WorldWideScience

Sample records for human cannabinoid cb2

  1. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Onaivi

    Full Text Available BACKGROUND: Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R but not (H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.

  2. Opposite changes in cannabinoid CB1 and CB2 receptor expression in human gliomas.

    Science.gov (United States)

    De Jesús, Maider López; Hostalot, Cristina; Garibi, Jesús M; Sallés, Joan; Meana, J Javier; Callado, Luis F

    2010-01-01

    Gliomas are the most important group of malignant primary brain tumors and one of the most aggressive forms of cancer. During the last years, several studies have demonstrated that cannabinoids induce apoptosis of glioma cells and inhibit angiogenesis of gliomas in vivo. As the effects of cannabinoids rely on CB(1) and CB(2) receptors activation, the aim of the present study was to investigate both receptors protein expression in cellular membrane homogenates of human glial tumors using specific antibodies raised against these proteins. Additionally, we studied the functionality of the cannabinoid receptors in glioblastomas by using WIN 55,212-2 stimulated [(35)S]GTPgammaS binding. Western blot analysis showed that CB(1) receptor immunoreactivity was significantly lower in glioblastoma multiforme (-43%, n=10; p<0.05) than in normal post-mortem brain tissue (n=16). No significant differences were found for astrocytoma (n=6) and meningioma (n=8) samples. Conversely, CB(2) receptor immunoreactivity was significantly greater in membranes of glioblastoma multiforme (765%, n=9; p<0.05) and astrocytoma (471%, n=4; p<0.05) than in control brain tissue (n=10). Finally, the maximal stimulation of [(35)S]GTPgammaS binding by WIN 55,212-2 was significantly lower in glioblastomas (134+/-4%) than in control membranes (183+/-2%; p<0.05). The basal [(35)S]GTPgammaS binding and the EC(50) values were not significantly different between both groups. The present results demonstrate opposite changes in CB(1) and CB(2) receptor protein expression in human gliomas. These changes may be of interest for further research about the therapeutic effects of cannabinoids in glial tumors.

  3. Binding thermodynamics at the human cannabinoid CB1 and CB2 receptors.

    Science.gov (United States)

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Borea, Pier Andrea

    2010-02-01

    The thermodynamic parameters DeltaG degrees , DeltaH degrees and DeltaS degrees of the binding equilibrium of agonists and antagonists at cannabinoid CB(1) and CB(2) receptors were determined by means of affinity measurements at different temperatures and van't Hoff plots were constructed. Affinity constants were measured on CHO cells transfected with the human CB(1) and CB(2) receptors by inhibition assays of the binding of the cannabinoid receptor agonist [(3)H]-CP-55,940. van't Hoff plots were linear for agonists and antagonists in the temperature range 0-30 degrees C. The thermodynamic parameters for CB(1) receptors fall in the ranges 17< or =DeltaH degrees < or =59 kJ/mol and 213< or =DeltaS degrees < or =361 kJ/mol for agonists and -52< or =DeltaH degrees < or =-26 kJ/mol and -12< or =DeltaS degrees < or =38 kJ/mol for antagonists. The thermodynamic parameters for CB(2) receptors fall in the ranges 27< or =DeltaH degrees < or =48 kJ/mol and 234< or =DeltaS degrees < or =300 kJ/mol for agonists and -19< or =DeltaH degrees < or =-17 kJ/mol and 43< or =DeltaS degrees < or =74 kJ/mol for antagonists. Collectively, these data show that agonist binding is always totally entropy-driven while antagonist binding is enthalpy and entropy-driven, indicating that CB(1) and CB(2) receptors are thermodynamically discriminated. These data could give new details on the nature of the forces driving the CB(1) and CB(2) binding at a molecular level. Enthalpy, entropy, free energy and binding affinity for each ligand to its receptor can all be assessed and therefore the optimal binding profile discovered. Carrying out these binding investigations as early as possible in the discovery process increases the probability that a lead compound will become a successful pharmaceutical compound.

  4. METHODS FOR RECOMBINANT EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF HUMAN CANNABINOID RECEPTOR CB2

    Directory of Open Access Journals (Sweden)

    Alexei A. Yeliseev

    2013-03-01

    Full Text Available Cannabinoid receptor CB2 is a seven transmembrane-domain integral membrane protein that belongs to a large superfamily of G protein-coupled receptors (GPCR. CB2 is a part of the endocannabinoid system that plays vital role in regulation of immune response, inflammation, pain sensitivity, obesity and other physiological responses. Information about the structure and mechanisms of functioning of this receptor in cell membranes is essential for the rational development of specific pharmaceuticals. Here we review the methodology for recombinant expression, purification, stabilization and biochemical characterization of CB2 suitable for preparation of multi-milligram quantities of functionally active receptor. The biotechnological protocols include expression of the recombinant CB2 in E. coli cells as a fusion with the maltose binding protein, stabilization with a high affinity ligand and a derivative of cholesterol in detergent micelles, efficient purification by tandem affinity chromatography, and reconstitution of the receptor into lipid bilayers. The purified recombinant CB2 receptor is amenable to functional and structural studies including nuclear magnetic resonance spectroscopy and a wide range of biochemical and biophysical techniques.

  5. Presence of the cannabinoid receptors, CB1 and CB2, in human omental and subcutaneous adipocytes.

    Science.gov (United States)

    Roche, Régis; Hoareau, Laurence; Bes-Houtmann, Sandrine; Gonthier, Marie-Paule; Laborde, Christine; Baron, Jean-François; Haffaf, Yacine; Cesari, Maya; Festy, Franck

    2006-08-01

    To investigate the expression of the endocannabinoid 1 and 2 receptors by human adipocyte cells of omental and subcutaneous fat tissue, as well as to determine whether these receptors are functional. The expression of CB1 and CB2 receptors on human adipocytes was analyzed by western blotting, immunohistology and immunocytology. We also investigated intracytoplasmic cyclic AMP level modulation following CB1 and CB2 receptor stimulation by an enzymatic immuno assay. All mature adipocytes, from visceral (epiploon) and subcutaneous fat tissue, express CB1 and CB2 on their plasma membranes. We also demonstrate in this study that adipocyte precursors (pre-adipocytes) express CB1 and CB2 on their plasma membranes and that both receptors are functional. Activation of CB1 increases intracytoplasmic cyclic AMP whilst CB2 activation leads to a cyclic AMP decrease. Here we demonstrate, for the first time, that adipocytes of human adipose tissue (mature adipocytes and pre-adipocytes) express functional plasma membrane CB1 and CB2 receptors. Their physiological role on the adipose tissue is not known. However, their major involvement in the physiology of other tissues leads us to suppose that they could play a significant role in the homeostasis of the energy balance and/or in the regulation of adipose tissue inflammation.

  6. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    Directory of Open Access Journals (Sweden)

    Eleftheria Lakiotaki

    2015-01-01

    Full Text Available The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2, their endogenous ligands (endocannabinoids, and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins’ expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n=43 and malignant (n=44 lesions and was statistically analyzed with clinicopathological parameters, follicular cells’ proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p=0.0010 and p=0.0005, resp.. Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p=0.0097 and p=0.0110, resp.. In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p=0.0301. Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p=0.1165, lymphatic (p=0.1989, and vascular invasion (p=0.0555, as well as in those with increased risk of recurrence rate (p=0.1165, at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  7. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions.

    Science.gov (United States)

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  8. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...

  9. Cannabinoid CB1 and CB2 receptor ligand specificity and the development of CB2-selective agonists.

    Science.gov (United States)

    Ashton, John C; Wright, Jason L; McPartland, John M; Tyndall, Joel D A

    2008-01-01

    Cannabinoids in current use such as nabilone activate both CB1 and CB2 receptors. Selective CB2 activation may provide some of the therapeutic effects of cannabinoids, such as their immuno-modulatory properties, without the psychoactive effects of CB1 activation. Therefore, cannabinoid CB2 receptors represent an attractive target for drug development. However, selective and potent CB2 agonists remain in development. CB1 and CB2 differ considerably in their amino acid sequence and tertiary structures. Therefore, clinical development of potent and selective CB2 agonists is probable. Mutational and ligand binding studies, functional mapping, and computer modelling have revealed key residues and domains in cannabinoid receptors that are involved in agonist and antagonist binding to CB1 and CB2. In addition, CB2 has undergone more rapid evolution, and results for ligand binding and efficacy cannot be automatically extrapolated from rat or mouse CB2 to human. Furthermore, loss of CB1 affinity is a crucial property for CB2-selective ligands, and although rat CB1 is 97% homologous with human CB1, critical differences do exist, with potential for further exploitation in drug design. In this paper we briefly review previous cannabinoid receptor models and mutation/binding studies. We also review binding affinity ratios with respect to CB1 and CB2. We then employ our own models to illustrate key cannabinoid receptor residues and binding subdomains that are involved in these differences in binding affinities and discuss how these might be exploited in the development of CB2 specific ligands. Published reports for species specific binding affinities for CB2 are scarce, and we argue that this needs to be corrected prior to the progression of CB2 agonists from pre-clinical to clinical research.

  10. Recent development of CB2 selective and peripheral CB1/CB2 cannabinoid receptor ligands.

    Science.gov (United States)

    Nevalainen, Tapio

    2014-01-01

    Cannabinoids have potential therapeutic value e.g. in pain relief, cancer therapy, control of nausea and vomiting, and appetite stimulation, but their therapeutic benefits are limited by unwanted central nervous system (CNS) side-effects. Separating the therapeutic effects of cannabinoid agonists from their undesired CNS effects can be achieved by either increasing the selectivity of the ligands for the CB2 receptor or by developing peripherally restricted CB1/CB2 ligands. A vast number of structurally diverse CB2 ligands have been developed during the past 3 years, stemming from the screening hits, which are further optimized towards lead compounds and drug candidates. Some of CB2 ligands may ultimately enter into clinical use as pain relief, anticancer, or antipruritic agents. This review focuses on the recent literature dealing with selective CB2 receptor ligands, with a particular emphasis on the CB2 agonists developed from 2009 onwards.

  11. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain.

    Science.gov (United States)

    Dowie, Megan J; Grimsey, Natasha L; Hoffman, Therri; Faull, Richard L M; Glass, Michelle

    2014-09-01

    Huntington's disease (HD) is an inherited neurological disease with motor, cognitive and psychiatric symptoms. Characterised by neuronal degeneration, HD pathology is initially apparent in the striatum and cortex. Considerable research has recently suggested that the neurological immune response apparent in brain injury and disease may provide a valuable therapeutic target. Cannabinoid CB2 receptors are localised and up-regulated on a number of peripheral immune cell types following inflammation and injury. However, their cellular location within the human brain during inflammation has not been well characterised. The present study shows CB2 is expressed in human post-mortem striatum in HD. Quantification revealed a trend towards an increase in CB2 staining with disease, but no significant difference was measured compared to neurologically normal controls. In HD striatal tissue, there is an up-regulation of the brains' resident immune cells, with a significant increase in GFAP-positive astrocyte staining at both grade 1 (685±118%) and grade 3 (1145±163%) and Iba1-positive microglia at grade 1 (299±27%) but not grade 3 (119±48%), compared to neurologically normal controls. Both cell types exhibit irregular cell morphology, particularly at higher grades. Using double-labelled immunohistochemistry CB2 receptors are demonstrated not to be expressed on microglia or astrocytes and instead appear to be localised on CD31-positive blood vessel endothelium and vascular smooth muscle. Co-expression analysis suggests that CB2 may be more highly expressed on CD31 positive cells in HD brains than in control brains. Contrasting with evidence from rodent studies suggesting CB2 glial cell localisation, our observation that CB2 is present on blood vessel cells, with increased CD31 co-localisation in HD may represent a new context for CB2 therapeutic approaches to neurodegenerative diseases.

  12. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  13. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis.

    Science.gov (United States)

    Benito, Cristina; Romero, Juan Pablo; Tolón, Rosa María; Clemente, Diego; Docagne, Fabián; Hillard, Cecilia J; Guaza, Camen; Romero, Julián

    2007-02-28

    Increasing evidence supports the idea of a beneficial effect of cannabinoid compounds for the treatment of multiple sclerosis (MS). However, most experimental data come from animal models of MS. We investigated the status of cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase (FAAH) enzyme in brain tissue samples obtained from MS patients. Areas of demyelination were identified and classified as active, chronic, and inactive plaques. CB1 and CB2 receptors and FAAH densities and cellular sites of expression were examined using immunohistochemistry and immunofluorescence. In MS samples, cannabinoid CB1 receptors were expressed by cortical neurons, oligodendrocytes, and also oligodendrocyte precursor cells, demonstrated using double immunofluorescence with antibodies against the CB1 receptor with antibodies against type 2 microtubule-associated protein, myelin basic protein, and the platelet-derived growth factor receptor-alpha, respectively. CB1 receptors were also present in macrophages and infiltrated T-lymphocytes. Conversely, CB2 receptors were present in T-lymphocytes, astrocytes, and perivascular and reactive microglia (major histocompatibility complex class-II positive) in MS plaques. Specifically, CB2-positive microglial cells were evenly distributed within active plaques but were located in the periphery of chronic active plaques. FAAH expression was restricted to neurons and hypertrophic astrocytes. As seen for other neuroinflammatory conditions, selective glial expression of cannabinoid CB1 and CB2 receptors and FAAH enzyme is induced in MS, thus supporting a role for the endocannabinoid system in the pathogenesis and/or evolution of this disease.

  14. Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain.

    Science.gov (United States)

    Jhaveri, Maulik D; Sagar, Devi R; Elmes, Steven J R; Kendall, David A; Chapman, Victoria

    2007-08-01

    The endocannabinoid system consists of cannabinoid CB(1) and CB(2) receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB(1) receptors. Following the recent evidence for CB(2) receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB(2) receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB(2) receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB(2) receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action.

  15. The second intracellular loop of the human cannabinoid CB2 receptor governs G protein coupling in coordination with the carboxyl terminal domain.

    Directory of Open Access Journals (Sweden)

    Congxia Zheng

    Full Text Available The major effects of cannabinoids and endocannabinoids are mediated via two G protein-coupled receptors, CB1 and CB2, elucidation of the mechanism and structural determinants of the CB2 receptor coupling with G proteins will have a significant impact on drug discovery. In the present study, we systematically investigated the role of the intracellular loops in the interaction of the CB2 receptor with G proteins using chimeric receptors alongside the characterization of cAMP accumulation and ERK1/2 phosphorylation. We provided evidence that ICL2 was significantly involved in G protein coupling in coordination with the C-terminal end. Moreover, a single alanine substitution of the Pro-139 in the CB2 receptor that corresponds to Leu-222 in the CB1 receptor resulted in a moderate impairment in the inhibition of cAMP accumulation, whereas mutants P139F, P139M and P139L were able to couple to the Gs protein in a CRE-driven luciferase assay. With the ERK activation experiments, we further found that P139L has the ability to activate ERK through both Gi- and Gs-mediated pathways. Our findings defined an essential role of the second intracellular loop of the CB2 receptor in coordination with the C-terminal tail in G protein coupling and receptor activation.

  16. Expression, surface immobilization, and characterization of functional recombinant cannabinoid receptor CB2.

    Science.gov (United States)

    Locatelli-Hoops, Silvia C; Gorshkova, Inna; Gawrisch, Klaus; Yeliseev, Alexei A

    2013-10-01

    Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2.

  17. Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: implications for the therapeutic potential of CB(2) ligands.

    Science.gov (United States)

    Atwood, Brady K; Wager-Miller, James; Haskins, Christopher; Straiker, Alex; Mackie, Ken

    2012-02-01

    Receptor internalization increases the flexibility and scope of G protein-coupled receptor (GPCR) signaling. CB(1) and CB(2) cannabinoid receptors undergo internalization after sustained exposure to agonists. However, it is not known whether different agonists internalize CB(2) to different extents. Because CB(2) is a promising therapeutic target, understanding its trafficking in response to different agonists is necessary for a complete understanding of its biology. Here we profile a number of cannabinoid receptor ligands and provide evidence for marked functional selectivity of cannabinoid receptor internalization. Classic, aminoalkylindole, bicyclic, cannabilactone, iminothiazole cannabinoid, and endocannabinoid ligands varied greatly in their effects on CB(1) and CB(2) trafficking. Our most striking finding was that (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55,212-2) (and other aminoalkylindoles) failed to promote CB(2) receptor internalization, whereas 5-(1,1-dimethylheptyl)-2-(5-hydroxy-2-(3-hydroxypropyl)cyclohexyl)phenol (CP55,940) robustly internalized CB(2) receptors. Furthermore, WIN55,212-2 competitively antagonized CP55,940-induced CB(2) internalization. Despite these differences in internalization, both compounds activated CB(2) receptors as measured by extracellular signal-regulated kinase 1/2 phosphorylation and recruitment of β-arrestin(2) to the membrane. In contrast, whereas CP55,940 inhibited voltage-gated calcium channels via CB(2) receptor activation, WIN55,212-2 was ineffective on its own and antagonized the effects of CP55,940. On the basis of the differences we found between these two ligands, we also tested the effects of other cannabinoids on these signaling pathways and found additional evidence for functional selectivity of CB(2) ligands. These novel data highlight that WIN55,212-2 and other cannabinoids show strong functional selectivity at CB(2

  18. C3-heteroaroyl cannabinoids as photolabeling ligands for the CB2 cannabinoid receptor.

    Science.gov (United States)

    Dixon, Darryl D; Tius, Marcus A; Thakur, Ganesh A; Zhou, Han; Bowman, Anna L; Shukla, Vidyanand G; Peng, Yan; Makriyannis, Alexandros

    2012-08-15

    A series of tricyclic cannabinoids incorporating a heteroaroyl group at C3 were prepared as probes to explore the binding site(s) of the CB1 and CB2 receptors. This relatively unexplored structural motif is shown to be CB2 selective with K(i) values at low nanomolar concentrations when the heteroaromatic group is 3-benzothiophenyl (41) or 3-indolyl (50). When photoactivated, the lead compound 41 was shown to successfully label the CB2 receptor through covalent attachment at the active site while 50 failed to label. The benzothiophenone moiety may be a photoactivatable moiety suitable for selective labeling.

  19. Effect of cannabinoid receptor CB2 on mechanical tensile strain-stimulated osteogenic differentiation of human periodontal ligament cells%大麻素受体CB2在机械牵张力介导的人牙周膜细胞成骨分化中的作用

    Institute of Scientific and Technical Information of China (English)

    钱红; 赵亚; 胡静; 闫英剑

    2012-01-01

    目的:研究大麻素Ⅱ型受体(cannabinoid receptor Ⅱ,CB2)在机械牵张力介导的人牙周膜细胞中的表达以及成骨分化中的作用.方法:体外培养人牙周膜细胞,构建细胞-机械牵张力加载模型,施加不同大小的机械牵张力,采用Real-time PCR和细胞免疫荧光化学技术检测CB2在人牙周膜细胞中mRNA和蛋白的表达.周碱性磷酸酶(ALP)试剂盒检测机械牵张力介导的细胞ALP活性.结果:对人牙周膜细胞施加不同大小的机械牵张力24h,CB2 mRNA的表达随机械牵张力的力值增大而显著性增加(P<0.05),在18%拉伸应变率作用下表达量最高(P<0.05),此时CB2蛋白的表达显著增加.加入CB2激动剂HU-308后,施加18%拉伸应变率的机械牵张力作用于人牙周膜细胞24h,ALP活性显著性增加(P<0.05).结论:CB2在人牙周膜细胞中的表达与机械牵张力的力值具有相关性.在机械牵张力作用下,大麻素受体CB2与其配体结合能够促进人牙周膜细胞的成骨分化,从而在正畸牙槽骨改建中发挥重要作用.%Objective To investigate the expression and effect of cannabinoid receptor CB2 on mechanical tensile strain-stimulated osteogenic differentiation of human periodonta! ligament cells (HPDLCs). Methods HPDLCs were cultured in vitro and the cells were stretched by mechanical tensile strain of different magnitudes.Real-time PCR and immunofluorescence assay were used to examine CB2 expression from mRNA to protein levels following mechanical tensile strain, respectively. The activity of alkaline phosphatase (ALP) in HPDLCs was further studied. Results There was a magnitude-dependent increase in CB2 mRNA expression following mechanical tensile strain for 24h (P<0.05), with the highest level at 18% elongation. CB2 protein expression was also found to enhance at 18% elongation for 24h. After addition of CB2 agonist HU-308, the activity of ALP was up-regulated at 18% elongation for 24h (P<0.05). Conclusion CB2

  20. Protocol to Study β-Arrestin Recruitment by CB1 and CB2 Cannabinoid Receptors.

    Science.gov (United States)

    Soethoudt, Marjolein; van Gils, Noortje; van der Stelt, Mario; Heitman, Laura H

    2016-01-01

    Cannabinoid CB1 and CB2 receptors are G-protein-coupled receptors (GPCRs) that recruit β-arrestins upon activation by (partial) agonists. β-Arrestin recruitment is induced by phosphorylation of their C-terminal tails, and is associated with the termination of GPCR signaling; yet, it may also activate cellular signaling pathways independent of G-proteins. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CB1 and CB2 receptors, by using the PathHunter(®) assay. The latter is a cellular assay that can be performed in plates with 384-wells. The PathHunter(®) assay makes use of β-galactosidase complementation, and has a chemiluminescent readout. We used this assay to characterize a set of reference ligands (both agonists and antagonists) on human CB1 and CB2 receptors.

  1. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies.

    Science.gov (United States)

    Zurolo, E; Iyer, A M; Spliet, W G M; Van Rijen, P C; Troost, D; Gorter, J A; Aronica, E

    2010-09-29

    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression and cellular pattern of CBR 1 and 2 (CB1 and CB2) during prenatal human cortical development, as well as in focal malformations of cortical development associated with intractable epilepsy (focal cortical dysplasia; cortical tubers in patients with the tuberous sclerosis complex and glioneuronal tumors). Strong CB1 immunoreactivity was detected in the cortical plate in developing human brain from the earliest stages tested (gestational week 9) and it persisted throughout prenatal development. Both cannabinoid receptors were not detected in neural progenitor cells located in the ventricular zone. Only CB1 was expressed in the subventricular zone and in Cajal-Retzius cells in the molecular zone of the developing neocortex. CB2 was detected in cells of the microglia/macrophage lineage during development. In malformations of cortical development, prominent CB1 expression was demonstrated in dysplastic neurons. Both CBR were detected in balloon/giant cells, but CB2 appeared to be more frequently expressed than CB1 in these cell types. Reactive astrocytes were mainly stained with CB1, whereas cells of the microglia/macrophage lineage were stained with CB2. These findings confirm the early expression pattern of cannabinoid receptors in the developing human brain, suggesting a function for CB1 in the early stages of corticogenesis. The expression patterns in malformations of cortical development highlight the role of cannabinoid receptors as mediators of the endocannabinoid signaling and as potential pharmacological targets to modulate neuronal and glial cell function in epileptogenic developmental pathologies.

  2. Overexpression of cannabinoid receptors CB1 and CB2 correlates with improved prognosis of patients with hepatocellular carcinoma.

    Science.gov (United States)

    Xu, Xundi; Liu, Yi; Huang, Shengfu; Liu, Guoxing; Xie, Chengzhi; Zhou, Jun; Fan, Wentao; Li, Qinglong; Wang, Qunwei; Zhong, Dewu; Miao, Xiongying

    2006-11-01

    CB1 and CB2 are multifunctional cannabinoid-specific receptors considered to be involved in inhibition of tumor development. To elucidate their roles in hepatocarcinogenesis, we analyzed the expression of these receptors in tumor and matched nontumorous tissues of human hepatocellular carcinoma (HCC) samples. In situ hybridization analysis showed overexpression of CB1 mRNAs in 8 of 13 (62%) HCC samples, and of CB2 mRNAs in 7 of 13 (54%). Immunohistochemical analysis of 64 HCC samples showed the expression of CB1 and CB2 receptors to increase from normal liver to chronic hepatitis to cirrhosis. Marked expression of CB1 and CB2 receptors was noted in the majority of cirrhotic liver samples (86 and 78%, respectively). In HCC, high expression of CB1 and CB2 receptors was observed in 29 (45%) and 33 (52%) cases, respectively. Clinicopathological evaluation indicated a significant correlation between CB1 and CB2 expression and two clinicopathological parameters such as the histopathological differentiation (P = 0.021 and 0.001, respectively), portal vein invasion (P = 0.015 and 0.004, respectively). Univariate analysis indicated that disease-free survival was significantly better in HCC patients with high versus those with low CB1 and CB2 expression levels (P = 0.010 and 0.037, respectively). Our results indicate that CB1 and CB2 have potential as prognostic indicators and suggest possible beneficial effects of cannabinoids on prognosis of patients with HCC.

  3. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

    Science.gov (United States)

    Bow, Eric W; Rimoldi, John M

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles.

  4. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    Science.gov (United States)

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  5. Müller cells express the cannabinoid CB2 receptor in the vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    The presence of the cannabinoid receptor type 1 (CB1R) has been largely documented in the rodent and primate retinae in recent years. There is, however, some controversy concerning the presence of the CB2 receptor (CB2R) within the central nervous system. Only recently, CB2R has been found...... in the rodent retina, but its presence in the primate retina has not yet been demonstrated. The aim of this study was twofold: 1) to characterize the distribution patterns of CB2R in the monkey retina and compare this distribution with that previously reported for CB1R and 2) to resolve the controversy...... on the presence of CB2R in the neural component of the retina. We therefore thoroughly examined the cellular localization of CB2R in the vervet monkey (Chlorocebus sabeus) retina, using confocal microscopy. Our results demonstrate that CB2R, like CB1R, is present throughout the retinal layers, but with striking...

  6. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity

    Science.gov (United States)

    Franks, Lirit N.; Ford, Benjamin M.; Prather, Paul L.

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting

  7. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain.

    Science.gov (United States)

    Callén, Lucía; Moreno, Estefanía; Barroso-Chinea, Pedro; Moreno-Delgado, David; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Lanciego, José Luis; Franco, Rafael; Lluis, Carmen; Canela, Enric I; McCormick, Peter J

    2012-06-15

    Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.

  8. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer.

    Science.gov (United States)

    Morales, Paula; Blasco-Benito, Sandra; Andradas, Clara; Gómez-Cañas, María; Flores, Juana María; Goya, Pilar; Fernández-Ruiz, Javier; Sánchez, Cristina; Jagerovic, Nadine

    2015-03-12

    Triple-negative breast cancer (TNBC) represents a subtype of breast cancer characterized by high aggressiveness. There is no current targeted therapy for these patients whose prognosis, as a group, is very poor. Here, we report the synthesis and evaluation of a potent antitumor agent in vivo for this type of breast cancer designed as a combination of quinone/cannabinoid pharmacophores. This new compound (10) has been selected from a series of chromenopyrazolediones with full selectivity for the nonpsychotropic CB2 cannabinoid receptor and with efficacy in inducing death of human TNBC cell lines. The dual concept quinone/cannabinoid was supported by the fact that compound 10 exerts antitumor effect by inducing cell apoptosis through activation of CB2 receptors and through oxidative stress. Notably, it did not show either cytotoxicity on noncancerous human mammary epithelial cells nor toxic effects in vivo, suggesting that it may be a new therapeutic tool for the management of TNBC.

  9. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

    Science.gov (United States)

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S; Buchan, Alice; Brodermann, Maximillian H; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J; Greaves, David R

    2015-06-02

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2(-/-) macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.

  10. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha

    2016-01-01

    The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells......) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB......-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function....

  11. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-01-01

    Full Text Available Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas.

  12. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Directory of Open Access Journals (Sweden)

    James J Burston

    Full Text Available Osteoarthritis (OA of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2 receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation

  13. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Science.gov (United States)

    Burston, James J; Sagar, Devi Rani; Shao, Pin; Bai, Mingfeng; King, Emma; Brailsford, Louis; Turner, Jenna M; Hathway, Gareth J; Bennett, Andrew J; Walsh, David A; Kendall, David A; Lichtman, Aron; Chapman, Victoria

    2013-01-01

    Osteoarthritis (OA) of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2) receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation of chronic OA

  14. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders

    Science.gov (United States)

    Navarro, Gemma; Morales, Paula; Rodríguez-Cueto, Carmen; Fernández-Ruiz, Javier; Jagerovic, Nadine; Franco, Rafael

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators. PMID:27679556

  15. Targeting cannabinoid CB2 receptors in the Central Nervous System. Medicinal chemistry approaches with focus on neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Gema Navarro

    2016-09-01

    Full Text Available Endocannabinoids activate two types of specific receptors, namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases. Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.

  16. Modulation of The Balance Between Cannabinoid CB1 and CB2 Receptor Activation During Cerebral Ischemic/Reperfusion Injury

    OpenAIRE

    ZHANG, Ming; Martin, Billy R.; Adler, Martin W.; Razdan, Raj K.; Ganea, Doina; Tuma, Ronald F.

    2008-01-01

    Cannabinoid receptor activation has been shown to modulate both neurotransmission (CB1) and neuroinflammatory (CB2) responses. There are conflicting reports in the literature describing the influence of cannabinoid receptor activation on ischemic/reperfusion injury. The goal of this study was to evaluate how changing the balance between CB1 and CB2 activation following cerebral ischemia influences outcome. CB1 and CB2 expression were tested at different times after transient middle cerebral a...

  17. The effects of charge-neutralizing mutation D6.30N on the functions of CB1 and CB2 cannabinoid receptors.

    Science.gov (United States)

    Nebane, Ntsang M; Kellie, Brandon; Song, Zhao-Hui

    2006-10-02

    Charge-neutralizing mutation D6.30N of the human cannabinoid receptor subtype 1 (CB1) and cannabinoid receptor subtype 2 (CB2) cannabinoid receptors was made to test two hypotheses: (1) D6.30 may be crucial for the functions of CB1 and CB2 receptors. (2) D6.30 may participate in an ionic lock with R3.50 that keeps the receptors in an inactive conformation. Specific ligand binding and ligand-induced inhibition of forskolin-stimulated cAMP accumulation were observed with human embryonic kidney epithelial cell line (HEK293) cells expressing wild-type CB1 and CB2, as well as CB1D6.30N and CB2D6.30N mutant receptors. There was however a decrease in maximum response of the mutant receptors compared to their wild-type counterparts, suggesting that D6.30 is essential for full activation of both CB1 and CB2 receptors. Both CB1D6.30N and CB2D6.30N demonstrated a level of constitutive activity no greater than that of their wild-type counterparts, indicating that either D6.30 does not participate in a salt bridge with R3.50, or the salt bridge is not critical for keeping cannabinoid receptors in the inactive conformation.

  18. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism

    OpenAIRE

    S. Sierra; Luquin, N. (Natasha); Rico, A.J. (Alberto J.); Gomez-Bautista, V. (V.); Roda, E.; Dopeso-Reyes, I. G.; Vazquez, A.; Martinez-Pinilla, E. (Eva); Labandeira-Garcia, J.L. (José L.); Franco, R; J.L. Lanciego

    2014-01-01

    Abstract Although type 1 cannabinoid receptors (CB1- Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas th...

  19. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling.

    Science.gov (United States)

    Ma, Lei; Jia, Ji; Liu, Xiangyu; Bai, Fuhai; Wang, Qiang; Xiong, Lize

    2015-02-27

    Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC.

  20. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The expression patterns of the cannabinoid receptor type 1 (CB1R and the cannabinoid receptor type 2 (CB2R are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells and CB2R is exclusively found in the retinal glia (Müller cells. However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp. in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  1. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys.

    Science.gov (United States)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Beierschmitt, Amy; Palmour, Roberta; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  2. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Vanessa Deveaux

    Full Text Available BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT mice fed a high fat diet (HFD, that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-. PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.

  3. Stabilization of functional recombinant cannabinoid receptor CB(2 in detergent micelles and lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Krishna Vukoti

    Full Text Available Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB(2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB(2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB(2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of (2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB(2 in dodecyl maltoside (DDM/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB(2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at

  4. Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate.

    Science.gov (United States)

    La Porta, Carmen; Bura, Simona Andreea; Aracil-Fernández, Auxiliadora; Manzanares, Jorge; Maldonado, Rafael

    2013-01-01

    Joint pain is a common clinical problem for which both inflammatory and degenerative joint diseases are major causes. The purpose of this study was to investigate the role of CB1 and CB2 cannabinoid receptors in the behavioral, histological, and neurochemical alterations associated with joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice for CB1 (CB1KO) and CB2 cannabinoid receptors (CB2KO) and transgenic mice overexpressing CB2 receptors (CB2xP). In addition, we evaluated the changes induced by MIA in gene expression of CB1 and CB2 cannabinoid receptors and μ-, δ- and κ-opioid receptors in the lumbar spinal cord of these mice. Wild-type mice, as well as CB1KO, CB2KO, and CB2xP mice, developed mechanical allodynia in the ipsilateral paw after MIA intra-articular injection. CB1KO and CB2KO demonstrated similar levels of mechanical allodynia of that observed in wild-type mice in the ipsilateral paw, whereas allodynia was significantly attenuated in CB2xP. Interestingly, CB2KO displayed a contralateral mirror image of pain developing mechanical allodynia also in the contralateral paw. All mouse lines developed similar histological changes after MIA intra-articular injection. Nevertheless, MIA intra-articular injection produced specific changes in the expression of cannabinoid and opioid receptor genes in lumbar spinal cord sections that were further modulated by the genetic alteration of the cannabinoid receptor system. These results revealed that CB2 receptor plays a predominant role in the control of joint pain manifestations and is involved in the adaptive changes induced in the opioid system under this pain state.

  5. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders

    OpenAIRE

    Gema Navarro; Paula Morales; Carmen Rodríguez-Cueto; Javier Fernández-Ruiz; Nadine Jagerovic; Rafael Franco

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and u...

  6. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism.

    Science.gov (United States)

    Sierra, Salvador; Luquin, Natasha; Rico, Alberto J; Gómez-Bautista, Virginia; Roda, Elvira; Dopeso-Reyes, Iria G; Vázquez, Alfonso; Martínez-Pinilla, Eva; Labandeira-García, José L; Franco, Rafael; Lanciego, José L

    2015-09-01

    Although type 1 cannabinoid receptors (CB1Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas the expression is markedly reduced in dyskinetic animals. Moreover, an in situ proximity ligation assay was used to qualitatively assess the presence of CB1Rs and CB2Rs, as well as CB1R-CB2R heteromers within basal ganglia output neurons in all animal groups (control, parkinsonian and dyskinetic macaques). A marked reduction in the number of CB1Rs, CB2Rs and CB1R-CB2R heteromers was found in dyskinetic animals, mimicking the observed reduction in CB1R and CB2R mRNA expression levels. The fact that chronic levodopa treatment disrupted CB1R-CB2R heteromeric complexes should be taken into consideration when designing new drugs acting on cannabinoid receptor heteromers.

  7. Involvement of cannabinoid CB1- and CB2-receptors in the modulation of exocrine pancreatic secretion.

    Science.gov (United States)

    Linari, G; Agostini, S; Amadoro, G; Ciotti, M T; Florenzano, F; Improta, G; Petrella, C; Severini, C; Broccardo, M

    2009-03-01

    The role of the cannabinoid system in the regulation of exocrine pancreatic secretion was investigated by studying the effects of the synthetic CB1- and CB2-receptors agonist, WIN55,212, on amylase secretion in isolated lobules and acini of guinea pig and rat, and the expression of CB-receptors in rat pancreatic tissue by immuno-chemistry and Western-blot analysis in both basal and cerulein (CK)-induced pancreatitis condition. In pancreatic lobules of guinea pig and rat, WIN55,212 significantly inhibited amylase release stimulated by KCl depolarization through inhibition of presynaptic acetylcholine release, but did not modify basal, carbachol- or CK-stimulated amylase secretion. The effect of WIN55,212 was significantly reduced by pre-treatment with selective CB1- and CB2-receptor antagonists. The antagonists, when given alone, did not affect the KCl-evoked response. Conversely, WIN55,212 was unable to affect basal and CK- or carbachol-stimulated amylase release from pancreatic acini of guinea pig and rat. Immunofluorescent staining of rat pancreatic tissues showed that CB1- and CB2-receptors are expressed in lobules and in acinar cells and their presence in acinar cells was also shown by Western-blot analysis. After CK-induced pancreatitis, the expression of CB1-receptors in acinar cells was not changed, whilst a down-regulation of CB2-receptors was observed. In conclusion, the present study shows that WIN55,212 inhibits amylase release from guinea pig and rat pancreatic lobules and, for the first time, that cannabinoid receptors are expressed in lobules of the rat pancreas, suggesting an inhibitory presynaptic role of this receptor system. Finally, in rat pancreatic acinar cells, CB1- and CB2-receptors, expressed both in basal conditions and after CK-induced pancreatitis but inactive on amylase secretion, have an unknown role both in physiological and pathological conditions.

  8. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity.

    Science.gov (United States)

    Marchalant, Yannick; Brownjohn, Philip W; Bonnet, Amandine; Kleffmann, Torsten; Ashton, John C

    2014-06-01

    Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest-in this case CB2-but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.

  9. In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models.

    Science.gov (United States)

    Yao, B B; Hsieh, G C; Frost, J M; Fan, Y; Garrison, T R; Daza, A V; Grayson, G K; Zhu, C Z; Pai, M; Chandran, P; Salyers, A K; Wensink, E J; Honore, P; Sullivan, J P; Dart, M J; Meyer, M D

    2008-01-01

    Selective cannabinoid CB2 receptor agonists have demonstrated analgesic activity across multiple preclinical pain models. AM1241 is an indole derivative that exhibits high affinity and selectivity for the CB2 binding site and broad spectrum analgesic activity in rodent models, but is not an antagonist of CB2 in vitro functional assays. Additionally, its analgesic effects are mu-opioid receptor-dependent. Herein, we describe the in vitro and in vivo pharmacological properties of A-796260, a novel CB2 agonist. A-796260 was characterized in radioligand binding and in vitro functional assays at rat and human CB1 and CB2 receptors. The behavioural profile of A-796260 was assessed in models of inflammatory, post-operative, neuropathic, and osteoarthritic (OA) pain, as well as its effects on motor activity. The receptor specificity was confirmed using selective CB1, CB2 and mu-opioid receptor antagonists. A-796260 exhibited high affinity and agonist efficacy at human and rat CB2 receptors, and was selective for the CB2 vs CB1 subtype. Efficacy in models of inflammatory, post-operative, neuropathic and OA pain was demonstrated, and these activities were selectively blocked by CB2, but not CB1 or mu-opioid receptor-selective antagonists. Efficacy was achieved at doses that had no significant effects on motor activity. These results further confirm the therapeutic potential of CB2 receptor-selective agonists for the treatment of pain. In addition, they demonstrate that A-796260 may be a useful new pharmacological compound for further studying CB2 receptor pharmacology and for evaluating its role in the modulation of pain.

  10. Development and Characterization of Immobilized Cannabinoid Receptor (CB1/CB2) Open Tubular Column for On-line Screening

    OpenAIRE

    Moaddel, R.; Rosenberg, A.; Spelman, K.; Frazier, J; Frazier, C.; Nocerino, S.; Brizzi, A; Mugnaini, C.; Wainer, I. W.

    2011-01-01

    Cannabinoid Receptors, CB1 and CB2, are therapeutic targets in the treatment of anxiety, obesity, movement disorders, glaucoma and pain. We have developed an on-line screening method for CB1 and CB2 ligands, where cellular membrane fragments of a chronic myelogenous leukemia cell line, (KU-812), were immobilized onto the surface of an open tubular capillary to create a CB1/CB2-OT column. The binding activities of the immobilized CB1/CB2 receptors were established using frontal affinity chroma...

  11. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease.

    Science.gov (United States)

    Gómez-Gálvez, Yolanda; Palomo-Garo, Cristina; Fernández-Ruiz, Javier; García, Concepción

    2016-01-04

    Inflammation is an important pathogenic factor in Parkinson's disease (PD), so that it can contribute to kill dopaminergic neurons of the substantia nigra and to enhance the dopaminergic denervation of the striatum. The cannabinoid type-2 (CB2) receptor has been investigated as a potential anti-inflammatory and neuroprotective target in different neurodegenerative disorders, but still limited evidence has been collected in PD. Here, we show for the first time that CB2 receptors are elevated in microglial cells recruited and activated at lesioned sites in the substantia nigra of PD patients compared to control subjects. Parkinsonian inflammation can be reproduced experimentally in rodents by intrastriatal injections of lipopolysaccharide (LPS) which, through an intense activation of glial elements and peripheral infiltration, provokes a rapid deterioration of the striatum that may extend to the substantia nigra too. Using this experimental model, we recently described a much more intense deterioration of tyrosine hydroxylase (TH)-containing nigral neurons in CB2 receptor-deficient mice compared to wild-type animals, supporting a potential neuroprotective role for this receptor. In the present study, we further explored this issue. First, we found elevated levels of the CB2 receptor measured by qRT-PCR in the striatum and substantia nigra of LPS-lesioned mice, as well as an increase in the immunostaining for this receptor in the LPS-lesioned striatum. Second, we found a significant increase in CD68 immunostaining, which serve to identify activated microglia and also infiltrated peripheral macrophages, in these brain structures in response to LPS insult, which was much more intense in CB2 receptor-deficient mice in the case of the substantia nigra. Next, we observed that the activation of CB2 receptors with a selective agonist (HU-308) reversed LPS-induced elevation of CD68 immunostaining in the striatum and the parallel reduction in TH immunostaining. Lastly, we

  12. A CB2-Selective Cannabinoid Suppresses T-Cell Activities and Increases Tregs and IL-10.

    Science.gov (United States)

    Robinson, Rebecca H; Meissler, Joseph J; Fan, Xiaoxuan; Yu, Daohai; Adler, Martin W; Eisenstein, Toby K

    2015-06-01

    We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability.

  13. Attenuation of morphine antinociceptive tolerance by cannabinoid CB1 and CB2 receptor antagonists.

    Science.gov (United States)

    Altun, Ahmet; Yildirim, Kemal; Ozdemir, Ercan; Bagcivan, Ihsan; Gursoy, Sinan; Durmus, Nedim

    2015-09-01

    Cannabinoid CB1 and CB2 receptor antagonists may be useful for their potential to increase or prolong opioid analgesia while attenuating the development of opioid tolerance. The aim of this study was to investigate the effects of AM251 (a selective CB1 antagonist) and JTE907 (a selective CB2 antagonist) on morphine analgesia and tolerance in rats. Adult male Wistar albino rats weighing 205-225 g were used in these experiments. To constitute morphine tolerance, we used a 3 day cumulative dosing regimen. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated by analgesia tests. The analgesic effects of morphine (5 mg/kg), ACEA (a CB1 receptor agonist, 5 mg/kg), JWH-015 (a CB2 receptor agonist, 5 mg/kg), AM251 (1 mg/kg) and JTE907 (5 mg/kg) were considered at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. Our findings indicate that ACEA and JWH907 significantly increased morphine analgesia and morphine antinociceptive tolerance in the analgesia tests. In contrast, the data suggested that AM251 and JTE907 significantly attenuated the expression of morphine tolerance. In conclusion, we observed that co-injection of AM251 and JTE907 with morphine attenuated expression of tolerance to morphine analgesic effects and decreased the morphine analgesia.

  14. Cannabinoid Receptor CB2 Is Involved in Tetrahydrocannabinol-Induced Anti-Inflammation against Lipopolysaccharide in MG-63 Cells

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2015-01-01

    Full Text Available Cannabinoid Δ9-tetrahydrocannabinol (THC is effective in treating osteoarthritis (OA, and the mechanism, however, is still elusive. Activation of cannabinoid receptor CB2 reduces inflammation; whether the activation CB2 is involved in THC-induced therapeutic action for OA is still unknown. Cofilin-1 is a cytoskeleton protein, participating in the inflammation of OA. In this study, MG-63 cells, an osteosarcoma cell-line, were exposed to lipopolysaccharide (LPS to mimic the inflammation of OA. We hypothesized that the activation of CB2 is involved in THC-induced anti-inflammation in the MG-63 cells exposed to LPS, and the anti-inflammation is mediated by cofilin-1. We found that THC suppressed the release of proinflammatory factors, including tumor necrosis factor α (TNF-α, interleukin- (IL- 1β, IL-6, and IL-8, decreased nuclear factor-κB (NF-κB expression, and inhibited the upregulation of cofilin-1 protein in the LPS-stimulated MG-63 cells. However, administration of CB2 receptor antagonist or the CB2-siRNA, not CB1 antagonist AM251, partially abolished the THC-induced anti-inflammatory effects above. In addition, overexpression of cofilin-1 significantly reversed the THC-induced anti-inflammatory effects in MG-63 cells. These results suggested that CB2 is involved in the THC-induced anti-inflammation in LPS-stimulated MG-63 cells, and the anti-inflammation may be mediated by cofilin-1.

  15. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

    Science.gov (United States)

    Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun

    2016-06-27

    Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral

  16. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    Science.gov (United States)

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.

  17. Development and characterization of immobilized cannabinoid receptor (CB1/CB2) open tubular column for on-line screening.

    Science.gov (United States)

    Moaddel, R; Rosenberg, A; Spelman, K; Frazier, J; Frazier, C; Nocerino, S; Brizzi, A; Mugnaini, C; Wainer, I W

    2011-05-01

    Cannabinoid receptors, CB1 and CB2, are therapeutic targets in the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. We have developed an on-line screening method for CB1 and CB2 ligands, where cellular membrane fragments of a chronic myelogenous leukemia cell line, KU-812, were immobilized onto the surface of an open tubular (OT) capillary to create a CB1/CB2-OT column. The binding activities of the immobilized CB1/CB2 receptors were established using frontal affinity chromatographic techniques. This is the first report that confirms the presence of functional CB1 and CB2 receptors on KU-812 cells. The data from this study confirm that the CB1/CB2-OT column can be used to determine the binding affinities (K(i) values) for a single compound and to screen individual compounds or a mixture of multiple compounds. The CB1/CB2-OT column was also used to screen a botanical matrix, Zanthoxylum clava-herculis, where preliminary results suggest the presence of a high-affinity phytocannabinoid.

  18. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression.

  19. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES cell fate. ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation. METHODS AND FINDINGS: The cannabinoid receptor type 1 (CB1 and cannabinoid receptor type 2 (CB2 are members of the G-protein coupled receptor (GPCR family, that are activated by endogenous ligands, the endocannabinoids. CB1 receptor expression is abundant in brain while CB2 receptors are mostly expressed in hematopoietic cells. However, the expression and the precise roles of CB1 and CB2 and their cognate ligands in ES cells are not known. We observed significant induction of CB1 and CB2 cannabinoid receptors during the hematopoietic differentiation of murine ES (mES-derived embryoid bodies. Furthermore, mES cells as well as ES-derived embryoid bodies at days 7 and 14, expressed endocannabinoids, the ligands for both CB1 and CB2. The CB1 and CB2 antagonists (AM251 and AM630, respectively induced mES cell death, strongly suggesting that endocannabinoids are involved in the survival of mES cells. Treatment of mES cells with the exogenous cannabinoid ligand Delta(9-THC resulted in the increased hematopoietic differentiation of mES cells, while addition of AM251 or AM630 blocked embryoid body formation derived from the mES cells. In addition, cannabinoid agonists induced the chemotaxis of ES-derived embryoid bodies, which was specifically inhibited by the CB1 and CB2 antagonists. CONCLUSIONS: This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation. This study provides insights

  20. Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats.

    Science.gov (United States)

    Duncan, Marnie; Mouihate, Abdeslam; Mackie, Ken; Keenan, Catherine M; Buckley, Nancy E; Davison, Joseph S; Patel, Kamala D; Pittman, Quentin J; Sharkey, Keith A

    2008-07-01

    Enhanced intestinal transit due to lipopolysaccharide (LPS) is reversed by cannabinoid (CB)2 receptor agonists in vivo, but the site and mechanism of action are unknown. We have tested the hypothesis that CB2 receptors are expressed in the enteric nervous system and are activated in pathophysiological conditions. Tissues from either saline- or LPS-treated (2 h; 65 microg/kg ip) rats were processed for RT-PCR, Western blotting, and immunohistochemistry or were mounted in organ baths where electrical field stimulation was applied in the presence or absence of CB receptor agonists. Whereas the CB2 receptor agonist JWH133 did not affect the electrically evoked twitch response of the ileum under basal conditions, in the LPS-treated tissues JWH133 was able to reduce the enhanced contractile response in a concentration-dependent manner. Rat ileum expressed CB2 receptor mRNA and protein under physiological conditions, and this expression was not affected by LPS treatment. In the myenteric plexus, CB2 receptors were expressed on the majority of neurons, although not on those expressing nitric oxide synthase. LPS did not alter the distribution of CB2 receptor expression in the myenteric plexus. In vivo LPS treatment significantly increased Fos expression in both enteric glia and neurons. This enhanced expression was significantly attenuated by JWH133, whose action was reversed by the CB2 receptor antagonist AM630. Taking these facts together, we conclude that activation of CB2 receptors in the enteric nervous system of the gastrointestinal tract dampens endotoxin-induced enhanced intestinal contractility.

  1. Differential CB1 and CB2 cannabinoid receptor-inotropic response of rat isolated atria: endogenous signal transduction pathways.

