; Howard, Stephen A; Goff, Ryan P; Howard, Brian T; Quallich, Stephen G; Iaizzo, Paul A

    2013-11-01

    This paper describes how the Atlas of Human Cardiac Anatomy website can be used to improve cardiac device design throughout the process of development. The Atlas is a free-access website featuring novel images of both functional and fixed human cardiac anatomy from over 250 human heart specimens. This website provides numerous educational tutorials on anatomy, physiology and various imaging modalities. For instance, the 'device tutorial' provides examples of devices that were either present at the time of in vitro reanimation or were subsequently delivered, including leads, catheters, valves, annuloplasty rings and stents. Another section of the website displays 3D models of the vasculature, blood volumes and/or tissue volumes reconstructed from computed tomography and magnetic resonance images of various heart specimens. The website shares library images, video clips and computed tomography and MRI DICOM files in honor of the generous gifts received from donors and their families.

  20. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  1. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype

    OpenAIRE

    Katt, Moriah E.; Xu, Zinnia S.; Gerecht, Sharon; Searson, Peter C.

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial...

  2. Microvascular Disease After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Qi Lun Ooi

    2015-11-01

    Full Text Available Background/Aims: Individuals who reach end-stage kidney disease (CKD5 have a high risk of vascular events that persists even after renal transplantation. This study compared the prevalence and severity of microvascular disease in transplant recipients and patients with CKD5. Methods: Individuals with a renal transplant or CKD5 were recruited consecutively from renal clinics, and underwent bilateral retinal photography (Canon CR5-45, Canon. Their retinal images were deidentified and reviewed for hypertensive/microvascular signs by an ophthalmologist and a trained grader (Wong and Mitchell classification, and for vessel caliber at a grading centre using a computer-assisted method and Knudtson's modification of the Parr-Hubbard formula. Results: Ninety-two transplant recipients (median duration 6.4 years, range 0.8 to 28.8 and 70 subjects with CKD5 were studied. Transplant recipients were younger (pConclusions: Hypertensive/microvascular disease occurred just as often and was generally as severe in transplant recipients and subjects with CKD5. Microvascular disease potentially contributes to increased cardiac events post- transplantation.

  3. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  4. Destruction of human microvascular endothelial cell capillary-like microtubules by Brazilian purpuric fever-associated Haemophilus influenzae biogroup aegyptius.

    Science.gov (United States)

    Quinn, F D; Weyant, R S; Candal, F J; Ades, E W

    1994-01-01

    When grown in the presence of Matrigel, monolayers of an immortalized human microvascular cell line (HMEC-1) form capillary-like microtubule networks. Previous work, using HMEC-1 monolayers, demonstrated a significant difference in in vitro cytotoxicity between Brazilian purpuric fever (BPF)-associated Haemophilus influenzae biogroup aegyptius (HAE) strains and non-BPF-associated HAE strains. The present study demonstrates that BPF-related cytotoxic differences can also be observed in HMEC-1 microtubule networks. At a multiplicity of infection (MOI) of 2 x 10(-2) bacteria/tissue culture cell, BPF-associated strain F3031 disrupted the microtubule network, producing random clumps of rounded cells at 48 h of incubation. Infection with non-BPF-associated strain F1947 at the same MOI produced no observable microtubule disruption. The ability of HMEC-1 microtubule model to differentiate virulent and avirulent HAE in vitro will further aid in the study of BPF pathogenesis. In addition, the fact that the HMEC-1 cells can be induced to form microtubules make it an excellent model system for the general study of many of the agents of vascular purpura.

  5. Focal adhesion kinase is involved in type III group B streptococcal invasion of human brain microvascular endothelial cells.

    Science.gov (United States)

    Shin, Sooan; Paul-Satyaseela, Maneesh; Maneesh, Paul-Satyaseela; Lee, Jong-Seok; Romer, Lewis H; Kim, Kwang Sik

    2006-01-01

    Group B streptococcus (GBS), the leading cause of neonatal meningitis, has been shown to invade human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. GBS invasion of HBMEC has been shown to require the host cell actin cytoskeleton rearrangements. The present study examined the mechanisms underlying actin cytoskeleton rearrangements that are involved in type III GBS invasion of HBMEC. We showed that type III GBS invasion was inhibited by genistein, a general tyrosine kinase inhibitor (mean 54% invasion decrease at 100 microM), and LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor (mean 70% invasion decrease at 50 microM), but not by PP2, an inhibitor of the Src family tyrosine kinases. We subsequently showed that the focal adhesion kinase (FAK) was the one of the host proteins tyrosine phosphorylated by type III GBS. Over-expression of a dominant negative form of the FAK C-terminal domain significantly decreased type III GBS invasion of HBMEC (mean 51% invasion decrease). In addition, we showed that FAK phosphorylation correlated with its association of paxillin, an adapter protein of actin filament, and PI3-kinase subunit p85. This is the first demonstration that FAK phosphorylation and its association with paxillin and PI3 kinase play a key role in type III GBS invasion of HBMEC.

  6. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions.

    Science.gov (United States)

    Wilhelmsen, Kevin; Farrar, Katherine; Hellman, Judith

    2013-08-23

    The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.

  7. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  8. Self-organizing human cardiac microchambers mediated by geometric confinement

    Science.gov (United States)

    Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.

    2015-07-01

    Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.

  9. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells

    OpenAIRE

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of ...

  10. Differential Effects of Bartonella henselae on Human and Feline Macro- and Micro-Vascular Endothelial Cells

    OpenAIRE

    Moez Berrich; Claudine Kieda; Catherine Grillon; Martine Monteil; Nathalie Lamerant; Julie Gavard; Henri Jean Boulouis; Nadia Haddad

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any...

  11. Pinocembrin Protects Human Brain Microvascular Endothelial Cells against Fibrillar Amyloid- β1−40 Injury by Suppressing the MAPK/NF- κ B Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2014-01-01

    Full Text Available Cerebrovascular accumulation of amyloid-β (Aβ peptides in Alzheimer’s disease (AD may contribute to disease progression through Aβ-induced microvascular endothelial pathogenesis. Pinocembrin has been shown to have therapeutic effects in AD models. These effects correlate with preservation of microvascular function, but the effect on endothelial cells under Aβ-damaged conditions is unclear. The present study focuses on the in vitro protective effect of pinocembrin on fibrillar Aβ1−40 (fAβ1−40 injured human brain microvascular endothelial cells (hBMECs and explores potential mechanisms. The results demonstrate that fAβ1−40-induced cytotoxicity in hBMECs can be rescued by pinocembrin treatment. Pinocembrin increases cell viability, reduces the release of LDH, and relieves nuclear condensation. The mechanisms of this reversal from Aβ may be associated with the inhibition of inflammatory response, involving inhibition of MAPK activation, downregulation of phosphor-IKK level, relief of IκBα degradation, blockage of NF-κB p65 nuclear translocation, and reduction of the release of proinflammatory cytokines. Pinocembrin does not show obvious effects on regulating the redox imbalance after exposure to fAβ1−40. Together, the suppression of MAPK and the NF-κB signaling pathways play a significant role in the anti-inflammation of pinocembrin in hBMECs subjected to fAβ1−40. This may serve as a therapeutic agent for BMEC protection in Alzheimer’s-related deficits.

  12. Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Long Min

    2012-02-01

    Full Text Available Abstract Background Cryptococcus neoformans has a predilection for central nervous system infection. C. neoformans traversal of the blood brain barrier, composed of human brain microvascular endothelial cells (HBMEC, is the crucial step in brain infection. However, the molecular mechanism of the interaction between Cryptococcus neoformans and HBMEC, relevant to its brain invasion, is still largely unknown. Methods In this report, we explored several cellular and molecular events involving the membrane lipid rafts and caveolin-1 (Cav1 of HBMEC during C. neoformans infection. Immunofluorescence microscopy was used to examine the roles of Cav1. The knockdown of Cav1 by the siRNA treatment was performed. Phosphorylation of Cav1 relevant to its invasion functions was investigated. Results We found that the host receptor CD44 colocalized with Cav1 on the plasma membrane, and knockdown of Cav1 significantly reduced the fungal ability to invade HBMEC. Although the CD44 molecules were still present, HBMEC membrane organization was distorted by Cav1 knockdown. Concomitantly, knockdown of Cav1 significantly reduced the fungal crossing of the HBMEC monolayer in vitro. Upon C. neoformans engagement, host Cav1 was phosphorylated in a CD44-dependent manner. This phosphorylation was diminished by filipin, a disrupter of lipid raft structure. Furthermore, the phosphorylated Cav1 at the lipid raft migrated inward to the perinuclear localization. Interestingly, the phospho-Cav1 formed a thread-like structure and colocalized with actin filaments but not with the microtubule network. Conclusion These data support that C. neoformans internalization into HBMEC is a lipid raft/caveolae-dependent endocytic process where the actin cytoskeleton is involved, and the Cav1 plays an essential role in C. neoformans traversal of the blood-brain barrier.

  13. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes.

    Science.gov (United States)

    Kriegel, Alison J; Baker, Maria Angeles; Liu, Yong; Liu, Pengyuan; Cowley, Allen W; Liang, Mingyu

    2015-10-01

    The goal of this study was to systematically identify endogenous microRNAs (miRNAs) in endothelial cells that regulate mRNAs encoded by genes relevant to hypertension. Small RNA deep sequencing was performed in cultured human microvascular endothelial cells. Of the 50 most abundant miRNAs identified, 30 had predicted target mRNAs encoded by genes with known involvement in hypertension or blood pressure regulation. The cells were transfected with anti-miR oligonucleotides to inhibit each of the 30 miRNAs and the mRNA abundance of predicted targets was examined. Of 95 miRNA-target pairs examined, the target mRNAs were significantly upregulated in 35 pairs and paradoxically downregulated in 8 pairs. The result indicated significant suppression of the abundance of mRNA encoded by ADM by endogenous miR-181a-5p, ATP2B1 by the miR-27 family, FURIN by miR-125a-5p, FGF5 by the let-7 family, GOSR2 by miR-27a-3p, JAG1 by miR-21-5p, SH2B3 by miR-30a-5p, miR-98, miR-181a-5p, and the miR-125 family, TBX3 by the miR-92 family, ADRA1B by miR-22-3p, ADRA2A by miR-30a-5p and miR-30e-5p, ADRA2B by miR-30e-5p, ADRB1 by the let-7 family and miR-98, EDNRB by the miR-92 family, and NOX4 by the miR-92 family, miR-100-5p, and miR-99b-5p (n=3-9; Phypertension.

  14. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    Science.gov (United States)

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  15. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    Science.gov (United States)

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  16. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  17. Microvascular patterns in human medullary tegmentum at the level of the area postrema.

    Science.gov (United States)

    Porzionato, Andrea; Macchi, Veronica; Morsut, Leonardo; Parenti, Anna; De Caro, Raffaele

    2005-04-01

    Abstract The aim of the present study was to evaluate the regional differences in microvessel density (MVD) of the human medullary tegmentum in adults and newborns/infants. Transverse serial sections of formalin-fixed, paraffin-embedded brainstems, taken from 16 adult and eight newborn/infant subjects, were stained with anti-von Willebrand factor (vWF) polyclonal antibodies. The boundaries of the area postrema (AP), dorsal motor vagal nucleus (DMVN), solitary tract nucleus (STN), solitary tract (ST) and hypoglossal nucleus (XII) were defined, all vessels were counted and the values were divided by the areas. In adult cases, statistically significant heterogeneity in MVD was found among the nuclei studied (P sections of the medulla of adult subjects stained with anti-vWF, all vessels showed an intense reaction of endothelial cells whereas in the DMVN, XII, STN and ST of newborns/infants, only rare, isolated vessels showed anti-vWF reactivity and in the AP, 41 +/- 21% of vessels expressed vWF. Differences in MVD among the nuclei may be related to their different functions and metabolic demands. Light and heterogeneous expression of vWF in endothelial cells of newborns/infants indicates that differentiation of microvasculature in the human medullary tegmentum extends beyond fetal stages.

  18. Microvascular COX-2/mPGES-1/EP-4 axis in human abdominal aortic aneurysm.

    Science.gov (United States)

    Camacho, Mercedes; Dilmé, Jaume; Solà-Villà, David; Rodríguez, Cristina; Bellmunt, Sergi; Siguero, Laura; Alcolea, Sonia; Romero, José-María; Escudero, José-Román; Martínez-González, José; Vila, Luis

    2013-12-01

    We investigated the prostaglandin (PG)E2 pathway in human abdominal aortic aneurysm (AAA) and its relationship with hypervascularization. We analyzed samples from patients undergoing AAA repair in comparison with those from healthy multiorgan donors. Patients were stratified according to maximum aortic diameter: low diameter (LD) (PGE2 metabolites were higher in AAA than in controls (plasma-controls, 19.9 ± 2.2; plasma-AAA, 38.8 ± 5.5 pg/ml; secretion-normal aorta, 16.5 ± 6.4; secretion-AAA, 72.9 ± 6.4 pg/mg; mean ± SEM). E-prostanoid receptor (EP)-2 and EP-4 were overexpressed in AAA, EP-4 being the only EP substantially expressed and colocalized with mPGES-1 in the microvasculature. Additionally, EP-4 mediated PGE2-induced angiogenesis in vitro. We provide new data concerning mPGES-1 expression in human AAA. Our findings suggest the potential relevance of the COX-2/mPGES-1/EP-4 axis in the AAA-associated hypervascularization.

  19. Human breast microvascular endothelial cells retain phenotypic traits in long-term finite life span culture

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Fridriksdottir, Agla J R; Kjartansson, Jens

    2007-01-01

    Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits...... with the tissue of origin. Microvasculature was localized in situ by immunohistochemistry in breast samples. From this tissue, collagen-rich stroma and adipose tissue were dissected mechanically and further disaggregated to release microvessel organoids. BRENCs were cultured from these organoids in endothelial...... uptake of low-density lipoprotein, and had E-selectin induced upon treatment with tumor necrosis factor-alpha. The first signs of senescence in passage 14 were accompanied by gain of trisomy 11. At passage 18 cells showed chromosomal aberrations and growth arrest as revealed by beta...

  20. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  1. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction.

    Science.gov (United States)

    Mohammed, Selma F; Hussain, Saad; Mirzoyev, Sultan A; Edwards, William D; Maleszewski, Joseph J; Redfield, Margaret M

    2015-02-10

    Characterization of myocardial structural changes in heart failure with preserved ejection fraction (HFpEF) has been hindered by the limited availability of human cardiac tissue. Cardiac hypertrophy, coronary artery disease (CAD), coronary microvascular rarefaction, and myocardial fibrosis may contribute to HFpEF pathophysiology. We identified HFpEF patients (n=124) and age-appropriate control subjects (noncardiac death, no heart failure diagnosis; n=104) who underwent autopsy. Heart weight and CAD severity were obtained from the autopsy reports. With the use of whole-field digital microscopy and automated analysis algorithms in full-thickness left ventricular sections, microvascular density (MVD), myocardial fibrosis, and their relationship were quantified. Subjects with HFpEF had heavier hearts (median, 538 g; 169% of age-, sex-, and body size-expected heart weight versus 335 g; 112% in controls), more severe CAD (65% with ≥1 vessel with >50% diameter stenosis in HFpEF versus 13% in controls), more left ventricular fibrosis (median % area fibrosis, 9.6 versus 7.1) and lower MVD (median 961 versus 1316 vessels/mm(2)) than control (Pcoronary microvascular rarefaction, and myocardial fibrosis than controls. Each of these findings may contribute to the left ventricular diastolic dysfunction and cardiac reserve function impairment characteristic of HFpEF. © 2014 American Heart Association, Inc.

  2. Effects of mir-21 on Cardiac Microvascular Endothelial Cells After Acute Myocardial Infarction in Rats: Role of Phosphatase and Tensin Homolog (PTEN)/Vascular Endothelial Growth Factor (VEGF) Signal Pathway

    Science.gov (United States)

    Yang, Feng; Liu, Wenwei; Yan, Xiaojuan; Zhou, Hanyun; Zhang, Hongshen; Liu, Jianfei; Yu, Ming; Zhu, Xiaoshan; Ma, Kezhong

    2016-01-01

    Background This study investigated how miR-21 expression is reflected in acute myocardial infarction and explored the role of miR-21 and the PTEN/VEGF signaling pathway in cardiac microvascular endothelial cells. Material/Methods We used an in vivo LAD rat model to simulate acute myocardial infarction. MiR-21 mimics and miR-21 inhibitors were injected and transfected into model rats in order to alter miR-21 expression. Cardiac functions were evaluated using echocardiographic measurement, ELISA, and Masson staining. In addition, lenti-PTEN and VEGF siRNA were transfected into CMEC cells using standard procedures for assessing the effect of PTEN and VEGE on cell proliferation, apoptosis, and angiogenesis. MiR-21, PTEN, and VEGF expressions were examined by RT-PCR and Western blot. The relationship between miR-21 and PTEN was determined by the luciferase activity assay. Results We demonstrated that miR-21 bonded with the 3′-UTR of PTEN and suppressed PTEN expressions. Established models significantly induced cardiac infarct volume and endothelial injury marker expressions as well as miR-21 and PTEN expressions (PMiR-21 mimics exhibited significantly protective effects since they down-regulated both infarction size and injury marker expressions by increasing VEGF expression and inhibiting PTEN expression (PmiR-21 on cell proliferation, apoptosis, and angiogenesis (PMiR-21 exerts protective effects on endothelial injury through the PTEN/VEGF pathway after acute myocardial infarction. PMID:27708252

  3. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. PMID:27877662

  4. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Directory of Open Access Journals (Sweden)

    Marta S Laranjeira

    2014-03-01

    Full Text Available Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs and human dermal microvascular endothelial cells (HDMECs on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves. Our results showed that cells had a higher metabolic activity (HGF, HDMEC and increased gene expression levels of fibroblast-specific protein-1 (FSP-1 and collagen type I (COL I on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  5. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  6. Oxidative Stress Induced by Cigarette Smoke Extracts in Human Brain Cells (T98G) and Human Brain Microvascular Endothelial Cells (HBMEC) in Mono- and Co-Culture.

    Science.gov (United States)

    Kim, Ju-Hyeong; Cho, Myung-Haing; Choi, Kyung-Chul; Lee, Kyuhong; Kim, Kwang-Sik; Shim, Soon-Mi

    2015-01-01

    The objective of the current study was to examine oxidative stress induced by cigarette smoke extract (CSE) or cigarette smoke condensate (CSC) in human brain cells (T98G) and human brain microvascular endothelial cells (HBMEC) in mono- and co-culture systems. Cell viability of T98G cells exposed to CSC (0.05-4 mg/ml) was significantly decreased compared to CSE (0.025-20%). There were no marked differences between quantities of reactive oxygen species (ROS) generation by either CSE (2, 4, and 10%) or CSC (0.2, 0.4, and 0.8 mg/ml) treatment compared to control. However, a significant effect was noted in ROS generation following CSC incubation at 4mg/ml. Cellular integrity of HBMEC decreased to 74 and 64% within 120 h of exposure at the IC50 value of CSE and CSC, respectively. This study suggests that chronic exposure to cigarette smoking might initiate damage to the blood-brain barrier.

  7. 心脏康复训练对女性微血管性心绞痛治疗效果研究%Cardiac Rehabilitation in the Treatment of Women with Microvascular Angina

    Institute of Scientific and Technical Information of China (English)

    高玉; 周江荣; 孙桂兰

    2015-01-01

    目的:探讨心脏康复训练对女性微血管心绞痛治疗的效果。方法:将60例微血管心绞痛女性患者按照随机数字表法分为试验组和对照组,各30例,试验组予常规药物治疗+24周康复治疗,对照组予常规药物治疗,比较两组在心脏焦虑评分、6 min步行试验、超声心动指标的差异。结果:(1)试验组治疗前后对比自身,心脏焦虑评分总分[(32.26±6.57)分vs (22.40±5.14)分],6 min步行距离[(373.83±61.25)m vs (430.51±49.31)m],每搏输出量[(65.11±11.31)ml vs (70.51±7.97)ml)、心输出量[(5.04±1.61)L/min vs (5.91±1.49)L/min]、左室射血分数[(63.21±7.56)% vs (71.23±8.92)%],差异均有统计学意义(P<0.05)。(2)与对照组比较,心脏焦虑评分[(22.40±5.14)分 vs (31.60±5.48)分]、6 min步行距离[(430.51±49.31)m vs (392.41±68.25)m]、每搏输出量[(70.51±7.97)ml vs (65.12±9.12)ml]、左室射血分数[(71.23±8.92)% vs (64.24±6.28)%]有改善,差异均有统计学意义(P<0.05)。结论:24周心脏康复训练能改善微血管性心绞痛女性运动耐量,心理状态,以及心功能指标。%Objective:To investigate the effect of cardiac rehabilitation(CR) for psychological and physiological morbidity in women with microvascular angina.Method:60 women with microvascular angina were randomly assigned to the experimental group(routin drugs+24 week CR exercise program) and the control group(routin drugs),30 cases in each group.All women completed the cardiac anxiety questionnaire,six-minute walk test and echocardiography assessment of cardiac function.Result:(1)After CR,patients demonstrated improved cardiac anxiety questionnaire score [(32.26±6.57) vs (22.40±5.14)],6-minute walk test [(373.83±61.25)m vs (430.51±49.31)m],stroke volume [(65.11±11.31)ml vs (70.51±7.97)ml],cardiac output [(5.04±1.61)L/min vs (5.91±1.49)L/min], left ventricular ejection fraction [(63.21±7.56)% vs (71.23±8.92)),there were statistical

  8. Toward GPGPU accelerated human electromechanical cardiac simulations.

    Science.gov (United States)

    Vigueras, Guillermo; Roy, Ishani; Cookson, Andrew; Lee, Jack; Smith, Nicolas; Nordsletten, David

    2014-01-01

    In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of CHeart--a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC. © 2013 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd.

  9. Hypoxia-induced reduction of sVEGFR-2 levels in human colonic microvascular endothelial cells in vitro: Comparative study with HUVEC.

    Science.gov (United States)

    Jayasinghe, Caren; Simiantonaki, Nektaria; Michel-Schmidt, Romi; Kirkpatrick, Charles James

    2009-01-01

    The functionality of large-vessel endothelial cells, such as human umbilical vein endothelial cells (HUVEC), may differ significantly from that in the microvasculature. We established a method for the isolation of human colonic microvascular endothelial cells (HCMEC). Since colonic diseases are often accompanied by hypoxia we examined its effects on HCMEC of five individuals in comparison with HUVEC, with respect to the secretion of the soluble form of the two important vascular endothelial growth factor (VEGF) receptors, VEGFR-1 and 2. After dissociation by dispase/collagenase of mucosal and submucosal tissue obtained from normal adult colon, HCMEC were isolated using CD31-coated magnetic beads and cultivated as monolayers. Subsequent characterization studies demonstrated the endothelial phenotype, including VEGFR-1 and 2 mRNA and protein expression. sVEGFR expression analyses were performed using ELISA. Under hypoxic conditions significantly enhanced levels of sVEGFR-1 on HUVEC were observed (pHUVEC were variable, that is, either unchanged or up-regulated. The different secretion profiles of sVEGFR-1 and 2 between HUVEC and HCMEC under normoxia and hypoxia underline the importance of using a functionally adequate and relevant microvasculature for in vitro studies of colonic diseases. The homogeneously reduced sVEGFR-2 levels in hypoxic HCMEC provide evidence for a novel microvascular endothelium-specific biomarker in hypoxia-response processes.

  10. Blocking of α1β1 and α2β1 adhesion molecules inhibits eosinophil migration through human lung microvascular endothelial cell monolayer

    Directory of Open Access Journals (Sweden)

    Stanisława Bazan-Socha

    2014-12-01

    Full Text Available In cell trafficking to the airways in asthma, among integrins the most important are those containing α4 and β2 subunits. We have previously shown that also blocking of collagen receptors, α1β1 and α2β1 integrins, inhibits transmigration of eosinophils of asthmatic subjects through a monolayer of skin microvascular endothelial cells seeded on collagen IV coated inserts. However, it was not clear whether this observation was limited to asthma or depended on the type of microvascular cell and collagen IV used as a base. In the current study we performed a transmigration assay using human lung microvascular endothelial cells seeded directly on a plastic surface as a base and blood cells isolated from 12 representatives of each of two groups, asthmatics and healthy donors, by gradient centrifugation, followed by immunomagnetic negative separation of eosinophils. Isolated eosinophils and peripheral blood mononuclear cells (PBMC were inhibited by snake venom-derived integrin antagonists including viperistatin and VP12, as inhibitors of α1β1 and α2β1 integrin, respectively, and VLO5 and VLO4, as inhibitors of α4β1 and α5β1 integrin, respectively. All snake venom-derived anti-adhesive proteins were effective in inhibiting eosinophil transmigration, whilst only VLO5 and VLO4 reduced PBMC mobility in this assay. This observation was similar in both groups of subjects studied. α1β1 and α2β1 integrins could be involved in transmigration of eosinophil to the inflammatory site. Migratory inhibition was observed in asthma subjects as well as in healthy donors, and did not depend on origin of endothelial cells or the extracellular matrix component used as a base.

  11. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.

    Science.gov (United States)

    Feric, Nicole T; Radisic, Milica

    2016-01-15

    Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The relation between hypointense core, microvascular obstruction and intramyocardial haemorrhage in acute reperfused myocardial infarction assessed by cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kandler, Diana; Luecke, Christian; Grothoff, Matthias; Andres, Claudia; Lehmkuhl, Lukas; Nitzsche, Stefan; Riese, Franziska; Gutberlet, Matthias [University Leipzig - Heart Centre, Department of Diagnostic and Interventional Radiology, Leipzig (Germany); Mende, Meinhard [University Leipzig, Coordination Centre for Clinical Trials, Leipzig (Germany); Waha, Suzanne de; Desch, Steffen; Lurz, Philipp; Eitel, Ingo [University Leipzig - Heart Centre, Department of Internal Medicine/ Cardiology, Leipzig (Germany)

    2014-12-15

    Intramyocardial haemorrhage (IMH) and microvascular obstruction (MVO) represent reperfusion injury after reperfused ST-elevation myocardial infarction (STEMI) with prognostic impact and ''hypointense core'' (HIC) appearance in T{sub 2}-weighted images. We aimed to distinguish between IMH and MVO by using T{sub 2}{sup *}-weighted cardiovascular magnetic resonance imaging (CMR) and analysed influencing factors for IMH development. A total of 151 patients with acute STEMI underwent CMR after primary angioplasty. T{sub 2}-STIR sequences were used to identify HIC, late gadolinium enhancement to visualise MVO and T{sub 2}{sup *}-weighted sequences to detect IMH. IMH{sup +}/IMH{sup -} patients were compared considering infarct size, myocardial salvage, thrombolysis in myocardial infarction (TIMI) flow, reperfusion time, ventricular volumes, function and pre-interventional medication. Seventy-six patients (50 %) were IMH{sup +}, 82 (54 %) demonstrated HIC and 100 (66 %) MVO. IMH was detectable without HIC in 16 %, without MVO in 5 % and HIC without MVO in 6 %. Multivariable analyses revealed that IMH was associated with significant lower left ventricular ejection fraction and myocardial salvage index, larger left ventricular volume and infarct size. Patients with TIMI flow grade ≤1 before angioplasty demonstrated IMH significantly more often. IMH is associated with impaired left ventricular function and higher infarct size. T{sub 2} and HIC imaging showed moderate agreement for IMH detection. T{sub 2}{sup *} imaging might be the preferred CMR imaging method for comprehensive IMH assessment. (orig.)

  13. Interactions between cardiac, respiratory, and brain activity in humans

    Science.gov (United States)

    Musizza, Bojan; Stefanovska, Aneta

    2005-05-01

    The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and α-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of α-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to α-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that α-activity drives both respiration and cardiac activity.

  14. Peripheral vasodilatation determines cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Bada, A A; Svendsen, J H; Secher, N H

    2012-01-01

    conditions, because of a parallel decrease in stroke volume (P exercise. Atrial pacing lowered central venous pressure (P ...In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral...... vasodilatation in the regulation of cardiac output during steady-state exercise, we measured central and peripheral haemodynamics in 10 healthy male subjects, with and without atrial pacing (100–150 beats min(−1)) during: (i) resting conditions, (ii) one-legged knee extensor exercise (24 W) and (iii) femoral...

  15. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.

    Science.gov (United States)

    He, Chang-Liang; Yi, Peng-Fei; Fan, Qiao-Jia; Shen, Hai-Qing; Jiang, Xiao-Lin; Qin, Qian-Qian; Song, Zhou; Zhang, Cui; Wu, Shuai-Cheng; Wei, Xu-Bin; Li, Ying-Lun; Fu, Ben-Dong

    2013-04-01

    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. Alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs). XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways. These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases.

  16. Cardiac spheroids as promising in vitro models to study the human heart microenvironment

    DEFF Research Database (Denmark)

    Polonchuk, Liudmila; Chabria, Mamta; Badi, Laura

    2017-01-01

    and fibroblasts at ratios approximating those present in vivo. The cellular organisation, extracellular matrix and microvascular network mimic human heart tissue. These spheroids have been employed to investigate the dose-limiting cardiotoxicity of the common anti-cancer drug doxorubicin. Viability......, biochemistry and pharmacology in vitro, offering a promising alternative to animals and standard cell cultures with regard to mechanistic insights and prediction of toxic effects in human heart tissue....

  17. The regional myocardial microvascular dysfunction differences in hypertrophic cardiomyopathy patients with or without left ventricular outflow tract obstruction: Assessment with first-pass perfusion imaging using 3.0-T cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hua-yan [Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Yang, Zhi-gang, E-mail: yangzg666@163.com [Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Sun, Jia-yu; Wen, Ling-yi; Zhang, Ge; Zhang, Shuai [Department of Radiology, National Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Guo, Ying-kun [Department of Radiology, West China Second University Hospital, Sichuan University (China)

    2014-04-15

    Purpose: To assess regional myocardial microvascular dysfunction differences in hypertrophic cardiomyopathy (HCM) patients with or without left ventricular outflow tract obstruction using 3.0-T cardiac magnetic resonance (CMR) first-pass perfusion imaging. Materials and methods: Forty-two HCM patients, including 25 HCM patients with left ventricular outflow tract obstruction (HOCM), 17 HCM patients without left ventricular outflow tract obstruction (NOHCM), and 14 healthy subjects underwent CMR. The left ventricular (LV) function, left ventricular end-diastolic wall thickness (EDTH), and diameter of left ventricular outflow tract (LVOT) were measured and calculated. Based on the signal–time curve of the first-pass myocardium perfusion imaging, perfusion parameters including upslope, time to peak, and peak intensity, were assessed and compared by using one-way analysis of variance and independent t tests. Results: On the first-pass perfusion imaging, lower upslope and peak intensity and longer time to peak were found in HCM patients compared with normal subjects (all p < 0.05). In contrast to the NOHCM group, the average time to peak of the HOCM group was increased (13.30 ± 4.82 s vs 16.28 ± 4.90 s, p < 0.05), but first-pass perfusion upslope was reduced (4.96 ± 2.55 vs 2.58 ± 0.77, p < 0.05). According to the bull's-eye model, the HOCM group's average thickness of basal segments was thicker than the NOHCM group, especially the anteroseptal, inferolateral, and anterior wall values, with a corresponding lower first-pass perfusion upslope than the NOHCM group (all p < 0.05). A significant correlation was observed between first-pass perfusion upslope and LV EDTH (r = −0.551, p < 0.001) and LVOT diameter (r = 0.472, p < 0.001). Conclusions: The regional myocardial microvascular dysfunction differences in hypertrophic cardiomyopathy (HCM) patients with or without left ventricular outflow tract obstruction can be detected with first-pass perfusion CMR

  18. Partial cardiac sympathetic denervation after bilateral thoracic sympathectomy in humans.

    Science.gov (United States)

    Moak, Jeffrey P; Eldadah, Basil; Holmes, Courtney; Pechnik, Sandra; Goldstein, David S

    2005-06-01

    Upper thoracic sympathectomy is used to treat several disorders. Sympathetic nerve fibers emanating from thoracic ganglia innervate the heart. Whether unilateral or bilateral upper thoracic sympathectomy affects cardiac sympathetic innervation in humans in vivo has been unclear. The purpose of this study was to assess whether thoracic sympathectomy decreases cardiac sympathetic innervation, as indicated by positron emission tomographic scanning after intravenous injection of the sympathoneural imaging agent 6-[18F]fluorodopamine. Nine patients with previous upper thoracic sympathectomies (four right-sided, one left-sided, four bilateral) underwent thoracic 6-[18F]fluorodopamine scanning between 1 and 2 hours after injection of the imaging agent. In each case, a low rate of entry of norepinephrine into the arm venous drainage (norepinephrine spillover) verified upper limb sympathectomy. Data were compared with those from the interventricular septum of patients with cardiac sympathetic denervation associated with pure autonomic failure and from normal volunteers. All four patients with bilateral sympathectomy had low septal myocardial 6-[18F]fluorodopamine-derived radioactivity (2,673 +/- 92 nCi-kg/cc-mCi at an average of 89 minutes after injection) compared with normal volunteers (3,634 +/- 311 nCi-kg/cc-mCi at 83 minutes, N = 22, P = .007) and higher radioactivity than in patients with pure autonomic failure (1,320 +/- 300 nCi-kg/cc-mCi at 83 minutes, N = 7, P = .003). Patients with unilateral sympathectomy had normal 6-[18F]fluorodopamine-derived radioactivity (3,971 +/- 337 nCi-kg/cc-mCi at 87 minutes). Bilateral upper thoracic sympathectomy partly decreases cardiac sympathetic innervation density.

  19. Determining a human cardiac pacemaker using fuzzy logic

    Science.gov (United States)

    Varnavsky, A. N.; Antonenco, A. V.

    2017-01-01

    The paper presents a possibility of estimating a human cardiac pacemaker using combined application of nonlinear integral transformation and fuzzy logic, which allows carrying out the analysis in the real-time mode. The system of fuzzy logical conclusion is proposed, membership functions and rules of fuzzy products are defined. It was shown that the ratio of the value of a truth degree of the winning rule condition to the value of a truth degree of any other rule condition is at least 3.

  20. Mst1 inhibits CMECs autophagy and participates in the development of diabetic coronary microvascular dysfunction

    Science.gov (United States)

    Lin, Jie; Zhang, Lei; Zhang, Mingming; Hu, Jianqiang; Wang, Tingting; Duan, Yu; Man, Wanrong; Wu, Bin; Feng, Jiaxu; Sun, Lei; Li, Congye; Zhang, Rongqing; Wang, Haichang; Sun, Dongdong

    2016-01-01

    Cardiovascular complications account for a substantial proportion of morbidity and mortality in diabetic patients. Abnormalities of cardiac microvascular endothelial cells (CMECs) lead to impaired cardiac microvascular vessel integrity and subsequent cardiac dysfunction, underlining the importance of coronary microvascular dysfunction. In this study, experimental diabetes models were constructed using Mst1 transgenic, Mst1 knockout and sirt1 knockout mice. Diabetic Mst1 transgenic mice exhibited impaired cardiac microvessel integrity and decreased cardiac function. Mst1 overexpression deceased CMECs autophagy as evidenced by decreased LC3 expression and enhanced protein aggregation when subjected to high glucose culture. Mst1 knockout improved cardiac microvessel integrity and enhanced cardiac functions in diabetic mice. Mst1 knockdown up-regulated autophagy as indicated by more typical autophagosomes and increased LC3 expression in CMECs subjected to high glucose cultures. Mst1 knockdown also promoted autophagic flux in the presence of bafilomycin A1. Mst1 overexpression increased CMECs apoptosis, whereas Mst1 knockout decreased CMECs apoptosis. Sirt1 knockout abolished the effects of Mst1 overexpression in cardiac microvascular injury and cardiac dysfunction. In conclusion, Mst1 knockout preserved cardiac microvessel integrity and improved cardiac functions in diabetic mice. Mst1 decreased sirt1 activity, inhibited autophagy and enhanced apoptosis in CMECs, thus participating in the pathogenesis of diabetic coronary microvascular dysfunction. PMID:27680548

  1. Human cardiac systems electrophysiology and arrhythmogenesis: iteration of experiment and computation.

    Science.gov (United States)

    Holzem, Katherine M; Madden, Eli J; Efimov, Igor R

    2014-11-01

    Human cardiac electrophysiology (EP) is a unique system for computational modelling at multiple scales. Due to the complexity of the cardiac excitation sequence, coordinated activity must occur from the single channel to the entire myocardial syncytium. Thus, sophisticated computational algorithms have been developed to investigate cardiac EP at the level of ion channels, cardiomyocytes, multicellular tissues, and the whole heart. Although understanding of each functional level will ultimately be important to thoroughly understand mechanisms of physiology and disease, cardiac arrhythmias are expressly the product of cardiac tissue-containing enough cardiomyocytes to sustain a reentrant loop of activation. In addition, several properties of cardiac cellular EP, that are critical for arrhythmogenesis, are significantly altered by cell-to-cell coupling. However, relevant human cardiac EP data, upon which to develop or validate models at all scales, has been lacking. Thus, over several years, we have developed a paradigm for multiscale human heart physiology investigation and have recovered and studied over 300 human hearts. We have generated a rich experimental dataset, from which we better understand mechanisms of arrhythmia in human and can improve models of human cardiac EP. In addition, in collaboration with computational physiologists, we are developing a database for the deposition of human heart experimental data, including thorough experimental documentation. We anticipate that accessibility to this human heart dataset will further human EP computational investigations, as well as encourage greater data transparency within the field of cardiac EP.

  2. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells.

    Directory of Open Access Journals (Sweden)

    Haruka Minami

    Full Text Available The blood brain barrier (BBB is formed by brain microvascular endothelial cells (BMECs and tightly regulates the transport of molecules from blood to neural tissues. In vitro BBB models from human pluripotent stem cell (PSCs-derived BMECs would be useful not only for the research on the BBB development and function but also for drug-screening for neurological diseases. However, little is known about the differentiation of human PSCs to BMECs. In the present study, human induced PSCs (iPSCs were differentiated into endothelial cells (ECs, and further maturated to BMECs. Interestingly, C6 rat glioma cell-conditioned medium (C6CM, in addition to C6 co-culture, induced the differentiation of human iPSC-derived ECs (iPS-ECs to BMEC-like cells, increase in the trans-endothelial electrical resistance, decreased in the dextran transport and up-regulation of gene expression of tight junction molecules in human iPS-ECs. Moreover, Wnt inhibitors attenuated the effects of C6CM. In summary, we have established a simple protocol of the generation of BMEC-like cells from human iPSCs, and have demonstrated that differentiation of iPS-ECs to BMEC-like cells is induced by C6CM-derived signals, including canonical Wnt signals.

  3. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells.

    Science.gov (United States)

    Minami, Haruka; Tashiro, Katsuhisa; Okada, Atsumasa; Hirata, Nobue; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki; Kawabata, Kenji

    2015-01-01

    The blood brain barrier (BBB) is formed by brain microvascular endothelial cells (BMECs) and tightly regulates the transport of molecules from blood to neural tissues. In vitro BBB models from human pluripotent stem cell (PSCs)-derived BMECs would be useful not only for the research on the BBB development and function but also for drug-screening for neurological diseases. However, little is known about the differentiation of human PSCs to BMECs. In the present study, human induced PSCs (iPSCs) were differentiated into endothelial cells (ECs), and further maturated to BMECs. Interestingly, C6 rat glioma cell-conditioned medium (C6CM), in addition to C6 co-culture, induced the differentiation of human iPSC-derived ECs (iPS-ECs) to BMEC-like cells, increase in the trans-endothelial electrical resistance, decreased in the dextran transport and up-regulation of gene expression of tight junction molecules in human iPS-ECs. Moreover, Wnt inhibitors attenuated the effects of C6CM. In summary, we have established a simple protocol of the generation of BMEC-like cells from human iPSCs, and have demonstrated that differentiation of iPS-ECs to BMEC-like cells is induced by C6CM-derived signals, including canonical Wnt signals.

  4. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease.

    Science.gov (United States)

    Atmanli, Ayhan; Domian, Ibrahim John

    2016-12-19

    The advent of human pluripotent stem cell (hPSC) biology has opened unprecedented opportunities for the use of tissue engineering to generate human cardiac tissue for in vitro study. Engineering cardiac constructs that recapitulate human development and disease requires faithful recreation of the cardiac niche in vitro. Here we discuss recent progress in translating the in vivo cardiac microenvironment into PSC models of the human heart. We review three key physiologic features required to recreate the cardiac niche and facilitate normal cardiac differentiation and maturation: the biochemical, biophysical, and bioelectrical signaling cues. Finally, we discuss key barriers that must be overcome to fulfill the promise of stem cell biology in preclinical applications and ultimately in clinical practice.

  5. Detection of cardiac activity changes from human speech

    Science.gov (United States)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  6. Cardiac Disease Associated with Human Immunodeficiency Virus Infection.

    Science.gov (United States)

    Bloomfield, Gerald S; Leung, Claudia

    2017-02-01

    Over the last 2 decades human immunodeficiency virus (HIV) infection has become a chronic disease requiring long-term management. Aging, antiretroviral therapy, chronic inflammation, and several other factors contribute to the increased risk of cardiovascular disease in patients infected with HIV. In low-income and middle-income countries where antiretroviral therapy access is limited, cardiac disease is most commonly related to opportunistic infections and end-stage manifestations of HIV/acquired immunodeficiency syndrome, including HIV-associated cardiomyopathy, pericarditis, and pulmonary arterial hypertension. Cardiovascular screening, prevention, and risk factor management are important factors in the management of patients infected with HIV worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Primitive cardiac cells from human embryonic stem cells.

    Science.gov (United States)

    Hudson, James; Titmarsh, Drew; Hidalgo, Alejandro; Wolvetang, Ernst; Cooper-White, Justin

    2012-06-10

    Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.

