WorldWideScience

Sample records for human cancer-related proteins

  1. Multi-target QPDR classification model for human breast and colon cancer-related proteins using star graph topological indices.

    Science.gov (United States)

    Munteanu, Cristian Robert; Magalhães, Alexandre L; Uriarte, Eugenio; González-Díaz, Humberto

    2009-03-21

    The cancer diagnostic is a complex process and, sometimes, the specific markers can interfere or produce negative results. Thus, new simple and fast theoretical models are required. One option is the complex network graphs theory that permits us to describe any real system, from the small molecules to the complex genetic, neural or social networks by transforming real properties in topological indices. This work converts the protein primary structure data in specific Randic's star networks topological indices using the new sequence to star networks (S2SNet) application. A set of 1054 proteins were selected from previous works and contains proteins related or not with two types of cancer, human breast cancer (HBC) and human colon cancer (HCC). The general discriminant analysis method generates an input-coded multi-target classification model with the training/predicting set accuracies of 90.0% for the forward stepwise model type. In addition, a protein subset was modified by single amino acid mutations with higher log-odds PAM250 values and tested with the new classification if can be related with HBC or HCC. In conclusion, we shown that, using simple input data such is the primary protein sequence and the simples linear analysis, it is possible to obtain accurate classification models that can predict if a new protein related with two types of cancer. These results promote the use of the S2SNet in clinical proteomics.

  2. Role of Human Breast Cancer Related Protein versus P-Glycoprotein as an Efflux Transporter for Benzylpenicillin: Potential Importance at the Blood-Brain Barrier.

    Directory of Open Access Journals (Sweden)

    Yangfang Li

    Full Text Available While the blood-brain barrier (BBB protects the brain by controlling the access of solutes and toxic substances to brain, it also limits drug entry to treat central nervous system disorders. Many drugs are substrates for ATP-binding cassette (ABC transporters at the BBB that limit their entry into the brain. The role of those transporters in limiting the entry of the widely prescribed therapeutic, benzylpenicillin, has produced conflicting results. This study investigated the possible potential involvement of P-glycoprotein (P-gp and breast cancer resistance protein (BCRP, two ABC transporters, in benzylpenicillin transport at BBB in human using MDCKII cells overexpressing those transporters as well as pharmacological inhibition. MDCKII cells overexpressing human BCRP (MDCKII-BCRP but not those overexpressing human P-gp (MDCKII-MDR cells had reduced [3H]benzylpenicillin uptake. Similarly, inhibiting BCRP increased [3H]benzylpenicillin uptake in MDCKII-BCRP cells, while inhibiting P-gp in MDCKII-MDR cells had no effect on uptake although there was evidence that benzylpenicillin is a substrate for canine P-gp. While inhibiting BCRP affected [3H]benzylpenicillin cell concentrations it did not affect transepithelial flux in MDCKII-BCRP cells. In summary, the results indicate that human BCRP and not human P-gp is involved in benzylpenicillin transport. However, targeting BCRP alone was not sufficient to alter transepithelial flux in MDCKII cells. Whether it would be sufficient to alter blood-to-brain flux at the human BBB remains to be investigated.

  3. Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry.

    Science.gov (United States)

    Kumar, Ravindra; Samal, Sabindra K; Routray, Samapika; Dash, Rupesh; Dixit, Anshuman

    2017-05-30

    In the recent years, bioinformatics methods have been reported with a high degree of success for candidate gene identification. In this milieu, we have used an integrated bioinformatics approach assimilating information from gene ontologies (GO), protein-protein interaction (PPI) and network analysis to predict candidate genes related to oral squamous cell carcinoma (OSCC). A total of 40973 PPIs were considered for 4704 cancer-related genes to construct human cancer gene network (HCGN). The importance of each node was measured in HCGN by ten different centrality measures. We have shown that the top ranking genes are related to a significantly higher number of diseases as compared to other genes in HCGN. A total of 39 candidate oral cancer target genes were predicted by combining top ranked genes and the genes corresponding to significantly enriched oral cancer related GO terms. Initial verification using literature and available experimental data indicated that 29 genes were related with OSCC. A detailed pathway analysis led us to propose a role for the selected candidate genes in the invasion and metastasis in OSCC. We further validated our predictions using immunohistochemistry (IHC) and found that the gene FLNA was upregulated while the genes ARRB1 and HTT were downregulated in the OSCC tissue samples.

  4. Prioritizing cancer-related genes with aberrant methylation based on a weighted protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Lv Jie

    2011-10-01

    Full Text Available Abstract Background As an important epigenetic modification, DNA methylation plays a crucial role in the development of mammals and in the occurrence of complex diseases. Genes that interact directly or indirectly may have the same or similar functions in the biological processes in which they are involved and together contribute to the related disease phenotypes. The complicated relations between genes can be clearly represented using network theory. A protein-protein interaction (PPI network offers a platform from which to systematically identify disease-related genes from the relations between genes with similar functions. Results We constructed a weighted human PPI network (WHPN using DNA methylation correlations based on human protein-protein interactions. WHPN represents the relationships of DNA methylation levels in gene pairs for four cancer types. A cancer-associated subnetwork (CASN was obtained from WHPN by selecting genes associated with seed genes which were known to be methylated in the four cancers. We found that CASN had a more densely connected network community than WHPN, indicating that the genes in CASN were much closer to seed genes. We prioritized 154 potential cancer-related genes with aberrant methylation in CASN by neighborhood-weighting decision rule. A function enrichment analysis for GO and KEGG indicated that the optimized genes were mainly involved in the biological processes of regulating cell apoptosis and programmed cell death. An analysis of expression profiling data revealed that many of the optimized genes were expressed differentially in the four cancers. By examining the PubMed co-citations, we found 43 optimized genes were related with cancers and aberrant methylation, and 10 genes were validated to be methylated aberrantly in cancers. Of 154 optimized genes, 27 were as diagnostic markers and 20 as prognostic markers previously identified in literature for cancers and other complex diseases by searching Pub

  5. Low Recent Protein Intake Predicts Cancer-Related Fatigue and Increased Mortality in Patients with Advanced Tumor Disease Undergoing Chemotherapy.

    Science.gov (United States)

    Stobäus, Nicole; Müller, Manfred J; Küpferling, Susanne; Schulzke, Jörg-Dieter; Norman, Kristina

    2015-01-01

    Cancer patients, in general, suffer from anorexia hence diminished nutritional intake. In a prospective observational study, we investigated the impact of recent energy and protein intake on cancer-related fatigue and 6-month mortality in patients undergoing chemotherapy. Recent protein and energy intake was assessed by 24-h recall in 285 patients. Cancer-related fatigue was determined by Brief Fatigue Inventory, and fat free mass index (FFMI) was assessed with bioelectrical impedance analysis. Symptoms with the validated German version of European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire (30 questions) and 6-month mortality was documented. Risk factors of cancer-related fatigue and predictors of mortality were investigated with logistic regression analysis and stepwise Cox regression analysis, respectively. Low protein intake (protein intake emerged as the strongest contributor to cancer-related fatigue followed by nausea/vomiting, insomnia, and age. Reduced protein intake, male sex, number of comorbidities, and FFMI were identified as significant predictors for increased 6-month mortality. In conclusion, a low recent protein intake assessed by 24-h recall is associated with a more than twofold higher risk of cancer-related fatigue and 6-month mortality. Every effort should be taken to assess and guarantee proper nutritional intake in patients undergoing chemotherapy.

  6. Identification of Lung-Cancer-Related Genes with the Shortest Path Approach in a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Bi-Qing Li

    2013-01-01

    Full Text Available Lung cancer is one of the leading causes of cancer mortality worldwide. The main types of lung cancer are small cell lung cancer (SCLC and nonsmall cell lung cancer (NSCLC. In this work, a computational method was proposed for identifying lung-cancer-related genes with a shortest path approach in a protein-protein interaction (PPI network. Based on the PPI data from STRING, a weighted PPI network was constructed. 54 NSCLC- and 84 SCLC-related genes were retrieved from associated KEGG pathways. Then the shortest paths between each pair of these 54 NSCLC genes and 84 SCLC genes were obtained with Dijkstra’s algorithm. Finally, all the genes on the shortest paths were extracted, and 25 and 38 shortest genes with a permutation P value less than 0.05 for NSCLC and SCLC were selected for further analysis. Some of the shortest path genes have been reported to be related to lung cancer. Intriguingly, the candidate genes we identified from the PPI network contained more cancer genes than those identified from the gene expression profiles. Furthermore, these genes possessed more functional similarity with the known cancer genes than those identified from the gene expression profiles. This study proved the efficiency of the proposed method and showed promising results.

  7. Nuclear localization signal in a cancer-related transcriptional regulator protein NAC1.

    Science.gov (United States)

    Okazaki, Kosuke; Nakayama, Naomi; Nariai, Yuko; Nakayama, Kentaro; Miyazaki, Kohji; Maruyama, Riruke; Kato, Hiroaki; Kosugi, Shunichi; Urano, Takeshi; Sakashita, Gyosuke

    2012-10-01

    Nucleus accumbens-associated protein 1 (NAC1) might have potential oncogenic properties and participate in regulatory networks for pluripotency. Although NAC1 is described as a transcriptional regulator, the nuclear import machinery of NAC1 remains unclear. We found, using a point mutant, that dimer formation was not committed to the nuclear localization of NAC1 and, using deletion mutants, that the amino-terminal half of NAC1 harbored a potential nuclear localization signal (NLS). Wild type, but not mutants of this region, alone was sufficient to drive the importation of green fluorescent protein (GFP) into the nucleus. Bimax1, a synthetic peptide that blocks the importin α/β pathway, impaired nuclear localization of NAC1 in cells. We also used the binding properties of importin to demonstrate that this region is an NLS. Furthermore, the transcriptional regulator function of NAC1 was dependent on its nuclear localization activity in cells. Taken together, these results show that the region with a bipartite motif constitutes a functional nuclear import sequence in NAC1 that is independent of NAC1 dimer formation. The identification of an NAC1 NLS thus clarifies the mechanism through which NAC1 translocates to the nucleus to regulate the transcription of genes involved in oncogenicity and pluripotency.

  8. Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis

    Science.gov (United States)

    Lipper, Colin H.; Paddock, Mark L.; Onuchic, José N.; Mittler, Ron; Nechushtai, Rachel; Jennings, Patricia A.

    2015-01-01

    Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA. PMID:26448442

  9. NOTCH1, HIF1A and other cancer-related proteins in lung tissue from uranium miners--variation by occupational exposure and subtype of lung cancer.

    Directory of Open Access Journals (Sweden)

    Beate Pesch

    Full Text Available BACKGROUND: Radon and arsenic are established pulmonary carcinogens. We investigated the association of cumulative exposure to these carcinogens with NOTCH1, HIF1A and other cancer-specific proteins in lung tissue from uranium miners. METHODOLOGY/PRINCIPAL FINDINGS: Paraffin-embedded tissue of 147 miners was randomly selected from an autopsy repository by type of lung tissue, comprising adenocarcinoma (AdCa, squamous cell carcinoma (SqCC, small cell lung cancer (SCLC, and cancer-free tissue. Within each stratum, we additionally stratified by low or high level of exposure to radon or arsenic. Lifetime exposure to radon and arsenic was estimated using a quantitative job-exposure matrix developed for uranium mining. For 22 cancer-related proteins, immunohistochemical scores were calculated from the intensity and percentage of stained cells. We explored the associations of these scores with cumulative exposure to radon and arsenic with Spearman rank correlation coefficients (r(s. Occupational exposure was associated with an up-regulation of NOTCH1 (radon r(s = 0.18, 95% CI 0.02-0.33; arsenic: r(s = 0.23, 95% CI 0.07-0.38. Moreover, we investigated whether these cancer-related proteins can classify lung cancer using supervised and unsupervised classification. MUC1 classified lung cancer from cancer-free tissue with a failure rate of 2.1%. A two-protein signature discriminated SCLC (HIF1A low, AdCa (NKX2-1 high, and SqCC (NKX2-1 low with a failure rate of 8.4%. CONCLUSIONS/SIGNIFICANCE: These results suggest that the radiation-sensitive protein NOTCH1 can be up-regulated in lung tissue from uranium miners by level of exposure to pulmonary carcinogens. We evaluated a three-protein signature consisting of a physiological protein (MUC1, a cancer-specific protein (HIF1A, and a lineage-specific protein (NKX2-1 that could discriminate lung cancer and its major subtypes with a low failure rate.