    Science.gov (United States)

    Sterin-Borda, Leonor; Del Zar, Claudia F; Borda, Enri

    2005-06-15

    In this study, we have determined the contractile effects of CB1 and CB2 cannabinoid receptor activation on rat isolated atria and the different signaling pathways involved. Anandamide did not has significantly effect on atria contractility, however, the treatment with both CB1 (AM251) or CB2 (AM630) receptor antagonists, the endocannabinoids triggered stimulation or inhibition on contractility respectively. The ACEA stimulation of CB1 receptor exerted decrease on contractility, that significantly correlated with the decrement of cAMP and the stimulation of nitric oxide synthase (NOS) and the accumulation of cyclic GMP (cGMP). On the contrary, JWH 015 stimulation of CB2 receptor triggered positive contractile response that significantly correlated with the increase cAMP production. The inhibiton of adenylate cyclase activity impaired the JWH 015 activation of CB1 receptor induced positive contractile effect, while inhibitors of phospholipase C (PLC), NOS and soluble nitric oxide (NO)-sensitive guanylate cyclase blocked the dose-response curves of ACEA on contractility. Those inhibitors also attenuated the CB1 receptor-dependent increase in activation of NOS and cGMP accumulation. These results suggest that CB2 receptor agonist mediated positive contractile effect associated with increased production on cAMP while CB1 receptor agonist mediated decrease on contractility associated with decreased cAMP accumulation and increase production of NO and cGMP; that occur secondarily to stimulation of PLC, NOS and soluble guanylate cyclase. Data give pharmacological evidence for the existence of functional CB1 and CB2 cannabinoid receptors in rat isolated atria and may contribute to a better understanding the effects of cannabinoids in the cardiovascular system.

  2. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

    Science.gov (United States)

    Fu, Weisi; Taylor, Bradley K

    2015-05-19

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that, a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Four weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10-100μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1-3μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis.

  3. The Effects of Targeted Deletion of Cannabinoid Receptors CB1 and CB2 on Intranasal Sensitization and Challenge with Adjuvant-Free Ovalbumin

    OpenAIRE

    Kaplan, Barbara L. F.; Oberdick, Jody E.; Karmaus, Peer W. F.; Ngaotepprutaram, Thitirat; Birmingham, Neil P.; Harkema, Jack R.; Kaminski, Norbert E.

    2010-01-01

    The mechanisms by which cannabinoid receptors CB1 and CB2 modulate immune function are not fully elucidated. Critical tools for the determination of the role of both receptors in the immune system are CB1/CB2 double null mice (CB1/CB2 null), and previous studies have shown that CB1/CB2 null mice exhibit exaggerated responses to various immunological stimuli. The objective of these studies was to determine the magnitude to which CB1/CB2 null mice responded to the respiratory allergen ovalbumin...

  4. Cannabinoid receptors are widely expressed in goldfish: molecular cloning of a CB2-like receptor and evaluation of CB1 and CB2 mRNA expression profiles in different organs.

    Science.gov (United States)

    Cottone, Erika; Pomatto, Valentina; Cerri, Fulvio; Campantico, Ezio; Mackie, Ken; Delpero, Massimiliano; Guastalla, Alda; Dati, Claudio; Bovolin, Patrizia; Franzoni, Maria Fosca

    2013-10-01

    Cannabinoids, the bioactive constituents of Cannabis sativa, and endocannabinoids, among which the most important are anandamide and 2-arachidonoylglycerol, control various biological processes by binding to specific G protein-coupled receptors, namely CB1 and CB2 cannabinoid receptors. While a vast amount of information on the mammalian endocannabinoid system does exist, few data have been reported on bony fish. In the goldfish, Carassius auratus, the CB1 receptor has been cloned and its distribution has been analyzed in the retina, brain and gonads, while CB2 had not yet been isolated. In the present paper, we cloned the goldfish CB2 receptor and show that it presents a quite high degree of amino acid identity with zebrafish Danio rerio CB2A and CB2B receptors, while the percentage of identity is lower with the puffer fish Fugu rubripes CB2, as also confirmed by the phylogenetic analysis. The sequence identity becomes much lower when comparing the goldfish and the mammalian CB2 sequences; as for other species, goldfish CB2 and CB1 amino acid sequences share moderate levels of identity. Western-blotting analysis shows the CB2 receptor as two major bands of about 53 and 40 kDa and other faint bands with apparent molecular masses around 70, 57 and 55 kDa. Since the distribution of a receptor could give information on its physiological role, we evaluated and compared CB1 and CB2 mRNA expression in different goldfish organs by means of qReal-Time PCR. Our results show that both CB1 and CB2 receptors are widely expressed in the goldfish, displaying some tissue specificities, thus opening the way for further functional studies on bony fish and other nonmammalian vertebrates.

  5. Vascular Dysfunction in a Transgenic Model of Alzheimer's Disease: Effects of CB1R and CB2R Cannabinoid Agonists

    Science.gov (United States)

    Navarro-Dorado, Jorge; Villalba, Nuria; Prieto, Dolores; Brera, Begoña; Martín-Moreno, Ana M.; Tejerina, Teresa; de Ceballos, María L.

    2016-01-01

    There is evidence of altered vascular function, including cerebrovascular, in Alzheimer's disease (AD) and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN) and the CB2 selective agonist JWH-133 (JWH). In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh) was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology. PMID:27695396

  6. CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis.

    Directory of Open Access Journals (Sweden)

    Balázs Csóka

    Full Text Available BACKGROUND: Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis. Endocannabinoids that are produced excessively in sepsis are potential factors leading to immune dysfunction, because they suppress immune cell function by binding to G-protein-coupled CB(2 receptors on immune cells. Here we examined the role of CB(2 receptors in regulating the host's response to sepsis. METHODS AND FINDINGS: The role of CB(2 receptors was studied by subjecting CB(2 receptor wild-type and knockout mice to bacterial sepsis induced by cecal ligation and puncture. We report that CB(2 receptor inactivation by knockout decreases sepsis-induced mortality, and bacterial translocation into the bloodstream of septic animals. Furthermore, CB(2 receptor inactivation decreases kidney and muscle injury, suppresses splenic nuclear factor (NF-kappaB activation, and diminishes the production of IL-10, IL-6 and MIP-2. Finally, CB(2 receptor deficiency prevents apoptosis in lymphoid organs and augments the number of CD11b(+ and CD19(+ cells during CLP. CONCLUSIONS: Taken together, our results establish for the first time that CB(2 receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2 receptors may be therapeutically targeted for the benefit of patients suffering from sepsis.

  7. Blockade of cannabinoid CB1 and CB2 receptors does not prevent the antipruritic effect of systemic paracetamol.

    Science.gov (United States)

    Saglam, Gulis; Gunduz, Ozgur; Ulugol, Ahmet

    2014-12-01

    Cannabinoid CB1 receptors have been shown to mediate the antinociceptive, but not the hypothermic, action of the worldwide used analgesic, paracetamol. Since itch and pain sensations share many similarities, the purpose of the present study was to investigate whether blockade of cannabinoid CB1 and CB2 receptors participates in the antipruritic activity of paracetamol in mice. Scratching behavior was induced by intradermal serotonin injection into the rostral part of the back of the mice. After serotonin administration, scratching of the injected site by the hind paws were videotaped and counted for 30 min. Serotonin-induced scratching behavior was attenuated with high-dose paracetamol (300 mg/kg). The CB1 receptor antagonist, AM-251 (1 mg/kg), and the CB2 receptor antagonist, SR-144528 (1 mg/kg), did not alter the anti-scratching behavioral effect of paracetamol. Our results indicate that, in contrast to its antinociceptive action, but similar to its hypothermic effect, cannabinoid receptors are not involved in the antipruritic activity of paracetamol.

  8. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR.

    Science.gov (United States)

    Latek, Dorota; Kolinski, Michal; Ghoshdastider, Umesh; Debinski, Aleksander; Bombolewski, Rafal; Plazinska, Anita; Jozwiak, Krzysztof; Filipek, Slawomir

    2011-09-01

    Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) G protein coupled receptors. Docking of agonists and antagonists to CB(1) and CB(2) cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch and its possible participation in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB(1) and CB(2) receptor models were constructed based on the adenosine A(2A) receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of β(2)AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation.

  9. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin.

    Science.gov (United States)

    Pertwee, R G

    2008-01-01

    Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.

  10. The CB1/CB2 receptor agonist WIN-55,212-2 reduces viability of human Kaposi's sarcoma cells in vitro.

    Science.gov (United States)

    Luca, Tonia; Di Benedetto, Giulia; Scuderi, Mariagrazia Rita; Palumbo, Marco; Clementi, Silvia; Bernardini, Renato; Cantarella, Giuseppina

    2009-08-15

    Kaposi's sarcoma is a highly vascularized mesenchymal neoplasm arising with multiple lesions of the skin. Endogenous cannabinoids have been shown to inhibit proliferation of a wide spectrum of tumor cells. We studied the effects of cannabinoids on human Kaposi's sarcoma cell proliferation in vitro. To do so, we first investigated the presence of the cannabinoid receptors CB(1) and CB(2) mRNAs in the human Kaposi's sarcoma cell line KS-IMM by RT-PCR and, subsequently, the effects of the mixed CB(1)/CB(2) agonist WIN-55,212-2 (WIN) on cell proliferation in vitro. WIN showed antimitogenic effects on Kaposi's sarcoma cells. Western blot analysis of Kaposi's sarcoma lysates suggested that WIN treatment induced activation of both caspase-3 and -6, as well as increased phosphorylation of the stress kinase p38 and JNK, along with transient phosphorylation of ERK(1/2). To better characterize the involvement of each single CB receptor in cannabinoid-induced cell death, we incubated Kaposi's sarcoma cells with different selective cannabinoid receptor agonists, respectively ACEA (CB(1)) and JWH-133 (CB(2)). None of the agonists was able to induce KS-IMM cell apoptosis. Moreover, we co-incubated Kaposi's sarcoma cells with WIN-55,212-2 and either the CB(1) receptor antagonist AM251, the CB(2) receptor antagonist AM630, or a combination of both substances. The CB(2) receptor antagonist AM630 was able to significantly increase survival of Kaposi's sarcoma cells treated with WIN. In view of the antiproliferative effects of cannabinoids on KS-IMM cells, one could envision the cannabinoid system as a potential target for pharmacological treatment of Kaposi's sarcoma.

  11. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies

    NARCIS (Netherlands)

    Zurolo, E.; Iyer, A.M.; Spliet, W.G.M.; van Rijen, P.C.; Troost, D.; Gorter, J.A.; Aronica, E.

    2010-01-01

    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression an

  12. The effects of targeted deletion of cannabinoid receptors CB1 and CB2 on intranasal sensitization and challenge with adjuvant-free ovalbumin.

    Science.gov (United States)

    Kaplan, Barbara L F; Lawver, Jody E; Karmaus, Peer W F; Ngaotepprutaram, Thitirat; Birmingham, Neil P; Harkema, Jack R; Kaminski, Norbert E

    2010-04-01

    The mechanisms by which cannabinoid receptors CB(1) and CB(2) modulate immune function are not fully elucidated. Critical tools for the determination of the role of both receptors in the immune system are CB(1)/CB(2) double null mice (CB(1)/CB(2) null), and previous studies have shown that CB(1)/CB(2) null mice exhibit exaggerated responses to various immunological stimuli. The objective of these studies was to determine the magnitude to which CB(1)/CB(2) null mice responded to the respiratory allergen ovalbumin (OVA) as compared with wild-type C57BL/6 mice. The authors determined that in the absence of adjuvant, both wild-type and CB(1)/CB(2) null mice mounted a marked response to intranasally instilled OVA as assessed by inflammatory cell infiltrate in the bronchoalveolar lavage fluid (BALF), eosinophilia, induction of mucous cell metaplasia, and IgE production. Many of the endpoints measured in response to OVA were similar in wild-type versus CB(1)/CB(2) null mice, with exceptions being modest reductions in OVA-induced IgE and attenuation of BALF neutrophilia in CB(1)/CB(2) null mice as compared with wild-type mice. These results suggest that T-cell responses are not universally exaggerated in CB(1)/CB(2) null mice.

  13. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.

    Science.gov (United States)

    Adamczyk, Przemysław; Miszkiel, Joanna; McCreary, Andrew C; Filip, Małgorzata; Papp, Mariusz; Przegaliński, Edmund

    2012-03-20

    There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor

  14. Evaluation of (Z)-2-((1-benzyl-1H-indol-3-yl)methylene)-quinuclidin-3-one analogues as novel, high affinity ligands for CB1 and CB2 cannabinoid receptors.

    Science.gov (United States)

    Madadi, Nikhil Reddy; Penthala, Narsimha Reddy; Brents, Lisa K; Ford, Benjamin M; Prather, Paul L; Crooks, Peter A

    2013-04-01

    A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R=R(2)=H, R(1)=F) and 13 (R=COOCH3, R(1)=R(2)=H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.

  15. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis.

    Science.gov (United States)

    Preet, Anju; Qamri, Zahida; Nasser, Mohd W; Prasad, Anil; Shilo, Konstantin; Zou, Xianghong; Groopman, Jerome E; Ganju, Ramesh K

    2011-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC. We observed expression of CB1 (24%) and CB2 (55%) in NSCLC patients. Furthermore, we have shown that the treatment of NSCLC cell lines (A549 and SW-1573) with CB1/CB2- and CB2-specific agonists Win55,212-2 and JWH-015, respectively, significantly attenuated random as well as growth factor-directed in vitro chemotaxis and chemoinvasion in these cells. We also observed significant reduction in focal adhesion complex, which plays an important role in migration, upon treatment with both JWH-015 and Win55,212-2. In addition, pretreatment with CB1/CB2 selective antagonists, AM251 and AM630, prior to JWH-015 and Win55,212-2 treatments, attenuated the agonist-mediated inhibition of in vitro chemotaxis and chemoinvasion. In addition, both CB1 and CB2 agonists Win55,212-2 and JWH-133, respectively, significantly inhibited in vivo tumor growth and lung metastasis (∼50%). These effects were receptor mediated, as pretreatment with CB1/CB2 antagonists abrogated CB1/CB2 agonist-mediated effects on tumor growth and metastasis. Reduced proliferation and vascularization, along with increased apoptosis, were observed in tumors obtained from animals treated with JWH-133 and Win55,212-2. Upon further elucidation into the molecular mechanism, we observed that both CB1 and CB2 agonists inhibited phosphorylation of AKT, a key signaling molecule controlling cell survival, migration, and apoptosis, and reduced matrix metalloproteinase 9 expression and activity. These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.

  16. Examining the critical roles of human CB2 receptor residues Valine 3.32 (113) and Leucine 5.41 (192) in ligand recognition and downstream signaling activities.

    Science.gov (United States)

    Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun

    2014-09-26

    We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.

  17. Beneficial effects of cannabinoids (CB) in a murine model of allergen-induced airway inflammation: role of CB1/CB2 receptors.

    Science.gov (United States)

    Braun, Andrea; Engel, Tabea; Aguilar-Pimentel, Juan Antonio; Zimmer, Andreas; Jakob, Thilo; Behrendt, Heidrun; Mempel, Martin

    2011-04-01

    The endocannabinoid system (ECS) consists of two cannabinoid (CB) receptors, namely CB(1) and CB(2) receptor, and their endogenous (endocannabinoids) and exogenous (cannabinoids, e.g. delta-9-tetrahydrocannabinol (THC)) ligands which bind to these receptors. Based on studies suggesting a role of THC and the ECS in inflammation, the objective of this study was to examine their involvement in type I hypersensitivity using a murine model of allergic airway inflammation. THC treatment of C57BL/6 wildtype mice dramatically reduced airway inflammation as determined by significantly reduced total cell counts in bronchoalveolar lavage (BAL). These effects were greatest when mice were treated during both, the sensitization and the challenge phase. Furthermore, systemic immune responses were significantly suppressed in mice which received THC during sensitization phase. To investigate a role of CB(1/2) receptors in this setting, we used pharmacological blockade of CB(1) and/or CB(2) receptors by the selective antagonists and moreover CB(1)/CB(2) receptor double-knockout mice (CB(1)(-/-)/CB(2)(-/-)) and found neither significant changes in the cell patterns in BAL nor in immunoglobulin levels as compared to wildtype mice. Our results indicate that the activation of the ECS by applying the agonist THC is involved in the development of type I allergies. However, CB(1)/CB(2) receptor-independent signalling seems likely in the observed results.

  18. Effects of targeted deletion of cannabinoid receptors CB1 and CB2 on immune competence and sensitivity to immune modulation by Delta9-tetrahydrocannabinol.

    Science.gov (United States)

    Springs, Alison E B; Karmaus, Peer W F; Crawford, Robert B; Kaplan, Barbara L F; Kaminski, Norbert E

    2008-12-01

    The role of cannabinoid receptors, CB1 and CB2, in immune competence and modulation by Delta9-tetrahydrocannabinol (Delta9-THC) was investigated in CB1(-/-)/CB2(-/-) mice. Immunofluorescence analysis of splenic leukocytes showed no significant differences in the percentage of T cell subsets, B cells, or macrophages between wild-type and CB1(-/-)/CB2(-/-) mice. Lymphoproliferative control responses to PHA, phorbol ester plus ionomycin, or LPS and sensitivity to suppression by Delta9-THC showed no profound differences between the two genotypes, although some differences were observed in control baseline responses. Likewise, similar control responses and sensitivity to Delta9-THC were observed in mixed lymphocyte responses (MLR) and in IL-2 and IFN-gamma production in both genotypes. Conversely, humoral immune responses showed a markedly different profile of activity. Delta9-THC suppressed the in vivo T cell-dependent, anti-sheep RBC (anti-sRBC) IgM antibody-forming cell (AFC) response in wild-type but not in CB1(-/-)/CB2(-/-) mice, and the in vitro anti-sRBC IgM response in CB1(-/-)/CB2(-/-) splenocytes was too low to rigorously assess CB1/CB2 involvement in modulation by Delta9-THC. Conversely, comparable in vitro IgM AFC control responses to LPS and CD40 ligand (CD40L) activation were observed in the two genotypes. Interestingly, LPS-induced IgM responses were refractory to suppression by Delta9-THC, regardless of genotype, and CD40L-induced IgM responses were only suppressed by Delta9-THC in wild-type but not in CB1(-/-)/CB2(-/-) B cells. Collectively, we demonstrate differential involvement of CB1 and/or CB2 in immune modulation by Delta9-THC and in some control responses. Moreover, CB1/CB2 involvement was observed in humoral responses requiring CD40-initiated signaling for suppression by Delta9-THC.

  19. Effects of Se-phenyl thiazolidine-4-carboselenoate on mechanical and thermal hyperalgesia in brachial plexus avulsion in mice: mediation by cannabinoid CB1 and CB2 receptors.

    Science.gov (United States)

    Del Fabbro, Lucian; Borges Filho, Carlos; Cattelan Souza, Leandro; Savegnago, Lucielli; Alves, Diego; Henrique Schneider, Paulo; de Salles, Helena Domingues; Jesse, Cristiano R

    2012-09-26

    In this study, we investigated the therapeutic effects of treatment with (R)-Se-phenyl thiazolidine-4-carboselenoate (Se-PTC), an organic selenium compound with antinociceptive properties, against mechanical and thermal hyperalgesia induced by brachial plexus avulsion (BPA), a neuropathic model in mice. The involvement of cannabinoid CB(1) and CB(2) receptors in the Se-PTC anti-hyperalgesic effect was also investigated. Se-PTC treatment at (25 and 50mg/kg, per oral, p.o.) lowered (BPA model) induced mechanical and thermal hyperalgesia in mice. Pretreatment with cannabinoid CB(1) (AM251; 1mg/kg, intraperitoneally, i.p.), or CB(2) (AM630; 3mg/kg, i.p.) receptor antagonists reverted the mechanical and thermal anti-hyperalgesic effect of Se-PTC (25mg/kg) in the BPA model. Selective CB(1) (ACEA, 10mg/kg, i.p.) and CB(2) (JWH-133, 10mg/kg, i.p.) receptor agonists lowered mechanical and thermal hyperalgesia in the BPA model, and this effect was prevented by selective CB(1) and CB(2) receptor antagonists. Gabapentin (70mg/kg, p.o.), positive control administration also lowered mechanical and thermal hyperalgesia in the BPA model. The results suggest that the mechanical and thermal hyperalgesia observed following BPA in mice is dependent on cannabinoid receptors. The results indicate that modulating cannabinoid receptors represent a valuable approach for the treatment of neuropathic pain. In conclusion, the results suggested that Se-PTC produces pronounced mechanical and thermal anti-hyperalgesic effects in neuropathic models in mice by modulating CB(1) and CB(2) receptors.

  20. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuqin [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China); Sun, Tao [Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002 (China); Wang, Xiaodong, E-mail: xdwang666@hotmail.com [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China)

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  1. Evaluation of selective cannabinoid CB(1) and CB(2) receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis.

    Science.gov (United States)

    Tambaro, Simone; Casu, Maria Antonietta; Mastinu, Andrea; Lazzari, Paolo

    2014-04-15

    Interstitial cystitis is a debilitating bladder inflammation disorder. To date, the understanding of the causes of interstitial cystitis remains largely fragmentary and there is no effective treatment available. Recent experimental results have shown a functional role of the endocannabinoid system in urinary bladder. In this study, we evaluated the anti-inflammatory effect of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of interstitial cystitis. Bladder inflammation was induced in mice by lipopolysaccharide (LPS) and whole bladders were removed 24h later. LPS induced a significant increase of the contractile amplitude in spontaneous activity and a hypersensitivity to exogenous acetylcholine-induced contraction of whole-isolated bladder. Next, we evaluated the anti-inflammatory activity of cannabinoidergic compounds by pretreating mice with CB1 or CB2 selective agonist compounds, respectively ACEA and JWH015. Interestingly, JWH015, but not ACEA, antagonized LPS-induced bladder inflammation. Additionally, anti-inflammatory activity was studied by evaluation, leukocytes mucosa infiltration, myeloperoxidase activity, and mRNA expression of pro-inflammatory interleukin (IL-1α and IL-1β), tumor necrosis factor-alpha (TNF-α) and cannabinoid CB1 and CB2 receptors. JWH015 significantly decreased leukocytes infiltration in both submucosa and mucosa, as well as the myeloperoxydase activity, in LPS treated mice. JWH015 reduced mRNA expression of IL-1α, IL-1β, and TNF-α. LPS treatment increased expression of bladder CB2 but not CB1 mRNA. Taken together, these findings strongly suggest that modulation of the cannabinoid CB2 receptors might be a promising therapeutic strategy for the treatment of bladder diseases and conditions characterized by inflammation, such as interstitial cystitis.

  2. 3D-QSAR/CoMFA-based structure-affinity/selectivity relationships of aminoalkylindoles in the cannabinoid CB1 and CB2 receptors.

    Science.gov (United States)

    Mella-Raipán, Jaime; Hernández-Pino, Santiago; Morales-Verdejo, César; Pessoa-Mahana, David

    2014-03-05

    A 3D-QSAR (CoMFA) study was performed in an extensive series of aminoalkylindoles derivatives with affinity for the cannabinoid receptors CB1 and CB2. The aim of the present work was to obtain structure-activity relationships of the aminoalkylindole family in order to explain the affinity and selectivity of the molecules for these receptors. Major differences in both, steric and electrostatic fields were found in the CB1 and CB2 CoMFA models. The steric field accounts for the principal contribution to biological activity. These results provide a foundation for the future development of new heterocyclic compounds with high affinity and selectivity for the cannabinoid receptors with applications in several pathological conditions such as pain treatment, cancer, obesity and immune disorders, among others.

  3. 3D-QSAR/CoMFA-Based Structure-Affinity/Selectivity Relationships of Aminoalkylindoles in the Cannabinoid CB1 and CB2 Receptors

    Directory of Open Access Journals (Sweden)

    Jaime Mella-Raipán

    2014-03-01

    Full Text Available A 3D-QSAR (CoMFA study was performed in an extensive series of aminoalkylindoles derivatives with affinity for the cannabinoid receptors CB1 and CB2. The aim of the present work was to obtain structure-activity relationships of the aminoalkylindole family in order to explain the affinity and selectivity of the molecules for these receptors. Major differences in both, steric and electrostatic fields were found in the CB1 and CB2 CoMFA models. The steric field accounts for the principal contribution to biological activity. These results provide a foundation for the future development of new heterocyclic compounds with high affinity and selectivity for the cannabinoid receptors with applications in several pathological conditions such as pain treatment, cancer, obesity and immune disorders, among others.

  4. Evaluation of cannabinoid CB1 and CB2 receptors expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients' survival.

    Science.gov (United States)

    Theocharis, Stamatios; Giaginis, Constantinos; Alexandrou, Paraskevi; Rodriguez, Jose; Tasoulas, Jason; Danas, Eugene; Patsouris, Efstratios; Klijanienko, Jerzy

    2016-03-01

    Cannabinoid receptors (CB1R and CB2R) constitute essential members of the endocannabinoid system (ECS) which participates in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to assess the clinical significance of CB1R and CB2R protein expression in mobile tongue squamous cell carcinoma (SCC). CB1R and CB2R expression was assessed immunohistochemically on 28 mobile tongue SCC tissue samples and was analyzed in relation with clinicopathological characteristics and overall and disease-free patients' survival. CB1R, CB2R, and concomitant CB1R/CB2R expression was significantly increased in older compared to younger mobile tongue SCC patients (p = 0.0243, p = 0.0079, and p = 0.0366, respectively). Enhanced CB2R and concomitant CB1R/CB2R expression was significantly more frequently observed in female compared to male mobile tongue SCC patients (p = 0.0025 and p = 0.0016, respectively). Elevated CB2R expression was significantly more frequently observed in mobile tongue SCC patients presenting well-defined tumor shape compared to those with diffuse (p = 0.0430). Mobile tongue SCC patients presenting enhanced CB1R, CB2R, or concomitant CB1R/CB2R expression showed significantly longer overall (log-rank test, p = 0.004, p = 0.011, p = 0.018, respectively) and disease-free (log-rank test, p = 0.003, p = 0.007, p = 0.027, respectively) survival times compared to those with low expression. In multivariate analysis, CB1R was identified as an independent prognostic factor for disease-free patients' survival (Cox-regression analysis, p = 0.032). The present study provides evidence that CB1R and CB2R may play a role in the pathophysiological aspects of the mobile tongue SCC and even each molecule may constitute a potential target for the development of novel anti-cancer drugs for this type of malignancy.

  5. Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels.

    Science.gov (United States)

    De Petrocellis, Luciano; Di Marzo, Vincenzo

    2010-03-01

    The molecular mechanism of action of Delta(9)-tetrahydrocannabinol (THC), the psychotropic constituent of Cannabis, has been a puzzle during the three decades separating its characterization, in 1964, and the cloning, in the 1990s, of cannabinoid CB1 and CB2 receptors. However, while these latter proteins do mediate most of the pharmacological actions of THC, they do not seem to act as receptors for other plant cannabinoids (phytocannabinoids), nor are they the unique targets of the endogenous lipids that were originally identified in animals as agonists of CB1 and CB2 receptors, and named endocannabinoids. Over the last decade, several potential alternative receptors for phytocannabinoids, endocannabinoids, and even synthetic cannabimimetics, have been proposed, often based uniquely on pharmacological evidence obtained in vitro. In particular, the endocannabinoid anandamide, and the other most abundant Cannabis constituent, cannabidiol, seem to be the most "promiscuous" of these compounds. In this article, we review the latest data on the non-CB1, non-CB2 receptors suggested so far for endocannabinoids and plant or synthetic cannabinoids, and lay special emphasis on uncharacterized or orphan G-protein-coupled receptors as well as on transient receptor potential channels.

  6. Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats.

    Science.gov (United States)

    Rock, Erin M; Boulet, Nathalie; Limebeer, Cheryl L; Mechoulam, Raphael; Parker, Linda A

    2016-09-05

    We aimed to investigate the potential anti-emetic and anti-nausea properties of targeting the cannabinoid 2 (CB2) receptor. We investigated the effect of the selective CB2 agonist, HU-308, on lithium chloride- (LiCl) induced vomiting in Suncus murinus (S. murinus) and conditioned gaping (nausea-induced behaviour) in rats. Additionally, we determined whether these effects could be prevented by pretreatment with AM630 (a selective CB2 receptor antagonist/inverse agonist). In S. murinus, HU-308 (2.5, 5mg/kg, i.p.) reduced, but did not completely block, LiCl-induced vomiting; an effect that was prevented with AM630. In rats, HU-308 (5mg/kg, i.p.) suppressed, but did not completely block, LiCl-induced conditioned gaping to a flavour; an effect that was prevented by AM630. These findings are the first to demonstrate the ability of a selective CB2 receptor agonist to reduce nausea in animal models, indicating that targeting the CB2 receptor may be an effective strategy, devoid of psychoactive effects, for managing toxin-induced nausea and vomiting.

  7. Vascular dysfunction in a transgenic model of Alzheimer’s disease: Effects of CB1R and CB2R cannabinoid agonists.

    Directory of Open Access Journals (Sweden)

    Jorge Navarro-Dorado

    2016-09-01

    Full Text Available There is evidence of altered vascular function, including cerebrovascular, in Alzheimer’s disease (AD and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN and the CB2 selective agonist JWH-133 (JWH. In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology.

  8. Mice lacking cannabinoid CB1-, CB2-receptors or both receptors show increased susceptibility to trinitrobenzene sulfonic acid (TNBS)-induced colitis.

    Science.gov (United States)

    Engel, M A; Kellermann, C A; Burnat, G; Hahn, E G; Rau, T; Konturek, P C

    2010-02-01

    This study was performed to assess whether mice lacking the cannabinoid receptor CB1, CB2 or both receptors show increased susceptibility to TNBS colitis in comparison to wildtype mice. Previously, activation of CB1 and CB2 receptors showed attenuation of TNBS colitis in mice. The aim of the study was to investigate the susceptibility of three mouse strains CB1-, CB2- and CB1+2 double knockout mice in the model of TNBS colitis. The different knockout mice were given each a single enema with TNBS 7 mg, volume 150 microl (in 50% ethanol solution) on day 1. Control group (C57BL/6 mice) received the same concentration of TNBS enema and each strain received vehicle application of 150 microl 50% ethanol solution. After a 3-day period, the animals were sacrificed and their colon excised. A scoring system was used to describe macroscopical and histological changes. Messenger RNA-expression of TNF-alpha and IL-1beta as pro-inflammatory markers was measured by RT-PCR. All three knockout strains showed increased susceptibility to TNBS colitis quantified by macroscopical and histological scoring systems and pro-inflammatory cytokine expression in comparison to the TNBS control group (wild type C57BL/6 animals). Mice lacking the CB1-, CB2-receptor or both receptors showed aggravation of inflammation in the model of TNBS colitis. Lacking of both cannabinoid receptors did not result in potentiation of colitis severity compared to lacking of each CB1 or CB2, respectively. These results suggest that the endocannabinoid system may have tonic inhibitory effects on inflammatory responses in the colon.

  9. Cannabinoids Receptor-2 (CB2) agonist ameliorates colitis in IL-10−/− mice by attenuating the activation of T cells and promoting their apoptosis

    Science.gov (United States)

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2014-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptors induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10−/− mice. JWH-133 effectively attenuated the overall clinical score, reversed colitis-associated pathogenesis and decrease in body weight in IL-10−/− mice. After JWH-133 treatment, the percentage of CD4+ T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells in the LP of colitis mice declined after JWH-133 treatment in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN). JWH-133 was also effective in ameliorating dextran sodium sulphate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodopravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. PMID:22119709

  10. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice.

    Science.gov (United States)

    García-Gutiérrez, María S; Manzanares, Jorge

    2011-01-01

    Mice overexpressing CB2r (CB2xP) were exposed to open field (OF), light-dark box (LDB) and elevated plus maze (EPM) tests. Corticotropin-releasing factor (CRF) and pro-opiomelanocortin (POMC) mRNA were measured in paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus after 30 minutes of restraint stress (RS). Anxiolytic effects of alprazolam (45 or 70 µg/kg, ip) were evaluated. GABA(A)α(2) and GABA(A)γ(2) mRNA were measured in the hippocampus (HIPP) and amygdala (AMY) of CB2xP and wild type (WT) mice. No differences were observed in the total distance travelled by CB2xP and WT mice in OF. Central and peripheral distances travelled significantly increased and decreased in CB2xP mice. Overexpression of CB2r reduced anxiety-like behaviours in LDB and EPM. In WT mice, RS increased CRF (82%) and POMC (42%) mRNA in the PVN and ARC nuclei, respectively. In CB2xP mice, RS also increased POMC (22%) mRNA in the ARC nucleus, but had no effect on CRF mRNA in the PVN nucleus. Administration of alprazolam was without effect in CB2xP mice. An increase of GABA(A)α(2) and GABA(A)γ(2) mRNA in the hippocampus and amygdala of CB2xP mice was observed. Our findings revealed that increased expression of CB2r significantly reduced anxiogenic-related behaviours, modified the response to stress and impaired the action of anxiolytic drugs.

  11. In vitro metabolism of indomethacin morpholinylamide (BML-190), an inverse agonist for the peripheral cannabinoid receptor (CB2) in rat liver microsomes

    Science.gov (United States)

    Zhang, Qiang; Ma, Peng; Cole, Richard B.; Wang, Guangdi

    2010-01-01

    The in vitro metabolism of an inverse agonist of the peripheral cannabinoid receptor (CB2), indomethacin morpholinylamide (BML-190), has been characterized using rat liver microsomal incubation. BML-190 was found to yield at least 15 metabolic products as identified by HPLC–MS/MS analysis. Four major phase one metabolic pathways either individually, or in combination, were proposed to account for the identified metabolic products: (1) loss of the p-chlorobenzyl group, (2) hydroxylation on the indole or on the morpholine ring, (3) morpholinyl ring opening, and (4) demethylation of the methoxyl group on the indole ring. PMID:20542112

  12. In vitro metabolism of indomethacin morpholinylamide (BML-190), an inverse agonist for the peripheral cannabinoid receptor (CB(2)) in rat liver microsomes.

    Science.gov (United States)

    Zhang, Qiang; Ma, Peng; Cole, Richard B; Wang, Guangdi

    2010-09-11

    The in vitro metabolism of an inverse agonist of the peripheral cannabinoid receptor (CB(2)), indomethacin morpholinylamide (BML-190), has been characterized using rat liver microsomal incubation. BML-190 was found to yield at least 15 metabolic products as identified by HPLC-MS/MS analysis. Four major phase one metabolic pathways either individually, or in combination, were proposed to account for the identified metabolic products: (1) loss of the p-chlorobenzyl group, (2) hydroxylation on the indole or on the morpholine ring, (3) morpholinyl ring opening, and (4) demethylation of the methoxyl group on the indole ring.

  13. Involvement of a non-CB1/CB2 cannabinoid receptor in the aqueous humor outflow-enhancing effects of abnormal-cannabidiol

    Science.gov (United States)

    Qiao, Zhuanhong; Kumar, Akhilesh; Kumar, Pritesh; Song, Zhao-Hui

    2016-01-01

    The purpose of this study was to investigate the effects of abnormal-cannabidiol (abn-cbd), a non-psychoactive cannabinoid agonist, on aqueous humor outflow via the trabecular meshwork (TM) of porcine eye, and to examine the involvement of a non-CB1/CB2 cannabinoid receptor and the p42/44 mitogen-activated protein kinase (p42/44 MAPK) pathway. The effects of abn-cbd on aqueous humor outflow were measured using a porcine anterior segment perfused organ culture model. The activation of p42/44 MAPK by abn-cbd was determined in cultured TM cells with western blot analysis using an anti-phospho-p42/44 MAPK antibody. Administration of abn-cbd caused a concentration-dependent enhancement of aqueous humor outflow facility with a maximum effect (155.0 ± 11.7% of basal outflow facility) after administration of 30 nM abn-cbd. Pretreatment with 1 μM of O-1918, a cannabidiol analog that acts as a selective antagonist at the non-CB1/CB2 receptor, produced a full antagonism of 30 nM abn-cbd induced increase of aqueous humor outflow facility. Pretreatment with 1 μM of CB1 antagonist SR141716A partially blocked, whereas pretreatment with either 1 μM of CB1 antagonist AM251 or 1 μM of CB2 antagonist SR144528 had no effect on abn-cbd induced enhancement of outflow facility. Treatment of TM cells with 30 nM of abn-cbd activated p42/44 MAPK, which was blocked completely by pretreatment with O-1918, and partially by pretreatment with SR141716A, but not by either AM251 or SR144528. In addition, PD98059, an inhibitor of p42/44 MAPK pathway, blocked completely the abn-cbd induced p42/44 MAPK activation and blocked partially the abn-cbd induced enhancement of outflow facility. In conclusion, the results from this study demonstrate that abn-cbd increases aqueous humor outflow through the TM pathway of the eye, and this effect is mediated by a non-CB1/CB2 cannabinoid receptor, with an involvement of p42/44 MAPK signaling pathway. PMID:22580290

  14. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: Prakash.Nagarkatti@uscmed.sc.edu [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  15. Involvement of a non-CB1/CB2 cannabinoid receptor in the aqueous humor outflow-enhancing effects of abnormal-cannabidiol.

    Science.gov (United States)

    Qiao, Zhuanhong; Kumar, Akhilesh; Kumar, Pritesh; Song, Zhao-Hui

    2012-07-01

    The purpose of this study was to investigate the effects of abnormal-cannabidiol (abn-cbd), a non-psychoactive cannabinoid agonist, on aqueous humor outflow via the trabecular meshwork (TM) of porcine eye, and to examine the involvement of a non-CB1/CB2 cannabinoid receptor and the p42/44 mitogen-activated protein kinase (p42/44 MAPK) pathway. The effects of abn-cbd on aqueous humor outflow were measured using a porcine anterior segment perfused organ culture model. The activation of p42/44 MAPK by abn-cbd was determined in cultured TM cells with western blot analysis using an anti-phospho-p42/44 MAPK antibody. Administration of abn-cbd caused a concentration-dependent enhancement of aqueous humor outflow facility with a maximum effect (155.0 ± 11.7% of basal outflow facility) after administration of 30 nM abn-cbd. Pretreatment with 1 μM of O-1918, a cannabidiol analog that acts as a selective antagonist at the non-CB1/CB2 receptor, produced a full antagonism of 30 nM abn-cbd induced increase of aqueous humor outflow facility. Pretreatment with 1 μM of CB1 antagonist SR141716A partially blocked, whereas pretreatment with either 1 μM of CB1 antagonist AM251 or 1 μM of CB2 antagonist SR144528 had no effect on abn-cbd induced enhancement of outflow facility. Treatment of TM cells with 30 nM of abn-cbd activated p42/44 MAPK, which was blocked completely by pretreatment with O-1918, and partially by pretreatment with SR141716A, but not by either AM251 or SR144528. In addition, PD98059, an inhibitor of p42/44 MAPK pathway, blocked completely the abn-cbd induced p42/44 MAPK activation and blocked partially the abn-cbd induced enhancement of outflow facility. In conclusion, the results from this study demonstrate that abn-cbd increases aqueous humor outflow through the TM pathway of the eye, and this effect is mediated by a non-CB1/CB2 cannabinoid receptor, with an involvement of p42/44 MAPK signaling pathway.

  16. Cannabinoid CB2 Receptors are Involved in the Protection of RAW264.7 Macrophages Against the Oxidative Stress: An in Vitro Study

    Science.gov (United States)

    Giacoppo, Sabrina; Gugliandolo, Agnese; Trubiani, Oriana; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2017-01-01

    Research in the last decades has widely investigated the anti-oxidant properties of natural products as a therapeutic approach for the prevention and the treatment of oxidative-stress related disorders. In this context, several studies were aimed to evaluate the therapeutic potential of phytocannabinoids, the bioactive compounds of Cannabis sativa. Here, we examined the anti-oxidant ability of Cannabigerol (CBG), a non-psychotropic cannabinoid, still little known, into counteracting the hydrogen peroxide (H2O2)-induced oxidative stress in murine RAW264.7 macrophages. In addition, we tested selective receptor antagonists for cannabinoid receptors and specifically CB1R (SR141716A) and CB2R (AM630) in order to investigate through which CBG may exert its action. Taken together, our in vitro results showed that CBG is able to counteract oxidative stress by activation of CB2 receptors. CB2 antagonist pre-treatment indeed blocked the protective effects of CBG in H2O2 stimulated macrophages, while CB1R was not involved. Specifically, CBG exhibited a potent action in inhibiting oxidative stress, by down-regulation of the main oxidative markers (iNOS, nitrotyrosine and PARP-1), by preventing IκB-α phosphorylation and translocation of the nuclear factor-κB (NF-κB) and also via the modulation of MAP kinases pathway. On the other hand, CBG was found to increase anti-oxidant defense of cells by modulating superoxide dismutase-1 (SOD-1) expression and thus inhibiting cell death (results focused on balance between Bax and Bcl-2). Based on its anti-oxidant activities, CBG may hold great promise as an anti-oxidant agent and therefore used in clinical practice as a new approach in oxidative-stress related disorders.

  17. Cannabinoid CB2 receptors are involved in the protection of RAW264.7 macrophages against the oxidative stress: an in vitro study

    Directory of Open Access Journals (Sweden)

    Sabrina Giacoppo

    2017-01-01

    Full Text Available Research in the last decades has widely investigated the anti-oxidant properties of natural products as a therapeutic approach for the prevention and the treatment of oxidative-stress related disorders. In this context, several studies were aimed to evaluate the therapeutic potential of phytocannabinoids, the bioactive compounds of Cannabis sativa. Here, we examined the anti-oxidant ability of Cannabigerol (CBG, a non-psychotropic cannabinoid, still little known, into counteracting the hydrogen peroxide (H2O2-induced oxidative stress in murine RAW264.7 macrophages. In addition, we tested selective receptor antagonists for cannabinoid receptors and specifically CB1R (SR141716A and CB2R (AM630 in order to investigate through which CBG may exert its action. Taken together, our in vitro results showed that CBG is able to counteract oxidative stress by activation of CB2 receptors. CB2 antagonist pre-treatment indeed blocked the protective effects of CBG in H2O2 stimulated macrophages, while CB1R was not involved. Specifically, CBG exhibited a potent action in inhibiting oxidative stress, by down-regulation of the main oxidative markers (iNOS, nitrotyrosine and PARP-1, by preventing IκB-α phosphorylation and translocation of the nuclear factor-κB (NF-κB and also via the modulation of MAP kinases pathway. On the other hand, CBG was found to increase anti-oxidant defense of cells by modulating superoxide dismutase-1 (SOD-1 expression and thus inhibiting cell death (results focused on balance between Bax and Bcl-2. Based on its antioxidant activities, CBG may hold great promise as an anti-oxidant agent and therefore used in clinical practice as a new approach in oxidative-stress related disorders.

  18. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model.

    Science.gov (United States)

    Tao, Yihao; Tang, Jun; Chen, Qianwei; Guo, Jing; Li, Lin; Yang, Liming; Feng, Hua; Zhu, Gang; Chen, Zhi

    2015-03-30

    Germinal matrix hemorrhage (GMH) is one of the most common and devastating cerebrovascular events that affect premature infants, resulting in a significant socioeconomic burden. However, GMH has been largely unpreventable, and clinical treatments are mostly inadequate. In the present study, we tested the hypothesis that JWH133, a selective CB2 receptor agonist, could attenuate brain injury and neurological deficits in a clostridial collagenase VII induced GMH model in seven-day-old (P7) S-D rat pups. Up to 1h post-injury, the administration of JWH133 (1mg/kg, intraperitoneal injection) significantly attenuated brain edema at 24h post-GMH, which was reversed by a selective CB2R antagonist, SR144528 (3mg/kg, intraperitoneal injection). Long-term brain morphology and neurofunctional outcomes were also improved. In contrast, JWH133 did not have a noticeable effect on the hematoma volume during the acute phase. These data also showed that microglia activation and inflammatory cytokine (TNF-α) release were significantly inhibited by JWH133 after GMH. This current study suggests a potential clinical utility for CB2R agonists as a potential therapy to reduce neurological injury and improve patient outcomes after GMH.

  19. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    Science.gov (United States)

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils

    Institute of Scientific and Technical Information of China (English)

    Nariman A B Balenga; Maria Waldhoer; Elma Aflaki; Julia Kargl; Wolfgang Platzer; Ralf Schr(o)der; Stefanie Bl(a)ttermann; Evi Kostenis; Andrew J Brown; Akos Heinemann

    2011-01-01

    The directional migration of neutrophils towards inflammatory mediators,such as chemokines and cannabinoids,occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process.A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB2 receptor (CB2R),but additional modulatory sites distinct from CB2R have recently been suggested to impact CB2R-mediated effector functions in neutrophils.Here,we provide evidence that the recently de-orphanized 7TM/GPCR GPR55potently modulates CB2R-mediated responses.We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB2R agonist 2-arachidonoylglycerol (2-AG),while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production.Using HEK293 and HL60 cell lines,along with primary neutrophils,we show that GPR55 and CB2R interfere with each other's signaling pathways at the level of small GTPases,such as Rac2 and Cdc42.This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils.Therefore,GPR55 limits the tissueinjuring inflammatory responses mediated by CB2R,while it synergizes with CB2R in recruiting neutrophils to sites of inflammation.

  1. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures--a short review.

    Science.gov (United States)

    Svízenská, Ivana; Dubový, Petr; Sulcová, Alexandra

    2008-10-01

    In the last 25 years data has grown exponentially dealing with the discovery of the endocannabinoid system consisting of specific cannabinoid receptors, their endogenous ligands, and enzymatic systems of their biosynthesis and degradation. Progress is being made in the development of novel agonists and antagonists with receptor subtype selectivity which should help in providing a greater understanding of the physiological role of the endocannabinoid system and perhaps also in a broad number of pathologies. This could lead to advances with important therapeutic potential of drugs modulating activity of endocannabinoid system as hypnotics, analgesics, antiemetics, antiasthmatics, antihypertensives, immunomodulatory drugs, antiphlogistics, neuroprotective agents, antiepileptics, agents influencing glaucoma, spasticity and other "movement disorders", eating disorders, alcohol withdrawal, hepatic fibrosis, bone growth, and atherosclerosis. The aim of this review is to highlight distribution of the CB1 and CB2 receptor subtypes in the nervous system and functional involvement of their specific ligands.

  2. Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats.

    Science.gov (United States)

    Suárez, Juan; Llorente, Ricardo; Romero-Zerbo, Silvana Y; Mateos, Beatriz; Bermúdez-Silva, Francisco J; de Fonseca, Fernando Rodríguez; Viveros, María-Paz

    2009-07-01

    Early maternal deprivation (MD) in rats (24 h, postnatal day 9-10) is a model for neurodevelopmental stress. There are some data proving that MD affects the endocannabinoid system (ECS) in a gender-dependent manner, and that these changes may account for the proposed schizophrenia-like phenotype of MD rats. The impact of MD on cannabinoid receptor distribution in the hippocampus is unknown. The aim of this study is to evaluate the expression of CB(1) and CB(2) receptors in diverse relevant subregions (DG, CA1, and CA3) of the hippocampus in 13-day-old rats by immunohistochemistry and densitometry. MD induced a significant decrease in CB(1) immunoreactivity (more marked in males than in females), which was mainly associated with fibers in the strata pyramidale and radiatum of CA1 and in the strata oriens, pyramidale, and radiatum of CA3. In contrast, MD males and females showed a significant increase in CB(2) immunoreactivity in the three hippocampal areas analyzed that was detected in neuropil and puncta in the stratum oriens of CA1 and CA3, and in the polymorphic cell layer of the dentate gyrus. A marked sex dimorphism was observed in CA3, with females exhibiting higher CB(1) immunoreactivity than males, and in dentate gyrus, with females exhibiting lower CB(2) immunoreactivity than males. These results point to a clear association between developmental stress and dysregulation of the ECS. The present MD procedure may provide an interesting experimental model to further address the role of the ECS in neurodevelopmental mental illnesses such as schizophrenia.

  3. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Siopi, Eleni; Finn, David P; Marchand-Leroux, Catherine; Garcia-Segura, Luis M; Jafarian-Tehrani, Mehrnaz; Viveros, Maria-Paz

    2015-01-01

    Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. Recent studies show that minocycline suppresses microglial activation, reduces the lesion volume, and decreases TBI-induced locomotor hyperactivity up to 3 months. The endocannabinoid system (ECS) plays an important role in reparative mechanisms and inflammation under pathological situations by controlling some mechanisms that are shared with minocycline pathways. We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.

  4. Inhibition of spontaneous neurotransmission in the nucleus of solitary tract of the rat by the cannabinoid agonist WIN 55212-2 is not via CB1 or CB2 receptors.

    Science.gov (United States)

    Accorsi-Mendonça, Daniela; Almado, Carlos E L; Dagostin, André L A; Machado, Benedito H; Leão, Ricardo M

    2008-03-20

    Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. In the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 microM WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the vanniloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2.

  5. Antinociceptive effects of the non-selective cannabinoid receptor agonist CP 55,940 are absent in CB1(-/-) and not CB2(-/-) mice in models of acute and persistent pain.