  8. Detection of microvascular and tri-truncal coronaries injuries by quantitative cardiac PET/CT with Rb-82;Detection des lesions coronaires microvasculaires et tritronculaires par TEP-CT cardiaque quantitative au Rb-82

    Energy Technology Data Exchange (ETDEWEB)

    Dunet, V.; Allenbach, G.; Soubeyran, V.; Kosinski, M.; Bischof-Delaloye, A.; Prior, J. [CHU de Vaudois, Departement de medecine nucleaire, Lausanne (Switzerland); Camus, F. [CHU de Vaudois, institut de radiophysique appliquee, Lausanne (Switzerland)

    2010-05-15

    The results show that up to 1 in 5 investigated by PET / CT with Rb-82 with myocardium blood rate quantification shows affected myocardium flux reserve linked to microvascular or tri-truncal affect undiagnosed by semi-quantitative analysis

  9. Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity

    NARCIS (Netherlands)

    Hartogh, den Sabine C.; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC)

  10. Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, IL-8 and NS1 production on human microvascular endothelial cells infected with dengue virus.

    Science.gov (United States)

    Lima-Junior, Raimundo Sousa; Mello, Cintia da Silva; Siani, Antonio Carlos; Valente, Ligia M Marino; Kubelka, Claire Fernandes

    2013-11-01

    Dengue is the major Arbovirus in the world, annually causing morbidity and death. Severe dengue is associated with changes in the endothelial barrier function due to the production of inflammatory mediators by immune cells and by the endothelium. Dengue virus (DENV) replicates efficiently in human endothelial cells in vitro and elicits immune responses resulting in endothelial permeability. Uncaria tomentosa (Willd.) DC.(Rubiaceae), known as cat's claw, has been used in folk medicine for the treatment of a wide-array of symptoms, and several scientific studies reported its antiviral, immunomodulatory, anti-inflammatory and antioxidant properties. Here we infected a human lineage of dermal microvascular endothelial cells (HMEC-1) with DENV-2 and treated it with an alkaloidal fraction from U. tomentosa bark (AFUT). We showed antiviral and immunomodulatory activities of U. tomentosa by determining the NS1 antigen and IL-8 in supernatant of DENV-2 infected HMEC-1. Furthermore, by measurement of transendothelial electrical resistance (TEER) we demonstrated, for the first time, that a plant derivative contributed to the reduction of paracellular permeability in DENV-2 infected HMEC-1. We also showed that IL-8 contributed significantly to the induction of permeability. Although further investigations should be conducted before a new drug can be suggested, our in vitro data support evidence that AFUT could be potentially useful in developing a treatment for severe dengue.

  11. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  12. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Kokubu, Yasuhiro; Yamaguchi, Tomoko; Kawabata, Kenji

    2017-04-29

    Brain-derived microvascular endothelial cells (BMECs), which play a central role in blood brain barrier (BBB), can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported, they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy, drug screening, and pathological study. In the recent study, an induction method of BMECs from PSCs has been established, making it possible to more precisely study the in vitro human BBB function. Here, using induced pluripotent stem (iPS) cell-derived BMECs, we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function, and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly, TNF-α, which is known to be secreted from astrocytes and microglia in the cerebral ischemia, prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus, we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs.

  13. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    Science.gov (United States)

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human

  14. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential.

    Directory of Open Access Journals (Sweden)

    Francesca Oltolina

    Full Text Available A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM. We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.

  15. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    Science.gov (United States)

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model.

  16. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Directory of Open Access Journals (Sweden)

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  17. The immunogenicity of human cardiac valve allografts in vitro and in vivo

    NARCIS (Netherlands)

    F.M.E. Hoekstra (Franciska)

    1999-01-01

    textabstractAllogeneic transplantation has become an accepted method for the replacement of diseased organs and tissues. The concept of cardiac valve transplantation for the replacement of semilunar valves was introduced by Lam et al in 1952'. In about 1960 the first human cardiac valve

  18. Differentially expressed genes of human microvascular endothelial cells in response to anti-dengue virus NS1 antibodies by suppression subtractive hybridization.

    Science.gov (United States)

    Yin, Yue; Jiang, Lan; Fang, Danyun; Jiang, Lifang; Zhou, Junmei

    2013-06-01

    It has been previously shown that anti-dengue virus (DENV) nonstructural protein NS1 antibodies could act as autoantibodies that direct against one or more of the host's own proteins, which has potential implications for dengue hemorrhagic fever pathogenesis. In the present study, we have employed suppression subtractive hybridization (SSH) to identify the differentially expressed genes from human microvascular endothelial cells (HMEC-1) in response to anti-dengue virus type 2 NS1 antibodies (anti-DENV2 NS1 Abs). A total of 35 clones from the SSH cDNA library were randomly selected for further analysis using bioinformatics tools after vector screening. After searching for sequence homology in NCBI GenBank database with BLASTN and BLASTX programs, 23 obtained sequences with significant matches (E-values <1×10(-4)) in the SSH library. The predicted genes in the subtracted library include immune response molecules (CD59 antigen preproprotein preproprotein, MURR1), signal transduction molecules (Nuclear casein kinase and cyclin-dependent kinase substrate 1), calcium-binding proteins (S100A6, Annexin A2 isoform 1/2), and cell-membrane component (Yip1 domain family). From these clones, 5 upregulated genes were selected for differential expression profiling by real-time RT-PCR to confirm their upregulated status. The results confirmed their differential upregulation, and thus verified the success of SSHs and the likely involvement of these genes in dengue pathogenesis.

  19. Cannabinoid CB1 receptor expression in relation to visceral adipose depots, endocannabinoid levels, microvascular damage, and the presence of the Cnr1 A3813G variant in humans.

    Science.gov (United States)

    Bordicchia, Marica; Battistoni, Ilaria; Mancinelli, Lucia; Giannini, Elena; Refi, Giada; Minardi, Daniele; Muzzonigro, Giovanni; Mazzucchelli, Roberta; Montironi, Rodolfo; Piscitelli, Fabiana; Petrosino, Stefania; Dessì-Fulgheri, Paolo; Rappelli, Alessandro; Di Marzo, Vincenzo; Sarzani, Riccardo

    2010-05-01

    Dysregulation of the endocannabinoid system in the visceral adipose tissue (VAT) is associated with metabolic and cardiovascular complications of obesity. We studied perirenal VAT CB1 receptor expression in relation to anthropometry, VAT area and endocannabinoid levels, kidney microvascular damage (MVDa), and the presence of the CB1 gene A3813G variant, the frequency of which was also evaluated in a large population of obese-hypertensive (OH) patients with or without the metabolic syndrome (MetS). Perirenal VAT and kidney samples were obtained from 30 patients undergoing renal surgery. Total and perirenal VAT areas were determined by computed tomography. CB1 messenger RNA expression and endocannabinoid levels in perirenal VAT were determined by quantitative reverse transcriptase polymerase chain reaction and liquid chromatography-mass spectrometry, respectively. The MVDa was evaluated in healthy portions of kidney cortex. The A3813G alleles were identified by genotyping in these patients and in 280 nondiabetic OH patients (age endocannabinoid anandamide. A 2-fold higher CB1 expression was associated with MVDa. The OH patients with the A3813G allele had lower prevalence of MetS in both unadjusted and adjusted models. Genetics influence perirenal VAT CB1 expression and the prevalence of MetS in OH. Increased VAT is associated with increased perirenal VAT endocannabinoid tone, which in turn correlates with increased MVDa. Endocannabinoid overactivity might be involved in human visceral obesity and its renal complications.

  20. Myocardial Slit2/Robo4 expression and impact of exogenous Slit2 on proliferation and migration of cardiac microvascular endothelial cells%Slit2/Robo4信号通路对小鼠心肌微血管内皮细胞增殖和迁移的影响

    Institute of Scientific and Technical Information of China (English)

    陈桂秀; 王浩宇; 刘涛; 杨明涛; 周振宇; 冯刚

    2013-01-01

    and explore the impact of exogenous Slit2 on proliferation and migrate of mouse cardiac microvascular endothelial cells.Methods Slit2 and Robo4 expression in mouse ventricular muscle blood vessel was detected by immunohistochemistry.Slit2 and Robo4 expression in cardiac microvascular endothelial cells isolated from mouse ventricular muscle were detected by euzymelinked immunosorbent assay and immunofluorescence,respectively.The effects of various concentrations exogenous Slit2 on proliferation of mouse cardiac microvascular endothelial cells was examined by CCK-8 cell proliferation kit.Transwell chamber was used to detect migration of mouse cardiac microvascular endothelial cells treated with 800 μl M199 culture medium containing 20% FBS (negative control),10 ng/ml VEGF (positive control),100 ng/ml Slit2(Slit2) and 100 ng/ml Slit2 + 10 ng/ml VEGF (Slit2 + VEGF) and incubated for 18 h at 37 ℃ and 5% CO2.Results Both Slit2 and Robo4 protein expressions were detected in ventricular muscle blood vessel.Slit2 protein expression was detected in mouse microvascular endothelial cells.Protein and mRNA Robo4 expressions were also evidenced in mouse microvascular endothelial cells.Proliferation of mouse cardiac microvascular endothelial cells was not affected by exogenous Slit2.Migration of mouse cardiac microvascular endothelial cells was not affected by exogenous Slit2 (22.1 ± 2.8 vs.23.2 ± 3.8 in negative control,P > 0.05) and significantly enhanced by VEGF (65.3 ± 3.8,P < O.05 vs.Slip2 and negative control),this effect could be blocked by cotreatment with Slip2 (29.2 ± 3.4 in Slip2 + VEGF,P <0.05 vs.VEGF).Conclusion Slit2 and Robo4 are expressed in mouse ventricular muscle blood vessels and cardiac microvascular endothelial cells.Exogenous Slit2 has no impact on the proliferation of mouse cardiac microvascular endothelial cells but could inhibit VEGF-induced mouse cardiac microvascular endothelial cell migration.

  1. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    Science.gov (United States)

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.

  2. De Novo Human Cardiac Myocytes for Medical Research: Promises and Challenges

    Science.gov (United States)

    Hamel, Veronique; Cheng, Kang; Liao, Shudan; Lu, Aizhu; Zheng, Yong; Chen, Yawen; Xie, Yucai

    2017-01-01

    The advent of cellular reprogramming technology has revolutionized biomedical research. De novo human cardiac myocytes can now be obtained from direct reprogramming of somatic cells (such as fibroblasts), from induced pluripotent stem cells (iPSCs, which are reprogrammed from somatic cells), and from human embryonic stem cells (hESCs). Such de novo human cardiac myocytes hold great promise for in vitro disease modeling and drug screening and in vivo cell therapy of heart disease. Here, we review the technique advancements for generating de novo human cardiac myocytes. We also discuss several challenges for the use of such cells in research and regenerative medicine, such as the immature phenotype and heterogeneity of de novo cardiac myocytes obtained with existing protocols. We focus on the recent advancements in addressing such challenges.

  3. Physiological Function and Transplantation of Scaffold-Free and Vascularized Human Cardiac Muscle Tissue

    National Research Council Canada - National Science Library

    K. R. Stevens; K. L. Kreutziger; S. K. Dupras; F. S. Korte; M. Regnier; V. Muskheli; M. B. Nourse; K. Bendixen; H. Reinecke; C. E. Murry; William A. Catterall

    2009-01-01

    Success of human myocardial tissue engineering for cardiac repair has been limited by adverse effects of scaffold materials, necrosis at the tissue core, and poor survival after transplantation due to ischemie injury...

  4. Aryl hydrocarbon Receptor is Necessary to Protect Fetal Human Pulmonary Microvascular Endothelial Cells against Hyperoxic Injury: Mechanistic Roles of Antioxidant Enzymes and RelB

    Science.gov (United States)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly (ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. PMID:25831079

  5. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Samaras, Susan E. [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); Chen, Billy [Molecular Medicine Program, Department of Medicine, Boston University School of Medicine, Boston, MA (United States); Koch, Stephen R. [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); Sawyer, Douglas B.; Lim, Chee Chew [Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (United States); Davidson, Jeffrey M., E-mail: jeff.davidson@vanderbilt.edu [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  6. Induction of cyclooxygenase-2 expression during HIV-1-infected monocyte-derived macrophage and human brain microvascular endothelial cell interactions

    NARCIS (Netherlands)

    Pereira, CF; Boven, LA; Middel, J; Verhoef, J; Nottet, HSLM

    2000-01-01

    Human immunodeficiency virus type-1 (HIV-1)-associated dementia (HAD) is a neurodegenerative disease characterized by HIV infection and replication in brain tissue. HIV-1-infected monocytes overexpress inflammatory molecules that facilitate their entry into the brain. Prostanoids are lipid mediators

  7. Blocking of α1β1 and α2β1 adhesion molecules inhibits eosinophil migration through human lung microvascular endothelial cell monolayer

    OpenAIRE

    Stanisława Bazan-Socha; Joanna Żuk; Hanna Plutecka; Bogdan Jakieła; Ewa Mlicka-Kowalczyk; Bartosz Krzyżanowski; Cezary Marcinkiewicz; Lech Zaręba; Bazan, Jan G.; Jacek Musiał

    2014-01-01

    In cell trafficking to the airways in asthma, among integrins the most important are those containing α4 and β2 subunits. We have previously shown that also blocking of collagen receptors, α1β1 and α2β1 integrins, inhibits transmigration of eosinophils of asthmatic subjects through a monolayer of skin microvascular endothelial cells seeded on collagen IV coated inserts. However, it was not clear whether this observation was limited to asthma or depended on the type of microvascular cell and c...

  8. Development and Validation of an In-Cell Western for Quantifying P-Glycoprotein Expression in Human Brain Microvascular Endothelial (hCMEC/D3) Cells.

    Science.gov (United States)

    McInerney, Mitchell P; Pan, Yijun; Short, Jennifer L; Nicolazzo, Joseph A

    2017-01-05

    An in-cell western (ICW) protocol detecting the relative expression of P-glycoprotein (P-gp) in human cerebro-microvascular endothelial cells (hCMEC/D3) was developed and optimized, with the intention of improving throughput relative to western blotting (WB). For validation of the ICW protocol, hCMEC/D3 cells were incubated with known P-gp upregulators (10 μM rifampicin and 5 μM SR12813) and treated with siRNA targeted against MDR1, before measuring changes in P-gp expression, using both ICW and WB in parallel. To confirm a relationship between the detected P-gp expression and function, the uptake of the P-gp substrate rhodamine-123 was assessed following SR12813 treatment. Rifampicin and SR12813 significantly upregulated P-gp expression (1.5-fold and 1.9-fold, respectively) compared to control, as assessed by the ICW protocol. WB analysis of the same treatments revealed 1.4-fold and 1.5-fold upregulations. MDR1 siRNA reduced P-gp abundance by 20% and 35% when assessed by ICW and WB, respectively. SR12813 treatment reduced rhodamine-123 uptake by 18%, indicating that the observed changes in P-gp expression by ICW were associated with comparable functional changes. The correlation of P-gp upregulation by WB, rhodamine-123 uptake, and the ICW protocol provide validation of a new ICW method as an alternative method for quantification of P-gp in hCMEC/D3 cells.

  9. WSS25 inhibits Dicer, downregulating microRNA-210, which targets Ephrin-A3, to suppress human microvascular endothelial cell (HMEC-1) tube formation.

    Science.gov (United States)

    Xiao, Fei; Qiu, Hong; Zhou, Ling; Shen, Xiaokun; Yang, Liping; Ding, Kan

    2013-05-01

    WSS25 is a sulfated polysaccharide that inhibits angiogenesis. However, the mechanism underlying the regulation of angiogenesis by WSS25 is not well understood. Using microRNA (miRNA) microarray analysis, a total of 25 miRNAs were found to be upregulated and 12 (including miR-210) downregulated by WSS25 in human microvascular endothelial cells (HMEC-1). Interestingly, Dicer, a key enzyme for miRNA biosynthesis, was downregulated by WSS25 in HMEC-1 cells. Further studies indicated that HMEC-1 cell tube formation and miR-210 expression were suppressed while Ephrin-A3 expression was enhanced by the silencing of Dicer. In contrast, HMEC-1 cell tube formation and miR-210 expression were induced while Ephrin-A3 expression was suppressed by Dicer overexpression. Moreover, miR-210 was downregulated while Ephrin-A3 was upregulated by WSS25 in HMEC-1 cells. HMEC-1 cell migration and tube formation were arrested, while Ephrin-A3 expression was augmented by anti-miR-210. In addition, HMEC-1 cell tube formation was significantly attenuated or augmented when Ephrin-A3 was overexpressed or silenced, respectively. Nevertheless, the tube formation blocked by WSS25 could be partially rescued by manipulation of Dicer, miR-210 and Ephrin-A3. These results suggest a new pathway whereby WSS25 inhibits angiogenesis via suppression of Dicer, leading to downregulation of miR-210 and upregulation of Ephrin-A3.

  10. The Src family tyrosine kinases src and yes have differential effects on inflammation-induced apoptosis in human pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Nelin, Leif D; White, Hilary A; Jin, Yi; Trittmann, Jennifer K; Chen, Bernadette; Liu, Yusen

    2016-05-01

    Endothelial cells are essential for normal lung function: they sense and respond to circulating factors and hemodynamic alterations. In inflammatory lung diseases such as acute respiratory distress syndrome, endothelial cell apoptosis is an inciting event in pathogenesis and a prominent pathological feature. Endothelial cell apoptosis is mediated by circulating inflammatory factors, which bind to receptors on the cell surface, activating signal transduction pathways, leading to caspase-3-mediated apoptosis. We hypothesized that yes and src have differential effects on caspase-3 activation in human pulmonary microvascular endothelial cells (hPMVEC) due to differential downstream signaling effects. To test this hypothesis, hPMVEC were treated with siRNA against src (siRNAsrc), siRNA against yes (siRNAyes), or their respective scramble controls. After recovery, the hPMVEC were treated with cytomix (LPS, IL-1β, TNF-α, and IFN-γ). Treatment with cytomix induced activation of the extracellular signal-regulated kinase (ERK) pathway and caspase-3-mediated apoptosis. Treatment with siRNAsrc blunted cytomix-induced ERK activation and enhanced cleaved caspase-3 levels, while treatment with siRNAyes enhanced cytomix-induced ERK activation and attenuated levels of cleaved caspase-3. Inhibition of the ERK pathway using U0126 enhanced cytomix-induced caspase-3 activity. Treatment of hPMVEC with cytomix induced Akt activation, which was inhibited by siRNAsrc. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway using LY294002 prevented cytomix-induced ERK activation and augmented cytomix-induced caspase-3 cleavage. Together, our data demonstrate that, in hPMVEC, yes activation blunts the ERK cascade in response to cytomix, resulting in greater apoptosis, while cytomix-induced src activation induces the phosphatidylinositol 3-kinase pathway, which leads to activation of Akt and ERK and attenuation of apoptosis.

  11. Towards a multiscale description of microvascular flow regulation: O2-dependent release of ATP from human erythrocytes and the distribution of ATP in capillary networks

    Directory of Open Access Journals (Sweden)

    Daniel eGoldman

    2012-07-01

    Full Text Available Integration of the numerous mechanisms that have been suggested to contribute to optimization of O2 supply to meet O2 need in skeletal muscle requires a systems biology approach which permits quantification of these physiological processes over a wide range of length scales. Here we describe two individual computational models based on in vivo and in vitro studies which, when incorporated into a single robust multiscale model, will provide information on the role of erythrocyte-released ATP in perfusion distribution in skeletal muscle under both physiological and pathophysiological conditions. Healthy human erythrocytes exposed to low O2 tension release ATP via a well characterized signaling pathway requiring activation of the G-protein, Gi, and adenylyl cyclase leading to increases in cAMP. This cAMP then activates PKA and subsequently CFTR culminating in ATP release via pannexin 1. A critical control point in this pathway is the level of cAMP which is regulated by pathway-specific phosphodiesterases. Using time constants (~100ms that are consistent with measured erythrocyte ATP release, we have constructed a dynamic model of this pathway. The model predicts levels of ATP release consistent with measurements obtained over a wide range of hemoglobin O2 saturations (sO2. The model further predicts how insulin, at concentrations found in prediabetes, enhances the activity of PDE3 and reduces intracellular cAMP levels leading to decreased low O2-induced ATP release from erythrocytes. The second model, which couples O2 and ATP transport in capillary networks, shows how intravascular ATP and the resulting conducted vasodilation are affected by local sO2, convection and ATP degradation. This model also predicts network-level effects of decreased ATP release resulting from elevated insulin levels. Taken together, these models lay the groundwork for investigating the systems biology of the regulation of microvascular perfusion distribution by

  12. Exercise-Induced Cardiac Remodeling: Lessons from Humans, Horses, and Dogs

    Directory of Open Access Journals (Sweden)

    Rob Shave

    2017-02-01

    Full Text Available Physical activity is dependent upon the cardiovascular system adequately delivering blood to meet the metabolic and thermoregulatory demands of exercise. Animals who regularly exercise therefore require a well-adapted heart to support this delivery. The purpose of this review is to examine cardiac structure, and the potential for exercise-induced cardiac remodeling, in animals that regularly engage in strenuous activity. Specifically, we draw upon the literature that has studied the “athlete’s heart” in humans, horses, and dogs, to enable the reader to compare and contrast cardiac remodeling in these three athletic species. The available literature provides compelling evidence for exercise-induced cardiac remodeling in all three species. However, more work is required to understand the influence of species/breed specific genetics and exercise-related hemodynamics, in order to fully understand the impact of exercise on cardiac structure.

  13. The Application of CD34 Histochemical Method in the Study of Micro-vascular Architecture of human Scar%CD34组化法在瘢痕微血管构筑中的应用研究

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    目的:探讨瘢痕微血管构筑在瘢痕形成、发展及临床防治中的意义。方法:利用CD34血管内皮细胞可靠标记显示瘢痕微血管构筑,以期研究不同类型的瘢痕,同一类型瘢痕的不同时期以及同一瘢痕内不同区域的微血管构筑间的差异。结果:不同类型的瘢痕间、瘢痕内不同区域及不同时期间瘢痕微血管密度均有明显统计学差异(p<0.01)。结论:增生性瘢痕内的微血管密度明显高于萎缩性瘢痕的微血管密度;瘢痕早期微血管密度高随着病程延长而逐渐减少;瘢痕交界处为较幼稚瘢痕,血管最为丰富,能代表整个瘢痕的生物学行为。因此可把此区作为研究瘢痕发生、发展与转归的重点。%Objective:To explore the clinical significance of human scar micro-vascular architecture in the formation, development and prevention and treatment of scar. Method: CD34 antibody staining method was used to study the micro-vascular architecture of human scars. Results: Micro vascular density of hyperplastic scar in the central area was higher than that in the peripheral area; micro-vascular density of hyperplastic scar was higher than that of atrophic scar; Scars of different periods had different micro-vascular density. (P,0.01). Conclusion: In the border of the scar, the micro-vascular density is the highest. There scar border is the focal area to be studied in order to make clear the course of the generation, development and the fate of the scars.

  14. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  15. LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans.

    Science.gov (United States)

    Michel, C Charles; Nanjee, M Nazeem; Olszewski, Waldemar L; Miller, Norman E

    2015-01-01

    The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89-8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.

  16. Peptidergic innervation of human esophageal and cardiac carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shuang-Hong Lü; Yan Zhou; Hai-Ping Que; Shao-Jun Liu

    2003-01-01

    AIM: To investigate the distribution of neuropeptideimmunoreactive nerve fibers in esophageal and cardiac carcinoma as well as their relationship with tumor cells so as to explore if there is nerve innervation in esophageal and cardiac carcinoma.METHODS: Esophageal and cardiac carcinoma specimens were collected from surgical operation. One part of them were fixed immediately with 4 % paraformaldehyde and then cut with a cryostat into 40-pm-thick sections to perform immunohistochemical analysis. Antibodies of ten kinds of neuropeptide including calcitonin gene-related peptide (CGRP), galanin (GAL), substance P (SP), etc. were used for immunostaining of nerve fibers. The other part of the tumor specimens were cut into little blocks (1 mm3) and cocultured with chick embryo dorsal root ganglia (DRG) to investigate if the tumor blocks could induce the neurons of DRG to extend processes, so as to probe into the possiblereasons for the nerve fibers growing into tumors. RESULTS: Substantial amounts of neuropeptide including GAL-, NPY-, SP-immunoreactive nerve bundles and scattered nerve fibers were distributed in esophageal and cardiac carcinomas. The scattered nerve fibers waved their way among tumor cells and contacted with tumor cells closely. Some of them even encircled tumor cells. There were many varicosities aligned on the nerve fibers like beads. They were also closely related to tumor cells. In the co-culture group, about 63 %and 67 % of DRG co-cultured with esophageal and cardiac tumor blocks respectively extended enormous processes,especially on the side adjacent to the tumor, whereas in the control group (without tumor blocks), no processes grew out.CONCLUSION: Esophageal and cardiac carcinomas may be innervated by peptidergic nerve fibers, and they can induce neurons of DRG to extend processes in vitro.

  17. A new method to study changes in microvascular blood volume in muscle and adipose tissue: Real time imaging in humans and rat

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Rattigan, Stephen; Hiscock, Natalie J

    2011-01-01

    We employed and evaluated a new application of contrast enhanced ultrasound for real time imaging of changes in microvascular blood volume (MVB) in tissues in females, males and rat. Continuous real time imaging was performed using contrast enhanced ultrasound to quantify infused gas filled micro...

  18. Monitoring in microvascular surgery.

    Science.gov (United States)

    Furnas, H; Rosen, J M

    1991-03-01

    The importance of monitoring in microvascular surgery is underscored by the high reported salvage rates of failing free flaps and replants. In this overview, we begin by defining the physiology of ischemic tissue with emphasis given to the no-reflow phenomenon and the secondary critical ischemia times. Based on the physiological changes accompanying ischemia, several variables are defined that can be monitored to reflect the vascular state of a free flap or replant. Multifarious monitoring systems are then reviewed, including clinical observation, temperature, isotope clearance, ultrasonic Doppler, laser Doppler, transcutaneous oxygen tension, reflection plethysmography, dermofluorometry, pH, electromagnetic flowmetry, serial hematocrits, interstitial fluid pressure, and magnetic resonance imaging.

  19. Aggregate Size Optimization in Microwells for Suspension-based Cardiac Differentiation of Human Pluripotent Stem Cells

    OpenAIRE

    Bauwens, Celine L.; Toms, Derek; Ungrin, Mark

    2016-01-01

    Cardiac differentiation of human pluripotent stems cells (hPSCs) is typically carried out in suspension cell aggregates. Conventional aggregate formation of hPSCs involves dissociating cell colonies into smaller clumps, with size control of the clumps crudely controlled by pipetting the cell suspension until the desired clump size is achieved. One of the main challenges of conventional aggregate-based cardiac differentiation of hPSCs is that culture heterogeneity and spatial disorganization l...

  20. 1,25 Dihydroxyvitamin D3 Inhibits TGFβ1-Mediated Primary Human Cardiac Myofibroblast Activation.

    Directory of Open Access Journals (Sweden)

    Anna Meredith

    Full Text Available Epidemiological and interventional studies have suggested a protective role for vitamin D in cardiovascular disease, and basic research has implicated vitamin D as a potential inhibitor of fibrosis in a number of organ systems; yet little is known regarding direct effects of vitamin D on human cardiac cells. Given the critical role of fibrotic responses in end stage cardiac disease, we examined the effect of active vitamin D treatment on fibrotic responses in primary human adult ventricular cardiac fibroblasts (HCF-av, and investigated the relationship between circulating vitamin D (25(OHD3 and cardiac fibrosis in human myocardial samples.Interstitial cardiac fibrosis in end stage HF was evaluated by image analysis of picrosirius red stained myocardial sections. Serum 25(OHD3 levels were assayed using mass spectrometry. Commercially available HCF-av were treated with transforming growth factor (TGFβ1 to induce activation, in the presence or absence of active vitamin D (1,25(OH2D3. Functional responses of fibroblasts were analyzed by in vitro collagen gel contraction assay. 1,25(OH2D3 treatment significantly inhibited TGFβ1-mediated cell contraction, and confocal imaging demonstrated reduced stress fiber formation in the presence of 1,25(OH2D3. Treatment with 1,25(OH2D3 reduced alpha-smooth muscle actin expression to control levels and inhibited SMAD2 phosphorylation.Our results demonstrate that active vitamin D can prevent TGFβ1-mediated biochemical and functional pro-fibrotic changes in human primary cardiac fibroblasts. An inverse relationship between vitamin D status and cardiac fibrosis in end stage heart failure was observed. Collectively, our data support an inhibitory role for vitamin D in cardiac fibrosis.

  1. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn; Liu, Hongchun, E-mail: liuhch@aliyun.com; Zhang, Shuncai, E-mail: zhang.shuncai@zs-hospital.sh.cn

    2016-02-19

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGF in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor NRP-1

  2. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration.

    Science.gov (United States)

    Gaebel, Ralf; Ma, Nan; Liu, Jun; Guan, Jianjun; Koch, Lothar; Klopsch, Christian; Gruene, Martin; Toelk, Anita; Wang, Weiwei; Mark, Peter; Wang, Feng; Chichkov, Boris; Li, Wenzhong; Steinhoff, Gustav

    2011-12-01

    Recent study showed that mesenchymal stem cells (MSC) could inhibit apoptosis of endothelial cells in hypoxic condition, increase their survival, and stimulate the angiogenesis process. In this project we applied Laser-Induced-Forward-Transfer (LIFT) cell printing technique and prepared a cardiac patch seeded with human umbilical vein endothelial cells (HUVEC) and human MSC (hMSC) in a defined pattern for cardiac regeneration. We seeded HUVEC and hMSC in a defined pattern on a Polyester urethane urea (PEUU) cardiac patch. On control patches an equal amount of cells was randomly seeded without LIFT. Patches were cultivated in vitro or transplanted in vivo to the infarcted zone of rat hearts after LAD-ligation. Cardiac performance was measured by left ventricular catheterization 8 weeks post infarction. Thereafter hearts were perfused with fluorescein tomato lectin for the assessment of functional blood vessels and stored for histology analyses. We demonstrated that LIFT-derived cell seeding pattern definitely modified growth characteristics of co-cultured HUVEC and hMSC leading to increased vessel formation and found significant functional improvement of infarcted hearts following transplantation of a LIFT-tissue engineered cardiac patch. Further, we could show enhanced capillary density and integration of human cells into the functionally connected vessels of murine vascular system. LIFT-based Tissue Engineering of cardiac patches for the treatment of myocardial infarction might improve wound healing and functional preservation. Copyright © 2011. Published by Elsevier Ltd.

  3. Protective function of tocilizumab in human cardiac myocytes ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng Cheng; Yan Feng; Da-Ming Jiang; Kai-Yu Tao; Min-Jian Kong

    2015-01-01

    Objective:To investigate the protective function of tocilizumab in human cardiac myocytes ischemia-reperfusion injury.Methods:The human cardiac myocytes were treated by tocilizumab with different concentrations(1.0 mg/mL, 3.0 mg/mL, 5.0 mg/mL) for 24 h,then cells were cultured in ischemia environment for 24 h and reperfusion environment for 1 h. The MTT and flow cytometry were used to detect the proliferation and apoptosis of human cardiac myocytes, respectively. The mRNA and protein expressions of Bcl-2 and Bax were measured by qRT-PCR and western blot, respectively.Results:Compared to the negative group, pretreated by tocilizumab could significantly enhance the proliferation viability and suppress apoptosis of human cardiac myocytes after suffering ischemia reperfusion injury(P<0.05).The expression of Bcl-2 in tocilizumab treated group were higher thanNC group(P<0.05), while theBax expression were lower(P<0.05).Conclusions:Tocilizumab could significantly inhibit apoptosis and keep the proliferation viability of human cardiac myocytes after suffering ischemia reperfusion injury. Tocilizumab may obtain a widely application in the protection of ischemia reperfusion injury.

  4. Human embryonic stem cells as a model for cardiac gene discovery : from chip to chap

    NARCIS (Netherlands)

    Beqqali, A.

    2008-01-01

    Here we described the use of human embryonic stem cells (hESCs) as a model to obtain insights into commitment to the mesoderm and endoderm lineages and the early steps in human cardiac cell differentiation by means of whole-genome temporal expression profiling. Furthermore, we used it as an approach

  5. Effect of contractile protein alterations on cardiac myofilament function in human heart failure

    NARCIS (Netherlands)

    Narolska, N.A.

    2006-01-01

    The main objective of this thesis was to elucidate the effect of translational and post-translational alterations in contractile proteins occurring during heart failure on contractile function in human cardiac tissue. Isometric force and ATPase activity measurements were performed in skinned human

  6. Improved myocardial perfusion after transmyocardial laser revascularization in a patient with microvascular coronary artery disease

    Directory of Open Access Journals (Sweden)

    Peyman Mesbah Oskui

    2014-03-01

    Full Text Available We report the case of a 59-year-old woman who presented with symptoms of angina that was refractory to medical management. Although her cardiac catheterization revealed microvascular coronary artery disease, her symptoms were refractory to optimal medical management that included ranolazine. After undergoing transmyocardial revascularization, her myocardial ischemia completely resolved and her symptoms dramatically improved. This case suggests that combination of ranolazine and transmyocardial revascularization can be applied to patients with microvascular coronary artery disease.

  7. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart.

    Science.gov (United States)

    Castaldo, Clotilde; Di Meglio, Franca; Miraglia, Rita; Sacco, Anna Maria; Romano, Veronica; Bancone, Ciro; Della Corte, Alessandro; Montagnani, Stefania; Nurzynska, Daria

    2013-01-01

    Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  8. Cardiac Fibroblast-Derived Extracellular Matrix (Biomatrix as a Model for the Studies of Cardiac Primitive Cell Biological Properties in Normal and Pathological Adult Human Heart

    Directory of Open Access Journals (Sweden)

    Clotilde Castaldo

    2013-01-01

    Full Text Available Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix, composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  9. Abaqus/Standard-based quantification of human cardiac mechanical properties

    CERN Document Server

    Genet, Martin; Kuhl, Ellen; Guccione, Julius

    2016-01-01

    Computational modeling can provide critical insight into existing and potential new surgical procedures, medical or minimally-invasive treatments for heart failure, one of the leading causes of deaths in the world that has reached epidemic proportions. In this paper, we present our Abaqus/Standard-based pipeline to create subject-specific left ventricular models. We first review our generic left ventricular model, and then the personalization process based on magnetic resonance images. Identification of subject-specific cardiac material properties is done by coupling Abaqus/Standard to the python optimization library NL-Opt. Compared to previous studies from our group, the emphasis is here on the fully implicit solving of the model, and the two-parameter optimization of the passive cardiac material properties.

  10. Angiotensin II induces apoptosis of human pulmonary microvascular endothelial cells in acute aortic dissection complicated with lung injury patients through modulating the expression of monocyte chemoattractant protein-1.

    Science.gov (United States)

    Wu, Zhiyong; Dai, Feifeng; Ren, Wei; Liu, Huagang; Li, Bowen; Chang, Jinxing

    2016-01-01

    Patients with acute aortic dissection (AAD) usually showed acute lung injury (ALI). However, its pathogenesis is still not well defined. Apoptosis of pulmonary microvascular endothelial cells (PMVECs) is closely related to the alveolus-capillary barrier injury and the increased vascular permeability. In this study, we aim to investigate the human PMVECs (hPMVECs) apoptosis induced by angiotensin II (AngII) and monocyte chemoattractant protein-1 (MCP-1) and their potential interaction in the pathogenesis of AAD complicated with ALI. Fifty-eight newly diagnosed AAD, 12 matched healthy individuals were included. Pulmonary tissues of AAD complicated with lung injury were obtained from 2 cadavers to determine the levels of AngII type 1 receptor (AT1-R) and MCP-1. Serum AngII was measured using commercial ELISA kit. H&E staining and immunohistostaining were performed to determine the expression of AT1-R and MCP-1. For the in vitro experiment, hPMVECs were divided into control, AngII group, AngII+Bindarit group and Bindarit group, respectively. Flow cytometry was performed to analyze the apoptosis in each group. Reverse transcription-polymerase chain reaction was performed to determine the mRNA expression of MCP-1. Western blot analysis was performed to evaluate the expression of MCP-1 and apoptosis related protein. Apoptosis of hPMVECs was observed in the lung tissues in the cadavers with AAD complicated with ALI. Besides, the expression of AT1-R and MCP-1 was remarkably elevated. Compared with normal individuals and the non-lung injury AAD patients, the expression of serum AngII was remarkably elevated in AAD patients complicated with ALI. In vitro experiments showed AngII contributed to the apoptosis and elevation of MCP1 in hPMVECs. Besides, it involved in the down-regulation of Bcl-2 protein, and up-regulation of Bax and Caspase-3. Such phenomenon was completely reversed after administration of MCP-1 inhibitor (Bindarit). The production of MCP-1 and cellular

  11. Sudden Cardiac Death in Patients with Human Immunodeficiency Virus Infection

    Science.gov (United States)

    Tseng, Zian H.; Secemsky, Eric A.; Dowdy, David; Vittinghoff, Eric; Moyers, Brian; Wong, Joseph K.; Havlir, Diane V.; Hsue, Priscilla Y.

    2012-01-01

    Objectives We sought to determine the incidence and clinical characteristics of sudden cardiac death (SCD) in patients with HIV. Background As the HIV-infected population ages, cardiovascular disease prevalence and mortality are increasing; however, the incidence and features of SCD have not yet been described. Methods Records of 2860 consecutive patients in a public HIV clinic in San Francisco, CA between April 2000 and August 2009 were examined. Identification of deaths, causes of death, and clinical characteristics were obtained by search of the National Death Index and/or clinic records. SCDs were determined using published retrospective criteria: (1) ICD10 code for all cardiac causes of death and (2) circumstances of death meeting WHO criteria. Results Of 230 deaths over 3.7 median years’ follow-up, 30 (13%) met SCD criteria, 131 (57%) were due to AIDS, 25 (11%) other (natural) diseases, and 44 (19%) overdose/suicides/unknown. SCDs accounted for 86% (30/35) of all cardiac deaths. The mean SCD rate was 2.6 per 1,000 person-years (95%CI 1.8-3.8), 4.5-fold higher than expected. SCDs occurred in older patients than AIDS deaths (mean 49.0 vs. 44.9 years, p=0.02). Compared to AIDS and natural deaths combined, SCDs had higher prevalence of prior MI (17% vs. 1%, p<0.0005), cardiomyopathy (23% vs. 3%, p<0.0005), heart failure (30% vs. 9%, p=0.004), and arrhythmias (20% vs. 3%, p=0.003). Conclusions SCDs account for most cardiac and many non-AIDS natural deaths in HIV-infected patients. Further investigation is needed to ascertain underlying mechanisms, which may include inflammation, antiretroviral therapy interruption, and concomitant medications. PMID:22595409

  12. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1.

    Science.gov (United States)

    Mewhort, Holly E M; Lipon, Brodie D; Svystonyuk, Daniyil A; Teng, Guoqi; Guzzardi, David G; Silva, Claudia; Yong, V Wee; Fedak, Paul W M

    2016-03-15

    Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1. These data implicate inflammation as a potential driver of cardiac fibrosis.

  13. The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.

    Science.gov (United States)

    Iaizzo, Paul A

    2016-12-01

    Pre- and post-evaluations of implantable cardiac devices require innovative and critical testing in all phases of the design process. The Visible Heart(®) Project was successfully launched in 1997 and 3 years later the Atlas of Human Cardiac Anatomy website was online. The Visible Heart(®) methodologies and Atlas website can be used to better understand human cardiac anatomy, disease states and/or to improve cardiac device design throughout the development process. To date, Visible(®) Heart methodologies have been used to reanimate 75 human hearts, all considered non-viable for transplantation. The Atlas is a unique free-access website featuring novel images of functional and fixed human cardiac anatomies from >400 human heart specimens. Furthermore, this website includes education tutorials on anatomy, physiology, congenital heart disease and various imaging modalities. For instance, the Device Tutorial provides examples of commonly deployed devices that were present at the time of in vitro reanimation or were subsequently delivered, including: leads, catheters, valves, annuloplasty rings, leadless pacemakers and stents. Another section of the website displays 3D models of vasculature, blood volumes, and/or tissue volumes reconstructed from computed tomography (CT) and magnetic resonance images (MRI) of various heart specimens. A new section allows the user to interact with various heart models. Visible Heart(®) methodologies have enabled our laboratory to reanimate 75 human hearts and visualize functional cardiac anatomies and device/tissue interfaces. The website freely shares all images, video clips and CT/MRI DICOM files in honour of the generous gifts received from donors and their families. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  14. Microvascular inflammation in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Laura Vitiello

    2014-06-01

    Full Text Available Atherogenesis is the pathogenetic process leading to formation of the atheroma lesion. It is associated to a chronic inflammatory state initially stimulated by an aberrant accumulation of lipid molecules beyond the endothelial barrier. This event triggers a cascade of deleterious events mainly through immune cell stimulation with the consequent liberation of potent pro-inflammatory and tissue damaging mediators. The atherogenetic process implies marked modifications of endothelial cell functions and a radical change in the endothelial–leukocyte interaction pattern. Moreover, accumulating evidence shows an important link between microvascular and inflammatory responses and major cardiovascular risk factors. This review illustrates the current knowledge on the effects of obesity, hypercholesterolemia and diabetes on microcirculation; their pathophysiological implications will be discussed.

  15. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    Science.gov (United States)

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  16. Expression and assembly of active human cardiac troponin in Escherichia coli.

    Science.gov (United States)

    Lassalle, Michael W

    2013-02-01

    Cardiomyopathy-related mutations in human cardiac troponin subunits, including troponin C (hcTnC), troponin I (hcTnI), and troponin T (hcTnT), are well-documented. Recently, it has been recognised that human cardiac troponin (hcTn) is a sophisticated allosteric system. Therefore, the effect of drugs on this protein complex should be studied with assembled hcTn rather than a short fragment of a subunit or the subunit itself. Here, we describe the expression and assembly of active hcTn in Escherichia coli, a novel method that is rapid and simple, and produces large amounts of functional hcTn.