  10. Recombinant human milk proteins.

    Science.gov (United States)

    Lönnerdal, Bo

    2006-01-01

    Human milk provides proteins that benefit newborn infants. They not only provide amino acids, but also facilitate the absorption of nutrients, stimulate growth and development of the intestine, modulate immune function, and aid in the digestion of other nutrients. Breastfed infants have a lower prevalence of infections than formula-fed infants. Since many women in industrialized countries choose not to breastfeed, and an increasing proportion of women in developing countries are advised not to breastfeed because of the risk of HIV transmission, incorporation of recombinant human milk proteins into infant foods is likely to be beneficial. We are expressing human milk proteins known to have anti-infective activity in rice. Since rice is a normal constituent of the diet of infants and children, limited purification of the proteins is required. Lactoferrin has antimicrobial and iron-binding activities. Lysozyme is an enzyme that is bactericidal and also acts synergistically with lactoferrin. These recombinant proteins have biological activities identical to their native counterparts. They are equally resistant to heat processing, which is necessary for food applications, and to acid and proteolytic enzymes which are needed to maintain their biological activity in the gastrointestinal tract of infants. These recombinant human milk proteins may be incorporated into infant formulas, baby foods and complementary foods, and used with the goal to reduce infectious diseases.

  11. Tc-99m-Human Serum Albumin Transit Time as a Measure of Arm Breast Cancer-Related Lymphedema

    DEFF Research Database (Denmark)

    Toyserkani, Navid M; Hvidsten, Svend; Tabatabaeifar, Siavosh

    2017-01-01

    34-68 years, with unilateral arm lymphedema following breast cancer treatment underwent bilateral lymphoscintigraphy using intradermal injection in both hands of technetium-99m-labeled human serum albumin and sequential 5 min imaging for 5 hours. The mean transit time (MTT) in the arms was calculated...... based on time activity curves generated from injection site and arm regions. Visual lymphedema scoring was performed based on dermal backflow and lymph node presence. Excess arm volume was calculated from circumference measurements. RESULTS: The MTT (mean ± SD) was significantly longer in the lymphedema......, 18.6-68.7 minutes; P lymphedema from...

  12. Expression of ECRG4, a novel esophageal cancer-related gene,downregulated by CpG island hypermethylation in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chun-Mei Yue; Da-Jun Deng; Mei-Xia Bi; Li-Ping Guo; Shih-Hsin Lu

    2003-01-01

    AIM: To study the mechanisms responsible for inactivation of a novel esophageal cancer related gene 4 (ECRG4) in esophageal squamous cell carcinoma (ESCC). METHODS: A pair of primers was designed to amplify a 220 bp fragment, which contains 16 CpG sites in the core promoter region of the ECRG 4 gene. PCR products of bisulfite-modified CpG islands were analyzed by denaturing high-performance liquid chromatography (DHPLC), which were confirmed by DNA sequencing. The methylation status of ECRG 4 promoter in 20 cases of esophageal cancer and the adjacent normal tissues, 5 human tumor cell lines (esophageal cancer cell line-NEC, EC109, EC9706; gastric cancer cell line- GLC; human embryo kidney cell line-Hek293)and 2 normal esophagus tissues were detected. The expression level of the ECRG 4 gene in these samples was examined by RT-PCR. RESULTS: The expression level of ECRG 4 gene was varied.Of 20 esophageal cancer tissues, nine were unexpressed,six were lowly expressed and five were highly expressed compared with the adjacent tissues and the 2 normal esophageal epithelia. In addition, 4 out of the 5 human cell lines were also unexpressed. A high frequency of methylation was revealed in 12 (8 unexpressed and 4 lowly expressed)of the 15 (80%) downregulated cancer tissues and 3 of the 4 unexpressed cell lines. No methylation peak was observed in the two highly expressed normal esophageal epithelia and the methylation frequency was low (3/20) among the 20 cases in the highly expressed adjacent tissues. The methylation status of the samples was consistent with the result of DNA sequencing. CONCLUSION: These results indicate that the inactivation of ECRG 4gene by hypermethylation is a frequent molecular event in ESCC and may be involved in the carcinogenesis of this cancer.

  13. Mapping the human protein interactome

    Institute of Scientific and Technical Information of China (English)

    Daniel Figeys

    2008-01-01

    Interactions are the essence of all biomolecules because they cannot fulfill their roles without interacting with other molecules. Hence, mapping the interactions of biomolecules can be useful for understanding their roles and functions. Furthermore, the development of molecular based systems biology requires an understanding of the biomolecular interactions. In recent years, the mapping of protein-protein interactions in different species has been reported, but few reports have focused on the large-scale mapping of protein-protein interactions in human. Here, we review the developments in protein interaction mapping and we discuss issues and strategies for the mapping of the human protein interactome.

  14. Human conglutinin-like protein

    DEFF Research Database (Denmark)

    Jensenius, J C; Thiel, S; Baatrup, G

    1985-01-01

    The presence in human plasma of a molecule homologous to bovine conglutinin is indicated by the results of biological and immunochemical analysis. The human conglutinin-like protein shows calcium-dependent binding to complement-treated solid phase IgG and immunological cross-reaction with chicken...... anti-bovine conglutinin. The binding of the human protein to complement-treated IgG was inhibited by N-acetyl-D-glucosamine but not by other sugars. Analysis by SDS-PAGE and Western blotting showed reaction of anti-conglutinin with molecules of similar mobility to the monomer and hexamer of bovine...

  15. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  16. 重组人红细胞生成素在肿瘤相关贫血中的应用%Application of recombinat human erythropoietin in cancer-related anemia

    Institute of Scientific and Technical Information of China (English)

    谢晓冬; 孙静

    2002-01-01

    Recombinant human erythropoietin(rhEPO) is safe and effective in treating cancer related anemia and solid tumors in children through promoting recovery of hematopoietic function of bone marrow and replacing renal endogenous EPO.rhEPO can significantly elevate serum Hb levle and reduce transfusion dependancy in anemiac patients.Some studies showed rhEPO is especially effective for lymphoma and myeloma patients with lower concentration of serum EPO.EPO levle after treatment and dissolubilitive transferrin receptor 2 weeks after treatment are indexes for effectiveness of rhEPO.

  17. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumorigenesis.

    Science.gov (United States)

    Chiantore, Maria Vincenza; Mangino, Giorgio; Iuliano, Marco; Zangrillo, Maria Simona; De Lillis, Ilaria; Vaccari, Gabriele; Accardi, Rosita; Tommasino, Massimo; Columba Cabezas, Sandra; Federico, Maurizio; Fiorucci, Gianna; Romeo, Giovanna

    2016-08-01

    Human papillomaviruses (HPVs) are the causative agents of cervical cancer and are also associated with other types of cancers. HPVs can modulate microRNAs (miRNAs) expressed by infected cells. The production of extracellular vesicles is deregulated in cancer, and their cargo delivered to the microenvironment can promote tumorigenesis. The involvement of HPV oncoproteins on miRNA expression in cells and exosomes was analyzed in keratinocytes transduced with E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 (K16 and K38). MiRNAs were investigated through the TaqMan Array Human MicroRNA Cards, followed by real-time RT-PCR assay for specific miRNAs. Selected miRNA targets were analyzed by Western blot and correlated to the HPV oncoproteins by specifically silencing E6 and E7 expression. Exosomes, isolated from K16 and K38 supernatants by differential centrifugations, were quantified through the vesicle-associated acetylcholinesterase activity. MiRNAs deregulated in K16 and K38 cells were identified. HPV-16 and/or HPV-38 E6 and E7 single proteins can modify the expression of selected miRNAs involved in the tumorigenesis, in particular miR-18a, -19a, -34a and -590-5p. The analysis of the content of exosomes isolated from HPV-positive cells revealed the presence of E6 and E7 mRNAs and few miRNAs. MiR-222, a key miRNA deregulated in many cancers, was identified in exosomes from K16 cells. HPV E6 and/or E7 oncoprotein expression can induce the deregulation of some miRNAs. Through the production and function of exosomes, HPV oncogenes as well as HPV-deregulated miRNAs can potentiate the virus oncogenic effects in the tumor cell microenvironment.

  18. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B;

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  19. Chemokines in cancer related inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Allavena, Paola; Germano, Giovanni; Marchesi, Federica [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089, Rozzano, Milan (Italy); Mantovani, Alberto, E-mail: alberto.mantovani@humanitasresearch.it [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089, Rozzano, Milan (Italy); Department of Translational Medicine, University of Milan (Italy)

    2011-03-10

    Chemokines are key players of the cancer-related inflammation. Chemokine ligands and receptors are downstream of genetic events that cause neoplastic transformation and are abundantly expressed in chronic inflammatory conditions which predispose to cancer. Components of the chemokine system affect multiple pathways of tumor progression including: leukocyte recruitment, neo-angiogenesis, tumor cell proliferation and survival, invasion and metastasis. Evidence in pre-clinical and clinical settings suggests that the chemokine system represents a valuable target for the development of innovative therapeutic strategies.

  20. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  1. Protein Misfolding and Human Disease

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter Gerd; Vang, Søren

    2006-01-01

    phenylketonuria, Parkinson's disease, α-1-antitrypsin deficiency, familial neurohypophyseal diabetes insipidus, and short-chain acyl-CoA dehydrogenase deficiency. Despite the differences, an emerging paradigm suggests that the cellular effects of protein misfolding provide a common framework that may contribute......Protein misfolding is a common event in living cells. In young and healthy cells, the misfolded protein load is disposed of by protein quality control (PQC) systems. In aging cells and in cells from certain individuals with genetic diseases, the load may overwhelm the PQC capacity, resulting...... in accumulation of misfolded proteins. Dependent on the properties of the protein and the efficiency of the PQC systems, the accumulated protein may be degraded or assembled into toxic oligomers and aggregates. To illustrate this concept, we discuss a number of very different protein misfolding diseases including...

  2. Human telomeric proteins occupy selective interstitial sites

    Institute of Scientific and Technical Information of China (English)

    Dong Yang; Yuanyan Xiong; Hyyeung Kim; Quanyuan He; Yumei Li; Rui Chen; Zhou Songyang

    2011-01-01

    Human telomeres are bound and protected by protein complexes assembled around the six core telomeric proteins RAP1, TRF1, TRF2, TIN2, TPP1, and POT1. The function of these proteins on telomeres has been studied extensively. Recently, increasing evidence has suggested possible roles for these proteins outside of telomeres. However, the non-canonical (extra-telomeric) function of human telomeric proteins remains poorly understood. To this end, we systematically investigated the binding sites of telomeric proteins along human chromosomes, by performing wholegenome chromatin immunoprecipitation (ChIP) for RAP1 and TRF2. ChIP sequencing (ChIP-seq) revealed that RAP1 and TRF2 could be found on a small number of interstitial sites, including regions that are proximal to genes. Some of these binding sites contain short telomere repeats, suggesting that telomeric proteins could directly bind to interstitial sites. Interestingly, only a small fraction of the available interstitial telomere repeat-containing regions were occupied by RAP1 and TRF2. Ectopically expressed TRF2 was able to occupy additional interstitial telomere repeat sites, suggesting that protein concentration may dictate the selective targeting of telomeric proteins to interstitial sites. Reducing RAP1 and TRF2 expression by RNA interference led to altered transcription of RAP1- and TRF2-targeted genes. Our results indicate that human telomeric proteins could occupy a limited number of interstitial sites and regulate gene transcription.