    Science.gov (United States)

    Sain, Nova M H; Liang, Annie; Kane, Stefanie A; Urban, Mark O

    2009-09-01

    Previous studies have suggested a role for both CB1 and CB2 cannabinoid receptors in modulation of nociception. To further examine the role of CB1 and CB2 receptors in antinociception, we evaluated the efficacy of the non-selective cannabinoid receptor agonist, CP 55,940, in models of acute, inflammatory, and neuropathic pain in control mice, CB1 receptor knockout mice, and CB2 receptor knockout mice. In control C57BL/6 mice, administration of CP 55,940 (0.03-0.3 mg/kg, i.p.) reversed complete Freund's adjuvant-induced tactile allodynia, reversed tactile allodynia in the spinal nerve ligation model and inhibited the noxious heat-evoked tail withdrawal response. In addition to its antinociceptive effects, CP 55,940 produced an impairment of motor coordination in the rotarod test. The antinociceptive effects produced by CP 55,940 and associated motor deficits were found to be completely abolished in CB1 receptor knockout mice. In contrast, the antinociceptive effects of CP 55,940 in all pain models were fully retained in CB2 receptor knockout mice, along with the associated motor deficits. The results suggest that the antinociceptive effects of CP 55,940 in models of acute and persistent pain, along with the associated motor deficits, are mediated by CB1 receptors, and likely not CB2 receptors.

  6. Comparative molecular dynamics simulations of the potent synthetic classical cannabinoid ligand AMG3 in solution and at binding site of the CB1 and CB2 receptors.

    Science.gov (United States)

    Durdagi, Serdar; Reis, Heribert; Papadopoulos, Manthos G; Mavromoustakos, Thomas

    2008-08-01

    The C-1'-dithiolane Delta(8)-tetrahydrocannabinol (Delta(8)-THC) amphiphilic analogue (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)-2-hexyl-1,3-dithiolane (AMG3) is considered as one of the most potent synthetic analgesic cannabinoid (CB) ligands. Its structure is characterized by rigid tricyclic and flexible alkyl chain segments. Its conformational properties have not been fully explored. Structure-activity relationship (SAR) studies on classical CBs showed that the alkyl side chain is the most critical structural part for the receptor activation. However, reported low energy conformers of classical CB analogues vary mainly in the conformation of their alkyl side chain segment. Therefore, comparative molecular dynamics (MD) simulations of low energy conformers of AMG3 were performed in order to investigate its structural and dynamical properties in two different systems. System-I includes ligand and amphoteric solvent DMSO, simulating the biological environment and system-II includes ligand at active site of the homology models of CB1 and CB2 receptors in the solvent. The trajectory analysis results are compared for the systems I and II. In system-I, the dihedral angle defined between aromatic ring and dithiolane ring of AMG3 shows more resistance to be transformed into another torsional angle and the dihedral angle adjacent to dithiolane ring belonging in the alkyl chain has flexibility to adopt gauche+/- and trans dihedral angles. The rest of the dihedral angles within the alkyl chain are all trans. These results point out that wrapped conformations are dynamically less favored in solution than linear conformations. Two possible plane angles defined between the rigid and flexible segments are found to be the most favored and adopting values of approximately 90 degrees and approximately 140 degrees. In system-II, these values are approximately 90 degrees and approximately 120 degrees. Conformers of AMG3 at the CB1 receptor favor to

  7. (Endo)cannabinoids mediate different Ca(2+) entry mechanisms in human bronchial epithelial cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia; Dekkers, Bart G. J.; Droge, Melloney J.; Elzinga, Carolina R. S.; Hasenbosch, Rutger E.; Meurs, Herman; Nelemans, S. Adriaan; Schmidt, Martina; Zaagsma, Johan

    2009-01-01

    In human bronchial epithelial (16HBE14o) cells, CB(1) and CB(2) cannabinoid receptors are present, and their activation by the endocannabinoid virodhamine and the synthetic non-selective receptor agonist CP55,940 inhibits adenylyl cyclase and cellular interleukin-8 release. Here, we analyzed changes

  8. Cloning and pharmacological characterization of the dog cannabinoid CB₂receptor.

    Science.gov (United States)

    Ndong, Christian; O'Donnell, Dajan; Ahmad, Sultan; Groblewski, Thierry

    2011-11-01

    Comparison of human, rat and mouse cannabinoid CB(2) receptor primary sequences has shown significant divergence at the mRNA and protein sequence level, raising the possibility of species specific pharmacological properties. Additionally, given the importance of the dog as a non-rodent species for predicting human safety during the drug development process, we cloned the dog CB(2) receptor gene and characterized its in-vitro pharmacological properties in a recombinant expression system. A 1.1 kb dog peripheral cannabinoid receptor (dCB(2)) fragment encoding a 360 amino acid protein was cloned from dog spleen cDNA. Analysis of the cloned dCB(2) polypeptide sequence revealed that it shares between 76 and 82% homology with rat, mouse, human and predicted chimpanzee cannabinoid CB(2) receptors. The dog CB(2) receptor expressed in CHO cells displayed similar binding affinities for various synthetic and endogenous cannabinoids as compared to those measured for the human and rat cannabinoid CB(2) receptors. However, these ligands exhibited altered functional potencies and efficacies for the dog cannabinoid CB(2) receptor, which was also found to be negatively coupled to adenylate cyclase activity. These complex pharmacological differences observed across species for the cannabinoid CB(2) receptor suggest that caution should be exerted when analyzing the outcome of animal efficacy and safety studies, notably those involving cannabinoid CB(2) receptor targeting molecules tested in the dog.

  9. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  10. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    Directory of Open Access Journals (Sweden)

    EDUARDO eBLANCO-CALVO

    2014-01-01

    Full Text Available Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this end we examined if pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg or CB2 receptors (AM630, 3 mg/kg affects cell proliferation (labeled with BrdU, found in the subventricular zone (SVZ of the lateral ventricles and the dentate subgranular zone (SGZ. In addition, we measured cell apoptosis (monitored by the expression of cleaved caspase-3 and glial activation ( by analizing the expression of GFAP and Iba-1 in the striatum and hippocampus, during acute or repeated (4 days cocaine administration (20 mg/kg. Results showed that acute cocaine decreased the number of BrdU+ cells in SVZ and SGZ. In contrast, repeated cocaine reduced the number of BrdU+ cells in SVZ only. Both acute and repeated cocaine increased the number of cleaved caspase-3+, GFAP+ and Iba1+ cells in the hippocampus, an effect counteracted by AM630 or Rimonabant that increased the number of BrdU+, GFAP+ and Iba1+ cells in the hippocampus. These results indicate that changes on neurogenic, apoptotic and gliosis processes, which were produced as a consequence of repeated cocaine administration, were normalized by the pharmacological blockade of CB1 and CB2. The restoring effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with a prevention of the induction of conditioned locomotion, but not of cocaine-induced sensitization.

  11. The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Deng Liting

    2012-09-01

    Full Text Available Abstract Background Chemotherapeutic agents produce dose-limiting peripheral neuropathy through mechanisms that remain poorly understood. We previously showed that AM1710, a cannabilactone CB2 agonist, produces antinociception without producing central nervous system (CNS-associated side effects. The present study was conducted to examine the antinociceptive effect of AM1710 in rodent models of neuropathic pain evoked by diverse chemotherapeutic agents (cisplatin and paclitaxel. A secondary objective was to investigate the potential contribution of alpha-chemokine receptor (CXCR4 signaling to both chemotherapy-induced neuropathy and CB2 agonist efficacy. Results AM1710 (0.1, 1 or 5 mg/kg i.p. suppressed the maintenance of mechanical and cold allodynia in the cisplatin and paclitaxel models. Anti-allodynic effects of AM1710 were blocked by the CB2 antagonist AM630 (3 mg/kg i.p., but not the CB1 antagonist AM251 (3 mg/kg i.p., consistent with a CB2-mediated effect. By contrast, blockade of CXCR4 signaling with its receptor antagonist AMD3100 (10 mg/kg i.p. failed to attenuate mechanical or cold hypersensitivity induced by either cisplatin or paclitaxel. Moreover, blockade of CXCR4 signaling failed to alter the anti-allodynic effects of AM1710 in the paclitaxel model, further suggesting distinct mechanisms of action. Conclusions Our results indicate that activation of cannabinoid CB2 receptors by AM1710 suppresses both mechanical and cold allodynia in two distinct models of chemotherapy-induced neuropathic pain. By contrast, CXCR4 signaling does not contribute to the maintenance of chemotherapy-induced established neuropathy or efficacy of AM1710. Our studies suggest that CB2 receptors represent a promising therapeutic target for the treatment of toxic neuropathies produced by cisplatin and paclitaxel chemotherapeutic agents.

  12. Human Cannabinoid Receptor 2 Ligand-Interaction Motif: Transmembrane Helix 2 Cysteine, C2.59(89), as Determinant of Classical Cannabinoid Agonist Activity and Binding Pose.

    Science.gov (United States)

    Zhou, Han; Peng, Yan; Halikhedkar, Aneetha; Fan, Pusheng; Janero, David R; Thakur, Ganesh A; Mercier, Richard W; Sun, Xin; Ma, Xiaoyu; Makriyannis, Alexandros

    2017-06-21

    Cannabinoid receptor 2 (CB2R)-dependent signaling is implicated in neuronal physiology and immune surveillance by brain microglia. Selective CB2R agonists hold therapeutic promise for inflammatory and other neurological disorders. Information on human CB2R (hCB2R) ligand-binding and functional domains is needed to inform the rational design and optimization of candidate druglike hCB2R agonists. Prior demonstration that hCB2R transmembrane helix 2 (TMH2) cysteine C2.59(89) reacts with small-molecule methanethiosulfonates showed that this cysteine residue is accessible to sulfhydryl derivatization reagents. We now report the design and application of two novel, pharmacologically active, high-affinity molecular probes, AM4073 and AM4099, as chemical reporters to interrogate directly the interaction of classical cannabinoid agonists with hCB2R cysteine residues. AM4073 has one electrophilic isothiocyanate (NCS) functionality at the C9 position of its cyclohexenyl C-ring, whereas AM4099 has NCS groups at that position and at the terminus of its aromatic A-ring C3 side chain. Pretreatment of wild-type hCB2R with either probe reduced subsequent [(3)H]CP55,940 specific binding by ∼60%. Conservative serine substitution of any hCB2R TMH cysteine residue except C2.59(89) did not affect the reduction of [(3)H]CP55,940 specific binding by either probe, suggesting that AM4073 and AM4099 interact irreversibly with this TMH2 cysteine. In contrast, AM841, an exceptionally potent hCB2R megagonist and direct AM4073/4099 congener bearing a single electrophilic NCS group at the terminus of its C3 side chain, had been demonstrated to bind covalently to TMH6 cysteine C6.47(257) and not C2.59(89). Molecular modeling indicates that the AM4073-hCB2R* interaction at C2.59(89) orients this classical cannabinoid away from TMH6 and toward the TMH2-TMH3 interface in the receptor's hydrophobic binding pocket, whereas the AM841-hCB2R* interaction at C6.47(257) favors agonist orientation toward

  13. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways.

    Science.gov (United States)

    del Río, Carmen; Navarrete, Carmen; Collado, Juan A; Bellido, M Luz; Gómez-Cañas, María; Pazos, M Ruth; Fernández-Ruiz, Javier; Pollastro, Federica; Appendino, Giovanni; Calzado, Marco A; Cantarero, Irene; Muñoz, Eduardo

    2016-02-18

    Scleroderma is a group of rare diseases associated with early and transient inflammation and vascular injury, followed by fibrosis affecting the skin and multiple internal organs. Fibroblast activation is the hallmark of scleroderma, and disrupting the intracellular TGFβ signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, both PPARγ and CB2 receptors represent attractive targets for the development of cannabinoid-based therapies. We have developed a non-thiophilic and chemically stable derivative of the CBD quinol (VCE-004.8) that behaves as a dual agonist of PPARγ and CB2 receptors, VCE-004.8 inhibited TGFβ-induced Col1A2 gene transcription and collagen synthesis. Moreover, VCE-004.8 inhibited TGFβ-mediated myofibroblast differentiation and impaired wound-healing activity. The anti-fibrotic efficacy in vivo was investigated in a murine model of dermal fibrosis induced by bleomycin. VCE-004.8 reduced dermal thickness, blood vessels collagen accumulation and prevented mast cell degranulation and macrophage infiltration in the skin. These effects were impaired by the PPARγ antagonist T0070907 and the CB2 antagonist AM630. In addition, VCE-004.8 downregulated the expression of several key genes associated with fibrosis, qualifying this semi-synthetic cannabinoid as a novel compound for the management of scleroderma and, potentially, other fibrotic diseases.

  14. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naïve rats and in rat models of inflammatory and neuropathic pain.

    Science.gov (United States)

    Elmes, Steven J R; Jhaveri, Maulik D; Smart, Darren; Kendall, David A; Chapman, Victoria

    2004-11-01

    Peripheral cannabinoid 2 receptors (CB2 receptors) modulate immune responses and attenuate nociceptive behaviour in models of acute and persistent pain. The aim of the present study was to investigate whether peripheral CB2 receptors modulate spinal processing of innocuous and noxious responses and to determine whether there are altered roles of CB2 receptors in models of persistent pain. Effects of local administration of the CB2 receptor agonist JWH-133 (5 and 15 microg/50 microL) on mechanically evoked responses of spinal wide dynamic range (WDR) neurons in noninflamed rats, rats with carrageenan-induced hindpaw inflammation, sham operated rats and spinal nerve-ligated (SNL) rats were determined in anaesthetized rats in vivo. Mechanical stimulation (von Frey filaments, 6-80 g) of the peripheral receptive field evoked firing of WDR neurons. Mechanically evoked responses of WDR neurons were similar in noninflamed, carrageenan-inflamed, sham-operated and SNL rats. Intraplantar injection of JWH-133 (15 microg), but not vehicle, significantly (P pain.

  15. Brain CB2 Receptors: Implications for Neuropsychiatric Disorders

    OpenAIRE

    Michelle Roche; Finn, David P.

    2010-01-01

    Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 recepto...

  16. Opposite regulation of cannabinoid CB1 and CB2 receptors in the prefrontal cortex of rats treated with cocaine during adolescence.

    Science.gov (United States)

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2016-02-26

    The endocannabinoid system is implicated in the neurobiology of cocaine addiction, although it is not clear how cocaine regulates brain CB1 and CB2 receptors, especially during adolescence, a critical moment for shaping adult response to drug use. This study evaluated CB1 and CB2 protein levels in prefrontal cortex (PFC) and hippocampus (HC) by western blot analysis with specific and validated antibodies: (1) basally during adolescence (post-natal day PND 40, PND 47, PND 54), (2) by a sensitizing regimen of cocaine (15mg/kg, 7 days, i.p.) during different windows of adolescence vulnerability (PND 33-39, PND 40-46, PND 47-53), and (3) following repeated cocaine administration during adolescence (PND 33-39) in adulthood (PND 64). The results demonstrated a dynamic and opposite basal modulation of CB1 and CB2 receptors in PFC and HC during adolescence. CB1 receptor levels were increased while CB2 receptors were decreased as compared to adulthood with asymptotes values around mid adolescence (PND 47) both in PFC (CB1: +45±22, pCB1: +53±23, pCB1 (+55±10%, p<0.05) and CB2 (-25±10%, p<0.05) receptors when administered during early adolescence and only in PFC. However, the changes observed in PFC by repeated cocaine administration in adolescence were transient and did not endure into adulthood. These results identified a period of vulnerability during adolescence at which cocaine dysregulated the content of CB receptors in PFC, suggesting an opposite role for these receptors in the effects mediated by cocaine.

  17. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  18. Cannabinoid CB2 receptor participates in the delayed tolerance to focal cerebral ischemia induced by electroacupuncture pretreatment%大麻素CB2受体参与电针预处理诱导的延迟相脑保护作用

    Institute of Scientific and Technical Information of China (English)

    马磊; 侯丽宏; 赵昱; 王强; 朱萧玲; 朱正华; 赵宁侠; 贾济; 陈绍洋

    2010-01-01

    Objective To investigate the effect of cannabinoid CB2 receptor on ischemic tolerance of rat models with focal cerebral ischemia induced by electroacupuncture(EA)pretreatment.Methods The first experiment was performed as follows:40 adult male SD rats were randomized into 5 groups(middle cerebral artery occlusion[MCAO]group[vehicle],EA+MCAO group,AM630[the antagonist of CB2 receptor]+EA+MCAO group,V[the solvent of AM630]+EA+MCAO group and AM630+MCAO group,n=8).Suture method was employed to induce th eMCAO models.Pretreatment with EA was given 2h before the model making;pretreatment with AM630 or other solvents were given 5.5 h before the model making.The changes of infarction volume percentage were detected by 2,3,5-triphenoltetrazolium chloride (TTC)staining and neurobehavioral scores were evaluated 72 h after the success of model making.In the second experiment,40 adult male SD rats were performed the same treatment with the first experiment;pretreatment with EA was performed 24h before the model making;pretreatment with AM630 or other solvents were performed 27.5 h before the model making;the measurements and detection times were the same with the first one.In the third experiment,36 adult male SD rats were randomized into 6 groups(n=6):control group and EA-treated groups(2,6,12,18 and 24 h after the treatment). RT-PCR and Western blotting Were employed to detect the expression of CB2 receptor on the right side of rat brain. Results Compared with the vehicle and AM630+MCAO groups,the EA+MCAO group,AM630+EA+MCAO group and V+EA+MCAO group showed significantly higher scores of nerve function and a statistically lower percentage of infarction volume(P<0.05).Compared with the vehicle group,EA+MCAO group and V+EA+MCAO group showed significantly higher neurobehavioral scores and a lower percentage of infarction volume (P<0.05);compared with the EA+MCAO group,the AM630+EA+MCAO group and AM630+MCAO group showed significantly lower neurobehavioral scores and a higher

  19. Brain CB2 Receptors: Implications for Neuropsychiatric Disorders

    Science.gov (United States)

    Roche, Michelle; Finn, David P

    2010-01-01

    Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders. PMID:27713365

  20. Brain CB2 Receptors: Implications for Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Michelle Roche

    2010-08-01

    Full Text Available Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.

  1. Targeting Cannabinoid Receptor-2 Pathway by Phenylacetylamide Suppresses the Proliferation of Human Myeloma Cells Through Mitotic Dysregulation and Cytoskeleton Disruption

    Science.gov (United States)

    Feng, Rentian; Tong, Qin; Xie, Zhaojun; Cheng, Haizi; Wang, Lirong; Lentzsch, Suzanne; Roodman, G. David; Xie, Xiang-Qun

    2015-01-01

    Cannabinoid receptor-2 (CB2) is expressed dominantly in the immune system, especially on plasma cells. Cannabinergic ligands with CB2 selectivity emerge as a class of promising agents to treat CB2-expressing malignancies without psychotropic concerns. In this study, we found that CB2 but not CB1 was highly expressed in human multiple myeloma (MM) and primary CD138+ cells. A novel inverse agonist of CB2, phenylacetylamide but not CB1 inverse agonist SR141716, inhibited the proliferation of human MM cells (IC50: 0.62~2.5 μM) mediated by apoptosis induction, but exhibited minor cytotoxic effects on human normal mononuclear cells. CB2 gene silencing or pharmacological antagonism markedly attenuated phenylacetylamide’s anti-MM effects. Phenylacetylamide triggered the expression of C/EBP homologous protein at the early treatment stage, followed by death receptor-5 upregulation, caspase activation and β-actin/tubulin degradation. Cell cycle related protein cdc25C and mitotic regulator Aurora A kinase were inactivated by phenylacetylamide treatment, leading to an increase in the ratio inactive/active cdc2 kinase. As a result, phosphorylation of CDK substrates was decreased, and the MM cell mitotic division was largely blocked by treatment. Importantly, phenylacetylamide could overcome the chemoresistance of MM cells against dexamethasone or melphalan. Thus, targeting CB2 may represent an attractive approach to treat cancers of immune origin. PMID:25640641

  2. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Science.gov (United States)

    Schmöle, Anne-Caroline; Lundt, Ramona; Gennequin, Benjamin; Schrage, Hanna; Beins, Eva; Krämer, Alexandra; Zimmer, Till; Limmer, Andreas; Zimmer, Andreas; Otte, David-Marian

    2015-01-01

    The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  3. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Anne-Caroline Schmöle

    Full Text Available The endocannabinoid system (ECS is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2. As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  4. Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 7. Synthesis and Pharmacological Evaluation of 4-Quinolone-3-carboxamides and 4-Hydroxy-2-quinolone-3-carboxamides as High Affinity Cannabinoid Receptor 2 (CB2R) Ligands with Improved Aqueous Solubility.

    Science.gov (United States)

    Mugnaini, Claudia; Brizzi, Antonella; Ligresti, Alessia; Allarà, Marco; Lamponi, Stefania; Vacondio, Federica; Silva, Claudia; Mor, Marco; Di Marzo, Vincenzo; Corelli, Federico

    2016-02-11

    4-Quinolone-3-carboxamide derivatives have long been recognized as potent and selective cannabinoid type-2 receptor (CB2R) ligands. With the aim to improve their physicochemical properties, basically aqueous solubility, two different approaches were followed, entailing the substitution of the alkyl chain with a basic replacement or scaffold modification to 4-hydroxy-2-quinolone structure. According to the first approach, compound 6d was obtained, showing slightly reduced receptor affinity (K(i) = 60 nM) compared to the lead compound 4 (0.8 nM) but greatly enhanced solubility (400-3400 times depending on the pH of the medium). On the other hand, shifting from 4-quinolone to 4-hydroxy-2-quinolone structure enabled the discovery of a novel class of CB2R ligands, such as 7b and 7c, characterized by K(i) 1300. At pH 7.4, compound 7c resulted by 100-fold more soluble than 4.

  5. The Efficacy of Eslicarbazepine Acetate in Models of Trigeminal, Neuropathic, and Visceral Pain: The Involvement of 5-HT1B/1D Serotonergic and CB1/CB2 Cannabinoid Receptors.

    Science.gov (United States)

    Tomić, Maja A; Pecikoza, Uroš B; Micov, Ana M; Stepanović-Petrović, Radica M

    2015-12-01

    Many clinical pain states that are difficult to treat share a common feature of sensitization of nociceptive pathways. Drugs that could normalize hyperexcitable neural activity (e.g., antiepileptic drugs) may be useful in relieving these pain states. Eslicarbazepine acetate (ESL) is a novel antiepileptic drug derived from carbamazepine/oxcarbazepine with a more favorable metabolic profile and potentially better tolerability. We examined the efficacy of ESL in models of inflammatory and neuropathic pain and the potential mechanism involved in its action. The antinociceptive effects of ESL were assessed in mice models of trigeminal (orofacial formalin test), neuropathic (streptozotocin-induced diabetic neuropathy model), and visceral pain (writhing test). The influence of 5-HT1B/1D serotonin receptor (GR 127935) and CB1 (AM251) and CB2 cannabinoid receptor (AM630) antagonists on the antinociceptive effect of ESL was tested in the model of trigeminal pain. ESL exhibited significant and dose-dependent antinociceptive effects in the second phase of the orofacial formalin test (P ≤ 0.011), in the tail-flick test in diabetic mice (P ≤ 0.013), and in the writhing test (P ≤ 0.003). GR 127935 (P ≤ 0.038) and AM251 and AM630 (P ≤ 0.013 for both antagonists) significantly inhibited the antinociceptive effect of ESL in a dose-related manner. ESL exhibited efficacy in models of trigeminal, neuropathic, and visceral pain. In the trigeminal pain model, the antinociceptive effect of ESL is, at least in part, mediated by 5-HT1B/1D serotonin and CB1/CB2 cannabinoid receptors. This study indicates that ESL could be useful in the clinical treatment of inflammatory and neuropathic pain.

  6. The CB2 receptor and its role as a regulator of inflammation.

    Science.gov (United States)

    Turcotte, Caroline; Blanchet, Marie-Renée; Laviolette, Michel; Flamand, Nicolas

    2016-12-01

    The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.

  7. 2-Arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors.

    Science.gov (United States)

    Gasperi, Valeria; Evangelista, Daniela; Chiurchiù, Valerio; Florenzano, Fulvio; Savini, Isabella; Oddi, Sergio; Avigliano, Luciana; Catani, Maria Valeria; Maccarrone, Mauro

    2014-06-01

    Accumulated evidence points to a key role for endocannabinoids in cell migration, and here we sought to characterize the role of these substances in early events that modulate communication between endothelial cells and leukocytes. We found that 2-arachidonoylglycerol (2-AG) was able to initiate and complete the leukocyte adhesion cascade, by modulating the expression of selectins. A short exposure of primary human umbilical vein endothelial cells (HUVECs) to 2-AG was sufficient to prime them towards an activated state: within 1h of treatment, endothelial cells showed time-dependent plasma membrane expression of P- and E-selectins, which both trigger the initial steps (i.e., capture and rolling) of leukocyte adhesion. The effect of 2-AG was mediated by CB1 and CB2 receptors and was long lasting, because endothelial cells incubated with 2-AG for 1h released the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) for up to 24h. Consistently, TNF-α-containing medium was able to promote leukocyte recruitment: human Jurkat T cells grown in conditioned medium derived from 2-AG-treated HUVECs showed enhanced L-selectin and P-selectin glycoprotein ligand-1 (PSGL1) expression, as well as increased efficiency of adhesion and trans-migration. In conclusion, our in vitro data indicate that 2-AG, by acting on endothelial cells, might indirectly promote leukocyte recruitment, thus representing a potential therapeutic target for treatment of diseases where impaired endothelium/leukocyte interactions take place.

  8. Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice.

    Science.gov (United States)

    Florek-Luszczki, Magdalena; Wlaz, Aleksandra; Zagaja, Mirosław; Andres-Mach, Marta; Kondrat-Wrobel, Maria W; Luszczki, Jarogniew J

    2015-03-01

    The purpose of this study was to determine the influence of WIN 55,212-2 mesylate (WIN-a non-selective cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various second- and third-generation antiepileptic drugs (i.e., gabapentin, lacosamide, levetiracetam, oxcarbazepine, pregabalin and tiagabine) in the mouse 6 Hz-induced psychomotor seizure model. Psychomotor seizures were evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3s stimulus duration) delivered via ocular electrodes. Additionally, total brain antiepileptic drug concentrations were measured. Results indicate that WIN (5 mg/kg, administered i.p.) significantly potentiated the anticonvulsant action of gabapentin (P anticonvulsant activity of all tested antiepileptic drugs in the 6 Hz test in mice. Measurement of total brain antiepileptic drug concentrations revealed that WIN (5 mg/kg) had no impact on gabapentin or levetiracetam total brain concentrations, indicating the pharmacodynamic nature of interaction between these antiepileptic drugs in the mouse 6Hz model. In conclusion, WIN in combination with gabapentin and levetiracetam exerts beneficial anticonvulsant pharmacodynamic interactions in the mouse psychomotor seizure model. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist

    OpenAIRE

    Gadotti, Vinicius M; You, Haitao; Petrov, Ravil R.; Berger, N. Daniel; Diaz, Philippe; Zamponi, Gerald W

    2013-01-01

    Background Cannabinoid receptors and T-type calcium channels are potential targets for treating pain. Here we report on the design, synthesis and analgesic properties of a new mixed cannabinoid/T-type channel ligand, NMP-181. Results NMP-181 action on CB1 and CB2 receptors was characterized in radioligand binding and in vitro GTPγ[35S] functional assays, and block of transiently expressed human Cav3.2 T-type channels by NMP-181 was analyzed by patch clamp. The analgesic effects and in vivo me...

  10. CB2 receptors in the brain: role in central immune function

    OpenAIRE

    Cabral, G. A.; Raborn, E S; Griffin, L.; Dennis, J.; Marciano-Cabral, F

    2007-01-01

    Recently, it has been recognized that the cannabinoid receptor CB2 may play a functionally relevant role in the central nervous system (CNS). This role is mediated primarily through microglia, a resident population of cells in the CNS that is morphologically, phenotypically, and functionally related to macrophages. These cells also express the cannabinoid receptor CB1. The CB1 receptor (CB1R) is constitutively expressed at low levels while the CB2 receptor (CB2R) is expressed at higher levels...

  11. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  12. Cannabinoid Receptors: A Novel Target for Treating Prostate Cancer

    Science.gov (United States)

    2006-02-01

    prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB1 / CB2 agonist) resulted in...34 CBI receptor, and the "peripheral" CB2 receptor. Recently we have shown that expression levels of both cannabinoid receptors CB1 and CB2 are higher...in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB1 / CB2 agonist

  13. New blood brothers: the GPR55 and CB2 partnership

    Institute of Scientific and Technical Information of China (English)

    Andy Irving

    2011-01-01

    Endocannabinoids are increasingly being recognized as key lipid-derived regulators of immune function [1].Although the peripheral cannabinoid type 2 receptor (CB2) is thought to orchestrate many of these actions,additional non-CB1/CB2-mediated effects ofcannabinoids have been identified in immune cells [1,2],where several orphan G protein-coupled receptors (GPCRs),including the effusive GPR55,are implicated [3].Despite numerous studies addressing the cannabinoid sensitivity of GPR55,the area remains a pharmacological minefield,with much inconsistent and conflicting data.

  14. 脂筏在CB2受体介导的内源性大麻素AEA抑制大鼠肝星状细胞增殖活性中的作用%Lipid Rafts and Cannabinoid 2 Receptors-mediated Inhibitory Effects of Endogenous AEA on Proliferation of Hepatic Stellate Cells in Rats

    Institute of Scientific and Technical Information of China (English)

    吴文杰; 王密; 刘萍; 阳乔; 唐望先

    2012-01-01

    目的 探讨脂筏在内源性大麻素受体2(CB2)介导的内源性大麻素(AEA)抑制大鼠肝星状细胞(HSC)增殖活性中的作用及作用机制.方法 构建大麻素受体2 shRNA(Cnr2-shRNA)转染HSC细胞,干扰CB2受体的表达,采用MTT法检测转染前后不同浓度的AEA和甲基-β-环糊精(MCD)对HSC的作用效应;采用Western blot检测不同浓度AEA及MCD作用后HSC中P38 丝裂原活化蛋白激酶(p-P38MAPK)和c-Jun氨基端激酶/应激活化蛋白激酶(p-JNK)的表达量;采用激光共聚焦法检测HSC上的脂筏(LRs)以及CB2受体的表达;蔗糖密度梯度离心法提取脂筏,Western blot鉴定脂筏并检测脂筏中CB2受体的表达.结果 成功构建Cnr2-shRNA转染筛选Cnr2-单克隆细胞株,MTT检测发现转染后CB2受体的减少能减弱AEA对HSC细胞增殖的抑制作用,然而用MCD预处理HSC细胞后CB2受体的减少对AEA的效应无明显影响.p-P38MAPK和p-JNK的表达与AEA浓度有依赖关系,且可以被MCD部分拮抗.CB2受体在HSC膜脂筏和胞质中均有表达,但用蔗糖密度梯度离心法提取AEA刺激前HSC细胞脂筏,发现未受AEA刺激时脂筏中含有的CB2受体量很少,CB2受体大部分存在于HSC细胞胞质中.结论 CB2受体参与AEA 抑制HSC细胞增殖的过程与脂筏相偶联,通过脂筏这个信号平台AEA的刺激可能使CB2受体聚集或增多从而发挥级联放大效应,且这一效应与细胞中p-P38MAPK和p-JNK信号途径的激活有关.脂筏和CB2受体介导的信号传导途径可能成为治疗肝纤维化有效的作用靶点.%Objective To investigate the roles of lipid rafts in cannabinoid receptor 2(CB2)-mediated inhibitory effects of endogenous anadamide(AEA)on proliferation of hepatic stellate cells in rats and the action mechanism. Methods Cell viability was measured by using MTT assay. CB2-shRNA(Cnr2-shRNA) was designed to decrease the amount of CB2 and methyl-β-cy-clodextrin(MCD)treatment designed to destroy the lipid rafts in AEA

  15. Cannabinoid WIN-55,212-2 mesylate inhibits ADAMTS-4 activity in human osteoarthritic articular chondrocytes by inhibiting expression of syndecan-1

    Science.gov (United States)

    KONG, YING; WANG, WANCHUN; ZHANG, CHANGJIE; WU, YI; LIU, YANG; ZHOU, XIAORONG

    2016-01-01

    A central feature of osteoarthritis (OA) is the loss of articular cartilage, which is primarily attributed to cartilage breakdown. A group of metalloproteinases termed the A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family are reported to be important in cartilage breakdown. Recent studies have suggested that ADAMTS-4 is a major contributor to the pathogenesis of OA and that syndecan-1 is closely associated with activation of ADAMTS-4 in human chondrocytes. Accumulating evidence also suggests that cannabinoids have chondroprotective effects. The current study explored the effects of synthetic cannabinoid WIN-55,212-2 mesylate (WIN-55) on the expression of syndecan-1 and ADAMTS-4, as well as ADAMTS-4 activity, in unstimulated and interleukin (IL)-1β-stimulated OA chondrocytes. Primary human OA articular chondrocytes were treated with WIN-55 in the presence or absence of IL-1β and cannabinoid receptor antagonists. The results of the present study demonstrated that WIN-55 inhibited ADAMTS-4 activity in unstimulated and IL-1β-stimulated primary human OA articular chondrocytes in a concentration-dependent manner. Cannabinoid receptor type 1 (CB1) and 2 (CB2) were constitutively expressed in human OA articular chondrocytes. Furthermore, selective CB2 antagonist, JTE907, but not selective CB1 antagonist, MJ15, abolished the inhibitory effect of WIN-55 on ADAMTS-4 activity. WIN55 inhibited the expression of syndecan-1 but not ADAMTS-4, and overexpression of syndecan-1 reversed the inhibitory effect of WIN-55 on the ADAMTS-4 activity in unstimulated and IL-1β-stimulated human OA articular chondrocytes. Despite having no significant effect on syndecan-1 gene promoter activity, WIN-55 markedly decreased the stability of syndecan-1 mRNA via CB2. In conclusion, to the best of our knowledge, the present study provides the first in vitro evidence supporting that the synthetic cannabinoid WIN-55 inhibits ADAMTS-4 activity in unstimulated and IL-1

  16. The Expression Level of CB1 and CB2 Receptors Determines Their Efficacy at Inducing Apoptosis in Astrocytomas

    OpenAIRE

    Eiron Cudaback; William Marrs; Thomas Moeller; Nephi Stella

    2010-01-01

    BACKGROUND: Cannabinoids represent unique compounds for treating tumors, including astrocytomas. Whether CB(1) and CB(2) receptors mediate this therapeutic effect is unclear. PRINCIPAL FINDINGS: We generated astrocytoma subclones that express set levels of CB(1) and CB(2), and found that cannabinoids induce apoptosis only in cells expressing low levels of receptors that couple to ERK1/2. In contrast, cannabinoids do not induce apoptosis in cells expressing high levels of receptors because the...

  17. Human studies of cannabinoids and medicinal cannabis.

    Science.gov (United States)

    Robson, P

    2005-01-01

    Cannabis has been known as a medicine for several thousand years across many cultures. It reached a position of prominence within Western medicine in the nineteenth century but became mired in disrepute and legal controls early in the twentieth century. Despite unremitting world-wide suppression, recreational cannabis exploded into popular culture in the 1960s and has remained easily obtainable on the black market in most countries ever since. This ready availability has allowed many thousands of patients to rediscover the apparent power of the drug to alleviate symptoms of some of the most cruel and refractory diseases known to humankind. Pioneering clinical research in the last quarter of the twentieth century has given some support to these anecdotal reports, but the methodological challenges to human research involving a pariah drug are formidable. Studies have tended to be small, imperfectly controlled, and have often incorporated unsatisfactory synthetic cannabinoid analogues or smoked herbal material of uncertain composition and irregular bioavailability. As a result, the scientific evaluation of medicinal cannabis in humans is still in its infancy. New possibilities in human research have been opened up by the discovery of the endocannabinoid system, a rapidly expanding knowledge of cannabinoid pharmacology, and a more sympathetic political environment in several countries. More and more scientists and clinicians are becoming interested in exploring the potential of cannabis-based medicines. Future targets will extend beyond symptom relief into disease modification, and already cannabinoids seem to offer particular promise in the treatment of certain inflammatory and neurodegenerative conditions. This chapter will begin with an outline of the development and current status of legal controls pertaining to cannabis, following which the existing human research will be reviewed. Some key safety issues will then be considered, and the chapter will conclude with

  18. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain

    OpenAIRE

    Deng, Liting; Cornett, Benjamin L.; Mackie, Ken; Hohmann, Andrea G.

    2015-01-01

    Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(−)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible toler...

  19. A Theoretical Study of the Relationships between Electronic Structure and CB1 and CB2 Cannabinoid Receptor Binding Affinity in a Group of 1-Aryl-5-(1-H-pyrrol-1-yl-1-H-pyrazole-3-carboxamides

    Directory of Open Access Journals (Sweden)

    Francisco Salgado-Valdés

    2014-01-01

    Full Text Available We report the results of a search for model-based relationships between hCB1 and hCB2 receptor binding affinity and molecular structure for a group of 1-aryl-5-(1-H-pyrrol-1-yl-1-H-pyrazole-3-carboxamides. The wave functions and local atomic reactivity indices were obtained at the B3LYP/6-31G(d,p levels of theory with full geometry optimization. Interaction pharmacophores were generated for both receptors. The main conclusions of this work are as follows. (1 We obtained statistically significant equations relating the variation of hCB1 and hCB2 receptor binding affinities with the variation of definite sets of local atomic reactivity indices. (2 The interaction of the molecules with the hCB1 and hCB2 receptors seems to be highly complex and mainly orbital controlled. (3 The interaction mechanisms seem to be different for each type of receptor. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  20. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models.

    Science.gov (United States)

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania; Saponaro, Giulia; Baraldi, Pier Giovanni; Borea, Pier Andrea; Varani, Katia

    2013-06-01

    Cannabinoid CB(2) receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory, neuropathic, and bone cancer pain. In this study the effect of a novel CB(2)agonist (MT178) was evaluated in different animal models of pain. First of all, in vitro competition binding experiments performed on rat, mouse, or human CB receptors revealed a high affinity, selectivity, and potency of MT178. The analgesic properties of the novel CB(2) agonist were evaluated in various in vivo experiments, such as writhing and formalin assays, showing a good efficacy comparable with that produced by the nonselective CB agonist WIN 55,212-2. A dose-dependent antiallodynic effect of the novel CB(2) compound in the streptozotocin-induced diabetic neuropathy was found. In a bone cancer pain model and in the acid-induced muscle pain model, MT178 was able to significantly reduce mechanical hyperalgesia in a dose-related manner. Notably, MT178 failed to provoke locomotor disturbance and catalepsy, which were observed following the administration of WIN 55,212-2. CB(2) receptor mechanism of action was investigated in dorsal root ganglia where MT178 mediated a reduction of [(3)H]-d-aspartate release. MT178 was also able to inhibit capsaicin-induced substance P release and NF-κB activation. These results demonstrate that systemic administration of MT178 produced a robust analgesia in different pain models via CB(2) receptors, providing an interesting approach to analgesic therapy in inflammatory and chronic pain without CB(1)-mediated central side effects.

  1. Rational design, synthesis, and pharmacological properties of new 1,8-naphthyridin-2(1H)-on-3-carboxamide derivatives as highly selective cannabinoid-2 receptor agonists

    DEFF Research Database (Denmark)

    Manera, Clementina; Saccomanni, Giuseppe; Adinolfi, Barbara

    2009-01-01

    derivatives were designed, synthesized, and tested for their affinities toward the human CB(1) and CB(2) cannabinoid receptors. Some of the reported compounds showed a subnanomolar CB(2) affinity with a CB(1)/CB(2) selectivity ratio greater than 200 (compounds 6, 12, cis-12, 13, and cis-13). Further studies......The CB(2) receptor activation can be exploited for the treatment of diseases such as chronic pain and tumors of immune origin, devoid of psychotropic activity. On the basis of our already reported 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives, new 1,8-naphthyridin-2(1H)-on-3-carboxamide...

  2. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells.

    Science.gov (United States)

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-05-09

    Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.

  3. The Endocannabinoid/Endovanilloid N-Arachidonoyl Dopamine (NADA) and Synthetic Cannabinoid WIN55,212-2 Abate the Inflammatory Activation of Human Endothelial Cells*

    Science.gov (United States)

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-01-01

    Although cannabinoids, such as Δ9-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation. PMID:24644287

  4. Up-regulation of human cannabinoid receptor 2 induces apoptosis of cervical cancer HeLa cells%上调2型大麻素受体诱导子宫颈癌HeLa细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    谭晓玲; 李晶; 钟序素

    2016-01-01

    目的:通过构建基因真核表达载体,探讨人2型大麻素受体(human cannabinoid receptor 2,hCB2R)对人子宫颈癌HeLa细胞体外凋亡的作用及机制.方法:选用人脑组织的cDNA作为模板,进行hCB2R基因的RT-PCR扩增,构建重组质粒GV230-hCB2R及其对照空质粒GV230并转染HeLa细胞,Western blotting法及免疫荧光细胞化学染色联合激光扫描共聚焦显微镜技术检测hCB2R表达及细胞内定位;流式细胞术检测HeLa细胞凋亡,Western blotting法及实时荧光定量PCR检测HeLa细胞中hCB2R、Bcl-2、Bax、Bad的表达.结果:与空质粒转染组相比,GV230-hCB2R转染HeLa细胞后表达相对分子质量40 000的hCB2R蛋白,且细胞膜和细胞质中均有hCB2R的表达;GV230-hCB2R转染组的细胞凋亡率显著高于GV230空质粒对照组[(14.51±4.51)%vs(6.29±0.57)%,t=1.72,P<0.05];与空质粒对照组相比,hCB2R转染组细胞内Bax和Bad 的表达水平明显上调(P<0.05),而Bcl-2的表达明显下调(P<0.05).结论:hCB2R对子宫颈癌HeLa细胞的生长表现出明显的抑制作用,其作用机制可能与hCB2R直接参与了细胞凋亡相关蛋白的表达变化有关.

  5. Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex.

    Science.gov (United States)

    Saez, Trinidad M M; Aronne, María P; Caltana, Laura; Brusco, Alicia H

    2014-05-01

    The endocannabinoid system, composed of cannabinoid receptors, endocannabinoids, and synthesis and degradation enzymes, is present since early stages of brain development. During this period, the endocannabinoid system is involved in the regulation of neural progenitor proliferation and specification as well as the migration and differentiation of pyramidal neurons and interneurons. Marijuana consumption during pregnancy represents a serious risk in relation to the fetal brain development since Δ(9) -tetrahidrocannabinol, the main active compound of cannabis, can reach the fetus through placenta and hemato-encephalic barrier. Cohort studies performed on children and adolescents of mothers who consumed marijuana during pregnancy reported cognitive and comportamental abnormalities. In the present study, we examined the expression of the cannabinoid receptor CB1 R during corticogenesis in radially and tangentially migrating post-mitotic neurons. We found that prenatal exposure to WIN impaired tangential and radial migration of post-mitotic neurons in the dorsal pallium. In addition, we described alterations of two transcription factors associated with proliferating and newly post-mitotic glutamatergic cells in the dorsal pallium, Tbr1 and Tbr2, and disruption in the number of Cajal-Retzius cells. The present results contribute to the knowledge of neurobiological substrates that determine neuro-comportamental changes that will persist through post-natal life.

  6. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo

    OpenAIRE

    Whyte, Lauren S.; Ryberg, Erik; Sims, Natalie A.; Ridge, Susan A.; Mackie, Ken; Greasley, Peter J.; Ross, Ruth A.; Rogers, Michael J

    2009-01-01

    GPR55 is a G protein-coupled receptor recently shown to be activated by certain cannabinoids and by lysophosphatidylinositol (LPI). However, the physiological role of GPR55 remains unknown. Given the recent finding that the cannabinoid receptors CB1 and CB2 affect bone metabolism, we examined the role of GPR55 in bone biology. GPR55 was expressed in human and mouse osteoclasts and osteoblasts; expression was higher in human osteoclasts than in macrophage progenitors. Although the GPR55 agonis...

  7. The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas.

    Directory of Open Access Journals (Sweden)

    Eiron Cudaback

    Full Text Available BACKGROUND: Cannabinoids represent unique compounds for treating tumors, including astrocytomas. Whether CB(1 and CB(2 receptors mediate this therapeutic effect is unclear. PRINCIPAL FINDINGS: We generated astrocytoma subclones that express set levels of CB(1 and CB(2, and found that cannabinoids induce apoptosis only in cells expressing low levels of receptors that couple to ERK1/2. In contrast, cannabinoids do not induce apoptosis in cells expressing high levels of receptors because these now also couple to the prosurvival signal AKT. Remarkably, cannabinoids applied at high concentration induce apoptosis in all subclones independently of CB(1, CB(2 and AKT, but still through a mechanism involving ERK1/2. SIGNIFICANCE: The high expression level of CB(1 and CB(2 receptors commonly found in malignant astrocytomas precludes the use of cannabinoids as therapeutics, unless AKT is concomitantly inhibited, or cannabinoids are applied at concentrations that bypass CB(1 and CB(2 receptors, yet still activate ERK1/2.

  8. Novel cannabinoid receptors

    OpenAIRE

    Brown, A J

    2007-01-01

    Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically delete...

  9. Identification of CB1/CB2 ligands from Zanthoxylum bungeanum.

    Science.gov (United States)

    Dossou, Katina S S; Devkota, Krishna P; Morton, Cynthia; Egan, Josephine M; Lu, Guanghua; Beutler, John A; Moaddel, Ruin

    2013-11-22

    In order to study cannabinoid receptor ligands, a novel plate-based assay was developed previously to measure internalization of CB1/CB2 receptors by determining the change in the intracellular levels of the radiolabeled agonists. This plate-based assay was also used for screening against complex matrices, specifically, in the present study screening for CB1/CB2 receptor activity of extracts for several species of the plant genus Zanthoxylum. The objective of this screen was to identify novel antagonists of the CB1 receptor, which simultaneously displayed agonist activity against the CB2 receptor, since compounds matching this criterion could be potential candidates for the treatment of type-1 diabetes. As a result, two Z. bungeanum extracts were deemed active, leading to the identification of eight compounds, of which compound 7 [(2E,4E,8E,10E,12E)-N-isobutyl-2,4,8,10,12-tetradecapentaenamide, γ-sanshool] was obtained as a promising lead compound.

  10. Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism

    Science.gov (United States)

    Bettiga, Arianna; Aureli, Massimo; Colciago, Giorgia; Murdica, Valentina; Moschini, Marco; Lucianò, Roberta; Canals, Daniel; Hannun, Yusuf; Hedlund, Petter; Lavorgna, Giovanni; Colombo, Renzo; Bassi, Rosaria; Samarani, Maura; Montorsi, Francesco; Salonia, Andrea; Benigni, Fabio

    2017-01-01

    The inhibitory effects demonstrated by activation of cannabinoid receptors (CB) on cancer proliferation and migration may also play critical roles in controlling bladder cancer (BC). CB expression on human normal and BC specimens was tested by immunohistochemistry. Human BC cells RT4 and RT112 were challenged with CB agonists and assessed for proliferation, apoptosis, and motility. Cellular sphingolipids (SL) constitution and metabolism were evaluated after metabolic labelling. CB1-2 were detected in BC specimens, but only CB2 was more expressed in the tumour. Both cell lines expressed similar CB2. Exposure to CB2 agonists inhibited BC growth, down-modulated Akt, induced caspase 3-activation and modified SL metabolism. Baseline SL analysis in cell lines showed differences linked to unique migratory behaviours and cytoskeletal re-arrangements. CB2 activation changed the SL composition of more aggressive RT112 cells by reducing (p < 0.01) Gb3 ganglioside (−50 ± 3%) and sphingosine 1-phosphate (S1P, −40 ± 4%), which ended up to reduction in cell motility (−46 ± 5%) with inhibition of p-SRC. CB2-selective antagonists, gene silencing and an inhibitor of SL biosynthesis partially prevented CB2 agonist-induced effects on cell viability and motility. CB2 activation led to ceramide-mediated BC cell apoptosis independently of SL constitutive composition, which instead was modulated by CB2 agonists to reduce cell motility. PMID:28191815

  11. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    János Haskó

    2014-05-01

    Full Text Available During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB. The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2; therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A, GPR18 (transcriptional variant 1 and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A, GPR18 (transcriptional variants 1 and 2, GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.

  12. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Science.gov (United States)

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  13. Tricyclic pyrazoles. Part 8. Synthesis, biological evaluation and modelling of tricyclic pyrazole carboxamides as potential CB2 receptor ligands with antagonist/inverse agonist properties.

    Science.gov (United States)

    Deiana, Valeria; Gómez-Cañas, María; Pazos, M Ruth; Fernández-Ruiz, Javier; Asproni, Battistina; Cichero, Elena; Fossa, Paola; Muñoz, Eduardo; Deligia, Francesco; Murineddu, Gabriele; García-Arencibia, Moisés; Pinna, Gerard A

    2016-04-13

    Previous studies have investigated the relevance and structure-activity relationships (SARs) of pyrazole derivatives in relation with cannabinoid receptors, and the series of tricyclic 1,4-dihydroindeno[1,2-c]pyrazoles emerged as potent CB2 receptor ligands. In the present study, novel 1,4-dihydroindeno[1,2-c]pyrazole and 1H-benzo[g]indazole carboxamides containing a cyclopropyl or a cyclohexyl substituent were designed and synthesized to evaluate the influence of these structural modifications towards CB1 and CB2 receptor affinities. Among these derivatives, compound 15 (6-cyclopropyl-1-(2,4-dichlorophenyl)-N-(adamantan-1-yl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide) showed the highest CB2 receptor affinity (Ki = 4 nM) and remarkable selectivity (KiCB1/KiCB2 = 2232), whereas a similar affinity, within the nM range, was seen for the fenchyl derivative (compound 10: Ki = 6 nM), for the bornyl analogue (compound 14: Ki = 38 nM) and, to a lesser extent, for the aminopiperidine derivative (compound 6: Ki = 69 nM). Compounds 10 and 14 were also highly selective for the CB2 receptor (KiCB1/KiCB2 > 1000), whereas compound 6 was relatively selective (KiCB1/KiCB2 = 27). The four compounds were also subjected to GTPγS binding analysis showing antagonist/inverse agonist properties (IC50 for compound 14 = 27 nM, for 15 = 51 nM, for 10 = 80 nM and for 6 = 294 nM), and this activity was confirmed for the three more active compounds in a CB2 receptor-specific in vitro bioassay consisting in the quantification of prostaglandin E2 release by LPS-stimulated BV2 cells, in the presence and absence of WIN55,212-2 and/or the investigated compounds. Modelling studies were also conducted with the four compounds, which conformed with the structural requirements stated for the binding of antagonist compounds to the human CB2 receptor.