  17. 低频脉冲磁场对大鼠心肌微血管内皮细胞的影响%Effects of low frequency pulsed magnetic fields on cardiac microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    郭影; 李飞; 郭文怡; 孙冬冬; 路晓艳; 张荣庆

    2010-01-01

    Objective To investigate the effects of low frequency pulsed magnetic fields (LF-PMFs) on the proliferation of cardiac microvascular endothelial cells (CMECs) and their ultrastructure,migration and angiogenic potential. Methods CMECs from rats were exposed in vitro to low frequency square wave pulsed magnetic fields (15 Hz) 2 h/d for 5 d.The cells were randomly divided into 4 groups (control,1.0 mT,1.4 mT and 1.8 mT).After 5 days of exposure,proliferation was detected in terms of the cells' growth curves,their cycle was detected with flow cytometry,and their ultrastructure was observed using transmission electric microscopy. A scratch assay was used to evaluate the CMECs migration,and their angiogenic potential was measured using a tube formation assay.Results There was no significant effect of a 1.0 mT magnetic field on the ceils' growth curve,cell cycle or ultrastructure.The 1.4 mT magnetic field did,however,accelerate the CMECs' proliferation.The peak of the cells'growth curve was higher and moved forward,and the percentage of cells in the S phase increased significantly compared with the control group.The effects of a 1.8 mT magnetic field on S phase development were similar to those of the 1.4 mT field,but the peak of the cells' growth curve was not moved forward.After exposure to a 1.4 mT or 1.8 mT magnetic field,the CMECs' ultrastructure changed and they appeared more viable and powerful.Their nucleoil became bigger and clearer than those of the control group.There were cavernous nucleoli or two nucleoli.The number of mitochondria increased.The endoplasmic reticulum was richer and full of protein secretions inside with many microvilli on the surface.The magnetic fields facilitated migration and tube formation in the CMECs significantly,and these effects were correlated with the magnetic field intensity (1.4 mT> 1.8 mT > 1.0 mT).The cell migratory percentage in the 1.4 mT group was 86.1% ,while in the control group it was only 45.3%.When the CMECs were

  18. Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy.

    Directory of Open Access Journals (Sweden)

    Campion K P Loong

    Full Text Available α-Tropomyosin (αTm is the predominant tropomyosin isoform in adult human heart and constitutes a major component in Ca²+-regulated systolic contraction of cardiac muscle. We present here the first direct probe images of WT human cardiac αTm by atomic force microscopy, and quantify its mechanical flexibility with three independent analysis methods. Single molecules of bacterially-expressed human cardiac αTm were imaged on poly-lysine coated mica and their contours were analyzed. Analysis of tangent-angle (θ(s correlation along molecular contours, second moment of tangent angles (, and end-to-end length (L(e-e distributions respectively yielded values of persistence length (L(p of 41-46 nm, 40-45 nm, and 42-52 nm, corresponding to 1-1.3 molecular contour lengths (L(c. We also demonstrate that a sufficiently large population, with at least 100 molecules, is required for a reliable L(p measurement of αTm in single molecule studies. Our estimate that L(p for αTm is only slightly longer than L(c is consistent with a previous study showing there is little spread of cooperative activation into near-neighbor regulatory units of cardiac thin filaments. The L(p determined here for human cardiac αTm perhaps represents an evolutionarily tuned optimum between Ca²+ sensitivity and cooperativity in cardiac thin filaments and likely constitutes an essential parameter for normal function in the human heart.

  19. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes.

    Science.gov (United States)

    Bedada, Fikru B; Wheelwright, Matthew; Metzger, Joseph M

    2016-07-01

    Human heart failure due to myocardial infarction is a major health concern. The paucity of organs for transplantation limits curative approaches for the diseased and failing adult heart. Human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) have the potential to provide a long-term, viable, regenerative-medicine alternative. Significant progress has been made with regard to efficient cardiac myocyte generation from hiPSCs. However, directing hiPSC-CMs to acquire the physiological structure, gene expression profile and function akin to mature cardiac tissue remains a major obstacle. Thus, hiPSC-CMs have several hurdles to overcome before they find their way into translational medicine. In this review, we address the progress that has been made, the void in knowledge and the challenges that remain. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  20. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors.

    Directory of Open Access Journals (Sweden)

    Nathan Salomonis

    2009-11-01

    Full Text Available The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org, we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.

  1. Impact of intra-aortic balloon counterpulsation with different balloon volumes on cardiac performance in humans.

    Science.gov (United States)

    Cohen, Marc; Fasseas, Panayotis; Singh, Varinder P; McBride, Ruth; Orford, James L; Kussmaul, William G

    2002-10-01

    Intra-aortic balloon (IAB) counterpulsation can augment the cardiac output. However, the effect of different IAB volumes on cardiac performance has not been adequately evaluated in humans. Eighty-two patients (52 males [63%]; mean age, 65 +/- 12 years; mean body surface area [BSA], 1.8 +/- 0.2 m(2)) had IAB counterpulsation for cardiogenic shock, refractory angina, and preoperatively for high-risk cardiac surgery. Cardiac hemodynamics were prospectively studied during IAB with inflation volumes of 32 vs. 40 cc. Hemodynamic data collected included aortic pressure, pulmonary artery pressure, systemic and mixed venous oxygen saturations, and cardiac output (by Fick). Transthoracic echocardiography (TTE) was used to obtain both velocity time integrals (VTIs) and the area of the left ventricular outflow tract (LVOT). Left ventricular stroke volume was then calculated as LVOT area x VTI. Cardiac output (CO) determined by the Fick method and VTI did not differ significantly (P = NS) between the two inflation volumes (y = 0.002 + 0.97x). In a subgroup of 33 patients with BSA

  2. High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling.

    Science.gov (United States)

    Stephenson, Robert S; Atkinson, Andrew; Kottas, Petros; Perde, Filip; Jafarzadeh, Fatemeh; Bateman, Mike; Iaizzo, Paul A; Zhao, Jichao; Zhang, Henggui; Anderson, Robert H; Jarvis, Jonathan C; Dobrzynski, Halina

    2017-08-03

    Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees.

  3. Human paraoxonase gene cluster overexpression alleviates angiotensin II-induced cardiac hypertrophy in mice.

    Science.gov (United States)

    Pei, Jian-Fei; Yan, Yun-Fei; Tang, Xiaoqiang; Zhang, Yang; Cui, Shen-Shen; Zhang, Zhu-Qin; Chen, Hou-Zao; Liu, De-Pei

    2016-11-01

    Cardiac hypertrophy is the strongest predictor of the development of heart failure, and anti-hypertrophic treatment holds the key to improving the clinical syndrome and increasing the survival rates for heart failure. The paraoxonase (PON) gene cluster (PC) protects against atherosclerosis and coronary artery diseases. However, the role of PC in the heart is largely unknown. To evaluate the roles of PC in cardiac hypertrophy, transgenic mice carrying the intact human PON1, PON2, and PON3 genes and their flanking sequences were studied. We demonstrated that the PC transgene (PC-Tg) protected mice from cardiac hypertrophy induced by Ang II; these mice had reduced heart weight/body weight ratios, decreased left ventricular wall thicknesses and increased fractional shortening compared with wild-type (WT) control. The same protective tendency was also observed with an Apoe (-/-) background. Mechanically, PC-Tg normalized the disequilibrium of matrix metalloproteinases (MMPs)/tissue inhibitors of MMPs (TIMPs) in hypertrophic hearts, which might contribute to the protective role of PC-Tg in cardiac fibrosis and, thus, protect against cardiac remodeling. Taken together, our results identify a novel anti-hypertrophic role for the PON gene cluster, suggesting a possible strategy for the treatment of cardiac hypertrophy through elevating the levels of the PON gene family.

  4. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration.

    Directory of Open Access Journals (Sweden)

    Ralf Gaebel

    Full Text Available The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC derived from umbilical cord blood (CB, adipose tissue (AT or bone marrow (BM for the treatment of myocardial infarction (MI remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105(+-CB treated groups compared to CB and nontreated MI group (MI-C. Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105(+ hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function.

  5. Pacemaker current inhibition in experimental human cardiac sympathetic activation: a double-blind, randomized, crossover study

    NARCIS (Netherlands)

    Schroeder, C.; Heusser, K.; Zoerner, A.A.; Grosshennig, A.; Wenzel, D.; May, M.; Sweep, F.C.; Mehling, H.; Luft, F.C.; Tank, J.; Jordan, J.

    2014-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated 4 (HCN4) channels comprise the final pathway for autonomic heart rate (HR) regulation. We hypothesized that HCN4 inhibition could reverse autonomic imbalance in a human model of cardiac sympathetic activation. Nineteen healthy men ingested oral me

  6. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis.

    Directory of Open Access Journals (Sweden)

    Kapka Miteva

    Full Text Available BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs. They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.

  7. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker.

    Science.gov (United States)

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-07-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.

  8. Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L J; Zhu, Y M; Liu, W Y; Pu, Z B; Magnin, I E [HIT-INSA Sino French Research Centre for Biomedical Imaging, Harbin Institute of Technology, Harbin (China); Croisille, P; Robini, M [CREATIS-LRMN, CNRS UMR 5220, Inserm U630, INSA of Lyon, University of Lyon 1, Villeurbanne (France)], E-mail: baolij@gmail.com

    2009-03-21

    Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.

  9. Human cardiac telocytes: 3D imaging by FIB-SEM tomography.

    Science.gov (United States)

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-11-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type.

  10. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience.

    Science.gov (United States)

    Menasché, Philippe; Vanneaux, Valérie; Fabreguettes, Jean-Roch; Bel, Alain; Tosca, Lucie; Garcia, Sylvie; Bellamy, Valérie; Farouz, Yohan; Pouly, Julia; Damour, Odile; Périer, Marie-Cécile; Desnos, Michel; Hagège, Albert; Agbulut, Onnik; Bruneval, Patrick; Tachdjian, Gérard; Trouvin, Jean-Hugues; Larghero, Jérôme

    2015-03-21

    There is now compelling evidence that cells committed to a cardiac lineage are most effective for improving the function of infarcted hearts. This has been confirmed by our pre-clinical studies entailing transplantation of human embryonic stem cell (hESC)-derived cardiac progenitors in rat and non-human primate models of myocardial infarction. These data have paved the way for a translational programme aimed at a phase I clinical trial. The main steps of this programme have included (i) the expansion of a clone of pluripotent hESC to generate a master cell bank under good manufacturing practice conditions (GMP); (ii) a growth factor-induced cardiac specification; (iii) the purification of committed cells by immunomagnetic sorting to yield a stage-specific embryonic antigen (SSEA)-1-positive cell population strongly expressing the early cardiac transcription factor Isl-1; (iv) the incorporation of these cells into a fibrin scaffold; (v) a safety assessment focused on the loss of teratoma-forming cells by in vitro (transcriptomics) and in vivo (cell injections in immunodeficient mice) measurements; (vi) an extensive cytogenetic and viral testing; and (vii) the characterization of the final cell product and its release criteria. The data collected throughout this process have led to approval by the French regulatory authorities for a first-in-man clinical trial of transplantation of these SSEA-1(+) progenitors in patients with severely impaired cardiac function. Although several facets of this manufacturing process still need to be improved, these data may yet provide a useful platform for the production of hESC-derived cardiac progenitor cells under safe and cost-effective GMP conditions. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  11. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    Science.gov (United States)

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-08-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  12. Modified Continuous Loop Technique for microvascular anastomosis

    Directory of Open Access Journals (Sweden)

    Kumar Pramod

    2001-01-01

    Full Text Available A modified method of continuous loop technique for microvascular anastomosis is described. The handling of loop is easier & even last suture is placed under vision. This makes the microvascular anastomosis easier and simpler.

  13. A TASER conducted electrical weapon with cardiac biomonitoring capability: Proof of concept and initial human trial.

    Science.gov (United States)

    Stopyra, Jason P; Ritter, Samuel I; Beatty, Jennifer; Johnson, James C; Kleiner, Douglas M; Winslow, James E; Gardner, Alison R; Bozeman, William P

    2016-10-01

    Despite research demonstrating the overall safety of Conducted Electrical Weapons (CEWs), commonly known by the brand name TASER(®), concerns remain regarding cardiac safety. The addition of cardiac biomonitoring capability to a CEW could prove useful and even lifesaving in the rare event of a medical crisis by detecting and analyzing cardiac rhythms during the period immediately after CEW discharge. To combine an electrocardiogram (ECG) device with a CEW to detect and store ECG signals while still allowing the CEW to perform its primary function of delivering an incapacitating electrical discharge. This work was performed in three phases. In Phase 1 standard law enforcement issue CEW cartridges were modified to demonstrate transmission of ECG signals. In Phase 2, a miniaturized ECG recorder was combined with a standard issue CEW and tested. In Phase 3, a prototype CEW with on-board cardiac biomonitoring was tested on human volunteers to assess its ability to perform its primary function of electrical incapacitation. Bench testing demonstrated that slightly modified CEW cartridge wires transmitted simulated ECG signals produced by an ECG rhythm generator and from a human volunteer. Ultimately, a modified CEW incorporating ECG monitoring successfully delivered incapacitating current to human volunteers and successfully recorded ECG signals from subcutaneous CEW probes after firing. An ECG recording device was successfully incorporated into a standard issue CEW without impeding the functioning of the device. This serves as proof-of-concept that safety measures such as cardiac biomonitoring can be incorporated into CEWs and possibly other law enforcement devices. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  14. A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics

    NARCIS (Netherlands)

    Groenewegen, WA; Bezzina, CR; van Tintelen, JP; Hoorntje, TM; Mannens, MMAM; Wilde, AAM; Jongsma, HJ; Rook, MB

    2003-01-01

    The Long QT3 syndrome is associated with mutations in the cardiac sodium channel gene SCN5A. Objective: The aim of the present study was the identification and functional characterization of a mutation in a family with the long QT3 syndrome. Methods: The human cardiac sodium channel gene SCN5A was s

  15. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    In this PhD work a new method for measuring microvascular recruitment was developed and evaluated, using continues real-time imaging of contrast enhanced ultrasound. Gas-filled microbubbles were infused intravenously and by taking advantage of the echogenic properties of the microbubbles the reso......In this PhD work a new method for measuring microvascular recruitment was developed and evaluated, using continues real-time imaging of contrast enhanced ultrasound. Gas-filled microbubbles were infused intravenously and by taking advantage of the echogenic properties of the microbubbles...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  16. Human in vivo cardiac phosphorus NMR spectroscopy at 3.0 Tesla

    Science.gov (United States)

    Bruner, Angela Properzio

    One of the newest methods with great potential for use in clinical diagnosis of heart disease is human, cardiac, phosphorus NMR spectroscopy (cardiac p 31 MRS). Cardiac p31 MRS is able to provide quantitative, non-invasive, functional information about the myocardial energy metabolites such as pH, phosphocreatine (PCr), and adenosinetriphosphate (ATP). In addition to the use of cardiac p3l MRS for other types of cardiac problems, studies have shown that the ratio of PCr/ATP and pH are sensitive and specific markers of ischemia at the myocardial level. In human studies, typically performed at 1.5 Tesla, PCr/ATP has been relatively easy to measure but often requires long scan times to provide adequate signal-to-noise (SNR). In addition, pH which relies on identification of inorganic phosphate (Pi), has rarely been obtained. Significant improvement in the quality of cardiac p31 MRS was achieved through the use of the General Electric SIGNATM 3.0 Tesla whole body magnet, improved coil designs and optimized pulse sequences. Phantom and human studies performed on many types of imaging and spectroscopy sequences, identified breathhold gradient-echo imaging and oblique DRESS p31 spectroscopy as the best compromises between SNR, flexibility and quality localization. Both single-turn and quadrature 10-cm diameter, p31 radiofrequency coils, were tested with the quadrature coil providing greater SNR, but at a greater depth to avoid skeletal muscle contamination. Cardiac p31 MRS obtained in just 6 to 8 minutes, gated, showed both improved SNR and discernment of Pi allowing for pH measurement. A handgrip, in-magnet exerciser was designed, created and tested at 1.5 and 3.0 Tesla on volunteers and patients. In ischemic patients, this exercise was adequate to cause a repeated drop in PCr/ATP and pH with approximately eight minutes of isometric exercise at 30% maximum effort. As expected from literature, this exercise did not cause a drop in PCr/ATP for reference volunteers.

  17. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts

    OpenAIRE

    Fuller, Stephen J.; Osborne, Sally A.; Leonard, Sam J.; Hardyman, Michelle A.; Vaniotis, George; Allen, Bruce G.; Sugden, Peter H.; Clerk, Angela

    2015-01-01

    Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) d...

  18. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  19. Coagulopathy and hemostatic monitoring in cardiac surgery

    DEFF Research Database (Denmark)

    Johansson, Pär I; Sølbeck, Sacha; Genet, Gustav

    2012-01-01

    Cardiac surgery with cardiopulmonary bypass (CPB) causes severe derangements in the hemostatic system, which in turn puts the patient at risks of microvascular bleeding. Excessive transfusion and surgical re-exploration after cardiac surgery are potentially associated with a number of adverse...

  20. Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue

    National Research Council Canada - National Science Library

    Takeichiro Nakane; Hidetoshi Masumoto; Joseph P Tinney; Fangping Yuan; William J Kowalski; Fei Ye; Amanda J Leblanc; Ryuzo Sakata; Jun K Yamashita; Bradley B Keller

    2017-01-01

    ...) composed of human induced pluripotent stem cells (hiPSCs) derived multiple lineage cardiac cells with varied 3D geometries and cell densities developed towards the goal of scale-up for large animal pre-clinical studies...

  1. Sex-dependent alterations of Ca2+ cycling in human cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Fischer, Thomas H; Herting, Jonas; Eiringhaus, Jörg; Pabel, Steffen; Hartmann, Nico H; Ellenberger, David; Friedrich, Martin; Renner, André; Gummert, Jan; Maier, Lars S; Zabel, Markus; Hasenfuss, Gerd; Sossalla, Samuel

    2016-09-01

    Clinical studies have shown differences in the propensity for malignant ventricular arrhythmias between women and men suffering from cardiomyopathies and heart failure (HF). This is clinically relevant as it impacts therapies like prophylactic implantable cardioverter-defibrillator implantation but the pathomechanisms are unknown. As an increased sarcoplasmic reticulum (SR) Ca(2+) leak is arrhythmogenic, it could represent a cellular basis for this paradox. We evaluated the SR Ca(2+) leak with respect to sex differences in (i) afterload-induced cardiac hypertrophy (Hy) with preserved left ventricular (LV) function and (ii) end-stage HF. Cardiac function did not differ between sexes in both cardiac pathologies. Human cardiomyocytes isolated from female patients with Hy showed a significantly lower Ca(2+) spark frequency (CaSpF, confocal microscopy, Fluo3-AM) compared with men (P cardiac impairment. Since the SR Ca(2+) leak triggers delayed afterdepolarizations, our findings may explain why women are less prone to ventricular arrhythmias and confirm the rationale of therapeutic measures reducing the SR Ca(2+) leak. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. Microvascular decompression for trigeminal neuralgia.

    Science.gov (United States)

    Sade, Burak; Lee, Joung H

    2014-10-01

    The microvascular decompression procedure has proven to be a safe and effective option in the surgical management of neurovascular compression syndromes in general and trigeminal neuralgia in particular. This article aims to serve as an overview of the decision-making process, application of the surgical technique, and clinical outcome pertaining to this procedure.

  3. Microvascularization on collared peccary placenta

    DEFF Research Database (Denmark)

    Santos, Tatiana Carlesso; Oliveira, Moacir Franco; Dantzer, Vibeke

    2012-01-01

    into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base...

  4. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells

    Science.gov (United States)

    van Meer, Berend J.; Tertoolen, Leon G. J.

    2017-01-01

    ABSTRACT Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs. PMID:28279973

  5. ID3 contributes to the acquisition of molecular stem cell-like signature in microvascular endothelial cells: its implication for understanding microvascular diseases.

    Science.gov (United States)

    Das, Jayanta K; Voelkel, Norbert F; Felty, Quentin

    2015-03-01

    While significant progress has been made to advance our knowledge of microvascular lesion formation, yet the investigation of how stem-like cells may contribute to the pathogenesis of microvascular diseases is still in its infancy. We assessed whether the inhibitor of DNA binding and differentiation 3 (ID3) contributes to the acquisition of a molecular stem cell-like signature in microvascular endothelial cells. The effects of stable ID3 overexpression and SU5416 treatment - a chemical inducer of microvascular lesions, had on the stemness signature were determined by flow cytometry, immunoblot, and immunohistochemistry. Continuous ID3 expression produced a molecular stemness signature consisting of CD133(+) VEGFR3(+) CD34(+) cells. Cells exposed to SU5416 showed positive protein expression of ID3, VEGFR3, CD34 and increased expression of pluripotent transcription factors Oct-4 and Sox-2. ID3 overexpressing cells supported the formation of a 3-D microvascular lesion co-cultured with smooth muscle cells. In addition, in vivo microvascular lesions from SuHx rodent model showed an increased expression of ID3, VEGFR3, and Pyk2 similar to SU5416 treated human endothelial cells. Further investigations into how normal and stem-like cells utilize ID3 may open up new avenues for a better understanding of the molecular mechanisms which are underlying the pathological development of microvascular diseases.

  6. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    Science.gov (United States)

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure.

  7. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability.

    Directory of Open Access Journals (Sweden)

    Paul W Burridge

    Full Text Available BACKGROUND: The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC, including hiPSC generated from CD34(+ cord blood using non-viral, non-integrating methods. METHODOLOGY/PRINCIPAL FINDINGS: We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5% oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89% of cardiac troponin I(+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs. CONCLUSION/SIGNIFICANCE: This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically

  8. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Armin Arshi, Yasuhiro Nakashima, Haruko Nakano, Sarayoot Eaimkhong, Denis Evseenko, Jason Reed, Adam Z Stieg, James K Gimzewski and Atsushi Nakano

    2013-01-01

    Full Text Available While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  9. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  10. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C.; Connors, Lawreen H.; Merlini, Giampaolo; Falk, Rodney H.; MacRae, Calum A.

    2013-01-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies. PMID:23624626

  11. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack.

    Science.gov (United States)

    Bhatnagar, Deepika; Kaur, Inderpreet; Kumar, Ashok

    2017-02-01

    An ultrasensitive cardiac troponin I antibody conjugated with graphene quantum dots (GQD) and polyamidoamine (PAMAM) nanohybrid modified gold electrode based sensor was developed for the rapid detection of heart attack (myocardial infarction) in human. Screen printed gold (Au) electrode was decorated with 4-aminothiophenol for amine functionalization of the Au surface. These amino groups were further coupled with carboxyl functionalities of GQD with EDC-NHS reaction. In order to enhance the sensitivity of the sensor, PAMAM dendrimer was successively embedded on GQD through carbodiimide coupling to provide ultra-high surface area for antibody immobilization. The activated cardiac troponin I (cTnI) monoclonal antibody was immobilized on PAMAM to form nanoprobe for sensing specific heart attack marker cTnI. Various concentrations of cardiac marker, cTnI were electrochemically measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in human blood serum. The modifications on sensor surface were characterized by FTIR and AFM techniques. The sensor is highly specific to cTnI and showed negligible response to non-specific antigens. The sensitivity of the sensor was 109.23μAcm(-2)μg(-1) and lower limit of detection of cTnI was found 20fgmL(-1).

  12. ISL1 directly regulates FGF10 transcription during human cardiac outflow formation.

    Directory of Open Access Journals (Sweden)

    Christelle Golzio

    Full Text Available The LIM homeodomain gene Islet-1 (ISL1 encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations.

  13. Culture and Identification of microvascular endothelial cells from human ovarian carcinoma%人卵巢癌微血管内皮细胞的培养与鉴定

    Institute of Scientific and Technical Information of China (English)

    徐燕; 梁志清; 王丹; 谢尧

    2009-01-01

    目的 建立人卵巢癌微血管内皮细胞(ovarian carcinoma-derived microvascular endothelial cells,ODMECs)体外培养体系.方法 采用胶原酶、胰酶联合消化法分离微血管内皮,经percoll梯度密度离心纯化.光镜、电镜、流式细胞术、免疫细胞化学对所获得的ODMECs进行鉴定.结果 所获ODMECs流式分析有内皮标志物CD34/VEGF-R2表达;免疫荧光FⅦ-RAg阳性;电镜下见细胞多核、有丰富的微丝、Weibel-Palade小体等;培养中的内皮细胞生长状态良好、呈现典型的铺路石征,可传代培养.结论 本研究建立了人ODMECs体外培养体系,对了解卵巢癌血管内皮的异质性有重要价值,为抗卵巢癌血管生成的研究奠定了基础.

  14. Functional high-resolution time-course expression analysis of human embryonic stem cells undergoing cardiac induction

    Directory of Open Access Journals (Sweden)

    Ilaria Piccini

    2016-12-01

    Full Text Available Cardiac induction of human embryonic stem cells (hESCs is a process bearing increasing medical relevance, yet it is poorly understood from a developmental biology perspective. Anticipated technological progress in deriving stably expandable cardiac precursor cells or in advancing cardiac subtype specification protocols will likely require deeper insights into this fascinating system. Recent improvements in controlling hESC differentiation now enable a near-homogeneous induction of the cardiac lineage. This is based on an optimized initial stimulation of mesoderm-inducing signaling pathways such as Activin and/or FGF, BMP, and WNT, followed by WNT inhibition as a secondary requirement. Here, we describe a comprehensive data set based on varying hESC differentiation conditions in a systematic manner and recording high-resolution differentiation time-courses analyzed by genome-wide expression profiling (GEO accession number GSE67154. As a baseline, hESCs were differentiated into cardiomyocytes under optimal conditions. Moreover, in additional time-series, individual signaling factors were withdrawn from the initial stimulation cocktail to reveal their specific roles via comparison to the standard condition. Hence, this data set presents a rich resource for hypothesis generation in studying human cardiac induction, as we reveal numbers of known as well as uncharacterized genes prominently marking distinct intermediate stages in the process. These data will also be useful for identifying putative cardiac master regulators in the human system as well as for characterizing expandable cardiac stem cells.

  15. Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cells

    DEFF Research Database (Denmark)

    Oberwallner, Barbara; Brodarac, Andreja; Anić, Petra;

    2015-01-01

    lysis buffer, sodium dodecyl sulphate (SDS) and foetal bovine serum (FBS). Murine embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stromal cells (MSCs) were seeded and grown in standard culture, on cECM or on non-specific ECM preparations (Matrigel® or Geltrex®). Cell......OBJECTIVES: Cross-talk between organ-specific extracellular matrix (ECM) and stem cells is often assumed but has not been directly demonstrated. We developed a protocol for the preparation of human cardiac ECM (cECM) and studied whether cECM has effects on pluripotent stem cell differentiation...... that may be useful for future cardiac regeneration strategies in patients with end-stage heart failure. METHODS: Of note, 0.3 mm-thick cECM slices were prepared from samples of myocardium from patients with end-stage non-ischaemic dilated cardiomyopathy, using a three-step protocol involving hypotonic...

  16. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-08-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using `harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  17. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts.

    Science.gov (United States)

    Zhang, YouEn; Wang, JiaNing; Li, Hua; Yuan, LiangJun; Wang, Lei; Wu, Bing; Ge, JunBo

    2015-11-01

    In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.

  18. Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart.

    Directory of Open Access Journals (Sweden)

    Arnold Vreeker

    Full Text Available BACKGROUND: In cardiac muscle, the intercalated disk (ID at the longitudinal cell-edges of cardiomyocytes provides as a macromolecular infrastructure that integrates mechanical and electrical coupling within the heart. Pathophysiological disturbance in composition of this complex is well known to trigger cardiac arrhythmias and pump failure. The mechanisms underlying assembly of this important cellular domain in human heart is currently unknown. METHODS: We collected 18 specimens from individuals that died from non-cardiovascular causes. Age of the specimens ranged from a gestational age of 15 weeks through 11 years postnatal. Immunohistochemical labeling was performed against proteins comprising desmosomes, adherens junctions, the cardiac sodium channel and gap junctions to visualize spatiotemporal alterations in subcellular location of the proteins. RESULTS: Changes in spatiotemporal localization of the adherens junction proteins (N-cadherin and ZO-1 and desmosomal proteins (plakoglobin, desmoplakin and plakophilin-2 were identical in all subsequent ages studied. After an initial period of diffuse and lateral labelling, all proteins were fully localized in the ID at approximately 1 year after birth. Nav1.5 that composes the cardiac sodium channel and the gap junction protein Cx43 follow a similar pattern but their arrival in the ID is detected at (much later stages (two years for Nav1.5 and seven years for Cx43, respectively. CONCLUSION: Our data on developmental maturation of the ID in human heart indicate that generation of the mechanical junctions at the ID precedes that of the electrical junctions with a significant difference in time. In addition arrival of the electrical junctions (Nav1.5 and Cx43 is not uniform since sodium channels localize much earlier than gap junction channels.

  19. 改良的人视网膜血管内皮细胞的培养与鉴定方法%A novel method for culture and identification of primary human retinal microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    毛羽翔; 林少芬; 曾美珍; 田景毅; 唐仕波

    2013-01-01

    Background To optimize the culture method of human retinal microvascular endothelial cells is very important for the study of retinal angiogenesis disease.Human retinal microvascular endothelial cells have been successfully cultured in previous studies,but further improvement of the culture method to harvest higher yields and purity cells is still needed.Objective This study was to design a modified method to isolate and purify human retinal microvascular endothelial cells much easily and quickly,and to compare the expression of specific markers of vascular endothelial cells,factor Ⅷ and CD31/CD34 in the cells.Methods The use of human donor eyeballs was approved by the Ethic Commission of Zhongshan Ophthalmic Center of Sun Yat-sen University.The retina tissue from healthy donor was isolated and digested by the two-step digestion method with 2% trypsin and 0.133% collagenase Ⅳ.Human retinal microvascular endothelial cells were collected and plated in 60 mm dishes coated by 0.1% fibronectin and cultured in endothelial cell-specialized medium supplemented with 10% fetal bovine serum,0.3 mg/L β-endothelial cell growth factor (ECGF) and 100 ng/L sodium heparin.During the culturing,the growth situation of the cells was monitored by morphological observation,and immunohistochemical staining was performed to probe vascular endothelial cell-specific membrane protein CD31,CD34 and factor Ⅷ for identification of the cell purity.Results Human retinal microvascular endothelial cells were isolated successfully from the retina by the twostep digestion method.The primary cultured cells adhered to well 72 hours later and achieved confluence with the typical cobblestone appearance 9 to 10 days after cultured.The cells exhibited the blue nuclei and reddish cytoplasm by regular haematoxylin and eosin stain and showed a strong positive response for CD31,CD34 and factor Ⅷ by immunohistochemistry.The positive dye of CD31 and CD34 was lower than Ⅷ factor in both

  20. Human Mesenchymal Stromal Cells Improve Cardiac Perfusion in an Ovine Immunocompetent Animal Model.

    Science.gov (United States)

    Dayan, Victor; Sotelo, Veronica; Delfina, Valentina; Delgado, Natalia; Rodriguez, Carlos; Suanes, Carol; Langhain, María; Ferrando, Rodolfo; Keating, Armand; Benech, Alejandro; Touriño, Cristina

    2016-08-01

    Mesenchymal stromal cells (MSCs) hold considerable promise in the treatment of ischemic heart disease. Most preclinical studies of MSCs for acute myocardial infarction (AMI) have been performed either in syngeneic animal models or with human cells in xenogeneic immunodeficient animals. A preferable pre-clinical model, however, would involve human MSCs in an immunocompetent animal. AMI was generated in adult sheep by inducing ischemia reperfusion of the second diagonal branch. Sheep (n = 10) were randomized to receive an intravenous injection of human MSCs (1 × 10(6) cells/kg) or phosphate buffered saline. Cardiac function and remodeling were evaluated with echocardiography. Perfusion scintigraphy was used to identify sustained myocardial ischemia. Interaction between human MSCs and ovine lymphocytes was assessed by a mixed lymphocyte response (MLR). Sheep receiving human MSCs showed significant improvement in myocardial perfusion at 1 month compared with baseline measurements. There was no change in ventricular dimensions in either group after 1 month of AMI. No adverse events or symptoms were observed in the sheep receiving human MSCs. The MLR was negative. The immunocompetent ovine AMI model demonstrates the clinical safety and efficacy of human MSCs. The human cells do not appear to be immunogenic, further suggesting that immunocompetent sheep may serve as a suitable pre-clinical large animal model for testing human MSCs.

  1. Using a human cardiovascular-respiratory model to characterize cardiac tamponade and pulsus paradoxus

    Science.gov (United States)

    Ramachandran, Deepa; Luo, Chuan; Ma, Tony S; Clark, John W

    2009-01-01

    Background Cardiac tamponade is a condition whereby fluid accumulation in the pericardial sac surrounding the heart causes elevation and equilibration of pericardial and cardiac chamber pressures, reduced cardiac output, changes in hemodynamics, partial chamber collapse, pulsus paradoxus, and arterio-venous acid-base disparity. Our large-scale model of the human cardiovascular-respiratory system (H-CRS) is employed to study mechanisms underlying cardiac tamponade and pulsus paradoxus. The model integrates hemodynamics, whole-body gas exchange, and autonomic nervous system control to simulate pressure, volume, and blood flow. Methods We integrate a new pericardial model into our previously developed H-CRS model based on a fit to patient pressure data. Virtual experiments are designed to simulate pericardial effusion and study mechanisms of pulsus paradoxus, focusing particularly on the role of the interventricular septum. Model differential equations programmed in C are solved using a 5th-order Runge-Kutta numerical integration scheme. MATLAB is employed for waveform analysis. Results The H-CRS model simulates hemodynamic and respiratory changes associated with tamponade clinically. Our model predicts effects of effusion-generated pericardial constraint on chamber and septal mechanics, such as altered right atrial filling, delayed leftward septal motion, and prolonged left ventricular pre-ejection period, causing atrioventricular interaction and ventricular desynchronization. We demonstrate pericardial constraint to markedly accentuate normal ventricular interactions associated with respiratory effort, which we show to be the distinct mechanisms of pulsus paradoxus, namely, series and parallel ventricular interaction. Series ventricular interaction represents respiratory variation in right ventricular stroke volume carried over to the left ventricle via the pulmonary vasculature, whereas parallel interaction (via the septum and pericardium) is a result of

  2. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  3. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  4. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Axel Haarmann

    2015-08-01

    Full Text Available Dimethyl fumarate (DMF is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  5. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-08-13

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  6. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue.

    Science.gov (United States)

    Majumder, Rupamanjari; Pandit, Rahul; Panfilov, A V

    2014-10-01

    Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na(+) current (INa), L-type slow inward Ca(2+) current (ICaL), slow delayed-rectifier current (IKs), rapid delayed-rectifier current (IKr), inward rectifier K(+) current (IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.

  7. Improved Cardiac Contractility of Human Recombinant Growth Hormone on the Congestive Heart Failure of Pig

    Institute of Scientific and Technical Information of China (English)

    Yang Ping; He Yu-quan; Zeng Hong; Ni Jin-song; Yun Qing-jun; Huang Xiao-ping; Li Shu-mei

    2005-01-01

    The enhanced cardiac contractility effect of human recombinant growth hormone (hr-GH) on the congestive heart failure (CHF) was studied on the pig. To build a pig model of congestive heart failure, a temporary artificial cardiac pacemaker was implanted in the pig's body and paced at 220 beats to 240 beats per minute for 1 week. After the model of congestive heart failure was successfully set up, the frequency of the pacemaker was changed to 150 beats to 180 beats per minute to maintain the CHF model stable. Pigs were divided into three groups: The hr-GH group in which 0.5 mg/kg per day of hr-GH was administrated intramuscularly for 15 days, the injection control group in which an equal amount of physiological saline was injected intramuscularly, and a normal control group. The left ventricular diastolic end pressure was (10.60±2.41 ) mmHg in the hr-GH group, but (19.00±3.81) mmHg in the saline control group (P<0.01); Cardiac output was (1.86±0.13) L/min in the hr-GH group, but (1.56 ±0.18) L/min in the saline control group (P<0.05); Peripheral min) -1 in the saline control group (P<0.05); ± dp/dtmax was (2900 ±316.23) and (2280 ±286.36) in the hr-HG group and the saline control group respectively (P<0.05). The results show that hr-GH enhances myocardial contractility of CHF, and the CHF model built by a temporary artificial cardiac pacemaker at a high rate of stimulation is reasonable and applicable.

  8. Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs.

    Science.gov (United States)

    Jost, Norbert; Virág, László; Comtois, Philippe; Ordög, Balázs; Szuts, Viktória; Seprényi, György; Bitay, Miklós; Kohajda, Zsófia; Koncz, István; Nagy, Norbert; Szél, Tamás; Magyar, János; Kovács, Mária; Puskás, László G; Lengyel, Csaba; Wettwer, Erich; Ravens, Ursula; Nánási, Péter P; Papp, Julius Gy; Varró, András; Nattel, Stanley

    2013-09-01

    The species-specific determinants of repolarization are poorly understood. This study compared the contribution of various currents to cardiac repolarization in canine and human ventricle. Conventional microelectrode, whole-cell patch-clamp, molecular biological and mathematical modelling techniques were used. Selective IKr block (50-100 nmol l(-1) dofetilide) lengthened AP duration at 90% of repolarization (APD90) >3-fold more in human than dog, suggesting smaller repolarization reserve in humans. Selective IK1 block (10 μmol l(-1) BaCl2) and IKs block (1 μmol l(-1) HMR-1556) increased APD90 more in canine than human right ventricular papillary muscle. Ion current measurements in isolated cardiomyocytes showed that IK1 and IKs densities were 3- and 4.5-fold larger in dogs than humans, respectively. IKr density and kinetics were similar in human versus dog. ICa and Ito were respectively ~30% larger and ~29% smaller in human, and Na(+)-Ca(2+) exchange current was comparable. Cardiac mRNA levels for the main IK1 ion channel subunit Kir2.1 and the IKs accessory subunit minK were significantly lower, but mRNA expression of ERG and KvLQT1 (IKr and IKs α-subunits) were not significantly different, in human versus dog. Immunostaining suggested lower Kir2.1 and minK, and higher KvLQT1 protein expression in human versus canine cardiomyocytes. IK1 and IKs inhibition increased the APD-prolonging effect of IKr block more in dog (by 56% and 49%, respectively) than human (34 and 16%), indicating that both currents contribute to increased repolarization reserve in the dog. A mathematical model incorporating observed human-canine ion current differences confirmed the role of IK1 and IKs in repolarization reserve differences. Thus, humans show greater repolarization-delaying effects of IKr block than dogs, because of lower repolarization reserve contributions from IK1 and IKs, emphasizing species-specific determinants of repolarization and the limitations of animal models for

  9. Antioxidant Effect of Human Selenium-containing Single-chain Fv in Rat Cardiac Myocytes

    Institute of Scientific and Technical Information of China (English)

    HUO Rui; SHI Yi; XU Jun-jie; YAN Fei; L(U) Shao-wu; SU Jia-ming; DUAN Yu-jing; FAN Jia; NING Bo; CONG Deng-li; YAN Gang-lin; LUO Gui-min; WEI Jing-yan

    2009-01-01

    Reactive oxygen species(ROS) plays a key role in human heart diseases.Glutathione peroxidase(GPX) functions as an antioxidant as it catalyzes the reduction of hydroperoxide.In order to investigate the antioxidant effect of human selenium-containing single-chain Fv(Se-scFv-B3),a new mimic of GPX,a model system of hydrogen peroxide(H2O2)-induced rat cardiac myocyte damage was established.The cardiac myocyte damage was characterized in terms of cell viability,lipid peroxidation,cell membrane integrity,and intracellular H2O2 level.The Se-scFv-B3 significantly reduced H2O2-induced cell damage as shown by the increase of cell viability,the decline of malondialdehyde(MDA) production,lactate dehydrogenase(LDH) release,and intracellular H2O2 level.So Se-scFvB3 may have a great potential in the treatment of human heart diseases induced by ROS.

  10. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.

    Science.gov (United States)

    Gaber, Naila; Gagliardi, Mark; Patel, Pranali; Kinnear, Caroline; Zhang, Cindy; Chitayat, David; Shannon, Patrick; Jaeggi, Edgar; Tabori, Uri; Keller, Gordon; Mital, Seema

    2013-09-01

    Hypoplastic left heart syndrome (HLHS) is a severe cardiac malformation characterized by left ventricle (LV) hypoplasia and abnormal LV perfusion and oxygenation. We studied hypoxia-associated injury in fetal HLHS and human pluripotent stem cells during cardiac differentiation to assess the effect of microenvironmental perturbations on fetal cardiac reprogramming. We studied LV myocardial samples from 32 HLHS and 17 structurally normal midgestation fetuses. Compared with controls, the LV in fetal HLHS samples had higher nuclear expression of hypoxia-inducible factor-1α but lower angiogenic growth factor expression, higher expression of oncogenes and transforming growth factor (TGF)-β1, more DNA damage and senescence with cell cycle arrest, fewer cardiac progenitors, myocytes and endothelial lineages, and increased myofibroblast population (P cells (SMCs) had less DNA damage compared with endothelial cells and myocytes. We recapitulated the fetal phenotype by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation. DNA damage was prevented by treatment with a TGF-β1 inhibitor (P cells). The hypoplastic LV in fetal HLHS samples demonstrates hypoxia-inducible factor-1α up-regulation, oncogene-associated cellular senescence, TGF-β1-associated fibrosis and impaired vasculogenesis. The phenotype is recapitulated by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation and rescued by inhibition of TGF-β1. This finding suggests that hypoxia may reprogram the immature heart and affect differentiation and development.

  11. Development and application of human virtual excitable tissues and organs: from premature birth to sudden cardiac death.