  3. Expressions of cancer-related genes in human bone marrow-derived neural stem cells%成人骨髓源性神经干细胞肿瘤相关基因表达的分析

    Institute of Scientific and Technical Information of China (English)

    朱汝森; 徐如祥; 姜晓丹; 蔡颖谦; 邹雨汐

    2016-01-01

    Objective To investigate the expression profile of cancer-related genes in human bone marrow-derived neural stem cells (Md-NSCs) to determine whether there are any characteristics that could help the evaluation of their tumorigenic potentials.Methods Md-NSCs were cultured in vitro and identified (experimental group);fresh human adult bone marrow cells were used as control group (sifting erythrocytes).The expression profiles of 440 cancer-related genes in cells from the two groups were analyzed by Oligo GEArray Human Cancer Microarray OHS-802;real-time quantitative PCR was performed to detect the expressions of oncogene MYC,matrix metalloproteinase 2 (MMP2),Notch congener 2 (Notch2),stanniocalcin 1 (STC1),integrin α3 (ITGA 3),signal transduction and transcriptional activation factor 5b (STA T5b),Ras congene gene family C (RhoC),and wingless-type MMTV integration site family member 1 (Wnt1).Results As compared with those in the control group,the Md-NSCs from experimental group had 66 tumor-related genes with high expressions (>3 folds).MYC,MMP2,Notch2,STCI,ITGA3,STA T5b,RhoC and Wnt1 expressions in the Md-NSCs from experimental group were significantly higher than those in the control group (P<0.05),whose results were accorded with genechip detection results,enjoying the folds of 4.35×100,2.84×100,2.87×100,3.41 ×102,2.22×102,6.99× 100,4.92 × 100 and 3.64 ×100,respectively.Conclusion A number of cancer-related genes are over-expressed in Md-NSCs,and the activations of some of these important oncogenes have been proved to promote human tumorigenesis.%目的 检测成人骨髓源性神经干细胞(Md-NSCs)中肿瘤相关基因的表达情况,评价其致瘤性. 方法 将体外培养并鉴定过的Md-NSCs作为实验组,以新鲜正常成人骨髓细胞去红细胞作为对照组.用人肿瘤基因芯片检测2组细胞440个肿瘤相关基因的表达;实时定量RT-PCR检测2组细胞癌基因MYC、基质金属蛋白酶2(MMP2)、Notch同源物2(Notch2)

  4. Identification of Human Lung Cancer-related Epitopes Using Phage display Peptide Library%应用噬菌体随机肽库研究人肺癌相关抗原表位

    Institute of Scientific and Technical Information of China (English)

    李新元; 黄英武; 郑燕华; 韩瑞刚

    2001-01-01

    目的:从噬菌体随机多肽文库中筛选肺癌相关抗原WLAAg1表位,深入了解抗原特性,为探索肺癌临床诊断、治疗新方法打下基础。方法:采用肺癌单克隆抗体WLA2C4对噬菌体完全随机十五肽表达文库进行多级亲和筛选,建立与WLA2C4具亲和力的肽库;随机挑选12个克隆,鉴定抗体特异性;测定阳性克隆DNA序列并进行同源性及氨基酸分析。结果:12个克隆均为阳性克隆,DNA序列相同,为5′-GCT GGT TGG ATT ACT TTT CAT CGT CGT CAT CAT GAT CGT GTT CTT-3′,其氨基酸序列为AGWITPHRRHHDRVL。氨基酸分析,其中有3个胰蛋白酶酶切位点,与WLA-Ag1抗原能被胰蛋白酶消化的特性相一致。结论:应用肺癌单抗WLA-2C4从噬菌体文库筛选出的十五肽序列可能是肺癌相关抗原WLAAg1的模拟表位。此方法对肿瘤相关抗原表位的筛选具有可行性。%Objectives: The current study was designed to identify mimic polypeptide epitopes of lung cancer-related antigen WLA-Ag1 through screening random peptide library which was on display in phages, and provide useful information for further study of the characterization of WLA-Ag1 antigen and the potential chance for developing new diagnostic or therapeutic methods for lung cancer. Methods: Through affinity enrichment and immunoscreening of phage-displayed fifteen-peptide libraries with a monoclonal antibody named WLA2C4 against WLA-Ag1, the enriched phages was obtained and plated on agar plates. Some positive clones picked at random were confirmed by ELISA using WLA2C4 monoclonal antibody and DNA sequencing. The homologous comparison of amino acid sequences of positive clones was conducted through searching the protein sequence databank on Internet. The digestion analyses of amino acid sequences were also conducted by a software. Results: Twelve positive clones have been found with a consensual DNA sequence, that is, 5′ -GCT GGT TGG ATT ACT TTT CAT

  5. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  6. Cancer related fatigue syndrome in neoplastic diseases

    Directory of Open Access Journals (Sweden)

    Magdalena Franc

    2014-12-01

    Full Text Available Fatigue is one of the most important factors which has a considerable influence on treatment and the life quality of oncological patients. The fatigue syndrome is often diagnosed during cancer treatment and this syndrome is not related to the physical effort. Cancer related fatigue is a patient’s subjective, psychologically, physically and emotionally based feeling. It is disproportionate to patient’s daily activity. The pathogenesis of this syndrome remains still unknown. However, on the basis of various questionnaires, it is possible to test the disease’s complex nature. Cancer related fatigue causes deterioration of patient’s life along with lower motivation to struggle with the disease. It is thought that the factor which increases the incidence of cancer related fatigue is a long-term use of drugs such as opioids, benzodiazepine, and medicines containing codeine, tranquilizers, anxiolytics and antidepressants. On the basis of the results, one can choose an appropriate treatment method for cancer related fatigue such as rehabilitation, psychotherapy or public assistance. A great number of patients consider excessive fatigue a typical concomitant symptom in neoplastic disease; therefore, they do not report it. It is of a paramount importance to make patients aware of the fact that cancer related fatigue is a serious disease which can be treated.

  7. Systematic analysis of human protein complexes identifies chromosome segregation proteins.

    Science.gov (United States)

    Hutchins, James R A; Toyoda, Yusuke; Hegemann, Björn; Poser, Ina; Hériché, Jean-Karim; Sykora, Martina M; Augsburg, Martina; Hudecz, Otto; Buschhorn, Bettina A; Bulkescher, Jutta; Conrad, Christian; Comartin, David; Schleiffer, Alexander; Sarov, Mihail; Pozniakovsky, Andrei; Slabicki, Mikolaj Michal; Schloissnig, Siegfried; Steinmacher, Ines; Leuschner, Marit; Ssykor, Andrea; Lawo, Steffen; Pelletier, Laurence; Stark, Holger; Nasmyth, Kim; Ellenberg, Jan; Durbin, Richard; Buchholz, Frank; Mechtler, Karl; Hyman, Anthony A; Peters, Jan-Michael

    2010-04-30

    Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.

  8. [Cow's milk protein allergy through human milk].

    Science.gov (United States)

    Denis, M; Loras-Duclaux, I; Lachaux, A

    2012-03-01

    Cow's milk protein allergy (CMPA) is the first allergy that affects infants. In this population, the incidence rate reaches 7.5%. The multiplicity and aspecificity of the symptoms makes its diagnosis sometimes complicated, especially in the delayed type (gastrointestinal, dermatological, and cutaneous). CMPA symptoms can develop in exclusively breastfed infants with an incidence rate of 0.5%. It, therefore, raises questions about sensitization to cow's milk proteins through breast milk. Transfer of native bovine proteins such as β-lactoglobulin into the breast milk is controversial: some authors have found bovine proteins in human milk but others point to cross-reactivity between human milk proteins and cow's milk proteins. However, it seems that a small percentage of dietary proteins can resist digestion and become potentially allergenic. Moreover, some authors suspect the transfer of some of these dietary proteins from the maternal bloodstream to breast milk, but the mechanisms governing sensitization are still being studied. Theoretically, CMPA diagnosis is based on clinical observations, prick-test or patch-test results, and cow's milk-specific IgE antibody concentration. A positive food challenge test usually confirms the diagnosis. No laboratory test is available to make a certain diagnosis, but the detection of eosinophil cationic protein (ECP) in the mother's milk, for example, seems to be advantageous since it is linked to CMA. Excluding cow's milk from the mother's diet is the only cure when she still wants to breastfeed. Usually, cow's milk proteins are reintroduced after 6 months of exclusion. Indeed, the prognosis for infants is very good: 80% acquire a tolerance before the age of 3 or 4 years. Mothers should not avoid dairy products during pregnancy and breastfeeding as preventive measures against allergy.

  9. Cancer-Related Fatigue: a multidimensional approach

    NARCIS (Netherlands)

    P.J. de Raaf (Pleun)

    2013-01-01

    textabstractFatigue is experienced by cancer patients in all stages of the disease trajectory: from before diagnosis to years after completing treatment and also in advanced cancer. Fatigue has a greater negative influence on quality of life and daily activities than any other cancer-related symptom

  10. Radiosensitivity and cancer-related genes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihisa; Ohnishi, Takeo [Nara Medical Univ., Kashihara (Japan)

    1997-03-01

    The influence of several cancer-related genes, myc, fos, jun, ras, raf mos, cot, src, erbB, bcl-2, RB and p53, on radiosensitivity has been shown by tranfection studies. This review focuses on the functions of growth arrest, DNA repair and apoptosis regulated by these cancer-related genes. Resistance to apoptosis has emerged as a major category of radiation sensitivity. In the near future, it might be clear which of the cancer-related genes acts in an important role in apoptosis pathway after irradiation. In addition, there is no direct evidence in the activation of DNA repair during the cell cycle arrest. Therefore, identification of factors directly acting on radiation sensitivity will offer new strategies in cancer predictical assay using biopsied tumor specimens in radiotherapy. Further studies are must to be carried out for detection of common mutations in cancer-related genes for predictical assay and the potential for induction of apoptosis by radiotherapy and genetherapy. (author). 107 refs.

  11. Nitrogen and protein components of human milk.

    Science.gov (United States)

    Hambraeus, L; Lönnerdal, B; Forsum, E; Gebre-Medhin, M

    1978-09-01

    The true protein content of human milk is 0.9%, in well-nourished as well as malnourished mothers. Casein constitutes only about 20% of the protein nitrogen in human milk. The remaining 80% is derived from the whey proteins, the three dominant components being alpha-lactalbumin, lactoferrin and secretory IgA. alpha-lactalbumin is a subunit of lactose synthetase. Lactoferrin is an iron-binding glycoprotein which plays a role in the defence against gastro-intestinal infections and is probably also involved in iron transport in the gut. Secretory IgA is comparatively stable at low pH; it is resistant to proteolytic enzymes and plays an essential role in the immunological defence against gastro-intestinal infections. Lysozyme is a minor component of the whey proteins and represents an active enzyme with a bactericidal effect. The nutritional and immunological significance of the marked differences with respect to the nitrogen and protein compositions of human milk and cow's milk should not be underestimated, but need further elucidation.

  12. A monoclonal antibody against human MUDENG protein.

    Science.gov (United States)

    Wagley, Yadav; Choi, Jun-Ha; Wickramanayake, Dimuthu Dhammika; Choi, Geun-Yeol; Kim, Chang-Kyu; Kim, Tae-Hyoung; Oh, Jae-Wook

    2013-08-01

    MUDENG (mu-2-related death-inducing gene, MuD) encodes a predicted ∼54-kDa protein in humans, considered to be involved in trafficking proteins from endosomes toward other membranous compartments as well as in inducing cell death. Here we report on the generation of a mouse monoclonal antibody (MAb) against the middle domain of human (h) MuD. This IgG sub 1 MAb, named M3H9, recognizes residues 244-326 in the middle domain of the MuD protein. Thus, the MuD proteins expressed in an astroglioma cell line and primary astrocytes can be detected by the M3H9 MAb. We showed that M3H9 MAb can be useful in enzyme-linked immunosorbent assay (ELISA) and immunoblot experiments. In addition, M3H9 MAb can detect the expression of the MuD protein in formalin-fixed, paraffin-embedded mouse ovary and uterus tissues. These results indicate that the MuD MAb M3H9 could be useful as a new biomarker of hereditary spastic paraplegia and other related diseases.

  13. Cow's milk proteins in human milk.

    Science.gov (United States)

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Rovelli, I; Peila, C; Martano, C; Chiale, F; Bertino, E

    2012-01-01

    Cow's milk proteins (CMPs) are among the best characterized food allergens. Cow's milk contains more than twenty five different proteins, but only whey proteins alpha-lactalbumin, beta-lactoglobulin, bovine serum albumin (BSA), and lactoferrin, as well as the four caseins, have been identified as allergens. Aim of this study was to investigate by proteomics techniques cow's milk allergens in human colostrum of term and preterm newborns' mothers, not previously detected, in order to understand if such allergens could be cause of sensitization during lactation. Term colostrum samples from 62 healthy mothers and preterm colostrum samples from 11 healthy mothers were collected for this purpose. The most relevant finding was the detection of the intact bovine alpha-S1-casein in both term and preterm colostrum. Using this method, which allows direct proteins identification, beta-lactoglobulin was not detected in any of colostrum samples. According to our results bovine alpha 1 casein that is considered a major cow's milk allergen is readily secreted in human milk: further investigations are needed in order to clarify if alpha-1-casein has a major role in sensitization or tolerance to cow's milk of exclusively breastfed predisposed infants.