  14. First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry.

    Science.gov (United States)

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Liu, Hua-Fen; Huestis, Marilyn A

    2013-10-01

    Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I drug. Recently, AKB-48 was shown to have twice the CB1 receptor binding affinity than CB2. These pharmacological effects and the difficulty in detecting the parent compound in urine highlight the importance of metabolite identification for developing analytical methods for clinical and forensic investigations. Using human hepatocytes and TripleTOF mass spectrometry, we identified 17 novel phase I and II AKB-48 metabolites, products of monohydroxylation, dihydroxylation, or trihydroxylation on the aliphatic adamantane ring or N-pentyl side chain. Glucuronide conjugation of some mono- and dihydroxylated metabolites also occurred. Oxidation and dihydroxylation on the adamantane ring and N-pentyl side chain formed a ketone. More metabolites were identified after 3 h of incubation than at 1 h. For the first time, we present a AKB-48 metabolic scheme obtained from human hepatocytes and high-resolution mass spectrometry. These data are needed to develop analytical methods to identify AKB-48 consumption in clinical and forensic testing.

  15. Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189

    Directory of Open Access Journals (Sweden)

    Anton Reiner

    2014-12-01

    Full Text Available We have developed a focal blast model of closed-head mild traumatic brain injury (TBI in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2, we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50–60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.

  16. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189.

    Science.gov (United States)

    Reiner, Anton; Heldt, Scott A; Presley, Chaela S; Guley, Natalie H; Elberger, Andrea J; Deng, Yunping; D'Surney, Lauren; Rogers, Joshua T; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G; Gurley, Steven N; Moore, Bob M

    2014-12-31

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50-60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50-60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.

  17. Therapeutic potential of cannabinoid-based drugs.

    Science.gov (United States)

    Klein, Thomas W; Newton, Catherine A

    2007-01-01

    Cannabinoid-based drugs modeled on cannabinoids originally isolated from marijuana are now known to significantly impact the functioning of the endocannabinoid system of mammals. This system operates not only in the brain but also in organs and tissues in the periphery including the immune system. Natural and synthetic cannabinoids are tricyclic terpenes, whereas the endogenous physiological ligands are eicosanoids. Several receptors for these compounds have been extensively described, CB1 and CB2, and are G protein-coupled receptors; however, cannabinoid-based drugs are also demonstrated to function independently of these receptors. Cannabinoids regulate many physiological functions and their impact on immunity is generally antiinflammatory as powerful modulators of the cytokine cascade. This anti-inflammatory potency has led to the testing of these drugs in chronic inflammatory laboratory paradigms and even in some human diseases. Psychoactive and nonpsychoactive cannabinoid-based drugs such as Delta9-tetrahydrocannabinol, cannabidiol, HU-211, and ajulemic acid have been tested and found moderately effective in clinical trials of multiple sclerosis, traumatic brain injury, arthritis, and neuropathic pain. Furthermore, although clinical trials are not yet reported, preclinical data with cannabinoid-based drugs suggest efficacy in other inflammatory diseases such as inflammatory bowel disease, Alzheimer's disease, atherosclerosis, and osteoporosis.

  18. Development and preliminary validation of a plate-based CB1/CB2 receptor functional assay.

    Science.gov (United States)

    Dossou, K S S; Devkota, K P; Kavanagh, P V; Beutler, J A; Egan, J M; Moaddel, R

    2013-06-15

    Cannabinoid (CB) receptors are being targeted therapeutically for the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. More recently, cannabinoid agonists have displayed antiproliferative activity against breast cancer and prostate cancer in animal models. To study cannabinoid receptor ligands, we have developed a novel plate-based assay that measures internalization of CB1/CB2 receptors by determining the change in the intracellular levels of the radiolabeled agonists: [(3)H]Win55-212-2 for CB1 and [(3)H]CP55-940 for CB2. The developed plate-based assay was validated by determining IC50 values for known antagonists: AM251, AM281, AM630, and AM6545. The data obtained were consistent with previously reported values, thereby confirming that the assay can be used to determine the functional binding activities (IC50) of antagonists for the CB1 and CB2 receptors. In addition, we demonstrated that the plate-based assay may be used for screening against complex matrices. Specifically, we demonstrated that the plate-based assay was able to identify which extracts of several species of the genus Zanthoxylum had activity at the CB1/CB2 receptors.

  19. Construction of eukaryotic expression system of human cannabinoid receptor 2 gene and its expression in HEK293 cells%人Ⅱ型大麻受体真核表达体系构建及其在 HEK293细胞中的表达

    Institute of Scientific and Technical Information of China (English)

    孙厚良; 李晶; 龙明; 封玉玲

    2015-01-01

    目的:构建人Ⅱ型大麻受体( hCB2)基因GV230真核表达质粒,并检测hCB2基因在HEK293细胞中的表达。方法利用人脑皮质细胞的总RNA为模板,RT-PCR获得cDNA,通过酶切、连接及测序鉴定正确后,再将目的片段插入真核表达载体GV230,构建重组表达质粒GV230-hCB2,阳性克隆用脂质体瞬时转染HEK293细胞。激光共聚焦扫描显微镜和Western blotting法检测hCB2基因表达产物在细胞的表达情况。结果扩增出hCB2基因片段,成功构建了重组表达质粒,并检测到目的蛋白在转染细胞中表达,观察到hCB2受体在胞膜分布和表达。结论成功构建GV230-hCB2质粒,该质粒在HEK293细胞中能表达hCB2蛋白,此为进一步研究hCB2生物学功能奠定了实验基础。%Objective To construct the eukaryotic expression plasmid of human cannabinoid receptor 2 ( hCB2) gene GV230 and to detect the expression of hCB2 gene in the HEK293 cells.Methods Full length of hCB2 cDNA was obtained by RT-PCR with total RNA isolated from human T lymphocytes, and then we inserted the target fragment into eukaryotic ex-pression vector GV230 to construct the recombinant expression plasmid GV230-hCB2 after enzyme digestion, connection and sequencing.We used the liposome to transiently transfect HEK293 cells.The expression of hCB2 gene expression products was detected by Western blotting and confocal laser scanning microscope (CLSM).Results The hCB2 gene fragments were amplified, and we successfully constructed the recombinant expression plasmid, detected the target protein expressing in the transfected cells, and observed the distribution and expression of hCB2 receptor in the cell membrane. Conclusion We successfully contrast the GV230-hCB2 plasmid expressing hCB2 protein in the HEK293 cells, which lays the experimental foundation for further research of hCB2 biology function.

  20. Anti-atherosclerosis role of N-oleoylethanolamine in CB2%大麻素受体2在油酰乙醇胺抗动脉粥样硬化中的作用

    Institute of Scientific and Technical Information of China (English)

    盖雅婷; 舒强; 陈彩霞; 赖幼琳; 李文君; 彭璐; 林丽敏; 金鑫

    2014-01-01

    观察PPAR-α激动剂油酰乙醇胺(N-oleoylethanolamine,OEA)对人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)抗炎相关受体大麻素受体2(cannabinoid receptor 2,CB2)的作用.从新生儿脐带中提取HUVECs,给予不同剂量OEA,RT-PCR及Western blotting检测CB2基因和蛋白表达.采用PPAR-α阻断剂MK886或CB2阻断剂AM630分别阻断PPAR-α或CB2信号通路,给药组和阻断剂组给予OEA,用TNF-α诱导模型组、给药组和阻断剂组炎症产生,Western blotting法测定各组VCAM-1蛋白表达或进行THP-1黏附实验.结果表明,OEA(10和50 μmol·L-1)组的CB2表达上升,100 μmol·L-1 OEA组较空白组无明显变化;OEA抑制VCAM-1蛋白表达及THP-1细胞黏附;分别给予PPAR-α、CB2阻断剂MK886/AM630后,OEA对VCAM-1及单核细胞黏附的抑制作用明显降低.结果提示,OEA可能通过激活CB2通路起到抗动脉硬化的作用.

  1. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G

    2015-07-01

    Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation.

  2. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  3. The CB2-preferring agonist JWH015 also potently and efficaciously activates CB1 in autaptic hippocampal neurons.

    Science.gov (United States)

    Murataeva, N; Mackie, K; Straiker, A

    2012-11-01

    The G protein coupled receptors CB(1) and CB(2) are targets for the psychoactive constituents of cannabis, chief among them Δ(9)-THC. They are also key components of the multifunctional endogenous cannabinoid signaling system. CB(1) and CB(2) receptors modulate a wide variety of physiological systems including analgesia, memory, mood, reward, appetite and immunity. Identification and characterization of selective CB(1) and CB(2) receptor agonists and antagonists will facilitate understanding the precise physiological and pathophysiological roles of cannabinoid receptors in these systems. This is particularly necessary in the case of CB(2) because these receptors are sparsely expressed and problematic to detect using traditional immunocytochemical approaches. 1-Propyl-2-methyl-3-(1-naphthoyl)indole (JWH015) is an aminoalkylindole that has been employed as a "CB(2)-selective" agonist in more than 40 published papers. However, we have found that JWH015 potently and efficaciously activates CB(1) receptors in neurons. Using murine autaptic hippocampal neurons, which express CB(1), but not CB(2) receptors, we find that JWH015 inhibits excitatory postsynaptic currents with an EC50 of 216nM. JWH015 inhibition is absent in neurons from CB(1)(-/-) cultures and is reversed by the CB(1) antagonist, SR141716 [200nM]. Furthermore, JWH015 partially occludes CB(1)-mediated DSE (∼35% remaining), an action reversed by the CB(2) antagonist, AM630 [1 and 3μM], suggesting that high concentrations of AM630 also antagonize CB(1) receptors. We conclude that while JWH015 is a CB(2)-preferring agonist, it also activates CB(1) receptors at experimentally encountered concentrations. Thus, CB(1) agonism of JWH015 needs to be considered in the design and interpretation of experiments that use JWH015 to probe CB(2)-signaling.

  4. CB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain.

    Science.gov (United States)

    Khasabova, Iryna A; Gielissen, James; Chandiramani, Anisha; Harding-Rose, Catherine; Odeh, Desiree Abu; Simone, Donald A; Seybold, Virginia S

    2011-09-01

    In light of the adverse side-effects of opioids, cannabinoid receptor agonists may provide an effective alternative for the treatment of cancer pain. This study examined the potency and efficacy of synthetic CB1 and CB2 receptor agonists in a murine model of tumor pain. Intraplantar injection of the CB1 receptor agonist arachidonylcyclopropylamide (ED(50) of 18.4 μg) reduced tumor-related mechanical hyperalgesia by activation of peripheral CB1 but not CB2 receptors. Similar injection of the CB2 receptor agonist AM1241 (ED50 of 19.5 μg) reduced mechanical hyperalgesia by activation of peripheral CB2 but not CB1 receptors. Both agonists had an efficacy comparable with that of morphine (intraplantar), but their analgesic effects were independent of opioid receptors. Isobolographic analysis of the coinjection of arachidonylcyclopropylamide and AM1241 determined that the CB1 and CB2 receptor agonists interacted synergistically to reduce mechanical hyperalgesia in the tumor-bearing paw. These data extend our previous findings that the peripheral cannabinoid receptors are a promising target for the management of cancer pain and mixed cannabinoid receptor agonists may have a therapeutic advantage over selective agonists.

  5. Human Hepatocyte Metabolism of Novel Synthetic Cannabinoids MN-18 and Its 5-Fluoro Analog 5F-MN-18.

    Science.gov (United States)

    Diao, Xingxing; Carlier, Jeremy; Zhu, Mingshe; Huestis, Marilyn A

    2017-08-18

    In 2014, 2 novel synthetic cannabinoids, MN-18 and its 5-fluoro analog, 5F-MN-18, were first identified in an ongoing survey of novel psychoactive substances in Japan. In vitro pharmacological assays revealed that MN-18 and 5F-MN-18 displayed high binding affinities to human CB1 and CB2 receptors, with Ki being 1.65-3.86 nmol/L. MN-18 and 5F-MN-18 were scheduled in Japan and some other countries in 2014. Despite increasing prevalence, no human metabolism data are currently available, making it challenging for forensic laboratories to confirm intake of MN-18 or 5F-MN-18. We incubated 10 μ mol/L of MN-18 and 5F-MN-18 in human hepatocytes for 3 h and analyzed the samples on a TripleTOF 5600(+) high-resolution mass spectrometer to identify appropriate marker metabolites. Data were acquired via full scan and information-dependent acquisition-triggered product ion scans with mass defect filter. In total, 13 MN-18 metabolites were detected, with the top 3 abundant metabolites being 1-pentyl-1H-indazole-3-carboxylic acid, pentyl-carbonylated MN-18, and naphthalene-hydroxylated MN-18. For 5F-MN-18, 20 metabolites were observed, with the top 3 abundant metabolites being 5`-OH-MN-18, MN-18 pentanoic acid, and 1-(5-fluoropentyl)-1H-indazole-3-carboxylic acid. We have characterized MN-18 and 5F-MN-18 metabolism with human hepatocytes and high-resolution mass spectrometry, and we recommend characteristic major metabolites for clinical and forensic laboratories to identify MN-18 and 5F-MN-18 intake and link observed adverse events to these novel synthetic cannabinoids. © 2017 American Association for Clinical Chemistry.

  6. Expression of the endocannabinoid receptors in human fascial tissue

    Directory of Open Access Journals (Sweden)

    C. Fede

    2016-06-01

    Full Text Available Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1 and CB2 (cannabinoid receptor 2 in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.

  7. A role for GPR55 in human placental venous endothelial cells

    OpenAIRE

    Kremshofer, Julia; Siwetz, Monika; Berghold, Veronika M.; Lang, Ingrid; Huppertz, Berthold; Gauster, Martin

    2015-01-01

    Endocannabinoids and their G protein-coupled receptors have been suggested to play a key role in human pregnancy, by regulating important aspects such as implantation, decidualization, placentation and labour. G protein-coupled receptor 55 (GPR55) was previously postulated to be another cannabinoid receptor, since specific cannabinoids were shown to act independently of the classical cannabinoid receptors CB1 or CB2. Current knowledge about GPR55 expression and function in human placenta is v...

  8. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  9. The role of cannabinoid receptor 2 selective antagonist in osteoclast differentiation of RAW264.7 cells%大麻素受体CB2选择性抑制剂对RAW264.7细胞分化为破骨细胞的作用

    Institute of Scientific and Technical Information of China (English)

    耿德春; 徐耀增; 朱雪松; 王骏骅; 王根林; 杨惠林

    2011-01-01

    目的 观察大麻素受体CB2选择性抑制剂-AM630对核因子(NF)-κB受体活化因子配体(RANKL)诱导的小鼠单核/巨噬细胞株RAW264.7向破骨细胞分化的影响.方法 实验分3组,即空白组,诱导组和药物组.采用噻唑蓝(MTT)法检测不同浓度AM630(0、50、100、200 nmol/L)刺激RAW264.7后24、48、72 h的细胞增殖活性.以50μg/L RANKL诱导RAW264.7,6 d后加入100 nmol/LAM630再培养24 h;抗酒石酸酸性磷酸酶(TRAP)染色检测成熟破骨细胞,定量逆转录-聚合酶链反应(RT-PCR)测量CPK、RANK基因mRNA含量,Western blot检测ERK及P-ERK表达水平.结果 MTT结果表明AM630浓度为50、100、200 nmol/L时对RAW264.7细胞增殖能力无影响.TRAP染色结果表明药物组成熟破骨细胞数(65.60±4.83)/cm2明显少于诱导组(181.00±6.86)/cm2,差异有统计学意义(P<0.05).定量RT-PCR结果证实,诱导组CPK和RANK基因mRNA含量分别为18.50±5.12和12.70±2.61;加入AM630后,上述基因mRNA含量为7.00±1.03和4.80±1.25;差异有统计学意义(P<0.05).Western blot检测显示,AM630能下调RANKL诱导的P-ERK表达水平.结论 大麻素受体CB2选择性抑制剂-AM630能有效地抑制RANKL诱导的RAW264.7向破骨细胞分化.%Objective To observe the effect of cannabinoid receptor 2 selective antagonist-AM630 on receptor activator of NF-κB ligand ( RANKL) -induced osteoclast differentiatioin using the monocytemacrophage cell line RAW264. 7. Methods The experiment involved 3 groups: black group, induced group and treatment group. Methylthiazol tetrazolium ( MTT) assay was used to analyze the viability of RAW264. 7 cells which were exposed to different concentrations of AM630 (0, 50, 100, 200 nmol/L).RAW264. 7 cells were plated at a density of 104 cells/well in six-well tissue culture plate and incubated with or without RANKL for 6 days, then 100 nmol/L AM630 was added for another 24 h. Osteoclast formation was measured by tartrate resistant acid phosphatase (TRAP) staining

  10. Time-Dependent Protection of CB2 Receptor Agonist in Stroke.

    Directory of Open Access Journals (Sweden)

    Seong-Jin Yu

    Full Text Available Recent studies have indicated that type 2 cannabinoid receptor (CB2R agonists reduce neurodegeneration after brain injury through anti-inflammatory activity. The purpose of this study was to examine the time-dependent interaction of CB2R and inflammation in stroke brain. Adult male rats were subjected to right middle cerebral artery occlusion (MCAo. CB2R mRNA expression was significantly elevated >20 fold on day 2, peaked >40-fold on day 5, and normalized on day 10 post-stroke. Inflammatory markers IBA1 and TLR4 were significantly upregulated 15 fold until day 5 after MCAo. Because of the delayed upregulation of CB2R and IBA1, we next treated animals daily with CB2R agonist AM1241 or anti-inflammatory PPAR-γ agonist pioglitazone from 2 to 5 days after MCAo. Delayed treatment with pioglitazone significantly reduced abnormal neurological scores and body asymmetry as well as brain infarction in stroke animals. No behavioral improvement or reduction in brain infarction was found in animals receiving AM1241. Pioglitazone, but not AM1241, significantly reduced IBA1 expression in the stroke cortex, suggesting that delayed treatment with AM1241 failed to alter ischemia-mediated IBA-1 upregulation. In contrast, pretreatment with AM1241 significantly reduced brain infarction and neurological deficits. In conclusion, our data support a time-dependent neuroprotection of CB2 agonist in an animal model of stroke. Delayed post- treatment with PPAR-γ agonist induced behavioral recovery and microglial suppression; early treatment with CB2R agonist suppressed neurodegeneration in stroke animals.

  11. Molecular imaging of human tumor cells that naturally overexpress type 2 cannabinoid receptors using a quinolone-based near-infrared fluorescent probe

    Science.gov (United States)

    Wu, Zhiyuan; Shao, Pin; Zhang, Shaojuan; Ling, Xiaoxi; Bai, Mingfeng

    2014-07-01

    Cannabinoid CB2 receptors (CB2R) hold promise as therapeutic targets for treating diverse diseases, such as cancers, neurodegenerative diseases, pain, inflammation, osteoporosis, psychiatric disorders, addiction, and immune disorders. However, the fundamental role of CBR in the regulation of diseases remains unclear, largely due to a lack of reliable imaging tools for the receptors. The goal of this study was to develop a CBR-targeted molecular imaging probe and evaluate the specificity of the probe using human tumor cells that naturally overexpress CBR. To synthesize the CBR-targeted probe (NIR760-Q), a conjugable CBR ligand based on the quinolone structure was first prepared, followed by bioconjugation with a near-infrared (NIR) fluorescent dye, NIR760. In vitro fluorescence imaging and competitive binding studies showed higher uptake of NIR760-Q than free NIR760 dye in Jurkat human acute T-lymphoblastic leukemia cells. In addition, the high uptake of NIR760-Q was significantly inhibited by the blocking agent, 4-quinolone-3-carboxamide, indicating specific binding of NIR760-Q to the target receptors. These results indicate that the NIR760-Q has potential in diagnostic imaging of CBR positive cancers and elucidating the role of CBR in the regulation of disease progression.

  12. Cannabinoid facilitation of fear extinction memory recall in humans

    Science.gov (United States)

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  13. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  14. The effects of cannabinoids on the brain.

    Science.gov (United States)

    Ameri, A

    1999-07-01

    Cannabinoids have a long history of consumption for recreational and medical reasons. The primary active constituent of the hemp plant Cannabis sativa is delta9-tetrahydrocannabinol (delta9-THC). In humans, psychoactive cannabinoids produce euphoria, enhancement of sensory perception, tachycardia, antinociception, difficulties in concentration and impairment of memory. The cognitive deficiencies seem to persist after withdrawal. The toxicity of marijuana has been underestimated for a long time, since recent findings revealed delta9-THC-induced cell death with shrinkage of neurons and DNA fragmentation in the hippocampus. The acute effects of cannabinoids as well as the development of tolerance are mediated by G protein-coupled cannabinoid receptors. The CB1 receptor and its splice variant CB1A, are found predominantly in the brain with highest densities in the hippocampus, cerebellum and striatum. The CB2 receptor is found predominantly in the spleen and in haemopoietic cells and has only 44% overall nucleotide sequence identity with the CB1 receptor. The existence of this receptor provided the molecular basis for the immunosuppressive actions of marijuana. The CB1 receptor mediates inhibition of adenylate cyclase, inhibition of N- and P/Q-type calcium channels, stimulation of potassium channels, and activation of mitogen-activated protein kinase. The CB2 receptor mediates inhibition of adenylate cyclase and activation of mitogen-activated protein kinase. The discovery of endogenous cannabinoid receptor ligands, anandamide (N-arachidonylethanolamine) and 2-arachidonylglycerol made the notion of a central cannabinoid neuromodulatory system plausible. Anandamide is released from neurons upon depolarization through a mechanism that requires calcium-dependent cleavage from a phospholipid precursor in neuronal membranes. The release of anandamide is followed by rapid uptake into the plasma and hydrolysis by fatty-acid amidohydrolase. The psychoactive cannabinoids

  15. Expression of Cannabinoid receptoR2 in the CNS and pharmacology of its agonists%大麻CB2受体在中枢神经系统的分布及其激动剂的药理作用

    Institute of Scientific and Technical Information of China (English)

    李素燕; 颜玲娣; 宫泽辉

    2009-01-01

    大麻受体分为大麻受体1(CB1)和大麻受体2(CB2),CB2受体主要分布于外周免疫系统,目前研究发现其在中枢神经系统(CNS)也有少量的分布,这可能与其中枢作用密切相关.已有文献报道CB2受体激动剂具有抑制疼痛产生和持续及神经退行性病变等药理学特性,且长期给药不产生明显的精神和躯体依赖等副作用,显示出良好的临床应用前景.为了更好地认识、研究和利用CB2受体及其激动剂,该文综述了CB2受体在CNS的分布及其药理作用特点.

  16. Oxaza adamantyl cannabinoids. A new class of cannabinoid receptor probes.

    Science.gov (United States)

    Le Goanvic, David; Tius, Marcus A

    2006-09-29

    The preparation of C3 oxaza adamantyl cannabinoids has been described starting from phloroglucinol. Straightforward manipulations of the aromatic ring lead to a bromononaflate that is a benzyne precursor and that serves as a common intermediate for the synthesis of diverse C3-substituted tricyclic cannabinoids. Generation of the benzyne in the presence of an oxaza adamantyl amide anion results in efficient and regiospecific addition to C3 of the aromatic ring. This represents an attractive strategy for the synthesis of classical tricyclic cannabinoids that bear a modified aromatic appendage. The oxaza adamantyl cannabinoids that have been prepared represent a new class of ligands for the CB1 and CB2 receptors.

  17. Crystal Structure of the Human Cannabinoid Receptor CB1.

    Science.gov (United States)

    Hua, Tian; Vemuri, Kiran; Pu, Mengchen; Qu, Lu; Han, Gye Won; Wu, Yiran; Zhao, Suwen; Shui, Wenqing; Li, Shanshan; Korde, Anisha; Laprairie, Robert B; Stahl, Edward L; Ho, Jo-Hao; Zvonok, Nikolai; Zhou, Han; Kufareva, Irina; Wu, Beili; Zhao, Qiang; Hanson, Michael A; Bohn, Laura M; Makriyannis, Alexandros; Stevens, Raymond C; Liu, Zhi-Jie

    2016-10-20

    Cannabinoid receptor 1 (CB1) is the principal target of Δ(9)-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.

  18. Cannabinoids inhibit cellular respiration of human oral cancer cells.

    Science.gov (United States)

    Whyte, Donna A; Al-Hammadi, Suleiman; Balhaj, Ghazala; Brown, Oliver M; Penefsky, Harvey S; Souid, Abdul-Kader

    2010-01-01

    The primary cannabinoids, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and Delta(8)-tetrahydrocannabinol (Delta(8)-THC) are known to disturb the mitochondrial function and possess antitumor activities. These observations prompted us to investigate their effects on the mitochondrial O(2) consumption in human oral cancer cells (Tu183). This epithelial cell line overexpresses bcl-2 and is highly resistant to anticancer drugs. A phosphorescence analyzer that measures the time-dependence of O(2) concentration in cellular or mitochondrial suspensions was used for this purpose. A rapid decline in the rate of respiration was observed when Delta(9)-THC or Delta(8)-THC was added to the cells. The inhibition was concentration-dependent, and Delta(9)-THC was the more potent of the two compounds. Anandamide (an endocannabinoid) was ineffective; suggesting the effects of Delta(9)-THC and Delta(8)-THC were not mediated by the cannabinoidreceptors. Inhibition of O(2) consumption by cyanide confirmed the oxidations occurred in the mitochondrial respiratory chain. Delta(9)-THC inhibited the respiration of isolated mitochondria from beef heart. These results show the cannabinoids are potent inhibitors of Tu183 cellular respiration and are toxic to this highly malignant tumor.

  19. Comparison of the D2 Receptor Regulation and Neurotoxicant Susceptibility of Nigrostriatal Dopamine Neurons in Wild-Type and CB1/CB2 Receptor Knockout Mice

    OpenAIRE

    Simkins, Tyrell J.; Janis, Kelly L.; McClure, Alison K.; Behrouz, Bahareh; Pappas, Samuel S.; Lehner, Andreas; Kaminski, Norbert E.; Goudreau, John L.; Lookingland, Keith J.; Kaplan, Barbara L. F.

    2012-01-01

    Motor dysfunctions of Parkinson Disease (PD) are due to the progressive loss of midbrain nigrostriatal dopamine (NSDA) neurons. Evidence suggests a role for cannabinoid receptors in the neurodegeneration of these neurons following neurotoxicant-induced injury. This work evaluates NSDA neurons in CB1/CB2 knockout (KO) mice and tests the hypothesis that CB1/CB2 KO mice are more susceptible to neurotoxicant exposure. NSDA neuronal indices were assessed using unbiased stereological cell counting,...

  20. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis.

    Science.gov (United States)

    Sophocleous, Antonia; Marino, Silvia; Logan, John G; Mollat, Patrick; Ralston, Stuart H; Idris, Aymen I

    2015-09-04

    The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing.

  1. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans

    NARCIS (Netherlands)

    Heitland, I.; Kenemans, J. L.; Böcker, K. B E; Baas, J. M P

    2014-01-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the t

  2. Imidazopyridine CB2 agonists: optimization of CB2/CB1 selectivity and implications for in vivo analgesic efficacy.

    Science.gov (United States)

    Trotter, B Wesley; Nanda, Kausik K; Burgey, Christopher S; Potteiger, Craig M; Deng, James Z; Green, Ahren I; Hartnett, John C; Kett, Nathan R; Wu, Zhicai; Henze, Darrell A; Della Penna, Kimberly; Desai, Reshma; Leitl, Michael D; Lemaire, Wei; White, Rebecca B; Yeh, Suzie; Urban, Mark O; Kane, Stefanie A; Hartman, George D; Bilodeau, Mark T

    2011-04-15

    A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects.

  3. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate.

    Science.gov (United States)

    Priestley, Richard S; Nickolls, Sarah A; Alexander, Stephen P H; Kendall, David A

    2015-04-01

    Cannabinoids are reported to have actions through peroxisome proliferator-activated receptors (PPARs), which led us to investigate PPAR agonists for activity at the cannabinoid receptors. Radio-ligand binding and functional assays were conducted using human recombinant cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors, as well as the guinea pig isolated ileum, using the full agonist CP55940 as a positive control. The PPAR-α agonist fenofibrate exhibited submicromolar affinity for both receptors (pKi CB1, 6.3 ± 0.1; CB2, 7.7 ± 0.1). Functionally, fenofibrate acted as an agonist at the CB2 receptor (pEC50, 7.7 ± 0.1) and a partial agonist at the CB1 receptor, although with a decrease in functional response at higher concentrations, producing bell-shaped concentration-response curves. High concentrations of fenofibrate were able to increase the dissociation rate constant for [(3)H]-CP55940 at the CB1 receptor, (kfast without: 1.2 ± 0.2/min; with: 3.8 ± 0.1 × 10(-2)/min) and decrease the maximal response to CP55940 (Rmax, 86 ± 2%), which is consistent with a negative allosteric modulator. Fenofibrate also reduced electrically induced contractions in isolated guinea pig ileum via CB1 receptors (pEC50, 6.0 ± 0.4). Fenofibrate is thus identified as an example of a new class of cannabinoid receptor ligand and allosteric modulator, with the potential to interact therapeutically with cannabinoid receptors in addition to its primary PPAR target. © FASEB.

  4. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat.

    Science.gov (United States)

    Elmes, Steven J R; Winyard, Lisa A; Medhurst, Stephen J; Clayton, Nick M; Wilson, Alex W; Kendall, David A; Chapman, Victoria

    2005-12-01

    The aim of the present study was to investigate the effects of cannabinoid agonists on established inflammatory hyperalgesia. We have compared the effects of pre-administration versus post-administration of a potent non-selective cannabinoid agonist HU210 and a selective CB2 receptor agonist JWH-133 on hindpaw weight bearing and paw oedema in the carrageenan model of inflammatory hyperalgesia. For comparative purposes we also determined the effects of the mu-opioid receptor agonist morphine and the COX2 inhibitor rofecoxib in this model. At 3 h following intraplantar injection of carrageenan (2%, 100 microl) there was a significant (P pain responses.

  5. Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations.

    Science.gov (United States)

    Mulè, Flavia; Amato, Antonella; Baldassano, Sara; Serio, Rosa

    2007-09-01

    While most of the studies concerning the role of cannabinoids on gastric motility have focused the attention on the gastric emptying in in vivo animal models, there is little information about the cannabinoid peripheral influence in the stomach. In addition, the functional features of CB2 receptors in the gastrointestinal tract have been poorly characterized. The purpose of the present study was to investigate the effects of cannabinoid drugs on the excitatory cholinergic and inhibitory non-adrenergic non-cholinergic (NANC) neurotransmission in mouse isolated gastric preparations. Intraluminal pressure from isolated whole stomach was recorded and mechanical responses induced by electrical field stimulation (EFS) were analyzed in different experimental conditions. EFS (0.5ms duration, supramaximal voltage, in trains of 5s, 2-16Hz) caused a cholinergic contraction, which was abolished by atropine or tetrodotoxin (TTX). The cannabinoid receptor agonist, WIN 55,212-2, the endogenous ligand, anandamide, the selective CB1 receptor agonist ACEA, and the selective CB2 receptor agonists, JWH015 and JWH133, produced a concentration-dependent reduction of the EFS-evoked cholinergic contractions. SR141716A, CB1 receptor antagonist, significantly attenuated the inhibitory effects induced by WIN 55,212-2, anandamide or ACEA, without affecting those caused by JWH133. AM630, CB2 receptor antagonist, reduced the inhibitory effects induced by WIN 55,212-2, anandamide, JWH015 or JWH133, without affecting those caused by ACEA. The joint application of SR141716A and AM630 was able of fully preventing the WIN 55,212-2 and anandamide actions. The cannabinoid antagonists failed per se to affect the neurally evoked responses. Cannabinoids did not modify the contractions produced by exogenous carbachol. In the presence of atropine and guanethidine (NANC conditions) EFS-induced TTX-sensitive relaxation consisting in an early and rapid component followed by a second slow phase, which were

  6. Comparison of the D2 receptor regulation and neurotoxicant susceptibility of nigrostriatal dopamine neurons in wild-type and CB1/CB2 receptor knockout mice.

    Science.gov (United States)

    Simkins, Tyrell J; Janis, Kelly L; McClure, Alison K; Behrouz, Bahareh; Pappas, Samuel S; Lehner, Andreas; Kaminski, Norbert E; Goudreau, John L; Lookingland, Keith J; Kaplan, Barbara L F

    2012-09-01

    Motor dysfunctions of Parkinson Disease (PD) are due to the progressive loss of midbrain nigrostriatal dopamine (NSDA) neurons. Evidence suggests a role for cannabinoid receptors in the neurodegeneration of these neurons following neurotoxicant-induced injury. This work evaluates NSDA neurons in CB1/CB2 knockout (KO) mice and tests the hypothesis that CB1/CB2 KO mice are more susceptible to neurotoxicant exposure. NSDA neuronal indices were assessed using unbiased stereological cell counting, high pressure liquid chromatography coupled with electrochemical detection or mass spectrometry, and Western blot. Results reveal that CB1 and CB2 cannabinoid receptor signaling is not necessary for the maintenance of a normally functioning NSDA neuronal system. Mice lacking CB1 and CB2 receptors were found to be equally susceptible to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). These studies support the use of CB1/CB2 KO mice for investigating the cannabinoid receptor-mediated regulation of the NSDA neuronal system in models of PD.

  7. Treatment with CB2 Agonist JWH-133 Reduces Histological Features Associated with Erectile Dysfunction in Hypercholesterolemic Mice

    Directory of Open Access Journals (Sweden)

    Rodrigo Araujo Fraga-Silva

    2013-01-01

    Full Text Available Hypercholesterolemia is one of the most important risk factors for erectile dysfunction, mostly due to the impairment of oxidative stress and endothelial function in the penis. The cannabinoid system might regulate peripheral mechanisms of sexual function; however, its role is still poorly understood. We investigated the effects of CB2 activation on oxidative stress and fibrosis within the corpus cavernosum of hypercholesterolemic mice. Apolipoprotein-E-knockout mice were fed with a western-type diet for 11 weeks and treated with JWH-133 (selective CB2 agonist or vehicle during the last 3 weeks. CB2 receptor expression, total collagen content, and reactive oxygen species (ROS production within the penis were assessed. In vitro corpus cavernosum strips preparation was performed to evaluate the nitric oxide (NO bioavailability. CB2 protein expression was shown in cavernosal endothelial and smooth muscle cells of wild type and hypercholesterolemic mice. Treatment with JWH-133 reduced ROS production and NADPH-oxidase expression in hypercholesterolemic mice penis. Furthermore, JWH-133 increased endothelial NO synthase expression in the corpus cavernosum and augmented NO bioavailability. The decrease in oxidative stress levels was accompanied with a reduction in corpus cavernosum collagen content. In summary, CB2 activation decreased histological features, which were associated with erectile dysfunction in hypercholesterolemic mice.

  8. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2015-01-01

    Full Text Available Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2 but also other targets (e.g., GPR18/GPR55. We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.

  9. Ultrapure ajulemic acid has improved CB2 selectivity with reduced CB1 activity.

    Science.gov (United States)

    Tepper, Mark A; Zurier, Robert B; Burstein, Sumner H

    2014-07-01

    Ajulemic acid, a side-chain analog of Δ(8)-THC-11-oic acid, was designed as a potent therapeutic agent free of the psychotropic adverse effects typical of most cannabinoids. Subsequent studies of ajulemic acid have yielded widely divergent findings on the occurrence of these adverse effects. To help resolve these discrepancies, we have prepared highly purified ajulemic acid using a different synthetic method than previously reported in the literature and compared its cannabinoid receptor binding constants with those obtained using several other preparations from different sources. Whereas CB2 binding did not vary greatly among all of the samples, the CB1 binding showed a wide range of affinities. The highly purified product (JBT-101) reported here had the weakest affinity for CB1 while the original preparation (HU-239) showed the strongest affinity for CB1. The CB1/CB2 ratio of affinities was 12.3 for JBT-101 whereas that for HU-239 was 0.19, a 65-fold difference. Functional responses such as catalepsy and hypothermia using JBT-101 versus HU-239 displayed reduced CB1 activity in keeping with the receptor binding data. Thus, earlier conclusions on the limited therapeutic index for ajulemic acid need to be reconsidered in the light of the data now obtained using JBT-101.

  10. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Paul L. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M. [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Ford, Benjamin M.; Franks, Lirit N. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Radominska-Pandya, Anna, E-mail: RadominskaAnna@uams.edu [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States)

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  11. Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2.

    Science.gov (United States)

    Slavik, Roger; Müller Herde, Adrienne; Haider, Ahmed; Krämer, Stefanie D; Weber, Markus; Schibli, Roger; Ametamey, Simon M; Mu, Linjing

    2016-09-01

    The cannabinoid receptor type 2 (CB2) is part of the endocannabinoid system and has gained growing attention in recent years because of its important role in neuroinflammatory/neurodegenerative diseases. Recently, we reported on a carbon-11 labeled 4-oxo-quinoline derivative, designated RS-016, as a promising radiotracer for imaging CB2 using PET. In this study, three novel fluorinated analogs of RS-016 were designed, synthesized, and pharmacologically evaluated. The results of our efforts led to the identification of N-(1-adamantyl)-1-(2-(2-fluoroethoxy)ethyl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxamide (RS-126) as the most potent candidate for evaluation as a CB2 PET ligand. [(18) F]RS-126 was obtained in ≥ 99% radiochemical purity with an average specific radioactivity of 98 GBq/μmol at the end of the radiosynthesis. [(18) F]RS-126 showed a logD7.4 value of 1.99 and is stable in vitro in rat and human plasma over 120 min, whereas 55% intact parent compound was found in vivo in rat blood plasma at 10 min post injection. In vitro autoradiographic studies with CB2-positive rat spleen tissue revealed high and blockable binding which was confirmed in in vivo displacement experiments with rats by dynamic PET imaging. Ex vivo biodistribution studies confirmed accumulation of [(18) F]RS-126 in rat spleen with a specificity of 79% under blocking conditions. The moderate elevated CB2 levels in LPS-treated mice brain did not permit the detection of CB2 by [(18) F]RS-126 using PET imaging. In summary, [(18) F]RS-126 demonstrated high specificity toward CB2 receptor in vitro and in vivo and is a promising radioligand for imaging CB2 receptor expression. Cannabinoid receptor type 2 (CB2) is an interesting target for PET imaging. Specific binding of [(18) F]RS-126 in CB2-positive spleen tissue (white arrow head) was confirmed in in vivo displacement experiments with rats. Time activity curve of [(18) F]RS-126 in the spleen after the addition of GW405833 (CB2

  12. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling.

    Science.gov (United States)

    Börner, Christine; Smida, Michal; Höllt, Volker; Schraven, Burkhart; Kraus, Jürgen

    2009-12-18

    The aim of this study was to characterize inhibitory mechanisms on T cell receptor signaling mediated by the cannabinoid receptors CB1 and CB2. Both receptors are coupled to G(i/o) proteins, which are associated with inhibition of cyclic AMP formation. In human primary and Jurkat T lymphocytes, activation of CB1 by R(+)-methanandamide, CB2 by JWH015, and both by Delta9-tetrahydrocannabinol induced a short decrease in cyclic AMP lasting less than 1 h. However, this decrease was followed by a massive (up to 10-fold) and sustained (at least up to 48 h) increase in cyclic AMP. Mediated by the cyclic AMP-activated protein kinase A and C-terminal Src kinase, the cannabinoids induced a stable phosphorylation of the inhibitory Tyr-505 of the leukocyte-specific protein tyrosine kinase (Lck). By thus arresting Lck in its inhibited form, the cannabinoids prevented the dephosphorylation of Lck at Tyr-505 in response to T cell receptor activation, which is necessary for the subsequent initiation of T cell receptor signaling. In this way the cannabinoids inhibited the T cell receptor-triggered signaling, i.e. the activation of the zeta-chain-associated protein kinase of 70 kDa, the linker for activation of T cells, MAPK, the induction of interleukin-2, and T cell proliferation. All of the effects of the cannabinoids were blocked by the CB1 and CB2 antagonists AM281 and AM630. These findings help to better understand the immunosuppressive effects of cannabinoids and explain the beneficial effects of these drugs in the treatment of T cell-mediated autoimmune disorders like multiple sclerosis.

  13. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition

    Directory of Open Access Journals (Sweden)

    Flores Juana M

    2010-07-01

    Full Text Available Abstract Background ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. Results Our results show that both Δ9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. Conclusions Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.

  14. Cannabinoids inhibit T-cells via cannabinoid receptor 2 in an in vitro assay for graft rejection, the mixed lymphocyte reaction.

    Science.gov (United States)

    Robinson, Rebecca Hartzell; Meissler, Joseph J; Breslow-Deckman, Jessica M; Gaughan, John; Adler, Martin W; Eisenstein, Toby K

    2013-12-01

    Cannabinoids are known to have anti-inflammatory and immunomodulatory properties. Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes. This study tested the capacity of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ(9)-THC significantly suppressed the MLR in a dose dependent fashion. The inhibition was via CB2, as suppression could be blocked by pretreatment with a CB2-selective antagonist, but not by a CB1 antagonist, and none of the compounds suppressed the MLR when splenocytes from CB2 deficient mice were used. The CB2 agonists were shown to act directly on T-cells, as exposure of CD3(+) cells to these compounds completely inhibited their action in a reconstituted MLR. Further, the CB2-selective agonists completely inhibited proliferation of purified T-cells activated by anti-CD3 and anti-CD28 antibodies. T-cell function was decreased by the CB2 agonists, as an ELISA of MLR culture supernatants revealed IL-2 release was significantly decreased in the cannabinoid treated cells. Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients.

  15. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands

    Directory of Open Access Journals (Sweden)

    You Haitao

    2011-11-01

    Full Text Available Abstract Background Both T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with T-type calcium channel blocking activity. Results Novel compounds were characterized in radioligand binding assays and in vitro functional assays at human and rat CB1 and CB2 receptors. The inhibitory effects of these compounds on transient expressed human T-type calcium channels were examined in tsA-201 cells using standard whole-cell voltage clamp techniques, and their analgesic effects in response to various administration routes (intrathecally, intraplantarly, intraperitoneally assessed in the formalin model. A series of compounds were synthesized and evaluated for channel and receptor activity. Compound NMP-7 acted as non-selective CB1/CB2 agonist while NMP4 was found to be a CB1 partial agonist and CB2 inverse agonist. Furthermore, NMP-144 behaved as a selective CB2 inverse agonist. All of these three compounds completely inhibited peak Cav3.2 currents with IC50 values in the low micromolar range. All compounds mediated analgesic effects in the formalin model, but depending on the route of administration, could differentially affect phase 1 and phase 2 of the formalin response. Conclusions Our results reveal that a set of novel cannabinioid receptor ligands potently inhibit T-type calcium channels and show analgesic effects in vivo. Our findings suggest possible novel means of mediating pain relief through mixed T-type/cannabinoid receptor ligands.

  16. Cannabinoids and their medicinal potential

    Directory of Open Access Journals (Sweden)

    Deepika Tikoo

    2012-04-01

    Full Text Available Cannabis sativa L preparations have been used therapeutically since many years. Inspite of their medicinal value, the danger of its abusive potential led to the ban on its use in clinical practice in many countries. The recent research and in depth knowledge about the cannabinoid system which throw a light on their disease management potential has paved way for the cannabinoids to become a new therapeutic focus of attention. Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors which include CB1, predominantly expressed in the brain and CB2 which is primarily found in the cells of the immune system. Despite the addictive properties of cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases such as anorexia, pain, inflammation, obesity, cardiovascular disorders, neurodegenerative diseases, cancer, gastrointestinal diseases, hepatic disorders, skin related diseases, respiratory disorders like asthma and eye diseases like glaucoma have suggested cannabinoid agonists/ antagonists/ cannabinoids related compounds as potential treatment options. Developments of new specific ligands for the cannabinoid receptors are now underway and it needs to be seen, if in future, they can prove to be a boon for the medical world. The paper reviews the current understanding of the cannabinoid receptors, their ligands and their possible role in various diseases supported by preclinical and clinical studies. [Int J Basic Clin Pharmacol 2012; 1(2.000: 48-59

  17. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  18. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1

    NARCIS (Netherlands)

    Heitland, I.; Klumpers, F.; Oosting, R.S.; Evers, D.J.; Leon Kenemans, J.; Baas, J.M.

    2012-01-01

    Failure to extinguish fear can lead to persevering anxiety and has been postulated as an important mechanism in the pathogenesis of human anxiety disorders. In animals, it is well documented that the endogenous cannabinoid system has a pivotal role in the successful extinction of fear, most importan

  19. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1

    NARCIS (Netherlands)

    Heitland, I.; Klumpers, F.; Oosting, R.S.; Evers, D.J.; Leon Kenemans, J.; Baas, J.M.

    2012-01-01

    Failure to extinguish fear can lead to persevering anxiety and has been postulated as an important mechanism in the pathogenesis of human anxiety disorders. In animals, it is well documented that the endogenous cannabinoid system has a pivotal role in the successful extinction of fear, most

  20. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.

  1. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  2. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  3. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats.

    Science.gov (United States)

    Sagar, Devi Rani; Kelly, Sara; Millns, Paul J; O'Shaughnessey, Celestine T; Kendall, David A; Chapman, Victoria

    2005-07-01

    Cannabinoid 2 (CB2) receptor mediated antinociception and increased levels of spinal CB2 receptor mRNA are reported in neuropathic Sprague-Dawley rats. The aim of this study was to provide functional evidence for a role of peripheral, vs. spinal, CB2 and cannabinoid 1 (CB1) receptors in neuropathic rats. Effects of the CB2 receptor agonist, JWH-133, and the CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on primary afferent fibres were determined by calcium imaging studies of adult dorsal root ganglion (DRG) neurons taken from neuropathic and sham-operated rats. Capsaicin (100 nm) increased [Ca2+]i in DRG neurons from sham and neuropathic rats. JWH-133 (3 microm) or ACEA (1 microm) significantly (PCB2 receptor antagonist, SR144528, (1 microm) significantly inhibited the effects of JWH-133. Effects of ACEA were significantly inhibited by the CB1 receptor antagonist SR141716A (1 microm). In vivo experiments evaluated the effects of spinal administration of JWH-133 (8-486 ng/50 microL) and ACEA (0.005-500 ng/50 microL) on mechanically evoked responses of neuropathic and sham-operated rats. Spinal JWH-133 attenuated mechanically evoked responses of spinal neurons in neuropathic, but not sham-operated rats. These inhibitory effects were blocked by SR144528 (0.001 microg/50 microL). Spinal ACEA inhibited mechanically evoked responses of neuropathic and sham-operated rats, these effects were blocked by SR141716A (0.01 microg/50 microL). Our data provide evidence for a functional role of CB2, as well as CB1 receptors on DRG neurons in sham and neuropathic rats. At the level of the spinal cord, CB2 receptors have inhibitory effects in neuropathic, but not sham-operated rats suggesting that spinal CB2 may be an important analgesic target.

  4. GPR55: a new member of the cannabinoid receptor clan?

    OpenAIRE

    Pertwee, R. G.

    2007-01-01

    In this issue of the British Journal of Pharmacology, Ryberg et al. present convincing in vitro evidence that the orphan GPCR, GPR55, is a cannabinoid receptor. GPR55 was activated by a range of plant, synthetic and endogenous cannabinoids and blocked by the non-psychoactive phytocannabinoid, cannabidiol. Their experiments have revealed several differences between the pharmacology of GPR55 and the established cannabinoid CB1 and CB2 receptors. For example, the CB1 receptor antagonist, AM251, ...

  5. Bilateral Changes of Cannabinoid Receptor Type 2 Protein and mRNA in the Dorsal Root Ganglia of a Rat Neuropathic Pain Model

    OpenAIRE

    2013-01-01

    Cannabinoid receptor type 2 (CB2R) plays a critical role in nociception. In contrast to cannabinoid receptor type 1 ligands, CB2R agonists do not produce undesirable central nervous system effects and thus promise to treat neuropathic pain that is often resistant to medical therapy. In the study presented here, we evaluated the bilateral distribution of the CB2R protein and messenger RNA (mRNA) in rat dorsal root ganglia (DRG) after unilateral peripheral nerve injury using immunohistochemistr...