    Science.gov (United States)

    Holden, Arun V

    2010-12-01

    The electrical activity of cardiac and uterine tissues has been reconstructed by detailed computer models in the form of virtual tissues. Virtual tissues are biophysically and anatomically detailed, and represent quantitatively predictive models of the physiological and pathophysiological behaviours of tissue within an isolated organ. The cell excitation properties are quantitatively reproduced by equations that describe the kinetics of a few dozen proteins. These equations are derived from experimental measurements of membrane potentials, ionic currents, fluxes, and concentrations. Some of the measurements were taken from human cells and human ion channel proteins expressed in non-human cells, but they were mostly taken from cells of other animal species. Data on tissue geometry and architecture are obtained from the diffusion tensor magnetic resonance imaging of ex vivo or post mortem tissue, and are used to compute the spread of current in the tissue. Cardiac virtual tissues are well established and reproduce normal and pathological patterns of cardiac excitation within the atria or ventricles of the human heart. They have been applied to increase the understanding of normal cardiac electrophysiology, to evaluate the candidate mechanisms for re-entrant arrhythmias that lead to sudden cardiac death, and to predict the tissue level effects of mutant or pharmacologically-modified ion channels. The human full-term virtual uterus is still in development. This virtual tissue reproduces the in vitro behaviour of uterine tissue biopsies, and provides possible mechanisms for premature labour.

  12. Hypertrophy of neurons within cardiac ganglia in human, canine, and rat heart failure: the potential role of nerve growth factor.

    Science.gov (United States)

    Singh, Sanjay; Sayers, Scott; Walter, James S; Thomas, Donald; Dieter, Robert S; Nee, Lisa M; Wurster, Robert D

    2013-08-19

    Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm(2); Phypertrophy of neurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia.

  13. Wavelet transform analysis to assess oscillations in pial artery pulsation at the human cardiac frequency.

    Science.gov (United States)

    Winklewski, P J; Gruszecki, M; Wolf, J; Swierblewska, E; Kunicka, K; Wszedybyl-Winklewska, M; Guminski, W; Zabulewicz, J; Frydrychowski, A F; Bieniaszewski, L; Narkiewicz, K

    2015-05-01

    Pial artery adjustments to changes in blood pressure (BP) may last only seconds in humans. Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS) that allows for the non-invasive measurement of pial artery pulsation (cc-TQ) in humans, we aimed to assess the relationship between spontaneous oscillations in BP and cc-TQ at frequencies between 0.5 Hz and 5 Hz. We hypothesized that analysis of very short data segments would enable the estimation of changes in the cardiac contribution to the BP vs. cc-TQ relationship during very rapid pial artery adjustments to external stimuli. BP and pial artery oscillations during baseline (70s and 10s signals) and the response to maximal breath-hold apnea were studied in eighteen healthy subjects. The cc-TQ was measured using NIR-T/BSS; cerebral blood flow velocity, the pulsatility index and the resistive index were measured using Doppler ultrasound of the left internal carotid artery; heart rate and beat-to-beat systolic and diastolic blood pressure were recorded using a Finometer; end-tidal CO2 was measured using a medical gas analyzer. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations. The recordings lasting 10s and representing 10 cycles with a frequency of ~1 Hz provided sufficient accuracy with respect to wavelet coherence and wavelet phase coherence values and yielded similar results to those obtained from approximately 70cycles (70s). A slight but significant decrease in wavelet coherence between augmented BP and cc-TQ oscillations was observed by the end of apnea. Wavelet transform analysis can be used to assess the relationship between BP and cc-TQ oscillations at cardiac frequency using signals intervals as short as 10s. Apnea slightly decreases the contribution of cardiac activity to BP and cc-TQ oscillations.

  14. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation.

    Science.gov (United States)

    Pagano, Francesca; Angelini, Francesco; Siciliano, Camilla; Tasciotti, Julia; Mangino, Giorgio; De Falco, Elena; Carnevale, Roberto; Sciarretta, Sebastiano; Frati, Giacomo; Chimenti, Isotta

    2017-01-15

    Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

  15. Vitamin D Levels Are Associated with Cardiac Autonomic Activity in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Linda Ellis

    2013-06-01

    Full Text Available Vitamin D deficiency (≤50nmol/L 25-hydroxy vitamin D is a cardiovascular (CV risk factor that affects approximately one billion people worldwide, particularly those affected by chronic kidney disease (CKD. Individuals with CKD demonstrate abnormal cardiac autonomic nervous system activity, which has been linked to the significant rates of CV-related mortality in this population. Whether vitamin D deficiency has a direct association with regulation of cardiac autonomic activity has never been explored in humans. Methods: Thirty-four (34 healthy, normotensive subjects were studied and categorized based on 25-hydroxy vitamin D deficiency (deficient vs. non-deficient, n = 7 vs. 27, as well as 1,25-dihydroxy vitamin D levels (above vs. below 25th percentile, n = 8 vs. 26. Power spectral analysis of electrocardiogram recordings provided measures of cardiac autonomic activity across low frequency (LF and high frequency (HF, representative of vagal contribution bands, representative of the sympathetic and vagal limbs of the autonomic nervous system when transformed to normalized units (nu, respectively, as well as overall cardiosympathovagal balance (LF:HF during graded angiotensin II (AngII challenge (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min. Results: At baseline, significant suppression of sympathovagal balance was observed in the 25-hydroxy vitamin D-deficient participants (LF:HF, p = 0.02 vs. non-deficient, although no other differences were observed throughout AngII challenge. Participants in the lowest 1,25-dihydroxy VD quartile experienced significant withdrawal of inhibitory vagal control, as well as altered overall sympathovagal balance throughout AngII challenge (HF, mean difference = −6.98 ± 3 nu, p = 0.05; LF:HF, mean difference = 0.34 ± 0.1, p = 0.043 vs. above 25th percentile. Conclusions: Vitamin D deficiency is associated with suppression of resting cardiac autonomic activity, while low 1,25-dihydroxy vitamin D levels are

  16. Optimisation of recombinant production of active human cardiac SERCA2a ATPase.

    Science.gov (United States)

    Antaloae, Ana V; Montigny, Cédric; le Maire, Marc; Watson, Kimberly A; Sørensen, Thomas L-M

    2013-01-01

    Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca(2+) translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.

  17. Reference values for total blood volume and cardiac output in humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.R. [Indiana Univ., South Bend, IN (United States). Division of Liberal Arts and Sciences

    1994-09-01

    Much research has been devoted to measurement of total blood volume (TBV) and cardiac output (CO) in humans but not enough effort has been devoted to collection and reduction of results for the purpose of deriving typical or {open_quotes}reference{close_quotes} values. Identification of normal values for TBV and CO is needed not only for clinical evaluations but also for the development of biokinetic models for ultra-short-lived radionuclides used in nuclear medicine (Leggett and Williams 1989). The purpose of this report is to offer reference values for TBV and CO, along with estimates of the associated uncertainties that arise from intra- and inter-subject variation, errors in measurement techniques, and other sources. Reference values are derived for basal supine CO and TBV in reference adult humans, and differences associated with age, sex, body size, body position, exercise, and other circumstances are discussed.

  18. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Bianca Harris

    Full Text Available Smoking causes endothelial dysfunction and systemic microvascular disease with resultant end-organ damage in the kidneys, eyes and heart. Little is known about microvascular changes in smoking-related lung disease. We tested if microvascular changes in the retina, kidneys and heart were associated with obstructive spirometry and low lung density on computed tomography. The Multi-Ethnic Study of Atherosclerosis recruited participants age 45-84 years without clinical cardiovascular disease. Measures of microvascular function included retinal arteriolar and venular caliber, urine albumin-to-creatinine ratio and, in a subset, myocardial blood flow on magnetic resonance imaging. Spirometry was measured following ATS/ERS guidelines. Low attenuation areas (LAA were measured on lung fields of cardiac computed tomograms. Regression models adjusted for pulmonary and cardiac risk factors, medications and body size. Among 3,397 participants, retinal venular caliber was inversely associated with forced expiratory volume in one second (FEV(1 (P<0.001 and FEV(1/forced vital capacity (FVC ratio (P = 0.04. Albumin-to-creatinine ratio was inversely associated with FEV(1 (P = 0.002 but not FEV(1/FVC. Myocardial blood flow (n = 126 was associated with lower FEV(1 (P = 0.02, lower FEV(1/FVC (P = 0.001 and greater percentage LAA (P = 0.04. Associations were of greater magnitude among smokers. Low lung function was associated with microvascular changes in the retina, kidneys and heart, and low lung density was associated with impaired myocardial microvascular perfusion. These cross-sectional results suggest that microvascular damage with end-organ dysfunction in all circulations may pertain to the lung, that lung dysfunction may contribute to systemic microvascular disease, or that there may be a shared predisposition.

  19. Acute improvement of cardiac function with intravenous L-propionylcarnitine in humans.

    Science.gov (United States)

    Bartels, G L; Remme, W J; Pillay, M; Schönfeld, D H; Cox, P H; Kruijssen, H A; Knufman, N M

    1992-07-01

    As the myocardial carnitine content, a key control factor in myocardial oxidative metabolism and energy transfer, is reduced in heart failure, administration of L-propionylcarnitine (LPC), a potent analogue of L-carnitine, potentially may improve cardiac function, possibly through a positive inotropic effect. As its hemodynamic profile is unknown in humans, 32 fasting normotensive patients with coronary artery disease received either 15 mg/kg of LPC (n = 16) or vehicle (mannitol/acetate, n = 16) infused over 5 min. Hemodynamic, radionuclide [peak ejection and filling rates (PER and PFR, respectively)], and metabolic variables (myocardial O2, lactate, and carnitine uptake) were studied at baseline and 1, 3, 5, 10, 15, and 45 min postdrug. The baseline ejection fraction was depressed in LPC patients (40 +/- 3% vs. 48 +/- 4% in the vehicle group, p less than 0.05) as a result of a significant high incidence of previous infarctions. Immediately following LPC, the cardiac total carnitine uptake changed from 102 +/- 181 to 5,335 +/- 1,761 mumol/L (p less than 0.05). In both groups, left ventricular systolic and end-diastolic pressures increased significantly by 5 and 20%, respectively, during the first 5 min. In the vehicle group, contractility decreased by 5%, accompanied by a significant 11% fall in the stroke volume. In contrast, following LPC, isovolumetric contractility indices remained unaltered. Instead, both the PER and PFR improved by 16% at 45 min. Moreover, the cardiac output increased by 8%. LPC did not affect systemic or coronary hemodynamics. Lactate uptake increased by 42%, but myocardial O2 consumption did not change.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  1. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

    Science.gov (United States)

    Skelton, Rhys J P; Brady, Bevin; Khoja, Suhail; Sahoo, Debashis; Engel, James; Arasaratnam, Deevina; Saleh, Kholoud K; Abilez, Oscar J; Zhao, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza

    2016-01-12

    The generation of tissue-specific cell types from human embryonic stem cells (hESCs) is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine) and large (porcine) animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications.

  2. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Rhys J.P. Skelton

    2016-01-01

    Full Text Available The generation of tissue-specific cell types from human embryonic stem cells (hESCs is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine and large (porcine animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications.

  3. Analysis of Pregnancy-Associated Plasma Protein A Production in Human Adult Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Piera D’Elia

    2013-01-01

    Full Text Available IGF-binding proteins (IGFBPs and their proteases regulate IGFs bioavailability in multiple tissues. Pregnancy-associated plasma protein A (PAPP-A is a protease acting by cleaving IGFBP2, 4, and 5, regulating local bioavailability of IGFs. We have previously shown that IGFs and IGFBPs are produced by human adult cardiac progenitor cells (haCPCs and that IGF-1 exerts paracrine therapeutic effects in cardiac cell therapy with CPCs. Using immunofluorescence and enzyme immunoassays, we firstly report that PAPP-A is produced and secreted in surprisingly high amounts by haCPCs. In particular, the homodimeric, enzymatically active, PAPP-A is secreted in relevant concentrations in haCPC-conditioned media, while the enzymatically inactive PAPPA/proMBP complex is not detectable in the same media. Furthermore, we show that both homodimeric PAPP-A and proMBP can be detected as cell associated, suggesting that the previously described complex formation at the cell surface does not occur easily, thus positively affecting IGF signalling. Therefore, our results strongly support the importance of PAPP-A for the IGFs/IGFBPs/PAPP-A axis in CPCs biology.

  4. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes

    Science.gov (United States)

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José

    2014-01-01

    Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945

  5. Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets.

    Science.gov (United States)

    Eberhard, M; Miyagawa, K; Hermsmeyer, K; Erne, P

    1995-12-01

    The Ca2+ antagonist mibefradil at supratherapeutic concentrations induced a sustained increase of cytosolic Ca2+ in cultured rat cardiac fibroblasts and human platelets which lack sensitivity to K+ depolarization and Ca2+ channel block by verapamil or other Ca2+ antagonists. At concentrations above 10 microM, mibefradil elevated substantially cytosolic [Ca2+] without affecting the peak level of agonist-induced Ca2+ transients. These Ca2+-mobilizing actions of 10 or 100 microM mibefradil stand in contrast to the Ca2+ antagonism and relaxation of vascular muscle at 1 microM concentrations. Since a substantial part of mibefradil-induced increase in cytosolic Ca2+ was independent of extracellular Ca2+, and in order to define better the mechanism of Ca2+ increase, we exposed permeabilized cultured rat cardiac fibroblasts and human platelets to mibefradil at concentrations sufficiently high to identify covert effects. In permeabilized fibroblasts or platelets mibefradil at concentrations above 10 microM activated dose-dependent Ca2+ release from intracellular Ca2+ stores. Verapamil had no effect at concentrations of up to 100 microM. Mibefradil-induced Ca2+ release was not affected by ryanodine, thapsigargin, removal of ATP or dithioerythreitol, indicating that neither Ca2+ - nor disulfide reagent-induced Ca2+ release were involved and that mibefradil did not release Ca2+ by inhibition of the Ca2+-ATPase pump of endoplasmic reticulum. The rate, but not the amplitude, of mibefradil-induced Ca2+ release is increased up to fourfold in the presence of pentosan polysulphate or heparin, two potent inhibitors of inositol 1,4,5-trisphosphate-induced Ca2+ release. Depletion of Ca2+ stores of permeabilized cells inositol 1,4,5-trisphosphate in the presence of thapsigargin completely blocked mibefradil-induced Ca2+ release, and depletion of Ca2+ stores by mibefradil prevented further Ca2+ release by inositol 1,4,5-trisphosphate. Mibefradil at supratherapeutic concentrations (> or

  6. Cardiac lipid levels show diurnal changes and long-term variations in healthy human subjects.

    Science.gov (United States)

    Ith, Michael; Stettler, Christoph; Xu, Jian; Boesch, Chris; Kreis, Roland

    2014-11-01

    (1) H-MRS is regularly applied to determine lipid content in ectopic tissue - mostly skeletal muscle and liver - to investigate physiological and/or pathologic conditions, e.g. insulin resistance. Technical developments also allow non-invasive in vivo assessment of cardiac lipids; however, basic data about methodological reliability (repeatability) and physiological variations are scarce. The aim of the presented work was to determine potential diurnal changes of cardiac lipid stores in humans, and to put the results in relation to methodological repeatability and normal physiological day-to-day variations. Optimized cardiac- and respiratory-gated (1) H-MRS was used for non-invasive quantification of intracardiomyocellular lipids (ICCL), creatine, trimethyl-ammonium compounds (TMA), and taurine in nine healthy young men at three time points per day on two days separated by one week. This design allowed determination of (a) diurnal changes, (b) physiological variation over one week and (c) methodological repeatability of the ICCL levels. Comparison of fasted morning to post-absorptive evening measurements revealed a significant 37 ± 19% decrease of ICCL during the day (p = 0.0001). There was a significant linear correlation between ICCL levels in the morning and their decrease during the day (p = 0.015). Methodological repeatability for the ICCL/creatine ratio was excellent, with a coefficient of variance of ~5%, whereas physiological variation was found to be considerably higher (22%) in spite of a standardized physiological preparation protocol. In contrast, TMA levels remained stable over this time period. The proposed (1) H-MRS technique provides a robust way to investigate relevant physiological changes in cardiac metabolites, in particular ICCL. The present results suggest that ICCL reveal a diurnal course, with higher levels in the morning as compared to evening. In addition, a considerable long-term variation of ICCL levels, in both the morning and evening

  7. Expression of androgen-binding protein (ABP) in human cardiac myocytes.

    Science.gov (United States)

    Schock, H W; Herbert, Z; Sigusch, H; Figulla, H R; Jirikowski, G F; Lotze, U

    2006-04-01

    Cardiomyocytes are known to be androgen targets. Changing systemic steroid levels are thought to be linked to various cardiac ailments, including dilated cardiomyopathy (DCM). The mode of action of gonadal steroid hormones on the human heart is unknown to date. In the present study, we used high-resolution immunocytochemistry on semithin sections (1 microm thick), IN SITU hybridization, and mass spectrometry to investigate the expression of androgen-binding protein (ABP) in human myocardial biopsies taken from male patients with DCM. We observed distinct cytoplasmic ABP immunoreactivity in a fraction of the myocytes. IN SITU hybridization with synthetic oligonucleotide probes revealed specific hybridization signals in these cells. A portion of the ABP-positive cells contained immunostaining for androgen receptor. With SELDI TOF mass spectrometry of affinity purified tissue extracts of human myocardium, we confirmed the presence of a 50 kDa protein similar to ABP. Our observations provide evidence of an intrinsic expression of ABP in human heart. ABP may be secreted from myocytes in a paracrine manner perhaps to influence the bioavailabity of gonadal steroids in myocardium.

  8. Fabrication of Anti-human Cardiac Troponin I Immunogold Nanorods for Sensing Acute Myocardial Damage

    Science.gov (United States)

    Guo, Z. R.; Gu, C. R.; Fan, X.; Bian, Z. P.; Wu, H. F.; Yang, D.; Gu, N.; Zhang, J. N.

    2009-12-01

    A facile, rapid, solution-phase method of detecting human cardiac troponin I for sensing myocardial damage has been described using gold nanorods-based biosensors. The sensing is demonstrated by the distinct change of the longitudinal surface plasmon resonance wavelength of the gold nanorods to specific antibody-antigen binding events. For a higher sensitivity, the aspect ratio of gold nanorods is increased up to ca 5.5 by simply adding small amount of HCl in seed-mediated growth solution. Experimental results show that the detecting limit of the present method is 10 ng/mL. Contrast tests reveal that these gold nanorods-based plasmonic biosensors hold much higher sensitivity than that of conventionally spherical gold nanoparticles.

  9. Fabrication of Anti-human Cardiac Troponin I Immunogold Nanorods for Sensing Acute Myocardial Damage

    Directory of Open Access Journals (Sweden)

    Fan X

    2009-01-01

    Full Text Available Abstract A facile, rapid, solution-phase method of detecting human cardiac troponin I for sensing myocardial damage has been described using gold nanorods-based biosensors. The sensing is demonstrated by the distinct change of the longitudinal surface plasmon resonance wavelength of the gold nanorods to specific antibody–antigen binding events. For a higher sensitivity, the aspect ratio of gold nanorods is increased up to ca 5.5 by simply adding small amount of HCl in seed-mediated growth solution. Experimental results show that the detecting limit of the present method is 10 ng/mL. Contrast tests reveal that these gold nanorods-based plasmonic biosensors hold much higher sensitivity than that of conventionally spherical gold nanoparticles.

  10. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason; Hsueh, Carlin; Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, 607 Charles Young Drive East, Los Angeles, CA 90095 (United States); Mishra, Bud [Courant Institute of Mathematical Sciences, NYU, 251 Mercer Street, New York, NY 10012 (United States)], E-mail: jreed@chem.ucla.edu, E-mail: gim@chem.ucla.edu

    2008-09-24

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing.

  11. Right and left ventricular cardiac function in a developed world population with human immunodeficiency virus studied with radionuclide ventriculography

    DEFF Research Database (Denmark)

    Lebech, Anne-Mette; Gerstoft, Jan; Hesse, Birger

    2004-01-01

    BACKGROUND: Cardiac dysfunction has been reported in a substantial part of patients infected with the human immunodeficiency virus (HIV). However, most studies are from a time before the introduction of highly active antiretroviral treatment (HAART), which has significantly reduced HIV-associated......BACKGROUND: Cardiac dysfunction has been reported in a substantial part of patients infected with the human immunodeficiency virus (HIV). However, most studies are from a time before the introduction of highly active antiretroviral treatment (HAART), which has significantly reduced HIV......-associated morbidity and mortality rates. Accordingly, the prevalence of HIV-associated cardiac dysfunction may also have changed. The aim of the study was to establish the prevalence of right- and left-sided cardiac dysfunction in a Danish HIV population, most of whom were undergoing HAART, with radionuclide...... ventricular ejection fraction and 6 (7%) had a reduced right ventricle ejection fraction (0.35-0.42) compared with reference values from the age- and sex-matched reference population. Patients with HIV and reduced cardiac function did not differ in the duration of HIV, CD4 count, CD4 nadir, or HIV RNA load...

  12. A new non-invasive statistical method to assess the spontaneous cardiac baroreflex in humans.

    Science.gov (United States)

    Ducher, M; Fauvel, J P; Gustin, M P; Cerutti, C; Najem, R; Cuisinaud, G; Laville, M; Pozet, N; Paultre, C Z

    1995-06-01

    1. A new method was developed to evaluate cardiac baroreflex sensitivity. The association of a high systolic blood pressure with a low heart rate or the converse is considered to be under the influence of cardiac baroreflex activity. This method is based on the determination of the statistical dependence between systolic blood pressure and heart rate values obtained non-invasively by a Finapres device. Our computerized analysis selects the associations with the highest statistical dependence. A 'Z-coefficient' quantifies the strength of the statistical dependence. The slope of the linear regression, computed on these selected associations, is used to estimate baroreflex sensitivity. 2. The present study was carried out in 11 healthy resting male subjects. The results obtained by the 'Z-coefficient' method were compared with those obtained by cross-spectrum analysis, which has already been validated in humans. Furthermore, the reproducibility of both methods was checked after 1 week. 3. The results obtained by the two methods were significantly correlated (r = 0.78 for the first and r = 0.76 for the second experiment, P < 0.01). When repeated after 1 week, the average results were not significantly different. Considering individual results, test-retest correlation coefficients were higher with the Z-analysis (r = 0.79, P < 0.01) than with the cross-spectrum analysis (r = 0.61, P < 0.05). 4. In conclusion, as the Z-method gives results similar to but more reproducible than the cross-spectrum method, it might be a powerful and reliable tool to assess baroreflex sensitivity in humans.

  13. Culture and identification of microvascular endothelial cells from human endometriosis%卵巢子宫内膜异位症病灶微血管内皮细胞的培养与鉴定

    Institute of Scientific and Technical Information of China (English)

    欧阳卓; 卢丹; 张为远

    2011-01-01

    目的 建立卵巢子宫内膜异位症(内异症)病灶微血管内皮细胞( OEMEC)的体外培养体系并进行鉴定.方法 采用Ⅰ型和Ⅱ型胶原酶、胰蛋白酶一乙二胺四乙酸(EDTA)联合消化法,分离卵巢内异症患者术后病理检查确诊的囊肿组织中的OEMEC,经差速贴壁法和杂细胞擦刮法纯化;采用免疫细胞化学染色法染色,通过光镜、透射电镜观察微血管内皮细胞特异性标志物——CD34、第八因子多克隆抗体(FⅧ-Rag)和微血管内皮细胞特异性结构——Weibel-Palade小体的表达,对所获得的OEMEC进行鉴定.结果 光镜下观察OEMEC呈现典型的铺路石样生长;免疫细胞化学染色显示有CD34和FⅧ-Rag的强表达,其阳性细胞的百分率分别为91.4%和92.5%;透射电镜下观察OEMEC内可见Weibel-Palade小体的存在;培养的子代微血管内皮细胞生长良好,细胞群体倍增时间为4.5d.结论 OEMEC体外培养体系的成功建立,对了解人OEMEC的异质性具有较好的实用价值,将为内异症病灶中新生微血管特点的研究奠定细胞学实验基础.%Objective To establish the methods of isolating and culturing human ovarian endometriosis-derived microvascular endothelial cells (OEMEC).Methods The tissues of human endometriotic cyst of ovary were finely minced with scissors,then digested by collagenase Ⅰ,Ⅱ and trypsinethylene diamine tetraacetic acid (EDTA).The cells were purified by using centrifugation of 2000 r/min speed.OEMEC were identified by light microscope and transmission electron microscope observing CD34,FⅧ-Rag and Weibel-Palade in microvascular endothelial cells.Results The OEMEC grew as confluent monolayer like cobblestones under light microscope.CD34 and FⅧ-Rag were expressed strongly,and the percentages of CD34 and FⅧ-Rag positive cells were 91.4% and 92.5%.Weibel-Palade bodies could be observed under transmission electron microscope.The time of cell doubling proliferation was

  14. Coronary microvascular dysfunction: an update

    Science.gov (United States)

    Crea, Filippo; Camici, Paolo G.; Bairey Merz, Cathleen Noel

    2014-01-01

    Many patients undergoing coronary angiography because of chest pain syndromes, believed to be indicative of obstructive atherosclerosis of the epicardial coronary arteries, are found to have normal angiograms. In the past two decades, a number of studies have reported that abnormalities in the function and structure of the coronary microcirculation may occur in patients without obstructive atherosclerosis, but with risk factors or with myocardial diseases as well as in patients with obstructive atherosclerosis; furthermore, coronary microvascular dysfunction (CMD) can be iatrogenic. In some instances, CMD represents an epiphenomenon, whereas in others it is an important marker of risk or may even contribute to the pathogenesis of cardiovascular and myocardial diseases, thus becoming a therapeutic target. This review article provides an update on the clinical relevance of CMD in different clinical settings and also the implications for therapy. PMID:24366916

  15. Intravascular Stenting in Microvascular Anastomoses

    DEFF Research Database (Denmark)

    Assersen, Kristine; Sørensen, Jens

    2015-01-01

    Background The effect of intravascular stenting (IVaS) on microvascular anastomoses has given adverse results. For experienced microsurgeons the benefit of IVaS is doubtful. We have investigated the potential benefit of the IVaS technique for two groups of inexperienced microsurgeons with different...... surgical levels of experience (medical students and young residents). Experienced microsurgeons acted as a control group. Materials and Methods In an experimental crossover study, 139 microsurgical anastomoses were performed on the femoral artery in 70 rats by 10 surgeons. On one side of the rat, the IVaS...... spent on the anastomosis. Results No significant difference in patency rates was seen between the stenting and conventional technique in all three groups. The experienced microsurgeons had 100% patency rate with both techniques. The medical students had 20/28 in the IVaS and 19/28 conventional group...

  16. Unfractionated heparin suppresses lipopolysaccharide-induced monocyte chemoattractant protein-1 expression in human microvascular endothelial cells by blocking Krüppel-like factor 5 and nuclear factor-κB pathway.

    Science.gov (United States)

    Li, Xu; Li, Xin; Zheng, Zhen; Liu, Yina; Ma, Xiaochun

    2014-10-01

    Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWH), apart from anticoagulant activities, contain a variety of biological properties such as anti-inflammatory actions possibly affecting sepsis. Chemokines are vital for promoting the movement of circulating leukocytes to the site of infection and are involved in the pathogenesis of sepsis. The purpose of this study was to investigate the effects and potential mechanisms of UFH on lipopolysaccharide (LPS)-induced chemokine production in human pulmonary microvascular endothelial cells (HPMECs). HPMECs were pretreated with UFH (0.1 U/ml and 1 U/ml), 15 min prior to stimulation with LPS (10 μg/ml). Cells were cultured under various experimental conditions for 2 h and 6 h for analysis. UFH markedly decreased LPS-induced interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein expression in HPMECs. UFH also attenuated the secretion of these chemokines in culture supernatants. In addition, UFH blocked the chemotactic activities of LPS-stimulated HPMECs supernatants on monocytes migration as expected. UFH inhibited LPS-induced Krüppel-like factor 5 (KLF-5) mRNA and protein levels. Concurrently, UFH reduced nuclear factor (NF)-κB nuclear translocation. Importantly, transfection with siRNA targeting KLF-5 reduced NF-κB activation and chemokines expression. These results demonstrate that interfering with KLF-5 mediated NF-κB activation might contribute to the inhibitory effects of chemokines and monocytes migration by UFH in LPS-stimulated HPMECs.

  17. Classification of microvascular patterns via cluster analysis reveals their prognostic significance in glioblastoma.

    Science.gov (United States)

    Chen, Long; Lin, Zhi-Xiong; Lin, Guo-Shi; Zhou, Chang-Fu; Chen, Yu-Peng; Wang, Xing-Fu; Zheng, Zong-Qing

    2015-01-01

    There are limited researches focusing on microvascular patterns (MVPs) in human glioblastoma and their prognostic impact. We evaluated MVPs of 78 glioblastomas by CD34/periodic acid-Schiff dual staining and by cluster analysis of the percentage of microvascular area for distinct microvascular formations. The distribution of 5 types of basic microvascular formations, that is, microvascular sprouting (MS), vascular cluster (VC), vascular garland (VG), glomeruloid vascular proliferation (GVP), and vasculogenic mimicry (VM), was variable. Accordingly, cluster analysis classified MVPs into 2 types: type I MVP displayed prominent MSs and VCs, whereas type II MVP had numerous VGs, GVPs, and VMs. By analyzing the proportion of microvascular area for each type of formation, we determined that glioblastomas with few MSs and VCs had many GVPs and VMs, and vice versa. VG seemed to be a transitional type of formation. In case of type I MVP, expression of Ki-67 and p53 but not MGMT was significantly higher as compared with those of type II MVP (P analysis showed that the type of MVPs presented as an independent prognostic factor of progression-free survival (PFS) and overall survival (OS) (both P < .001). Type II MVP had a more negative influence on PFS and OS than did type I MVP. We conclude that the heterogeneous MVPs in glioblastoma can be categorized properly by certain histopathologic and statistical analyses and may influence clinical outcome. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Block of Human Cardiac Sodium Channels by Lacosamide: Evidence for Slow Drug Binding along the Activation Pathway

    OpenAIRE

    Wang, Ging Kuo; Wang, Sho-Ya

    2014-01-01

    Lacosamide is an anticonvulsant hypothesized to enhance slow inactivation of neuronal Na+ channels for its therapeutic action. Cardiac Na+ channels display less and incomplete slow inactivation, but their sensitivity toward lacosamide remains unknown. We therefore investigated the action of lacosamide in human cardiac Nav1.5 and Nav1.5-CW inactivation-deficient Na+ channels. Lacosamide showed little effect on hNav1.5 Na+ currents at 300 µM when cells were held at −140 mV. With 30-second condi...

  19. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  20. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells.

    Science.gov (United States)

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C I Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-04-12

    The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  1. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  2. Expression of ATP7B in human gastric cardiac carcinomas in comparison with distal gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    Da-Long Wu; Hui-Xing Yi; Feng-Ying Sui; Xiao-Hong Jiang; Xiao-Ming Jiang; Ying-Ying Zhao

    2006-01-01

    AIM: To analyze expression of ATP7B in gastric cardiac adenocarcinomas, its clinicopathologic significance, in comparison with distal gastric adenocarcinomas.METHODS: Immunohistochemical avidin-biotin peroxidase complex method was applied to detect the expression of ATP7B in 49 cases of cardiac carcinomas,the corresponding adjacent non-neoplastic epithelium and 55 cases of distal gastric carcinomas.RESULTS: The proportion of ATP7B positive samples in gastric cardiac carcinomas (51.0%, 25 of 49) was significantly higher than that in the corresponding adjacent non-neoplastic epithelium (22.4%, 11 of 49)(P = 0.003). ATP7B expression in poorly differentiated gastric cardiac carcinomas was significantly higher than that in well/moderately differentiated gastric cardiac carcinomas (P = 0.030). ATP7B expression in gastric cardiac carcinomas was independent of age, tumor size, nodal stage and metastasis status. ATP7B protein was detected in 30.9% (17/55 cases) of distal gastric carcinomas, markedly lower than that in gastric cardiac carcinomas (P = 0.037).CONCLUSION: ATP7B protein is frequently overexpressed in gastric cardiac carcinomas, and correlated with the differentiation of cardiac carcinoma. ATP7B expression in gastric cardiac carcinomas is significantly higher than that in distal gastric carcinomas, which might partially explain the difference of chemotherapy response and prognosis between these two gastric carcinomas.

  3. Correlation between endogenous polyamines in human cardiac tissues and clinical parameters in patients with heart failure.

    Science.gov (United States)

    Meana, Clara; Rubín, José Manuel; Bordallo, Carmen; Suárez, Lorena; Bordallo, Javier; Sánchez, Manuel

    2016-02-01

    Polyamines contribute to several physiological and pathological processes, including cardiac hypertrophy in experimental animals. This involves an increase in ornithine decarboxylase (ODC) activity and intracellular polyamines associated with cyclic adenosine monophosphate (cAMP) increases. The aim of the study was to establish the role of these in the human heart in living patients. For this, polyamines (by high performance liquid chromatography) and the activity of ODC and N(1)-acetylpolyamine oxidases (APAO) were determined in the right atrial appendage of 17 patients undergoing extracorporeal circulation to correlate with clinical parameters. There existed enzymatic activity associated with the homeostasis of polyamines. Left atria size was positively associated with ODC (r = 0.661, P = 0.027) and negatively with APAO-N(1) -acetylspermine (r = -0.769, P = 0.026), suggesting that increased levels of polyamines are associated with left atrial hemodynamic overload. Left ventricular ejection fraction (LVEF) and heart rate were positively associated with spermidine (r = 0.690, P = 0.003; r = 0.590, P = 0.021) and negatively with N(1)-acetylspermidine (r = -0.554, P = 0.032; r = -0.644, P = 0.018). LVEF was negatively correlated with cAMP levels (r = -0.835, P = 0.001) and with cAMP/ODC (r = -0.794, P = 0.011), cAMP/spermidine (r = -0.813, P = 0.001) and cAMP/spermine (r = -0.747, P = 0.003) ratios. Abnormal LVEF patients showed decreased ODC activity and spermidine, and increased N(1) -acetylspermidine, and cAMP. Spermine decreased in congestive heart failure patients. The trace amine isoamylamine negatively correlated with septal wall thickness (r = -0.634, P = 0.008) and was increased in cardiac heart failure. The results indicated that modifications in polyamine homeostasis might be associated with cardiac function and remodelling. Increased cAMP might have a deleterious effect on function. Further studies should confirm these findings and the involvement of

  4. In Vitro Epigenetic Reprogramming of Human Cardiac Mesenchymal Stromal Cells into Functionally Competent Cardiovascular Precursors

    Science.gov (United States)

    Vecellio, Matteo; Meraviglia, Viviana; Nanni, Simona; Barbuti, Andrea; Scavone, Angela; DiFrancesco, Dario; Farsetti, Antonella; Pompilio, Giulio; Colombo, Gualtiero I.; Capogrossi, Maurizio C.

    2012-01-01

    Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 µM all-trans Retinoic Acid (ATRA), 5 µM Phenyl Butyrate (PB), and 200 µM diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker If current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors. PMID:23284745

  5. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  6. Cardiac disease modeling using induced pluripotent stemcell-derived human cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Patrizia Dell’Era; Patrizia Benzoni; Elisabetta Crescini; Matteo Valle; Er Xia; Antonella Consiglio; Maurizio Memo

    2015-01-01

    Causative mutations and variants associated with cardiacdiseases have been found in genes encoding cardiac ionchannels, accessory proteins, cytoskeletal components,junctional proteins, and signaling molecules. In mostcases the functional evaluation of the genetic alterationhas been carried out by expressing the mutated proteinsin in-vitro heterologous systems. While these studieshave provided a wealth of functional details that havegreatly enhanced the understanding of the pathologicalmechanisms, it has always been clear that heterologousexpression of the mutant protein bears the intrinsiclimitation of the lack of a proper intracellular environmentand the lack of pathological remodeling. The resultsobtained from the application of the next generationsequencing technique to patients suffering from cardiacdiseases have identified several loci, mostly in non-codingDNA regions, which still await functional analysis. Theisolation and culture of human embryonic stem cells hasinitially provided a constant source of cells from whichcardiomyocytes (CMs) can be obtained by differentiation.Furthermore, the possibility to reprogram cellular fateto a pluripotent state, has opened this process to thestudy of genetic diseases. Thus induced pluripotentstem cells (iPSCs) represent a completely new cellularmodel that overcomes the limitations of heterologousstudies. Importantly, due to the possibility to keepspontaneously beating CMs in culture for several months,during which they show a certain degree of maturation/aging, this approach will also provide a system in whichto address the effect of long-term expression of themutated proteins or any other DNA mutation, in termsof electrophysiological remodeling. Moreover, sinceiPSC preserve the entire patients' genetic context, thesystem will help the physicians in identifying the mostappropriate pharmacological intervention to correct thefunctional alteration. This article summarizes the currentknowledge of cardiac genetic

  7. Delayed, bilateral, non-microvascular ear replantation after violent amputation.

    Science.gov (United States)

    García-Murray, E; Adán-Rivas, O; Salcido-Calzadilla, H

    2009-06-01

    Amputation of any body part is undoubtedly a traumatic experience leaving a terrible deformity, especially when the part or parts involved are visible and constitute an essential component of someone's facial whole. Bilateral ear amputation and successful subsequent replantation has been reported historically, but not in the modern surgical literature. We report the case of a 27-year-old female who was abducted and suffered a bilateral ear amputation at the hands of one of her captors to speed delivery of ransom money; the severed parts were sent to the parents approximately 2 hours after the amputation had taken place, and the girl was released some 48 hours after the ears were delivered. Microvascular replantation was attempted immediately after admission to the hospital some 2 hours after her release, but failed, and so a non-microvascular replantation was performed and was successful, after approximately 54 hours of ischaemia time. We consider this the first report of a complete bilateral, delayed, non-microvascular, successful ear replantation in a human being in the modern literature.

  8. Volume loading augments cutaneous vasodilatation and cardiac output of heat stressed older adults.

    Science.gov (United States)

    Gagnon, Daniel; Romero, Steven A; Ngo, Hai; Sarma, Satyam; Cornwell, William K; Poh, Paula Y S; Stoller, Douglas; Levine, Benjamin D; Crandall, Craig G

    2017-08-21

    Age-related changes in cutaneous microvascular and cardiac functions limit the extent of cutaneous vasodilatation and the increase in cardiac output that healthy older adults can achieve during passive heat stress. However, it is unclear if these age-related changes in microvascular and cardiac functions maximally restrain the levels of cutaneous vasodilatation and cardiac output that healthy older adults can achieve during heat stress. We observed that rapid volume loading, performed during passive heat stress, augments both cutaneous vasodilatation and cardiac output in healthy older humans. These findings demonstrate that the microcirculation of healthy aged skin can further dilate during passive heat exposure, despite peripheral limitations to vasodilatation. Furthermore, healthy older humans can augment cardiac output when cardiac pre-load is increased during heat stress. Primary ageing markedly attenuates cutaneous vasodilatation and the increase in cardiac output during passive heating. However, it remains unclear if these responses are maximally restrained by age-related changes in cutaneous microvascular and cardiac functions. We hypothesized that rapid volume loading performed during heat stress would increase cardiac output in older adults without parallel increases in cutaneous vasodilatation. Twelve young (Y: 26 ± 5 years) and ten older (O: 69 ± 3 years) healthy adults were passively heated until core temperature increased by 1.5°C. Cardiac output (thermodilution), forearm vascular conductance (FVC, venous occlusion plethysmography) and cutaneous vascular conductance (CVC, laser-Doppler) were measured before and after rapid infusion of warmed saline (15 mL kg(-1) , ∼7 min). While heat stressed, but prior to saline infusion, cardiac output (O: 6.8 ± 0.4 vs. Y: 9.4 ± 0.6 L min(-1) ), FVC (O: 0.08 ± 0.01 vs. Y: 0.17 ± 0.02 mL (100 mL min(-1)  mmHg(-1) )(-1) ), and CVC (O: 1.29 ± 0.34 vs. Y: 1.93 ± 0.30

  9. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells.

    Science.gov (United States)

    McConkey, D J; Lin, Y; Nutt, L K; Ozel, H Z; Newman, R A

    2000-07-15

    Cardiac glycosides are used clinically to increase contractile force in patients with cardiac disorders. Their mechanism of action is well established and involves inhibition of the plasma membrane Na+/K+-ATPase, leading to alterations in intracellular K+ and Ca(2+) levels. Here, we report that the cardiac glycosides oleandrin, ouabain, and digoxin induce apoptosis in androgen-independent human prostate cancer cell lines in vitro. Cell death was associated with early release of cytochrome c from mitochondria, followed by proteolytic processing of caspases 8 and 3. Oleandrin also promoted caspase activation, detected by cleavage poly(ADP-ribose) polymerase and hydrolysis of a peptide substrate (DEVD-pNA). Comparison of the rates of apoptosis in poorly metastatic PC3 M-Pro4 and highly metastatic PC3 M-LN4 subclones demonstrated that cell death was delayed in the latter because of a delay in mitochondrial cytochrome c release. Single-cell imaging of intracellular Ca(2+) fluxes demonstrated that the proapoptotic effects of the cardiac glycosides were linked to their abilities to induce sustained Ca(2+) increases in the cells. Our results define a novel activity for cardiac glycosides that could prove relevant to the treatment of metastatic prostate cancer.

  10. Coronary microvascular dysfunction in overt diabetic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    K. Bratis

    2014-11-01

    Conclusion: In patients with DM2 myocardial perfusion reserve is markedly decreased, suggestive of microvascular disease. In this small cohort MPRI impairment did not correlate to the LV EF deterioration.