  14. A combined approach to data mining of textual and structured data to identify cancer-related targets

    Directory of Open Access Journals (Sweden)

    Adelstein S James

    2006-07-01

    Full Text Available Abstract Background We present an effective, rapid, systematic data mining approach for identifying genes or proteins related to a particular interest. A selected combination of programs exploring PubMed abstracts, universal gene/protein databases (UniProt, InterPro, NCBI Entrez, and state-of-the-art pathway knowledge bases (LSGraph and Ingenuity Pathway Analysis was assembled to distinguish enzymes with hydrolytic activities that are expressed in the extracellular space of cancer cells. Proteins were identified with respect to six types of cancer occurring in the prostate, breast, lung, colon, ovary, and pancreas. Results The data mining method identified previously undetected targets. Our combined strategy applied to each cancer type identified a minimum of 375 proteins expressed within the extracellular space and/or attached to the plasma membrane. The method led to the recognition of human cancer-related hydrolases (on average, ~35 per cancer type, among which were prostatic acid phosphatase, prostate-specific antigen, and sulfatase 1. Conclusion The combined data mining of several databases overcame many of the limitations of querying a single database and enabled the facile identification of gene products. In the case of cancer-related targets, it produced a list of putative extracellular, hydrolytic enzymes that merit additional study as candidates for cancer radioimaging and radiotherapy. The proposed data mining strategy is of a general nature and can be applied to other biological databases for understanding biological functions and diseases.

  15. Inferring modules from human protein interactome classes

    Directory of Open Access Journals (Sweden)

    Chaurasia Gautam

    2010-07-01

    Full Text Available Abstract Background The integration of protein-protein interaction networks derived from high-throughput screening approaches and complementary sources is a key topic in systems biology. Although integration of protein interaction data is conventionally performed, the effects of this procedure on the result of network analyses has not been examined yet. In particular, in order to optimize the fusion of heterogeneous interaction datasets, it is crucial to consider not only their degree of coverage and accuracy, but also their mutual dependencies and additional salient features. Results We examined this issue based on the analysis of modules detected by network clustering methods applied to both integrated and individual (disaggregated data sources, which we call interactome classes. Due to class diversity, we deal with variable dependencies of data features arising from structural specificities and biases, but also from possible overlaps. Since highly connected regions of the human interactome may point to potential protein complexes, we have focused on the concept of modularity, and elucidated the detection power of module extraction algorithms by independent validations based on GO, MIPS and KEGG. From the combination of protein interactions with gene expressions, a confidence scoring scheme has been proposed before proceeding via GO with further classification in permanent and transient modules. Conclusions Disaggregated interactomes are shown to be informative for inferring modularity, thus contributing to perform an effective integrative analysis. Validation of the extracted modules by multiple annotation allows for the assessment of confidence measures assigned to the modules in a protein pathway context. Notably, the proposed multilayer confidence scheme can be used for network calibration by enabling a transition from unweighted to weighted interactomes based on biological evidence.

  16. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  17. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Science.gov (United States)

    Acencio, Marcio Luis; Bovolenta, Luiz Augusto; Camilo, Esther; Lemke, Ney

    2013-01-01

    Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research

  18. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Directory of Open Access Journals (Sweden)

    Marcio Luis Acencio

    Full Text Available Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI. This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved

  19. Proteins of human milk. I. Identification of major components

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G.; Powers, M.T.; Tollaksen, S.L.

    1982-04-01

    Traditionally, human milk proteins are identified largely by reference to bovine milk. Hence, to identify the major proteins in human milk, we subjected human and bovine milk, in parallel, to high-resolution two-dimensional electrophoresis. Isoelectric precipitation at pH 4.6 was our criterion for distinguishing whey proteins from those of the casein complex. The ..cap alpha..- and..beta..-caseins were identified on the basis of relative abundance, relative molecular mass, and relative isoelectric points. No protein disappeared from ISO-DALT patterns of human milk after rennin treatment, and no new protein comparable to bovine para K-casein appeared in the BASO-DALT patterns; this suggests that K-casein is absent from human milk. The proteins identified in human milk patterns include the ..cap alpha.. and ..beta.. casein families, lactalbumin, albumin, transferrin, IgA, and lactoferrin. Numerous additional proteins seen in patterns for human milk remain to be identified.

  20. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B;

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  1. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  2. Adding protein context to the human protein-protein interaction network to reveal meaningful interactions.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    Full Text Available Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs, which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid assays or even if detected in a physiological context, this information is missing from the common PPI databases. To overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways that play a role in Alzheimer's disease, identifying a pathway involving the altered phosphorylation of the Tau protein. Finally, we provide the

  3. Basic research on cancer related to radiation associated medical researches

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon [and others

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed.

  4. Protein composition of rhesus monkey milk: comparison to human milk.

    Science.gov (United States)

    Kunz, C; Lönnerdal, B

    1993-04-01

    1. Proteins in human milk and Rhesus monkey milk have been compared by FPLC gel filtration and anion exchange chromatography, SDS-Polyacrylamide gel electrophoresis, nitrogen and protein determination. 2. Mature Rhesus milk is higher in protein concentration (15-20 mg/ml) than human milk (8-9 mg/ml). 3. Non-Protein nitrogen is 6-13% in Rhesus milk but 25-30% in human milk. 4. Secretory IgA, lactoferrin, serum albumin, alpha-lactalbumin and lysozyme are present in Rhesus milk, but at a lower concentration than in human milk. 5. The casein subunit pattern is more complex in Rhesus milk compared to human milk. 6. The ratio of whey proteins to casein is similar in both milks (approximately 60/40). 7. A protein with a M(r) of 21,600 is a major component in monkey whey but is not found in human milk.

  5. Benchmarking human protein complexes to investigate drug-related systems and evaluate predicted protein complexes.

    Directory of Open Access Journals (Sweden)

    Min Wu

    Full Text Available Protein complexes are key entities to perform cellular functions. Human diseases are also revealed to associate with some specific human protein complexes. In fact, human protein complexes are widely used for protein function annotation, inference of human protein interactome, disease gene prediction, and so on. Therefore, it is highly desired to build an up-to-date catalogue of human complexes to support the research in these applications. Protein complexes from different databases are as expected to be highly redundant. In this paper, we designed a set of concise operations to compile these redundant human complexes and built a comprehensive catalogue called CHPC2012 (Catalogue of Human Protein Complexes. CHPC2012 achieves a higher coverage for proteins and protein complexes than those individual databases. It is also verified to be a set of complexes with high quality as its co-complex protein associations have a high overlap with protein-protein interactions (PPI in various existing PPI databases. We demonstrated two distinct applications of CHPC2012, that is, investigating the relationship between protein complexes and drug-related systems and evaluating the quality of predicted protein complexes. In particular, CHPC2012 provides more insights into drug development. For instance, proteins involved in multiple complexes (the overlapping proteins are potential drug targets; the drug-complex network is utilized to investigate multi-target drugs and drug-drug interactions; and the disease-specific complex-drug networks will provide new clues for drug repositioning. With this up-to-date reference set of human protein complexes, we believe that the CHPC2012 catalogue is able to enhance the studies for protein interactions, protein functions, human diseases, drugs, and related fields of research. CHPC2012 complexes can be downloaded from http://www1.i2r.a-star.edu.sg/xlli/CHPC2012/CHPC2012.htm.

  6. Development of human protein reference database as an initial platform for approaching systems biology in humans

    DEFF Research Database (Denmark)

    Peri, Suraj; Navarro, J Daniel; Amanchy, Ramars

    2003-01-01

    Human Protein Reference Database (HPRD) is an object database that integrates a wealth of information relevant to the function of human proteins in health and disease. Data pertaining to thousands of protein-protein interactions, posttranslational modifications, enzyme/substrate relationships, di...

  7. Reconstruction of human protein interolog network using evolutionary conserved network

    Directory of Open Access Journals (Sweden)

    Lin Chung-Yen

    2007-05-01

    Full Text Available Abstract Background The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog. This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction. Results This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast. Conclusion Evaluation results of the proposed method using functional keyword and Gene Ontology (GO annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.

  8. Cancer-related fatigue: central or peripheral?

    Science.gov (United States)

    Yavuzsen, Tugba; Davis, Mellar P; Ranganathan, Vinoth K; Walsh, Declan; Siemionow, Vlodek; Kirkova, Jordanka; Khoshknabi, Dilara; Lagman, Ruth; LeGrand, Susan; Yue, Guang H

    2009-10-01

    To evaluate cancer-related fatigue (CRF) by objective measurements to determine if CRF is a more centrally or peripherally mediated disorder, cancer patients and matched noncancer controls completed a Brief Fatigue Inventory (BFI) and underwent neuromuscular testing. Cancer patients had fatigue measured by the BFI, were off chemotherapy and radiation (for more than four weeks), had a hemoglobin level higher than 10 g/dL, and were neither receiving antidepressants nor were depressed on a screening question. The controls were screened for depression and matched by age, gender, and body mass index. Neuromuscular testing involved a sustained submaximal elbow flexion contraction (SC) at 30% maximal level (30% maximum elbow flexion force). Endurance time (ET) was measured from the beginning of the SC to the time when participants could not maintain the SC. Evoked twitch force (TF), a measure of muscle fatigue, and compound action potential (M-wave), an assessment of neuromuscular-junction transmission were performed during the SC. Compared with controls, the CRF group had a higher BFI score (Pcontrols, P<0.05). This indicated less muscle fatigue. There was a greater TF (P<0.05) at the end of the SC, indicating greater central fatigue, in the CRF group, which failed to recruit muscle (to continue the SC), as well as the controls. M-Wave amplitude was lower in the CRF group than in the controls (P<0.01), indicating impaired neuromuscular junction conduction with CRF unrelated to central fatigue (M-wave amplitude did not change with SC). These data demonstrate that CRF patients exhibited greater central fatigue, indicated by shorter ET and less voluntary muscle recruitment during an SC relative to controls.

  9. Activation of human platelets by misfolded proteins

    NARCIS (Netherlands)

    Herczenik, E.; Bouma, B.; Korporaal, J.A.; Strangi, R.; Zeng, Q.; Gros, P.; van Eck, M.; van Berkel, T.J.C.; Gebbink, M.F.B.G.; Akkerman, J.W.N.

    2007-01-01

    Objective: Protein misfolding diseases result from the deposition of insoluble protein aggregates that often contain fibrils called amyloid. Amyloids are found in Alzheimer disease, atherosclerosis, diabetes mellitus, and systemic amyloidosis,which are diseases where platelet activation might be

  10. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  11. Arginine-rich cationic proteins of human eosinophil granules

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, I.; Venge, P.; Spitznagel, J.K.; Lehrer, R.I.

    1977-01-01

    Several arginine-rich cationic proteins previously isolated from granules of leukemic myeloid cells have been found to reside primarily in human eosinophil leukocytes. The major component has a molecular weight of 21,000 and it contains approximately 2.6 moles of zinc per mole of protein. Velocity centrifugation of cytoplasm from leukocytes of patients with marked eosinophilia showed that this group of proteins is packaged in the crystalloid-containing large eosinophil granules. Approximately 30% of the protein content of eosinophil granules belonged to this group of cationic proteins. Bactericidal or esterolytic activities of the cationic proteins were not detected, nor did they inhibit guinea pig anaphylatoxin or histamine-induced contraction. The basic protein previously demonstrated in guinea pig eosinophils may be analogous to the group of basic proteins of human eosinophils but great differences are found for molecular weight and amino acid composition.