  6. Pharmacology of cannabinoids in the treatment of epilepsy.

    Science.gov (United States)

    Gaston, Tyler E; Friedman, Daniel

    2017-05-01

    The use of cannabis products in the treatment of epilepsy has long been of interest to researchers and clinicians alike; however, until recently very little published data were available to support its use. This article summarizes the available scientific data of pharmacology from human and animal studies on the major cannabinoids which have been of interest in the treatment of epilepsy, including ∆9-tetrahydrocannabinol (∆9-THC), cannabidiol (CBD), ∆9-tetrahydrocannabivarin (∆9-THCV), cannabidivarin (CBDV), and ∆9-tetrahydrocannabinolic acid (Δ9-THCA). It has long been known that ∆9-THC has partial agonist activity at the endocannabinoid receptors CB1 and CB2, though it also binds to other targets which may modulate neuronal excitability and neuroinflammation. The actions of Δ9-THCV and Δ9-THCA are less well understood. In contrast to ∆9-THC, CBD has low affinity for CB1 and CB2 receptors and other targets have been investigated to explain its anticonvulsant properties including TRPV1, voltage gated potassium and sodium channels, and GPR55, among others. We describe the absorption, distribution, metabolism, and excretion of each of the above mentioned compounds. Cannabinoids as a whole are very lipophilic, resulting in decreased bioavailability, which presents challenges in optimal drug delivery. Finally, we discuss the limited drug-drug interaction data available on THC and CBD. As cannabinoids and cannabis-based products are studied for efficacy as anticonvulsants, more investigation is needed regarding the specific targets of action, optimal drug delivery, and potential drug-drug interactions. This article is part of a Special Issue titled Cannabinoids and Epilepsy. Published by Elsevier Inc.

  7. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  8. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen.

    Science.gov (United States)

    Prather, Paul L; FrancisDevaraj, FeAna; Dates, Centdrika R; Greer, Aleksandra K; Bratton, Stacie M; Ford, Benjamin M; Franks, Lirit N; Radominska-Pandya, Anna

    2013-11-15

    Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9-3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel, efficacious, non-toxic cancer drugs acting via CB1 and/or CB2Rs.

  9. CB1 and CB2 receptor expression and promoter methylation in patients with cannabis dependence.

    Science.gov (United States)

    Rotter, Andrea; Bayerlein, Kristina; Hansbauer, Max; Weiland, Judith; Sperling, Wolfgang; Kornhuber, Johannes; Biermann, Teresa

    2013-01-01

    CB1 and CB2 receptors are influenced via exogenous and endogenous cannabinoids. To date, little is known regarding changes in receptor expression and methylation in THC (tetrahydrocannabinol) dependence. Therefore, the CB1 and CB2 receptor mRNA expression levels and promoter methylation status in the peripheral blood cells of 77 subjects (36 with THC dependence, 21 cigarette smokers and 20 nonsmokers) were assessed by quantitative real-time PCR and methylation-specific PCR. There was a significant difference in CB1 receptor expression levels between the three groups (ANOVA, p CB1 receptor mRNA expression levels (Spearman's rho: r = -0.37; p = 0.002). Using a mixed general linear model, it was demonstrated that the CB1 mRNA expression (as the dependent variable) was associated with the satisfaction with life scale (SWLS) (r = 0.101; T = 2.8; p = 0.007), craving (as measured with the VAS; r = -0.023; T = -2.3; p = 0.023) and the WHO-Assist Subscale for Cannabis consumption (r = -0.068; T = -2.4; p = 0.02). CB1 receptor expression levels and methylation status appear to be altered in subjects with THC dependence.

  10. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  11. Alcohol and cannabinoids differentially affect HIV infection and function of human monocyte-derived dendritic cells (MDDC

    Directory of Open Access Journals (Sweden)

    Marisela eAgudelo

    2015-12-01

    Full Text Available During human immunodeficiency virus (HIV infection, alcohol has been known to induce inflammation while cannabinoids have been shown to have an anti-inflammatory role. For instance cannabinoids have been shown to reduce susceptibility to HIV-1 infection and attenuate HIV replication in macrophages. Recently, we demonstrated that alcohol induces cannabinoid receptors and regulates cytokine production by monocyte-derived dendritic cells (MDDC. However, the ability of alcohol and cannabinoids to alter MDDC function during HIV infection has not been clearly elucidated yet. In order to study the potential impact of alcohol and cannabinoids on differentiated MDDC infected with HIV, monocytes were cultured for 7 days with GM-CSF and IL-4, differentiated MDDC were infected with HIV-1Ba-L and treated with EtOH (0.1 and 0.2%, THC (5 and 10 uM, or JWH-015 (5 and 10 uM for 4-7 days. HIV infection of MDDC was confirmed by p24 and Long Terminal Repeats (LTR estimation. MDDC endocytosis assay and cytokine array profiles were measured to investigate the effects of HIV and substances of abuse on MDDC function. Our results show the HIV+EtOH treated MDDC had the highest levels of p24 production and expression when compared with the HIV positive controls and the cannabinoid treated cells. Although both cannabinoids, THC and JWH-015 had lower levels of p24 production and expression, the HIV+JWH-015 treated MDDC had the lowest levels of p24 when compared to the HIV+THC treated cells. In addition, MDDC endocytic function and cytokine production were also differentially altered after alcohol and cannabinoid treatments. Our results show a differential effect of alcohol and cannabinoids, which may provide insights into the divergent inflammatory role of alcohol and cannabinoids to modulate MDDC function in the context of HIV infection.

  12. Prospects for cannabinoid therapies in viral encephalitis.

    Science.gov (United States)

    Solbrig, Marylou V; Fan, Yijun; Hazelton, Paul

    2013-11-06

    Cannabinoids are promising therapies to support neurogenesis and decelerate disease progression in neuroinflammatory and degenerative disorders. Whether neuroprotective effects of cannabinoids are sustainable during persistent viral infection of the CNS is not known. Using a rodent model of chronic viral encephalitis based on Borna Disease (BD) virus, in which 1 week treatment with the general cannabinoid WIN 55,212-2 has been shown to be neuroprotective (Solbrig et al., 2010), we examine longer term (2 week treatment) effects of a general (CB1 and CB2) cannabinoid receptor agonist WIN55,212-2 (1mg/kg ip twice per day) or a specific (CB2) cannabinoid receptor agonist HU-308 (5mg/kg ip once daily) on histopathology, measures of frontostriatal neurogenesis and gliogenesis, and viral load. We find that WIN and HU-308 differ in their ability to protect new BrdU(+) cells. The selective CB2 agonist HU increases BrdU(+) cells in prefrontal cortex (PFC), significantly increases BrdU(+) cells in striatum, differentially regulates polydendrocytes vs. microglia/macrophages, and reduces immune activation at a time WIN-treated rats appear tolerant to the anti-inflammatory effect of their cannabinoid treatment. WIN and HU had little direct viral effect in PFC and striatum, yet reduced viral signal in hippocampus. Thus, HU-308 action on CB2 receptors, receptors known to be renewed during microglia proliferation and action, is a nontolerizing mechanism of controlling CNS inflammation during viral encephalitis by reducing microglia activation, as well as partially limiting viral infection, and uses a nonpsychotropic cannabinoid agonist.

  13. Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure-activity relationships, physicochemical properties and biological activity

    NARCIS (Netherlands)

    Blaazer, A.R.; Lange, J.H.M.; van der Neut, M.A.W.; Mulder, A.; den Boon, F.S.; Werkman, T.R.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    The discovery, synthesis and structure-activity relationship (SAR) of a novel series of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands are reported. Based on the aminoalkylindole class of cannabinoid receptor agonists, a biphenyl moiety was introduced as novel lipophilic indole 3-acyl

  14. PHARMACOLOGY OF CANNABINOIDS

    Directory of Open Access Journals (Sweden)

    Ilonka Ferjan

    2015-06-01

    Full Text Available The discovery of cannabinoid receptors and endocannabinoid system has led to the potential therapeutic use of cannabis derivatives. Cannabinoids acting through the CB1 receptors modulate the release of other neurotransmitters in central nervous system, whereas the activation of peripheral CB2 receptors results in decreased inflammatory response and increased apoptosis of some tumor cells populations. The cannabinoids have been authorized for chemotherapy-induced nausea and vomiting; stimulation of appetite; to alleviate neuropathic pain and spasticity in multiple sclerosis, and to reduce pain in cancer patients. Efficacy in other diseases and clinical conditions should be proven in ongoing or future clinical trials. Isolation and identification of different cannabinoids from cannabis and synthesis of novel, more selective, derivatives widens their therapeutic potential. However, there are numerous adverse effects reported, especially when cannabinoids formulations with unknown quantitative and qualitative composition are used. Addiction, tolerance, withdrawal symptoms, increased risk of acute myocardial re-infarction, and increased risk of psychosis or worsening of psychosis are the most common adverse effects of cannabinoids. Acute adverse effects e. g. severe central nervous system depression, are more pronounced in children than in adults. Potential cannabinoid medicines should be subject to the same regulations as other potential drugs. Safety and efficacy of any potential drug candidate, regardless whether it is plant-derived or synthesized, should be proven in non-clinical studies and clinical trials, as well as the marketing authorization must be issued by the appropriate drug authority. Patients deserve a quality manufactured product, which always contains the specified amount of "Remedium cardinale."

  15. The endocannabinoids anandamide and virodhamine modulate the activity of the candidate cannabinoid receptor GPR55

    OpenAIRE

    Sharir, Haleli; Console-Bram, Linda; Mundy, Christina; Steven N. Popoff; Kapur, Ankur; Abood, Mary E.

    2012-01-01

    The role of cannabinoid receptors in inflammation has been the topic of many research endeavors. Despite this effort, to date the involvement of the endocannabinoid system (ECS) in inflammation remains obscure. The ambiguity of cannabinoid involvement may be explained by the existence of cannabinoid receptors, other than CB1 and CB2, or a consequence of interaction of endocannabinoids with other signaling systems. GPR55 has been proposed to be a cannabinoid receptor; however the interaction o...

  16. CB1 cannabinoid receptors mediate endochondral skeletal growth attenuation by Δ9-tetrahydrocannabinol.

    Science.gov (United States)

    Wasserman, Elad; Tam, Joseph; Mechoulam, Raphael; Zimmer, Andreas; Maor, Gila; Bab, Itai

    2015-01-01

    The endocannabinoid (EC) system regulates bone mass. Because cannabis use during pregnancy results in stature shorter than normal, we examined the role of the EC system in skeletal elongation. We show that CB1 and CB2 cannabinoid receptors are expressed specifically in hypertrophic chondrocytes of the epiphyseal growth cartilage (EGC), which drives vertebrate growth. These cells also express diacylglycerol lipases, critical biosynthetic enzymes of the main EC, and 2-arachidonoylglycerol (2-AG), which is present at significant levels in the EGC. Femora of CB1- and/or CB2-deficient mice at the end of the rapid growth phase are longer compared to wild-type (WT) animals. We find that Δ(9) -tetrahydrocannabinol (THC) slows skeletal elongation of female WT and CB2-, but not CB1-, deficient mice, which is reflected in femoral and lumbar vertebral body length. This in turn results in lower body weight, but unaltered fat content. THC inhibits EGC chondrocyte hypertrophy in ex vivo cultures and reduces the hypertrophic cell zone thickness of CB1-, but not CB2-, deficient mice. These results demonstrate a local growth-restraining EC system in the EGC. The relevance of the present findings to humans remains to be studied.

  17. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    OpenAIRE

    Beatriz Paniagua-Torija; Angel Arevalo-Martin; Isidro Ferrer; Eduardo Molina-Holgado; Daniel Garcia-Ovejero

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqma...

  18. Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil.

    Science.gov (United States)

    Gustafsson, Sofia B; Lindgren, Theres; Jonsson, Maria; Jacobsson, Stig O P

    2009-03-01

    Cannabinoids (CBs) have been found to exert antiproliferative effects upon a variety of cancer cells, including colorectal carcinoma cells. However, little is known about the signalling mechanisms behind the antitumoural effect in these cells, whether the effects are shared by endogenous lipids related to endocannabinoids, or whether such effects are synergistic with treatment paradigms currently used in the clinic. The aim of this preclinical study was to investigate the effect of synthetic and endogenous CBs and their related fatty acids on the viability of human colorectal carcinoma Caco-2 cells, and to determine whether CB effects are synergistic with those seen with the pyrimidine antagonist 5-fluorouracil (5-FU). The synthetic CB HU 210, the endogenous CB anandamide, the endogenous structural analogue of anandamide, N-arachidonoyl glycine (NAGly), as well as the related polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid showed antiproliferative and cytotoxic effects in the Caco-2 cells, as measured by using [(3)H]-thymidine incorporation assay, the CyQUANT proliferation assay and calcein-AM fluorescence. HU 210 was the most potent compound examined, followed by anandamide, whereas NAGly showed equal potency and efficacy as the polyunsaturated fatty acids. Furthermore, HU 210 and 5-FU produced synergistic effects in the Caco-2 cells, but not in the human colorectal carcinoma cell lines HCT116 or HT29. The compounds examined produced cytotoxic, rather than antiproliferative effects, by a mechanism not involving CB receptors, since the CB receptor antagonists AM251 and AM630 did not attenuate the effects, nor did pertussis toxin. However, alpha-tocopherol and the nitric oxide synthase inhibitor L-NAME attenuated the CB toxicity, suggesting involvement of oxidative stress. It is concluded that the CB system may provide new targets for the development of drugs to treat colorectal cancer.

  19. NMP-7 inhibits chronic inflammatory and neuropathic pain via block of Cav3.2 T-type calcium channels and activation of CB2 receptors

    OpenAIRE

    Berger, N. Daniel; Gadotti, Vinicius M; Petrov, Ravil R.; Chapman, Kevin; Diaz, Philippe; Zamponi, Gerald W

    2014-01-01

    Background T-type calcium channels and cannabinoid receptors are known to play important roles in chronic pain, making them attractive therapeutic targets. We recently reported on the design, synthesis and analgesic properties of a novel T-type channel inhibitor (NMP-7), which also shows mixed agonist activity on CB1 and CB2 receptors in vitro. Here, we analyzed the analgesic effect of systemically delivered NMP-7 (intraperitoneal (i.p.) or intragstric (i.g.) routes) on mechanical hypersensit...

  20. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation.

    Science.gov (United States)

    Rom, Slava; Persidsky, Yuri

    2013-06-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.

  1. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E

    2010-01-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid ¿(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor...... antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non....../or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor...

  2. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression.

    Science.gov (United States)

    Rieder, Sadiye Amcaoglu; Chauhan, Ashok; Singh, Ugra; Nagarkatti, Mitzi; Nagarkatti, Prakash

    2010-08-01

    Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially. Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma. Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well as in the periphery. In contrast, cannabinoid receptor 2 (CB2) is predominantly expressed on immune cells. The precise mechanisms through which cannabinoids mediate immunosuppression is only now beginning to be understood and can be broadly categorized into four pathways: apoptosis, inhibition of proliferation, suppression of cytokine and chemokine production and induction of T regulatory cells (T regs). Studies from our laboratory have focused on mechanisms of apoptosis induction by natural and synthetic cannabinoids through activation of CB2 receptors. In this review, we will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects.

  3. Normal aging in rats and pathological aging in human Alzheimer's disease decrease FAAH activity: modulation by cannabinoid agonists.

    Science.gov (United States)

    Pascual, A C; Martín-Moreno, A M; Giusto, N M; de Ceballos, M L; Pasquaré, S J

    2014-12-01

    Anandamide is an endocannabinoid involved in several physiological functions including neuroprotection. Anandamide is synthesized on demand and its endogenous level is regulated through its degradation, where fatty acid amide hydrolase plays a major role. The aim of this study was to characterize anandamide breakdown in physiological and pathological aging and its regulation by CB1 and CB2 receptor agonists. Fatty acid amide hydrolase activity was analyzed in an independent cohort of human cortical membrane samples from control and Alzheimer's disease patients, and in membrane and synaptosomes from adult and aged rat cerebral cortex. Our results demonstrate that fatty acid amide hydrolase activity decreases in the frontal cortex from human patients with Alzheimer's disease and this effect is mimicked by Aβ(1-40) peptide. This activity increases and decreases in aged rat cerebrocortical membranes and synaptosomes, respectively. Also, while the presence of JWH-133, a CB2 selective agonist, slightly increases anandamide hydrolysis in human controls, it decreases this activity in adults and aged rat cerebrocortical membranes and synaptosomes. In the presence of WIN55,212-2, a mixed CB1/CB2 agonist, anandamide hydrolysis increases in Alzheimer's disease patients but decreases in human controls as well as in adult and aged rat cerebrocortical membranes and synaptosomes. Although a similar profile is observed in fatty acid amide hydrolase activity between aged rat synaptic endings and human Alzheimer's disease brains, it is differently modulated by CB1/CB2 agonists. This modulation leads to a reduced availability of anandamide in Alzheimer's disease and to an increased availability of this endocannabinoid in aging.

  4. PKCβII-mediated cross-talk of TRPV1/CB2 modulates the glucocorticoid-induced osteoclast overactivity.

    Science.gov (United States)

    Bellini, Giulia; Torella, Marco; Manzo, Iolanda; Tortora, Chiara; Luongo, Livio; Punzo, Francesca; Colacurci, Nicola; Nobili, Bruno; Maione, Sabatino; Rossi, Francesca

    2017-01-01

    In this study, we investigated the role of the endovanilloid/endocannabinoid system in the glucocorticoid-induced osteoclast overactivity. Receptorial and enzymatic component of the endovanilloid/endocannabinoid system are expressed in bone cells, and dysregulated when bone mass is reduced. Moreover, blockade or desensitization of vanilloid receptor 1 (TRPV1) and/or stimulation of cannabinoid receptor 2 (CB2) are beneficial for reducing number and activity of the bone cells modulating resorption, the osteoclasts. We have treated in vitro healthy woman derived osteoclasts with methylprednisolone in presence or not of CB2 or TRPV1 agonists/antagonists, analysing the effect on osteoclast function and morphology through a multidisciplinary approach. Moreover, a treatment with a protein kinase C inhibitor to evaluate osteoclast activity and endovanilloid/endocannabinoid component expression levels was performed in osteoclasts derived from healthy subjects in presence of not of methylprednisolone. Our results show, for the first time, that the endovanilloid/endocannabinoid system is dysregulated by the treatment with methylprednisolone, that the osteoclast activity is increased and that pharmacological compounds stimulating CB2 or inhibiting TRPV1 might reduce, possible inhibiting protein kinase C beta II, the methylprednisolone-induced osteoclast over-activation, suggesting their therapeutic use for protecting from the glucocorticoid-induced bone mass loss.

  5. Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates.

    Science.gov (United States)

    McPartland, John M; Glass, Michelle

    2003-07-17

    Over the past decade, several putative homologs of cannabinoid receptors (CBRs) have been identified by homology screening. Homology screening utilizes sequence alignment search engines to recognize homologs. We investigated these putative CBR homologs further by 'functional mapping' of their deduced amino acid sequences. The entire pharmacophore of a CBR has not yet been elucidated, but point-mutation studies have identified over 20 amino acid residues that impart CBR specificity for ligand recognition and/or signal transduction. Twenty point-mutation studies were used to construct a CBR functionality matrix. Sixteen putative CBR homologs were then mapped over the matrix. Several putative homologs did not hold up to this analysis: human GPR3, GPR6, GPR12, and Caenorhabditis elegans C02H7.2 expressed a series of crippling substitutions in the matrix, strongly suggesting they do not encode functional CBRs. Mapping the contested leech (Hirudo medicinalis) CBR sequence suggests that it encodes a functional CB1; it expresses fewer substitutions than the sea squirt (Ciona intestinalis) CB1 sequence. Mapping a putative CB2 ortholog in the puffer fish (Fugu rubripes T012234) suggests it may encode a CBR other than CB2. These findings are consistent with the lack of experimental data proving these putative CBRs have affinity for cannabinoid ligands. Matrix analysis also reveals that SR144528, a 'CB2-specific' synthetic antagonist, has affinity for non-mammalian CB1 receptors, and that L3.45 appears to be CB2-specific, its cognate in CB1 receptors is F3.45. In conclusion, functional mapping, utilizing point-mutation studies, may improve the specificity of homology screening performed by sequence alignment search engines.

  6. Synthetic cannabinoids: analysis and metabolites.

    Science.gov (United States)

    Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

    2014-02-27

    Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

  7. Role of cannabinoids in chronic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Anna Parfieniuk; Robert Flisiak

    2008-01-01

    Cannabinoids are a group of compounds acting primarily via CB1 and CB2 receptors. The expression of cannabinoid receptors in normal liver is low or absent. However, many reports have proven up-regulation of the expression of CB1 and CB2 receptors in hepatic myofibroblasts and vascular endothelial cells, as well as increased concentration of endocannabinoids in liver in the course of chronic progressive liver diseases. It has been shown that CB1 receptor signalling exerts profibrogenic and proinflammatory effects in liver tissue, primarily due to the stimulation of hepatic stellate cells, whereas the activation of CB2 receptors inhibits or even reverses liver fibrogenesis. Similarly, CB1 receptor stimulation contributes to progression of liver steatosis. In end-stage liver disease, the endocannabi-noid system has been shown to contribute to hepatic encephalopathy and vascular effects, such as portal hypertension, splanchnic vasodilatation, relative pe-ripheral hypotension and probably cirrhotic cardiomy-opathy. So far, available evidence is based on cellular cultures or animal models. Clinical data on the effects of cannabinoids in chronic liver diseases are limited. However, recent studies have shown the contribution of cannabis smoking to the progression of liver fibrosis and steatosis. Moreover, controlling CB1 or CB2 signal-ling appears to be an attractive target in managing liver diseases.

  8. Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes.

    Science.gov (United States)

    Chiurchiù, Valerio; Rapino, Cinzia; Talamonti, Emanuela; Leuti, Alessandro; Lanuti, Mirko; Gueniche, Audrey; Jourdain, Roland; Breton, Lionel; Maccarrone, Mauro

    2016-11-01

    The endocannabinoid system comprises cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol, and metabolic enzymes of these ligands. The endocannabinoid system has recently been implicated in the regulation of various pathophysiological processes of the skin that include immune competence and/or tolerance of keratinocytes, the disruption of which might promote the development of skin diseases. Recent evidence showed that CB1 in keratinocytes limits the secretion of proinflammatory chemokines, suggesting that this receptor might also regulate T cell dependent inflammatory diseases of the skin. In this article, we sought to investigate the cytokine profile of IFN-γ-activated keratinocytes, and found that CB1 activation by AEA suppressed production and release of signature TH1- and TH17-polarizing cytokines, IL-12 and IL-23, respectively. We also set up cocultures between a conditioned medium of treated keratinocytes and naive T cells to disclose the molecular details that regulate the activation of highly proinflammatory TH1 and TH17 cells. AEA-treated keratinocytes showed reduced an induction of IFN-γ-producing TH1 and IL-17-producing TH17 cells, and these effects were reverted by pharmacological inhibition of CB1 Further analyses identified mammalian target of rapamycin as a proinflammatory signaling pathway regulated by CB1, able to promote either IL-12 and IL-23 release from keratinocytes or TH1 and TH17 polarization. Taken together, these findings demonstrate that AEA suppresses highly pathogenic T cell subsets through CB1-mediated mammalian target of rapamycin inhibition in human keratinocytes. Thus, it can be speculated that the latter pathway might be beneficial to the physiological function of the skin, and can be targeted toward inflammation-related skin diseases. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Cannabinoids: A New Group of Agonists of PPARs

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2007-11-01

    Full Text Available Cannabinoids have been used medicinally and recreationally for thousands of years and their effects were proposed to occur mainly via activation of the G-protein-coupled receptor CB1/CB2 (cannabinoid receptor 1/2. Discovery of potent synthetic analogs of the natural cannabinoids as clinically useful drugs is the sustained aim of cannabinoid research. This demands that these new compounds be free of the psychotropic effects that connected with the recreational use of cannabinoids. In preclinical studies cannabinoids displayed many of the characteristics of nonsteroidal anti-inflammatory drugs (NSAIDs and it seems to be free of unwanted side effects. An increasing number of therapeutic actions of cannabinoid are being reported that do not appear to be mediated by either CB1 or CB2, and recently nuclear receptor superfamily PPARs (peroxisome-proliferator-activated receptors have been suggested as the target of certain cannabinoids. This review summarizes the evidence for cannabinoid activation on PPARs and possible associated remedial potentials.

  10. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    Science.gov (United States)

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  11. Cannabinoids as novel anti-inflammatory drugs.

    Science.gov (United States)

    Nagarkatti, Prakash; Pandey, Rupal; Rieder, Sadiye Amcaoglu; Hegde, Venkatesh L; Nagarkatti, Mitzi

    2009-10-01

    Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components.

  12. Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications.

    Science.gov (United States)

    Onaivi, Emmanuel S

    2009-01-01

    Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the

  13. Immunohistochemistry Detected and Localized Cannabinoid Receptor Type 2 in Bovine Fetal Pancreas at Late Gestation

    Science.gov (United States)

    Dall’Aglio, Cecilia; Polisca, Angela; Cappai, Maria Grazia; Mercati, Francesca; Troisi, Alessandro; Pirino, Carolina; Scocco, Paola; Maranesi, Margherita

    2017-01-01

    At present, data on the endocannabinoid system expression and distribution in the pancreatic gland appear scarce and controversial as descriptions are limited to humans and laboratory animals. Since the bovine pancreas is very similar to the human in endocrine portion development and control, studies on the fetal gland could prove to be very interesting, as an abnormal maternal condition during late pregnancy may be a predisposing trigger for adult metabolic disorders. The present investigation studied cannabinoid receptor type 2 presence and distribution in the bovine fetal pancreas towards the end of gestation. Histological analyses revealed numerous endocrinal cell clusters or islets which were distributed among exocrine adenomeri in connectival tissue. Immunohistochemistry showed that endocrine-islets contained some CB2-positive cells with a very peculiar localization that is a few primarily localized at the edges of islets and some of them also scattered in the center of the cluster. Characteristically, also the epithelium of the excretory ducts and the smooth muscle layers of the smaller arteries, in the interlobular glandular septa, tested positive for the CB2 endocannabinoid receptor. Consequently, the endocannabinoid system, via the cannabinoid receptor type 2, was hypothesized to play a major role in controlling pancreas function from normal fetal development to correct metabolic functioning in adulthood. PMID:28348424

  14. 76 FR 71351 - Prospective Grant of Exclusive License: Development of Cannabinoid(s) and Cannabidiol(s) Based...

    Science.gov (United States)

    2011-11-17

    ... Cannabinoid(s) and Cannabidiol(s) Based Therapeutics To Treat Hepatic Encephalopathy in Humans. AGENCY... be limited to: The development and sale of cannabinoid(s) and cannabidiol(s) based therapeutics as... chronic neurodegenerative diseases. Nonpsychoactive cannabinoids, such as Cannabidiol (CBD),...

  15. Cannabinoids: occurrence and medicinal chemistry.

    Science.gov (United States)

    Appendino, G; Chianese, G; Taglialatela-Scafati, O

    2011-01-01

    With an inventory of several hundreds secondary metabolites identified, Cannabis sativa L. (hemp) is one of the phytochemically best characterized plant species. The biomedical relevance of hemp undoubtedly underlies the wealth of data on its constituents and their biological activities, and cannabinoids, a class of unique meroterpenoids derived from the alkylation of an olivetollike alkyl resorcinol with a monoterpene unit, are the most typical constituents of Cannabis. In addition to the well-known psychotropic properties of Δ(9)-THC, cannabinoids have been reported to show potential in various fields of medicine, with the capacity to address unmet needs like the relief of chemotherapy-derived nausea and anorexia, and symptomatic mitigation of multiple sclerosis. Many of the potential therapeutic uses of cannabinoids are related to the interaction with (at least) two cannabinoid G-protein coupled receptors (CB1 and CB2). However, a number of activities, like the antibacterial or the antitumor properties are non totally dependent or fully independent from the interaction with these proteins. These pharmacological activities are particularly interesting since, in principle, they could be easily dissociated by the unwanted psychotropic effects. This review aims at giving readers a survey of the more recent advances in both phytochemistry of C. sativa, the medicinal chemistry of cannabinoids, and their distribution in plants, highlighting the impact that research in these hot fields could have for modern medicinal chemistry and pharmacology.

  16. Spicing thing up: Synthetic cannabinoids

    Science.gov (United States)

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  17. Cannabinoids and bone: friend or foe?

    Science.gov (United States)

    Idris, Aymen I; Ralston, Stuart H

    2010-10-01

    The endocannabinoid system is recognized to play an important role in regulating a variety of physiological processes, including appetite control and energy balance, pain perception, and immune responses. The endocannabinoid system has also recently been implicated in the regulation of bone metabolism. Endogenously produced cannabinoids are hydrophobic molecules derived from hydrolysis of membrane phospholipids. These substances, along with plant-derived and synthetic cannabinoids, interact with the type 1 (CB(1)) and 2 (CB(2)) cannabinoid receptors and the GPR55 receptor to regulate cellular function through a variety of signaling pathways. Endocannabinoids are produced in bone, but the mechanisms that regulate their production are unclear. Skeletal phenotyping of mice with targeted inactivation of cannabinoid receptors and pharmacological studies have shown that cannabinoids play a key role in the regulation of bone metabolism. Mice with CB(1) deficiency have high peak bone mass as a result of an osteoclast defect but develop age-related osteoporosis as a result of impaired bone formation and accumulation of bone marrow fat. Mice with CB(2) deficiency have relatively normal peak bone mass but develop age-related osteoporosis as a result of increased bone turnover with uncoupling of bone resorption from bone formation. Mice with GPR55 deficiency have increased bone mass as a result of a defect in the resorptive activity of osteoclasts, but bone formation is unaffected. Cannabinoids are also produced within synovial tissues, and preclinical studies have shown that cannabinoid receptor ligands are effective in the treatment of inflammatory arthritis. These data indicate that cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown play important roles in bone remodeling and in the pathogenesis of joint disease.

  18. Repeated morphine treatment-mediated hyperalgesia, allodynia and spinal glial activation are blocked by co-administration of a selective cannabinoid receptor type-2 agonist

    OpenAIRE

    Tumati, Suneeta; Largent-Milnes, Tally M.; Keresztes, Attila; Ren, Jiyang; Roeske, William R.; Vanderah, Todd W; Varga, Eva V.

    2012-01-01

    Spinal glial activation has been implicated in sustained morphine-mediated paradoxical pain sensitization. Since activation of glial CB2 cannabinoid receptors attenuates spinal glial activation in neuropathies, we hypothesized that CB2 agonists may also attenuate sustained morphine–mediated spinal glial activation and pain sensitization. Our data indicate that co-administration of a CB2-selective agonist (AM 1241) attenuates morphine (intraperitoneal; twice daily; 6 days)-mediated thermal hyp...

  19. Effects on immune cells of a new 1,8-naphthyridin-2-one derivative and its analogues as selective CB2 agonists: implications in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Anna Maria Malfitano

    Full Text Available The efficacy of cannabinoids in the treatment of multiple sclerosis is widely documented; however their use is limited by psychoactivity mainly ascribed to the activation of the cannabinoid receptor CB1. Emerging findings support as alternative strategy in the treatment of neurodegenerative disorders, the application of compounds targeting the CB2 receptor, since likely unrelated to these side effects. Recently, a novel class of compounds, 1,8-naphthyridine, pyridine and quinoline derivatives have been demonstrated to show high CB2 receptor selectivity and affinity versus the CB1 receptor. Considering that the CB2 receptor is mainly expressed in cell and organs of the immune system, in this study we assessed the potential immune-modulatory effects of these compounds in activated lymphocytes isolated from MS patients with respect to healthy controls. These compounds blocked cell proliferation through a mechanism partially ascribed to the CB2 receptor, down-regulated TNF-α production and did not induce cell death. They also down-regulated Akt, Erk and NF-kB phosphorylation. Despite comparable effects observed in patients and healthy controls, these compounds, in particular, 1,8-naphthyridine and quinoline derivatives inhibited cell activation markers in MS patient derived lymphocytes more efficiently than in healthy control derived cells. Indeed, 1,8-naphthyridin-2-one derivative reduced the levels of Cox-2 in lymphocytes from patients whereas no effect was observed in control cells. Our findings suggest potential application of these drugs in neuro-inflammation, supporting further investigations of the effects of compounds in the therapy of MS, particularly on the aspects regarding activation and inflammation.

  20. The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors.

    Science.gov (United States)

    Steiner, Alexandre A; Molchanova, Alla Y; Dogan, M Devrim; Patel, Shreya; Pétervári, Erika; Balaskó, Márta; Wanner, Samuel P; Eales, Justin; Oliveira, Daniela L; Gavva, Narender R; Almeida, M Camila; Székely, Miklós; Romanovsky, Andrej A

    2011-05-01

    Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide(AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22◦C, a moderate dose of LPS (25 - 100 μg kg−1 I.V.) induced a fall in body temperature with a nadir at ∼100 minpostinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 μg kg - 1 I.P.), by systemic TRPV1 antagonism with capsazepine(40mg kg−1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1 I.P.).However, CB1 receptor antagonism by rimonabant (4.6mg kg−1 I.P.) or SLV319 (15mg kg−1 I.P.)blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 μg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant,the I.C.V. administration of AEA (50 μg) enhanced LPS hypothermia. Importantly, I.C.V. AEAdid not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermo effector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis.

  1. Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Florian Willecke

    Full Text Available BACKGROUND: Strong evidence supports a protective role of the cannabinoid receptor 2 (CB(2 in inflammation and atherosclerosis. However, direct proof of its involvement in lesion formation is lacking. Therefore, the present study aimed to characterize the role of the CB(2 receptor in Murine atherogenesis. METHODS AND FINDINGS: Low density lipoprotein receptor-deficient (LDLR(-/- mice subjected to intraperitoneal injections of the selective CB(2 receptor agonist JWH-133 or vehicle three times per week consumed high cholesterol diet (HCD for 16 weeks. Surprisingly, intimal lesion size did not differ between both groups in sections of the aortic roots and arches, suggesting that CB(2 activation does not modulate atherogenesis in vivo. Plaque content of lipids, macrophages, smooth muscle cells, T cells, and collagen were also similar between both groups. Moreover, CB(2 (-/-/LDLR(-/- mice developed lesions of similar size containing more macrophages and lipids but similar amounts of smooth muscle cells and collagen fibers compared with CB(2 (+/+/LDLR(-/- controls. While JWH-133 treatment reduced intraperitoneal macrophage accumulation in thioglycollate-elicited peritonitis, neither genetic deficiency nor pharmacologic activation of the CB(2 receptor altered inflammatory cytokine expression in vivo or inflammatory cell adhesion in the flow chamber in vitro. CONCLUSION: Our study demonstrates that both activation and deletion of the CB(2 receptor do not relevantly modulate atherogenesis in mice. Our data do not challenge the multiple reports involving CB(2 in other inflammatory processes. However, in the context of atherosclerosis, CB(2 does not appear to be a suitable therapeutic target for reduction of the atherosclerotic plaque.

  2. Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor.

    Science.gov (United States)

    Idris, Aymen I; Sophocleous, Antonia; Landao-Bassonga, Euphemie; van't Hof, Robert J; Ralston, Stuart H

    2008-11-01

    The endocannabinoid system has recently been shown to play a role in the regulation of bone metabolism. The type 2 cannabinoid receptor (CB2) has been reported to regulate bone mass, but conflicting results have been reported with regard to its effects on bone resorption and osteoclast function. Here we investigated the role that CB2 plays in regulating bone mass and osteoclast function using a combination of pharmacological and genetic approaches. The CB2-selective antagonist/inverse agonist AM630 inhibited osteoclast formation and activity in vitro, whereas the CB2-selective agonists JWH133 and HU308 stimulated osteoclast formation. Osteoclasts generated from CB2 knockout mice (CB2-/-) were resistant to the inhibitory effects of AM630 in vitro, consistent with a CB2-mediated effect. There was no significant difference in peak bone mass between CB2-/- mice and wild-type littermates, but after ovariectomy, bone was lost to a greater extent in wild-type compared with CB2-/- mice. Furthermore, AM630 protected against bone loss in wild-type mice, but the effect was blunted in CB2-/- mice. We conclude that CB2 regulates osteoclast formation and bone resorption in vitro and that under conditions of increased bone turnover, such as after ovariectomy, CB2 regulates bone loss. These observations indicate that CB2 regulates osteoclast formation and contributes to ovariectomy-induced bone loss and demonstrate that cannabinoid receptor antagonists/inverse agonists may be of value in the treatment of bone diseases characterized by increased osteoclast activity.

  3. Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells.

    Science.gov (United States)

    Stanslowsky, Nancy; Jahn, Kirsten; Venneri, Anna; Naujock, Maximilian; Haase, Alexandra; Martin, Ulrich; Frieling, Helge; Wegner, Florian

    2016-03-30

    Among adolescents cannabis is one of the most widely used illicit drugs. In adolescence brain development continues, characterized by neuronal maturation and synaptic plasticity. The endocannabinoid system plays an important role during brain development by modulating neuronal function and neurogenesis. Changes in endocannabinoid signaling by Δ(9) -tetrahydrocannabinol (THC), the psychoactive component of cannabis, might therefore lead to neurobiological changes influencing brain function and behavior. We investigated the functional maturation and dopaminergic specification of human cord blood-derived induced pluripotent stem cell (hCBiPSC)-derived small molecule neural precursor cells (smNPCs) after cultivation with the endogenous cannabinoid anandamide (AEA) and the exogenous THC, both potent agonists at the cannabinoid 1 receptor (CB1 R). Higher dosages of 10-μM AEA or THC significantly decreased functionality of neurons, indicated by reduced ion currents and synaptic activity. A lower concentration of 1-μM THC had no marked effect on neuronal and dopaminergic maturation, while 1-μM AEA significantly enhanced the frequency of synaptic activity. As there were no significant effects on DNA methylation in promotor regions of genes important for neuronal function, these cannabinoid actions seem to be mediated by another than this epigenetic mechanism. Our data suggest that there are concentration-dependent actions of cannabinoids on neuronal function in vitro indicating neurotoxic, dysfunctional effects of 10-μM AEA and THC during human neurogenesis.

  4. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  5. Update on the Role of Cannabinoid Receptors after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Luciano S. A. Capettini

    2012-01-01

    Full Text Available Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1 and type 2 (CB2 transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke.

  6. Cannabinoids modulate Olig2 and polysialylated neural cell adhesion molecule expression in the subventricular zone of post-natal rats through cannabinoid receptor 1 and cannabinoid receptor 2.

    Science.gov (United States)

    Arévalo-Martín, Angel; García-Ovejero, Daniel; Rubio-Araiz, Ana; Gómez, Oscar; Molina-Holgado, Francisco; Molina-Holgado, Eduardo

    2007-09-01

    The subventricular zone (SVZ) is a source of post-natal glial precursors that can migrate to the overlying white matter, where they may differentiate into oligodendrocytes. We showed that, in the post-natal SVZ ependymocytes, radial glia and astrocyte-like cells express cannabinoid receptor 1 (CB1), whereas cannabinoid receptor 2 (CB2) is found in cells expressing the polysialylated neural cell adhesion molecule. To study CB1 and CB2 function, post-natal rats were exposed to selective CB1 or CB2 agonists (arachidonyl-2-chloroethylamide and JWH-056, respectively) for 15 days. Accordingly, we found that CB1 activation increases the number of Olig2-positive cells in the dorsolateral SVZ, whereas CB2 activation increases polysialylated neural cell adhesion molecule expression in this region. As intense myelination occurs during the first weeks of post-natal development, we examined how modulating these factors affected the expression of myelin basic protein. Pharmacological administration of agonists and antagonists of CB1 and CB2 showed that the activation of both receptors is needed to augment the expression of myelin basic protein in the subcortical white matter.

  7. (Endo)cannabinoid signaling in human bronchial epithelial and smooth muscle cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia

    2007-01-01

    We investigated the pathways used by various (endo)cannabinoids in regulating intracellular calcium homeostasis, adenylyl cyclase and ERK signaling, in bronchial epithelial cells as well as smooth muscle cells. In DDT1 MF2 smooth muscle cells the synthetic cannabinoid CP55,940 increases [Ca2+]i by a

  8. Screening for the synthetic cannabinoid JWH-018 and its major metabolites in human doping controls.

    Science.gov (United States)

    Möller, Ines; Wintermeyer, Annette; Bender, Katja; Jübner, Martin; Thomas, Andreas; Krug, Oliver; Schänzer, Wilhelm; Thevis, Mario

    2011-09-01

    Referred to as 'spice', several new drugs, advertised as herbal blends, have appeared on the market in the last few years, in which the synthetic cannabinoids JWH-018 and a C(8) homologue of CP 47,497 were identified as major active ingredients. Due to their reported cannabis-like effects, many European countries have banned these substances. The World Anti-Doping Agency has also explicitly prohibited synthetic cannabinoids in elite sport in-competition. Since urine specimens have been the preferred doping control samples, the elucidation of the metabolic pathways of these substances is of particular importance to implement them in sports drug testing programmes. In a recent report, an in vitro phase-I metabolism study of JWH-018 was presented yielding mainly hydroxylated and N-dealkylated metabolites. Due to these findings, a urine sample of a healthy man declaring to have smoked a 'spice' product was screened for potential phase-I and -II metabolites by high-resolution/high-accuracy mass spectrometry in the present report. The majority of the phase-I metabolites observed in earlier in vitro studies of JWH-018 were detected in this urine specimen and furthermore most of their respective monoglucuronides. As no intact JWH-018 was detectable, the monohydroxylated metabolite being the most abundant one was chosen as a target analyte for sports drug testing purposes; a detection method was subsequently developed and validated in accordance to conventional screening protocols based on enzymatic hydrolysis, liquid-liquid extraction, and liquid chromatography/electrospray tandem mass spectrometry analysis. The method was applied to approximately 7500 urine doping control samples yielding two JWH-018 findings and demonstrated its capability for a sensitive and selective identification of JWH-018 and its metabolites in human urine.

  9. Identification of New Synthetic Cannabinoid ADB-CHMINACA (MAB-CHMINACA) Metabolites in Human Hepatocytes.

    Science.gov (United States)

    Carlier, Jeremy; Diao, Xingxing; Sempio, Cristina; Huestis, Marilyn A

    2017-03-01

    ADB-CHMINACA (MAB-CHMINACA) is a new synthetic cannabinoid with high potency and many reported adverse events and fatalities. The drug is currently scheduled in several countries in Europe and the USA. Analytical methods need to be developed to confirm ADB-CHMINACA intake for clinical and forensic programs. For many synthetic cannabinoids, parent compound is not detectable in biological samples after intake, making the detection of metabolites the only way to prove consumption. Therefore, detection of ADB-CHMINACA metabolites in biological specimens is critical. Since there are currently no published data on ADB-CHMINACA metabolism, we aimed to identify its major metabolites. Cryopreserved human hepatocytes were incubated with 10 μmol/L ADB-CHMINACA for 3 h. Incubations were analyzed with liquid chromatography on a biphenyl column, high resolution tandem mass spectrometry (orbitrap), and metabolite identification software. A reference standard of six commercially available potential metabolites was simultaneously analyzed under the same conditions to allow correct assignment of isomers. We detected ten major metabolites. Biotransformations mainly occurred at the cyclohexylmethyl tail of the compound, as also observed with structural analogs' metabolism. Minor reactions also occurred at the tert-butyl chain. Only two analytical standards of potential metabolites matched an actual metabolite detected in hepatocyte incubations. We recommend A9 (ADB-CHMINACA hydroxycyclohexylmethyl), A4 (ADB-CHMINACA 4″-hydroxycyclohexyl), and A6 (ADB-CHMINACA hydroxycyclohexylmethyl) as metabolite targets to document ADB-CHMINACA intake in clinical and forensic cases. Additionally, these results will guide analytical standard manufacturers to better provide suitable references for further studies on ADB-CHMINACA metabolism.

  10. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    Science.gov (United States)

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.

  12. Evaluation of the specificity of antibodies raised against cannabinoid receptor type 2 in the mouse retina

    DEFF Research Database (Denmark)

    Cécyre, Bruno; Thomas, Sébastien; Ptito, Maurice

    2014-01-01

    blot and immunohistochemistry on retinal tissue obtained from wild-type mice and mice lacking CB2R (cnr2 (-/-) ). One of the antibodies tested exhibited a valuable specificity as it marked a single band near the predicted molecular weight in Western blot and produced no staining in cnr2 (-/-) mice...... retina sections. The other antibodies tested detected multiple bands in Western blot and labeled unidentified proteins when used with their immunizing peptide or on cnr2 (-/-) retinal sections. We conclude that many commonly used antibodies raised against CB2R are not specific for use...... because it would mean that in addition to its effects on the peripheral pain pathway, CB2R could also mediate some central effects of cannabinoids. In an attempt to clarify the debate over CB2R expression in the CNS, we tested several commercially or academically produced CB2R antibodies using Western...

  13. Cannabinoids, cannabinoid receptors and tinnitus.

    Science.gov (United States)

    Smith, Paul F; Zheng, Yiwen

    2016-02-01

    One hypothesis suggests that tinnitus is a form of sensory epilepsy, arising partly from neuronal hyperactivity in auditory regions of the brain such as the cochlear nucleus and inferior colliculus. Although there is currently no effective drug treatment for tinnitus, anti-epileptic drugs are used in some cases as a potential treatment option. There is increasing evidence to suggest that cannabinoid drugs, i.e. cannabinoid receptor agonists, can also have anti-epileptic effects, at least in some cases and in some parts of the brain. It has been reported that cannabinoid CB1 receptors and the endogenous cannabinoid, 2-arachidonylglycerol (2-AG), are expressed in the cochlear nucleus and that they are involved in the regulation of plasticity. This review explores the question of whether cannabinoid receptor agonists are likely to be pro- or anti-epileptic in the cochlear nucleus and therefore whether cannabinoids and Cannabis itself are likely to make tinnitus better or worse.

  14. Inhibition of interleukin-1β-induced endothelial tissue factor expression by the synthetic cannabinoid WIN 55,212-2.

    Science.gov (United States)

    Scholl, Antje; Ivanov, Igor; Hinz, Burkhard

    2016-09-20

    The role of cannabinoids in thrombosis remains controversial. In view of the primary importance of tissue factor (TF) in blood coagulation and its involvement in the pathology of several cardiovascular, inflammatory and neoplastic diseases, a regulation of this initial procoagulant signal seems to be of particular interest. Using human umbilical vein endothelial cells (HUVEC) the present study investigated the impact of the synthetic cannabinoid WIN 55,212-2 on interleukin (IL)-1β-induced TF expression and activity. WIN 55,212-2 caused a time- and concentration-dependent suppression of IL-1β-induced TF protein accompanied by decreases in TF mRNA and activity. Inhibition of TF protein expression by WIN 55,212-2 was mimicked by its cannabinoid receptor-inactive enantiomer WIN 55,212-3 but not by structurally unrelated phyto-, endo- and synthetic cannabinoids. In addition, the inhibitory effect of WIN 55,212-2 was not reversed by antagonists to cannabinoid receptors (CB1, CB2) or transient receptor potential vanilloid 1. Mechanistic approaches revealed WIN 55,212-2 to suppress IL-1β-induced TF expression via inhibition of ceramide formation and via decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinases. Further inhibitor experiments demonstrated neutral sphingomyelinase (nSMase) to confer ceramide generation upon IL-1β treatment with the parallel IL-1β-mediated activation of MAPKs occurring via an nSMase-independent pathway. Finally, a receptor-independent inhibition of IL-1β-induced TF protein by WIN 55,212-2 was confirmed in human blood monocytes. Collectively, this data provide a hitherto unknown receptor-independent anticoagulatory action of the cannabinoid WIN 55,212-2.

  15. Methylhonokiol attenuates neuroinflammation: a role for cannabinoid receptors?

    OpenAIRE

    Gertsch Jürg; Anavi-Goffer Sharon

    2012-01-01

    Abstract The cannabinoid type-2 G protein-coupled (CB2) receptor is an emerging therapeutic target for pain management and immune system modulation. In a mouse model of Alzheimer’s disease (AD) the orally administered natural product 4′-O-methylhonokiol (MH) has been shown to prevent amyloidogenesis and progression of AD by inhibiting neuroinflammation. In this commentary we discuss an intriguing link between the recently found CB2 receptor-mediated molecular mechanisms of MH and its anti-inf...

  16. Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts.

    Science.gov (United States)

    Garcia-Gonzalez, Estrella; Selvi, Enrico; Balistreri, Epifania; Lorenzini, Sauro; Maggio, Roberta; Natale, Maria-Rita; Capecchi, Pier-Leopoldo; Lazzerini, Pietro-Enea; Bardelli, Marco; Laghi-Pasini, Franco; Galeazzi, Mauro

    2009-09-01

    It has been demonstrated that the endocannabinoid system is up-regulated in pathologic fibrosis and that modulation of the cannabinoid receptors might limit the progression of uncontrolled fibrogenesis. The aim of this study was to investigate whether the synthetic cannabinoid receptor agonist WIN55,212-2 could modulate fibrogenesis in an in vitro model of dcSSc. The expression of cannabinoid receptors CB1 and CB2 was assessed in dcSSc fibroblasts and healthy control fibroblasts. To investigate the effect of WIN55,212-2 on dcSSc fibrogenesis, we studied type I collagen, profibrotic cytokines, fibroblast transdifferentiation into myofibroblasts, apoptotic processes and activation of the extracellular signal-related kinase 1/2 pathway prior to and after the treatment with the synthetic cannabinoid at increasing concentrations. Both CB1 and CB2 receptors were over-expressed in dcSSc fibroblasts compared with healthy controls. WIN55,212-2 caused a reduction in extracellular matrix deposition and counteracted several behavioural abnormalities of scleroderma fibroblasts including transdifferentiation into myofibroblasts and resistance to apoptosis. The anti-fibrogenic effect of WIN55,212-2 was not reverted by selective cannabinoid antagonists. Our preliminary findings suggest that cannabinoids are provided with an anti-fibrotic activity, thereby possibly representing a new class of agents targeting fibrosis diseases.