  11. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  12. Tenascin C upregulates interleukin-6 expression in human cardiac myofibroblasts via toll-like receptor 4

    Institute of Scientific and Technical Information of China (English)

    Azhar Maqbool; Emma J Spary; Iain W Manfield; Michaela Ruhmann; Lorena Zuliani-Alvarez; Filomena O Gamboa-Esteves; Karen E Porter; Mark J Drinkhill; Kim S Midwood; Neil A Turner

    2016-01-01

    AIM:To investigate the effect of Tenascin C(TNC)on the expression of pro-inflammatory cytokines and matrixmetalloproteinases in human cardiac myofibroblasts(CMF).METHODS:CMF were isolated and cultured from patients undergoing coronary artery bypass grafting.Cultured cells were treated with either TNC(0.1μmol/L,24 h)or a recombinant protein corresponding to different domains of the TNC protein;fibrinogen-like globe(FBG)and fibronectin typeⅢ-like repeats(TNⅢ5-7)(both 1μmol/L,24 h).The expression of the proinflammatory cytokines;interleukin(IL)-6,IL-1β,TNFαand the matrix metalloproteinases;MMPs(MMP1,2,3,9,10,MT1-MMP)was assessed using real time RT-PCR and western blot analysis.RESULTS:TNC increased both IL-6 and MMP3(P<0.01)mR NA levels in cultured human CMF but had no significant effect on the other markers studied.The increase in IL-6 mR NA expression was mirrored by an increase in protein secretion as assessed by enzymelinked immunosorbant assay(P<0.01).Treating CMF with the recombinant protein FBG increased IL-6mR NA and protein(P<0.01)whereas the recombinant protein TNⅢ5-7 had no effect.Neither FBG nor TNⅢ5-7 had any significant effect on MMP3 expression.The expression of toll-like receptor 4(TLR4)in human CMF was confirmed by real time RT-PCR,western blot and immunohistochemistry.Pre-incubation of cells with TLR4neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mR NA and protein expression.CONCLUSION:TNC up-regulates IL-6 expression in human CMF,an effect mediated through the FBG domain of TNC and via the TLR4 receptor.

  13. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway.

    Science.gov (United States)

    Pan, Li; Zhang, Yuming; Zhao, Wanlu; Zhou, Xia; Wang, Chunxia; Deng, Fan

    2017-07-01

    Evidence indicates that the cardiac glycoside oleandrin exhibits cytotoxic activity against several different types of cancer. However, the specific mechanisms underlying oleandrin-induced anti-tumor effects remain largely unknown. The present study examined the anti-cancer effect and underlying mechanism of oleandrin on human colon cancer cells. The cytotoxicity and IC50 of five small molecule compounds (oleandrin, neriifolin, strophanthidin, gitoxigenin, and convallatoxin) in human colon cancer cell line SW480 cells and normal human colon cell line NCM460 cells were determined by cell counting and MTT assays, respectively. Apoptosis was determined by staining cells with annexin V-FITC and propidium iodide, followed by flow cytometry. Intracellular Ca(2+) was determined using Fluo-3 AM,glutathione (GSH) levels were measured using a GSH detection kit,and the activity of caspase-3, -9 was measured using a peptide substrate. BAX, pro-caspase-3, -9, cytochrome C and BCL-2 expression were determined by Western blotting. Oleandrin significantly decreased cell viabilities in SW480, HCT116 and RKO cells. The IC50 for SW480 cells was 0.02 µM, whereas for NCM460 cells 0.56 µM. More interestingly, the results of flow cytometry showed that oleandrin potently induced apoptosis in SW480 and RKO cells. Oleandrin downregulated protein expression of pro-caspase-3, -9, but enhanced caspase-3, -9 activities. These effects were accompanied by upregulation of protein expression of cytochrome C and BAX, and downregulation of BCL-2 protein expression in a concentration-dependent manner. Furthermore, oleandrin increased intracellular Ca(2+) concentration, but decreased GSH concentration in the cells. The present results suggest that oleandrin induces apoptosis in human colorectal cancer cells via the mitochondrial pathway. Our findings provide new insight into the mechanism of anti-cancer property of oleandrin.

  14. An Unusual Case of Suspected Microvascular Angina in a Newborn

    Directory of Open Access Journals (Sweden)

    Stefania Cataldo

    2012-01-01

    Full Text Available Myocardial ischemia in pediatric population is uncommon and usually due to congenital heart disease or extracardiac conditions leading to poor coronary perfusion. A 6-day-old newborn presented with respiratory distress and signs of heart failure. ECG, echocardiography, and laboratory results were consistent with myocardial ischemia. Coronary angiography was performed to exclude anomalous origin of coronary arteries, showing normal coronary artery origin and course. Thrombophilia and extra-cardiac causes were ruled out. Clinical conditions improved with mechanical ventilation and diuretics, enzyme levels lowered, repolarisation and systolic function abnormalities regressed, but ischemic electrocardiographic and echocardiographic signs still presented during intense crying. Becaues of suspicion of microvascular angina, therapy with ASA and beta-blocker was started. At 5 month followup, the baby was in good clinical condition and no more episodes were recorded. We believe it is an interesting case, as no similar cases have been recorded till now.

  15. Neisseria meningitidis causes cell cycle arrest of human brain microvascular endothelial cells at S phase via p21 and cyclin G2.

    Science.gov (United States)

    Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N.  Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells.

  16. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells.

    Science.gov (United States)

    Hernandez-Guillamon, Mar; Mawhirt, Stephanie; Fossati, Silvia; Blais, Steven; Pares, Mireia; Penalba, Anna; Boada, Merce; Couraud, Pierre-Olivier; Neubert, Thomas A; Montaner, Joan; Ghiso, Jorge; Rostagno, Agueda

    2010-08-27

    Patients carrying mutations within the amyloid-beta (Abeta) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Abeta synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AbetaE22Q and AbetaL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Abeta peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Abeta-(1-16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Abeta degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Abeta peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AbetaE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Abeta species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.

  17. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.

    Directory of Open Access Journals (Sweden)

    Andrias O O'Reilly

    Full Text Available Bisphenol A (BPA has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a K(d of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII-IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII-IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations.

  18. Isolation of cardiac myosin light-chain isotypes by chromatofocusing. Comparison of human cardiac atrial light-chain 1 and foetal ventricular light-chain 1.

    Science.gov (United States)

    Vincent, N D; Cummins, P

    1985-04-01

    Cardiac myosin light chain isotypes have been resolved using chromatofocusing, a new preparative column chromatographic technique. The method relies on production of narrow-range, shallow and stable pH gradients using ion-exchange resins and buffers with even buffering capacity over the required pH range. Light chains were resolved in order of decreasing isoelectric point in the pH range 5.2-4.5. Gradients of delta pH = 0.004-0.006/ml elution volume were achieved which were capable of resolving light chains with isoelectric point differences of only 0.03. Analytical isoelectric focusing of light chains in polyacrylamide gels could be used to predict the results of preparative chromatofocusing for method development. Chromatofocusing was capable of resolving human and bovine cardiac light chain 1 and 2 subunits, atrial (ALC) and ventricular (VLC) light chain isotypes and homologous VLC-2 and VLC-2* light chains. The technique was used to purify and resolve the human foetal ventricular light chain 1 (FLC-1) from adult ventricular light chain 1 (VLC-1) present in foetal ventricles and the atrial light chain 1 (ALC-1) in adult atria. Comparative peptide mapping studies and amino acid analyses were carried out on FLC-1 and ALC-1. No differences were detected between FLC-1 and ALC-1 using three different proteases and amino acid compositions were similar with the exception of glycine content. The studies indicate that FLC-1 and ALC-1 are homologous, and possibly identical, light chains. Comparison of human FLC-1/ALC-1 with VLC-1 suggested marked structural and chemical differences in these light chain isotypes, in particular in the contents of methionine, proline, lysine and alanine residues. Differences in the contents of these residues were also apparent in the corresponding bovine atrial and ventricular light chains [Wikman-Coffelt, J. & Srivastava, S. (1979) FEBS Lett. 106, 207-212]. The latter three residues are known to be rich in the N-termini of cardiac and

  19. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    Science.gov (United States)

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835.

  20. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering.

  1. Human cardiac beta1- or beta2-adrenergic receptor stimulation and the negative chronotropic effect of low-dose pirenzepine.

    Science.gov (United States)

    Jakubetz, J; Schmuck, S; Wochatz, G; Ruhland, B; Poller, U; Radke, J; Brodde, O E

    2000-05-01

    The M1-muscarinic receptor antagonist pirenzepine in low doses (pirenzepine differ in volunteers with activated cardiac beta1-adrenergic receptors versus activated cardiac beta2-adrenergic receptors. In 17 male volunteers (25 +/- 1 years) we studied effects of pirenzepine infusion (0.5 mg intravenous bolus followed by continuous infusion of 0.15 microg/kg/min) on heart rate and heart rate-corrected duration of electromechanical systole (QS2c, as a measure of inotropism) that had been stimulated by activation of cardiac beta1-adrenergic receptors (bicycle exercise in the supine position for 60 minutes at 25 W) or cardiac beta2-adrenergic receptors (continuous intravenous infusion of 100 ng/kg/min terbutaline). Bicycle exercise and terbutaline infusion significantly increased heart rate and shortened QS2c. When pirenzepine was infused 20 minutes after the beginning of the exercise or terbutaline infusion, heart rate decreased in both settings by approximately the same extent (approximately -10 to -14 beats/min), although exercise and terbutaline infusion continued; however, QS2c was not affected. Pirenzepine (0.05 to 1 mg intravenous bolus)-induced decrease in heart rate was abolished after 6 days of transdermal scopolamine treatment of volunteers. Low-dose pirenzepine decreased heart rate by muscarinic receptor stimulation, because this was blocked by scopolamine. Moreover, low-dose pirenzepine did not differentiate between cardiac beta1- or beta2-adrenergic receptor stimulation; however, low-dose pirenzepine did not affect cardiac contractility as measured by QS2c. Low-dose pirenzepine therefore exerted a unique pattern of action in the human heart: it decreased heart rate (basal and beta1- and/or beta2-adrenergic receptor-stimulated) without affecting contractility.

  2. Human cardiac troponin I sensor based on silver nanoparticle doped microsphere resonator

    Science.gov (United States)

    Saliminasab, Maryam; Bahrampour, Alireza; Zandi, Mohammad Hossein

    2012-12-01

    Human cardiac troponin I (cTnI) is a specific biomarker for diagnosis of acute myocardial infarction (AMI). In this paper, a composite sensing system of an optical microsphere resonator and silver nanoparticles based on surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) techniques towards a point of care diagnostic system for AMI using the cTnI biomarker in HEPES buffered solution (HBS) is proposed. Pump and Raman signals enter the optical fiber coupling into the microsphere, and then SRS occurs in the microsphere. The presence of silver nanoparticles on the microsphere surface provides a tremendous enhancement of the resulting Raman signal through an electromagnetic enhancement of both the laser excitation and Stokes-shifted light of the order of 1010. This enhancement occurs in metals as surface plasmon resonance (SPR), which increases the Raman gain through the SERS effect. Our simulation results show that this sensor presents a linear response for cTnI detection. The calculated enhanced Raman signal can be employed to detect the cTnI molecules around the microsphere.

  3. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Vincent C. Chen

    2015-09-01

    Full Text Available To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2 × 109 CM/L at scales up to 1 L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  4. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Vincent C; Ye, Jingjing; Shukla, Praveen; Hua, Giau; Chen, Danlin; Lin, Ziguang; Liu, Jian-chang; Chai, Jing; Gold, Joseph; Wu, Joseph; Hsu, David; Couture, Larry A

    2015-09-01

    To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM) for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC) aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2×10(9) CM/L at scales up to 1L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  5. Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart.

    Science.gov (United States)

    Kazbanov, Ivan V; Clayton, Richard H; Nash, Martyn P; Bradley, Chris P; Paterson, David J; Hayward, Martin P; Taggart, Peter; Panfilov, Alexander V

    2014-11-01

    Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF), which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements.

  6. Quantification of a cardiac biomarker in human serum using extraordinary optical transmission (EOT.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Nanoimprinting lithography (NIL is a manufacturing process that can produce macroscale surface areas with nanoscale features. In this paper, this technique is used to solve three fundamental issues for the application of localized surface plasmonic resonance (LSPR in practical clinical measurements: assay sensitivity, chip-to-chip variance, and the ability to perform assays in human serum. Using NIL, arrays of 140 nm square features were fabricated on a sensing area of 1.5 mm x 1.5 mm with low cost. The high reproducibility of NIL allowed for the use of a one-chip, one-measurement approach with 12 individually manufactured surfaces with minimal chip-to-chip variations. To better approximate a real world setting, all chips were modified with a biocompatible, multi-component monolayer and inter-chip variability was assessed by measuring a bioanalyte standard (2.5-75 ng/ml in the presence of a complex biofluid, human serum. In this setting, nanoimprinted LSPR chips were able to provide sufficient characteristics for a 'low-tech' approach to laboratory-based bioanalyte measurement, including: 1 sufficient size to interface with a common laboratory light source and detector without the need for a microscope, 2 high sensitivity in serum with a cardiac troponin limit of detection of 0.55 ng/ml, and 3 very low variability in chip manufacturing to produce a figure of merit (FOM of 10.5. These findings drive LSPR closer to technical comparability with ELISA-based assays while preserving the unique particularities of a LSPR based sensor, suitability for multiplexing and miniaturization, and point-of-care detections.

  7. Quantification of a cardiac biomarker in human serum using extraordinary optical transmission (EOT).

    Science.gov (United States)

    Ding, Tao; Hong, Minghui; Richards, A Mark; Wong, Ten It; Zhou, Xiaodong; Drum, Chester Lee

    2015-01-01

    Nanoimprinting lithography (NIL) is a manufacturing process that can produce macroscale surface areas with nanoscale features. In this paper, this technique is used to solve three fundamental issues for the application of localized surface plasmonic resonance (LSPR) in practical clinical measurements: assay sensitivity, chip-to-chip variance, and the ability to perform assays in human serum. Using NIL, arrays of 140 nm square features were fabricated on a sensing area of 1.5 mm x 1.5 mm with low cost. The high reproducibility of NIL allowed for the use of a one-chip, one-measurement approach with 12 individually manufactured surfaces with minimal chip-to-chip variations. To better approximate a real world setting, all chips were modified with a biocompatible, multi-component monolayer and inter-chip variability was assessed by measuring a bioanalyte standard (2.5-75 ng/ml) in the presence of a complex biofluid, human serum. In this setting, nanoimprinted LSPR chips were able to provide sufficient characteristics for a 'low-tech' approach to laboratory-based bioanalyte measurement, including: 1) sufficient size to interface with a common laboratory light source and detector without the need for a microscope, 2) high sensitivity in serum with a cardiac troponin limit of detection of 0.55 ng/ml, and 3) very low variability in chip manufacturing to produce a figure of merit (FOM) of 10.5. These findings drive LSPR closer to technical comparability with ELISA-based assays while preserving the unique particularities of a LSPR based sensor, suitability for multiplexing and miniaturization, and point-of-care detections.

  8. Effect of increases in cardiac contractility on cerebral blood flow in humans.

    Science.gov (United States)

    Ogoh, Shigehiko; Moralez, Gilbert; Washio, Takuro; Sarma, Satyam; Hieda, Michinari; Romero, Steven A; Cramer, Matthew N; Shibasaki, Manabu; Crandall, Craig G

    2017-09-15

    The effect of acute increases in cardiac contractility on cerebral blood flow (CBF) remains unknown. We hypothesized that the external carotid artery (ECA) downstream vasculature modifies the direct influence of acute increases in heart rate and cardiac function on CBF regulation. Twelve healthy subjects received two infusions of dobutamine (first a low dose; 5 μg/kg/min and then a high dose; 15 μg/kg/min) for 12 min each. Cardiac output, blood flow through the internal carotid artery (ICA) and ECA and echocardiographic measurements were performed during dobutamine infusions. Despite increases in cardiac contractility, cardiac output and arterial pressure with dobutamine, ICA blood flow and conductance slightly decreased from resting baseline during both low and high dose infusions. In contrast, ECA blood flow and conductance increased appreciably during both low and high dose infusions. Greater ECA vascular conductance and corresponding increases in blood flow may protect over-perfusion of intracranial cerebral arteries during enhanced cardiac contractility and associated increases in cardiac output and perfusion pressure. Importantly, these findings suggest that the acute increase of blood perfusion due to dobutamine administration does not cause cerebral over-perfusion or an associated risk of cerebral vascular damage. Copyright © 2017, American Journal of Physiology-Heart and Circulatory Physiology.

  9. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report.

    Science.gov (United States)

    Menasché, Philippe; Vanneaux, Valérie; Hagège, Albert; Bel, Alain; Cholley, Bernard; Cacciapuoti, Isabelle; Parouchev, Alexandre; Benhamouda, Nadine; Tachdjian, Gérard; Tosca, Lucie; Trouvin, Jean-Hugues; Fabreguettes, Jean-Roch; Bellamy, Valérie; Guillemain, Romain; Suberbielle Boissel, Caroline; Tartour, Eric; Desnos, Michel; Larghero, Jérôme

    2015-08-07

    Comparative studies suggest that stem cells committed to a cardiac lineage are more effective for improving heart function than those featuring an extra-cardiac phenotype. We have therefore developed a population of human embryonic stem cell (ESC)-derived cardiac progenitor cells. Undifferentiated human ESCs (I6 line) were amplified and cardiac-committed by exposure to bone morphogenetic protein-2 and a fibroblast growth factor receptor inhibitor. Cells responding to these cardio-instructive cues express the cardiac transcription factor Isl-1 and the stage-specific embryonic antigen SSEA-1 which was then used to purify them by immunomagnetic sorting. The Isl-1(+) SSEA-1(+) cells were then embedded into a fibrin scaffold which was surgically delivered onto the infarct area in a 68-year-old patient suffering from severe heart failure [New York Heart Association [NYHA] functional Class III; left ventricular ejection fraction (LVEF): 26%]. A coronary artery bypass was performed concomitantly in a non-infarcted area. The implanted cells featured a high degree of purity (99% were SSEA-1(+)), had lost the expression of Sox-2 and Nanog, taken as markers for pluripotency, and strongly expressed Isl-1. The intraoperative delivery of the patch was expeditious. The post-operative course was uncomplicated either. After 3 months, the patient is symptomatically improved (NYHA functional Class I; LVEF: 36%) and a new-onset contractility is echocardiographically evident in the previously akinetic cell/patch-treated, non-revascularized area. There have been no complications such as arrhythmias, tumour formation, or immunosuppression-related adverse events. This observation demonstrates the feasibility of generating a clinical-grade population of human ESC-derived cardiac progenitors and combining it within a tissue-engineered construct. While any conclusion pertaining to efficacy would be meaningless, the patient's functional outcome yet provides an encouraging hint. Beyond this

  10. Safety of intracoronary infusion of 20 million C-kit positive human cardiac stem cells in pigs.

    Directory of Open Access Journals (Sweden)

    Matthew C L Keith

    Full Text Available There is mounting interest in using c-kit positive human cardiac stem cells (c-kit(pos hCSCs to repair infarcted myocardium in patients with ischemic cardiomyopathy. A recent phase I clinical trial (SCIPIO has shown that intracoronary infusion of 1 million hCSCs is safe. Higher doses of CSCs may provide superior reparative ability; however, it is unknown if doses >1 million cells are safe. To address this issue, we examined the effects of 20 million hCSCs in pigs.Right atrial appendage samples were obtained from patients undergoing cardiac surgery. The tissue was processed by an established protocol with eventual immunomagnetic sorting to obtain in vitro expanded hCSCs. A cumulative dose of 20 million cells was given intracoronarily to pigs without stop flow. Safety was assessed by measurement of serial biomarkers (cardiac: troponin I and CK-MB, renal: creatinine and BUN, and hepatic: AST, ALT, and alkaline phosphatase and echocardiography pre- and post-infusion. hCSC retention 30 days after infusion was quantified by PCR for human genomic DNA. All personnel were blinded as to group assignment.Compared with vehicle-treated controls (n=5, pigs that received 20 million hCSCs (n=9 showed no significant change in cardiac function or end organ damage (assessed by organ specific biomarkers that could be attributed to hCSCs (P>0.05 in all cases. No hCSCs could be detected in left ventricular samples 30 days after infusion.Intracoronary infusion of 20 million c-kit positive hCSCs in pigs (equivalent to ~40 million hCSCs in humans does not cause acute cardiac injury, impairment of cardiac function, or liver and renal injury. These results have immediate translational value and lay the groundwork for using doses of CSCs >1 million in future clinical trials. Further studies are needed to ascertain whether administration of >1 million hCSCs is associated with greater efficacy in patients with ischemic cardiomyopathy.

  11. Coronary microvascular obstruction in acute myocardial infarction.

    Science.gov (United States)

    Niccoli, Giampaolo; Scalone, Giancarla; Lerman, Amir; Crea, Filippo

    2016-04-01

    The success of a primary percutaneous intervention (PCI) in the setting of ST elevation myocardial infarction depends on the functional and structural integrity of coronary microcirculation. Coronary microvascular dysfunction and obstruction (CMVO) occurs in up to half of patients submitted to apparently successful primary PCI and is associated to a much worse outcome. The current review summarizes the complex mechanisms responsible for CMVO, including pre-existing coronary microvascular dysfunction, and highlights the current limitations in the assessment of microvascular function. More importantly, at the light of the substantial failure of trials hitherto published on the treatment of CMVO, this review proposes a novel integrated therapeutic approach, which should overcome the limitations of previous studies.

  12. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Neverve, Jodi; Nekolla, Stephan G.; Schwaiger, Markus; Bengel, Frank M. [Nuklearmedizinische Klinik und Poliklinik der Technischen Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Abletshauser, Claudia [Department of Medicine, Novartis Pharma GmbH, Nuernberg (Germany); Schnell, Oliver; Standl, Eberhard [Institut fuer Diabetesforschung, Munich (Germany)

    2002-12-01

    In diabetic patients, a number of studies have suggested an impairment of vascular reactivity in response to vasodilatory stimuli. The pattern of dysregulation at the coronary microcirculatory level, however, has not been clearly defined. Thus, it was the aim of this study to characterise coronary microvascular function non-invasively in a homogeneous group of asymptomatic type 2 diabetic patients. In 46 patients with type 2 diabetes, myocardial blood flow (MBF) was quantified at baseline, in response to cold pressor test (CPT) and during adenosine-mediated vasodilation using positron emission tomography and nitrogen-13 ammonia. None of the patients had been treated with insulin, and none had symptoms of cardiac disease. Decreased MBF during CPT, indicating microvascular dysregulation, was observed in 16 patients (CPT-), while 30 patients demonstrated increased MBF during CPT (CPT+). Response to CPT was mildly, but significantly correlated with response to adenosine (r=0.44, P=0.0035). There was no difference in HbA1c, serum lipid levels or serum endothelial markers between the groups. Microvascular dysregulation in the CPT- group was associated with elevated baseline MBF (P<0.0001), reduced baseline vascular resistance (P=0.0026) and an abnormal increase in resistance during CPT (P=0.0002). In conclusion, coronary microvascular dysregulation is present in approximately one-third of asymptomatic, non-insulin-treated type 2 diabetic patients. Elevated baseline blood flow and reduced microvascular resistance at rest are characteristics of this dysregulation. These data suggest a state of activation of endothelial-dependent vasodilation at baseline which appears to limit the flow response to stress conditions. (orig.)

  13. Prediction of successful defibrillation in human victims of out-of-hospital cardiac arrest: a retrospective electrocardiographic analysis.

    Science.gov (United States)

    Ristagno, G; Gullo, A; Berlot, G; Lucangelo, U; Geheb, E; Bisera, J

    2008-01-01

    In the present study we sought to examine the efficacy of an electrocardiographic parameter, 'amplitude spectrum area' (AMSA), to predict the likelihood that any one electrical shock would restore a perfusing rhythm during cardiopulmonary resuscitation in human victims of out-of-hospital cardiac arrest. AMSA analysis is not invalidated by artefacts produced by chest compression and thus it can be performed during CPR, avoiding detrimental interruptions of chest compression and ventilation. We hypothesised that a threshold value of AMSA could be identified as an indicator of successful defibrillation in human victims of cardiac arrest. Analysis was performed on a database of electrocardiographic records, representing lead 2 equivalent recordings from automated external defibrillators including 210 defibrillation attempts from 90 victims of out-of-hospital cardiac arrest. A 4.1 second interval of ventricular fibrillation or ventricular tachycardia, recorded immediately preceding the delivery of the shock, was analysed using the AMSA algorithm. AMSA represents a numerical value based on the sum of the magnitude of the weighted frequency spectrum between two and 48 Hz. AMSA values were significantly greater in successful defibrillation (restoration of a perfusing rhythm), compared to unsuccessful defibrillation (P electrical shocks, reducing thereby post-resuscitation myocardial injury.

  14. Extracellular matrix sub-types and mechanical stretch impact human cardiac fibroblast responses to transforming growth factor beta.

    Science.gov (United States)

    Watson, Chris J; Phelan, Dermot; Collier, Patrick; Horgan, Stephen; Glezeva, Nadia; Cooke, Gordon; Xu, Maojia; Ledwidge, Mark; McDonald, Kenneth; Baugh, John A

    2014-06-01

    Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.

  15. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ji Hye Park

    2016-10-01

    Full Text Available Doxorubicin (DOXO is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin and CaMKII (Calmodulin kinase II. The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity.

  16. CCQM-P58.1: Immunoassay Quantitation of Human Cardiac Troponin I.

    Science.gov (United States)

    Bunk, David; Noble, James; Knight, Alex E.; Wang, Lili; Klauenberg, Katy; Walzel, Monika; Elster, Clemens

    2015-01-01

    The CCQM study P58.1 assessed the equivalence of immunoassay measurements between participating NMIs. The aim of P58.1 was to demonstrate the equivalence of immunoassay measurements to determine the mass concentration of the clinically-relevant protein human cardiac troponin I (cTnI) present at low concentration relative to the protein concentration of the sample matrix. The measurement equivalence was assessed using traceability to a common certified reference material. To quantify cTnI, participants used a homogeneous sandwich-based immunoassay with an enzymatic amplification step. The antibody format consisted of a single capture and single detection antibody (referred to as 1 + 1), both were supplied to study participants. In the previous P58 study, ELISA measurement results were compared between laboratories which all used common ELISA reagents (including 96-well plates), samples, a standard for the production of calibrants, and a detailed ELISA protocol, which were supplied by a single laboratory. The P58.1 study only utilized common samples, a standard of the production of calibrants, and a set of monoclonal antibodies (mAbs). Because much of the experimental procedure for the P58 study was essentially standardized across participating labs, the study primarily highlighted between-laboratory differences in plate sampling designs and in plate reader response. As the participants in the P58.1 study had to produce most of their own analytical reagents and develop their own measurement procedure, the study provides a better evaluation of the equivalence of ELISA measurements between the participating laboratories. Main text. To reach the main text of this paper, click on Final Report The final report has been peer-reviewed and approved for publication by CCQM.

  17. Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Ruvinov Emil

    2008-11-01

    Full Text Available Abstract Background Erythropoietin possesses cellular protection properties. The aim of the present study was to test the hypothesis that in situ expression of recombinant human erythropoietin (rhEPO would improve tissue repair in rat after myocardial infarction (MI. Methods and results RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV dysfunction and adverse LV remodeling 5 and 9 weeks after MI. Conclusion In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat.

  18. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    Science.gov (United States)

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  19. Fat embolism syndrome and pulmonary microvascular cytology.

    Science.gov (United States)

    Castella, X; Vallés, J; Cabezuelo, M A; Fernandez, R; Artigas, A

    1992-06-01

    Pulmonary microvascular cytology consists of analysis of capillary blood sampled while a Swan-Ganz catheter is in the wedge position. This technique has proved to be useful in the diagnosis of lymphangitic spread of carcinoma in the lungs and there are case reports of their use in amniotic fluid embolism. Its usefulness in diagnosing fat embolism syndrome has been shown only rarely. We report a new case in which pulmonary microvascular cytologic study allowed a definite diagnosis of fat embolism syndrome. We suggest obtaining routinely samples of capillary blood when a pulmonary catheter is in place and fat embolism is suspected on a clinical basis.

  20. Feasibility and Efficacy of Defatted Human Milk in the Treatment for Chylothorax After Cardiac Surgery in Infants.

    Science.gov (United States)

    Fogg, Kristi L; DellaValle, Diane M; Buckley, Jason R; Graham, Eric M; Zyblewski, Sinai C

    2016-08-01

    Chylothorax is a well-described complication after cardiothoracic surgery in children. Medical nutritional therapy for chylothorax includes medium-chain triglyceride (MCT) formulas and reduction in enteral long-chain triglyceride intake to reduce chyle production. Human milk is usually eliminated from the diet of infants with chylothorax because of its high long-chain triglyceride content. However, given the immunologic properties of human milk, young infants with chylothorax may benefit from using human milk over human milk substitutes. We performed a retrospective cohort study to describe the feasibility and efficacy of defatted human milk (DHM) for the treatment for chylothorax in infants after cardiac surgery and to compare growth outcomes between infants treated with DHM (n = 14) versus MCT formula (n = 21). There were no differences in mortality or length of hospital stay between the DHM and MCT formula treatment groups. The DHM treatment group had a significantly higher weight-for-age z-score at hospital discharge compared to the MCT formula group with median z-scores of -1 (-2 to 0.5) and -1.5 (-2 to 0), respectively (p = 0.02). In infants with chylothorax after cardiac surgery, DHM is a safe and feasible medical nutritional treatment and may have potential benefits for improved nutrition and growth.

  1. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A.

    Directory of Open Access Journals (Sweden)

    Masataka Fujiwara

    Full Text Available Induced pluripotent stem cells (iPSCs are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+/CXCR4(+/VE-cadherin(- (FCV cells. We have also reported that cyclosporin-A (CSA drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.

  2. Microvascular angina in postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Alexander Valdés Martín

    2011-10-01

    Full Text Available Fundamento: la angina microvascular es frecuente en mujeres posmenopáusicas. La isquemia miocárdica ha sido inducida mediante pruebas de estrés, en las que se ha comprobado una relación entre la disfunción endotelial y los defectos de perfusión miocárdica. Objetivo: determinar si la isquemia miocárdica puede evidenciarse por anormalidades de la perfusión y de la función detectadas por gammagrafía miocárdica en mujeres con angina típica, angiografía coronaria normal y disfunción endotelial. Métodos: estudio descriptivo realizado en el Instituto de Cardiología y Cirugía Cardiovascular de La Habana que incluyó 59 mujeres. Se les realizó lipidograma, se les midió función endotelial de la arteria braquial mediante ultrasonido, y estudio electrocardiográfico de 24 horas (Holter. Se aplicó un protocolo de estrés-reposo durante la gammagrafía. Las pacientes fueron divididas en dos grupos, acorde a la presencia (grupo I o ausencia (grupo II de defectos de perfusión miocárdica. Resultados: mostraron defectos de la perfusión 21 pacientes. El 57 % de las pacientes del grupo I exhibió más disfunción endotelial. Sólo doce pacientes mostraron defectos reversibles de la perfusión y en el 75 % de los casos se asoció a una reducción de la fracción de eyección ventricular izquierda postestrés mayor de un 5 % y a anormalidades regionales de la motilidad de la pared. Tres pacientes en el grupo I mostraron evidencia de isquemia comparado con cuatro en el grupo II. Conclusiones: la isquemia inducida por estrés se asocia a una reducción de la fracción de eyección ventricular izquierda postestrés y a una vasodilatación anormal dependiente del endotelio.

  3. A comparative study of the cell cycle status and primitive cell adhesion molecule profile of human CD34+ cells cultured in stroma-free versus porcine microvascular endothelial cell cultures.

    Science.gov (United States)

    Chute, J P; Saini, A A; Kampen, R L; Wells, M R; Davis, T A

    1999-02-01

    Porcine microvascular endothelial cells (PMVECs) plus cytokines support a rapid proliferation and expansion of human CD34+CD38- cells that are capable of multilineage engraftment within the bone marrow of a secondary host. CD34+CD38- cells contain the self-renewing, long-term culture-initiating cells (LTC-IC) that are ideal targets for retroviral gene transfer experiments. Previous experiments attempting retroviral infection of CD34+CD38- cells have failed partly because these cells do not enter cell cycle in response to cytokine combinations. In this study, we determined the cell cycle status and the cell adhesion molecule profile on purified CD34+ cells and the CD34+CD38- subset before and after ex vivo expansion on PMVECs. Purified human CD34+ cells were cocultured with PMVECs for 7 days in the presence of optimal concentrations of granulocyte/macrophage-colony-stimulating factor (GM-CSF) + interleukin (IL)-3 + IL-6 + stem cell factor (SCF) + Flt-3 ligand. The total CD34+ population and the CD34+CD38- subset increased 8.4- and 67-fold, respectively, with absolute increases in the number of colony-forming unit-granulocyte macrophage (CFU-GM) (28.2-fold), CFU-Mix (8.7 fold), and burst-forming unit-erythroid (BFU-E) (4.0-fold) progenitor cells. After 7 days of coculture with PMVECs, 44% of the CD34+CD38+ subset were found to be in G1, and 51% were in G2/S/M phase of the cell cycle. More remarkably, 53% of the CD34+CD38- subset were in G1, and 17% were in G2/S/M phase after 7 days of PMVEC coculture. In contrast, only 22% of the CD34+CD38- subset remaining after 7 days of stroma-free culture were in G1, and 6% were in G2/S/M phase. Despite the high level of cellular activation and proliferation induced by PMVEC coculture, the surface expression of adhesion molecules CD11a (LFA-1), CD11b, CD15s (sialyl-Lewis x), CD43, and CD44 (HCAM) on the total CD34+ population was maintained, and the surface expression of CD49d (VLA-4), CD54 (ICAM), CD58, and CD62L (L selectin

  4. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    Science.gov (United States)

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  5. Conducting polymer functionalized single-walled carbon nanotube based chemiresistive biosensor for the detection of human cardiac myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Nidhi [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025 (India); Niazi, Asad [Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025 (India); Biradar, Ashok M.; Rajesh, E-mail: rajesh-csir@yahoo.com, E-mail: adani@engr.ucr.edu [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Mulchandani, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: adani@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)

    2014-10-13

    We report the fabrication of a single-walled carbon nanotube (SWNT) based ultrasensitive label-free chemiresistive biosensor for the detection of human cardiac biomarker, myoglobin (Ag-cMb). Poly(pyrrole-co-pyrrolepropylic acid) with pendant carboxyl groups was electrochemically deposited on electrophoretically aligned SWNT channel, as a conducting linker, for biomolecular immobilization of highly specific cardiac myoglobin antibody. The device was characterized by scanning electron microscopy, source-drain current-voltage (I-V), and charge-transfer characteristic studies. The device exhibited a linear response with a change in conductance in SWNT channel towards the target, Ag-cMb, over the concentration range of 1.0 to 1000 ng ml{sup −1} with a sensitivity of ∼118% per decade with high specificity.

  6. Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion

    NARCIS (Netherlands)

    R. Bezemer; E. Klijn; M. Khalilzada; A. Lima; M. Heger; J. van Bommel; C. Ince

    2010-01-01

    The present study was conducted to compare laser speckle imaging (LSI) with sidestream dark field (SDF) imaging (i.e. capillary microscopy) so as to validate the use of LSI for assessing microvascular (re)perfusion. For this purpose, LSI and SDF measurements were performed on the human nail fold dur

  7. Tumor microvascular changes in antiangiogenic treatment : Assessment by magnetic resonance contrast media of different molecular weights

    NARCIS (Netherlands)

    Turetschek, K; Preda, A; Novikov, [No Value; Brasch, RC; Weinmann, HJ; Wunderbaldinger, P; Roberts, TPL

    2004-01-01

    Purpose: To test magnetic resonance (MR) contrast media of different molecular weights (MWs) for their potential to characterize noninvasively microvascular changes in an experimental tumor treatment model. Materials and Methods: MD-MBA-435, a poorly differentiated human breast cancer cell line, was

  8. Composition and distribution of elements and ultrastructural topography of a human cardiac calculus.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Huang, Pei-Jung; Chu, Yu-Ting; Lin, Shan-Yang

    2013-04-01

    Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)-energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson's correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM-EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.

  9. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Pluripotent stem cell-derived cardiac progenitor cells (CPCs have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations. OBJECTIVE: Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells. METHOD AND RESULT: To test the hypothesis, we cocultured mouse embryonic stem (ES cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1(+ PDGFRa(+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5(+ and Isl1(+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR(+ PDGFRa(+ CPCs from human ES cells. CONCLUSIONS: Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.

  10. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

    Science.gov (United States)

    Ramkisoensing, Arti A; Pijnappels, Daniël A; Askar, Saïd F A; Passier, Robert; Swildens, Jim; Goumans, Marie José; Schutte, Cindy I; de Vries, Antoine A F; Scherjon, Sicco; Mummery, Christine L; Schalij, Martin J; Atsma, Douwe E

    2011-01-01

    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.

  11. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Timothy J Cashman

    Full Text Available Hypertrophic cardiomyopathy (HCM is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS, which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and

  12. Effect of VIM in EV71 infection in human microvascular endothelial cells%VIM在肠道病毒71型侵染人脑微血管内皮细胞中的作用

    Institute of Scientific and Technical Information of China (English)

    钟艳云; 张宝; 何明亮; 曹宇娟; 吴娴波

    2016-01-01

    Objectives To study the effect of VIM in Enterovirus 71 (EV71) infection of (human brain microvascular endothelial cells (HBMEC) and elaborating the mechanism of EV71 infection in the nervous system. Methods Knocked out the VIM by CRISPR technology , the differences in EV71 absorption , replication , release between wild VIM and VIM knocked-out (VIM-KO) HBMEC were detected by fluorescence quantitative PCR. Results 4 ℃ absorption experiment conformed that EV71 adsorption in VIM- KO is 40% less than in the normal HBMEC. After EV71 infect HBMEC for 48 h (48 h p. i.), the quantitative PCR result showed intracellular viral RNA in VIM-KO was only 1/12 of that in the normal HBMEC. Also the extracellular viral RNA was quantified, and the number of cells in VIM-KO had been reduced 1.4 times compared with the normal HBMEC. Conclusions Once VIM knocking out, EV71 attachment has been obviously reduced. Meanwhile, the level of viral RNA replication and release are decreased compared with the normal HBMEC. VIM may be an attachment receptor of EV71 in HBMEC , when the virus invades HBMEC with the binding of VIM. Moreover , VIM plays an important role in the replication and release of EV71.%目的:研究VIM在肠道病毒71型(EV71)侵染人脑微血管内皮细胞(HBMEC)中的作用,为阐明EV71感染神经系统机制提供方向。方法:采用CRISPR技术敲除VIM,通过荧光定量PCR检测EV71在对照和敲除的细胞中吸附、复制和释放的差异。结果:4℃吸附实验证实VIM敲除细胞EV71病毒的吸附量比对照细胞少40%;EV71感染HBMEC 48 h后,VIM敲除细胞EV71病毒核酸量是对照细胞的1/12。细胞培养液上清 EV71病毒核酸量检测结果表明,VIM 敲除的细胞比对照细胞少1.4倍。结论:敲除 VIM 后, EV71吸附细胞能力降低,在细胞内的复制和释放也减少。VIM可能作为HBMEC表面的EV71受体,并影响EV71在细胞中的复制和释放。

  13. Developmental changes in the protein profiles of human cardiac and skeletal muscle.

    Science.gov (United States)

    Tipler, T D; Edwards, Y H; Hopkinson, D A

    1978-05-01

    1. The use of SDS electrophoresis as a tool for the analysis of development processes in man has been evaluated. 2. The protein profiles of cardiac and skeletal muscle from foetal (10--24 weeks gestation) infant and adult specimens have been analysed and striking developmental changes were found which involved all the major proteins. 3. Before 20 weeks gestation the soluble protein profile of skeletal muscle appears to consist largely of extracellular proteins. 4. Myoglobin was found in foetal cardiac muscle from 20 weeks gestation but was not demonstrable in foetal (greater than 24 weeks) skeletal muscle. Foetal and adult myoglobin were indistinguishable. 5. A limited survey of the protein patterns of brain, liver and kidney was carried out. In general these tissues show less developmental change than skeletal or cardiac muscle.