  12. Protein transport into the human endoplasmic reticulum

    NARCIS (Netherlands)

    Dudek, Johanna; Pfeffer, Stefan; Lee, Po-Hsien; Jung, Martin; Cavalié, Adolfo; Helms, Volkhard; Förster, Friedrich; Zimmermann, Richard

    2015-01-01

    Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various trans

  13. Determination of dideoxyosone precursors of AGEs in human lens proteins.

    Science.gov (United States)

    Linetsky, Mikhail; Kaid Johar, S R; Meltretter, Jasmin; Padmanabha, Smitha; Parmar, Trilok; Vasavada, Abhay R; Pischetsrieder, Monika; Nagaraj, Ram H

    2011-10-01

    Dideoxyosones (DDOs) are intermediates in the synthesis of advanced glycation endproducts (AGEs), such as pentosidine and glucosepane. Although the formation of pentosidine and glucosepane in the human lens has been firmly established, the formation of DDOs has not been demonstrated. The aim of this study was to develop a reliable method to detect DDOs in lens proteins. A specific DDO trapping agent, biotinyl-diaminobenzene (3,4-diamino-N-(3-[5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl]aminopropyl)benzamide) (BDAB) was added during in vitro protein glycation or during protein extraction from human lenses. In vitro glycated human lens protein showed strong reaction in monomeric and polymeric crosslinked proteins by Western blot and ELISA. Glycation of BSA in the presence of BDAB resulted in covalent binding of BDAB to the protein and inhibited pentosidine formation. Mass spectrometric analysis of lysozyme glycated in the presence of BDAB showed the presence of quinoxalines at lysine residues at positions K1, K33, K96, and K116. The ELISA results indicated that cataractous lens proteins contain significantly higher levels of DDO than non-cataractous lenses (101.9±67.8 vs. 31.7±19.5AU/mg protein, p<0.0001). This study provides first direct evidence of DDO presence in human tissue proteins and establishes that AGE crosslink synthesis in the human lens occurs via DDO intermediates. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Overproduction and biophysical characterization of human HSP70 proteins.

    Science.gov (United States)

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Duggan, Kelli D; Tsutsui, Yuko; Hays, Franklin A

    2015-02-01

    Heat shock proteins (HSP) perform vital cellular functions and modulate cell response pathways to physical and chemical stressors. A key feature of HSP function is the ability to interact with a broad array of protein binding partners as a means to potentiate downstream response pathways or facilitate protein folding. These binding interactions are driven by ATP-dependent conformational rearrangements in HSP proteins. The HSP70 family is evolutionarily conserved and is associated with diabetes and cancer progression and the etiopathogenesis of hepatic, cardiovascular, and neurological disorders in humans. However, functional characterization of human HSP70s has been stymied by difficulties in obtaining large quantities of purified protein. Studies of purified human HSP70 proteins are essential for downstream investigations of protein-protein interactions and in the rational design of novel family-specific therapeutics. Within this work, we present optimized protocols for the heterologous overexpression and purification of either the nucleotide binding domain (NBD) or the nucleotide and substrate binding domains of human HSPA9, HSPA8, and HSPA5 in either Escherichia coli or Saccharomyces cerevisiae. We also include initial biophysical characterization of HSPA9 and HSPA8. This work provides the basis for future biochemical studies of human HSP70 protein function and structure.

  15. Bioactive proteins in human milk: mechanisms of action.

    Science.gov (United States)

    Lönnerdal, Bo

    2010-02-01

    Human milk contains a multitude of bioactive proteins, with very diverse functions. Some of these proteins are involved in the synthesis and expression of milk, but the majority appears to have evolved to provide physiological activities in the breast-fed infant. These activities are exerted by a wide variety of mechanisms and have largely been unraveled by in vitro studies. To be active in the gastrointestinal tract, these proteins must be able to resist proteolytic degradation, at least for some time. We have evaluated the human milk proteins lactoferrin, haptocorrin, alpha(1)-antitrypsin, and transforming growth factor -beta in an in vitro digestion model, mimicking the conditions of the infant gastrointestinal milieu. These bioactive proteins are resistant against proteolysis and can remain intact or as larger fragments through passage of the gastrointestinal tract. In vitro digestibility assays can be helpful to assess which human milk proteins can resist proteolysis and to what extent.

  16. Human carotid atherosclerotic plaque protein(s) change HDL protein(s) composition and impair HDL anti-oxidant activity.

    Science.gov (United States)

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Volkova, Nina; Vaya, Jacob

    2016-01-01

    High density lipoprotein (HDL) anti-atherogenic functions are closely associated with cardiovascular disease risk factor, and are dictated by its composition, which is often affected by environmental factors. The present study investigates the effects of the human carotid plaque constituents on HDL composition and biological functions. To this end, human carotid plaques were homogenized and incubated with HDL. Results showed that after incubation, most of the apolipoprotein A1 (Apo A1) protein was released from the HDL, and HDL diameter increased by an average of approximately 2 nm. In parallel, HDL antioxidant activity was impaired. In response to homogenate treatment HDL could not prevent the accelerated oxidation of LDL caused by the homogenate. Boiling of the homogenate prior to its incubation with HDL abolished its effects on HDL composition changes. Moreover, tryptophan fluorescence quenching assay revealed an interaction between plaque component(s) and HDL, an interaction that was reduced by 50% upon using pre-boiled homogenate. These results led to hypothesize that plaque protein(s) interacted with HDL-associated Apo A1 and altered the HDL composition. Immuno-precipitation of Apo A1 that was released from the HDL after its incubation with the homogenate revealed a co-precipitation of three isomers of actin. However, beta-actin alone did not significantly affect the HDL composition, and yet the active protein within the plaque was elusive. In conclusion then, protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.

  17. Protein Translation and Signaling in Human Eosinophils

    Directory of Open Access Journals (Sweden)

    Stephane Esnault

    2017-09-01

    Full Text Available We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1 the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2 the mechanisms regulating mRNA binding proteins activity in EOS, and (3 the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases.

  18. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    Directory of Open Access Journals (Sweden)

    Siprashvili Zurab

    2012-11-01

    Full Text Available Abstract Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions.

  19. Cloning and expression of special F protein from human liver

    Institute of Scientific and Technical Information of China (English)

    Shu-Ye Liu; Xin-Da Yu; Chun-Juan Song; Wei Lu; Jian-Dong Zhang; Xin-Rong Shi; Ying Duan; Ju Zhang

    2007-01-01

    AIM:To clone human liver special F protein and to express it in a prokaryotic system.METHODS:Total RNA was isolated from human liver tissue and first-strand cDNA was reverse transcribed using the PCR reverse primer. Following this,cDNA of the F protein was ligated into the clone vector pUCm-T. The segment of F protein's cDNA was subcloned into the expression vector pET-15b and transformed into E coli BL21 (DEB) pLyss. Isopropy-β-D-thiogalactoside (IPTG) was then used to induce expression of the target protein.RESULTS:The cDNA clone of human liver special F protein (1134bp) was successfully produced,with the cDNA sequence being published in Gene-bank:DQ188836. We confirmed the expression of F protein by Western blot with a molecular weight of 43 kDa. The expressed protein accounted for 40% of the total protein extracted.CONCLUSION:F protein expresses cDNA clone in a proKaryotic system,which offers a relatively simple way of producing sufficient quantities of F protein and contributes to understanding the principal biological functions of this protein.

  20. The evolution of human cells in terms of protein innovation.

    Science.gov (United States)

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  1. Untapped Potential of Disordered Proteins in Current Druggable Human Proteome.

    Science.gov (United States)

    Hu, Gang; Wu, Zhonghua; Wang, Kui; Uversky, Vladimir N; Kurgan, Lukasz

    2016-01-01

    Current efforts in design and characterization of drugs often rely on the structure of their protein targets. However, a large fraction of proteins lack unique 3-D structures and exist as highly dynamic structural ensembles. These intrinsically disordered proteins are involved in pathogenesis of various human diseases and are highly abundant in eukaryotes. Based on a comprehensive analysis of the current druggable human proteome covering 12 drug classes and 18 major classes of drug targets we show a significant bias toward high structural coverage and low abundance of intrinsic disorder. We review reasons for this bias including widespread use of the structural information in various stages of drug development and characterization process and difficulty with attaining structures for the intrinsically disordered proteins. We also discuss future of intrinsically disordered proteins as drug targets. Given the overall high disorder content of the human proteome and current bias of the druggable human proteome toward structural proteins, it is inevitable that disordered proteins will have to raise up on the list of prospective drug targets. The protein disorder-assisted drug design can draw from current rational drug design techniques and would also need novel approaches that no longer rely on a unique protein structure.

  2. A catalogue of human secreted proteins and its implications

    Directory of Open Access Journals (Sweden)

    Shivakumar Keerthikumar

    2016-11-01

    Full Text Available Under both normal and pathological conditions, cells secrete variety of proteins through classical and non-classical secretory pathways into the extracellular space. Majority of these proteins represent pathophysiology of the cell from which it is secreted. Recently, though more than 92% of the protein coding genes has been mapped by human proteome map project, but number of those proteins that constitutes secretome of the cell still remains elusive. Secreted proteins or the secretome can be accessible in bodily fluids and hence are considered as potential biomarkers to discriminate between healthy and diseased individuals. In order to facilitate the biomarker discovery and to further aid clinicians and scientists working in these arenas, we have compiled and catalogued secreted proteins from the human proteome using integrated bioinformatics approach. In this study, nearly 14% of the human proteome is likely to be secreted through classical and non-classical secretory pathways. Out of which, ~38% of these secreted proteins were found in extracellular vesicles including exosomes and shedding microvesicles. Among these secreted proteins, 94% were detected in human bodily fluids including blood, plasma, serum, saliva, semen, tear and urine. We anticipate that this high confidence list of secreted proteins could serve as a compendium of candidate biomarkers. In addition, the catalogue may provide functional insights in understanding the molecular mechanisms involved in various physiological and pathophysiological conditions of the cell.

  3. Molecular epidemiology, cancer-related symptoms, and cytokines pathway.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Wu, Xifeng; Spitz, Margaret; Kurzrock, Razelle; Fisch, Michael; Bruera, Eduardo; Shete, Sanjay

    2008-08-01

    The Human Genome Project and HapMap have led to a better appreciation of the importance of common genetic variation in determining cancer risk, created potential for predicting response to therapy, and made possible the development of targeted prevention and therapeutic interventions. Advances in molecular epidemiology can be used to explore the role of genetic variation in modulating the risk for severe and persistent symptoms, such as pain, depression, and fatigue, in patients with cancer. The same genes that are implicated in cancer risk might also be involved in the modulation of therapeutic outcomes. For example, polymorphisms in several cytokine genes are potential markers for genetic susceptibility both for cancer risk and for cancer-related symptoms. These genetic polymorphisms are stable markers and easily and reliably assayed to explore the extent to which genetic variation might prove useful in identifying patients with cancer at high-risk of symptom development. Likewise, they could identify subgroups who might benefit most from symptom intervention, and contribute to developing personalized and more effective therapies for persistent symptoms.

  4. Biofield therapies and cancer-related symptoms: a review.

    Science.gov (United States)

    Gonella, Silvia; Garrino, Lorenza; Dimonte, Valerio

    2014-10-01

    Patients with cancer can experience several treatment-related symptoms, and conventional care focuses primarily on cure and survival without a holistic approach to disease. Subsequently, an increasing number of patients are accustomed to complementary modalities to improve well-being. Biofield therapies (BTs) are complementary and alternative medicine (CAM) modalities based on the philosophy that humans have an energetic dimension. Physical and psychological symptoms may cause imbalance, and BTs are believed to balance disturbance in the energy field. This article provides a study review of the main BTs (i.e., therapeutic touch, healing touch, and Reiki) in the treatment of cancer-related symptoms. Although BTs are among the most ancient healing practices, data on their effectiveness are poor and additional multicenter research with larger samples are necessary. BTs may eventually become an autonomous field of nursing activity and allow professionals to build a relationship with the patient, thereby improving motivation. The idea that this method can be self-managed and may effectively reduce pain for patients with cancer can improve satisfaction challenges experienced by the current healthcare system.