  17. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    Science.gov (United States)

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  18. Suppression of outward K⁺ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors.

    Science.gov (United States)

    Zhang, C-Q; Wu, H-J; Wang, S-Y; Yin, S; Lu, X-J; Miao, Y; Wang, X-H; Yang, X-L; Wang, Z

    2013-12-03

    Cannabinoid CB1 receptor (CB1R) signaling system is extensively distributed in the vertebrate retina. Activation of CB1Rs regulates a variety of functions of retinal neurons through modulating different ion channels. In the present work we studied effects of this receptor signaling on K(+) channels in retinal ganglion cells by patch-clamp techniques. The CB1R agonist WIN55212-2 (WIN) suppressed outward K(+) currents in acutely isolated rat retinal ganglion cells in a dose-dependent manner, with an IC50 of 4.7 μM. We further showed that WIN mainly suppressed the tetraethylammonium (TEA)-sensitive K(+) current component. While CB1Rs were expressed in rat retinal ganglion cells, the WIN effect on K(+) currents was not blocked by either AM251/SR141716, specific CB1R antagonists, or AM630, a selective CB2R antagonist. Consistently, cAMP-protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways were unlikely involved in the WIN-induced suppression of the K(+) currents because both PKA inhibitors H-89/Rp-cAMP and MAPK/ERK1/2 inhibitor U0126 failed to block the WIN effects. WIN-induced suppression of the K(+) currents was not observed when WIN was intracellularly applied. Furthermore, an endogenous ligand of the cannabinoid receptor anandamide, the specific CB1R agonist ACEA and the selective CB2R agonist CB65 also suppressed the K(+) currents, and the effects were not blocked by AM251/SR141716 or AM630 respectively. All these results suggest that the WIN-induced suppression of the outward K(+) currents in rat retinal ganglion cells, thereby regulating the cell excitability, were not through CB1R/CB2R signaling pathways.

  19. Suppression of human monocyte interleukin-1beta production by ajulemic acid, a nonpsychoactive cannabinoid.

    Science.gov (United States)

    Zurier, Robert B; Rossetti, Ronald G; Burstein, Sumner H; Bidinger, Bonnie

    2003-02-15

    Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, reduces joint tissue damage in rats with adjuvant arthritis. Because interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNFalpha) are central to the progression of inflammation and joint tissue injury in patients with rheumatoid arthritis, we investigated human monocyte IL-1beta and TNFalpha responses after the addition of AjA to cells in vitro. Peripheral blood and synovial fluid monocytes (PBM and SFM) were isolated from healthy subjects and patients with inflammatory arthritis, respectively, treated with AjA (0-30 microM) in vitro, and then stimulated with lipopolysaccharide. Cells were harvested for mRNA, and supernatants were collected for cytokine assay. Addition of AjA to PBM and SFM in vitro reduced both steady-state levels of IL-1beta mRNA and secretion of IL-1beta in a concentration-dependent manner. Suppression was maximal (50.4%) at 10 microM AjA (Parthritis. Development of nonpsychoactive therapeutically useful synthetic analogs of Cannabis constituents, such as AjA, may help resolve the ongoing debate about the use of marijuana as medicine.

  20. 2-Arachidonoyl-glycerol suppresses interferon-gamma production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2.

    Science.gov (United States)

    Kaplan, Barbara L F; Ouyang, Yanli; Rockwell, Cheryl E; Rao, Gautham K; Kaminski, Norbert E

    2005-06-01

    2-Arachidonoyl-glycerol (2-AG), an endogenous ligand for cannabinoid receptor types 1 and 2 (CB1 and CB2), has previously been demonstrated to modulate immune functions including suppression of interleukin-2 expression and nuclear factor of activated T cells (NFAT) activity. The objective of the present studies was to investigate the effect of 2-AG on interferon-gamma (IFN-gamma) expression and associated upstream signaling events. Pretreatment of splenocytes with 2-AG markedly suppressed phorbol 12-myristate 13-acetate plus calcium ionophore (PMA/Io)-induced IFN-gamma secretion. In addition, 2-AG suppressed IFN-gamma steady-state mRNA expression in a concentration-dependent manner. To unequivocally determine the putative involvement of CB1 and CB2, splenocytes derived from CB1(-/-)/CB2(-/-) knockout mice were used. No difference in the magnitude of IFN-gamma suppression by 2-AG in wild-type versus CB1/CB2 null mice was observed. Time-of-addition studies revealed that 2-AG treatment up to 12 h post-cellular activation resulted in suppression of IFN-gamma, which was consistent with a time course conducted with cyclosporin A, an inhibitor of NFAT activity. Coincidentally, 2-AG perturbed the nuclear translocation of NFAT protein and blocked thapsigargin-induced elevation in intracellular calcium, suggesting that altered calcium regulation might partly explain the suppression of NFAT nuclear translocation and subsequent IFN-gamma production. Indeed, Io partially attenuated the 2-AG-induced suppression of PMA/Io-stimulated IFN-gamma production. Taken together, these data demonstrate that 2-AG suppresses IFN-gamma expression in murine splenocytes in a CB receptor-independent manner and that the mechanism partially involves suppression of intracellular calcium signaling and perturbation of NFAT nuclear translocation.

  1. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E; Moran, Jeffery H; Radominska-Pandya, Anna; Prather, Paul L

    2014-02-27

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.

  2. Activation of Cannabinoid Receptor 2 Enhances Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yong-Xin Sun

    2015-01-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs are considered as the most promising cells source for bone engineering. Cannabinoid (CB receptors play important roles in bone mass turnover. The aim of this study is to test if activation of CB2 receptor by chemical agonist could enhance the osteogenic differentiation and mineralization in bone BM-MSCs. Alkaline phosphatase (ALP activity staining and real time PCR were performed to test the osteogenic differentiation. Alizarin red staining was carried out to examine the mineralization. Small interference RNA (siRNA was used to study the role of CB2 receptor in osteogenic differentiation. Results showed activation of CB2 receptor increased ALP activity, promoted expression of osteogenic genes, and enhanced deposition of calcium in extracellular matrix. Knockdown of CB2 receptor by siRNA inhibited ALP activity and mineralization. Results of immunofluorescent staining showed that phosphorylation of p38 MAP kinase is reduced by knocking down of CB2 receptor. Finally, bone marrow samples demonstrated that expression of CB2 receptor is much lower in osteoporotic patients than in healthy donors. Taken together, data from this study suggested that activation of CB2 receptor plays important role in osteogenic differentiation of BM-MSCs. Lack of CB2 receptor may be related to osteoporosis.

  3. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance.

    Science.gov (United States)

    Sidibeh, Cherno O; Pereira, Maria J; Lau Börjesson, Joey; Kamble, Prasad G; Skrtic, Stanko; Katsogiannos, Petros; Sundbom, Magnus; Svensson, Maria K; Eriksson, Jan W

    2017-03-01

    We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.

  4. Targeting the cannabinoid system for pain relief?

    Science.gov (United States)

    Chiou, Lih-Chu; Hu, Sherry Shu-Jung; Ho, Yu-Cheng

    2013-12-01

    Marijuana has been used to relieve pain for centuries, but its analgesic mechanism has only been understood during the past two decades. It is mainly mediated by its constituents, cannabinoids, through activating central cannabinoid 1 (CB1) receptors, as well as peripheral CB1 and CB2 receptors. CB2-selective agonists have the benefit of lacking CB1 receptor-mediated CNS side effects. Anandamide and 2-arachidonoylglycerol (2-AG) are two intensively studied endogenous lipid ligands of cannabinoid receptors, termed endocannabinoids, which are synthesized on demand and rapidly degraded. Thus, inhibitors of their degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase (MAGL), respectively, may be superior to direct cannabinoid receptor ligands as a promising strategy for pain relief. In addition to the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, we also review recent studies that revealed a novel analgesic mechanism, involving 2-AG in the periaqueductal gray (PAG), a midbrain region for initiating descending pain inhibition. It is initiated by Gq-protein-coupled receptor (GqPCR) activation of the phospholipase C (PLC)-diacylglycerol lipase (DAGL) enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. This GqPCR-PLC-DAGL-2-AG retrograde disinhibition mechanism in the PAG can be initiated by activating type 5 metabotropic glutamate receptor (mGluR5), muscarinic acetylcholine (M1/M3), and orexin (OX1) receptors. mGluR5-mediated disinhibition can be initiated by glutamate transporter inhibitors, or indirectly by substance P, neurotensin, cholecystokinin, capsaicin, and AM404, the bioactive metabolite of acetaminophen in the brain. The putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is also discussed.

  5. The Synthetic Cannabinoids Phenomenon.

    Science.gov (United States)

    Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

    2016-01-01

    « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

  6. Simultaneous determination of five naphthoylindole-based synthetic cannabinoids and metabolites and their deposition in human and rat hair.

    Science.gov (United States)

    Kim, Jihyun; Park, Yuran; Park, Meejung; Kim, Eunmi; Yang, Wonkyung; Baeck, Seungkyung; Lee, Sooyeun; Han, Sangbeom

    2015-01-01

    The continuing appearance of new synthetic cannabinoids has been a major issue in the field of forensic and clinical toxicology. In response to that, analytical methods for synthetic cannabinoids have been increasingly established in a variety of biological matrices. Since most of synthetic cannabinoids with structure similarity share some enzymatic metabolites, making the interpretation of analytical results and the discovery of the parent drug actually ingested very complicated, the investigation on metabolites of the first generation of synthetic cannabinoids with their relatively short side chains in chemical structure could be more important. Therefore, in the present study, we developed the analytical method for AM-2201, JWH-122 and MAM-2201 with JWH-018 as a precursor and their monohydroxylated metabolites in hair matrix. Also, using a rat model, AM-2201 and its monohydroxylated metabolites were identified and then the ratios of metabolite-to-parent drug were estimated to be used as criteria on external contamination. All analytes were extracted with methanol from washed and cut hair samples and the extracts were injected into LC-MS/MS with electrospray ion source in the positive ionization mode. Matrix effect and recovery were evaluated in hair matrices and no significant variations were observed. The validation results for precision and accuracy were satisfactory in both human and rat hair. The LOD and LOQ were 0.5 pg/10mg and 1.0 pg/10mg in human hair and 0.5 pg/20mg and 1.0 pg/20mg in pigmented and non-pigmented rat hair, respectively. Additionally, as a result of the animal study, there were not significant differences in the effect of pigmentation on the distribution of AM-2201 and its monohydroxylated metabolites in hair. Wide variations were observed for the concentrations of the naphthoylindole-based synthetic cannabinoids and metabolites in authentic hair samples from nine cases; those were 0.4-59.2 pg/mg for JWH-018, 0.1-0.8 pg/mg for JWH-073, 1

  7. Functional role of cannabinoid receptors in urinary bladder

    Directory of Open Access Journals (Sweden)

    Pradeep Tyagi

    2010-01-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa (marijuana, and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical applications. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to the general cannabinoid pharmacology. In recent years, studies on the functional role of cannabinoid receptors in bladder have been motivated by the therapeutic effects of cannabinoids on voiding dysfunction in multiple sclerosis patients. In this review, we shall summarize the literature on the expression of cannabinoid receptors in urinary bladder and the peripheral influence of locally and systemically administered cannabinoids in the bladder. The ongoing search for cannabinoid-based therapeutic strategies devoid of psychotropic effects can be complemented with local delivery into bladder by the intravesical route. A greater understanding of the role of the peripheral CB 1 and CB 2 receptor system in lower urinary tract is necessary to allow the development of new treatment for pelvic disorders.

  8. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces

    Directory of Open Access Journals (Sweden)

    Chakrabarti Bhismadev

    2011-06-01

    Full Text Available Abstract Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC. However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1 gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking. Methods A total of 30 volunteers (13 males and 17 females from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380 were associated with differential gaze duration for happy (but not disgust faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing

  9. Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa).

    Science.gov (United States)

    Pollastro, Federica; Taglialatela-Scafati, Orazio; Allarà, Marco; Muñoz, Eduardo; Di Marzo, Vincenzo; De Petrocellis, Luciano; Appendino, Giovani

    2011-09-23

    The waxy fraction from the variety Carma of fiber hemp (Cannabis sativa) afforded the unusual cannabinoid 4, identified as the farnesyl prenylogue of cannabigerol (CBG, 1) on the basis of its spectroscopic properties. A comparative study of the profile of 4 and 1 toward metabotropic (CB1, CB2) and ionotropic (TRPV1, TRPV2, TRPM8, TRPA1) targets of phytocannabinoids showed that prenylogation increased potency toward CB2 by ca. 5-fold, with no substantial difference toward the other end-points, except for a decreased affinity for TRPM8. The isolation of 4 suggests that C. sativa could contain yet-to-be-discovered prenylogous versions of medicinally relevant cannabinoids, for which their biological profiles could offer interesting opportunities for biomedical exploitation.

  10. Differential cannabinoid receptor expression during reactive gliosis: a possible implication for a nonpsychotropic neuroprotection.

    Science.gov (United States)

    De Filippis, Daniele; Steardo, Antonio; D'Amico, Alessandra; Scuderi, Caterina; Cipriano, Mariateresa; Esposito, Giuseppe; Iuvone, Teresa

    2009-03-31

    Activated microglia and astrocytes produce a large number of inflammatory and neurotoxic substances in various brain pathologies, above all during neurodegenerative disorders. In the search for new neuroprotective compounds, interest has turned to marijuana derivatives, since in several in vitro, in vivo, and clinical studies, they have shown a great ability to control neuroinflammation. Despite the emerging evidence regarding pharmacological activities of cannabinoids, their effective introduction into clinical therapy still remains controversial and strongly limited by their unavoidable psychotropicity. Since the psychotropic effect of cannabinoids is generally linked to the activation of the CB1 receptor on neurons, the aim of our review is to clarify the function of the two cannabinoid receptors on glial cells and the differential role played by them, highlighting the emerging evidence of a CB2-mediated control of neuroinflammation that could liberate cannabinoids from the slavery of their central side effects. Despite the emerging evidence regarding pharmacological activities of cannabinoids, however their effective introduction in the clinical therapy remains still controversial and strongly limited by their unavoidable psychotropicity. Since the psychotropic effect of cannabinoids is generally linked to the activation of CB1 receptor on neurons, aim of our review is to clarify the functioning of the two cannabinoid receptors on glial cells and the differential role played by them, highlighting the emerging evidence of a CB2-mediated control of neuro-inflammation that could liberate cannabinoids from the slavery of the central side effects.

  11. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    Science.gov (United States)

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

  12. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target

    Science.gov (United States)

    Cassano, Tommaso; Calcagnini, Silvio; Pace, Lorenzo; De Marco, Federico; Romano, Adele; Gaetani, Silvana

    2017-01-01

    As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases. PMID:28210207

  13. The cannabinoid receptor type 2 as mediator of mesenchymal stromal cell immunosuppressive properties.

    Directory of Open Access Journals (Sweden)

    Francesca Rossi

    Full Text Available Mesenchymal stromal cells are non-hematopoietic, multipotent progenitor cells producing cytokines, chemokines, and extracellular matrix proteins that support hematopoietic stem cell survival and engraftment, influence immune effector cell development, maturation, and function, and inhibit alloreactive T-cell responses. The immunosuppressive properties of human mesenchymal stromal cells have attracted much attention from immunologists, stem cell biologists and clinicians. Recently, the presence of the endocannabinoid system in hematopoietic and neural stem cells has been demonstrated. Endocannabinoids, mainly acting through the cannabinoid receptor subtype 2, are able to modulate cytokine release and to act as immunosuppressant when added to activated T lymphocytes. In the present study, we have investigated, through a multidisciplinary approach, the involvement of the endocannabinoids in migration, viability and cytokine release of human mesenchymal stromal cells. We show, for the first time, that cultures of human mesenchymal stromal cells express all of the components of the endocannabinoid system, suggesting a potential role for the cannabinoid CB2 receptor as a mediator of anti-inflammatory properties of human mesenchymal stromal cells, as well as of their survival pathways and their capability to home and migrate towards endocannabinoid sources.

  14. Metabolism of RCS-8, a synthetic cannabinoid with cyclohexyl structure, in human hepatocytes by high-resolution MS

    Science.gov (United States)

    Wohlfarth, Ariane; Pang, Shaokun; Zhu, Mingshe; Gandhi, Adarsh S; Scheidweiler, Karl B; Huestis, Marilyn A

    2015-01-01

    Background Since 2008, synthetic cannabinoids are major new designer drugs of abuse. They are extensively metabolized and excreted in urine, but limited human metabolism data are available. As there are no reports on the metabolism of RCS-8, a scheduled phenylacetylindole synthetic cannabinoid with an N-cyclohexylethyl moiety, we investigated metabolism of this new designer drug by human hepatocytes and high resolution MS. Methods After human hepatocyte incubation with RCS-8, samples were analyzed on a TripleTOF 5600+ mass spectrometer with time-of-flight survey scan and information-dependent acquisition triggered product ion scans. Data mining of the accurate mass full scan and product ion spectra employed different data processing algorithms. Results and Conclusion More than 20 RCS-8 metabolites were identified, products of oxidation, demethylation, and glucuronidation. Major metabolites and targets for analytical methods were hydroxyphenyl RCS - 8 glucuronide, a variety of hydroxycyclohexyl-hydroxyphenyl RCS-8 glucuronides, hydroxyphenyl RCS-8, as well as the demethyl-hydroxycyclohexyl RCS-8 glucuronide. PMID:24946920

  15. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo.

    Science.gov (United States)

    te Boekhorst, B C M; Bovens, S M; van de Kolk, C W A; Cramer, M J M; Doevendans, P A F M; ten Hove, M; van der Weerd, L; Poelmann, R; Strijkers, G J; Pasterkamp, G; van Echteld, C J A

    2010-10-01

    Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for inversion-recovery fast spin echo is limited. Study aims were: evaluation of (1) timing of MRI after intravenous injection of cannabinoid-2 receptor (CB2-R) (expressed by human and mouse plaque macrophages) targeted micelles; (2) inter-scan variability of inversion-recovery fast spin echo and fast spin echo; (3) relation between NER(plaque) and gadolinium content for inversion-recovery fast spin echo and fast spin echo. Inversion-recovery fast spin echo/fast spin echo imaging was performed before and every 15 min up to 48 h after injection of CB2-R targeted or control micelles using several groups of mice measured in an interleaved fashion. NER(plaque) (determined on inversion-recovery fast spin echo images) remained high (∼2) until 48 h after injection of CB2-R targeted micelles, whereas NER(plaque) decreased after 36 h in the control group. The inter-scan variability and relation between NER(plaque) and gadolinium (assessed with inductively coupled plasma- mass spectrometry) were compared between inversion-recovery fast spin echo and fast spin echo. Inter-scan variability was higher for inversion-recovery fast spin echo than for fast spin echo. Although gadolinium and NER(plaque) correlated well for both techniques, the NER of plaque was higher for inversion-recovery fast spin echo than for fast spin echo. In mice injected with CB2-R targeted micelles, NER(plaque) can be best evaluated at 36-48 h post-injection. Because NER(plaque) was higher for inversion-recovery fast spin echo than for fast spin echo, but with high inter-scan variability, repeated inversion-recovery fast spin echo imaging and averaging of the obtained NER(plaque) values is recommended.

  16. 3'-functionalized adamantyl cannabinoid receptor probes.

    Science.gov (United States)

    Ogawa, Go; Tius, Marcus A; Zhou, Han; Nikas, Spyros P; Halikhedkar, Aneetha; Mallipeddi, Srikrishnan; Makriyannis, Alexandros

    2015-04-09

    The aliphatic side chain plays a pivotal role in determining the cannabinergic potency of tricyclic classical cannabinoids, and we have previously shown that this chain could be substituted successfully by adamantyl or other polycyclic groups. In an effort to explore the pharmacophoric features of these conformationally fixed groups, we have synthesized a series of analogues in which the C3 position is substituted directly with an adamantyl group bearing functionality at one of the tertiary carbon atoms. These substituents included the electrophilic isothiocyanate and photoactivatable azido groups, both of which are capable of covalent attachment with the target protein. Our results show that substitution at the 3'-adamantyl position can lead to ligands with improved affinities and CB1/CB2 selectivities. Our work has also led to the development of two successful covalent probes with high affinities for both cannabinoid receptors, namely, the electrophilic isothiocyanate AM994 and the photoactivatable aliphatic azido AM993 analogues.

  17. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    Science.gov (United States)

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae

  18. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current

    OpenAIRE

    Lauckner, Jane E.; Jensen, Jill B.; Chen, Huei-Ying; Lu, Hui-Chen; Hille, Bertil; Mackie, Ken

    2008-01-01

    The CB1 cannabinoid receptor mediates many of the psychoactive effects of Δ9THC, the principal active component of cannabis. However, ample evidence suggests that additional non-CB1/CB2 receptors may contribute to the behavioral, vascular, and immunological actions of Δ9THC and endogenous cannabinoids. Here, we provide further evidence that GPR55, a G protein-coupled receptor, is a cannabinoid receptor. GPR55 is highly expressed in large dorsal root ganglion neurons and, upon activation by va...

  19. Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery.

    Science.gov (United States)

    Arevalo-Martin, Angel; Garcia-Ovejero, Daniel; Sierra-Palomares, Yolanda; Paniagua-Torija, Beatriz; Gonzalez-Gil, Ines; Ortega-Gutierrez, Silvia; Molina-Holgado, Eduardo

    2012-01-01

    Spinal cord injury (SCI) induces a cascade of processes that may further expand the damage (secondary injury) or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (anandamide, AEA). Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation. We observed that AM281, AM630 or AM281 plus AM630 administration impairs the spontaneous motor recovery of rats according to the Basso-Beattie-Bresnahan (BBB) locomotor scale. However, blockade of CB1, CB2 or both receptors produced different effects at the histopathological level. Thus, AM630 administration results at 90 days after lesion in increased MHC-II expression by spinal cord microglia/monocytes and reduced number of serotoninergic fibres in lumbar spinal cord (below the lesion). AM281 exerted the same effects but also increased oedema volume estimated by MRI. Co-administration of AM281 and AM630 produced the effects observed with the administration of either AM281 or AM630 and also reduced white matter and myelin preservation and enhanced microgliosis in the epicentre. Overall, our results suggest that the endocannabinoids acting through CB1 and CB2 receptors are part of an early neuroprotective response triggered after SCI that is involved in the spontaneous recovery after an incomplete lesion.

  20. Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery.

    Directory of Open Access Journals (Sweden)

    Angel Arevalo-Martin

    Full Text Available Spinal cord injury (SCI induces a cascade of processes that may further expand the damage (secondary injury or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG and arachidonoyl ethanolamide (anandamide, AEA. Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation. We observed that AM281, AM630 or AM281 plus AM630 administration impairs the spontaneous motor recovery of rats according to the Basso-Beattie-Bresnahan (BBB locomotor scale. However, blockade of CB1, CB2 or both receptors produced different effects at the histopathological level. Thus, AM630 administration results at 90 days after lesion in increased MHC-II expression by spinal cord microglia/monocytes and reduced number of serotoninergic fibres in lumbar spinal cord (below the lesion. AM281 exerted the same effects but also increased oedema volume estimated by MRI. Co-administration of AM281 and AM630 produced the effects observed with the administration of either AM281 or AM630 and also reduced white matter and myelin preservation and enhanced microgliosis in the epicentre. Overall, our results suggest that the endocannabinoids acting through CB1 and CB2 receptors are part of an early neuroprotective response triggered after SCI that is involved in the spontaneous recovery after an incomplete lesion.

  1. Loss of cannabinoid receptor CB1 induces preterm birth.

    Directory of Open Access Journals (Sweden)

    Haibin Wang

    Full Text Available BACKGROUND: Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events. METHODS AND FINDINGS: Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth. CONCLUSIONS: CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by

  2. Cannabinoid WIN-55,212-2 mesylate inhibits interleukin-1β induced matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human chondrocytes.

    Science.gov (United States)

    Dunn, S L; Wilkinson, J M; Crawford, A; Le Maitre, C L; Bunning, R A D

    2014-01-01

    Interleukin-1β (IL-1β) is involved in the up-regulation of matrix metalloproteinases (MMPs) leading to cartilage degradation. Cannabinoids are anti-inflammatory and reduce joint damage in animal models of arthritis. This study aimed to determine a mechanism whereby the synthetic cannabinoid WIN-55,212-2 mesylate (WIN-55) may inhibit cartilage degradation. Effects of WIN-55 were studied on IL-1β stimulated production of MMP-3 and -13 and their inhibitors TIMP-1 and -2 in human chondrocytes. Chondrocytes were obtained from articular cartilage of patients undergoing total knee replacement. Chondrocytes were grown in monolayer and 3D alginate bead cultures. Real-time polymerase chain reaction (PCR) was used to determine the gene expression of MMP-3, -13, TIMP-1 and -2 and Enzyme Linked Immunosorbent Assay (ELISA) to measure the amount of MMP-3 and MMP-13 protein released into media. Immunocytochemistry was used to investigate the expression of cannabinoid receptors in chondrocyte cultures. Treatment with WIN-55 alone or in combination with IL-1β, decreased or abolished MMP-3, -13, TIMP-1 and -2 gene expression in human chondrocyte monolayer and alginate bead cultures in both a concentration and time dependent manner. WIN-55 treatment alone, and in combination with IL-1β, reduced MMP-3 and -13 protein production by chondrocytes cultured in alginate beads. Immunocytochemistry demonstrated the expression of cannabinoid receptors in chondrocyte cultures. Cannabinoid WIN-55 can reduce both basal and IL-1β stimulated gene and protein expression of MMP-3 and -13. However WIN-55 also decreased basal levels of TIMP-1 and -2 mRNA. These actions of WIN-55 suggest a mechanism by which cannabinoids may act to prevent cartilage breakdown in arthritis. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Cannabinoids: Medical implications.

    Science.gov (United States)

    Schrot, Richard J; Hubbard, John R

    2016-01-01

    Herbal cannabis has been used for thousands of years for medical purposes. With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored. While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy. While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards. Where medical cannabis is legal, patients typically see a physician who "certifies" that a benefit may result. Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis. In addition, social dysfunction may result at work/school, and there is increased possibility of motor vehicle accidents. Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects.

  4. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... dried plant materials. Chemical tests show that their active ingredients are man-made cannabinoid compounds. Synthetic cannabinoid users report some effects similar to those produced by marijuana: elevated mood relaxation altered perception symptoms of psychosis Synthetic cannabinoids can ...

  5. PET imaging of cannabinoid type 2 receptors with [(11)C]A-836339 did not evidence changes following neuroinflammation in rats.

    Science.gov (United States)

    Pottier, Geraldine; Gómez-Vallejo, Vanessa; Padro, Daniel; Boisgard, Raphaël; Dollé, Frédéric; Llop, Jordi; Winkeler, Alexandra; Martín, Abraham

    2017-03-01

    Cannabinoid type 2 receptors (CB2R) have emerged as promising targets for the diagnosis and therapy of brain pathologies. However, no suitable radiotracers for accurate CB2R mapping have been found to date, limiting the investigation of the CB2 receptor expression using positron emission tomography (PET) imaging. In this work, we report the evaluation of the in vivo expression of CB2R with [(11)C]A-836339 PET after cerebral ischemia and in two rat models of neuroinflammation, first by intrastriatal LPS and then by AMPA injection. PET images and in vitro autoradiography showed a lack of specific [(11)C]A-836339 uptake in these animal models demonstrating the limitation of this radiotracer to image CB2 receptor under neuroinflammatory conditions. Further, using immunohistochemistry, the CB2 receptor displayed a modest expression increase after cerebral ischemia, LPS and AMPA models. Finally, [(18)F]DPA-714-PET and immunohistochemistry demonstrated decreased neuroinflammation by a selective CB2R agonist, JWH133. Taken together, these findings suggest that [(11)C]A-836339 is not a suitable radiotracer to monitor in vivo CB2R expression by using PET imaging. Future studies will have to investigate alternative radiotracers that could provide an accurate binding to CB2 receptors following brain inflammation.

  6. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  7. [The mechanism of action of cannabis and cannabinoids].

    Science.gov (United States)

    Scholten, W K

    2006-01-21

    The effect ofcannabis can be explained on the basis of the function of the cannabinoid receptor system, which consists of CB receptors (CB1, CB2), endoligands to activate these receptors and an enzyme--fatty acid amidohydrolase--to metabolize the endoligands. The endoligands of the cannabinoid receptor system are arachidonic acid-like substances, and are called endocannabinoids. Indications exist that the body also contains arachidonic acid-like substances that inhibit fatty acid amido hydrolase. Various cannabinoids have diverse effects on the receptors, functioning as agonists, antagonists or partial antagonists, as well as affecting the vanilloid receptor. Many known effects ofcannabis can be explained on the basis of this mechanism of action as can the use ofcannabis in various conditions including multiple sclerosis, Parkinson's disease, glaucoma, nausea, vomiting and rheumatoid arthritis.

  8. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors.

    Science.gov (United States)

    Valdeolivas, Sara; Satta, Valentina; Pertwee, Roger G; Fernández-Ruiz, Javier; Sagredo, Onintza

    2012-05-16

    combination are blocked by these antagonists and hence that they do result from an activation of both CB(1) and CB(2) receptors. In summary, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying signs of disease progression in a proinflammatory model of HD, which adds to previous data obtained in models priming oxidative mechanisms of striatal injury. However, the interest here is that, in contrast with these previous data, we have now obtained evidence that both CB(1) and CB(2) receptors appear to be involved in the effects produced by a Sativex-like phytocannabinoid combination, thus stressing the broad-spectrum properties of Sativex that may combine activity at the CB(1) and/or CB(2) receptors with cannabinoid receptor-independent actions.

  9. NCBI nr-aa BLAST: CBRC-PTRO-01-0019 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-01-0019 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  10. NCBI nr-aa BLAST: CBRC-TBEL-01-2154 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TBEL-01-2154 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  11. NCBI nr-aa BLAST: CBRC-ACAR-01-0569 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0569 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  12. NCBI nr-aa BLAST: CBRC-HSAP-01-0032 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-HSAP-01-0032 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  13. NCBI nr-aa BLAST: CBRC-XTRO-01-2431 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-2431 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  14. NCBI nr-aa BLAST: CBRC-BTAU-01-3054 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-BTAU-01-3054 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  15. NCBI nr-aa BLAST: CBRC-RMAC-01-0015 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-01-0015 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  16. NCBI nr-aa BLAST: CBRC-CJAC-01-1490 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1490 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  17. NCBI nr-aa BLAST: CBRC-GGAL-23-0008 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGAL-23-0008 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  18. NCBI nr-aa BLAST: CBRC-OANA-01-1293 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OANA-01-1293 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  19. NCBI nr-aa BLAST: CBRC-PABE-01-0133 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PABE-01-0133 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  20. NCBI nr-aa BLAST: CBRC-ETEL-01-0353 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-0353 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  1. NCBI nr-aa BLAST: CBRC-RNOR-05-0237 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-05-0237 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  2. NCBI nr-aa BLAST: CBRC-TGUT-26-0004 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-26-0004 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  3. NCBI nr-aa BLAST: CBRC-DNOV-01-3215 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-3215 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  4. NCBI nr-aa BLAST: CBRC-EEUR-01-1511 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-EEUR-01-1511 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  5. NCBI nr-aa BLAST: CBRC-TNIG-22-0071 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-22-0071 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  6. NCBI nr-aa BLAST: CBRC-MMUS-04-0074 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-04-0074 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  7. NCBI nr-aa BLAST: CBRC-CFAM-02-0024 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-02-0024 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  8. NCBI nr-aa BLAST: CBRC-FCAT-01-0282 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-0282 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  9. NCBI nr-aa BLAST: CBRC-GACU-20-0030 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-20-0030 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  10. NCBI nr-aa BLAST: CBRC-SARA-01-1608 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-SARA-01-1608 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  11. NCBI nr-aa BLAST: CBRC-OLAT-16-0022 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OLAT-16-0022 ref|NP_001832.1| cannabinoid receptor 2 (macrophage) [Homo sapien...s] sp|P34972|CNR2_HUMAN Cannabinoid receptor 2 (CB2) (CB-2) (CX5) emb|CAA52376.1| CB2 (peripheral) cannabinoid... receptor [Homo sapiens] emb|CAD22548.1| peripheral cannabinoid receptor CB2 [Homo sapiens] emb|CAD22549.1| peripheral cannabinoid... receptor CB2 [Homo sapiens] gb|AAO92299.1| cannabinoid r...eceptor 2 [Homo sapiens] emb|CAI14799.1| cannabinoid receptor 2 (macrophage) [Homo sapiens] emb|CAJ42137.1| cannabinoid

  12. Impaired Excitatory Neurotransmission in the Urinary Bladder from the Obese Zucker Rat: Role of Cannabinoid Receptors

    Science.gov (United States)

    Blaha, Igor; Recio, Paz; Martínez, María Pilar; López-Oliva, María Elvira; Ribeiro, Ana S. F.; Agis-Torres, Ángel; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Fernandes, Vítor S.; Hernández, Medardo

    2016-01-01

    Metabolic syndrome (MS) is a known risk factor for lower urinary tract symptoms. This study investigates whether functional and expression changes of cannabinoid CB1 and CB2 receptors are involved in the bladder dysfunction in an obese rat model with insulin resistance. Bladder samples from obese Zucker rat (OZR) and their respective controls lean Zucker rat (LZR) were processed for immunohistochemistry and western blot for studying the cannabinoid receptors expression. Detrusor smooth muscle (DSM) strips from LZR and OZR were also mounted in myographs for isometric force recordings. Neuronal and smooth muscle CB1 and CB2 receptor expression and the nerve fiber density was diminished in the OZR bladder. Electrical field stimulation (EFS) and acetylcholine (ACh) induced frequency- and concentration-dependent contractions of LZR and OZR DSM. ACh contractile responses were similar in LZR and OZR. EFS-elicited contractions, however, were reduced in OZR bladder. Cannabinoid receptor agonists and antagonists failed to modify the DSM basal tension in LZR and OZR In LZR bladder, EFS responses were inhibited by ACEA and SER-601, CB1 and CB2 receptor agonists, respectively, these effects being reversed by ACEA plus the CB1 antagonist, AM-251 or SER-601 plus the CB2 antagonist, AM-630. In OZR bladder, the inhibitory action of ACEA on nerve-evoked contractions was diminished, whereas that SER-601 did not change EFS responses. These results suggest that a diminished function and expression of neuronal cannabinoid CB1 and CB2 receptors, as well as a lower nerve fiber density is involved in the impaired excitatory neurotransmission of the urinary bladder from the OZR. PMID:27285468

  13. Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Cristina Maria Costantino

    Full Text Available Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1R and CB(2R and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2R, but not CB(1R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.

  14. Phase I metabolism of the highly potent synthetic cannabinoid MDMB-CHMICA and detection in human urine samples.

    Science.gov (United States)

    Franz, Florian; Angerer, Verena; Moosmann, Bjoern; Auwärter, Volker

    2017-05-01

    Among the recently emerged synthetic cannabinoids, MDMB-CHMICA (methyl N-{[1-(cyclohexylmethyl)-1H-indol-3-yl]carbonyl}-3-methylvalinate) shows an extraordinarily high prevalence in intoxication cases, necessitating analytical methods capable of detecting drug uptake. In this study, the in vivo phase I metabolism of MDMB-CHMICA was investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (LC-ESI-Q ToF-MS) techniques. The main metabolites are formed by hydrolysis of the methyl ester and oxidation of the cyclohexyl methyl side chain. One monohydroxylated metabolite, the ester hydrolysis product and two further hydroxylated metabolites of the ester hydrolysis product are suggested as suitable targets for a selective and sensitive detection in urine. All detected in vivo metabolites could be verified in vitro using a human liver microsome assay. Two of the postulated main metabolites were successfully included in a comprehensive LC-ESI-MS/MS screening method for synthetic cannabinoid metabolites. The screening of 5717 authentic urine samples resulted in 818 cases of confirmed MDMB-CHMICA consumption (14%). Since the most common route of administration is smoking, smoke condensates were analyzed to identify relevant thermal degradation products. Pyrolytic cleavage of the methyl ester and amide bond led to degradation products which were also formed metabolically. This is particularly important in hair analysis, where detection of metabolites is commonly considered a proof of consumption. In addition, intrinsic activity of MDMB-CHMICA at the CB1 receptor was determined applying a cAMP accumulation assay and showed that the compound is a potent full agonist. Based on the collected data, an enhanced interpretation of analytical findings in urine and hair is facilitated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John

  15. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    Directory of Open Access Journals (Sweden)

    Ahmed Haider

    2016-07-01

    Full Text Available Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well characterized. The cannabinoid receptor type 1 (CB1 is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2 in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based 11C-labeled PET ligands designated [11C]AAT-015 and [11C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki values of 3.3 ± 0.5 nM (CB2 and 1.0 ± 0.2 µM (CB1 for AAT-015. AAT-778 showed similar Ki values of 4.3 ± 0.7 nM (CB2 and 1.1 ± 0.1 µM (CB1. Radiosynthesis was carried out under basic conditions using [11C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 - 449 GBq/µmol for both tracers. In order to demonstrate CB2 specificity of [11C]AAT-015 and [11C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [11C]AAT-015 was administered to healthy rats via tail

  16. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    Science.gov (United States)

    Haider, Ahmed; Müller Herde, Adrienne; Slavik, Roger; Weber, Markus; Mugnaini, Claudia; Ligresti, Alessia; Schibli, Roger; Mu, Linjing; Mensah Ametamey, Simon

    2016-01-01

    Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well-characterized. The cannabinoid receptor type 1 (CB1) is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2) in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET) tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based 11C-labeled PET ligands designated [11C]AAT-015 and [11C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki-values of 3.3 ± 0.5 nM (CB2) and 1.0 ± 0.2 μM (CB1) for AAT-015. AAT-778 showed similar Ki-values of 4.3 ± 0.7 nM (CB2) and 1.1 ± 0.1 μM (CB1). Radiosynthesis was carried out under basic conditions using [11C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 and 449 GBq/μmol for both tracers. In order to demonstrate CB2 specificity of [11C]AAT-015 and [11C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [11C]AAT-015 was administered to healthy rats via tail-vein injection

  17. Involvement of ERK1/2, cPLA2 and NF-κB in microglia suppression by cannabinoid receptor agonists and antagonists.

    Science.gov (United States)

    Ribeiro, Rachel; Wen, Jie; Li, Shihe; Zhang, Yumin

    2013-01-01

    Cannabinoids have been consistently shown to suppress microglia activation and the release of cytotoxic factors including nitric oxide, superoxide and proinflammatory cytokines. However, the underlying molecular mechanisms and whether the action of cannabinoids is coupled to the activation of cannabinoid type 1 (CB1) and type 2 (CB2) receptors are still poorly defined. In this study we observed that the CB1 and CB2 receptor non-selective or selective agonists dramatically attenuate iNOS induction and ROS generation in LPS-activated microglia. These effects are due to their reduction of phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), cytosolic phospholipase A (cPLA) and activation of NF-κB. Surprisingly, instead of reversing the effect of the respective CB1 and CB2 receptor agonists, the antagonists also suppress iNOS induction and ROS generation in activated microglia by similar mechanisms. Taken together, these results indicate that both cannabinoid receptor agonists and antagonists might suppress microglia activation by CB1 and CB2 receptor independent mechanisms, and provide a new insight into the mechanisms of microglia inhibition by cannabinoids.

  18. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland); Mandrika, Ilona, E-mail: ilona@biomed.lu.lv [Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV 1067 (Latvia); Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland)

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  19. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

    Science.gov (United States)

    Lu, Dai; Dopart, Rachel; Kendall, Debra A

    2016-01-01

    Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two Gprotein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.

  20. Inflammatory Regulation by Driving Microglial M2 Polarization: Neuroprotective Effects of Cannabinoid Receptor-2 Activation in Intracerebral Hemorrhage

    Science.gov (United States)

    Lin, Li; Yihao, Tao; Zhou, Feng; Yin, Niu; Qiang, Tan; Haowen, Zheng; Qianwei, Chen; Jun, Tang; Yuan, Zhang; Gang, Zhu; Hua, Feng; Yunfeng, Yang; Zhi, Chen

    2017-01-01

    The cannabinoid receptor-2 (CB2R) was initially thought to be the “peripheral cannabinoid receptor.” Recent studies, however, have documented CB2R expression in the brain in both glial and neuronal cells, and increasing evidence suggests an important role for CB2R in the central nervous system inflammatory response. Intracerebral hemorrhage (ICH), which occurs when a diseased cerebral vessel ruptures, accounts for 10–15% of all strokes. Although surgical techniques have significantly advanced in the past two decades, ICH continues to have a high mortality rate. The aim of this study was to investigate the therapeutic effects of CB2R stimulation in acute phase after experimental ICH in rats and its related mechanisms. Data showed that stimulation of CB2R using a selective agonist, JWH133, ameliorated brain edema, brain damage, and neuron death and improved neurobehavioral outcomes in acute phase after ICH. The neuroprotective effects were prevented by SR144528, a selective CB2R inhibitor. Additionally, JWH133 suppressed neuroinflammation and upregulated the expression of microglial M2-associated marker in both gene and protein level. Furthermore, the expression of phosphorylated cAMP-dependent protein kinase (pPKA) and its downstream effector, cAMP-response element binding protein (CREB), were facilitated. Knockdown of CREB significantly inversed the increase of M2 polarization in microglia, indicating that the JWH133-mediated anti-inflammatory effects are closely associated with PKA/CREB signaling pathway. These findings demonstrated that CB2R stimulation significantly protected the brain damage and suppressed neuroinflammation by promoting the acquisition of microglial M2 phenotype in acute stage after ICH. Taken together, this study provided mechanism insight into neuroprotective effects by CB2R stimulation after ICH. PMID:28261199

  1. Cannabinoids Occlude the HIV-1 Tat-Induced Decrease in GABAergic Neurotransmission in Prefrontal Cortex Slices.

    Science.gov (United States)

    Xu, Changqing; Hermes, Douglas J; Mackie, Ken; Lichtman, Aron H; Ignatowska-Jankowska, Bogna M; Fitting, Sylvia

    2016-06-01

    In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is now considered a chronic disease that specifically targets the brain and causes HIV-1-associated neurocognitive disorders (HAND). Endocannabinoids exhibit neuroprotective and anti-inflammatory properties in several central nervous system (CNS) disease models, but their effects in HAND are poorly understood. To address this issue, whole-cell recordings were performed on young (14-24 day old) C57BL/6J mice. We investigated the actions of the synthetic cannabinoid WIN55,212-2 (1 μM) and the endocannabinoid N-arachidonoyl ethanolamine (anandamide; AEA, 1 μM) in the presence of HIV-1 Tat on GABAergic neurotransmission in mouse prefrontal cortex (PFC) slices. We found a Tat concentration-dependent (5-50 nM) decrease in the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid 1 receptor (CB1R) antagonist rimonabant (1 μM) and zero extracellular calcium prevented the significant Tat-induced decrease in mIPSCs. Further, bath-applied WIN55,212-2 or AEA by itself, significantly decreased the frequency, but not amplitude of mIPSCs and/or spontaneous IPSCs (sIPSCs), and occluded a further downregulation of IPSCs by Tat. Pretreatment with rimonabant but not the CB2R antagonist AM630 (1 μM) prevented the WIN55,212-2- and AEA-induced decrease in IPSCs frequency without any further Tat effect. Results indicated a Tat-induced decrease in GABAergic neurotransmission, which was occluded by cannabinoids via a CB1R-related mechanism. Understanding the relationship between Tat toxicity and endocannabinoid signaling has the potential to identify novel therapeutic interventions to benefit individuals suffering from HAND and other cognitive impairments.

  2. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ellis Connie L

    2010-03-01

    Full Text Available Abstract Background Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN and neuropathic pain (NeP, our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. Results Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. Conclusions The prevention of microglial accumulation and activation in the dorsal spinal

  3. [Cannabinoids in the control of pain].

    Science.gov (United States)

    Shaladi, Ali Muftah; Crestani, Francesco; Tartari, Stefano; Piva, Bruno

    2008-12-01

    Hemp (Cannabis sativa L.) has been used since remotes ages as a herbal remedy. Only recently the medical community highlighted the pharmacological scientific bases of its effects. The most important active principle, Delta-9-tetrahydrocannabinol, was identified in the second half of the last century, and subsequently two receptors were identified and cloned: CB1 that is primarily present in the central nervous system, and CB2 that is present on the cells of the immune system. Endogenous ligands, called endocannabinoids, were characterized. The anandamide was the first one to be discovered. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids are analgesic, and their activity is comparable to the weak opioids. Furthermore, parallels exist between opioid and cannabinoid receptors, and evidence is accumulating that the two systems sometimes may operate synergistically. The interest of the pharmaceutical companies led to the production of various drugs, whether synthetic or natural derived. The good ratio between the polyunsatured fatty acids omega-3 and omega-6 of the oil of Cannabis seeds led to reduction of the phlogosis and an improvement of the pain symptoms in patients with chronic musculo-skeletal inflammation.

  4. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  5. Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids

    Science.gov (United States)

    Utomo, Wesley K.; de Vries, Marjan; Braat, Henri; Bruno, Marco J.; Parikh, Kaushal; Comalada, Mònica; Peppelenbosch, Maikel P.; van Goor, Harry; Fuhler, Gwenny M.

    2017-01-01

    Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis. However, the mechanistic aspects and properties of cannabis remain remarkably poorly characterized. In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis. Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers. Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes. The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect. While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations. PMID:28174520

  6. Role of pre-junctional CB1, but not CB2 , TRPV1 or GPR55 receptors in anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats.

    Science.gov (United States)

    Marichal-Cancino, Bruno A; Altamirano-Espinoza, Alain H; Manrique-Maldonado, Guadalupe; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2014-03-01

    Stimulation of the perivascular sensory outflow in pithed rats produces vasodepressor responses mediated by CGRP release. Interestingly, endocannabinoids such as anandamide (which interacts with CB1 , CB2 , TRPV1 and GPR55 receptors) can regulate the activity of perivascular sensory nerves in dural blood vessels by modulating CGRP release. Yet, as no publication has reported whether this mechanism is operative in the healthy systemic vasculature, this study has specifically analysed the receptors mediating the potential inhibitory effects of the cannabinoid (CB) receptor agonists anandamide (non-selective), JWH-015 (CB2 ) and lysophosphatidylinositol (GPR55) on the rat vasodepressor sensory CGRPergic outflow (an index of systemic vasodilatation). Healthy pithed rats were pre-treated with consecutive i.v. continuous infusions of hexamethonium, methoxamine and the above agonists. Electrical spinal (T9 -T12 ) stimulation of the vasodepressor sensory CGRPergic outflow or i.v. injections of α-CGRP produced frequency-dependent or dose-dependent vasodepressor responses. The infusions of anandamide in a dose-dependent manner inhibited the vasodepressor responses by electrical stimulation (remaining unaffected by JWH-015 or lysophosphatidylinositol), but not those by α-CGRP. After i.v. administration of antagonists, the inhibition by 3.1 μg/kg min anandamide was: (i) potently blocked by 31-100 μg/kg NIDA41020 (CB1 ), (ii) unaffected by 180 μg/kg AM630 (CB2 ), 31 μg/kg cannabidiol (GPR55) or 31-100 μg/kg capsazepine (TRPV1) and (iii) slightly blocked by 310 μg/kg AM630. The above doses of antagonists were enough to block their respective receptors. These results suggest that anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow is mainly mediated by pre-junctional activation of CB1 receptors, with no pharmacological evidence for the role of CB2 , TRPV1 or GPR55 receptors.

  7. 大麻素受体CB2在机械牵张力介导的人牙周膜细胞成骨分化中的作用

    Institute of Scientific and Technical Information of China (English)

    钱红; 赵亚; 胡静; 闫英剑

    2012-01-01

    目的:研究大麻素II型受体(cannabinoid receptor Ⅱ,CB2)在机械牵张力介导的人牙周膜细胞中的表达以及成骨分化中的作用。方法:体外培养人牙周膜细胞,构建细胞一机械牵张力加载模型,施加不同大小的机械牵张力,采用Real-timePCR和细胞免疫荧光化学技术检测cg2在人牙周膜细胞中mRNA和蛋白的表达。用碱性磷酸酶(ALP)试剂盒检测机械牵张力介导的细胞ALP活性。结果:对人牙周膜细胞施加不同大小的机械牵张力24h,CB2mRNA的表达随机械牵张力的力值增大而显著性增加(P〈0.05),在18%拉伸应变率作用下表达量最高(P〈0.05),此时CB2蛋白的表达显著增加。加入CB2激动剂Hu一308后,施加18%拉伸应变率的机械牵张力作用于人牙周膜细胞24h,ALP活性显著性增加(P〈0.05)。结论:CB2在人牙周膜细胞中的表达与机械牵张力的力值具有相关性。在机械牵张力作用下,大麻素受体CB2与其配体结合能够促进人牙周膜细胞的成骨分化,从而在正畸牙槽骨改建中发挥重要作用。

  8. Action of CB1 and CB2 antagonists/inverse agonists on mantle cell lymphoma

    OpenAIRE

    Chui, Daniel

    2011-01-01

    In this study, the effects of antagonists to the cannabinoid receptors in MCL cell lines were studied. Results presented in this study show that signalling through cannabinoid receptor with antagonists such as SR141716, SR144528 decreases cell viability but hemopressin when analyzing with XTT. The decrease in cell viability by SR141716 is caused by apoptosis triggered after 5 hours of treatment. The CB1 expression was confirmed in all MCL cell lines tested via western blotting but the express...