  14. Microvascular and immunological studies in Raynaud's phenomenon.

    NARCIS (Netherlands)

    Houtman, Pieternella Maria

    1985-01-01

    The purpose of this thesis was to investigate the diagnostic significance of microvascular abnormalities - as observed in the nailfold - in patients with RP with respect to the presence or development of a connective tissue disease. In addition, we investigated whether the observed abnormalities wer

  15. Microvascular and immunological studies in Raynaud's phenomenon.

    NARCIS (Netherlands)

    Houtman, Pieternella Maria

    1985-01-01

    The purpose of this thesis was to investigate the diagnostic significance of microvascular abnormalities - as observed in the nailfold - in patients with RP with respect to the presence or development of a connective tissue disease. In addition, we investigated whether the observed abnormalities wer

  16. Microvascular pericytes in healthy and diseased kidneys

    Directory of Open Access Journals (Sweden)

    Pan SY

    2014-01-01

    Full Text Available Szu-Yu Pan,1,2 Yu-Ting Chang,3 Shuei-Liong Lin1,31Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; 2Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan; 3Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, TaiwanAbstract: Pericytes are interstitial mesenchymal cells found in many major organs. In the kidney, microvascular pericytes are defined anatomically as extensively branched, collagen-producing cells in close contact with endothelial cells. Although many molecular markers have been proposed, none of them can identify the pericytes with satisfactory specificity or sensitivity. The roles of microvascular pericytes in kidneys were poorly understood in the past. Recently, by using genetic lineage tracing to label collagen-producing cells or mesenchymal cells, the elusive characteristics of the pericytes have been illuminated. The purpose of this article is to review recent advances in the understanding of microvascular pericytes in the kidneys. In healthy kidney, the pericytes are found to take part in the maintenance of microvascular stability. Detachment of the pericytes from the microvasculature and loss of the close contact with endothelial cells have been observed during renal insult. Renal microvascular pericytes have been shown to be the major source of scar-forming myofibroblasts in fibrogenic kidney disease. Targeting the crosstalk between pericytes and neighboring endothelial cells or tubular epithelial cells may inhibit the pericyte-myofibroblast transition, prevent peritubular capillary rarefaction, and attenuate renal fibrosis. In addition, renal pericytes deserve attention for their potential to produce erythropoietin in healthy kidneys as pericytes stand in the front line, sensing the change of oxygenation and hemoglobin concentration. Further delineation of the mechanisms underlying the

  17. Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Aniekanabassi N Udoko

    2016-01-01

    Full Text Available The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes. The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1 transcription factor network components (including FOSB, FOS and JUNB, early growth response proteins 1 and 3 (EGR1, EGR3, and cytokines/chemokines (IL5, IL6, IL13, CCL11, which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF-β dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic

  18. Effects of adiponectin on oxidative stress and apoptosis in human cardiac myocytes cultured with high glucose

    Institute of Scientific and Technical Information of China (English)

    LI Xing; LI Mei-rong; GUO Zhi-xin

    2012-01-01

    Background Diabetic cardiomyopathy is the major cause of morbidity and mortality in diabetic patients.Oxidative stress plays an important role in diabetic cardiomyopathy.This study aimed to investigate the effects of adiponectin on oxidative stress and apoptosis in human cardiac myocytes (HCM) cultured with high glucose.Methods The cells were assigned to three group: control group,high glucose group and high glucose plus adiponectin group.After culture for 24,48,72 hours,oxidative stress was evaluated by detecting levels of malondialdehyde (MDA)and superoxide dismutase (SOD) in the supernatant of culture media.The expression of p66Shc and Heme oxygenase-1 (HO-1) was detected by real-time polymerase chain reaction (PCR).Flow cytometry was designed to observe and detect cellular apoptosis.Results Our findings showed significant increase in MDA levels and decrease in SOD activity in the high glucose group compared with the control group (P <0.05).However,MDA levels were significantly decreased and SOD activity was significantly increased in the adiponectin group compared with those in the high-glucose group (P <0.05).The mRNA expression of HO-1 in the high glucose group was significantly increased in a time-dependent manner compared with that in the control group (P <0.05).Adiponectin further increased the mRNA expression of HO-1 induced by high glucose in a time-dependent manner (P <0.05).The expression of p66Shc was significantly increased in high glucose group compared with that in the control group (P <0.05).Adiponectin significantly suppressed the upregulation of p66Shc induced by high glucose (P <0.05).The apoptotic rate of cardiomyocytes was significantly increased in the high glucose group compared with that in the control group while the apoptotic rate in the adiponectin group was remarkably declined in comparison with that in the high glucose group.Conclusion Adiponectin reduces high glucose-induced oxidative stress and apoptosis and plays a

  19. The effect of exercise training on cutaneous microvascular reactivity: A systematic review and meta-analysis.

    Science.gov (United States)

    Lanting, Sean M; Johnson, Nathan A; Baker, Michael K; Caterson, Ian D; Chuter, Vivienne H

    2017-02-01

    This study aimed to review the efficacy of exercise training for improving cutaneous microvascular reactivity in response to local stimulus in human adults. Systematic review with meta-analysis. A systematic search of Medline, Cinahl, AMED, Web of Science, Scopus, and Embase was conducted up to June 2015. Included studies were controlled trials assessing the effect of an exercise training intervention on cutaneous microvascular reactivity as instigated by local stimulus such as local heating, iontophoresis and post-occlusive reactive hyperaemia. Studies where the control was only measured at baseline or which included participants with vasospastic disorders were excluded. Two authors independently reviewed and selected relevant controlled trials and extracted data. Quality was assessed using the Downs and Black checklist. Seven trials were included, with six showing a benefit of exercise training but only two reaching statistical significance with effect size ranging from -0.14 to 1.03. The meta-analysis revealed that aerobic exercise had a moderate statistically significant effect on improving cutaneous microvascular reactivity (effect size (ES)=0.43, 95% CI: 0.08-0.78, p=0.015). Individual studies employing an exercise training intervention have tended to have small sample sizes and hence lacked sufficient power to detect clinically meaningful benefits to cutaneous microvascular reactivity. Pooled analysis revealed a clear benefit of exercise training on improving cutaneous microvascular reactivity in older and previously inactive adult cohorts. Exercise training may provide a cost-effective option for improving cutaneous microvascular reactivity in adults and may be of benefit to those with cardiovascular disease and metabolic disorders such as diabetes. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Derivation of Human Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias

    Science.gov (United States)

    2016-03-14

    Inherited Cardiac Arrythmias; Long QT Syndrome (LQTS); Brugada Syndrome (BrS); Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT); Early Repolarization Syndrome (ERS); Arrhythmogenic Cardiomyopathy (AC, ARVD/C); Hypertrophic Cardiomyopathy (HCM); Dilated Cardiomyopathy (DCM); Muscular Dystrophies (Duchenne, Becker, Myotonic Dystrophy); Normal Control Subjects

  1. Assessment of cardiac output with transpulmonary thermodilution during exercise in humans

    DEFF Research Database (Denmark)

    Calbet, José A L; Boushel, Robert

    2015-01-01

    The accuracy and reproducibility of transpulmonary thermodilution (TPTd) to assess cardiac output (Q̇) in exercising men was determined using indocyanine green (ICG) dilution as a reference method. TPTd has been utilized for the assessment of Q̇ and preload indexes of global end-diastolic volume...

  2. Cardiac and Skeletal Muscle Defects in a Mouse Model of Human Barth Syndrome*

    Science.gov (United States)

    Acehan, Devrim; Vaz, Frederic; Houtkooper, Riekelt H.; James, Jeanne; Moore, Vicky; Tokunaga, Chonan; Kulik, Willem; Wansapura, Janaka; Toth, Matthew J.; Strauss, Arnold; Khuchua, Zaza

    2011-01-01

    Barth syndrome is an X-linked genetic disorder caused by mutations in the tafazzin (taz) gene and characterized by dilated cardiomyopathy, exercise intolerance, chronic fatigue, delayed growth, and neutropenia. Tafazzin is a mitochondrial transacylase required for cardiolipin remodeling. Although tafazzin function has been studied in non-mammalian model organisms, mammalian genetic loss of function approaches have not been used. We examined the consequences of tafazzin knockdown on sarcomeric mitochondria and cardiac function in mice. Tafazzin knockdown resulted in a dramatic decrease of tetralinoleoyl cardiolipin in cardiac and skeletal muscles and accumulation of monolysocardiolipins and cardiolipin molecular species with aberrant acyl groups. Electron microscopy revealed pathological changes in mitochondria, myofibrils, and mitochondrion-associated membranes in skeletal and cardiac muscles. Echocardiography and magnetic resonance imaging revealed severe cardiac abnormalities, including left ventricular dilation, left ventricular mass reduction, and depression of fractional shortening and ejection fraction in tafazzin-deficient mice. Tafazzin knockdown mice provide the first mammalian model system for Barth syndrome in which the pathophysiological relationships between altered content of mitochondrial phospholipids, ultrastructural abnormalities, myocardial and mitochondrial dysfunction, and clinical outcome can be completely investigated. PMID:21068380

  3. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies

    DEFF Research Database (Denmark)

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P;

    2016-01-01

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical ou...

  4. Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    Science.gov (United States)

    Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.

    1990-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

  5. Cardiac troponin I release and cytokine response during experimental human endotoxaemia

    NARCIS (Netherlands)

    van Bockel, EAP; Tulleken, JE; Kobold, ACM; Ligtenberg, JJM; van der Werf, TS; Spanjersberg, R; Zijlstra, JG

    2003-01-01

    Objective. To study the relationship between cytokine levels and cardiac troponin I (cTnI). Design. Prospective experimental study. Setting. Intensive care unit of a university hospital. Participants. Six healthy male volunteers. Interventions. Endotoxin, 4 ng/kg, was given as a 1-min intravenous in

  6. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-ß mediated fibrosis

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-07-07

    AbstractBackgroundMechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts’ response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.Methods and resultsThe effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.ConclusionWe postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.

  7. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure.

    Science.gov (United States)

    Marques, Francine Z; Prestes, Priscilla R; Byars, Sean G; Ritchie, Scott C; Würtz, Peter; Patel, Sheila K; Booth, Scott A; Rana, Indrajeetsinh; Minoda, Yosuke; Berzins, Stuart P; Curl, Claire L; Bell, James R; Wai, Bryan; Srivastava, Piyush M; Kangas, Antti J; Soininen, Pasi; Ruohonen, Saku; Kähönen, Mika; Lehtimäki, Terho; Raitoharju, Emma; Havulinna, Aki; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Ala-Korpela, Mika; Kettunen, Johannes; McGlynn, Maree; Kelly, Jason; Wlodek, Mary E; Lewandowski, Paul A; Delbridge, Lea M; Burrell, Louise M; Inouye, Michael; Harrap, Stephen B; Charchar, Fadi J

    2017-06-14

    Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  8. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings

    DEFF Research Database (Denmark)

    Pries, A.R.; Habazettl, H.; Ambrosio, G.

    2008-01-01

    with abnormalities of the coronary microcirculation and may thus represent a manifestation of coronary microvascular disease (CMD). Elucidation of the role of the microvasculature in the genesis of myocardial ischaemia and cardiac damage-in the presence or absence of obstructive coronary atherosclerosis......-will certainly result in more rational diagnostic and therapeutic interventions for patients with ischaemic heart disease. Specifically targeted research based on improved assessment modalities is needed to improve the diagnosis of CMD and to translate current molecular, cellular, and physiological knowledge...

  9. Microvascular responsiveness in obesity: implications for therapeutic intervention.

    Science.gov (United States)

    Bagi, Zsolt; Feher, Attila; Cassuto, James

    2012-02-01

    Obesity has detrimental effects on the microcirculation. Functional changes in microvascular responsiveness may increase the risk of developing cardiovascular complications in obese patients. Emerging evidence indicates that selective therapeutic targeting of the microvessels may prevent life-threatening obesity-related vascular complications, such as ischaemic heart disease, heart failure and hypertension. It is also plausible that alterations in adipose tissue microcirculation contribute to the development of obesity. Therefore, targeting adipose tissue arterioles could represent a novel approach to reducing obesity. This review aims to examine recent studies that have been focused on vasomotor dysfunction of resistance arteries in obese humans and animal models of obesity. Particularly, findings in coronary resistance arteries are contrasted to those obtained in other vascular beds. We provide examples of therapeutic attempts, such as use of statins, ACE inhibitors and insulin sensitizers to prevent obesity-related microvascular complications. We further identify some of the important challenges and opportunities going forward. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  11. S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure.

    Science.gov (United States)

    Stathopoulou, Konstantina; Wittig, Ilka; Heidler, Juliana; Piasecki, Angelika; Richter, Florian; Diering, Simon; van der Velden, Jolanda; Buck, Friedrich; Donzelli, Sonia; Schröder, Ewald; Wijnker, Paul J M; Voigt, Niels; Dobrev, Dobromir; Sadayappan, Sakthivel; Eschenhagen, Thomas; Carrier, Lucie; Eaton, Philip; Cuello, Friederike

    2016-05-01

    Cardiac myosin-binding protein C (cMyBP-C) regulates actin-myosin interaction and thereby cardiac myocyte contraction and relaxation. This physiologic function is regulated by cMyBP-C phosphorylation. In our study, reduced site-specific cMyBP-C phosphorylation coincided with increased S-glutathiolation in ventricular tissue from patients with dilated or ischemic cardiomyopathy compared to nonfailing donors. We used redox proteomics, to identify constitutive and disease-specific S-glutathiolation sites in cMyBP-C in donor and patient samples, respectively. Among those, a cysteine cluster in the vicinity of the regulatory phosphorylation sites within the myosin S2 interaction domain C1-M-C2 was identified and showed enhanced S-glutathiolation in patients. In vitro S-glutathiolation of recombinant cMyBP-C C1-M-C2 occurred predominantly at Cys(249), which attenuated phosphorylation by protein kinases. Exposure to glutathione disulfide induced cMyBP-C S-glutathiolation, which functionally decelerated the kinetics of Ca(2+)-activated force development in ventricular myocytes from wild-type, but not those from Mybpc3-targeted knockout mice. These oxidation events abrogate protein kinase-mediated phosphorylation of cMyBP-C and therefore potentially contribute to the reduction of its phosphorylation and the contractile dysfunction observed in human heart failure.-Stathopoulou, K., Wittig, I., Heidler, J., Piasecki, A., Richter, F., Diering, S., van der Velden, J., Buck, F., Donzelli, S., Schröder, E., Wijnker, P. J. M., Voigt, N., Dobrev, D., Sadayappan, S., Eschenhagen, T., Carrier, L., Eaton, P., Cuello, F. S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure. © FASEB.

  12. The proliferative potential of human cardiac stem cells was unaffected after a long-term cryopreservation of tissue blocks

    Science.gov (United States)

    Iguchi, Nobuo; Cho, Yasunori; Inoue, Masaki; Murakami, Tsutomu; Tabata, Minoru; Takanashi, Shuichiro; Tomoike, Hitonobu

    2017-01-01

    Background Human c-kit-positive cardiac stem cells (CSCs) have been used to treat patients suffering from ischemic cardiomyopathy. This study aimed to investigate whether a long-term storage of cardiac tissues would influence the growth potential of the subsequently isolated CSCs. Methods A total of 34 fresh samples were obtained from various cardiac regions [right atrium (RA), left atrium (LA), and/or left ventricle (LV)] of 21 patients. From 12 of these patients, 18 samples kept frozen for ~2 years were employed to prepare and characterize the CSCs. After confirming the specificity of the cell sorting by c-kit immunolabeling, the growth rate (number of doublings per day), BrdU positivity, and colony forming unit (CFU) were measured in each CSC population; the values were compared among distinct cardiac regions as well as between fresh and frozen tissues from which CSCs were derived. Results Among independent measurements indicating growth potential, the growth rate and BrdU positivity remarkably correlated in freshly prepared CSCs. The cells obtained from every examined region displayed a high proliferative capacity with the growth rate of 0.48±0.19 and the BrdU positivity of 15.0%±7.6%. The right atrial CSCs tended to show a greater growth than those in the other two areas. Similarly, the CSCs were isolated from tissue blocks, cryopreserved for ~2 years, and compared with CSCs derived from the fresh specimens of the same patients. Importantly, we were able to obtain and culture CSCs from every frozen material, and their proliferative potential, represented by the growth rate of 0.47±0.22 and the BrdU positivity of 13.7%±7.9%, was not inferior to that of the freshly prepared cells. Conclusions The long-term cryopreservation of cardiac tissues did not affect the growth potential of the derivative CSCs. Our findings should expand the therapeutic applications of these cells over a longer time span. PMID:28251120

  13. A Small Molecule that Promotes Cardiac Differentiation of Human Pluripotent Stem Cells under Defined, Cytokine- and Xeno-free Conditions

    Directory of Open Access Journals (Sweden)

    Itsunari Minami

    2012-11-01

    Full Text Available Human pluripotent stem cells (hPSCs, including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.

  14. EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival

    Directory of Open Access Journals (Sweden)

    Monica Jara-Avaca

    2017-02-01

    Full Text Available Subtype-specific human cardiomyocytes (CMs are valuable for basic and applied research. Induction of cardiomyogenesis and enrichment of nodal-like CMs was described for mouse pluripotent stem cells (mPSCs in response to 1-ethyl-2-benzimidazolinone (EBIO, a chemical modulator of small-/intermediate-conductance Ca2+-activated potassium channels (SKs 1–4. Investigating EBIO in human pluripotent stem cells (PSCs, we have applied three independent differentiation protocols of low to high cardiomyogenic efficiency. Equivalent to mPSCs, timed EBIO supplementation during hPSC differentiation resulted in dose-dependent enrichment of up to 80% CMs, including an increase in nodal- and atrial-like phenotypes. However, our study revealed extensive EBIO-triggered cell loss favoring cardiac progenitor preservation and, subsequently, CMs with shortened action potentials. Proliferative cells were generally more sensitive to EBIO, presumably via an SK-independent mechanism. Together, EBIO did not promote cardiogenic differentiation of PSCs, opposing previous findings, but triggered lineage-selective survival at a cardiac progenitor stage, which we propose as a pharmacological strategy to modulate CM subtype composition.

  15. Harmonic Force Spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim

    2015-01-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy...... concentration. We show that a molecule’s ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load....

  16. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective

    Science.gov (United States)

    Niendorf, Thoralf; Graessl, Andreas; Thalhammer, Christof; Dieringer, Matthias A.; Kraus, Oliver; Santoro, Davide; Fuchs, Katharina; Hezel, Fabian; Waiczies, Sonia; Ittermann, Bernd; Winter, Lukas

    2013-04-01

    A growing number of reports eloquently speak about explorations into cardiac magnetic resonance (CMR) at ultrahigh magnetic fields (B0 ⩾ 7.0 T). Realizing the progress, promises and challenges of ultrahigh field (UHF) CMR this perspective outlines current trends in enabling MR technology tailored for cardiac MR in the short wavelength regime. For this purpose many channel radiofrequency (RF) technology concepts are outlined. Basic principles of mapping and shimming of transmission fields including RF power deposition considerations are presented. Explorations motivated by the safe operation of UHF-CMR even in the presence of conductive implants are described together with the physics, numerical simulations and experiments, all of which detailing antenna effects and RF heating induced by intracoronary stents at 7.0 T. Early applications of CMR at 7.0 T and their clinical implications for explorations into cardiovascular diseases are explored including assessment of cardiac function, myocardial tissue characterization, MR angiography of large and small vessels as well as heteronuclear MR of the heart and the skin. A concluding section ventures a glance beyond the horizon and explores future directions. The goal here is not to be comprehensive but to inspire the biomedical and diagnostic imaging communities to throw further weight behind the solution of the many remaining unsolved problems and technical obstacles of UHF-CMR with the goal to transfer MR physics driven methodological advancements into extra clinical value.

  17. Sex Differences of Human Cardiac Progenitor Cells in the Biological Response to TNF-α Treatment

    Directory of Open Access Journals (Sweden)

    Elisabetta Straface

    2017-01-01

    Full Text Available Adult cardiac progenitor cells (CPCs, isolated as cardiosphere-derived cells (CDCs, represent promising candidates for cardiac regenerative therapy. CDCs can be expanded in vitro manyfolds without losing their differentiation potential, reaching numbers that are appropriate for clinical applications. Since mechanisms of successful CDC survival and engraftment in the damaged myocardium are still critical and unresolved issues, we aimed at deciphering possible key factors capable of bolstering CDC function. In particular, the response and the phenotype of CDCs exposed to low concentrations of the multifunctional cytokine tumor necrosis factor α (TNF-α, known to be capable of activating cell survival pathways, have been investigated. Furthermore, differential biological responses of CDCs from male and female donors, in terms of cell cycle progression and cell spreading, have also been assessed. The results obtained indicate that (i the intracellular signaling activated in our experimental conditions is most likely due to the prosurvival and proliferative signaling of TNF-α receptor 2 and that (ii cells from female patients appear more responsive to TNF-α treatment in terms of cell cycle progression and migration ability. In conclusion, the present report highlights the hypothesis that TNF-stimulated CDCs isolated from females may represent a promising candidate for cardiac regenerative therapy applications.

  18. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Barrios, Alejandro, E-mail: aleklos@hotmail.com [Cardiology Department, Jerez Hospital, Jerez (Spain); Camacho-Jurado, Francisco [Cardiology Department, Punta Europa Hospital, Algeciras (Spain); Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier [Cardiology Department, Jerez Hospital, Jerez (Spain)

    2015-10-15

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  19. Treatment of hemimasticatory spasm with microvascular decompression.

    Science.gov (United States)

    Wang, Yong-Nan; Dou, Ning-Ning; Zhou, Qiu-Meng; Jiao, Wei; Zhu, Jin; Zhong, Jun; Li, Shi-Ting

    2013-01-01

    Hemimasticatory spasm is a rare disorder characterized by paroxysmal involuntary contraction of the jaw-closing muscles. As the ideology and pathogenesis of the disease are still unclear, there has been no treatment that could give rise to a good outcome so far. Herein, we tried to use surgical management to cure the disease. Six patients with the disease were included in this study. These patients underwent microvascular decompression of the motor fibers of the trigeminal root. After the operation, all faces of the patients felt relaxed at varied degrees, except for 1 patient. Our study showed that microvascular decompression of the trigeminal nerve could lead to a better outcome. However, a control study with a large sample is needed before this technique is widely used.

  20. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Jon-Jon Santiago

    Full Text Available Fibroblast growth factor 2 (FGF-2 is a multifunctional protein synthesized as high (Hi- and low (Lo- molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD and 68% (±25 SD of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2 reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes

  1. Fabrication, characterization, and modeling of microvascular composites

    Science.gov (United States)

    Ryan, Thomas J.

    Composite laminates of glass fiber and epoxy pre-preg were fabricated with microvascular channels. The channels were created using polylactic acid (PLA) filament that evaporates at a temperature of 392 °F (200 °C) above the resin cure temperature of 250 °F (121 °C). After the composite is cured, the panel was removed from the oven and allowed to cool to room temperature. The panel is then reheated to 392 °F to vaporize the filament, leaving a cylindrical channel. A microvascular channel can be used for withdrawing heat, damage detection and self-healing. However, increasing the temperatures of the laminate above the cure temperature of the resin causes excess cross linking, potentially decreasing the mechanical properties. Tensile and flexural mechanical tests were performed on composite specimens and tensile tests were performed on neat resin specimens. A three-dimensional finite element model (FEM) was developed to study the progressive deformation and damage mechanics under tensile loading. The load carrying capacity of the microvascular composite was shown to decrease by 40% from a standard composite material. This paper will present the details of the fabrication, characterization and modeling techniques that were used in this study.

  2. Microvascular structure as a prognostically relevant endpoint.

    Science.gov (United States)

    Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2017-05-01

    Remodelling of subcutaneous small resistance arteries, as indicated by an increased media-to-lumen ratio, is frequently present in hypertensive, obese, or diabetic patients. The increased media-to-lumen ratio may impair organ flow reserve. This may be important in the maintenance and, probably, also in the progressive worsening of hypertensive disease. The presence of structural alterations represents a prognostically relevant factor, in terms of development of target organ damage or cardiovascular events, thus allowing us a prediction of complications in hypertension. In fact, media-to-lumen ratio of small arteries at baseline, and possibly their changes during treatment may have a strong prognostic significance. However, new, non-invasive techniques are needed before suggesting extensive application of the evaluation of remodelling of small arteries for the cardiovascular risk stratification in hypertensive patients. Some new techniques for the evaluation of microvascular morphology in the retina, currently under clinical investigation, seem to represent a promising and interesting future perspective. The evaluation of microvascular structure is progressively moving from bench to bedside, and it could represent, in the near future, an evaluation to be performed in all hypertensive patients, to obtain a better stratification of cardiovascular risk, and, possibly, it might be considered as an intermediate endpoint in the evaluation of the effects of antihypertensive therapy, provided that a demonstration of a prognostic value of non-invasive measures of microvascular structure is made available.

  3. Diabetic microvascular complications: possible targets for improved macrovascular outcomes

    Directory of Open Access Journals (Sweden)

    Bijan Roshan

    2010-12-01

    Full Text Available John A D’Elia1, George Bayliss1,2, Bijan Roshan1, Manish Maski1, Ray E Gleason1, Larry A Weinrauch11Renal Unit, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; 2Department of Medicine, Rhode Island Hospital, Alpert School of Medicine, Brown University, Providence, RI, USAAbstract: The results of recent outcome trials challenge hypotheses that tight control of both glycohemoglobin and blood pressure diminishes macrovascular events and survival among type 2 diabetic patients. Relevant questions exist regarding the adequacy of glycohemoglobin alone as a measure of diabetes control. Are we ignoring mechanisms of vasculotoxicity (profibrosis, altered angiogenesis, hypertrophy, hyperplasia, and endothelial injury inherent in current antihyperglycemic medications? Is the polypharmacy for lowering cholesterol, triglyceride, glucose, and systolic blood pressure producing drug interactions that are too complex to be clinically identified? We review angiotensin–aldosterone mechanisms of tissue injury that magnify microvascular damage caused by hyperglycemia and hypertension. Many studies describe interruption of these mechanisms, without hemodynamic consequence, in the preservation of function in type 1 diabetes. Possible interactions between the renin–angiotensin–aldosterone system and physiologic glycemic control (through pulsatile insulin release suggest opportunities for further clinical investigation.Keywords: angiotensin-converting enzyme inhibitor, pulsatile insulin, diabetic nephropathy, cardiac autonomic neuropathy, podocytes, beta cells 

  4. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.

    Directory of Open Access Journals (Sweden)

    Rupamanjari Majumder

    Full Text Available Cardiac arrhythmias, such as ventricular tachycardia (VT and ventricular fibrillation (VF, are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.

  5. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  6. Roles of store-operated Ca2+ channels in regulating cell cycling and migration of human cardiac c-kit+ progenitor cells.

    Science.gov (United States)

    Che, Hui; Li, Gang; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2015-11-15

    Cardiac c-kit(+) progenitor cells are important for maintaining cardiac homeostasis and can potentially contribute to myocardial repair. However, cellular physiology of human cardiac c-kit(+) progenitor cells is not well understood. The present study investigates the functional store-operated Ca(2+) entry (SOCE) channels and the potential role in regulating cell cycling and migration using confocal microscopy, RT-PCR, Western blot, coimmunoprecipitation, cell proliferation, and migration assays. We found that SOCE channels mediated Ca(2+) influx, and TRPC1, STIM1, and Orai1 were involved in the formation of SOCE channels in human cardiac c-kit(+) progenitor cells. Silencing TRPC1, STIM1, or Orai1 with the corresponding siRNA significantly reduced the Ca(2+) signaling through SOCE channels, decreased cell proliferation and migration, and reduced expression of cyclin D1, cyclin E, and/or p-Akt. Our results demonstrate the novel information that Ca(2+) signaling through SOCE channels regulates cell cycling and migration via activating cyclin D1, cyclin E, and/or p-Akt in human cardiac c-kit(+) cells.

  7. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium.

    Science.gov (United States)

    Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D; Khairallah, Ramzi J; Sarkey, Jason; Govindan, Suresh; Chen, Xin; Ge, Ying; Rajan, Sudarsan; Wieczorek, David F; Irving, Thomas; Westfall, Margaret V; de Tombe, Pieter P; Sadayappan, Sakthivel

    2014-03-28

    Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.

  8. Cyamemazine metabolites: effects on human cardiac ion channels in-vitro and on the QTc interval in guinea pigs.

    Science.gov (United States)

    Crumb, William; Benyamina, Amine; Arbus, Christophe; Thomas, George P; Garay, Ricardo P; Hameg, Ahcène

    2008-11-01

    Monodesmethyl cyamemazine and cyamemazine sulfoxide, the two main metabolites of the antipsychotic and anxiolytic phenothiazine cyamemazine, were investigated for their effects on the human ether-à-go-go related gene (hERG) channel expressed in HEK 293 cells and on native I(Na), I(Ca), I(to), I(sus) or I(K1) of human atrial myocytes. Additionally, cyamemazine metabolites were compared with terfenadine for their effects on the QT interval in anaesthetized guinea pigs. Monodesmethyl cyamemazine and cyamemazine sulfoxide reduced hERG current amplitude, with IC50 values of 0.70 and 1.53 microM, respectively. By contrast, at a concentration of 1 microM, cyamemazine metabolites failed to significantly affect I(Na), I(to), I(sus) or I(K1) current amplitudes. Cyamemazine sulfoxide had no effect on I(Ca) at 1 microM, while at this concentration, monodesmethyl cyamemazine only slightly (17%), albeit significantly, inhibited I(Ca) current. Finally, cyamemazine metabolites (5 mg kg(-1) i v.) were unable to significantly prolong QTc values in the guinea pig. Conversely, terfenadine (5 mg kg(-1) i.v.) significantly increased QTc values. In conclusion, cyamemazine metabolite concentrations required to inhibit hERG current substantially exceed those necessary to achieve therapeutic activity of the parent compound in humans. Moreover, cyamemazine metabolites, in contrast to terfenadine, do not delay cardiac repolarization in the anaesthetized guinea pig. These non-clinical findings explain the excellent cardiac safety records of cyamemazine during its 30 years of extensive therapeutic use.

  9. Early systemic microvascular damage in pigs with atherogenic diabetes mellitus coincides with renal angiopoietin dysbalance

    NARCIS (Netherlands)

    M. Khairoun (Meriem); M.M. van den Heuvel (Mieke); B. van den Berg (Bernard); O. Sorop (Oana); De Boer, R. (Rients); N.S. van Ditzhuijzen (Nienke); I.M. Bajema (Ingeborg); H.J. Baelde; M. Zandbergen; D.J.G.M. Duncker (Dirk); T. Rabelink (Ton); M.E. Reinders (Marlies); W.J. van der Giessen (Wim); J.I. Rotmans (Joris)

    2015-01-01

    textabstractBackground: Diabetes mellitus (DM) is associated with a range of microvascular complications including diabetic nephropathy (DN). Microvascular abnormalities in the kidneys are common histopathologic findings in DN, which represent one manifestation of ongoing systemic microvascular dama

  10. Influence of aging on the quantity and quality of human cardiac stem cells

    Science.gov (United States)

    Nakamura, Tamami; Hosoyama, Tohru; Kawamura, Daichi; Takeuchi, Yuriko; Tanaka, Yuya; Samura, Makoto; Ueno, Koji; Nishimoto, Arata; Kurazumi, Hiroshi; Suzuki, Ryo; Ito, Hiroshi; Sakata, Kensuke; Mikamo, Akihito; Li, Tao-Sheng; Hamano, Kimikazu

    2016-01-01

    Advanced age affects various tissue-specific stem cells and decreases their regenerative ability. We therefore examined whether aging affected the quantity and quality of cardiac stem cells using cells obtained from 26 patients of various ages (from 2 to 83 years old). We collected fresh right atria and cultured cardiosphere-derived cells (CDCs), which are a type of cardiac stem cell. Then we investigated growth rate, senescence, DNA damage, and the growth factor production of CDCs. All samples yielded a sufficient number of CDCs for experiments and the cellular growth rate was not obviously associated with age. The expression of senescence-associated b-galactosidase and the DNA damage marker, gH2AX, showed a slightly higher trend in CDCs from older patients (≥65 years). The expression of VEGF, HGF, IGF-1, SDF-1, and TGF-b varied among samples, and the expression of these beneficial factors did not decrease with age. An in vitro angiogenesis assay also showed that the angiogenic potency of CDCs was not impaired, even in those from older patients. Our data suggest that the impact of age on the quantity and quality of CDCs is quite limited. These findings have important clinical implications for autologous stem cell transplantation in elderly patients. PMID:26947751

  11. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2014-12-01

    Full Text Available We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HTc rf SQUID in a simple magnetically shielded room (MSR that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM technique to visualize current density map (CDM, then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HTc rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis.

  12. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling

    Science.gov (United States)

    Kodo, Kazuki; Nishizawa, Tsutomu; Furutani, Michiko; Arai, Shoichi; Yamamura, Eiji; Joo, Kunitaka; Takahashi, Takao; Matsuoka, Rumiko; Yamagishi, Hiroyuki

    2009-01-01

    Congenital heart diseases (CHD) occur in nearly 1% of all live births and are the major cause of infant mortality and morbidity. Although an improved understanding of the genetic causes of CHD would provide insight into the underlying pathobiology, the genetic etiology of most CHD remains unknown. Here we show that mutations in the gene encoding the transcription factor GATA6 cause CHD characteristic of a severe form of cardiac outflow tract (OFT) defect, namely persistent truncus arteriosus (PTA). Two different GATA6 mutations were identified by systematic genetic analysis using DNA from patients with PTA. Genes encoding the neurovascular guiding molecule semaphorin 3C (SEMA3C) and its receptor plexin A2 (PLXNA2) appear to be regulated directly by GATA6, and both GATA6 mutant proteins failed to transactivate these genes. Transgenic analysis further suggests that, in the developing heart, the expression of SEMA3C in the OFT/subpulmonary myocardium and PLXNA2 in the cardiac neural crest contributing to the OFT is dependent on GATA transcription factors. Together, our data implicate mutations in GATA6 as genetic causes of CHD involving OFT development, as a result of the disruption of the direct regulation of semaphorin-plexin signaling. PMID:19666519

  13. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue.

    Science.gov (United States)

    Ruan, Jia-Ling; Tulloch, Nathaniel L; Razumova, Maria V; Saiget, Mark; Muskheli, Veronica; Pabon, Lil; Reinecke, Hans; Regnier, Michael; Murry, Charles E

    2016-11-15

    Tissue engineering enables the generation of functional human cardiac tissue with cells derived in vitro in combination with biocompatible materials. Human-induced pluripotent stem cell-derived cardiomyocytes provide a cell source for cardiac tissue engineering; however, their immaturity limits their potential applications. Here we sought to study the effect of mechanical conditioning and electric pacing on the maturation of human-induced pluripotent stem cell-derived cardiac tissues. Cardiomyocytes derived from human-induced pluripotent stem cells were used to generate collagen-based bioengineered human cardiac tissue. Engineered tissue constructs were subjected to different mechanical stress and electric pacing conditions. The engineered human myocardium exhibits Frank-Starling-type force-length relationships. After 2 weeks of static stress conditioning, the engineered myocardium demonstrated increases in contractility (0.63±0.10 mN/mm(2) vs 0.055±0.009 mN/mm(2) for no stress), tensile stiffness, construct alignment, and cell size. Stress conditioning also increased SERCA2 (Sarco/Endoplasmic Reticulum Calcium ATPase 2) expression, which correlated with a less negative force-frequency relationship. When electric pacing was combined with static stress conditioning, the tissues showed an additional increase in force production (1.34±0.19 mN/mm(2)), with no change in construct alignment or cell size, suggesting maturation of excitation-contraction coupling. Supporting this notion, we found expression of RYR2 (Ryanodine Receptor 2) and SERCA2 further increased by combined static stress and electric stimulation. These studies demonstrate that electric pacing and mechanical stimulation promote maturation of the structural, mechanical, and force generation properties of human-induced pluripotent stem cell-derived cardiac tissues. © 2016 American Heart Association, Inc.

  14. Correlation of microvascular fractal dimension with positron emission tomography [(11)C]-methionine uptake in glioblastoma multiforme: preliminary findings.

    Science.gov (United States)

    Di Ieva, Antonio; Grizzi, Fabio; Tschabitscher, Manfred; Colombo, Piergiuseppe; Casali, Massimiliano; Simonelli, Matteo; Widhalm, Georg; Muzzio, Pier Carlo; Matula, Christian; Chiti, Arturo; Rodriguez y Baena, Riccardo

    2010-09-01

    Neuroradiological and metabolic imaging is a fundamental diagnostic procedure in the assessment of patients with primary and metastatic brain tumors. The correlation between objective parameters capable of quantifying the neoplastic angioarchitecture and imaging data may improve our understanding of the underlying physiopathology and make it possible to evaluate treatment efficacy in brain tumors. Only a few studies have so far correlated the quantitative parameters measuring the neovascularity of brain tumors with the metabolic profiles measured by means of amino acid uptake in positron emission tomography (PET) scans. Fractal geometry offers new mathematical tools for the description and quantification of complex anatomical systems, including microvascularity. In this study, we evaluated the microvascular network complexity of six cases of human glioblastoma multiforme quantifying the surface fractal dimension on CD34 immunostained specimens. The microvascular fractal dimension was estimated by applying the box-counting algorithm. As the fractal dimension depends on the density, size and shape of the vessels, and their distribution pattern, we defined it as an index of the whole complexity of microvascular architecture and compared it with the uptake of (11)C-methionine (MET) assessed by PET. The different fractal dimension values observed showed that the same histological category of brain tumor had different microvascular network architectures. Fractal dimension ranged between 1.19 and 1.77 (mean: 1.415+/-0.225), and the uptake of (11)C-methionine ranged between 1.30 and 5.30. A statistically significant direct correlation between the microvascular fractal dimension and the uptake of (11)C-methionine (p=0.02) was found. Our preliminary findings indicate that that vascularity (estimated on the histologic specimens by means of the fractal dimension) and (11)C-methionine uptake (assessed by PET) closely correlate in glioblastoma multiforme and that microvascular

  15. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  16. Force generation of different human cardiac valve interstitial cells: relevance to individual valve function and tissue engineering.

    Science.gov (United States)

    Smith, Sally; Taylor, Patricia M; Chester, Adrian H; Allen, Sean P; Dreger, Sally A; Eastwood, Mark; Yacoub, Magdi H

    2007-07-01

    Cardiac valves perform highly sophisticated functions that depend upon the specific characteristics of the component interstitial cells (ICs). The ability of valve ICs to contribute to these functions may be related to the generation of different types of tension within the valve structure. The study aim was to characterize cellular morphology and the forces generated by valve ICs and to compare this with morphology and forces generated by other cell types. Cultured human valve ICs, pericardial fibroblasts and vascular smooth muscle cells were seeded in 3-D collagen gels and placed in a device that accurately measures the forces generated. Cell morphology was determined in seeded gels fixed in glutaraldehyde, stained with toluidine blue and visualized using a high-definition stereo light microscope. Valve ICs generated an average peak force of 30.9 +/- 10.4 dynes over a 24-h period which, unlike other cell types tested, increased as cell density decreased (R = 0.67, p cells was significantly faster than in aortic or tricuspid cells (p Microscopic examination revealed the formation of cellular processes establishing a cell/cell and cell/matrix network. When externally induced changes in matrix tension occurred, the valve ICs unlike the other cell types - did not respond to restore the previous level of tension. Human cardiac valve ICs produce a specific pattern of force generation that may be related to the individual function of each heart valve. The specialized function of these cells may serve as a guide for the choice of candidate cells for tissue engineering heart valves.

  17. Generation of human secondary cardiospheres as a potent cell processing strategy for cell-based cardiac repair.

    Science.gov (United States)

    Cho, Hyun-Jai; Lee, Ho-Jae; Chung, Yeon-Ju; Kim, Ju-Young; Cho, Hyun-Ju; Yang, Han-Mo; Kwon, Yoo-Wook; Lee, Hae-Young; Oh, Byung-Hee; Park, Young-Bae; Kim, Hyo-Soo

    2013-01-01

    Cell therapy is a promising approach for repairing damaged heart. However, there are large rooms to be improved in therapeutic efficacy. We cultured a small quantity (5-10 mg) of heart biopsy tissues from 16 patients who received heart transplantation. We produced primary and secondary cardiospheres (CSs) using repeated three-dimensional culture strategy and characterized the cells. Approximately 5000 secondary CSs were acquired after 45 days. Genetic analysis confirmed that the progenitor cells in the secondary CSs originated from the innate heart, but not from extra-cardiac organs. The expressions of Oct4 and Nanog were significantly induced in secondary CSs compared with adherent cells derived from primary CSs. Those expressions in secondary CSs were higher in a cytokine-deprived medium than in a cytokine-supplemented one, suggesting that formation of the three-dimensional structure was important to enhance stemness whereas supplementation with various cytokines was not essential. Signal blocking experiments showed that the ERK and VEGF pathways are indispensable for sphere formation. To optimize cell processing, we compared four different methods of generating spheres. Method based on the hanging-drop or AggreWell™ was superior to that based on the poly-d-lysine-coated dish or Petri dish with respect to homogeneity of the product, cellular potency and overall simplicity of the process. When transplanted into the ischemic myocardium of immunocompromised mice, human secondary CSs differentiated into cardiomyocytes and endothelial cells. These results demonstrate that generation of secondary CSs from a small quantity of adult human cardiac tissue is a feasible and effective cell processing strategy to improve the therapeutic efficacy of cell therapy.

  18. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  19. Direct ink writing of microvascular networks

    Science.gov (United States)

    Wu, Willie

    Nature is replete with examples of embedded microvascular systems that enable efficient fluid flow and distribution for autonomic healing, cooling, and energy harvesting. The ability to incorporate microvascular networks in functional materials systems is therefore both scientifically and technologically important. In this PhD thesis, the direct-write assembly of planar and 3D biomimetic microvascular networks within polymer and hydrogel matrices is demonstrated. In addition, the influence of network design of fluid transport efficiency is characterized. Planar microvascular networks composed of periodic lattices of uniformal microchannels and hierarchical, branching architectures are constructed by direct-write assembly of a fugitive organic ink. Several advancements are required to facilitate their patterning, including pressure valving, dual ink printing, and dynamic pressure variation to allow tunable control of ink deposition. The hydraulic conductance is measured using a high pressure flow meter as a function of network design. For a constant vascular volume and areal coverage, 2- and 4-generation branched architectures that obey Murray's Law exhibited the highest hydraulic conductivity. These experimental observations are in good agreement with predictions made by analytic models. 3D microvascular networks are fabricated by omnidirectional printing a fugitive organic ink into a photopolymerizable hydrogel matrix that is capped with fluid filler of nearly identical composition. Using this approach, 3D networks of arbitrary design can be patterned. After ink deposition is complete, the matrix and fluid filler are chemically cross-linked via UV irradiation, and the ink is removed by liquefication. Aqueous solutions composed of a triblock copolymer of polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO constitute the materials system of choice due to their thermal- and concentration-dependent phase behavior. Specifically, the fugitive ink consists of a 23 w

  20. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    Science.gov (United States)

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-05-04

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs.

  1. Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms

    Directory of Open Access Journals (Sweden)

    Karl Heckler

    2017-09-01

    Full Text Available Diabetes mellitus (DM is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today’s medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.

  2. Effect of gene modified mesenchymal stem cells overexpression human receptor activity modified protein 1 on inflammation and cardiac repair in a rabbit model of myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    赵然尊

    2012-01-01

    Objective To investigate the effect of mesenchymal stem cells(MSCs) overexpressing human receptor activity modified protein 1(hRAMP1) by adenovirus vector on infarction related inflammation and cardiac repair in a rabbit model of myocardial infarction(MI)

  3. The impact of obesity on cardiac troponin levels after prolonged exercise in humans.

    Science.gov (United States)

    Eijsvogels, Thijs M H; Veltmeijer, Matthijs T W; George, Keith; Hopman, Maria T E; Thijssen, Dick H J

    2012-05-01

    Elevated cardiac troponin I (cTnI), a marker for cardiac damage, has been reported after high-intensity exercise in healthy subjects. Currently, little is known about the impact of prolonged moderate-intensity exercise on cTnI release, but also the impact of obesity on this response. 97 volunteers (55 men and 42 women), stratified for BMI, performed a single bout of walking exercise (30-50 km). We examined cTnI-levels before and immediately after the exercise bout in lean (BMI obese subjects (BMI ≥ 30 kg/m(2), n = 28, 53 ± 9 years). Walking was performed at a self-selected pace. cTnI was assessed using a high-sensitive cTnI-assay (Centaur; clinical cut-off value ≥ 0.04 μg/L). We recorded subject characteristics (body weight, blood pressure, presence of cardiovascular risk) and examined exercise intensity by recording heart rate. Mean cTnI-levels increased significantly from 0.010 ± 0.006 to 0.024 ± 0.046 μg/L (P exercise-induced increase in cTnI was not different between lean, overweight and obese subjects (two-way ANOVA interaction; P = 0.27). In 11 participants, cTnI was elevated above the clinical cut-off value for myocardial infarction. Logistic regression analysis identified exercise intensity (P exercise results in a comparable increase in cTnI-levels in lean, overweight and obese subjects. Therefore, measures of obesity unlikely relate to the magnitude of the post-exercise elevation in cTnI.