  5. Outcomes in Critically Ill Patients with Cancer-Related Complications

    Science.gov (United States)

    Torres, Viviane B. L.; Vassalo, Juliana; Silva, Ulysses V. A.; Caruso, Pedro; Torelly, André P.; Silva, Eliezer; Teles, José M. M.; Knibel, Marcos; Rezende, Ederlon; Netto, José J. S.; Piras, Claudio; Azevedo, Luciano C. P.; Bozza, Fernando A.; Spector, Nelson; Salluh, Jorge I. F.; Soares, Marcio

    2016-01-01

    Introduction Cancer patients are at risk for severe complications related to the underlying malignancy or its treatment and, therefore, usually require admission to intensive care units (ICU). Here, we evaluated the clinical characteristics and outcomes in this subgroup of patients. Materials and Methods Secondary analysis of two prospective cohorts of cancer patients admitted to ICUs. We used multivariable logistic regression to identify variables associated with hospital mortality. Results Out of 2,028 patients, 456 (23%) had cancer-related complications. Compared to those without cancer-related complications, they more frequently had worse performance status (PS) (57% vs 36% with PS≥2), active malignancy (95% vs 58%), need for vasopressors (45% vs 34%), mechanical ventilation (70% vs 51%) and dialysis (12% vs 8%) (P<0.001 for all analyses). ICU (47% vs. 27%) and hospital (63% vs. 38%) mortality rates were also higher in patients with cancer-related complications (P<0.001). Chemo/radiation therapy-induced toxicity (6%), venous thromboembolism (5%), respiratory failure (4%), gastrointestinal involvement (3%) and vena cava syndrome (VCS) (2%) were the most frequent cancer-related complications. In multivariable analysis, the presence of cancer-related complications per se was not associated with mortality [odds ratio (OR) = 1.25 (95% confidence interval, 0.94–1.66), P = 0.131]. However, among the individual cancer-related complications, VCS [OR = 3.79 (1.11–12.92), P = 0.033], gastrointestinal involvement [OR = 3.05 (1.57–5.91), P = <0.001] and respiratory failure [OR = 1.96(1.04–3.71), P = 0.038] were independently associated with in-hospital mortality. Conclusions The prognostic impact of cancer-related complications was variable. Although some complications were associated with worse outcomes, the presence of an acute cancer-related complication per se should not guide decisions to admit a patient to ICU. PMID:27764143

  6. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  7. Spaceflight and protein metabolism, with special reference to humans

    Science.gov (United States)

    Stein, T. P.; Gaprindashvili, T.

    1994-01-01

    Human space missions have shown that human spaceflight is associated with a loss of body protein. Specific changes include a loss of lean body mass, decreased muscle mass in the calves, decreased muscle strength, and changes in plasma proteins and amino acids. The major muscle loss is believed to be associated with the antigravity (postural) muscle. The most significant loss of protein appears to occur during the first month of flight. The etiology is believed to be multifactorial with contributions from disuse atrophy, undernutrition, and a stress type of response. This article reviews the results of American and Russian space missions to investigate this problem in humans, monkeys, and rats. The relationship of the flight results with ground-based models including bedrest for humans and hindlimb unweighting for rats is also discussed. The results suggest that humans adapt to spaceflight much better than either monkeys or rats.

  8. Human protein reference database as a discovery resource for proteomics

    Science.gov (United States)

    Peri, Suraj; Navarro, J. Daniel; Kristiansen, Troels Z.; Amanchy, Ramars; Surendranath, Vineeth; Muthusamy, Babylakshmi; Gandhi, T. K. B.; Chandrika, K. N.; Deshpande, Nandan; Suresh, Shubha; Rashmi, B. P.; Shanker, K.; Padma, N.; Niranjan, Vidya; Harsha, H. C.; Talreja, Naveen; Vrushabendra, B. M.; Ramya, M. A.; Yatish, A. J.; Joy, Mary; Shivashankar, H. N.; Kavitha, M. P.; Menezes, Minal; Choudhury, Dipanwita Roy; Ghosh, Neelanjana; Saravana, R.; Chandran, Sreenath; Mohan, Sujatha; Jonnalagadda, Chandra Kiran; Prasad, C. K.; Kumar-Sinha, Chandan; Deshpande, Krishna S.; Pandey, Akhilesh

    2004-01-01

    The rapid pace at which genomic and proteomic data is being generated necessitates the development of tools and resources for managing data that allow integration of information from disparate sources. The Human Protein Reference Database (http://www.hprd.org) is a web-based resource based on open source technologies for protein information about several aspects of human proteins including protein–protein interactions, post-translational modifications, enzyme–substrate relationships and disease associations. This information was derived manually by a critical reading of the published literature by expert biologists and through bioinformatics analyses of the protein sequence. This database will assist in biomedical discoveries by serving as a resource of genomic and proteomic information and providing an integrated view of sequence, structure, function and protein networks in health and disease. PMID:14681466

  9. Mitochondrial protein import and human health and disease.

    Science.gov (United States)

    MacKenzie, James A; Payne, R Mark

    2007-05-01

    The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.

  10. Matrix metalloproteinase-2 (MMP-2) and its tissue inhibitor (TIMP-2) are prognostic factors in cervical cancer, related to invasive disease but not to high-risk human papillomavirus (HPV) or virus persistence after treatment of CIN.

    Science.gov (United States)

    Branca, M; Ciotti, M; Giorgi, C; Santini, D; Di Bonito, L; Costa, S; Benedetto, A; Bonifacio, D; Di Bonito, P; Paba, P; Accardi, L; Syrjänen, S; Favalli, C; Syrjänen, K

    2006-01-01

    Matrix metalloproteinase-2 (MMP-2) and its tissue inhibitor (TIMP-2) are important regulators of cancer invasion and metastasis. Their associations to high-risk (HR) human papillomavirus (HPV) in cervical intra-epithelial neoplasia (CIN) and cervical cancer (CC) are unexplored and their prognostic significance in CC remains controversial. As part of our HPV-PathogenISS study, a series of 150 CCs and 152 CIN lesions were examined using immunohistochemical (IHC) staining for MMP-2 and TIMP-2 and tested for HPV using PCR with 3 primer sets (MY09/11, GP5+/GP6+, SPF). Follow-up data were available from all squamous cell carcinoma patients and 67 CIN lesions had been monitored with serial PCR for HPV after cone treatment. MMP-2 increased with the grade of CIN, with major up-regulation upon transition to invasive cancer (OR 20.78) (95%CI 7.16-60.23) (p=0.0001). TIMP-2 retained its normal expression until CIN3, with dramatic down-regulation in invasive disease (p=0.0001 for trend). Thus, the MMP2:TIMP-2 ratio increased with progressive CIN, exceeding the value 1.0 only in invasive disease. Both MMP-2 and TIMP-2 are highly specific (TIMP-2; 100%) discriminators of CIN with 100% positive predictive value (TIMP-2), but suffer from low sensitivity and negative predictive value. Neither MMP-2 nor TIMP-2 showed any significant association with HR HPV or virus persistence/clearance. TIMP-2 (but not MMP-2) was a significant predictor of survival in univariate (Kaplan-Meier) analysis (p=0.007), but lost its significance in multivariate (Cox) analysis. The activities of MMP-2 and TIMP-2 in cervical carcinogenesis seem to be unrelated to HR-HPV The inverse MMP-2:TIMP-2 ratio is a sign of poor prognosis. A combination of a TIMP-2 assay with another test showing high SE and high NPV (e.g., HCII for HPV) should provide a potential screening tool capable of accurate detection of CIN.

  11. Structural characterisation of human proteinosis surfactant protein A

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Holmskov, U; Højrup, P

    2000-01-01

    Human surfactant protein-A (SP-A) has been purified from a proteinosis patient and characterised by a combination of automated Edman degradation and mass spectrometry. The complete protein sequence was characterised. The major part of SP-A was shown to consist of SP-A2 gene product, and only...

  12. Protein buffering in model systems and in whole human saliva.

    Directory of Open Access Journals (Sweden)

    Andreas Lamanda

    Full Text Available The aim of this study was to quantify the buffer attributes (value, power, range and optimum of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16% between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s belonging to the protein buffer system of human saliva.

  13. Targeted quantitative mass spectrometric immunoassay for human protein variants

    Directory of Open Access Journals (Sweden)

    Nedelkov Dobrin

    2011-04-01

    Full Text Available Abstract Background Post-translational modifications and genetic variations give rise to protein variants that significantly increase the complexity of the human proteome. Modified proteins also play an important role in biological processes. While sandwich immunoassays are routinely used to determine protein concentrations, they are oblivious to protein variants that may serve as biomarkers with better sensitivity and specificity than their wild-type proteins. Mass spectrometry, coupled to immunoaffinity separations, can provide an efficient mean for simultaneous detection and quantification of protein variants. Results Presented here is a mass spectrometric immunoassay method for targeted quantitative proteomics analysis of protein modifications. Cystatin C, a cysteine proteinase inhibitor and a potential marker for several pathological processes, was used as a target analyte. An internal reference standard was incorporated into the assay, serving as a normalization point for cystatin C quantification. The precision, linearity, and recovery characteristics of the assay were established. The new assay was also benchmarked against existing cystatin C ELISA. In application, the assay was utilized to determine the individual concentration of several cystatin C variants across a cohort of samples, demonstrating the ability to fully quantify individual forms of post-translationally modified proteins. Conclusions The mass spectrometric immunoassays can find use in quantifying specific protein modifications, either as a part of a specific protein biomarker discovery/rediscovery effort to delineate the role of these variants in the onset of the disease, progression, and response to therapy, or in a more systematic study to delineate and understand human protein diversity.

  14. Protein dynamics in individual human cells: experiment and theory.

    Directory of Open Access Journals (Sweden)

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  15. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Folkersen, J; Kristensen, Torsten;

    1984-01-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated protein. Its quaternary structure (two covalently bound 180-kDa subunits, which are further non-covalently assembled into a tetramer of 720 kDa) is similar to that of human alpha 2-macroglobulin (alpha 2M). Here we show, from the ...

  16. Molecular adaptations in human atrial fibrillation : mechanisms of protein remodeling

    NARCIS (Netherlands)

    Brundel, Bianca Johanna Josephina Maria

    2000-01-01

    The main goal was to study the molecular remodeling in human atrial fibrillation. We focussed on gene expression of proteins wich influence the calcium homeostasis and action potential duration in human AF. The impact of modulation sysems like the natriuretic peptide system and the endothelin system

  17. Intracellular localization of VAMP-1 protein in human neutrophils.

    Science.gov (United States)

    Nabokina, S M

    2001-02-01

    We studied the intracellular localization of vesicle-associated membrane protein VAMP-1 in human neutrophils. VAMP-1 was associated with membranes of gelatinase and specific secretory granules rapidly mobilized during exocytosis. VAMP-1 probably acts as a component of the SNARE complex during exocytosis of gelatinase and specific granules in human neutrophils.

  18. Guidelines for the nomenclature of the human heat shock proteins

    NARCIS (Netherlands)

    Kampinga, Harm H.; Hageman, Jurre; Vos, Michel J.; Kubota, Hiroshi; Tanguay, Robert M.; Bruford, Elspeth A.; Cheetham, Michael E.; Chen, B.; Hightower, Lawrence E.

    The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40),

  19. Guidelines for the nomenclature of the human heat shock proteins

    NARCIS (Netherlands)

    Kampinga, Harm H.; Hageman, Jurre; Vos, Michel J.; Kubota, Hiroshi; Tanguay, Robert M.; Bruford, Elspeth A.; Cheetham, Michael E.; Chen, B.; Hightower, Lawrence E.

    2009-01-01

    The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40), a

  20. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    XU; Jinping(徐进平); YE; Linbai(叶林柏)

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  1. Effects of Exercise Interventions and Physical Activity Behavior on Cancer Related Cognitive Impairments: A Systematic Review

    OpenAIRE

    Philipp Zimmer; Baumann, Freerk T; Max Oberste; Peter Wright; Alexander Garthe; Alexander Schenk; Thomas Elter; Galvao, Daniel A.; Wilhelm Bloch; Sven T. Hübner; Florian Wolf

    2016-01-01

    This systematic review analyzes current data on effects of exercise interventions and physical activity behavior on objective and subjective cancer related cognitive impairments (CRCI). Out of the 19 studies which met all inclusion criteria, five RCTs investigated rodents, whereas the other 14 trials explored humans and these included six RCTs, one controlled trial, two prospective noncontrolled trials, one case series, one observational study, and three cross-sectional studies. The results f...