  9. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain

    Science.gov (United States)

    Rivera, Patricia; Blanco, Eduardo; Bindila, Laura; Alen, Francisco; Vargas, Antonio; Rubio, Leticia; Pavón, Francisco J.; Serrano, Antonia; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence. PMID:26483633

  10. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2015-09-01

    Full Text Available Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10% or sucrose liquid diets for two weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+ and the replicating cell DNA marker 5-bromo-2’-deoxyuridine (BrdU+ in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ, subventricular zone of lateral ventricles (SVZ and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3±1.1 g/kg/day after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ and hypothalamus. The treatments (URB597, ACEA, JWH133 exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence.

  11. Enhanced humoral immunity in mice lacking CB1 and CB2 receptors (Cnr1-/-/Cnr2-/- mice) is not due to increased splenic noradrenergic neuronal activity.

    Science.gov (United States)

    Simkins, Tyrell; Crawford, Robert B; Goudreau, John L; Lookingland, Keith J; Kaplan, Barbara L F

    2014-09-01

    Peripheral sympathetic noradrenergic neurons originating in the celiac mesenteric plexus have axons that terminate in close proximity to antibody-producing B cells in the spleen. Norepinephrine (NE) released from these neurons is reported to augment antibody production in response to an immune challenge via an action at the β2-adrenergic receptor (β2AR). Cannabinoids are immunosuppressive, and mice lacking CB1 and CB2 receptors (Cnr1(-/-)/Cnr2(-/-) mice) have augmented cell-mediated immune responses. The purpose of this study was to determine if Cnr1(-/-)/Cnr2(-/-) mice also exhibit enhanced humoral immunity and if that is associated with corresponding changes in noradrenergic neurons terminating in the spleen. The results reveal that IgM and IgG are enhanced in Cnr1(-/-)/Cnr2(-/-) mice as compared to WT both in immunologically naïve and lipopolysaccharide (LPS)-treated mice. While the elevated antibody production was correlated with increased expression of β2AR on splenic B cells and increased splenic capsule NE concentrations, the activity of noradrenergic neurons was suppressed in spleens from Cnr1(-/-)/Cnr2(-/-) mice as compared with WT controls. Together, these results suggest that Cnr1(-/-)/Cnr2(-/-) mice exhibit enhanced NE vesicular storage in axon terminals in these neurons, which might limit the NE available to bind β2AR on target cells, such as B cells. The results also demonstrate that enhanced antibody responses in the absence of CB1 and CB2 receptors are not due to increased sympathetic noradrenergic neuronal activity in the spleen.

  12. Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats.

    Directory of Open Access Journals (Sweden)

    Rahman Md Mostafeezur

    Full Text Available Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1 and 2 (CB2. The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN, with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67 or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid neurons in the central pattern generator for swallowing.

  13. Negative inotropic effect of a CB2 agonist A-955840 in isolated rabbit ventricular myocytes is independent of CB1 and CB2 receptors.

    Science.gov (United States)

    Su, Zhi; Preusser, Lee; Diaz, Gilbert; Green, Jonathon; Liu, Xiaoqin; Polakowski, James; Dart, Michael; Yao, Betty; Meyer, Michael; Limberis, James T; Martin, Ruth L; Cox, Bryan F; Gintant, Gary A

    2011-11-01

    A-955840, a selective CB2 agonist, has been shown to elicit concentration-dependent decreases in cardiac contractility in the anesthetized dog (decreased maximal velocity of left ventricular pressure development [LV dP/dt max]). However, it is unknown whether this represents a direct effect or a response dependent on other factors (such as autonomic tone and neurohumoral factors) present in vivo. This study examined if A-955840 had a direct effect on contractility of isolated cardiac myocytes, and if so to determine the potential mechanisms. Contractility was assessed in vitro using percent changes in maximal shortening velocity of sarcomeres (dL/dt max) and fractional shortening of sarcomere length (FS) in rabbit left ventricular myocytes. L-type calcium current in myocytes was recorded using wholecell voltage-clamp techniques. A-955840 reduced dL/dt max and FS in a reversible and concentration-dependent manner with an IC50 of 11.4 μg/mL (based on dL/dt max) which is similar to the estimated IC50 value of 9.8 μg/mL based on the effects of A-955840 on LV dP/dt max in anesthetized dogs. A-955840 (4.1 μg/mL) reduced myocyte contractility (%FS) to a similar extent in the absence and presence of a CB2 antagonist, SR-2 (24.0 ± 3.4 vs 23.1 ± 3.0 %, n=5) or a CB1 antagonist, Rimonabant (18.8 ± 2.3 vs 19.8 ± 2.7 %, n=5). A-955840 (4.1 μg/mL) also reduced L-type calcium current of rabbit ventricular myocytes (1.05 ± 0.11 vs 0.70 ± 0.12 nA, n=5, P CB2 nor CB1 receptors, and consistent with off-target negative inotropy mediated by inhibition of the cardiac L-type calcium current.

  14. In Vitro and In Vivo Human Metabolism of Synthetic Cannabinoids FDU-PB-22 and FUB-PB-22.

    Science.gov (United States)

    Diao, Xingxing; Scheidweiler, Karl B; Wohlfarth, Ariane; Pang, Shaokun; Kronstrand, Robert; Huestis, Marilyn A

    2016-03-01

    In 2014, FDU-PB-22 and FUB-PB-22, two novel synthetic cannabinoids, were detected in herbal blends in Japan, Russia, and Germany and were quickly added to their scheduled drugs list. Unfortunately, no human metabolism data are currently available, making it challenging to confirm their intake. The present study aims to identify appropriate analytical markers by investigating FDU-PB-22 and FUB-PB-22 metabolism in human hepatocytes and confirm the results in authentic urine specimens. For metabolic stability, 1 μM FDU-PB-22 and FUB-PB-22 was incubated with human liver microsomes for up to 1 h; for metabolite profiling, 10 μM was incubated with human hepatocytes for 3 h. Two authentic urine specimens from FDU-PB-22 and FUB-PB-22 positive cases were analyzed after β-glucuronidase hydrolysis. Metabolite identification in hepatocyte samples and urine specimens was accomplished by high-resolution mass spectrometry using information-dependent acquisition. Both FDU-PB-22 and FUB-PB-22 were rapidly metabolized in HLM with half-lives of 12.4 and 11.5 min, respectively. In human hepatocyte samples, we identified seven metabolites for both compounds, generated by ester hydrolysis and further hydroxylation and/or glucuronidation. After ester hydrolysis, FDU-PB-22 and FUB-PB-22 yielded the same metabolite M7, fluorobenzylindole-3-carboxylic acid (FBI-COOH). M7 and M6 (hydroxylated FBI-COOH) were the major metabolites. In authentic urine specimens after β-glucuronidase hydrolysis, M6 and M7 also were the predominant metabolites. Based on our study, we recommend M6 (hydroxylated FBI-COOH) and M7 (FBI-COOH) as suitable urinary markers for documenting FDU-PB-22 and/or FUB-PB-22 intake.

  15. Pro-drugs for indirect cannabinoids as therapeutic agents.

    Science.gov (United States)

    Ashton, John

    2008-10-01

    Medicinal cannabis, cannabis extracts, and other cannabinoids are currently in use or under clinical trial investigation for the control of nausea, emesis and wasting in patients undergoing chemotherapy, the control of neuropathic pain and arthritic pain, and the control of the symptoms of multiple sclerosis. The further development of medicinal cannabinoids has been challenged with problems. These include the psychoactivity of cannabinoid CB1 receptor agonists and the lack of availability of highly selective cannabinoid receptor full agonists (for the CB1 or CB2 receptor), as well as problems of pharmacokinetics. Global activation of cannabinoid receptors is usually undesirable, and so enhancement of local endocannabinoid receptor activity with indirect cannabimimetics is an attractive strategy for therapeutic modulation of the endocannabinoid system. However, existing drugs of this type tend to be metabolized by the same enzymes as their target endocannabinoids and are not yet available in a form that is clinically useful. A potential solution to these problems may now have been suggested by the discovery that paracetamol (acetaminophen) exerts its analgesic (and probably anti-pyretic) effects by its degradation into an anandamide (an endocannabinoid) reuptake inhibitor (AM404) within the body, thus classifying it as pro-drug for an indirect cannabimimetic. Given the proven efficacy and safety of paracetamol, the challenge now is to develop related drugs, or entirely different substrates, into pro-drug indirect cannabimimetics with a similar safety profile to paracetamol but at high effective dose titrations.

  16. Acute and Chronic Effects of Cannabinoids on Human Cognition-A Systematic Review.

    Science.gov (United States)

    Broyd, Samantha J; van Hell, Hendrika H; Beale, Camilla; Yücel, Murat; Solowij, Nadia

    2016-04-01

    Cannabis use has been associated with impaired cognition during acute intoxication as well as in the unintoxicated state in long-term users. However, the evidence has been mixed and contested, and no systematic reviews of the literature on neuropsychological task-based measures of cognition have been conducted in an attempt to synthesize the findings. We systematically review the empirical research published in the past decade (from January 2004 to February 2015) on acute and chronic effects of cannabis and cannabinoids and on persistence or recovery after abstinence. We summarize the findings into the major categories of the cognitive domains investigated, considering sample characteristics and associations with various cannabis use parameters. Verbal learning and memory and attention are most consistently impaired by acute and chronic exposure to cannabis. Psychomotor function is most affected during acute intoxication, with some evidence for persistence in chronic users and after cessation of use. Impaired verbal memory, attention, and some executive functions may persist after prolonged abstinence, but persistence or recovery across all cognitive domains remains underresearched. Associations between poorer performance and a range of cannabis use parameters, including a younger age of onset, are frequently reported. Little further evidence has emerged for the development of tolerance to the acutely impairing effects of cannabis. Evidence for potential protection from harmful effects by cannabidiol continues to increase but is not definitive. In light of increasing trends toward legalization of cannabis, the knowledge gained from this body of research needs to be incorporated into strategies to minimize harm. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  18. The effects of synthetic cannabinoid UR-144 on the human body-A review of 39 cases.

    Science.gov (United States)

    Adamowicz, Piotr; Gieroń, Joanna; Gil, Dominika; Lechowicz, Wojciech; Skulska, Agnieszka; Tokarczyk, Bogdan

    2017-03-07

    UR-144 [(1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone] is a synthetic cannabinoid, which has been detected in many 'legal highs', seized from the global drug market since the beginning of 2012. It has gained popularity as a 'legal' alternative to classic cannabis in countries where it was not controlled. Despite the widespread distribution of this substance, the data on its effects on the human body are scarce. Therefore, this paper describes the results of analysis and observed effects in 39 cases in which UR-144 was determined in blood. Symptoms were noted from the blood sampling forms filled out by the representative doctor. The determined concentrations of UR-144 were in the range of trace amounts (LOD-0.15ng/mL; LOQ-0.5ng/mL) up to 17ng/mL. The most common observed effects included slurred speech, dilated pupils, sluggish and abnormal pupillary reaction, cheerful behaviour, poor coordination, and staggering. Less frequently observed were: verbosity, narrow pupils, loss of consciousness, pale or reddened facial skin, blackout, euphoria, agitation, hallucinations, hindered communication, shaking hands, seizures, convulsions, somnolence, delayed movements, redness of the conjunctiva, and tachycardia. The discussed cases show the effects observed after UR-144 use. This study can assist in the recognition of possible effects caused by this substance.

  19. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid

    OpenAIRE

    Haj, Christeene G.; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M.; Yektin, Zhana; Mechoulam,Raphael; Feldmann, Mark; Gallily, Ruth

    2015-01-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ9-tetrahydrocannabinol (Δ9-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therape...

  20. Increased Expression of Cannabinoid CB1 Receptors in Achilles Tendinosis

    Science.gov (United States)

    Björklund, Emmelie; Forsgren, Sture; Alfredson, Håkan; Fowler, Christopher J.

    2011-01-01

    Background The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. Methodology Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. Principal Findings CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue. Conclusion Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder. PMID:21931835

  1. Increased expression of cannabinoid CB₁ receptors in Achilles tendinosis.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available BACKGROUND: The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB₁ in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. METHODOLOGY: Cannabinoid CB₁ receptor immunoreactivity (CB₁IR was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. PRINCIPAL FINDINGS: CB₁IR was seen as a granular pattern in the tenocytes. CB₁IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB₁ receptor expression in tendinosis tissue compared to control tissue. CONCLUSION: Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder.

  2. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    Science.gov (United States)

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  3. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  4. Effect of the Cannabinoid Receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation

    Directory of Open Access Journals (Sweden)

    Murumalla Ravi

    2011-11-01

    Full Text Available Abstract Background Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1 antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. Methods Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA and expression analysis (qPCR. Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. Results In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor. Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. Conclusion We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.

  5. Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ribeiro, R; Yu, F; Wen, J; Vana, A; Zhang, Y

    2013-12-19

    Multiple Sclerosis (MS) is a demyelinating disease which causes inflammation, demyelination, and axonal injury. Currently, there is no cure for the disease. The endocannabinoid system has recently emerged as a promising therapeutic target for MS. The protective mechanisms of cannabinoids are thought to be mediated by the activation of the cannabinoid type 1 (CB1) and type 2 (CB2) receptors expressed primarily in neurons and immune cells, respectively. However, the molecular mechanisms and the contribution of each receptor in ameliorating disease progression are still debatable. Although CB1 and CB2 receptors are expressed in oligodendrocytes, the myelin producing cells in the central nervous system, the role of cannabinoids in oligodendrocyte survival has not been well investigated. Using primary cultures of mature oligodendrocytes, we tested the effect of a novel synthetic cannabinoid CB52 on oligodendrocyte toxicity induced by peroxynitrite, the primary toxic species released by microglia. Interestingly, we found that CB52 is more potent than a number of broad and selective CB1 and CB2 agonists in protecting oligodendrocytes against peroxynitrite-induced toxicity. The protection provided by CB52 is likely due to its reduction of ERK1/2 phosphorylation and reactive oxygen species (ROS) generation in these cells. Using experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we found that CB52 reduces microglia activation, nitrotyrosine formation, T cell infiltration, oligodendrocyte toxicity, myelin loss and axonal damage in the mouse spinal cord white matter and alleviates the clinical scores when given either before or after disease onset. These effects are reversed by the CB1 receptor antagonist, but not by the CB2 receptor antagonist, suggesting that the activation of CB1 receptors contributes significantly to the anti-inflammatory and neuroprotective effects of cannabinoids on MS.

  6. JWH-133, a Selective Cannabinoid CB₂ Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Wojcieszak, Jakub; Krzemień, Wojciech; Zawilska, Jolanta B

    2016-04-01

    Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

  7. Synthesis and Preliminary Evaluation of a 2-Oxoquinoline Carboxylic Acid Derivative for PET Imaging the Cannabinoid Type 2 Receptor

    Directory of Open Access Journals (Sweden)

    Linjing Mu

    2014-03-01

    Full Text Available Cannabinoid receptor subtype 2 (CB2 has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease. The CB2 receptor is therefore considered as a very promising target for therapeutic approaches as well as for imaging. A promising 2-oxoquinoline derivative designated KP23 was synthesized and radiolabeled and its potential as a ligand for PET imaging the CB2 receptor was evaluated. [11C]KP23 was obtained in 10%–25% radiochemical yield (decay corrected and 99% radiochemical purity. It showed high stability in phosphate buffer, rat and mouse plasma. In vitro autoradiography of rat and mouse spleen slices, as spleen expresses a high physiological expression of CB2 receptors, demonstrated that [11C]KP23 exhibits specific binding towards CB2. High spleen uptake of [11C]KP23 was observed in dynamic in vivo PET studies with Wistar rats. In conclusion, [11C]KP23 showed promising in vitro and in vivo characteristics. Further evaluation with diseased animal model which has higher CB2 expression levels in the brain is warranted.

  8. Cannabinoids and Pain

    Directory of Open Access Journals (Sweden)

    J Michael Walker

    2001-01-01

    Full Text Available Cannabinoids have been used to treat pain for many centuries. However, only during the past several decades have rigorous scientific methods been applied to understand the mechanisms of cannabinoid action. Cannabinoid receptors were discovered in the late 1980s and have been found to mediate the effects of cannabinoids on the nervous system. Several endocannabinoids were subsequently identified. Many studies of cannabinoid analgesia in animals during the past century showed that cannabinoids block all types of pain studied. These effects were found to be due to the suppression of spinal and thalamic nociceptive neurons, independent of any actions on the motor systems. Spinal, supraspinal and peripheral sites of cannabinoid analgesia have been identified. Endocannabinoids are released upon electrical stimulation of the periaqueductal gray, and in response to inflammation in the extremities. These observations and others thus suggest that a natural function of cannabinoid receptors and their endogenous ligands is to regulate pain sensitivity. The therapeutic potential of cannabinoids remains an important topic for future investigations, with previous work suggesting utility in clinical studies of cancer and surgical pain. New modes of delivery and/or new compounds lacking the psychotropic properties of the standard cannabinoid ligands offer promise for cannabinoid therapeutics for pain.

  9. Endothelial atypical cannabinoid receptor: do we have enough evidence?

    Science.gov (United States)

    Bondarenko, Alexander I

    2014-12-01

    Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions. © 2014 The British Pharmacological Society.

  10. BIASED AGONISM OF THREE DIFFERENT CANNABINOID RECEPTOR AGONISTS IN MOUSE BRAIN CORTEX

    Directory of Open Access Journals (Sweden)

    Rebeca Diez-Alarcia

    2016-11-01

    Full Text Available Cannabinoid receptors are able to couple to different families of G-proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, THC, WIN55212-2 and ACEA in mouse brain cortex.Stimulation of the [35S]GTPS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13, in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 µM was determined by Scintillation Proximity Assay (SPA technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.

  11. The endocannabinoids anandamide and virodhamine modulate the activity of the candidate cannabinoid receptor GPR55.

    Science.gov (United States)

    Sharir, Haleli; Console-Bram, Linda; Mundy, Christina; Popoff, Steven N; Kapur, Ankur; Abood, Mary E

    2012-12-01

    The role of cannabinoid receptors in inflammation has been the topic of many research endeavors. Despite this effort, to date the involvement of the endocannabinoid system (ECS) in inflammation remains obscure. The ambiguity of cannabinoid involvement may be explained by the existence of cannabinoid receptors, other than CB(1) and CB(2), or a consequence of interaction of endocannabinoids with other signaling systems. GPR55 has been proposed to be a cannabinoid receptor; however the interaction of the endocannabinoid system with GPR55 remains elusive. Consequently this study set about to examine the effects of the endocannabinoids, anandamide (AEA) and virodhamine, on GPR55 mediated signaling. Specifically, we assessed changes in β-arrestin2 (βarr2) distribution and GPR55 receptor internalization following activation by lysophosphatidylinositol (LPI), the synthetic cannabinoid ligand SR141716A, and new selective synthetic GPR55 agonists. Data obtained from the experiments presented herein demonstrate that AEA and virodhamine modulate agonist-mediated recruitment of βarr2. AEA and virodhamine act as partial agonists; enhancing the agonist effect at low concentrations and inhibiting it at high concentrations. Furthermore, both virodhamine and AEA significantly attenuated agonist-induced internalization of GPR55. These effects are attributed to the expression of GPR55, and not CB(1) and CB(2) receptors, as we have established negligible expression of CB(1) and CB(2) in these GPR55-transfected U2OS cells. The identification of select endocannabinoids as GPR55 modulators will aide in elucidating the function of GPR55 in the ECS.

  12. Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex

    Science.gov (United States)

    Diez-Alarcia, Rebeca; Ibarra-Lecue, Inés; Lopez-Cardona, Ángela P.; Meana, Javier; Gutierrez-Adán, Alfonso; Callado, Luis F.; Agirregoitia, Ekaitz; Urigüen, Leyre

    2016-01-01

    Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs. PMID:27867358

  13. Discovery of S-444823, a potent CB1/CB2 dual agonist as an antipruritic agent.

    Science.gov (United States)

    Odan, Masahide; Ishizuka, Natsuki; Hiramatsu, Yoshiharu; Inagaki, Masanao; Hashizume, Hiroshi; Fujii, Yasuhiko; Mitsumori, Susumu; Morioka, Yasuhide; Soga, Masahiko; Deguchi, Masashi; Yasui, Kiyoshi; Arimura, Akinori

    2012-04-15

    The optimization of a series of 3-carbamoyl 2-pyridone derivatives as CB agonists is reported. These efforts resulted in the discovery of 3-(2-(1-(cyclohexylmethyl)-2-oxo-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carboxamido)thiazol-4-yl)propanoic acid (21), a potent dual CB1/CB2 agonist without CNS side effects induced by CB1 receptor activation. It exhibited strong inhibition of scratching as a 1.0% acetone solution in the pruritic model.

  14. Development of matching filler metals for welding CB2 and first experience

    Energy Technology Data Exchange (ETDEWEB)

    Heuser, Herbert; Jochum, Claus; Kreuzer-Zagar, Dorothea [Boehler Schweisstechnik Deutschland GmbH, Hamm (Germany)

    2010-07-01

    This paper gives an overview about the properties of a new martensitic welding consumable which is matching to CB2, FB2, PB2. This material has been developed in the frame of COST 536 research program. Thermanit MTS 5 Co1 shows high strength properties with moderate toughness in the range about 40 J. The mechanical properties have been tested after different PWHT, the influence of Boron was evaluated with respect to weldability, creep strength and toughness. Creep tests are still running, up to now, the filler metal behaves as expected. (orig.)

  15. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2.

    Science.gov (United States)

    Lee, Hye-Rim; Park, Kyung Min; Joung, Yoon Ki; Park, Ki Dong; Do, Sun Hee

    2012-05-10

    Three-dimensional scaffolds like hydrogels can be used for cell and drug delivery and have become a major research focus in tissue engineering. Presently, we investigated the regenerative potency of platelet-rich plasma (PRP) combined with a chondrocyte/hydrogel composite scaffold in the repair of articular cartilage defects using a rabbit model. Primary isolated joint chondrocytes from the trachlear groove of rabbit were cultured in hydrogels as follows; hydrogel (2900 Pa or 5900 Pa)+chondrocytes and hydrogel+chondrocytes+PRP for in vitro analysis and in vivo implantation. The 5900 Pa hydrogel markedly increased cellular viability and development in a time-dependent manner. Furthermore, the hydrogels attenuated the expression of SOX-9, aggrecan, and type II collagen. PRP-containing hydrogels produced an immediate increase in mRNA levels of cannabinoid receptor (CB)1 and CB2, compared with control and PRP-free hydrogels. Osteochondral defects were enhanced recovery with formation of cartilage and perichondrium in the 5900 Pa hydrogel+chondrocytes+PRP. Hydrogel may provide a suitable environment for proliferation and maturation of joint chondrocytes in relation to the gelation density and bioactive sources like PRP resulting in improvement for cartilage regeneration.

  16. Presence and regulation of the endocannabinoid system in human dendritic cells.

    Science.gov (United States)

    Matias, Isabel; Pochard, Pierre; Orlando, Pierangelo; Salzet, Michel; Pestel, Joel; Di Marzo, Vincenzo

    2002-08-01

    Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in several blood immune cells, including monocytes/macrophages, basophils and lymphocytes. However, their presence in dendritic cells, which play a key role in the initiation and development of the immune response, has never been investigated. Here we have analyzed human dendritic cells for the presence of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), the cannabinoid CB1 and CB2 receptors, and one of the enzymes mostly responsible for endocannabinoid hydrolysis, the fatty acid amide hydrolase (FAAH). By using a very sensitive liquid chromatography-atmospheric pressure chemical ionization-mass spectrometric (LC-APCI-MS) method, lipids extracted from immature dendritic cells were shown to contain 2-AG, anandamide and the anti-inflammatory anandamide congener, N-palmitoylethanolamine (PalEtn) (2.1 +/- 1.0, 0.14 +/- 0.02 and 8.2 +/- 3.9 pmol x 10(-7) cells, respectively). The amounts of 2-AG, but not anandamide or PalEtn, were significantly increased following cell maturation induced by bacterial lipopolysaccharide (LPS) or the allergen Der p 1 (2.8- and 1.9-fold, respectively). By using both RT-PCR and Western immunoblotting, dendritic cells were also found to express measurable amounts of CB1 and CB2 receptors and of FAAH. Cell maturation did not consistently modify the expression of these proteins, although in some cell preparations a decrease of the levels of both CB1 and CB2 mRNA transcripts was observed after LPS stimulation. These findings demonstrate for the first time that the endogenous cannabinoid system is present in human dendritic cells and can be regulated by cell activation.

  17. Nonpsychotropic cannabinoids, abnormal cannabidiol and canabigerol-dimethyl heptyl, act at novel cannabinoid receptors to reduce intraocular pressure.

    Science.gov (United States)

    Szczesniak, Anna-Maria; Maor, Yehoshua; Robertson, Harold; Hung, Orlando; Kelly, Melanie E M

    2011-10-01

    The objective of our study was to examine the pharmacology of the intraocular pressure (IOP)-lowering actions of the behaviorally inactive cannabinoids, abnormal cannabidiol (abn-CBD), and a cannabigerol analog, cannabigerol-dimethyl heptyl (CBG-DMH), in comparison to that of the nonselective cannabinoid 1 receptor (CB(1)R) and CB(2)R agonist, WIN55,212-2, in Brown Norway rats. The IOP was measured noninvasively using a hand-held tonometer in nonanesthetized animals. The IOP measurements were taken every 15 min for a period of 2 h after drug administration. All drugs were administered via intraperitoneal (i.p.) injections, and abn-CBD and CBG-DMH were also given topically. Both abn-CBD and CBG-DMH reduced IOP when administrated i.p. at doses of ≥2.5 mg/kg or topically at concentrations of 1%-2%. The IOP-lowering effects of abn-CBD and CBG-DMH were reduced by i.p. administration of O-1918 (2.5 mg/kg), a selective antagonist of the abn-CBD-sensitive cannabinoid-related receptor (CBx), but were unaffected by the CB(1)R antagonist, AM251 (2.5 mg/kg), or the CB(2)R antagonist, AM630 (2.5 mg/kg). In contrast, the IOP-lowering action of WIN55,212-2 was completely blocked by the CB(1)R-selective antagonist, AM251, and was unaffected by the CBx receptor antagonist, O-1918. However, similar to the nonpsychotropic cannabinoids, the ocular hypotensive actions of WIN55,212-2 were also insensitive to block by the CB(2)R antagonist, AM630. Consistent with this, the selective CB(2)R agonist, HU-308 (2 mg/kg) failed to reduce IOP in Brown Norway rats. Concurrent application of a dose of WIN55,212-2 that was subthreshold to reduce IOP (0.25 mg/kg), together with a topical dose of either abn-CBD (0.5%) or CBG-DMH (0.25%), respectively, potentiated the ocular hypotensive effect of either compound applied alone. This study demonstrates that the atypical cannabinoid, abn-CBD, and the cannabigerol analog, CBG-DMH, decrease IOP in the normotensive Brown Norway rat eye independent of CB

  18. The Endocannabinoid System, Cannabinoids, and Pain

    Directory of Open Access Journals (Sweden)

    Perry G. Fine

    2013-10-01

    Full Text Available The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors and in the periphery (primarily but not exclusively CB2 receptors are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking, as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

  19. Cannabinoides y su posible uso en el glaucoma Cannabinoids and their possible use in the treatment of glaucoma

    Directory of Open Access Journals (Sweden)

    Beatriz Zozaya Aldana

    2011-09-01

    Full Text Available Aunque la planta Cannabis sativa ha sido empleada desde la más remota antigüedad con fines medicinales, uno de sus derivados, la marihuana, se ha convertido en la droga de uso ilegal más consumida en el mundo. Asimismo tanto el Cannabis como sus cannabinoides se emplean como terapéutico en pocas enfermedades generalmente neurológicas. Se realizó una revisión bibliográfica para exponer el posible uso de los cannabinoides en la terapéutica del glaucoma. Para ello se tuvo en cuenta la literatura disponible sobre el tema, durante el período enero a septiembre de 2010. Se ha comprobado el efecto hipotensor ocular de los cannabinoides al disminuir la producción de humor acuoso, y aumentar la excreción de humor acuoso a través de la malla trabecular y la vía uveoescleral, efecto compatible con el hallazgo de elevadas concentraciones de receptores de cannabinoides rCB1 y rCB2; además, el tetrahidrocannabinol ha demostrado disminuir el efecto neurodegenerativo en modelos de isquemia cerebral en ratas y se evidenció también el efecto beneficioso de los cannabinoides al disminuir la degeneración secundaria asociada al glaucoma mediada por la excitotoxicidad del glutamato. Estos hallazgos sobre el efecto beneficioso de los cannabinoides como hipotensores oculares y por su efecto neuroprotector, transmiten un mensaje esperanzador sobre la función que estos podrían desempeñar en el campo del glaucoma, aunque para mayor seguridad y eficacia serían necesarios ensayos clínicos encaminados a valorar su aplicabilidad en la práctica clínica diaria.Although the Cannabis Sativa plant has been used since the most remote ancient times for medicinal purposes, one of its derivatives, marijuana, has become the most commonly used illegal drug in the world. Similarly, both Cannabis and the cannabinoids are used therapeutically in a small number of general neurological pathologies. Literature review was made to set forth the possible use of

  20. Cannabinoides y su posible uso en el glaucoma

    Directory of Open Access Journals (Sweden)

    Beatriz Zozaya Aldana

    2011-09-01

    Full Text Available Aunque la planta Cannabis sativa ha sido empleada desde la más remota antigüedad con fines medicinales, uno de sus derivados, la marihuana, se ha convertido en la droga de uso ilegal más consumida en el mundo. Asimismo tanto el Cannabis como sus cannabinoides se emplean como terapéutico en pocas enfermedades generalmente neurológicas. Se realizó una revisión bibliográfica para exponer el posible uso de los cannabinoides en la terapéutica del glaucoma. Para ello se tuvo en cuenta la literatura disponible sobre el tema, durante el período enero a septiembre de 2010. Se ha comprobado el efecto hipotensor ocular de los cannabinoides al disminuir la producción de humor acuoso, y aumentar la excreción de humor acuoso a través de la malla trabecular y la vía uveoescleral, efecto compatible con el hallazgo de elevadas concentraciones de receptores de cannabinoides rCB1 y rCB2; además, el tetrahidrocannabinol ha demostrado disminuir el efecto neurodegenerativo en modelos de isquemia cerebral en ratas y se evidenció también el efecto beneficioso de los cannabinoides al disminuir la degeneración secundaria asociada al glaucoma mediada por la excitotoxicidad del glutamato. Estos hallazgos sobre el efecto beneficioso de los cannabinoides como hipotensores oculares y por su efecto neuroprotector, transmiten un mensaje esperanzador sobre la función que estos podrían desempeñar en el campo del glaucoma, aunque para mayor seguridad y eficacia serían necesarios ensayos clínicos encaminados a valorar su aplicabilidad en la práctica clínica diaria.

  1. The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism.

    Science.gov (United States)

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; de Freitas, Osvaldo; Santos, Antônio Cardozo

    2017-01-05

    Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation. Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors. We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF. Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells. Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.

  2. [Drug discrimination properties and cytotoxicity of the cannabinoid receptor ligands].

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2012-06-01

    The worldwide distribution of smokable herbal mixtures called "Spice" that contain synthetic cannabinoids with a pharmacological activity similar to delta 9-tetrahydrocannabinol (delta 9-THC) has been reported. The synthetic cannabinoids induce behavior and have biochemical properties similar to naturally occurring cannabinoids such as delta 9-THC. In drug discrimination procedures, animal behavior is differentially reinforced depending on the presence or absence of specific drug stimuli. This review seeks to establish an animal model to serve as a discriminative stimulus of the synthetic cannabinoids, to determine whether this discriminative stimulus is identical to that of delta 9-THC. Much data have been obtained in drug discrimination experiments with various synthetic cannabinoids. In the discriminative study, synthetic cannabinoids such as CP-55,940 and WIN-55,212-2 were substituted for delta 9-THC in rats trained to discriminate delta 9-THC from the vehicle. These discriminative effects of synthetic cannabinoids were antagonized by CB1 antagonist SR-141,716A. The discriminative effects of synthetic cannabinoids may overlap with the delta 9-THC cue mediated by CB1 receptors. In in vitro study using NG 108-15 cell lines, synthetic cannabinoids have produced strong cytotoxicities that were suppressed by pretreatment with the CB1 receptor antagonist. Furthermore, pretreatment with caspase inhibitors suppressed these synthetic-cannabinoid-induced cytotoxicities in NG 108-15 cells. These findings indicate that the cytotoxicity of synthetic cannabinoids towards NG 108-15 cells is mediated by the CB1 receptors and further suggest that caspase cascades may play an important role in the cytotoxicities induced by these synthetic cannabinoids. In conclusion, synthetic cannabinoid abuse could be a health hazard for humans.

  3. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

    Science.gov (United States)

    Di Giacomo, Daniele; De Domenico, Emanuela; Sette, Claudio; Geremia, Raffaele; Grimaldi, Paola

    2016-04-01

    Type 2 cannabinoid receptor (CB2) has been proposed to play a pivotal role in meiotic entry of male germ cells, similar to retinoic acid (RA). In this study, we showed that activation of CB2with the specific agonist JWH133 [3-(1',1'-dimethylbutyl)-1-deoxy-8-THC] (IC5010(-6)M) mimics epigenetic events induced by RA (IC5010(-7)M) in spermatogonia. Both JWH133 and RA treatments stimulate the expression of the meiotic genes c-KitandStra8, by up-regulating H3K4me3 and down-regulating H3K9me2 levels in genomic regions flanking the transcription start site. Moreover, both agents increase the expression ofPrdm9, the gene encoding a meiosis-specific histone, H3K4me3 methyltransferase, which marks hotspots of recombination in prophase I, thus resulting in a global increase in H3K4me3. Notably, prolonged administration of JWH133 to immature 7 dpp CD-1 mice induced an acceleration of the onset of spermatogenesis, whereas the specific CB2antagonist delayed germ cell differentiation. Thus, both hyper- and hypostimulation of CB2disrupted the temporal dynamics of the spermatogenic cycle. These findings highlight the importance of proper CB2signaling for the maintenance of a correct temporal progression of spermatogenesis and suggest a possible adverse effect of cannabis in deregulating this process.-Di Giacomo, D., De Domenico, E., Sette, C., Geremia, R., Grimaldi, P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

  4. In vitro metabolism of a novel synthetic cannabinoid, EAM-2201, in human liver microsomes and human recombinant cytochrome P450s.

    Science.gov (United States)

    Kim, Ju Hyun; Kim, Hee Seung; Kong, Tae Yeon; Lee, Joo Young; Kim, Jin Young; In, Moon Kyo; Lee, Hye Suk

    2016-02-05

    In vitro metabolism of a new synthetic cannabinoid, EAM-2201, has been investigated with human liver microsomes and major cDNA-expressed cytochrome P450 (CYP) isozymes using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Incubation of EAM-2201 with human liver microsomes in the presence of NADPH resulted in the formation of 37 metabolites, including nine hydroxy-EAM-2201 (M1-M9), five dihydroxy-EAM-2201 (M10-M14), dihydrodiol-EAM-2201 (M15), oxidative defluorinated EAM-2201 (M16), two hydroxy-M16 (M17 and M18), three dihydroxy-M16 (M19-M21), N-dealkyl-EAM-2201 (M22), two hydroxy-M22 (M23 and M24), dihydroxy-M22 (M25), EAM-2201 N-pentanoic acid (M26), hydroxy-M26 (M27), dehydro-EAM-2201 (M28), hydroxy-M28 (M29), seven dihydroxy-M28 (M30-M36), and oxidative defluorinated hydroxy-M28 (M37). Multiple CYPs, including CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2, 3A4, and 3A5, were involved in the metabolism of EAM-2201. In conclusion, EAM-2201 is extensively metabolized by CYPs and its metabolites can be used as an indicator of EAM-2201 abuse.

  5. Kinetic analysis of the cannabinoid-1 receptor PET tracer [{sup 18}F]MK-9470 in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Sanabria-Bohorquez, Sandra Marina; Hamill, Terence G.; Burns, H.D. [Merck Research Laboratories, Imaging, West Point, PA (United States); Goffin, Karolien; Laere, Koen van [University Hospital and K.U. Leuven, Division of Nuclear Medicine, Leuven (Belgium); Lepeleire, Inge de [Merck Research Laboratories, Brussels (Belgium); Bormans, Guy [K.U. Leuven, Laboratory of Radiopharmacy, Leuven (Belgium)

    2010-05-15

    Quantitative imaging of the type 1 cannabinoid receptor (CB1R) opens perspectives for many neurological and psychiatric disorders. We characterized the kinetics and reproducibility of the CB1R tracer [{sup 18}F]MK-9470 in human brain. [{sup 18}F]MK-9470 data were analysed using reversible models and the distribution volume V{sub T} and V{sub ND} k{sub 3} (V{sub ND} k{sub 3} = K{sub 1} k{sub 2}) were estimated. Tracer binding was also evaluated using irreversible kinetics and the irreversible uptake constant K{sub i} and fractional uptake rate (FUR) were estimated. The effect of blood flow on these parameters was evaluated. Additionally, the possibility of determining the tracer plasma kinetics using a reduced number of blood samples was also examined. A reversible two-tissue compartment model using a global k{sub 4} value was necessary to describe brain kinetics. Both V{sub T} and V{sub ND} k{sub 3} were estimated satisfactorily and their test-retest variability was between 10% and 30%. Irreversible methods adequately described brain kinetics and FUR values were equivalent to K{sub i}. The linear relationship between K{sub i} and V{sub ND} k{sub 3} demonstrated that K{sub i} or FUR and thus the simple measure of tracer brain uptake provide CB1R availability information. The test-retest variability of K{sub i} and FUR was <10% and estimates were independent of blood flow. Brain uptake can be used as a receptor availability index, albeit at the expense of potential bias due to between-subject differences in tracer plasma kinetics. [{sup 18}F]MK-9470 specific binding can be accurately determined using FUR values requiring a short scan 90 to 120 min after tracer administration. Our results suggest that [{sup 18}F]MK-9470 plasma kinetics can be assessed using a few venous samples. (orig.)

  6. Modulation of Type-1 and Type-2 Cannabinoid Receptors by Saffron in a Rat Model of Retinal Neurodegeneration

    Science.gov (United States)

    Maccarone, Rita; Rapino, Cinzia; Zerti, Darin; di Tommaso, Monia; Battista, Natalia; Di Marco, Stefano; Bisti, Silvia; Maccarrone, Mauro

    2016-01-01

    Experimental studies demonstrated that saffron (Crocus sativus) given as a dietary supplement counteracts the effects of bright continuous light (BCL) exposure in the albino rat retina, preserving both morphology and function and probably acting as a regulator of programmed cell death [1]. The purpose of this study was to ascertain whether the neuroprotective effect of saffron on rat retina exposed to BCL is associated with a modulation of the endocannabinoid system (ECS). To this aim, we used eight experimental groups of Sprague-Dawley rats, of which six were exposed to BCL for 24 hours. Following retinal function evaluation, retinas were quickly removed for biochemical and morphological analyses. Rats were either saffron-prefed or intravitreally injected with selective type-1 (CB1) or type-2 (CB2) cannabinoid receptor antagonists before BCL. Prefeeding and intravitreally injections were combined in two experimental groups before BCL. BCL exposure led to enhanced gene and protein expression of retinal CB1 and CB2 without affecting the other ECS elements. This effect of BCL on CB1 and CB2 was reversed by saffron treatment. Selective CB1 and CB2 antagonists reduced photoreceptor death, preserved morphology and visual function of retina, and mitigated the outer nuclear layer (ONL) damage due to BCL. Of interest, CB2-dependent neuroprotection was more pronounced than that conferred by CB1. These data suggest that BCL modulates only distinct ECS elements like CB1 and CB2, and that saffron and cannabinoid receptors could share the same mechanism in order to afford retinal protection. PMID:27861558

  7. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs

    Science.gov (United States)

    Turcotte, Caroline; Blanchet, Marie-Renée; Laviolette, Michel; Flamand, Nicolas

    2016-01-01

    Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids. PMID:27695418

  8. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    Directory of Open Access Journals (Sweden)

    Mattias Svensson

    2010-08-01

    Full Text Available Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC. Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.

  9. Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors.

    Science.gov (United States)

    Aghaei, Iraj; Rostampour, Mohammad; Shabani, Mohammad; Naderi, Nima; Motamedi, Fereshteh; Babaei, Parvin; Khakpour-Taleghani, Behrooz

    2015-11-01

    Epilepsy is one of the most common neurologic disorders. Though there are effective medications available to reduce the symptoms of the disease, their side effects have limited their usage. Palmitoylethanolamide (PEA) has been shown to attenuate seizure in different animal models. The objective of the current study was to evaluate the role of CB1 and CB2 receptors in this attenuation. Male wistar rats were used for the current experiment. PTZ was injected to induce chemical kindling in animals. After verification of kindling in animals, treatment was performed with PEA, AM251 and AM630 in different groups. Latency to induce seizure, seizure stages and latency and duration of fifth stage of seizure was recorded for each animal. Injection of PTZ led to seizure in the animals. Pretreatment with PEA increased the latency to initiate seizures and reduced the duration of seizure. Pretreatment with different dosages of AM251 had contrary effects so that at lower doses they increased the seizure in animals but at higher doses led to the attenuation of seizure. AM630 increased seizures in a dose dependent manner. Combination of the antagonists increased the seizure parameters and attenuated the effect of PEA on seizure. PEA attenuated the PTZ-induced seizures and pretreatment with CB1 and CB2 antagonists diminished this effect of PEA, but still PEA was effective, which might be attributed to the contribution of other receptors in PEA anti-epileptic properties. Findings of the current study implied that endocannabinoid signaling pathway might have an important role in the effects of PEA.

  10. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis

    OpenAIRE

    Richardson, Denise; Richard G Pearson; Kurian, Nisha; Latif, M. Liaque; Garle, Michael J.; Barrett, David A.; Kendall, David A; Scammell, Brigitte E.; Reeve, Alison J; Chapman, Victoria

    2008-01-01

    Introduction Cannabis-based medicines have a number of therapeutic indications, including anti-inflammatory and analgesic effects. The endocannabinoid receptor system, including the cannabinoid receptor 1 (CB1) and receptor 2 (CB2) and the endocannabinoids, are implicated in a wide range of physiological and pathophysiological processes. Pre-clinical and clinical studies have demonstrated that cannabis-based drugs have therapeutic potential in inflammatory diseases, including rheumatoid arthr...

  11. Cannabinoid Type-2 Receptor Drives Neurogenesis and Improves Functional Outcome After Stroke.

    Science.gov (United States)

    Bravo-Ferrer, Isabel; Cuartero, María I; Zarruk, Juan G; Pradillo, Jesús M; Hurtado, Olivia; Romera, Víctor G; Díaz-Alonso, Javier; García-Segura, Juan M; Guzmán, Manuel; Lizasoain, Ignacio; Galve-Roperh, Ismael; Moro, María A

    2017-01-01

    Stroke is a leading cause of adult disability characterized by physical, cognitive, and emotional disturbances. Unfortunately, pharmacological options are scarce. The cannabinoid type-2 receptor (CB2R) is neuroprotective in acute experimental stroke by anti-inflammatory mechanisms. However, its role in chronic stroke is still unknown. Stroke was induced by permanent middle cerebral artery occlusion in mice; CB2R modulation was assessed by administering the CB2R agonist JWH133 ((6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran) or the CB2R antagonist SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo-[2.2.1]-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) once daily from day 3 to the end of the experiment or by CB2R genetic deletion. Analysis of immunofluorescence-labeled brain sections, 5-bromo-2´-deoxyuridine (BrdU) staining, fluorescence-activated cell sorter analysis of brain cell suspensions, and behavioral tests were performed. SR144528 decreased neuroblast migration toward the boundary of the infarct area when compared with vehicle-treated mice 14 days after middle cerebral artery occlusion. Consistently, mice on this pharmacological treatment, like mice with CB2R genetic deletion, displayed a lower number of new neurons (NeuN(+)/BrdU(+) cells) in peri-infarct cortex 28 days after stroke when compared with vehicle-treated group, an effect accompanied by a worse sensorimotor performance in behavioral tests. The CB2R agonist did not affect neurogenesis or outcome in vivo, but increased the migration of neural progenitor cells in vitro; the CB2R antagonist alone did not affect in vitro migration. Our data support that CB2R is fundamental for driving neuroblast migration and suggest that an endocannabinoid tone is required for poststroke neurogenesis by promoting neuroblast migration toward the injured brain tissue, increasing the number of new cortical neurons and, conceivably, enhancing

  12. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors

    Science.gov (United States)

    O'Sullivan, S E

    2007-01-01

    Cannabinoids act at two classical cannabinoid receptors (CB1 and CB2), a 7TM orphan receptor and the transmitter-gated channel transient receptor potential vanilloid type-1 receptor. Recent evidence also points to cannabinoids acting at members of the nuclear receptor family, peroxisome proliferator-activated receptors (PPARs, with three subtypes α, β (δ) and γ), which regulate cell differentiation and lipid metabolism. Much evidence now suggests that endocannabinoids are natural activators of PPARα. Oleoylethanolamide regulates feeding and body weight, stimulates fat utilization and has neuroprotective effects mediated through activation of PPARα. Similarly, palmitoylethanolamide regulates feeding and lipid metabolism and has anti-inflammatory properties mediated by PPARα. Other endocannabinoids that activate PPARα include anandamide, virodhamine and noladin. Some (but not all) endocannabinoids also activate PPARγ; anandamide and 2-arachidonoylglycerol have anti-inflammatory properties mediated by PPARγ. Similarly, ajulemic acid, a structural analogue of a metabolite of Δ9-tetrahydrocannabinol (THC), causes anti-inflammatory effects in vivo through PPARγ. THC also activates PPARγ, leading to a time-dependent vasorelaxation in isolated arteries. Other cannabinoids which activate PPARγ include N-arachidonoyl-dopamine, HU210, WIN55212-2 and CP55940. In contrast, little research has been carried out on the effects of cannabinoids at PPARδ. In this newly emerging area, a number of research questions remain unanswered; for example, why do cannabinoids activate some isoforms and not others? How much of the chronic effects of cannabinoids are through activation of nuclear receptors? And importantly, do cannabinoids confer the same neuro- and cardioprotective benefits as other PPARα and PPARγ agonists? This review will summarize the published literature implicating cannabinoid-mediated PPAR effects and discuss the implications thereof. PMID:17704824

  13. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    Science.gov (United States)

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  14. Cannabinoids and zebrafish

    NARCIS (Netherlands)

    Akhtar, Muhammad Tayyab

    2013-01-01

    Cannabinoids are a group of terpenophenolic compounds and are naturally found in the cannabis plant (Cannabis sativa L). Δ9-Tetrahydrocannabinol (Δ9-THC) is the psychoactive cannabinoid. The high lipophilicity of Δ9-THC is a hindering factor in the further development of this compound into a large s

  15. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA.

    Science.gov (United States)

    Banister, Samuel D; Moir, Michael; Stuart, Jordyn; Kevin, Richard C; Wood, Katie E; Longworth, Mitchell; Wilkinson, Shane M; Beinat, Corinne; Buchanan, Alexandra S; Glass, Michelle; Connor, Mark; McGregor, Iain S; Kassiou, Michael

    2015-09-16

    Synthetic cannabinoid (SC) designer drugs based on indole and indazole scaffolds and featuring l-valinamide or l-tert-leucinamide side chains are encountered with increasing frequency by forensic researchers and law enforcement agencies and are associated with serious adverse health effects. However, many of these novel SCs are unprecedented in the scientific literature at the time of their discovery, and little is known of their pharmacology. Here, we report the synthesis and pharmacological characterization of AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, 5F-ADBICA, and several analogues. All synthesized SCs acted as high potency agonists of CB1 (EC50 = 0.24-21 nM) and CB2 (EC50 = 0.88-15 nM) receptors in a fluorometric assay of membrane potential, with 5F-ADB-PINACA showing the greatest potency at CB1 receptors. The cannabimimetic activities of AB-FUBINACA and AB-PINACA in vivo were evaluated in rats using biotelemetry. AB-FUBINACA and AB-PINACA dose-dependently induced hypothermia and bradycardia at doses of 0.3-3 mg/kg, and hypothermia was reversed by pretreatment with a CB1 (but not CB2) antagonist, indicating that these SCs are cannabimimetic in vivo, consistent with anecdotal reports of psychoactivity in humans.

  16. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties.