  4. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    Science.gov (United States)

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  5. Cardiac manifestations in systemic sclerosis

    Institute of Scientific and Technical Information of China (English)

    Sevdalina; Lambova

    2014-01-01

    Primary cardiac involvement, which develops as a direct consequence of systemic sclerosis(SSc), may manifest as myocardial damage, fibrosis of the conduction system, pericardial and, less frequently, as valvular disease. In addition, cardiac complications in SSc may develop as a secondary phenomenon due to pulmonary arterial hypertension and kidney pathology. The prevalence of primary cardiac involvement in SSc is variable and difficult to determine because of the diversity of cardiac manifestations, the presence of subclinical periods, the type of diagnostic tools applied, and the diversity of patient populations. When clinically manifested, cardiac involvement is thought to be an important prognostic factor. Profound microvascular disease is a pathognomonic feature of SSc, as both vasospasm and structural alterations are present. Such alterations are thought to predict macrovascular atherosclerosis over time. There are contradictory reports regarding the prevalence of atherosclerosis in SSc. According to some authors, the prevalence of atherosclerosis of the large epicardial coronary arteries is similar to that of the general population, in contrast with other rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus. However, the level of inflammation in SSc is inferior. Thus, the atherosclerotic process may not be as aggressive and not easily detectable in smaller studies. Echocardiography(especially tissue Doppler imaging), single-photon emission computed tomography, magnetic resonance imaging and cardiac computed tomography are sensitive techniques for earlier detection of both structural and functional scleroderma-related cardiac pathologies. Screening for subclinical cardiac involvement via modern, sensitive tools provides an opportunity for early diagnosis and treatment, which is of crucial importance for a positive outcome.

  6. Advances in microvascular decompression for hemifacial spasm

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Cui; Zhipei Ling

    2015-01-01

    Primary hemifacial spasm (HFS) is a disorder that causes frequent involuntary contractions in the muscles on one side of the face, due to a blood vessel compressing the nerve at its root exit zone (REZ) from the brainstem. Numerous prospective and retrospective case series have confirmed the efficacy of microvascular decompression (MVD) of the facial nerve in patients with HFS. However, while MVD is effective, there are still significant postoperative complications. In this paper, recent technological advances related to MVD (such as lateral spread response, brainstem auditory evokes potential, three dimensional time of flight magnetic resonance angiography, intraoperative neuroendoscopy) are reviewed for the purposes of improving MVD treatment efficacy and reducing postoperative complications.

  7. DFA on Cardiac Rhythm: Fluctuation of the Heartbeat Interval Contain Useful Information for the Risk of Mortality in Both, Animal Models and Humans

    Directory of Open Access Journals (Sweden)

    Toru Yazawa

    2007-02-01

    Full Text Available We analyzed the heartbeat interval to test the possibility that the detrended fluctuation analysis (DFA distinguishes a sick condition from a healthy condition of the cardiac control network. The healthy heart exhibited exponents ranging from 0.8 to 1.0 in both, animal models and humans. In the sick animal models, the exponents declined with an approaching very low range leading to a natural death (~0.6 in the end. Other models, which had a myocardial injury, exhibited extremely high exponents (~1.4. The high exponent was maintained until they died. Human arrhythmic hearts exhibited low exponent (~0.7. A human subject who has an abnormally high heart rate exhibited high exponents (as high as 1.4. A Human transplanted heart, which has no nervous controls, exhibited exponent 1.2. The fluctuation of the heartbeat interval contains information for the risk of a cardiac cessation or mortality.

  8. Rapid homogeneous endothelialization of high aspect ratio microvascular networks.

    Science.gov (United States)

    Naik, Nisarga; Hanjaya-Putra, Donny; Haller, Carolyn A; Allen, Mark G; Chaikof, Elliot L

    2015-08-01

    Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A 'stretch - seed - seal' operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

  9. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment.

    Science.gov (United States)

    Stapleton, P A; McBride, C R; Yi, J; Nurkiewicz, T R

    2015-11-01

    With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO2 aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m(3), 5h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10(-4)M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment☆

    Science.gov (United States)

    Stapleton, P.A.; McBride, C.R.; Yi, J.; Nurkiewicz, T.R.

    2015-01-01

    With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO2 aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m3, 5 h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10−4 M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated. PMID:26375943

  11. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans.

    Science.gov (United States)

    Jenkins, William S A; Vesey, Alex T; Stirrat, Colin; Connell, Martin; Lucatelli, Christophe; Neale, Anoushka; Moles, Catriona; Vickers, Anna; Fletcher, Alison; Pawade, Tania; Wilson, Ian; Rudd, James H F; van Beek, Edwin J R; Mirsadraee, Saeed; Dweck, Marc R; Newby, David E

    2017-04-01

    Maladaptive repair contributes towards the development of heart failure following myocardial infarction (MI). The αvβ3 integrin receptor is a key mediator and determinant of cardiac repair. We aimed to establish whether αvβ3 integrin expression determines myocardial recovery following MI. (18)F-Fluciclatide (a novel αvβ3-selective radiotracer) positron emission tomography (PET) and CT imaging and gadolinium-enhanced MRI (CMR) were performed in 21 patients 2 weeks after ST-segment elevation MI (anterior, n=16; lateral, n=4; inferior, n=1). CMR was repeated 9 months after MI. 7 stable patients with chronic total occlusion (CTO) of a major coronary vessel and nine healthy volunteers underwent a single PET/CT and CMR. (18)F-Fluciclatide uptake was increased at sites of acute infarction compared with remote myocardium (tissue-to-background ratio (TBRmean) 1.34±0.22 vs 0.85±0.17; pinfarction in patients with CTO, with activity similar to the myocardium of healthy volunteers (TBRmean 0.71±0.06 vs 0.70±0.03, p=0.83). (18)F-Fluciclatide uptake occurred at sites of regional wall hypokinesia (wall motion index≥1 vs 0; TBRmean 0.93±0.31 vs 0.80±0.26 respectively, pinfarction. Importantly, although there was no correlation with infarct size (r=0.03, p=0.90) or inflammation (C reactive protein, r=-0.20, p=0.38), (18)F-fluciclatide uptake was increased in segments displaying functional recovery (TBRmean 0.95±0.33 vs 0.81±0.27, p=0.002) and associated with increase in probability of regional recovery. (18)F-Fluciclatide uptake is increased at sites of recent MI acting as a biomarker of cardiac repair and predicting regions of recovery. NCT01813045; Post-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Skin microvascular reactivity in patients with hypothyroidism.

    Science.gov (United States)

    Mihor, Ana; Gergar, Maša; Gaberšček, Simona; Lenasi, Helena

    2016-11-04

    Hypothyroidism is associated with impaired vascular function; however, little is known about its impact on microcirculation. We aimed to determine skin microvascular reactivity in hypothyroidism focusing on endothelial function and the sympathetic response. We measured skin laser Doppler (LD) flux (LDF) on the volar forearm and the finger pulp using LD flowmetry in hypothyroid patients (N = 13) and healthy controls (N = 15). Skin microvascular reactivity was assessed by a three-minute occlusion of the brachial artery, inducing postocclusive reactive hyperaemia (PRH), and by a four-minute local cooling of the hand. An electrocardiogram (ECG), digital artery blood pressure and skin temperature at the measuring sites were recorded. Baseline LDF, the digital artery blood pressure and the heart rate were comparable between patients and controls. On the other hand, patients exhibited significantly longer PRH duration, significantly higher blood pressure during cooling (unpaired t-test, p skin microcirculation and an apparent increase in sympathetic reactivity after local cooling in hypothyroid patients. Hypothyroidism induces subtle changes of some haemodynamic parameters in skin microcirculation implying altered endothelial function and altered sympathetic reactivity.

  13. Cardiovascular sex differences influencing microvascular exchange

    Science.gov (United States)

    Huxley, Virginia H.; Wang, Jianjie

    2010-01-01

    The vital role of the cardiovascular (CV) system is maintenance of body functions via the matching of exchange to tissue metabolic demand. Sex-specific differences in the regulatory mechanisms of CV function and the metabolic requirements of men and women, respectively, have been identified and appreciated. This review focuses on sex differences of parameters influencing exchange at the point of union between blood and tissue, the microvasculature. Microvascular architecture, blood pressure (hydrostatic and oncotic), and vascular permeability, therefore, are discussed in the specific context of sex in health and disorders. It is notable that when sex differences exist, they are generally subtle but significant. In the aggregate, though, they can give rise to profoundly different phenotypes. The postulated mechanisms responsible for sex differences are attributed to genomics, epigenetics, and sex hormones. Depending on specific circumstances, the effect of the combined factors can range from insignificant to lethal. Identifying and understanding key signalling mechanisms bridging genomics/sex hormones and microvascular exchange properties within the scope of this review holds significant promise for sex-specific prevention and treatment of vascular barrier dysfunction. PMID:20495187

  14. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells.

    Science.gov (United States)

    Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing

    2016-03-01

    There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.

  15. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action.

    Science.gov (United States)

    Vonderlin, Nadine; Fischer, Fathima; Zitron, Edgar; Seyler, Claudia; Scherer, Daniel; Thomas, Dierk; Katus, Hugo A; Scholz, Eberhard P

    2015-01-01

    Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG) channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 μM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 μM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam.

  16. Cardiac alterations in human African trypanosomiasis (T.b. gambiense with respect to the disease stage and antiparasitic treatment.

    Directory of Open Access Journals (Sweden)

    Johannes A Blum

    Full Text Available BACKGROUND: In Human African Trypanosomiasis, neurological symptoms dominate and cardiac involvement has been suggested. Because of increasing resistance to the available drugs for HAT, new compounds are desperately needed. Evaluation of cardiotoxicity is one parameter of drug safety, but without knowledge of the baseline heart involvement in HAT, cardiologic findings and drug-induced alterations will be difficult to interpret. The aims of the study were to assess the frequency and characteristics of electrocardiographic findings in the first stage of HAT, to compare these findings to those of second stage patients and healthy controls and to assess any potential effects of different therapeutic antiparasitic compounds with respect to ECG changes after treatment. METHODS: Four hundred and six patients with first stage HAT were recruited in the Democratic Republic of Congo, Angola and Sudan between 2002 and 2007 in a series of clinical trials comparing the efficacy and safety of the experimental treatment DB289 to the standard first stage treatment, pentamidine. These ECGs were compared to the ECGs of healthy volunteers (n = 61 and to those of second stage HAT patients (n = 56. RESULTS: In first and second stage HAT, a prolonged QTc interval, repolarization changes and low voltage were significantly more frequent than in healthy controls. Treatment in first stage was associated with repolarization changes in both the DB289 and the pentamidine group to a similar extent. The QTc interval did not change during treatment. CONCLUSIONS: Cardiac involvement in HAT, as demonstrated by ECG alterations, appears early in the evolution of the disease. The prolongation of the QTC interval comprises a risk of fatal arrhythmias if new drugs with an additional potential of QTC prolongation will be used. During treatment ECG abnormalities such as repolarization changes consistent with peri-myocarditis occur frequently and appear to be associated with the disease

  17. Human heart-type fatty acid-binding protein as an early diagnostic marker of doxorubicin cardiac toxicity

    Directory of Open Access Journals (Sweden)

    Ashraf H. ElGhandour

    2009-04-01

    Full Text Available Progressive cardiotoxicity following treatment with doxorubicin-based chemotherapy in patients with non-Hodgkin’s lymphoma (NHL may lead to late onset cardiomyopathy. So, early prediction of toxicity can lead to prevention of heart failure in these patients. The aim of this work was to investigate the role of H-FABP as an early diagnostic marker of anthracycline-induced cardiac toxicity together with brain natriuretic peptide (BNP as an indication of ventricular dysfunction in such patients. Our study was conducted on 40 NHL patients who received 6 cycles of a doxorubicin containing chemotherapy protocol (CHOP, not exceeding the total allowed dose of doxorubicin (500 mg/m2. Ten healthy controls were included in our study. Human heart-type fatty acid binding protein (H-FABP was assessed 24 hours after the first cycle of CHOP. Plasma levels of BNP were estimated both before starting chemotherapy and after the last cycle of CHOP. Resting echocardiography was also performed before and at the end of chemotherapy cycles. The ejection fraction (EF of 8 of our patients decreased below 50% at the end of the sixth cycle. Elevated levels of both H-FABP and BNP were found in all patients wth EF below 50% and both markers showed a positive correlation with each other. We concluded that H-FABP may serve as a reliable early marker for prediction of cardiomyopathy induced by doxorubicin. Thus, in patients with elevated H-FABP, alternative treatment modalities with no cardiac toxicity may be considered in order to prevent subsequent heart failure in these patients.

  18. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth.

    Directory of Open Access Journals (Sweden)

    Carolyn Granier-Deferre

    Full Text Available BACKGROUND: Human hearing develops progressively during the last trimester of gestation. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. Fetal and neonatal studies show that they can remember frequently recurring sounds. However, existing data can only show retention intervals up to several days after birth. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that auditory memories can last at least six weeks. Experimental fetuses were given precisely controlled exposure to a descending piano melody twice daily during the 35(th, 36(th, and 37(th weeks of gestation. Six weeks later we assessed the cardiac responses of 25 exposed infants and 25 naive control infants, while in quiet sleep, to the descending melody and to an ascending control piano melody. The melodies had precisely inverse contours, but similar spectra, identical duration, tempo and rhythm, thus, almost identical amplitude envelopes. All infants displayed a significant heart rate change. In exposed infants, the descending melody evoked a cardiac deceleration that was twice larger than the decelerations elicited by the ascending melody and by both melodies in control infants. CONCLUSIONS/SIGNIFICANCE: Thus, 3-weeks of prenatal exposure to a specific melodic contour affects infants 'auditory processing' or perception, i.e., impacts the autonomic nervous system at least six weeks later, when infants are 1-month old. Our results extend the retention interval over which a prenatally acquired memory of a specific sound stream can be observed from 3-4 days to six weeks. The long-term memory for the descending melody is interpreted in terms of enduring neurophysiological tuning and its significance for the developmental psychobiology of attention and perception, including early speech perception, is discussed.

  19. A PLZT Novel Sensor with Pt Implanted for Biomedical Application: Cardiac Micropulses Detection on Human Skin

    Directory of Open Access Journals (Sweden)

    Carlos O. González-Morán

    2017-01-01

    Full Text Available Advances in sensors for biomedical applications have been a great motivation. In this research, a PLZT (lead lanthanum zirconate titanate novel sensor with platinum wire implanted in its longitudinal section was developed through of the synthesis process based on powder technology. The raw materials as lead (PbO, lanthanum (La2O3, zircon (ZrO2, and titanium (TiO2 were used in the formation of the chemical composition (62.8% PbO, 4.5% La2O3, 24.2% ZrO2, and 8.5% TiO2. Then, these powders were submitted to mix-mechanical milling at high energy; cylindrical samples with the implant of the platinum wire were obtained with the load application. Finally, the compacted samples were sintered at 1200°C for 2 hours, then followed by a polarization potential of 1500 V/mm at 60°C to obtain a novel sensor. The density and porosity were evaluated using the Archimedes’ principle, while the mechanical properties such as fracture toughness value and Young’s modulus were determined by indentation and ultrasonic methods, respectively. A microscopic examination was also carried out to investigate the structural properties of the material. The PLZT novel sensor is electronically arranged for monitoring the cardiac pulses through a data acquisition system. The results obtained in this research are analyzed and discussed.

  20. Preliminary assessment of cardiac short term safety and efficacy of manganese chloride for cardiovascular magnetic resonance in humans

    Directory of Open Access Journals (Sweden)

    Kalaf Jose M

    2011-01-01

    Full Text Available Abstract Background Manganese based agents are intracellular and accumulate inside myocytes allowing for different imaging strategies compared to gadolinium contrasts. While previous agents release manganese very slowly in the circulation, MnCl2 allows for rapid Mn2+ uptake in myocytes, creating a memory effect that can be potentially explored. Data on animal models are very encouraging but the safety and efficacy of this approach in humans has not yet been investigated. Therefore, our objectives were to study the safety and efficacy of a rapid infusion of manganese chloride (MnCl2 for cardiovascular magnetic resonance (CMR in humans. Methods Fifteen healthy volunteers underwent a CMR scan on a 1.5 T scanner. Before the infusion, cardiac function was calculated and images of a short axis mid-ventricular slice were obtained using a 2D and 3D gradient-echo inversion recovery (GRE-IR sequence, a phase-sensitive IR sequence and a single breath-hold segmented IR prepared steady-state precession acquisition for T1 calculations. MnCl2 was infused over three minutes at a total dose of 5 μMol/kg. Immediately after the infusion, and at 15 and 30 minutes later, new images were obtained and cardiac function re-evaluated. Results There was a significant decrease in T1 values compared to baseline, sustained up to 30 minutes after the MnCl2 infusion (pre,839 ± 281 ms; 0 min, 684 ± 99; 15 min, 714 ± 168; 30 min, 706 ± 172, P = 0.003. The 2D and 3D GRE-IR sequence showed the greatest increase in signal-to-noise ratio compared to the other sequences (baseline 6.6 ± 4.2 and 9.7 ± 5.3; 0 min, 11.3 ± 4.1 and 15.0 ± 8.7; 15 min, 10.8 ± 4.0 and 16.9 ± 10.2; 30 min, 10.6 ± 5.2 and 16.5 ± 8.3, P 2 with no major adverse events, despite all reporting transient facial flush. Conclusions In the short term, MnCl2 appears safe for human use. It effectively decreases myocardium T1, maintaining this effect for a relatively long period of time and allowing for the

  1. Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in Drosophila.

    Directory of Open Access Journals (Sweden)

    William H Eschenbacher

    Full Text Available Mitochondrial fusion is essential to organelle homeostasis and organ health. Inexplicably, loss of function mutations of mitofusin 2 (Mfn2 specifically affect neurological tissue, causing Charcot Marie Tooth syndrome (CMT and atypical optic atrophy. As CMT-linked Mfn2 mutations are predominantly within the GTPase domain, we postulated that Mfn2 mutations in other functional domains might affect non-neurological tissues. Here, we defined in vitro and in vivo consequences of rare human mutations in the poorly characterized Mfn2 HR1 domain. Human exome sequencing data identified 4 rare non-synonymous Mfn2 HR1 domain mutations, two bioinformatically predicted as damaging. Recombinant expression of these (Mfn2 M393I and R400Q in Mfn2-null murine embryonic fibroblasts (MEFs revealed incomplete rescue of characteristic mitochondrial fragmentation, compared to wild-type human Mfn2 (hMfn2; Mfn2 400Q uniquely induced mitochondrial fragmentation in normal MEFs. To compare Mfn2 mutation effects in neurological and non-neurological tissues in vivo, hMfn2 and the two mutants were expressed in Drosophila eyes or heart tubes made deficient in endogenous fly mitofusin (dMfn through organ-specific RNAi expression. The two mutants induced similar Drosophila eye phenotypes: small eyes and an inability to rescue the eye pathology induced by suppression of dMfn. In contrast, Mfn2 400Q induced more severe cardiomyocyte mitochondrial fragmentation and cardiac phenotypes than Mfn2 393I, including heart tube dilation, depressed fractional shortening, and progressively impaired negative geotaxis. These data reveal a central functional role for Mfn2 HR1 domains, describe organ-specific effects of two Mfn2 HR1 mutations, and strongly support prospective studies of Mfn2 400Q in heritable human heart disease of unknown genetic etiology.

  2. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells

    Science.gov (United States)

    Lee, Dae-Hee; Oh, Sang Cheul; Giles, Amber J.; Jung, Jinkyu; Gilbert, Mark R.; Park, Deric M.

    2017-01-01

    Tissue hypoxia contributes to solid tumor pathogenesis by activating a series of adaptive programs. We previously showed that hypoxia promotes the preferential expansion and maintenance of CD133 positive human glioma stem cells (GSC) in a hypoxia inducible factor 1 alpha (HIF-1α)-dependent mechanism. Here, we examined the activity of digitoxin (DT), a cardiac glycoside and a putative inhibitor of HIF-1α, on human GSC in vitro and in vivo. During hypoxic conditions (1% O2), we observed the effect of DT on the intracellular level of HIF-1α and the extracellular level of vascular endothelial growth factor (VEGF) in human GSC. We found that DT at clinically achievable concentrations, suppressed HIF-1α accumulation during hypoxic conditions in human GSC and established glioma cell lines. DT treatment also significantly attenuated hypoxia-induced expression of VEGF, a downstream target of HIF-1α. Exposure to DT also reduced hypoxia-induced activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Furthermore, DT potently inhibited neurosphere formation, and decreased CD133 expression even at concentrations that were not overtly cytotoxic. Lastly, treatment with DT reduced GSC engraftment in an in vivo xenograft model of glioblastoma. Intraperitoneal injections of DT significantly inhibited the growth of established glioblastoma xenografts, and suppressed expression of HIF-1α and carbonic anhydrase (CA9), a surrogate marker of hypoxia. Taken together, these results suggest that DT at clinically achievable concentration functions as an inhibitor of HIF-1α, worthy of further investigations in the therapy of glioblastoma. PMID:28410215

  3. Effects of cardiac natriuretic peptides on oxidized low-density lipoprotein- and lysophosphatidylcholine-induced human mesangial cell migration.

    Science.gov (United States)

    Kohno, M; Yasunari, K; Maeda, K; Kano, H; Minami, M; Hanehira, T; Yoshikawa, J

    2000-04-01

    The objectives of the present study were (1) to determine whether oxidized LDL and lysophosphatidylcholine (lyso-PtdCho), a major phospholipid component of oxidized LDL, stimulate the migration of cultured human mesangial cells and (2) to investigate the possible effects on mesangial cell migration of the cardiac natriuretic peptides atrial and brain natriuretic peptide (ANP and BNP). Oxidized LDL (10 and 100 microg/mL) and lyso-PtdCho (10(-7) to 10(-5) mol/L) stimulated migration in a concentration-dependent manner. In contrast, the effects of native LDL and phosphatidylcholine were modest or nonexistent. Protein kinase C (PKC) inhibitor and downregulation of PKC activity by phorbol ester inhibited oxidized LDL- and lyso-PtdCho-induced migration. Human ANP(1-28) and human BNP-32 significantly inhibited oxidized LDL- and lyso-PtdCho-induced migration in a concentration-dependent manner. C-ANF (des-[Glu(18),Ser(19),Gly(20),Leu(21),Gly(22)]ANP(4-23)), a specific ligand for ANP clearance receptors, could not inhibit oxidized LDL- and lyso-PtdCho-induced migration. Inhibition by ANP and BNP of lyso-PtdCho-induced migration was paralleled by an increase in the cellular level of GMP. Oxidized LDL- and lyso-PtdCho-induced migrations were inhibited by 8-bromo-cGMP. The results suggest that oxidized LDL and lyso-PtdCho stimulate the migration of human mesangial cells, at least in part, through a PKC-dependent process and that ANP and BNP inhibit this stimulated migration, probably through a cGMP-dependent process.

  4. Obesity is associated with lower coronary microvascular density.

    Directory of Open Access Journals (Sweden)

    Duncan J Campbell

    Full Text Available BACKGROUND: Obesity is associated with diastolic dysfunction, lower maximal myocardial blood flow, impaired myocardial metabolism and increased risk of heart failure. We examined the association between obesity, left ventricular filling pressure and myocardial structure. METHODS: We performed histological analysis of non-ischemic myocardium from 57 patients (46 men and 11 women undergoing coronary artery bypass graft surgery who did not have previous cardiac surgery, myocardial infarction, heart failure, atrial fibrillation or loop diuretic therapy. RESULTS: Non-obese (body mass index, BMI, ≤ 30 kg/m(2, n=33 and obese patients (BMI >30 kg/m(2, n=24 did not differ with respect to myocardial total, interstitial or perivascular fibrosis, arteriolar dimensions, or cardiomyocyte width. Obese patients had lower capillary length density (1145 ± 239, mean ± SD, vs. 1371 ± 333 mm/mm(3, P=0.007 and higher diffusion radius (16.9 ± 1.5 vs. 15.6 ± 2.0 μm, P=0.012, in comparison with non-obese patients. However, the diffusion radius/cardiomyocyte width ratio of obese patients (0.73 ± 0.11 μm/μm was not significantly different from that of non-obese patients (0.71 ± 0.11 μm/μm, suggesting that differences in cardiomyocyte width explained in part the differences in capillary length density and diffusion radius between non-obese and obese patients. Increased BMI was associated with increased pulmonary capillary wedge pressure (PCWP, P<0.0001, and lower capillary length density was associated with both increased BMI (P=0.043 and increased PCWP (P=0.016. CONCLUSIONS: Obesity and its accompanying increase in left ventricular filling pressure were associated with lower coronary microvascular density, which may contribute to the lower maximal myocardial blood flow, impaired myocardial metabolism, diastolic dysfunction and higher risk of heart failure in obese individuals.

  5. Transit time homogenization in ischemic stroke - A novel biomarker of penumbral microvascular failure?

    DEFF Research Database (Denmark)

    Engedal, Thorbjørn S; Hjort, Niels; Hougaard, Kristina D

    2017-01-01

    Cerebral ischemia causes widespread capillary no-flow in animal studies. The extent of microvascular impairment in human stroke, however, is unclear. We examined how acute intra-voxel transit time characteristics and subsequent recanalization affect tissue outcome on follow-up MRI in a historic...... cohort of 126 acute ischemic stroke patients. Based on perfusion-weighted MRI data, we characterized voxel-wise transit times in terms of their mean transit time (MTT), standard deviation (capillary transit time heterogeneity - CTH), and the CTH:MTT ratio (relative transit time heterogeneity), which...... is expected to remain constant during changes in perfusion pressure in a microvasculature consisting of passive, compliant vessels. To aid data interpretation, we also developed a computational model that relates graded microvascular failure to changes in these parameters. In perfusion-diffusion mismatch...

  6. Microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Spanel-Borowski Katherina

    2003-11-01

    Full Text Available Abstract The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and respond to angiogenic factors and vasoactive peptides. Following ovulation the neovascularization during the early stages of corpus luteum development has been compared to the rapid angiogenesis observed during tumor formation. On the other end of the spectrum, the microvascular endothelial cells are the first cells to undergo apoptosis at the onset of corpus luteum regression. Important insights on the morphology and function of luteal endothelial cells have been gained from a combination of in vitro and in vivo studies on endothelial cells. Endothelial cells communicate with cells comprising the functional unit of the corpus luteum, i.e., other vascular cells, steroidogenic cells, and immune cells. This review is designed to provide an overview of the types of endothelial cells present in the corpus luteum and their involvement in corpus luteum development and regression. Available evidence indicates that microvascular endothelial cells of the corpus luteum are not alike, and may differ during the process of angiogenesis and angioregression. The contributions of vasoactive peptides generated by the luteal endothelin-1 and the renin-angiotensin systems are discussed in context with the function of endothelial cells during corpus luteum formation and regression. The ability of two cytokines, tumor necrosis factor alpha and interferon gamma, are evaluated as paracrine mediators of endothelial cell function during angioregression. Finally, chemokines are discussed as a vital endothelial cell secretory products that contribute to the recruitment of

  7. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Dorota Jeziorowska

    2017-06-01

    Full Text Available Human induced pluripotent stem cells (iPSCs represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D or, more recently, on monolayer culture (2D. We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response or IWP2 (inhibitor of Wnt production. We firstly found that the level of Troponin T (TNNT2 expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies.

  8. Influence of recombinant human brain natriuretic peptide on myocardial enzymes, serum cardiac function indexes and oxygen metabolism of patients with open heart surgery with cardiopulmonary bypass

    Institute of Scientific and Technical Information of China (English)

    Shu-Tian Song; Ming Yang; Kun-Peng Li; Juan Xu; Chuan-Ming Bai; Ji-Wu Zhou

    2016-01-01

    Objective:To investigate and analyze the influence of recombinant human brain natriuretic peptide on myocardial enzymes, serum cardiac function indexes and oxygen metabolism of patients with open heart surgery with cardiopulmonary bypass.Methods:A total of 42 patients with open heart surgery with cardiopulmonary bypass during the period of June 2014 to January 2016 were randomly divided into the control group of 21 cases and the observation group of 21 cases. The control group was treated with routine postoperative treatment, and the observation group was treated with recombinant human brain natriuretic peptide on the basic treatment of control group, then the myocardial enzymes, serum cardiac function indexes and oxygen metabolism indexes of the two groups before the surgery and at 2 h, 12 h and 24 h after the surgery were respectively detected and compared.Results: There were no significant difference in myocardial enzymes, serum cardiac function indexes and oxygen metabolism indexes between two groups before the surgery (allP>0.05), while the myocardial enzymes and serum cardiac function indexes of the observation group at 2 h ,12 h and 24 h after the surgery were all significantly lower than those of control group, the oxygen metabolism indexes were significantly better than the levels of control group (allP<0.05).Conclusions:The recombinant human brain natriuretic peptide can effectively improve the myocardial enzymes, serum cardiac function indexes and oxygen metabolism state of patients with open heart surgery with cardiopulmonary bypass, and it has application value for the patients with the surgery is higher.

  9. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  10. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies: Controversies in Meta-Analyses Results on Cardiac Cell-Based Regenerative Studies.

    Science.gov (United States)

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P; Moye, Lemuel À

    2016-04-15

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical outcome. A comprehensive review of the data collection, statistics, and the overall principles of meta-analyses provides further clarification and explanation for this controversy. The advantages and pitfalls of different types of meta-analyses are reviewed here. Each meta-analysis approach has a place when pivotal clinical trials are lacking and sheds light on the magnitude of the treatment in a complex healthcare field.

  11. Microvascularization on collared peccary placenta: a microvascular cast study [corrected] in late pregnancy.

    Science.gov (United States)

    Santos, Tatiana Carlesso; Oliveira, Moacir Franco; Dantzer, Vibeke; Miglino, Maria Angélica

    2012-07-01

    The microvascularization of the collared peccary (Tayassu tajacu) placenta was studied by vascular casts and immunolocalization of α-smooth muscle actin and vimentin, to identify the three dimensional organization and vascular flow interrelation in the microvasculature between the maternal and fetal compartments of the placentae. The immunolocalization of vimentin in the vascular endothelium and in the smooth muscle cells of blood vessels showed indented capillaries along the uterine epithelium and the trophoblast at the sides of complementary maternal and fetal microfolds, or rugae. This confers the three-dimensional structure observed in vascular casts. On the maternal side, casts demonstrated uterine folds coated by with primary and secondary ridges, and by areolae dispersed between these ridges. The arteriole runs through the center/middle of ridges, branching at the top into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base of the bulbous protrusions, the fetal venules arise. The blood vessel orientation in the materno-fetal interface of the placentae of collared peccaries suggests a blood flow pattern of the type countercurrent to cross current. The same pattern has been reported in domestic swine demonstrating that, even after 38 million years, the Tayassuidae and Suidae families exhibit similar placental morphology, which is here characterized at the microvascular level.

  12. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  13. Self-healing materials with microvascular networks.

    Science.gov (United States)

    Toohey, Kathleen S; Sottos, Nancy R; Lewis, Jennifer A; Moore, Jeffrey S; White, Scott R

    2007-08-01

    Self-healing polymers composed of microencapsulated healing agents exhibit remarkable mechanical performance and regenerative ability, but are limited to autonomic repair of a single damage event in a given location. Self-healing is triggered by crack-induced rupture of the embedded capsules; thus, once a localized region is depleted of healing agent, further repair is precluded. Re-mendable polymers can achieve multiple healing cycles, but require external intervention in the form of heat treatment and applied pressure. Here, we report a self-healing system capable of autonomously repairing repeated damage events. Our bio-inspired coating-substrate design delivers healing agent to cracks in a polymer coating via a three-dimensional microvascular network embedded in the substrate. Crack damage in the epoxy coating is healed repeatedly. This approach opens new avenues for continuous delivery of healing agents for self-repair as well as other active species for additional functionality.

  14. Glaucocalyxin A Ameliorates Myocardial Ischemia-Reperfusion Injury in Mice by Suppression of Microvascular Thrombosis

    Science.gov (United States)

    Liu, Xiaohui; Xu, Dongzhou; Wang, Yuxin; Chen, Ting; Wang, Qi; Zhang, Jian; You, Tao; Zhu, Li

    2016-01-01

    Background The aim of this study was to evaluate the cardio-protective roles of glaucocalyxin A (GLA) in myocardial ischemia-reperfusion injury and to explore the underlying mechanism. Material/Methods Myocardial ischemia-reperfusion in wild-type C57BL/6J mice was induced by transient ligation of the left anterior descending artery. GLA or vehicle (solvent) was administrated intraperitoneally to the mice before reperfusion started. After 24 h of myocardial reperfusion, ischemic size was revealed by Evans blue/TTC staining. Cardiac function was evaluated by echocardiography and microvascular thrombosis was assessed by immunofluorescence staining of affected heart tissue. We also measured the phosphorylation of AKT, ERK, P-GSK-3β, and cleaved caspase 3 in the myocardium. Results Compared to the solvent-treated control group, GLA administration significantly reduced infarct size (GLA 13.85±2.08% vs. Control 18.95±0.97%, p<0.05) and improved left ventricular ejection fraction (LVEF) (GLA 53.13±1.11% vs. Control 49.99±1.25%, p<0.05) and left ventricular fractional shortening (LVFS) (28.34±0.71% vs. Control 25.11±0.74%, p<0.05) in mice subjected to myocardial ischemia-reperfusion. GLA also attenuated microvascular thrombosis (P<0.05) and increased the phosphorylation of pro-survival kinase AKT (P<0.05) and GSK-3β (P<0.05) in the myocardium upon reperfusion injury. Conclusions Administration of GLA before reperfusion ameliorates myocardial ischemia-reperfusion injury in mice. The cardio-protective roles of GLA may be mediated through the attenuation of microvascular thrombosis. PMID:27716735

  15. Mechanisms of increase in cardiac output during acute weightlessness in humans

    DEFF Research Database (Denmark)

    Petersen, Lonnie G; Damgaard, Morten; Petersen, Johan Casper Grove;

    2011-01-01

    by parabolic flight increased CO by 1.7 ± 0.4 l/min (P ... in CO during acute 0 G in seated humans. A Bainbridge-like reflex could be the mechanism for the HR-induced increase in CO during 0 G in particular in supine subjects....

  16. Methods of investigation for cardiac autonomic dysfunction in human research studies

    DEFF Research Database (Denmark)

    Bernardi, Luciano; Spallone, Vincenza; Stevens, Martin

    2011-01-01

    This consensus document provides evidence-based guidelines regarding the evaluation of diabetic cardiovascular autonomic neuropathy (CAN) for human research studies as a result of the work of the CAN Subcommittee of the Toronto Diabetic Neuropathy Expert Group. The CAN subcommittee critically......, for studying the pathophysiology of CAN and new therapeutic approaches. Copyright © 2011 John Wiley & Sons, Ltd....

  17. Human stem cells as a model for cardiac differentiation and disease

    NARCIS (Netherlands)

    Beqqali, A.; van Eldik, W.; Mummery, C.L.; Passier, R.

    2009-01-01

    Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead

  18. Association of Microvascular Dysfunction With Late-Life Depression

    DEFF Research Database (Denmark)

    van Agtmaal, Marnix J M; Houben, Alfons J H M; Pouwer, Frans

    2017-01-01

    Importance: The etiologic factors of late-life depression are still poorly understood. Recent evidence suggests that microvascular dysfunction is associated with depression, which may have implications for prevention and treatment. However, this association has not been systematically reviewed...... microvascular dysfunction might provide a potential target for the prevention and treatment of depression........ Objective: To examine the associations of peripheral and cerebral microvascular dysfunction with late-life depression. Data Sources: A systematic literature search was conducted in MEDLINE and EMBASE for and longitudinal studies published since inception to October 16, 2016, that assessed the associations...

  19. Microvascular pressure distribution in the hamster testis.

    Science.gov (United States)

    Sweeney, T E; Rozum, J S; Desjardins, C; Gore, R W

    1991-05-01

    Convective transport is a critical element in the regulation of steroidogenesis and spermatogenesis in the testis. Steroid hormones are distributed to their target cells within seminiferous tubules via interstitial fluid. The movement of interstitial fluid and lymph, which transports protein hormones and many of the substrates required for spermatogenesis and steroidogenesis, is driven by capillary filtration. Despite the importance of convective transport in testicular function, however, the mechanisms regulating transvascular exchange in the testis are unknown. As a first step in understanding this process, we measured directly the microvascular hydrostatic pressure distribution in the hamster testis (pentobarbital sodium, 70 mg/kg ip). Using a servo-null transducer, intravascular pressure was measured in all vessel types accessible beneath the surface of the testis of 19 animals. Systemic arterial pressure averaged 89 +/- 2 (SE) mmHg. The most significant observations were that mean capillary pressure was extremely low (10.1 +/- 0.8 mmHg) and remarkably constant (range 8.2-13.3 mmHg), despite a 45 mmHg range in systemic mean arterial pressure among the animals observed. The maintenance of a low hydrostatic pressure in testicular capillaries may serve to sustain fluid filtration at a rate that prevents washout of essential solutes while preserving convective transport. Unfortunately, the anatomical and functional characteristics that determine this unique microvascular environment may also expose the testis to significant pathological risks. For example, the large pre- to postcapillary resistance ratio observed suggests that testicular capillaries must be highly susceptible to increases in venous pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Mandibular reconstruction with composite microvascular tissue transfer

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J. III; Wooden, W.A. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1990-10-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons (lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)). Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure.

  1. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S; van Geel, PP; Willenbrock, R; Pagel, [No Value; Pinto, YM; Buikema, H; van Gilst, WH; Lindschau, C; Paul, M; Inagami, T; Ganten, D; Urata, H

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT(1) receptors. However, the role of myocardial AT(1) receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that in

  2. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S; van Geel, PP; Willenbrock, R; Pagel, [No Value; Pinto, YM; Buikema, H; van Gilst, WH; Lindschau, C; Paul, M; Inagami, T; Ganten, D; Urata, H

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT(1) receptors. However, the role of myocardial AT(1) receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  3. [Systematized care in cardiac preoperative: theory of human caring in the perspective of nurses and users].

    Science.gov (United States)

    Amorim, Thais Vasconselos; Arreguy-Sena, Cristina; Alves, Marcelo da Silva; Salimena, Anna Maria de Oliveira

    2014-01-01

    This is a case study research that aimed to know, with the adoption of the Theory of Human Caring, the meanings of therapeutic interpersonal relationship between nurse and user on the preoperative nursing visit after the experience of the surgical process. The convenience sample was composed of three nurses and three users of an institution that has updated records to perform highly complex cardiovascular surgery, comprising nine combinations of therapeutic interactions. It was used instruments, structured according to the theory of Jean Watson and North American Nursing Diagnosis Association, Nursing Intervention Classification and Nursing Outcomes Classification taxonomies. The legal and ethical aspects of research involving human subjects were assured. The results revealed three clusters to grasp the significance of preoperative visits by users and five clusters to capture the perception of nurses when they experience this clinical experience.

  4. Cardiac mechanics in patients with human immunodeficiency virus: a study of systolic myocardial deformation in children and young adults.

    Science.gov (United States)

    Al-Naami, Ghassan; Kiblawi, Fuad; Kest, Helen; Hamdan, Ayman; Myridakis, Dorothy

    2014-08-01

    Human immunodeficiency virus (HIV) infection causes dysfunction of different organ systems. Myocardial diastolic dysfunction has been reported previously in an adult HIV population. Our aim was to study myocardial strain in children and young adults infected by HIV who have apparently normal ejection fraction. Forty HIV-infected patients (mean age 20.6 ± 1.5 years) with normal ejection fraction and 55 matched normal controls (mean age 17 ± 1.5 years) were studied by two-dimensional echocardiogram. The images were stored then exported to velocity vector imaging software for analysis. Measures considered were left-ventricular peak global systolic strain (LV S) and strain rate (LV SR) as well as right-ventricular peak global systolic strain (RV S) and strain rate (RV SR). Circumferential measures of the left ventricle included the following: LV circumferential peak global systolic strain (LV circ S), strain rate (LV circ SR), radial velocity (LV rad vel), and rotational velocity (LV rot vel) at the level of the mitral valve. Statistical significance was set at p strain and strain rate in children and young adults. Normal ejection fraction might be attributed to preserved circumferential myocardial deformation. Strain and strain rate may help identify HIV patients at high risk for cardiac dysfunction and allow early detection of silent myocardial depression.

  5. Distinct down-regulation of cardiac beta 1- and beta 2-adrenoceptors in different human heart diseases.

    Science.gov (United States)

    Steinfath, M; Geertz, B; Schmitz, W; Scholz, H; Haverich, A; Breil, I; Hanrath, P; Reupcke, C; Sigmund, M; Lo, H B

    1991-02-01

    Cardiac beta-adrenoceptor density and beta 1- and beta 2-subtype distribution were examined in human left ventricular myocardium from transplant donors serving as controls and from patients with mitral valve stenosis, aortic valve stenosis, idiopathic dilated cardiomyopathy, and ischaemic cardiomyopathy respectively. The total beta-adrenoceptor density was similar in transplant donors and patients with moderate heart failure (NYHA II-III) due to mitral valve stenosis, but was markedly reduced in all forms of severe heart failure (NYHA III-IV) studied. A reduction of both beta 1- and beta 2-adrenoceptors was found in patients with severe heart failure due to mitral valve stenosis or ischaemic cardiomyopathy. In contrast, a selective down-regulation of beta 1-adrenoceptors with unchanged beta 2-adrenoceptors and hence a relative increase in the latter was observed in idiopathic dilated cardiomyopathy and aortic valve stenosis. It is concluded that the extent of total beta-adrenoceptor down-regulation is related to the degree of heart failure. Selective loss of beta 1-adrenoceptors is not specific for idiopathic dilated cardiomyopathy but also occurs in aortic valve stenosis. Changes in beta 1- and beta 2-subtype distribution are rather related to the aetiology than to the clinical degree of heart failure.