  2. Human neuroglobin protein in cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Whalen Gail

    2005-02-01

    Full Text Available Abstract Background Neuroglobin is a hexacoordinated member of the globin family of proteins. It is predominantly localized to various brain regions and retina where it may play a role in protection against ischemia and nitric oxide-induced neural injury. Cerebrospinal fluid was collected from 12 chronic regional or systemic pain and 5 control subjects. Proteins were precipitated by addition of 50% 0.2 N acetic acid, 50% ethanol, 0.02% sodium bisulfite. The pellet was extensively digested with trypsin. Peptides were separated by capillary liquid chromatography using a gradient from 95% water to 95% acetonitrile in 0.2% formic acid, and eluted through a nanoelectrospray ionization interface into a quadrapole – time-of-flight dual mass spectrometer (QToF2, Waters, Milford, MA. Peptides were sequenced (PepSeq, MassLynx v3.5 and proteins identified using MASCOT ®. Results Six different neuroglobin peptides were identified in various combinations in 3 of 9 female pain subjects, but none in male pain, or female or male control subjects. Conclusion This is the first description of neuroglobin in cerebrospinal fluid. The mechanism(s leading to its release in chronic pain states remain to be defined.

  3. STUDY ON NUCLEAR MATRIX PROTEINS FROM HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; ZHANG Shu-qun; CHU Yong-lie; JIA Xiao-li; JIANG Jian-tao

    2009-01-01

    Objective To investigate the marker protein of human breast carcinoma from nuclear matrix proteins (NMPs).Methods NMPs were injected subcutaneously into rabbit to get antiserum, which was used to detect the NMPs specificity for breast carcinoma.Results There was an apparent positive band (100kD) in the NMPs of breast carcinoma, which did not exist in normal breast and other tumors that were detected.Conclusion One or one group of 100kD NMPs were found to be related to human breast carcinoma, which may be involved in the carcinogenesis and development of human breast carcinoma and valuable for breast carcinoma diagnosis.

  4. HUMAN AND MARE'S MILK - PROTEIN FRACTION AND LIPID COMPOSITION

    Directory of Open Access Journals (Sweden)

    Vesna Gantner

    2014-12-01

    Full Text Available In human population if the infants are not breast-fed, a substitute for breast milk is nee¬ded. Use of cow's milk can induce allergies during the first 3 years of life. Alternative could be mare's milk. The objectives of this review were to compare human and mare's milk protein fraction and lipid composition as well as to determine adequacy of mare's milk as substitute for breast milk. Similarities are found regarding the protein and salt content; whey protein and NPN concentrations; structure of protein micelles and lipid globules; proportion of saturated fatty acids and unsaturated fatty acids. Taking into account determined similarities of human and mare's milk, it could be concluded that mare's milk is suitable nourishment for infants.

  5. Selection of Proteins for Human MHC Class Ⅱ Presentation

    Institute of Scientific and Technical Information of China (English)

    Li Jiang; Ole Lund; Jinquan Tan

    2005-01-01

    We investigated the predicted function of proteins eluded from human MHC class Ⅱ molecules. Peptides that are presented by MHC class Ⅱ were obtained from the SYFPEITHI database and the corresponding proteins were found in the SWISSPROT database. The functions of these proteins were predicted using the protfun server. Our analysis showed that human proteins presented by MHC class Ⅱ molecules are likely to be in the cell envelope, be a receptor or involved in immune responses. Presented proteins from bacteria and virus, on the other hand, are more likely to be involved in regulatory functions, translation, transcription as well as replication. These results can lead to better understanding the autoimmunity and the response to infections.

  6. Selection of Proteins for Human MHC Class Ⅱ Presentation

    Institute of Scientific and Technical Information of China (English)

    LiJiang; OleLund; JinquanTan

    2005-01-01

    We investigated the predicted function of proteins eluded from human MHC class Ⅱ molecules. Peptides that are presented by MHC class Ⅱ were obtained from the SYFPEITH! database and the corresponding proteins were found in the SWISSPROT database. The functions of these proteins were predicted using the protfun server. Our analysis showed that human proteins presented by MHC class Ⅱ molecules are likely to be in the cell envelope, be a receptor or involved in immune responses. Presented proteins from bacteria and virus, on the other hand, are more likely to be involved in regulatory functions, translation, transcription as well as replication. These results can lead to better understanding the autoimmunity and the response to infections. Cellular & Molecular Immunology. 2005; 2(1):49-56.

  7. Human neuronal cell protein responses to Nipah virus infection

    Directory of Open Access Journals (Sweden)

    Hassan Sharifah

    2007-06-01

    Full Text Available Abstract Background Nipah virus (NiV, a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches. Results Method for separation of the NiV-infected human neuronal cell proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE was established. At least 800 protein spots were resolved of which seven were unique, six were significantly up-regulated and eight were significantly down-regulated. Six of these altered proteins were identified using mass spectrometry (MS and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP F, guanine nucleotide binding protein (G protein, voltage-dependent anion channel 2 (VDAC2 and cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to hnRNPs H and H2 that were significantly down-regulated. Conclusion Several human neuronal cell proteins that are differentially expressed following NiV infection are identified. The proteins are associated with various cellular functions and their abundance reflects their significance in the cytopathologic responses to the infection and the regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H and H2 in regulation of NiV replication, the association of the mitochondrial protein with the cytopathologic responses to the infection and induction of apoptosis are highlighted.

  8. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  9. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    in various disease processes including cancer has been gained in recent years, and the present review may help to further elucidate its aberrant role in many disease states. Its peculiar structural features [3-9] may be advantageous in designing tailor-made compounds with the possibility to specifically...... target this protein kinase [10]. Since not all the aspects of what has been published on CK2 can be covered in this review, we would like to recommend the following reviews; (i) for general information on CK2 [11-18] and (ii) with a focus on aberrant CK2 [19-22]....

  10. Human Proteinpedia enables sharing of human protein data

    Energy Technology Data Exchange (ETDEWEB)

    Mathivanan, Suresh; Ahmed, Mukhtar; Ahn, Natalie G.; Alexandre, Hainard; Amanchy, Ramars; Andrews, Philip C.; Bader, Joel S.; Balgley, Brian M.; Bantscheff, Marcus; Bennett, Keiryn; Bjorling, Erik; Blagoev, Blagoy; Bose , Ron; Brahmachari, Samir K.; Burlingame, Alma S.; Bustelo, Xos R.; Cagney, Gerard; Cantin, Greg T; Cardasis, Helene L; Celis, Julio E; Chaerkady, Raghothama; Chu, Feixia; Cole, Phillip A.; Costello, Catherine E; Cotter , Robert J.; Crockett, David; DeLany , James P.; De Marzo, Angelo M; DeSouza, Leroi V; Deutsch, Eric W.; Dransfield , Eric; Drewes , Gerard; Droit , Arnaud; Dunn, Michael; Elenitoba-Johnson, Kojo; Ewing, Rob M.; Van Eyk , Jennifer; Faca , Vitor; Falkner , Jayson; Fang, Xiangming; Fenselau , Catherine; Figeys , Daniel; Gagne , Pierre; Gelfi , Cecilia; Gevaert , Kris; Gimble , Jeffrey; Gnad , Florian; Goel, Renu; Gromov , Pavel; Hanash, Samir M.; Hancock, William S.; Harsha , HC; Hart , Gerald; Faith , Hays; He , Fuchu; Hebbar , Prashantha; Helsens , Kenny; Hermeking , Heiko; Hide , Winston; Hjerno, Karin; Hochstrasser, Denis F.; Hofmann, Oliver; Horn , David M.; Hruban , Ralph H.; Ibarrola , Nieves; James , Peter; Jensen , Ole N.; Jensen, Pia H.; Jung , Peter; Kandasamy, Kumaran; Kheterpal , Indu; Kikuno , Reiko; Korf, Ulrike; Korner, Roman; Kuster, Bernhard; Kwon , Min-Seok; Lee , Hyoung-Joo; Lee , Young - Jin; Lefevre , Michael; Lehvaslaiho, Minna; Lescuyer, Pierre; Levander, Fredrik; Lim, Megan S.; Lobke, Christian; Loo, Joseph; Mann, Matthias; Martens , Lennart; Martinez-Heredia, Juan; McComb, Mark E.; McRedmond , James; Mehrle, Alexander; Menon, Rajasree; Miller, Christine A.; Mischak, Harald; Mohan, S Sujatha; Mohmood , Riaz; Molina , Henrik; Moran , Michael F.; Morgan, James D.; Moritz , Robert; Morzel, Martine; Muddiman, David C.; Nalli , Anuradha; Navarro, J. D.; Neubert , Thomas A.; Ohara , Osamu; Oliva, Rafael; Omenn, Gilbert; Oyama , Masaaki; Paik, Young-Ki; Pennington , Kyla; Pepperkok, Rainer; Periaswamy, Balamurugan; Petricoin, Emanuel F.; Poirier, Guy G.; Prasad, T S Keshava; Purvine, Samuel O.; Rahiman , B Abdul; Ramachandran, Prasanna; Ramachandra , Y L; Rice, Robert H.; Rick , Jens; Ronnholm , Ragna H.; Salonen , Johanna; Sanchez , Jean - Charles; Sayd , Thierry; Seshi, Beerelli; Shankari, Kripa; Sheng , Shi Jun; Shetty , Vivekananda; Shivakumar, K.; Simpson, Richard J.; Sirdeshmukh, Ravi; Siu , K W Michael; Smith, Jeffrey C.; Smith, Richard D.; States, David J.; Sugano, Sumio; Sullivan , Matthew; Superti - Furga, Giulio; Takatalo , Maarit; Thongboonkerd , Visith; Trinidad , Jonathan C.; Uhlen , Mathias; Vandekerckhove, Joel; Vasilescu , Julian; Veenstra, Timothy D.; Vidal - Taboada, Jose - Manuel; Vihinen, Mauno; Wait , Robin; Wang, Xiaoyue; Wiemann, Stefan; Wu , Billy; Xu, Tao; Yates, John R.; Zhong, Jun; Zhou, Ming; Zhu, Yunping; Zurbig, Petra; Pandey, Akhilesh

    2008-02-01

    Proteomic technologies, such as yeast twohybrid, mass spectrometry (MS), protein/ peptide arrays and fluorescence microscopy, yield multi-dimensional data sets, which are often quite large and either not published or published as supplementary information that is not easily searchable. Without a system in place for standardizing and sharing data, it is not fruitful for the biomedical community to contribute these types of data to centralized repositories. Even more difficult is the annotation and display of pertinent information in the context of the corresponding proteins. Wikipedia, an online encyclopedia that anyone can edit, has already proven quite successful1 and can be used as a model for sharing biological data. However, the need for experimental evidence, data standardization and ownership of data creates scientific obstacles.

  11. Immunotherapy against cancer-related viruses.

    Science.gov (United States)

    Tashiro, Haruko; Brenner, Malcolm K

    2017-01-01

    Approximately 12% of all cancers worldwide are associated with viral infections. To date, eight viruses have been shown to contribute to the development of human cancers, including Epstein-Barr virus (EBV), Hepatitis B and C viruses, and Human papilloma virus, among others. These DNA and RNA viruses produce oncogenic effects through distinct mechanisms. First, viruses may induce sustained disorders of host cell growth and survival through the genes they express, or may induce DNA damage response in host cells, which in turn increases host genome instability. Second, they may induce chronic inflammation and secondary tissue damage favoring the development of oncogenic processes in host cells. Viruses like HIV can create a more permissive environment for cancer development through immune inhibition, but we will focus on the previous two mechanisms in this review. Unlike traditional cancer therapies that cannot distinguish infected cells from non-infected cells, immunotherapies are uniquely equipped to target virus-associated malignancies. The targeting and functioning mechanisms associated with the immune response can be exploited to prevent viral infections by vaccination, and can also be used to treat infection before cancer establishment. Successes in using the immune system to eradicate established malignancy by selective recognition of virus-associated tumor cells are currently being reported. For example, numerous clinical trials of adoptive transfer of ex vivo generated virus-specific T cells have shown benefit even for established tumors in patients with EBV-associated malignancies. Additional studies in other virus-associated tumors have also been initiated and in this review we describe the current status of immunotherapy for virus-associated malignancies and discuss future prospects.

  12. Cancer related gene expression in the human prostate zones

    NARCIS (Netherlands)

    L. Heul-Nieuwenhuijsen (Leonie)

    2009-01-01

    textabstractThe normal prostate: The prostate is the largest accessory gland of the male reproductive system. (Figure 1) The healthy adult prostate is about the size of a chestnut and conical in shape. In general, it measures 20 ml in volume, though it can become five or six time that size with incr

  13. The nucleocapsid protein of human coronavirus NL63.

    Directory of Open Access Journals (Sweden)

    Kaja Zuwała

    Full Text Available Human coronavirus (HCoV NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E. Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.