    Science.gov (United States)

    García-Arencibia, Moisés; González, Sara; de Lago, Eva; Ramos, José A; Mechoulam, Raphael; Fernández-Ruiz, Javier

    2007-02-23

    We have recently demonstrated that two plant-derived cannabinoids, Delta9-tetrahydrocannabinol and cannabidiol (CBD), are neuroprotective in an animal model of Parkinson's disease (PD), presumably because of their antioxidant properties. To further explore this issue, we examined the neuroprotective effects of a series of cannabinoid-based compounds, with more selectivity for different elements of the cannabinoid signalling system, in rats with unilateral lesions of nigrostriatal dopaminergic neurons caused by local application of 6-hydroxydopamine. We used the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA), the CB2 receptor agonist HU-308, the non-selective agonist WIN55,212-2, and the inhibitors of the endocannabinoid inactivation AM404 and UCM707, all of them administered i.p. Daily administration of ACEA or WIN55,212-2 did not reverse 6-hydroxydopamine-induced dopamine (DA) depletion in the lesioned side, whereas HU-308 produced a small recovery that supports a possible involvement of CB2 but not CB1 receptors. AM404 produced a marked recovery of 6-hydroxydopamine-induced DA depletion and tyrosine hydroxylase deficit in the lesioned side. Possibly, this is caused by the antioxidant properties of AM404, which are derived from the presence of a phenolic group in its structure, rather than by the capability of AM404 to block the endocannabinoid transporter, because UCM707, another transporter inhibitor devoid of antioxidant properties, did not produce the same effect. None of these effects were observed in non-lesioned contralateral structures. We also examined the timing for the effect of CBD to provide neuroprotection in this rat model of PD. We found that CBD, as expected, was able to recover 6-hydroxydopamine-induced DA depletion when it was administered immediately after the lesion, but it failed to do that when the treatment started 1 week later. In addition, the effect of CBD implied an upregulation of mRNA levels for Cu,Zn-superoxide dismutase

  17. Mistic and TarCF as fusion protein partners for functional expression of the cannabinoid receptor 2 in Escherichia coli.

    Science.gov (United States)

    Chowdhury, Ananda; Feng, Rentian; Tong, Qin; Zhang, Yuxun; Xie, Xiang-Qun

    2012-06-01

    G protein coupled receptors (GPCRs) are key players in signal recognition and cellular communication making them important therapeutic targets. Large-scale production of these membrane proteins in their native form is crucial for understanding their mechanism of action and target-based drug design. Here we report the overexpression system for a GPCR, the cannabinoid receptor subtype 2 (CB2), in Escherichia coli C43(DE3) facilitated by two fusion partners: Mistic, an integral membrane protein expression enhancer at the N-terminal, and TarCF, a C-terminal fragment of the bacterial chemosensory transducer Tar at the C-terminal of the CB2 open reading frame region. Multiple histidine tags were added on both ends of the fusion protein to facilitate purification. Using individual and combined fusion partners, we found that CB2 fusion protein expression was maximized only when both partners were used. Variable growth and induction conditions were conducted to determine and optimize protein expression. More importantly, this fusion protein Mistic-CB2-TarCF can localize into the E. coli membrane and exhibit functional binding activities with known CB2 ligands including CP55,940, WIN55,212-2 and SR144,528. These results indicate that this novel expression and purification system provides us with a promising strategy for the preparation of biologically active GPCRs, as well as general application for the preparation of membrane-bound proteins using the two new fusion partners described.

  18. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

    Science.gov (United States)

    Wang, Lin-Lin; Zhao, Rui; Li, Jiao-Yong; Li, Shan-Shan; Liu, Min; Wang, Meng; Zhang, Meng-Zhou; Dong, Wen-Wen; Jiang, Shu-Kun; Zhang, Miao; Tian, Zhi-Ling; Liu, Chang-Sheng; Guan, Da-Wei

    2016-09-05

    Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.

  19. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

    Science.gov (United States)

    Ke, Ping; Shao, Bo-Zong; Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.

  20. Effects of endocannabinoid 1 and 2 (CB1; CB2) receptor agonists on luteal weight, circulating progesterone, luteal mRNA for luteinizing hormone (LH) receptors, and luteal unoccupied and occupied receptors for LH in vivo in ewes.

    Science.gov (United States)

    Tsutahara, Nicole M; Weems, Yoshie S; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; LaPorte, Magen E; Uchida, Janelle; Pang, Janelle; McBride, Tonya; Randel, Ronald D; Weems, Charles W

    2011-02-01

    Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 μg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and

  1. Expression and significance of cannabinoid receptor 2 in malignant melanoma%大麻素2型受体在皮肤恶性黑素瘤中的表达

    Institute of Scientific and Technical Information of China (English)

    赵梓纲; 杨洁; 李园园; 李琳; 赵华; 李恒进

    2009-01-01

    目的 探讨大麻素2型受体(CB2受体)在色素痣及皮肤恶性黑素瘤中的表达规律及其意义.方法 免疫组化、RT-PCR检测色素痣和恶性黑素瘤组织中CB2受体在蛋白和mRNA不同水平的表达情况.结果 CB2受体在色素痣和恶性黑素瘤均有表达;在色素痣主要表达分布于痣细胞和表皮层的基底细胞层,在皮下组织中表达不明显;皮肤恶性黑素瘤与色素痣表达CB2的强度间差异有统计学意义(P<0.05).结论 恶性黑素瘤中CB2受体在蛋白和基因水平表达均升高,恶性黑素瘤CB2受体表达强度明显大于色素痣.%Objective To investigate the expression of cannabinoid receptor 2 (CB2) in pigmented nevus and malignant melanoma and its significance. Methods The protein and mRNA expressions of CB2 were measured in tissue samples of 20 patients with pigmented nevus and 20 patients with malignant melanoma using immunohistochemical staining and RT-PCR, respectively. Results CB2 was expressed in both pigmented nevus and malignant melanoma. In tissue of pigmented nevus, CB2 was chiefly expressed in nevocytes and basal cell layer, and only a small quantity of CB2 was expressed in subcutaneous tissue. Statis-tical differences were observed between samples of malignant melanoma and pigmented nevus in the expres-sion intensity of CB2 (P < 0.05). Conclusions Increased protein and mRNA expressions of CB2 are observed in tissue of malignant melanoma, and the expression intensity of CB2 is higher in tissue of malig-nant melanoma than in that of pigmented nevus.

  2. SEM, TEM and SLEEM (scanning low energy electron microscopy) of CB2 steel after creep testing

    Science.gov (United States)

    Kasl, J.; Mikmeková, Š.; Jandová, D.

    2014-03-01

    The demand to produce electrical power with higher efficiency and with lower environmental pollution is leading to the use of new advanced materials in the production of power plant equipment. To understand the processes taking place in parts produced from these materials during their operation under severe conditions (such as high temperature, high stress, and environmental corrosion) requires detailed evaluation of their substructure. It is usually necessary to use transmission electron microscopy (TEM). However, this method is very exacting and time-consuming. So there is an effort to use new scanning electron microscopy techniques instead of TEM. One of them is scanning low energy electron microscopy (SLEEM). This paper deals with an assessment of the possibility to use SLEEM for describing the substructure of creep resistant steel CB2 after long-term creep testing. In the SLEEM images more information is contained about the microstructure of the material in comparison with standard scanning electron microscopy. Study of materials using slow and very slow electrons opens the way to better understanding their microstructures.

  3. Distinguishing Intake of New Synthetic Cannabinoids ADB-PINACA and 5F-ADB-PINACA with Human Hepatocyte Metabolites and High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Carlier, Jeremy; Diao, Xingxing; Scheidweiler, Karl B; Huestis, Marilyn A

    2017-05-01

    ADB-PINACA and its 5-fluoropentyl analog 5F-ADB-PINACA are among the most potent synthetic cannabinoids tested to date, with several severe intoxication cases. ADB-PINACA and 5F-ADB-PINACA have a different legal status, depending on the country. Synthetic cannabinoid metabolites predominate in urine, making detection of specific metabolites the most reliable way for proving intake in clinical and forensic specimens. However, there are currently no data on ADB-PINACA and 5F-PINACA metabolism. The substitution of a single fluorine atom distinguishes the 2 molecules, which may share common major metabolites. For some legal applications, distinguishing between ADB-PINACA and 5F-PINACA intake is critical. For this reason, we determined the human metabolic fate of the 2 analogs. ADB-PINACA and 5F-PINACA were incubated for 3 h with pooled cryopreserved human hepatocytes, followed by liquid chromatography-high-resolution mass spectrometry analysis. Data were processed with Compound Discoverer. We identified 19 and 12 major ADB-PINACA and 5F-ADB-PINACA metabolites, respectively. Major metabolic reactions included pentyl hydroxylation, hydroxylation followed by oxidation (ketone formation), and glucuronidation of ADB-PINACA, and oxidative defluorination followed by carboxylation of 5F-ADB-PINACA. We recommend ADB-PINACA ketopentyl and hydroxypentyl, and ADB-PINACA 5-hydroxypentyl and pentanoic acid, as optimal markers for ADB-PINACA and 5F-ADB-PINACA intake, respectively. Since the 2 compounds present positional isomers as the primary metabolites, monitoring unique product ions and optimized chromatographic conditions are required for a clear distinction between ADB-PINACA and 5F-ADB-PINACA intake. © 2016 American Association for Clinical Chemistry.

  4. Critical appraisal of the potential use of cannabinoids in cancer management

    Directory of Open Access Journals (Sweden)

    Cridge BJ

    2013-08-01

    Full Text Available Belinda J Cridge, Rhonda J Rosengren Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand Abstract: Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB1 or CB2. The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents. Keywords: cancer, cannabinoid, endocannabinoid, tetrahydrocannabinol, JWH-133, WIN-55,212-2

  5. Cannabinoids for treatment of Alzheimer’s disease: moving towards the clinic

    Directory of Open Access Journals (Sweden)

    Isidro eFerrer

    2014-03-01

    Full Text Available The limited effectiveness of current therapies against Alzheimer’s disease highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful A peptide action and tau phosphorylation, as well as by promoting the brain’s intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of Alzheimer’s disease, which together encourage progress towards a clinical trial.

  6. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  7. Cannabis and Cannabinoids (PDQ)

    Science.gov (United States)

    ... Professionals Questions to Ask about Your Treatment Research Cannabis and Cannabinoids (PDQ®)–Patient Version Overview Go to ... treatment (see Question 9 ). Questions and Answers About Cannabis What is Cannabis ? Cannabis , also known as marijuana , ...

  8. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    Science.gov (United States)

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  9. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data

    Directory of Open Access Journals (Sweden)

    Michael Halpern

    2010-08-01

    Full Text Available The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD and vascular dementia (VD. Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies.

  10. A cannabinoid link between mitochondria and memory.

    Science.gov (United States)

    Hebert-Chatelain, Etienne; Desprez, Tifany; Serrat, Román; Bellocchio, Luigi; Soria-Gomez, Edgar; Busquets-Garcia, Arnau; Pagano Zottola, Antonio Christian; Delamarre, Anna; Cannich, Astrid; Vincent, Peggy; Varilh, Marjorie; Robin, Laurie M; Terral, Geoffrey; García-Fernández, M Dolores; Colavita, Michelangelo; Mazier, Wilfrid; Drago, Filippo; Puente, Nagore; Reguero, Leire; Elezgarai, Izaskun; Dupuy, Jean-William; Cota, Daniela; Lopez-Rodriguez, Maria-Luz; Barreda-Gómez, Gabriel; Massa, Federico; Grandes, Pedro; Bénard, Giovanni; Marsicano, Giovanni

    2016-11-24

    Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.

  11. Determination of cannabinoids in hemp nut products in Taiwan by HPLC-MS/MS coupled with chemometric analysis: quality evaluation and a pilot human study.

    Science.gov (United States)

    Chang, Chih-Wei; Tung, Chun-Wei; Tsai, Chin-Chuan; Wu, Yu-Tse; Hsu, Mei-Chich

    2016-09-02

    Hemp nuts are mature cannabis seeds obtained after shelling and that are commonly used in traditional Chinese medicine for treating functional constipation. In this work, we screened hemp nut products, classified them, and verified the legality of consuming them. A total of 18 products were purchased from Taiwan, China, and Canada. Validated high-performance liquid chromatography with tandem mass spectrometry methods were developed for analyzing the cannabinoid (i.e., Δ(9) -tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol) content of the products and the concentration of urinary 11-nor-9-carboxy-THC. Chemometric techniques, namely hierarchical clustering analysis (HCA) and principal component analysis (PCA), were applied for rapidly classifying 11 concentrated powder products in Taiwan. A pilot human study comprising single and multiple administrations of a product with 1.5 µg/g of THC was conducted to examine the urinary 11-nor-9-carboxy-THC concentration. Through optimization of 3(2) full factorial design, using 60% isopropanol as the extraction solvent exhibited the highest yield of cannabinoids and was applied as the optimal condition in further analysis. The results of HCA and PCA on quality evaluation were in good agreement; however, the tested products possessed distinct CBD-to-THC ratios which ranged widely from 0.1:1 to 46.8:1. Particularly, the products with CBD-to-THC ratios higher than 1:1 were the majority in Taiwan. Our data suggested that all the tested hemp nut products met the Taiwan restriction criterion of 10 µg/g of THC. We propose a usual consumption amount of hemp nut products in Taiwan would unlikely to violate the cut-off point of 15 ng/mL of urinary 11-nor-9-carboxy-THC. Copyright © 2016 John Wiley & Sons, Ltd.

  12. First Metabolic Profile of XLR-11, a Novel Synthetic Cannabinoid, Obtained by Using Human Hepatocytes and High-Resolution Mass Spectrometry

    Science.gov (United States)

    Wohlfarth, Ariane; Pang, Shaokun; Zhu, Mingshe; Gandhi, Adarsh S.; Scheidweiler, Karl B.; Liu, Hua-fen; Huestis, Marilyn A.

    2015-01-01

    BACKGROUND Since the mid-2000s synthetic cannabinoids have been abused as recreational drugs, prompting scheduling of these substances in many countries. To circumvent legislation, manufacturers constantly market new compounds; [1-(5-fluoropentyl)indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone (XLR-11), the fluorinated UR-144 analog, is one of the most recent and widely abused drugs, and its use is now linked with acute kidney injury. Our goal was to investigate XLR-11 metabolism for identification of major urinary targets in analytical methods and to clarify the origin of metabolites when one or more parent synthetic cannabinoids can be the source. METHODS We incubated 10 μmol/L XLR-11 with pooled human hepatocytes and sampled after 1 and 3 h. Samples were analyzed by high-resolution mass spectrometry with a TOF scan followed by information-dependent acquisition triggered product ion scans with dynamic background subtraction and mass defect filters. Scans were thoroughly data mined with different data processing algorithms (Metabolite Pilot 1.5). RESULTS XLR-11 underwent phase I and II metabolism, producing more than 25 metabolites resulting from hydroxylation, carboxylation, hemiketal and hemiacetal formation, internal dehydration, and further glucuronidation of some oxidative metabolites. No sulfate or glutathione conjugation was observed. XLR-11 also was defluorinated, forming UR-144 metabolites. On the basis of mass spectrometry peak areas, we determined that the major metabolites were 2′-carboxy-XLR-11, UR-144 pentanoic acid, 5-hydroxy-UR-144, hydroxy-XLR-11 glucuronides, and 2′-carboxy-UR-144 pentanoic acid. Minor metabolites were combinations of the biotransformations mentioned above, often glucuronidated. CONCLUSIONS These are the first data defining major urinary targets of XLR-11 metabolism that could document XLR-11 intake in forensic and clinical investigations. PMID:24014837

  13. Role of genetic variation in the cannabinoid type 1 receptor gene (CNR1) in the pathophysiology of human obesity.

    Science.gov (United States)

    Schleinitz, Dorit; Carmienke, Solveig; Böttcher, Yvonne; Tönjes, Anke; Berndt, Janin; Klöting, Nora; Enigk, Beate; Müller, Ines; Dietrich, Kerstin; Breitfeld, Jana; Scholz, Gerhard H; Engeli, Stefan; Stumvoll, Michael; Blüher, Matthias; Kovacs, Peter

    2010-05-01

    The endocannabinoid system may contribute to the association of visceral fat accumulation with metabolic diseases. Here we investigated the effects of genetic variation in the cannabinoid type 1 receptor gene (CNR1) on its mRNA expression in adipose tissue from visceral and subcutaneous depots and on the development of obesity. CNR1 was sequenced in 48 nonrelated German Caucasians to detect genetic variation. Five representative variants including HapMap tagging SNPs (rs12720071, rs806368, rs806370, rs1049353 and rs806369) were genotyped for subsequent association studies in two independent cohorts (total n = 2774) with detailed metabolic testing: subjects from the Leipzig Study (n = 1857) and a self-contained population of Sorbs from Germany (n = 917). In a case-control study of lean (BMI obese (BMI >30 kg/m(2)) subjects, rs806368 was found to be nominally associated with obesity in the Sorbian cohort (adjusted p pathophysiology of obesity in German and Sorbian populations.

  14. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells.

    Science.gov (United States)

    Dando, I; Donadelli, M; Costanzo, C; Dalla Pozza, E; D'Alessandro, A; Zolla, L; Palmieri, M

    2013-06-13

    The anti-tumoral effects of cannabinoids have been described in different tumor systems, including pancreatic adenocarcinoma, but their mechanism of action remains unclear. We used cannabinoids specific for the CB1 (ACPA) and CB2 (GW) receptors and metabolomic analyses to unravel the potential pathways mediating cannabinoid-dependent inhibition of pancreatic cancer cell growth. Panc1 cells treated with cannabinoids show elevated AMPK activation induced by a ROS-dependent increase of AMP/ATP ratio. ROS promote nuclear translocation of GAPDH, which is further amplified by AMPK, thereby attenuating glycolysis. Furthermore, ROS determine the accumulation of NADH, suggestive of a blockage in the respiratory chain, which in turn inhibits the Krebs cycle. Concomitantly, inhibition of Akt/c-Myc pathway leads to decreased activity of both the pyruvate kinase isoform M2 (PKM2), further downregulating glycolysis, and glutamine uptake. Altogether, these alterations of pancreatic cancer cell metabolism mediated by cannabinoids result in a strong induction of autophagy and in the inhibition of cell growth.

  15. Downregulation of class II transactivator (CIITA) expression by synthetic cannabinoid CP55,940.

    Science.gov (United States)

    Gongora, Celine; Hose, Stacey; O'Brien, Terrence P; Sinha, Debasish

    2004-01-30

    Cannabinoid receptors are known to be expressed in microglia; however, their involvement in specific aspects of microglial immune function has not been demonstrated. Many effects of cannabinoids are mediated by two G-protein coupled receptors, designated CB1 and CB2. We have shown that the CB1 receptor is expressed in microglia that also express MHC class II antigen (J. Neuroimmunol. 82 (1998) 13-21). In our present study, we have analyzed the effect of cannabinoid agonist CP55,940 on MHC class II expression on the surface of IFN-gamma induced microglial cells by flow cytometry. CP55,940 blocked the class II MHC expression induced by IFN-gamma. It has been shown that the regulation of class II MHC genes occurs primarily at the transcriptional level, and a non-DNA binding protein, class II transactivator (CIITA), has been shown to be the master activator for class II transcription. We find that mRNA levels of CIITA are increased in IFN-gamma induced EOC 20 microglial cells and that this increase is almost entirely eliminated by the cannabinoid agonist CP55,940. These data suggests that cannabinoids affect MHC class II expression through actions on CIITA at the transcriptional level.

  16. Altered gene expression and functional activity of opioid receptors in the cerebellum of CB1 cannabinoid receptor knockout mice after acute treatments with cannabinoids.

    Science.gov (United States)

    Páldyová, Estera; Bereczki, E; Sántha, M; Wenger, T; Borsodi, Anna; Benyhe, S

    2007-01-01

    Numerous studies have shown functional links between the cannabinoid and opioid systems. The goal of this study was to evaluate whether acute treatments by endogenous cannabinoid agonist, selective CB1 or CB2 receptor antagonists modulate the expression of mu- (MOR) and delta- (DOR) opioid receptor mRNA levels and functional activity in the cerebellum of transgenic mice deficient in the CB1 type of cannabis receptors. We examined the effect of noladin ether (endogenous cannabinoid agonist) pretreatment on MOR and DOR mRNA expression by using reverse transcription and real-time polimerase chain reaction (PCR) and the ability of subsequent application of the opioid agonists to activate G-proteins, as measured by [35S]GTPgammaS binding, in wild-type (CB1+/+) and CB1 cannabinoid receptor deficient (CB1-/-, 'knockout', K.O.) mice. The acute administration of noladin ether markedly reduced MOR-mediated G-protein activation and caused a significant increase in the level of MOR mRNAs in the cerebella of wildtype, but not in the CB1-/- mice. No significant differences were observed in DOR functional activity and mRNA expression in wild-type animals. In CB1-/- mice the expression of DOR mRNA increased after noladin ether treatment, but no changes were found in DOR functional activity. In addition, Rimonabant (selective central cannabinoid CB1 receptor antagonist) and SR144528 (selective peripheral cannabinoid CB2 receptor antagonist) caused significant potentiation in MOR functional activity in the wild-type animals, whereas DOR mediated G-protein activation was increased in the CB1-/- mice. In contrast, Rimonabant and SR144528 decreased the MOR and DOR mRNA expressions in both CB1+/+ and CB1-/- mice. Taken together, these results indicate that acute treatment with cannabinoids causes alterations in MOR and DOR mRNA expression and functional activity in the cerebella of wild-type and CB1 knockout mice indicating indirect interactions between these two signaling systems.

  17. 大麻素2型受体在宫颈上皮内瘤变和宫颈癌中的表达%Study on expression level of cannabinoid receptor 2 in cervical intraepithelial neoplasm and cervical cancer

    Institute of Scientific and Technical Information of China (English)

    张杏平; 贺小红; 刘跃; 刘江波

    2013-01-01

    Objective To study the expression level and significance of cannabinoid receptor 2 ( CB2 ) in cervical intraepithelial neoplasm and cervical cancer. Methods The expression levels of CB2 in normal cervix tissue, cervical intraepithelial neoplasm and cervical cancer were measured by immunohistochemical technique. Results Higher expression level of CB2 was detected in cervical intraepithelial neoplasm and cervical cancer compared to that in normal cervical tissue. Furthermore, the expression level of CB2 was gradually increased from low - grade to high - grade in cervical intraepithelial neoplasm and cervical cancer( P < 0.01 ). Conclusion High expression level of CB2 in cervical intraepithelial neoplasm and cervical cancer suggests CB2 plays an important role in development and progress from normal cervical tissue to cervical cancer.%目的 研究大麻素受体2(CB2受体)在正常宫颈组织、宫颈上皮内瘤变(CIN )和宫颈癌中的表达,探讨其在宫颈癌的发生发展中的作用和意义.方法 采用免疫组织化学方法分别检测正常宫颈组织、各级宫颈上皮内瘤变组织和宫颈癌中CB2受体的表达情况.结果 CB2受体在正常宫颈组织、宫颈上皮内瘤变组织和宫颈癌中均有表达;宫颈上皮内瘤变组织和宫颈癌中CB2受体表达水平明显高于正常组;CB2受体表达水平随组织恶性程度的增加而升高(P均<0.01).结论 CB2受体在宫颈上皮内瘤变组织和宫颈癌中表达明显升高,且其升高水平随病变组织恶性程度的增加而增加,提示CB2受体可能在正常宫颈组织向宫颈上皮内瘤变和宫颈癌的逐级演变过程中起着重要作用.

  18. Emerging drugs of abuse: current perspectives on synthetic cannabinoids

    Directory of Open Access Journals (Sweden)

    Debruyne D

    2015-10-01

    Full Text Available Danièle Debruyne,1,2 Reynald Le Boisselier1 1Centre for Evaluation and Information on Pharmacodependence - Addictovigilance (CEIP-A, 2Toxicology and Pharmacology Laboratory, Department of Pharmacology, University Hospital Centre Côte de Nacre, Caen, France Abstract: New psychoactive drugs that have appeared over the last decade are typically dominated by cathinones and synthetic cannabinoids (SCs. SCs have been emerging as recreational drugs because they mimic the euphoria effect of cannabis while still being legal. Sprayed on natural herb mixtures, SCs have been primarily sold as “herbal smoking blends” or “herbal incense” under brand names like “Spice” or “K2”. Currently, SCs pure compounds are available from websites for the combination with herbal materials or for the use in e-cigarettes. For the past 5 years, an ever increasing number of compounds, representative of different chemical classes, have been promoted and now represent a large assortment of new popular drugs of abuse, which are difficult to properly identify. Their legal status varies by country with many government institutions currently pushing for their control. The in vitro binding to CB1/CB2 receptors is usually well-known and considerable differences have been found in the CB1 versus CB2 selectivity and potency within the different SCs, with several structure-activity relations being evident. Desired effects by CB1 agonist users are relaxation/recreative, however, cardiovascular, gastrointestinal, or psychiatric/neurological side effects are commonly reported. At present there is no specific antidote existing if an overdose of designer drugs was to occur, and no curative treatment has been approved by health authorities. Management of acute toxic effects is mainly symptomatic and extrapolated from experience with cannabis. Keywords: synthetic cannabinoids, chemistry, analysis, pharmacology, toxicology, dependence, medical care

  19. Cannabinoids and anxiety.

    Science.gov (United States)

    Moreira, Fabrício A; Wotjak, Carsten T

    2010-01-01

    The term cannabinoids encompasses compounds produced by the plant Cannabis sativa, such as delta9-tetrahydrocannabinol, and synthetic counterparts. Their actions occur mainly through activation of cannabinoid type 1 (CB1) receptors. Arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG) serve as major endogenous ligands (endocannabinoids) of CB1 receptors. Hence, the cannabinoid receptors, the endocannabinoids, and their metabolizing enzymes comprise the endocannabinoid system. Cannabinoids induce diverse responses on anxiety- and fear-related behaviors. Generally, low doses tend to induce anxiolytic-like effects, whereas high doses often cause the opposite. Inhibition of endocannabinoid degradation seems to circumvent these biphasic effects by enhancing CB1 receptor signaling in a temporarily and spatially restricted manner, thus reducing anxiety-like behaviors. Pharmacological blockade or genetic deletion of CB1 receptors, in turn, primarily exerts anxiogenic-like effects and impairments in extinction of aversive memories. Interestingly, pharmacological blockade of Transient Receptor Potential Vanilloid Type-1 (TRPV1) channel, which can be activated by anandamide as well, has diametrically opposite consequences. This book chapter summarizes and conceptualizes our current knowledge about the role of (endo)cannabinoids in fear and anxiety and outlines implications for an exploitation of the endocannabinoid system as a target for new anxiolytic drugs.

  20. Inhibition of titanium particle-induced inflammatory osteolysis through inactivation of cannabinoid receptor 2 by AM630.

    Science.gov (United States)

    Geng, D C; Xu, Y Z; Yang, H L; Zhu, X S; Zhu, G M; Wang, X B

    2010-10-01

    Wear particle could induce inflammatory osteolysis and is the primary pathological factor for aseptic loosening. Although it is known that cannabinoid receptor 2 (CB2) inhibits osteoclast differentiation, the effect on inflammatory osteolysis induced by wear particles remains unclear. This study examined the effect of CB2 in the regulation of osteoclast differentiation in a murine macrophage cell line (RAW264.7), which has been shown to be stimulated by titanium (Ti) particles and receptor activator of the NF-kappaB ligand (RANKL). Results showed that CB2 expression in RAW cells cultured with Ti particles and RANKL. CB2 inactivation by AM630, a CB2 selective antagonist, effectively inhibited osteoclastogenesis in the differentiation medium system. AM630 treatment (> or =100 nM) significantly reduced the number of tartrate-resistant acid phosphatase-positive cells when compared with the control. Real-time reverse transcription polymerase chain reaction analysis revealed that AM630 (100 nM) inhibited mRNA expression of RANK and cathepsin K in RAW cells stimulated by Ti particles and RANKL. Moreover, enzyme-linked immunosorbent assay showed that AM630 (100 nM) reduced protein expression of interleukin-1beta and tumor necrosis factor-alpha in RAW cells cultured with Ti particles. In addition, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide revealed that AM630 had no toxic effect on RAW cells. These results suggested that CB2 inactivation by AM630 could provide a promising therapeutic target for treating or preventing aseptic loosening.

  1. HU-446 and HU-465, Derivatives of the Non-psychoactive Cannabinoid Cannabidiol, Decrease the Activation of Encephalitogenic T Cells.

    Science.gov (United States)

    Kozela, Ewa; Haj, Christeene; Hanuš, Lumir; Chourasia, Mukesh; Shurki, Avital; Juknat, Ana; Kaushansky, Nathali; Mechoulam, Raphael; Vogel, Zvi

    2016-01-01

    Cannabidiol (CBD), the non-psychoactive cannabinoid, has been previously shown by us to decrease peripheral inflammation and neuroinflammation in mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here we have studied the anti-inflammatory effects of newly synthesized derivatives of natural (-)-CBD ((-)-8,9-dihydro-7-hydroxy-CBD; HU-446) and of synthetic (+)-CBD ((+)-8,9-dihydro-7-hydroxy-CBD; HU-465) on activated myelin oligodendrocyte glycoprotein (MOG)35-55-specific mouse encephalitogenic T cells (T(MOG) ) driving EAE/MS-like pathologies. Binding assays followed by molecular modeling revealed that HU-446 has negligible affinity toward the cannabinoid CB1 and CB2 receptors while HU-465 binds to both CB1 and CB2 receptors at the high nanomolar concentrations (Ki = 76.7 ± 5.8 nm and 12.1 ± 2.3 nm, respectively). Both, HU-446 and HU-465, at 5 and 10 μm (but not at 0.1 and 1 μm), inhibited the MOG35-55-induced proliferation of autoreactive T(MOG) cells via CB1/CB2 receptor independent mechanisms. Moreover, both HU-446 and HU-465, at 5 and 10 μm, inhibited the release of IL-17, a key autoimmune cytokine, from MOG35-55-stimulated T(MOG) cells. These results suggest that HU-446 and HU-465 have anti-inflammatory potential in inflammatory and autoimmune diseases.

  2. Qualitative Confirmation of 9 Synthetic Cannabinoids and 20 Metabolites in Human Urine Using LC–MS/MS and Library Search

    Science.gov (United States)

    Wohlfarth, Ariane; Scheidweiler, Karl B.; Chen, Xiaohong; Liu, Hua-fen; Huestis, Marilyn A.

    2013-01-01

    Introduction Synthetic cannabinoids are an emerging illicit drug class. The variety of available substances is large and ever-changing, making it difficult for laboratories to remain current. We present a qualitative LC–MS/MS method identifying urinary metabolites of JWH-018, JWH-073, JWH-081, JWH-122, JWH-200, JWH-210, JWH-250, RCS-4, and AM2201 and the parent compounds JWH-018, JWH-073, JWH-081, JWH-122, JWH-210, JWH-250, RCS-4, AM2201, and MAM2201. Methods After enzymatic hydrolysis, urinary proteins were precipitated with acetonitrile. Chromatography utilized a 10 min gradient on a Kinetex XB-C18 column with 0.1% formic acid in water and acetonitrile. Scheduled multiple reaction monitoring “survey scans” were followed by information-dependent acquisition-enhanced product ion scan experiments on an ABSciex 5500 QTRAP mass spectrometer. Analytes were identified by software-assisted library searching against reference spectra. Results The method was fully validated, including proof of selectivity (no exogenous or endogenous interferences were observed), assessment of matrix effects (95–122%) and recovery (53–95%), determination of limits of detection (0.5–10 ng/mL), carry-over studies (thresholds between 100 and 1000 ng/mL), and determination of autosampler stability (samples were stable for at least 3 days). Hydrolysis efficiency was thoroughly investigated for a wide range of glucuronides and for the reference standard, JWH-018 5-hydroxypentyl glucuronide PMID:23458260

  3. Cannabinoids and Epilepsy.

    Science.gov (United States)

    Rosenberg, Evan C; Tsien, Richard W; Whalley, Benjamin J; Devinsky, Orrin

    2015-10-01

    Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.

  4. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling.

    Science.gov (United States)

    Kopach, Olga; Vats, Juliana; Netsyk, Olga; Voitenko, Nana; Irving, Andrew; Fedirko, Nataliya

    2012-04-15

    Cannabinoid receptors (CBRs) belong to the G protein-coupled receptor superfamily, and activation of CBRs in salivary cells inhibits agonist-stimulated salivation and modifies saliva content. However, the role of different CBR subtypes in acinar cell physiology and in intracellular signalling remains unclear. Here, we uncover functional CB(1)Rs and CB(2)Rs in acinar cells of rat submandibular gland and their essential role in saliva secretion. Pharmacological activation of CB(1)Rs and CB(2)Rs in the submandibular gland suppressed saliva outflow and modified saliva content produced by the submandibular gland in vivo. Using Na(+)-selective microelectrodes to record secretory Na(+) responses in the lumen of acini, we observed a reduction in Na(+) transport following the activation of CBRs, which was counteracted by the selective CB(1)R antagonist AM251. In addition, activation of CB(1)Rs or CB Rs caused inhibition of Na(+)-K(+) 2 -ATPase activity in microsomes derived from the gland tissue as well as in isolated acinar cells. Using a Ca(2+) imaging technique, we showed that activation of CB(1)Rs and CB(2)Rs alters [Ca(2+)](cyt) signalling in acinar cells by distinct pathways, involving Ca(2+) release from the endoplasmic reticulum (ER) and store-operated Ca(2+) entry (SOCE), respectively. Our data demonstrate the expression of CB(1)Rs and CB(2)Rs in acinar cells, and their involvement in the regulation of salivary gland functioning.

  5. Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes.

    Science.gov (United States)

    Diao, Xingxing; Scheidweiler, Karl B; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Huestis, Marilyn A

    Since 2013, a new drugs-of-abuse trend attempts to bypass drug legislation by marketing isomers of scheduled synthetic cannabinoids (SCs), e.g., FUBIMINA (BIM-2201) and THJ-2201. It is much more challenging to confirm a specific isomer's intake and distinguish it from its structural analog because the isomers and their major metabolites usually have identical molecular weights and display the same product ions. Here, we investigated isomers FUBIMINA and THJ-2201 and propose strategies to distinguish their consumption. THJ-2201 was scheduled in the US, Japan, and Europe; however, FUBIMINA is easily available on the Internet. We previously investigated THJ-2201 metabolism in human hepatocytes, but human FUBIMINA metabolism is unknown. We aim to characterize FUBIMINA metabolism in human hepatocytes, recommend optimal metabolites to confirm its consumption, and propose strategies to distinguish between intakes of FUBIMINA and THJ-2201. FUBIMINA (10 μM) was incubated in human hepatocytes for 3 h, and metabolites were characterized with high-resolution mass spectrometry (HR-MS). We identified 35 metabolites generated by oxidative defluorination, further carboxylation, hydroxylation, dihydrodiol formation, glucuronidation, and their combinations. We recommend 5'-OH-BIM-018 (M34), BIM-018 pentanoic acid (M33), and BIM-018 pentanoic acid dihydrodiol (M7) as FUBIMINA specific metabolites. THJ-2201 produced specific metabolite markers 5'-OH-THJ-018 (F26), THJ-018 pentanoic acid (F25), and hydroxylated THJ-2201 (F13). Optimized chromatographic conditions to achieve different retention times and careful selection of specific product ion spectra enabled differentiation of isomeric metabolites, in this case FUBIMINA from THJ-2201. Our HR-MS approach should be applicable for differentiating future isomeric SCs, which is especially important when different isomers have different legal status.

  6. Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid.

    Science.gov (United States)

    Kozela, Ewa; Juknat, Ana; Vogel, Zvi

    2017-07-31

    The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.

  7. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

    Science.gov (United States)

    Lowin, Torsten; Straub, Rainer H

    2015-09-06

    Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.

  8. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    Science.gov (United States)

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  9. Altered expression of type-1 and type-2 cannabinoid receptors in celiac disease.

    Directory of Open Access Journals (Sweden)

    Natalia Battista

    Full Text Available Anandamide (AEA is the prominent member of the endocannabinoid family and its biological action is mediated through the binding to both type-1 (CB1 and type-2 (CB2 cannabinoid receptors (CBR. The presence of AEA and CBR in the gastrointestinal tract highlighted their pathophysiological role in several gut diseases, including celiac disease. Here, we aimed to investigate the expression of CBR at transcriptional and translational levels in the duodenal mucosa of untreated celiac patients, celiac patients on a gluten-free diet for at least 12 months and control subjects. Also biopsies from treated celiac patients cultured ex vivo with peptic-tryptic digest of gliadin were investigated. Our data show higher levels of both CB1 and CB2 receptors during active disease and normal CBR levels in treated celiac patients. In conclusion, we demonstrate an up-regulation of CB1 and CB2 mRNA and protein expression, that points to the therapeutic potential of targeting CBR in patients with celiac disease.

  10. Small intestinal cannabinoid receptor changes following a single colonic insult with oil of mustard in mice

    Directory of Open Access Journals (Sweden)

    Edward S Kimball

    2010-11-01

    Full Text Available Cannabinoids are known to be clinically beneficial for control of appetite disorders and nausea/vomiting, with emerging data that they can impact other GI disorders, such as inflammation. Post-inflammatory irritable bowel syndrome (PI-IBS is a condition of perturbed intestinal function that occurs subsequent to earlier periods of intestinal inflammation. Cannabinoid 1 receptor (CB1R and CB2R alterations in GI inflammation have been demonstrated in both animal models and clinically, but their continuing role in the post-inflammatory period has only been implicated to date. Therefore, to provide direct evidence for CBR involvement in altered GI functions in the absence of overt inflammation, we used a model of enhanced upper GI transit that persists for up to 4 weeks after a single insult by intracolonic 0.5% oil of mustard (OM in mice. In mice administered OM, CB1R immunostaining in the myenteric plexus was reduced at day 7, when colonic inflammation is subsiding, and then increased at 28 days, compared to tissue from age-matched vehicle-treated mice. In the lamina propria CB2R immunostaining density was also increased at day 28. In mice tested 28 day after OM, either a CB1R-selective agonist, ACEA (1 and 3 mg/kg, s.c. or a CB2R-selective agonist, JWH-133 (3 and 10 mg/kg, s.c. reduced the enhanced small intestinal transit in a dose-related manner. Doses of ACEA and JWH-133 (1 mg/kg, alone or combined, reduced small intestinal transit of OM-treated mice to a greater extent than control mice. Thus, in this post-colonic inflammation model, both CBR subtypes are up-regulated and there is increased efficacy of both CB1R and CB2R agonists. We conclude that CBR remodeling occurs not only during GI inflammation but continues during the recovery phase. Thus, either CB1R- or CB2-selective agonists could be efficacious for modulating GI motility in individuals experiencing diarrhea-predominant PI-IBS.

  11. Celastrol Attenuates Inflammatory and Neuropathic Pain Mediated by Cannabinoid Receptor Type 2

    Directory of Open Access Journals (Sweden)

    Longhe Yang

    2014-08-01

    Full Text Available Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine, has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI, respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p. injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p. significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p. effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p., a specific cannabinoid receptor-2 (CB2 receptor antagonist, but not by SR141716 (1 mg/kg, i.p., a specific cannabinoid receptor-1 (CB1 receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief.

  12. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.

    Directory of Open Access Journals (Sweden)

    Hila Abush

    Full Text Available The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg for two weeks during the late adolescence period (post-natal days 45-60 and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP in the ventral subiculum (vSub-nucleus accumbens (NAc pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.

  13. The natural product magnolol as a lead structure for the development of potent cannabinoid receptor agonists.

    Directory of Open Access Journals (Sweden)

    Alexander Fuchs

    Full Text Available Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenylphenol, the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB receptors. We now investigated the structure-activity relationships of (tetrahydromagnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl-4-hexylphenol (61a, K(i CB1:0.00957 µM; K(i CB2:0.0238 µM, and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl-4-pentylphenol (60, K(i CB1:0.362 µM; K(i CB2:0.0371 µM, which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 µM but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies.

  14. Rapid and sensitive screening and confirmation of thirty-four aminocarbonyl/carboxamide (NACA) and arylindole synthetic cannabinoid drugs in human whole blood.

    Science.gov (United States)

    Tynon, Marykathryn; Homan, Joseph; Kacinko, Sherri; Ervin, Annette; McMullin, Matthew; Logan, Barry K

    2017-06-01

    We describe the development and validation of a method for the screening and confirmation of a range of chemically diverse synthetic cannabinoid drugs in human whole blood. The method targets the better known arylindole compounds as well as the emerging aminocarbonyl/ carboxamide (NACA) compounds. The approach consists of two separate extraction procedures designed to optimize recovery of each of these two classes, followed by analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most significant novel compounds added were AB-FUBINACA, ADBICA, 5 F-ADBICA, ADB-PINACA, ADB-FUBINACA, ADB-FUBINACA, 5 F-ADB-PINACA, 5 F-ADB-PINACA, AB-PINACA, AB-CHMINACA, and ADB-CHMINACA. A third procedure is described for the quantitative confirmation of those compounds for which deuterated internal standards permitted quantitative analysis, including JWH-018, JWH-122, JWH-081, JWH-210, AM-2201, XLR-11, and UR-144. The methods were successfully validated according to Scientific Working Group in Forensic Toxicology (SWGTOX) protocol for 34 compounds in common use in the United States in the period of 2014 and 2015, although other substances, unknown at the time may have been introduced to the market over the same time period. The method was determined to be free from carry-over between samples, and no interference was found from other common therapeutic abused or novel psychoactive drugs. The methods were applied to the analysis of 1142 blood samples from forensic investigations, including post-mortem examinations and driving impairment cases. The drugs most frequently detected were AB-CHMINACA (18.6%), ADB-CHMINACA (15%), XLR-11 (5.5%), AB-FUBINACA (4.5%), AB-PINACA (3.9%), and ADB-FUBINACA (2.3%). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor (CB1R) agonist AM841 on gastrointestinal motor function in the rat

    Science.gov (United States)

    Abalo, R; Chen, C; Vera, G; Fichna, J; Thakur, GA; López-Pérez, AE; Makriyannis, A; Martín-Fontelles, MI; Storr, M

    2015-01-01

    Background Cannabinoids have been traditionally used for the treatment of gastrointestinal (GI) symptoms, but the associated central effects, through cannabinoid-1 receptors (CB1R), constitute an important drawback. Our aims were to characterize the effects of the recently developed highly potent long-acting megagonist AM841 on GI motor function and to determine its central effects in rats. Methods Male Wistar rats were used for in vitro and in vivo studies. The effect of AM841 was tested on electrically-induced twitch contractions of GI preparations (in vitro) and on GI motility measured radiographically after contrast administration (in vivo). Central effects of AM841 were evaluated using the cannabinoid tetrad. The non-selective cannabinoid agonist WIN 55,212-2 (WIN) was used for comparison. The CB1R (AM251) and CB2R (AM630) antagonists were used to characterize cannabinoid receptor-mediated effects of AM841. Key results AM841 dose-dependently reduced in vitro contractile activity of rat GI preparations via CB1R, but not CB2R or opioid receptors. In vivo, AM841 acutely and potently reduced gastric emptying and intestinal transit in a dose-dependent and AM251-sensitive manner. The in vivo GI effects of AM841 at 0.1 mg kg−1 were comparable to those induced by WIN at 5 mg kg−1. However, at this dose, AM841 did not induce any sign of the cannabinoid tetrad, whereas WIN induced significant central effects. Conclusions & Inferences The CB1R megagonist AM841 may potently depress GI motor function in the absence of central effects. This effect may be mediated peripherally and may be useful in the treatment of GI motility disorders. PMID:26387676

  16. Toxicokinetics of new psychoactive substances: plasma protein binding, metabolic stability, and human phase I metabolism of the synthetic cannabinoid WIN 55,212-2 studied using in vitro tools and LC-HR-MS/MS.

    Science.gov (United States)

    Mardal, Marie; Gracia-Lor, Emma; Leibnitz, Svenja; Castiglioni, Sara; Meyer, Markus R

    2016-10-01

    The new psychoactive substance WIN 55,212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone) is a potent synthetic cannabinoid receptor agonist. The metabolism of WIN 55,212-2 in man has never been reported. Therefore, the aim of this study was to identify the human in vitro metabolites of WIN 55,212-2 using pooled human liver microsomes and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS) to provide targets for toxicological, doping, and environmental screening procedures. Moreover, a metabolic stability study in pooled human liver microsomes (pHLM) was carried out. In total, 19 metabolites were identified and the following partly overlapping metabolic steps were deduced: degradation of the morpholine ring via hydroxylation, N- and O-dealkylation, and oxidative deamination, hydroxylations on either the naphthalene or morpholine ring or the alkyl spacer with subsequent oxidation, epoxide formation with subsequent hydrolysis, or combinations. In conclusion, WIN 55,212-2 was extensively metabolized in human liver microsomes incubations and the calculated hepatic clearance was comparably high, indicating a fast and nearly complete metabolism in vivo. This is in line with previous findings on other synthetic cannabinoids. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. CB1 Cannabinoid Receptor-Dependent and -Independent Inhibition of Depolarization-Induced Calcium Influx in Oiigodendrocytes

    Institute of Scientific and Technical Information of China (English)

    SUSANA MATO; ELENA ALBERDI; CATHERINE LEDENT; MASAHIKO WATANABE; AND CARLOS MATUTE

    2009-01-01

    Regulation of Ca2+ homeostasis plays a critical role in oligodendrocyte function and survival. Canna-binoid CB2 and CB2 receptors have been shown to regulate Ca2+ levels and/or K+ currents in a variety of cell types. In this study we investigated the effect of cannabinoid compounds on the Ca2+ influx elicited in cultured oligodendro-cytes by transient membrane depolarization with an elevated extracellular K+ concentration (50 mM). The CB2 re-ceptor agonist arachidonoyl-chloro-ethanolamide (ACEA) elicited a concentration-dependent inhibition of depolariza-tion-evoked Ca2+ transients in oligodendroglial somata with a maximal effect (94 ± 3)% and an EC50 of 1.3 ±0.03 μM. This activity was mimicked by the CB2/CB2 agonist CP55,940, as well as by the endocannabinoids N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), whereas the CB2 receptor se-lective agonist JWH133 was ineffective. The CB2 receptor antagonist AM251 (1 μM) also reduced the Ca2+ response evoked by high extracellular K+ and did not prevent the inhibition elicited by ACEA (3 μM). Nevertheless, the a-bility of ACEA and AEA to reduce depolarization-evoked Ca2+ transients was significantly reduced in oligodendro-cytes from CB2 receptor knockout mice, as well as by pretreatment with pertussis toxin. Bath application of the in-wardly rectifying K+ channels (Kir channels) blockers BaCl2 (300 μM) and CsCl2 (1 mM) reduced the size of volt-age-induced Ca2+ influx and partially prevented the inhibitory effect of ACEA. Our results indicate that eannabinoids inhibit depolarization-evoked Ca2+ transients in oligodendrocytes via CB2 receptor-independent and -dependent mech-anisms that involve the activation of PTX-sensitive Gi/o proteins and the blockade of Kir channels. C 2008 Wiley-Liss, Inc.%Ca2+稳态平衡的调节在少突胶质细胞功能和存活中起重要作用.大麻素CB1和CB2受体在许多细胞中调节Ca2+水平和/或K+电流.本文利用培养的少突胶质细

  18. Effects of CP 55,940 — agonist of CB1 cannabinoid receptors on ghrelin and somatostatin producing cells in the rat pancreas

    Directory of Open Access Journals (Sweden)

    Alicja Lewandowska

    2012-04-01

    Full Text Available Cannabinoids participate in the modulation of numerous functions in the human organism, increasing the sense of hunger, affecting carbohydrate and lipid metabolism, and controlling systemic energy balance mechanisms. Moreover, they influence the endocrine system functions, acting via two types of receptors, CB1 and CB2. The aim of the present study was to examine the number, distribution and activity of ghrelin and somatostatin producing endocrine cells in the pancreas of rats after a single administration of selective CP 55,940 agonist of CB1 receptor. The study was performed on 20 rats. Neuroendocrine cells were identified by immunohistochemical reactions, involving specific antibodies against ghrelin and somatostatin. The distribution and number of ghrelin- and somatostatin-immunoreactive cells were separately studied in five pancreas islets of each section. A performed analysis showed a decreased number of somatostatin-immunoreactive cells and a weak immunoreactivity of ghrelin and somatostatin containing neuroendocrine cells in the pancreatic islets of experimental rats, compared to control animals. The obtained results suggest that a single administration of a selective CP 55,940 agonist of CB1 receptor influences the immunoreactivity of endocrine cells with ghrelin and somatostatin expression in the pancreas islets.

  19. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe

    2015-01-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products...

  20. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes.

    Science.gov (United States)

    Manzanares, J; Julian, Md; Carrascosa, A

    2006-07-01

    Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated cannabinoid receptors, modulate nociceptive thresholds, inhibit release of pro-inflammatory molecules, and display synergistic effects with other systems that influence analgesia, especially the endogenous opioid system. Cannabinoid receptor agonists have shown therapeutic value against inflammatory and neuropathic pains, conditions that are often refractory to therapy. Although the psychoactive effects of these substances have limited clinical progress to study cannabinoid actions in pain mechanisms, preclinical research is progressing rapidly. For example, CB(1)mediated suppression of mast cell activation responses, CB(2)-mediated indirect stimulation of opioid receptors located in primary afferent pathways, and the discovery of inhibitors for either the transporters or the enzymes degrading endocannabinoids, are recent findings that suggest new therapeutic approaches to avoid central nervous system side effects. In this review, we will examine promising indications of