  6. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine.

    Science.gov (United States)

    Perez-Cortes, E J; Islas, A A; Arevalo, J P; Mancilla, C; Monjaraz, E; Salinas-Stefanon, E M

    2015-10-15

    The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (Ito) and the molecular correlate, the Kv4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular Ito and of CHO cells co-transfected with human Kv4.3 and its accessory subunit hKChIP2C by whole-cell voltage-clamp. Mefloquine inhibited rat Ito and hKv4.3+KChIP2C currents in a concentration-dependent manner with a limited voltage dependence and similar potencies (IC50=8.9μM and 10.5μM for cardiac myocytes and Kv4.3 channels, respectively). In addition, mefloquine did not affect the activation of either current but significantly modified the hKv4.3 steady-state inactivation and recovery from inactivation. The effects of this drug was compared with that of 4-aminopyridine (4-AP), a well-known potassium channel blocker and its binding site does not seem to overlap with that of 4-AP.

  7. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    Science.gov (United States)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  8. Non-Invasive Intra-cardiac Pressure Measurements Using Subharmonic-Aided Pressure Estimation: Proof of Concept in Humans.

    Science.gov (United States)

    Dave, Jaydev K; Kulkarni, Sushmita V; Pangaonkar, Purva P; Stanczak, Maria; McDonald, Maureen E; Cohen, Ira S; Mehrotra, Praveen; Savage, Michael P; Walinsky, Paul; Ruggiero, Nicholas J; Fischman, David L; Ogilby, David; VanWhy, Carolyn; Lombardi, Matthew; Forsberg, Flemming

    2017-08-11

    This study evaluated the feasibility of employing non-invasive intra-cardiac pressure estimation using subharmonic signals from ultrasound contrast agents in humans. This institutional review board-approved proof-of-concept study included 15 consenting patients scheduled for left and right heart catheterization. During the catheterization procedure, Definity was infused intra-venously at 4-10 mL/min. Ultrasound scanning was performed with a Sonix RP using pulse inversion, three incident acoustic output levels and 2.5-MHz transmit frequency. Radiofrequency data were processed and subharmonic amplitudes were compared with the pressure catheter data. The correlation coefficient between subharmonic signals and pressure catheter data ranged from -0.3 to -0.9. For acquisitions with optimum acoustic output, pressure errors between the subharmonic technique and catheter were as low as 2.6 mmHg. However, automatically determining optimum acoustic output during scanning for each patient remains to be addressed before clinical applicability can be decided. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Transplante cardíaco humano: experiência inicial Human cardiac transplant: initial experience

    Directory of Open Access Journals (Sweden)

    Noedir A. G Stolf

    1986-12-01

    Full Text Available No Instituto do Coração, de março de 1985 a fevereiro de 1986,11 pacientes foram submetidos a transplante cardíaco ortotópico. Eram todos do sexo masculino, com idade variando de 39 a 54 anos; 6 com cardiopatia isquémica, 4 com cardiomiopatia dilatada e um com cardiomiopatia chagásica. Foi realizado estudo hemodinâmico através de catéter de Swan-Ganz, no pré-operatório, no pós-operatório, após estabilização na unidade de recuperação, e trinta ou mais dias após o transplante. Os dados mostram melhora progressiva em relação ao índice cardíaco, pressão em artéria pulmonar, pressão de capilar pulmonar, resistência vascular pulmonar e resistência vascular sistêmica. Três dos 11 pacientes apresentaram disfunção renal transitória no pós-operatório imediato e que regrediram até o 15º dia, enquanto que 2 pacientes apresentaram aumento moderado da creatinina plasmática. Apenas 3 pacientes não apresentaram qualquer episódio de rejeição; nos demais, esses episódios foram um diagnóstico histológico sem repercussões clínicas. Complicações infecciosas ocorreram em 9 pacientes e foram de fácil controle clínico. No pós-operatório tardio, a hipertensão esteve presente em 8 pacientes, sendo mais acentuada em 2 deles. Não houve óbitos, nesta série de pacientes; todos estão assintomáticos e os 6 primeiros estão trabalhando.At the Instituto do Cora��ão, University of São Paulo Medical School, 11 patients were submitted to heart transplantation from march 1985 up to february 1986. All were male, with ages of 39-59 years, 6 with coronary heart disease, 4 with dilated cardiomyopathy and 1 with Chagas cardiomyopathy. The patients were studied hemodynamically with a Swan-Ganz catheter pre-operatively, at the arrival in the intensive care unit, in the first postoperative day and 30 or more days after the transplant. The data showed that there was a progressive increase of cardiac index and decreases of

  10. Magnetic resonance imaging of microvascular leakage induced by myocardial contrast echocardiography in rats.

    Science.gov (United States)

    Swanson, Scott D; Dou, Chunyan; Miller, Douglas L

    2006-06-01

    The extent and magnitude of microvascular leakage induced by myocardial contrast echocardiography (MCE) were characterized with contrast-aided magnetic resonance imaging (MRI). Evans blue dye, Definity ultrasound contrast agent and Omniscan magnetic resonance contrast agent were injected intravenously in anesthetized rats suspended in a water bath. Diagnostic ultrasound B mode scans with 1:4 end-systolic triggering were performed at 1.5 MHz using a cardiac phased array scanhead to provide a short axis view of the left ventricle. The in situ peak rarefactional pressure amplitude (PRPA) was 2.0 MPa. Microvascular leakage was characterized by extraction of the dye from tissue samples and by imaging the distribution and concentration of Omniscan within the myocardium. The extracted Evans blue was 2.3 times greater than in shams (Prats (after sacrifice). These results demonstrate a potential for MR mapping of capillary leakage induced by contrast-aided ultrasound, with a possible application to spatial characterization of local drug delivery.

  11. 石杉碱甲保护人脑微血管内皮细胞损伤的体外实验研究%Protect Effects of Huperzine A on Methylglyoxal Induced Injury in the Cultured Human Brain Microvascular Endothelial Cell in Vitro Experimental Study

    Institute of Scientific and Technical Information of China (English)

    姜松国; 徐磊; 柴冬梅; 朱辉武; 林铮

    2015-01-01

    目的 体外实验研究石杉碱甲对人脑微血管内皮细胞(human brain microvascular endothelial cells,HBMEC)损伤的保护作用和机制.方法 在培养的HBMEC上,利用丙酮醛诱导细胞损伤,通过MTT检测细胞活力,LDH、SOD活性试剂盒及caspase-3活性试剂盒检测细胞损伤情况,观察石杉碱甲的作用和机制.结果 石杉碱甲呈浓度依赖地保护MGO诱导的细胞损伤,在10-5 mol·L-1时呈最大保护作用.丙酮醛能诱导HBMEC的SOD活性下降,而石杉碱甲(10-6,10-5mol·L-1)能逆转这种作用.进一步研究发现石杉碱甲能抑制丙酮醛诱导的caspase-3活性上升.结论 石杉碱甲对丙酮醛诱导的HBMEC的损伤具有保护作用,这可能与其抗自由基和抗凋亡作用有关.

  12. Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this beta-galactoside-binding protein in cardiac Chagas' disease.

    Science.gov (United States)

    Giordanengo, L; Gea, S; Barbieri, G; Rabinovich, G A

    2001-05-01

    The pathogenesis of Chagas' disease has been subject of active research and still remains to be ascertained. Galectin-1 (Gal-1), a member of a conserved family of animal beta-galactoside-binding proteins, localized in human heart tissue, has been suggested to play key roles in immunological and inflammatory processes. In the present study we demonstrated the occurrence of anti-Gal-1 autoAb in sera from patients in the acute and chronic stages of Chagas' disease (ACD and CCD) by means of ELISA and Western blot analysis. We found a marked increase in the level and frequency of Ig E anti-Gal-1 antibodies in sera from patients with ACD, but a low frequency of Ig M anti-Gal-1 immunoreactivity. Moreover, Ig G immunoreactivity to this beta-galactoside-binding protein was found to be correlated with the severity of cardiac damage in CCD, but was absent in nonrelated cardiomyopathies. We could not detect immunoreactivity with Trypanosoma cruzi antigens using a polyclonal antibody raised to human Gal-1 and no hemagglutinating activity could be specifically eluted from a lactosyl-agarose matrix from parasite lysates. Moreover, despite sequence homology between Gal-1 and shed acute phase antigen (SAPA) of T. cruzi, anti-Gal-1 antibodies eluted from human sera failed to cross-react with SAPA. In an attempt to explore whether Gal-1 immunoreactivity was originated from endogenous human Gal-1, we finally investigated its expression levels in cardiac tissue (the main target of Chagas' disease). This protein was found to be markedly upregulated in cardiac tissue from patients with severe CCD, compared to cardiac tissue from normal individuals.

  13. Anti-galectin-1 autoantibodies in human Trypanosoma cruzi infection: differential expression of this β-galactoside-binding protein in cardiac Chagas' disease

    Science.gov (United States)

    Giordanengo, L; Gea, S; Barbieri, G; Rabinovich, G A

    2001-01-01

    The pathogenesis of Chagas' disease has been subject of active research and still remains to be ascertained. Galectin-1 (Gal-1), a member of a conserved family of animal β-galactoside-binding proteins, localized in human heart tissue, has been suggested to play key roles in immunological and inflammatory processes. In the present study we demonstrated the occurrence of anti-Gal-1 autoAb in sera from patients in the acute and chronic stages of Chagas' disease (ACD and CCD) by means of ELISA and Western blot analysis. We found a marked increase in the level and frequency of Ig E anti-Gal-1 antibodies in sera from patients with ACD, but a low frequency of Ig M anti-Gal-1 immunoreactivity. Moreover, Ig G immunoreactivity to this β-galactoside-binding protein was found to be correlated with the severity of cardiac damage in CCD, but was absent in nonrelated cardiomyopathies. We could not detect immunoreactivity with Trypanosoma cruzi antigens using a polyclonal antibody raised to human Gal-1 and no hemagglutinating activity could be specifically eluted from a lactosyl-agarose matrix from parasite lysates. Moreover, despite sequence homology between Gal-1 and shed acute phase antigen (SAPA) of T. cruzi, anti-Gal-1 antibodies eluted from human sera failed to cross-react with SAPA. In an attempt to explore whether Gal-1 immunoreactivity was originated from endogenous human Gal-1, we finally investigated its expression levels in cardiac tissue (the main target of Chagas' disease). This protein was found to be markedly upregulated in cardiac tissue from patients with severe CCD, compared to cardiac tissue from normal individuals. PMID:11422204

  14. Block of human cardiac sodium channels by lacosamide: evidence for slow drug binding along the activation pathway.

    Science.gov (United States)

    Wang, Ging Kuo; Wang, Sho-Ya

    2014-05-01

    Lacosamide is an anticonvulsant hypothesized to enhance slow inactivation of neuronal Na(+) channels for its therapeutic action. Cardiac Na(+) channels display less and incomplete slow inactivation, but their sensitivity toward lacosamide remains unknown. We therefore investigated the action of lacosamide in human cardiac Nav1.5 and Nav1.5-CW inactivation-deficient Na(+) channels. Lacosamide showed little effect on hNav1.5 Na(+) currents at 300 µM when cells were held at -140 mV. With 30-second conditioning pulses from -90 to -50 mV; however, hNav1.5 Na(+) channels became sensitive to lacosamide with IC50 (50% inhibitory concentration) around 70-80 µM. Higher IC50 values were found at -110 and -30 mV. The development of lacosamide block at -70 mV was slow in wild-type Na(+) channels (τ; 8.04 ± 0.39 seconds, n = 8). This time constant was significantly accelerated in hNav1.5-CW inactivation-deficient counterparts. The recovery from lacosamide block at -70 mV for 10 seconds was relatively rapid in wild-type Na(+) channels (τ; 639 ± 90 milliseconds, n = 8). This recovery was accelerated further in hNav1.5-CW counterparts. Unexpectedly, lacosamide elicited a time-dependent block of persistent hNav1.5-CW Na(+) currents with an IC50 of 242 ± 19 µM (n = 5). Furthermore, both hNav1.5-CW/F1760K mutant and batrachotoxin-activated hNav1.5 Na(+) channels became completely lacosamide resistant, indicating that the lacosamide receptor overlaps receptors for local anesthetics and batrachotoxin. Our results together suggest that lacosamide targets the intermediate preopen and open states of hNav1.5 Na(+) channels. Lacosamide may thus track closely the conformational changes at the hNav1.5-F1760 region along the activation pathway.

  15. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    Science.gov (United States)

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. Copyright © 2016 the American Physiological Society.

  16. Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans.

    Directory of Open Access Journals (Sweden)

    Jozsef eHaller

    2014-10-01

    Full Text Available Among the multitude of factors that can transform human social interactions into violent conflicts, biological features received much attention in recent years as correlates of decision making and aggressiveness especially in critical situations. We present here a highly realistic new model of human aggression and violence, where genuine acts of aggression are readily performed and which at the same time allows the parallel recording of biological concomitants. Particularly, we studied police officers trained at the International Training Centre (Budapest, Hungary, who are prepared to perform operations under extreme conditions of stress. We found that aggressive arousal can transform a basically peaceful social encounter into a violent conflict. Autonomic recordings show that this change is accompanied by increased heart rates, which was associated earlier with reduced cognitive complexity of perceptions (attentional myopia and promotes a bias towards hostile attributions and aggression. We also observed reduced heart rate variability in violent subjects, which is believed to signal a poor functioning of prefrontal-subcortical inhibitory circuits and reduces self-control. Importantly, these autonomic particularities were observed already at the beginning of social encounters i.e. before aggressive acts were initiated, suggesting that individual characteristics of the stress-response define the way in which social pressure affects social behavior, particularly the way in which this develops into violence. Taken together, these findings suggest that cardiac autonomic functions are valuable external symptoms of internal motivational states and decision making processes, and raise the possibility that behavior under social pressure can be predicted by the individual characteristics of stress responsiveness.

  17. Clinical outcome following micro-vascular decompression for trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Godugu Bhaskar Rao

    2015-07-01

    Conclusion: Micro-vascular decompression is safe and effective in producing good pain relief over a long term in patients with Trigeminal neuralgias refractive to medical treatment. [Int J Res Med Sci 2015; 3(7.000: 1741-1744

  18. Retinal microvascular abnormalities and stroke: a systematic review

    NARCIS (Netherlands)

    Doubal, F.N.; Hokke, P.E.; Wardlaw, J.M.

    2009-01-01

    Background: Lacunar strokes account for 25% of ischaemic strokes, but their precise aetiology is unknown. Similarities between the retinal and cerebral small vessels mean that clarification of the exact relationship between retinal microvascular abnormalities and stroke, and particularly with stroke

  19. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  20. Induction of complement proteins in a mouse model for cerebral microvascular A beta deposition.

    Science.gov (United States)

    Fan, Rong; DeFilippis, Kelly; Van Nostrand, William E

    2007-09-18

    The deposition of amyloid beta-protein (A beta) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the A beta peptide have been linked to the increase of vascular A beta deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-beta precursor protein transgenic mice harboring two CAA A beta mutations (Dutch E693Q and Iowa D694N) that mimic the prevalent cerebral microvascular A beta deposition observed in those patients, and the Swedish mutations (K670N/M671L) to increase A beta production. In these Tg-SwDI mice, we have reported predominant fibrillar A beta along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular A beta in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular A beta. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus) as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus), C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular A beta deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular A beta deposition

  1. Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells.

    Science.gov (United States)

    Zhang, Ying-Ying; Li, Gang; Che, Hui; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2015-01-01

    Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa), a voltage-gated TTX-sensitive sodium current (INa.TTX), and an inward rectifier K+ current (IKir) were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.

  2. Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Ying-Ying Zhang

    Full Text Available Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa, a voltage-gated TTX-sensitive sodium current (INa.TTX, and an inward rectifier K+ current (IKir were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.

  3. Effect of recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy on hemodynamics and cardiac in patients with acute decompensated heart failure

    Institute of Scientific and Technical Information of China (English)

    Qiao-Li Xing; Xian-Hong Ma; Lu Wang

    2016-01-01

    Objective:To evaluate the effect of recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy on hemodynamics and cardiac function levels in patients with acute decompensated heart failure.Methods:A total of 118 patients with acute decompensated heart failure were randomly divided into observation group and the control group (n=59). Control group received clinical conventional therapy for heart failure, observation group received recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy, and the differences in hemodynamics, cardiac function and circulation factor levels were compared between two groups after 12 hours of treatment. Results: After 12 hours of treatment, central venous pressure, right atrial pressure and pulmonary capillary wedge pressure values as well as circulating blood IL-6, hsCRP, ST2, NT-proBNP and cTnⅠlevels of observation group were lower than those of control group, and left heart GLS, GCS, GSRs, GSRe, GSRa, ROT and ROTR levels were higher than those of control group (P<0.05).Conclusions:Recombinant human brain natriuretic peptide combined with sodium nitroprusside therapy for patients with acute decompensated heart failure has significant advantages in optimizing hemodynamics, cardiac function and other aspects.

  4. Relaxin inhibits cardiac fibrosis and endothelial–mesenchymal transition via the Notch pathway

    Directory of Open Access Journals (Sweden)

    Zhou X

    2015-08-01

    Full Text Available X Zhou,1 X Chen,2 JJ Cai,2 LZ Chen,3 YS Gong,4 LX Wang,5 Z Gao,1 HQ Zhang,1 WJ Huang,1 H Zhou1 1Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, 2Wenzhou Medical University, 3Department of Clinical Laboratory, Wenzhou Central Hospital, 4Institute of Hypoxia Medicine, Wenzhou Medical University, 5Department of Respiratory Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China Background: Relaxin (RLX can prevent cardiac fibrosis. We aimed to investigate the possible mechanism and signal transduction pathway of RLX inhibiting cardiac fibrosis.Methods: Isoproterenol (5 mg·kg-1·d-1 was used to establish the cardiac fibrosis model in rats, which were administered RLX. The cardiac function, related targets of cardiac fibrosis, and endothelial–mesenchymal transition (EndMT were measured. Transforming growth factor β (TGF-β was used to induce EndMT in human umbilical vein endothelial cells, which were pretreated with RLX, 200 ng·mL-1, then with the inhibitor of Notch. Transwell cell migration was used to evaluate cell migration. CD31 and vimentin content was determined by immunofluorescence staining and Western blot analysis. Notch protein level was examined by Western blot analysis.Results: RLX improved cardiac function in rats with cardiac fibrosis; it reduced the content of collagen I and III, increased the microvascular density of the myocardium, and suppressed the EndMT in heart tissue. In vitro, RLX decreased the mobility of human umbilical vein endothelial cells induced by TGF-β, increased the expression of endothelial CD31, and decreased vimentin content. Compared to TGF-β and RLX co-culture alone, TGF-β + RLX + Notch inhibitor increased cell mobility and the EndMT, but decreased the levels of Notch-1, HES-1, and Jagged-1 proteins.Conclusion: RLX may inhibit the cardiac fibrosis via EndMT by Notch-mediated signaling. Keywords: relaxin, endothelial to mesenchymal transition

  5. On the role of the gap junction protein Cx43 (GJA1 in human cardiac malformations with Fallot-pathology. a study on paediatric cardiac specimen.

    Directory of Open Access Journals (Sweden)

    Aida Salameh

    Full Text Available INTRODUCTION: Gap junction channels are involved in growth and differentiation. Therefore, we wanted to elucidate if the main cardiac gap junction protein connexin43 (GJA1 is altered in patients with Tetralogy of Fallot or double-outlet right ventricle of Fallot-type (62 patients referred to as Fallot compared to other cardiac anomalies (21 patients referred to as non-Fallot. Patients were divided into three age groups: 0-2years, 2-12years and >12years. Myocardial tissue samples were collected during corrective surgery and analysis of cell morphology, GJA1- and N-cadherin (CDH2-distribution, as well as GJA1 protein- and mRNA-expression was carried out. Moreover, GJA1-gene analysis of 16 patients and 20 healthy subjects was performed. RESULTS: Myocardial cell length and width were significantly increased in the oldest age group compared to the younger ones. GJA1 distribution changed significantly during maturation with the ratio of polar/lateral GJA1 increasing from 2.93±0.68 to 8.52±1.41. While in 0-2years old patients ∼6% of the lateral GJA1 was co-localised with CDH2 this decreased with age. Furthermore, the changes in cell morphology and GJA1-distribution were not due to the heart defect itself but were significantly dependent on age. Total GJA1 protein expression decreased during growing-up, whereas GJA1-mRNA remained unchanged. Sequencing of the GJA1-gene revealed only few heterozygous single nucleotide polymorphisms within the Fallot and the healthy control group. CONCLUSION: During maturation significant changes in gap junction remodelling occur which might be necessary for the growing and developing heart. In our study point mutations within the Cx43-gene could not be identified as a cause of the development of TOF.

  6. [Quantitative Analysis of Wall Shear Stress for Human Carotid Bifurcation at Cardiac Phases by the Use of Phase Contrast Cine Magnetic Resonance Imaging: Computational Fluid Dynamics Study].

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2015-12-01

    Detailed strategy for regional hemodynamics is significant for knowledge of plaque development on vascular diseases such as atherosclerosis. The aim of this study was to derive relation between atherosclerosis and hemodynamics at human carotid bifurcation by the use of computational fluid dynamics (CFD), and to provide more accurate hemodynamic information. Blood velocity datasets at common carotid artery were obtained by phase-contrast cine magnetic resonance imaging (PC cine MRI). Carotid bifurcation model was computed for systolic, mid-diastolic, and end-diastolic phase. Comparison of wall shear stress (WSS) was performed for each cardiac phase. PC cine MRI provided velocity measurement for common carotid artery with various cardiac phases. The blood velocity had acute variation from 0.21 m/s to 1.07 m/s at systolic phase. The variation of WSS during cardiac phase was presented at carotid bifurcation model. High shear stress area was observed at dividing wall for all cardiac phases. The systole-diastole WSS ratio was 10.15 at internal carotid side of bifurcation. And low shear stress (cine MRI was allowed to determine an accurate analysis condition. This led to the representation of hemodynamics in vivo.

  7. Microvascular system of anterior cruciate ligament in dogs.

    Science.gov (United States)

    Kobayashi, Shigeru; Baba, Hisatoshi; Uchida, Kenzo; Negoro, Kohei; Sato, Mituhiko; Miyazaki, Tsuyoshi; Nomura, Eiki; Murakami, Kaname; Shimizubata, Matsuyuki; Meir, Adam

    2006-07-01

    This study was done to investigate the microvascular system of anterior cruciate ligament (ACL) using dogs. The objective was to study the microvascular architecture and the status of the barrier function of the capillary wall in the ACL by using microangiogram, scanning (SEM), and transmission electron microscopy (TEM). The vascular system in the ACL has been intensively studied by a number of researchers, using several microangiographic techniques in dogs, rabbits, and humans. However, most of these microangiographic studies had significant shortcomings, including the lack of three-dimensional observations and function of the blood-joint barrier in the ACL. In this study, the microstructure of the ACL was examined using microangiogram, SEM, and TEM. We investigated the vasculature of the ACL with SEM of vascular corrosion casts. In addition, we examined the status of the barrier function of the capillary wall in the ACL using the protein tracer horseradish peroxidase (HRP). Feeding vessels of the ligament were predominantly coming from the synovial-derived vessels originating from the synovium attached to the ligament near the tibial and femoral bone insertions of the ACL. The anterior cruciate ligament was surrounded by synovium, which had abundant vessels. The branches of these synovial vessels were penetrating into the ligament and making the intrinsic vascular network. It was also ascertained under SEM that the perivascular space around the intrinsic vessels were communicating through the intrinsic ligament fiber bundles and the mesh-like synovial membrane. The capillaries in the ACL were all of the continuous type under TEM. The protein tracer that was injected into the joint space passed through the synovial membrane and entered into the capillary lumen in the ACL, but the tracer that was injected intravenously did not appear in the perivascular space. The existence of a blood-ACL barrier does not necessarily imply the existence of an ACL-blood barrier. We

  8. Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: current status and future directions.

    Science.gov (United States)

    Wei, H M; Wong, P; Hsu, L F; Shim, W

    2009-10-01

    Stem cell-based cell therapy has emerged as a potentially therapeutic option for patients with acute myocardial infarction (AMI) and heart failure. With the completion of a number of trials using bone marrow (BM)-derived adult stem cells, critical examination of the overall clinical benefits, limitations and potential side effects of this revolutionary treatment will pave the way for future clinical research. At present, clinical trials have been conducted almost exclusively using BM stem cells. The primary endpoints of these trials are mainly safety and feasibility, with secondary endpoints in the efficacy of post-myocardial infarction (MI) cardiac repair. Intervention with BM-derived cells was mainly carried out by endogenously-mobilised BM cells with granulocyte-colony stimulating factor, and more frequently, by intracoronary infusion or direct intramyocardial injection of autologous BM cells. While these studies have been proven safe and feasible without notable side effects, mixed outcomes in terms of clinical benefits have been reported. The major clinical benefits observed are improved cardiac contractile function and suppressed left ventricular negative remodelling, including reduced infarct size and improved cardiac perfusion of infarct zone. Moderate and transient clinical benefits have been mostly observed in studies with intracoronary infusion or direct intramyocardial injection of BM cells. These effects are widely considered to be indirect effects of implanted cells in association with paracrine factors, cell fusion, passive ventricular remodelling, or the responses of endogenous cardiac stem cells. In contrast, evidence of cardiac regeneration characterised by differentiation of implanted stem cells into cardiomyocytes and other cardiac cell lineages, is weak or lacking. To elucidate a clear risk-benefit of this exciting therapy, future studies on the mechanisms of cardiac cell therapy will need to focus on confirming the ideal cell types in relation

  9. Changes in cardiac aldosterone and its synthase in rats with chronic heart failure: an intervention study of long-term treatment with recombinant human brain natriuretic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.Q. [Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei (China); Hong, H.S. [Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Lin, X.H. [Department of Emergency Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Chen, L.L. [Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Li, Y.H. [Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei (China)

    2014-07-11

    The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.

  10. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  11. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow and oxygenation

    Directory of Open Access Journals (Sweden)

    Louis Gagnon

    2016-08-01

    Full Text Available Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1 interpretation of functional Magnetic Resonance Imaging (fMRI signals, and (2 investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These bottom-up models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  12. Comparison of tegaserod (HTF 919) and its main human metabolite with cisapride and erythromycin on cardiac repolarization in the isolated rabbit heart.

    Science.gov (United States)

    Drici, M D; Ebert, S N; Wang, W X; Rodriguez, I; Liu, X K; Whitfield, B H; Woosley, R L

    1999-07-01

    Tegaserod (HTF 919) is a new drug being developed for gastrointestinal motility disorders. Because other gastrointestinal prokinetic agents, such as cisapride and erythromycin, cause slowing of cardiac repolarization and have been implicated in the development of the potentially fatal ventricular arrhythmia, torsades de pointes, a study was initiated to determine whether tegaserod and its main human metabolite adversely influence cardiac repolarization. By using isolated Langendorff-perfused rabbit hearts, we show that QT intervals remain unchanged at concentrations of tegaserod from 0.5 to 10 microM. It was not until the tegaserod concentration was increased to 50 microM (roughly 500-5,000 times more concentrated than those typically found in human plasma after administration of recommended clinical dosages), that a small, but significant increase in the QT interval (12+/-4%; p 70%, respectively; p < 0.01; n = 4). Erythromycin also caused significant lengthening of QT intervals (11+/-2%; p < 0.001; n = 4), although 100 microM concentrations of this drug were required to achieve this effect. These results demonstrate that both cisapride and erythromycin can slow cardiac repolarization at therapeutic doses and that tegaserod's lack of QT prolongation at therapeutic doses suggests that it has the potential to be a safer alternative to cisapride as a gastrointestinal prokinetic agent.

  13. Heart mitochondrial proteome study elucidates changes in cardiac energy metabolism and antioxidant PRDX3 in human dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Esther Roselló-Lletí

    Full Text Available Dilated cardiomyopathy (DCM is a public health problem with no available curative treatment, and mitochondrial dysfunction plays a critical role in its development. The present study is the first to analyze the mitochondrial proteome in cardiac tissue of patients with DCM to identify potential molecular targets for its therapeutic intervention.16 left ventricular (LV samples obtained from explanted human hearts with DCM (n = 8 and control donors (n = 8 were extracted to perform a proteomic approach to investigate the variations in mitochondrial protein expression. The proteome of the samples was analyzed by quantitative differential electrophoresis and Mass Spectrometry. These changes were validated by classical techniques and by novel and precise selected reaction monitoring analysis and RNA sequencing approach increasing the total heart samples up to 25. We found significant alterations in energy metabolism, especially in molecules involved in substrate utilization (ODPA, ETFD, DLDH, energy production (ATPA, other metabolic pathways (AL4A1 and protein synthesis (EFTU, obtaining considerable and specific relationships between the alterations detected in these processes. Importantly, we observed that the antioxidant PRDX3 overexpression is associated with impaired ventricular function. PRDX3 is significantly related to LV end systolic and diastolic diameter (r = 0.73, p value<0.01; r = 0.71, p value<0.01, fractional shortening, and ejection fraction (r = -0.61, p value<0.05; and r = -0.62, p value<0.05, respectively.This work could be a pivotal study to gain more knowledge on the cellular mechanisms related to the pathophysiology of this disease and may lead to the development of etiology-specific heart failure therapies. We suggest new molecular targets for therapeutic interventions, something that up to now has been lacking.

  14. Hemodynamic Consequences of Changes in Microvascular Structure.

    Science.gov (United States)

    Rizzoni, Damiano; Agabiti-Rosei, Claudia; Agabiti-Rosei, Enrico

    2017-10-01

    In hypertension, an increased media-to-lumen ratio of small resistance arteries might play an important role in the increase of vascular resistance, and may also be an adaptive response to the increased hemodynamic load. The presence of morphological alteration in the microvasculature may be associated to an impaired tissue perfusion and/or to the development of target organ damage. Structural alterations in the microcirculation might represent a predictor of the onset of cardio-cerebrovascular events and hypertension complications. A cross-talk between the small and large artery may exaggerate arterial damage, following a vicious circle. Therefore, in the present review, possible hemodynamic consequences of the presence of microvascular structural alterations will be considered, in terms of their time of onset, role in the development and/or maintenance of high blood pressure values, and interrelationships with structural/mechanical alterations of large conductance arteries. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. [Microvascular anastomoses in cervical esophageal reconstruction].

    Science.gov (United States)

    Takushima, A; Harii, K; Asato, H

    2001-09-01

    Ischemia or hemostasis in the gastric, jejunal, and colonic pedicle after esophagectomy is believed to contribute significantly to postoperative complications. With the advent of microvascular anastomoses, many surgeons have adopted vascular augmentation (supercharge) as a means of avoiding these difficulties. Microsurgical free tissue transfer represented by the free jejunum and forearm flap also plays an important role in esophageal reconstruction. In this paper, the authors introduce the technical points important for successful revascularization including the choice of recipient vessels, setting up of the reconstructive materials, and postoperative monitoring. In cases of gastric pull-up elevated via posterior mediastinum, the left gastroduodenal vessels are anastomosed to the cervical transverse or superior thyroidal vessels. In cases of duodenal or colonic pull-up elevated via the anterosternal route, the vascular pedicles are anastomosed to the internal mammary vessels which are dissected by resecting the costal cartilage. When the free jejunum flap is used, the cervical transverse or superior thyroidal vessels are most frequently used as recipients. Postoperative monitoring of free flaps is performed using Doppler ultrasound or through a small skin incision made above the transferred tissue. Although gastric or colonic pull-up is difficult to monitor, color Doppler sonography permits quantitative analysis of blood flow and may be a useful option.

  16. Quantitative assessment of myocardial blush grade in patients with coronary artery disease and in cardiac transplant recipients

    Institute of Scientific and Technical Information of China (English)

    Nina; Patricia; Hofmann; Hartmut; Dickhaus; Hugo; A; Katus; Grigorios; Korosoglou

    2014-01-01

    Quantitative assessment of myocardial perfusion by myocardial blush grade(MBG) is an angiographic computer-assisted method to assess myocardial tissue-level reperfusion in patients with acute coronary syndromes and microvascular integrity in heart transplant recipients with suspected cardiac allograft vasculopathy. This review describes the ability of quantitative MBG as a simple, fast and cost effective modality for the prompt diagnosis of impaired microvascular integrity during routine cardiac catheterization. Herein, we summarize the existing evidence, its usefulness in the clinical routine, and compare this method to other techniques which can be used for the assessment of myocardial perfusion.

  17. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs Cultured on an Aligned-Nanofiber Cardiac Patch.

    Directory of Open Access Journals (Sweden)

    Mahmood Khan

    Full Text Available Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates.hiPSC-CMs were cultured on; 1 a highly aligned polylactide-co-glycolide (PLGA nanofiber scaffold (~50 microns thick and 2 on a standard flat culture plate. Scanning electron microscopy (SEM was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43 was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes.SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro.Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic

  18. Cardiac Sarcoidosis.

    Science.gov (United States)

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  19. Associations of Macro- and Microvascular Endothelial Dysfunction With Subclinical Ventricular Dysfunction in End-Stage Renal Disease.

    Science.gov (United States)

    Dubin, Ruth F; Guajardo, Isabella; Ayer, Amrita; Mills, Claire; Donovan, Catherine; Beussink, Lauren; Scherzer, Rebecca; Ganz, Peter; Shah, Sanjiv J

    2016-10-01

    Patients with end-stage renal disease (ESRD) suffer high rates of heart failure and cardiovascular mortality, and we lack a thorough understanding of what, if any, modifiable factors contribute to cardiac dysfunction in these high-risk patients. To evaluate endothelial function as a potentially modifiable cause of cardiac dysfunction in ESRD, we investigated cross-sectional associations of macro- and microvascular dysfunction with left and right ventricular dysfunction in a well-controlled ESRD cohort. We performed comprehensive echocardiography, including tissue Doppler imaging and speckle-tracking echocardiography of the left and right ventricle, in 149 ESRD patients enrolled in an ongoing prospective, observational study. Of these participants, 123 also underwent endothelium-dependent flow-mediated dilation of the brachial artery (macrovascular function). Microvascular function was measured as the velocity time integral of hyperemic blood flow after cuff deflation. Impaired flow-mediated dilation was associated with higher left ventricular mass, independently of age and blood pressure: per 2-fold lower flow-mediated dilation, left ventricular mass was 4.1% higher (95% confidence interval, 0.49-7.7; P=0.03). After adjustment for demographics, blood pressure, comorbidities, and medications, a 2-fold lower velocity time integral was associated with 9.5% higher E/e' ratio (95% confidence interval, 1.0-16; P=0.03) and 6.7% lower absolute right ventricular longitudinal strain (95% confidence interval, 2.0-12; P=0.003). Endothelial dysfunction is a major correlate of cardiac dysfunction in ESRD, particularly diastolic and right ventricular dysfunction, in patients whose volume status is well controlled. Future investigations are needed to determine whether therapies targeting the vascular endothelium could improve cardiac outcomes in ESRD.

  20. A murine model of myocardial microvascular thrombosis

    Science.gov (United States)

    Christie, Patricia D.; Edelberg, Jay M.; Picard, Michael H.; Foulkes, Andrea S.; Mamuya, Wilfred; Weiler-Guettler, Hartmut; Rubin, Robert H.; Gilbert, Peter; Rosenberg, Robert D.

    1999-01-01

    Disorders of hemostasis lead to vascular pathology. Endothelium-derived gene products play a critical role in the formation and degradation of fibrin. We sought to characterize the importance of these locally produced factors in the formation of fibrin in the cardiac macrovasculature and microvasculature. This study used mice with modifications of the thrombomodulin (TM) gene, the tissue-type plasminogen activator (tPA) gene, and the urokinase-type plasminogen activator (uPA) gene. The results revealed that tPA played the most important role in local regulation of fibrin deposition in the heart, with lesser contributions by TM and uPA (least significant). Moreover, a synergistic relationship in fibrin formation existed in mice with concomitant modifications of tPA and TM, resulting in myocardial necrosis and depressed cardiac function. The data were fit to a statistical model that may offer a foundation for examination of hemostasis-regulating gene interactions. PMID:10487767

  1. Bifid cardiac apex in a 25-year-old male with sudden cardiac death.

    Science.gov (United States)

    Wu, Annie; Kay, Deborah; Fishbein, Michael C

    2014-01-01

    Although a bifid cardiac apex is common in certain marine animals, it is an uncommon finding in humans. When present, bifid cardiac apex is usually associated with other congenital heart anomalies. We present a case of bifid cardiac apex that was an incidental finding in a 25-year-old male with sudden cardiac death from combined drug toxicity. On gross examination, there was a bifid cardiac apex with a 2-cm long cleft. There were no other significant gross or microscopic abnormalities. This case represents the very rare occurrence of a bifid cardiac apex as an isolated cardiac anomaly.

  2. Autoantibody germ-line gene segment encodes V{sub H} and V{sub L} regions of a human anti-streptococcal monoclonal antibody recognizing streptococcal M protein and human cardiac myosin epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, A.; Cunningham, M.W. [Univ. of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Adderson, E.E. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1995-04-15

    Cross-reactivity of anti-streptococcal Abs with human cardiac myosin may result in sequelae following group A streptococcal infections. Molecular mimicry between group A streptococcal M protein and cardiac myosin may be the basis for the immunologic cross-reactivity. In this study, a cross-reactive human anti-streptococcal/antimyosin mAb (10.2.3) was characterized, and the myosin epitopes were recognized by the Ab identified. mAb 10.2.3 reacted with four peptides from the light meromyosin (LMM) tail fragment of human cardiac myosin, including LMM-10 (1411-1428), LMM-23 (1580-1597), LMM-27 (1632-1649), and LMM-30 (1671-1687). Only LMM-30 inhibited binding of mAb 10.2.3 to streptococcal M protein and human cardiac myosin. Human mAb 10.2.3 labeled cytoskeletal structures within rat heart cells in indirect immunofluorescence, and reacted with group A streptococci expressing various M protein serotypes, PepM5, and recombinant M protein. The nucleotide sequence of gene segments encoding the Ig heavy and light chain V region of mAb 10.2.3 was determined. The light chain V segment was encoded by a VK1 gene segment that was 98.5% identical with germ-line gene humig{sub K}Vi5. The V segment of the heavy chain was encoded by a V{sub H}3a gene segment that differed from the V{sub H}26 germ-line gene by a single base change. V{sub H}26 is expressed preferentially in early development and encodes autoantibodies with anti-DNA and rheumatoid factor specificities. Anti-streptococcal mAb 10.2.3 is an autoantibody encoded by V{sub H} and V{sub L} genes, with little or no somatic mutation. 63 refs., 11 figs.

  3. A Novel Microvascular Flow Technique: Initial Results in Thyroids.

    Science.gov (United States)

    Machado, Priscilla; Segal, Sharon; Lyshchik, Andrej; Forsberg, Flemming

    2016-03-01

    To evaluate the flow imaging capabilities of a new prototype ultrasound (US) image processing technique (superb micro-vascular imaging [SMI]; Toshiba Medical Systems, Tokyo, Japan) for depiction of microvascular flow in normal thyroid tissue and thyroid nodules compared with standard color and power Doppler US imaging.Ten healthy volunteers and 22 patients, with a total of 25 thyroid nodules, scheduled for US-guided fine needle aspiration were enrolled in this prospective study. Subjects underwent US examination consisting of grayscale, color and power Doppler imaging (CDI and PDI) followed by color and monochrome SMI and pulsed Doppler. SMI is a novel, microvascular flow imaging mode implemented on the Aplio 500 US system (Toshiba). SMI uses advanced clutter suppression to extract flow signals from large to small vessels and depicts this information at high frame rates as a color overlay image or as a monochrome map of flow. Two radiologists independently scored still images and digital clips for overall flow detection, vessel branching details and noise on a visual-analog scale of 1 (worst) to 10 (best).For the volunteers SMI visualized microvasculature with significantly lower velocity than CDI and PDI (P SMI demonstrated microvascular flow with significantly higher image scores and provided better depiction of the vessel branching details compared with CDI and PDI (P SMI mode than in the other modes, including color SMI (P SMI mode consistently improved the depiction of thyroid microvascular flow compared with standard CDI and PDI.

  4. Diabetic Peripheral Microvascular Complications: Relationship to Cognitive Function

    Directory of Open Access Journals (Sweden)

    Lorraine Ba-Tin

    2011-01-01

    Full Text Available Peripheral microvascular complications in diabetes are associated with concurrent cerebrovascular disease. As detailed cognitive assessment is not routinely carried out among diabetic patients, the aim was to establish whether the presence of clinical “peripheral” microvascular disease can identify a subgroup of patients with early evidence of cognitive impairment. Detailed psychometric assessment was performed in 23 diabetic patients with no microvascular complications (Group D, 27 diabetic patients with at least one microvascular complication: retinopathy, neuropathy, and/or nephropathy (Group DC, and 25 healthy controls (Group H. Groups D and DC participants had significantly lower scores on reaction time (P=0.003 and 0.0001, resp. compared to controls. Similarly, groups D and DC participants had significantly lower scores on rapid processing of visual information (P=0.034 and 0.001, resp. compared to controls. In contrast, there was no significant difference between Groups D and DC on any of the cognitive areas examined. The results show that diabetes, in general, is associated with cognitive dysfunction, but the additional presence of peripheral microvascular disease does not add to cognitive decline. The study, however, indirectly supports the notion that the aetiology of cognitive impairment in diabetes may not be restricted to vascular pathology.

  5. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  6. Rickettsiae induce microvascular hyperpermeability via phosphorylation of VE-cadherins: evidence from atomic force microscopy and biochemical studies.

    Directory of Open Access Journals (Sweden)

    Bin Gong

    Full Text Available The most prominent pathophysiological effect of spotted fever group (SFG rickettsial infection of microvascular endothelial cells (ECs is an enhanced vascular permeability, promoting vasogenic c