  14. Regulation of the retinoblastoma proteins by the human herpesviruses

    Directory of Open Access Journals (Sweden)

    Kalejta Robert F

    2009-01-01

    Full Text Available Abstract Viruses are obligate intracellular parasites that alter the environment of infected cells in order to replicate more efficiently. One way viruses achieve this is by modulating cell cycle progression. The main regulators of progression out of G0, through G1, and into S phase are the members of the retinoblastoma (Rb family of tumor suppressors. Rb proteins repress the transcription of genes controlled by the E2F transcription factors. Because the expression of E2F-responsive genes is required for cell cycle progression into the S phase, Rb arrests the cell cycle in G0/G1. A number of viral proteins directly target Rb family members for inactivation, presumably to create an environment more hospitable for viral replication. Such viral proteins include the extensively studied oncoproteins E7 (from human papillomavirus, E1A (from adenovirus, and the large T (tumor antigen (from simian virus 40. Elucidating how these three viral proteins target and inactivate Rb has proven to be an invaluable approach to augment our understanding of both normal cell cycle progression and carcinogenesis. In addition to these proteins, a number of other virally-encoded inactivators of the Rb family have subsequently been identified including a surprising number encoded by human herpesviruses. Here we review how the human herpesviruses modulate Rb function during infection, introduce the individual viral proteins that directly or indirectly target Rb, and speculate about what roles Rb modulation by these proteins may play in viral replication, pathogenesis, and oncogenesis.

  15. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y;

    1990-01-01

    the highly conserved 60 amino acid homeodomain. This peptide antiserum recognized a protein species of molecular weight 63,000 in immunoblots of nuclear extracts obtained from several tumor cell lines. The predominant molecular weight 63,000 nuclear protein recognized by the peptide antiserum...... the same patients exhibited little immunoreactivity. Both the peptide antiserum and the polyclonal antiserum against the native protein immunoblotted a molecular weight 63,000 protein in nuclear extracts of tumor tissue, but not significantly in extracts of normal tissue. At the molecular level......Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from...

  16. [Proteins of human milk involved in immunological processes].

    Science.gov (United States)

    Lis, Jolanta; Orczyk-Pawiłowicz, Magdalena; Kątnik-Prastowska, Iwona

    2013-05-31

    Human milk contains a lot of components (i.e. proteins, carbohydrates, lipids, inorganic elements) which provide basic nutrients for infants during the first period of their lives. Qualitative composition of milk components of healthy mothers is similar, but their levels change during lactation stages. Colostrum is the fluid secreted during the first days postpartum by mammary epithelial cells. Colostrum is replaced by transitional milk during 5-15 days postpartum and from 15 days postpartum mature milk is produced. Human milk, apart from nutritional components, is a source of biologically active molecules, i.e. immunoglobulins, growth factors, cytokines, acute phase proteins, antiviral and antibacterial proteins. Such components of human milk are responsible for specific biological activities of human milk. This secretion plays an important role in growth and development of newborns. Bioactive molecules present in the milk support the immature immune system of the newborn and also protect against the development of infection. In this article we describe the pathways involved in the production and secretion of human milk, the state of knowledge on the proteome of human milk, and the contents of components of milk during lactation. Moreover, some growth factors and proteins involved in innate and specific immunity, intercellular communication, immunomodulation, and inflammatory processes have been characterized.

  17. Proteins of human milk involved in immunological processes 

    Directory of Open Access Journals (Sweden)

    Jolanta Lis

    2013-05-01

    Full Text Available Human milk contains a lot of components (i.e. proteins, carbohydrates, lipids, inorganic elements which provide basic nutrients for infants during the first period of their lives. Qualitative composition of milk components of healthy mothers is similar, but their levels change during lactation stages. Colostrum is the fluid secreted during the first days postpartum by mammary epithelial cells. Colostrum is replaced by transitional milk during 5-15 days postpartum and from 15 days postpartum mature milk is produced. Human milk, apart from nutritional components, is a source of biologically active molecules, i.e. immunoglobulins, growth factors, cytokines, acute phase proteins, antiviral and antibacterial proteins. Such components of human milk are responsible for specific biological activities of human milk. This secretion plays an important role in growth and development of newborns. Bioactive molecules present in the milk support the immature immune system of the newborn and also protect against the development of infection. In this article we describe the pathways involved in the production and secretion of human milk, the state of knowledge on the proteome of human milk, and the contents of components of milk during lactation. Moreover, some growth factors and proteins involved in innate and specific immunity, intercellular communication, immunomodulation, and inflammatory processes have been characterized.

  18. Development of human protein reference database as an initial platform for approaching systems biology in humans.

    Science.gov (United States)

    Peri, Suraj; Navarro, J Daniel; Amanchy, Ramars; Kristiansen, Troels Z; Jonnalagadda, Chandra Kiran; Surendranath, Vineeth; Niranjan, Vidya; Muthusamy, Babylakshmi; Gandhi, T K B; Gronborg, Mads; Ibarrola, Nieves; Deshpande, Nandan; Shanker, K; Shivashankar, H N; Rashmi, B P; Ramya, M A; Zhao, Zhixing; Chandrika, K N; Padma, N; Harsha, H C; Yatish, A J; Kavitha, M P; Menezes, Minal; Choudhury, Dipanwita Roy; Suresh, Shubha; Ghosh, Neelanjana; Saravana, R; Chandran, Sreenath; Krishna, Subhalakshmi; Joy, Mary; Anand, Sanjeev K; Madavan, V; Joseph, Ansamma; Wong, Guang W; Schiemann, William P; Constantinescu, Stefan N; Huang, Lily; Khosravi-Far, Roya; Steen, Hanno; Tewari, Muneesh; Ghaffari, Saghi; Blobe, Gerard C; Dang, Chi V; Garcia, Joe G N; Pevsner, Jonathan; Jensen, Ole N; Roepstorff, Peter; Deshpande, Krishna S; Chinnaiyan, Arul M; Hamosh, Ada; Chakravarti, Aravinda; Pandey, Akhilesh

    2003-10-01

    Human Protein Reference Database (HPRD) is an object database that integrates a wealth of information relevant to the function of human proteins in health and disease. Data pertaining to thousands of protein-protein interactions, posttranslational modifications, enzyme/substrate relationships, disease associations, tissue expression, and subcellular localization were extracted from the literature for a nonredundant set of 2750 human proteins. Almost all the information was obtained manually by biologists who read and interpreted >300,000 published articles during the annotation process. This database, which has an intuitive query interface allowing easy access to all the features of proteins, was built by using open source technologies and will be freely available at http://www.hprd.org to the academic community. This unified bioinformatics platform will be useful in cataloging and mining the large number of proteomic interactions and alterations that will be discovered in the postgenomic era.

  19. Protein L. A bacterial Ig-binding protein that activates human basophils and mast cells.

    Science.gov (United States)

    Patella, V; Casolaro, V; Björck, L; Marone, G

    1990-11-01

    Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in

  20. Bacterial protein toxins in human cancers.

    Science.gov (United States)

    Rosadi, Francesca; Fiorentini, Carla; Fabbri, Alessia

    2016-02-01

    Many bacteria causing persistent infections produce toxins whose mechanisms of action indicate that they could have a role in carcinogenesis. Some toxins, like CDT and colibactin, directly attack the genome by damaging DNA whereas others, as for example CNF1, CagA and BFT, impinge on key eukaryotic processes, such as cellular signalling and cell death. These bacterial toxins, together with other less known toxins, mimic carcinogens and tumour promoters. The aim of this review is to fulfil an up-to-date analysis of toxins with carcinogenic potential that have been already correlated to human cancers. Bacterial toxins-induced carcinogenesis represents an emerging aspect in bacteriology, and its significance is increasingly recognized.

  1. Projecting productivity losses for cancer-related mortality 2011 - 2030.

    Science.gov (United States)

    Pearce, Alison; Bradley, Cathy; Hanly, Paul; O'Neill, Ciaran; Thomas, Audrey Alforque; Molcho, Michal; Sharp, Linda

    2016-10-18

    When individuals stop working due to cancer this represents a loss to society - the loss of productivity. The aim of this analysis was to estimate productivity losses associated with premature mortality from all adult cancers and from the 20 highest mortality adult cancers in Ireland in 2011, and project these losses until 2030. An incidence-based method was used to estimate the cost of cancer deaths between 2011 and 2030 using the Human Capital Approach. National data were used for cancer, population and economic inputs. Both paid work and unpaid household activities were included. Sensitivity analyses estimated the impact of assumptions around future cancer mortality rates, retirement ages, value of unpaid work, wage growth and discounting. The 233,000 projected deaths from all invasive cancers in Ireland between 2011 and 2030 will result in lost productivity valued at €73 billion; €13 billion in paid work and €60 billion in household activities. These losses represent approximately 1.4 % of Ireland's GDP annually. The most costly cancers are lung (€14.4 billion), colorectal and breast cancer (€8.3 billion each). However, when viewed as productivity losses per cancer death, testis (€364,000 per death), cervix (€155,000 per death) and brain cancer (€136,000 per death) are most costly because they affect working age individuals. An annual 1 % reduction in mortality reduces productivity losses due to all invasive cancers by €8.5 billion over 20 years. Society incurs substantial losses in productivity as a result of cancer-related mortality, particularly when household production is included. These estimates provide valuable evidence to inform resource allocation decisions in cancer prevention and control.

  2. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  3. Exploiting Bacterial Operons To Illuminate Human Iron-Sulfur Proteins.

    Science.gov (United States)

    Andreini, Claudia; Banci, Lucia; Rosato, Antonio

    2016-04-01

    Organisms from all kingdoms of life use iron-sulfur proteins (FeS-Ps) in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of FeS-Ps. Sixty-one percent of human FeS-Ps bind Fe4S4 clusters, whereas 39% bind Fe2S2 clusters. However, this relative ratio varies significantly depending on the specific cellular compartment. We compared the portfolio of human FeS-Ps to 12 other eukaryotes and to about 700 prokaryotes. The comparative analysis of the organization of the prokaryotic homologues of human FeS-Ps within operons allowed us to reconstruct the human functional networks involving the conserved FeS-Ps common to prokaryotes and eukaryotes. These functional networks have been maintained during evolution and thus presumably represent fundamental cellular processes. The respiratory chain and the ISC machinery for FeS-P biogenesis are the two conserved processes that involve the majority of human FeS-Ps. Purine metabolism is another process including several FeS-Ps, in which BOLA proteins possibly have a regulatory role. The analysis of the co-occurrence of human FeS-Ps with other proteins highlighted numerous links between the iron-sulfur cluster machinery and the response mechanisms to cell damage, from repair to apoptosis. This relationship probably relates to the production of reactive oxygen species within the biogenesis and degradation of FeS-Ps.

  4. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  5. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  6. Dietary protein oxidation: A silent threat to human health?

    Science.gov (United States)

    Estévez, M; Luna, C

    2017-11-22

    Protein oxidation has become a topic of great scientific interest in the field of food science and nutrition. Food proteins are known to be preferential targets of radical species, and protein oxidation has relevant consequences on protein functionality and food quality. Current trends in this field call attention to the nutritional and health dimensions of oxidized foods. Both lipid and protein oxidation products are accumulated in food during processing and storage and also upon food intake during the subsequent digestion phases. The gastrointestinal tract and internal organs are exposed to the cytotoxic and mutagenic potential of these species. While the molecular basis of the pathogenesis of particular dietary lipid oxidation products is well known, the impact of dietary oxidized proteins on human health has been largely ignored. The well-established association between in vivo protein oxidation and aging and age-related diseases urges scientists to investigate the contribution of dietary protein oxidation to particular pathological conditions. Recent reports indicate the involvement of dietary protein oxidation species on particular health disorders, which emphasizes the link between dietary and in vivo protein oxidation.

  7. Thermotolerance and Human Performance: Role of Heat Shock Proteins

    Science.gov (United States)

    2009-10-01

    of the significant teratogens in humans, animals, and insects. However, protection from teratogenic effects as is true for various aspects of the...heat shock proteins as molecular chaperones. Annu Rev Cell Biol. 1993;9:601–634 Germain M, Webster W, Edwards M. Hyperthermia as a teratogen ...physical or chemical teratogens are expressed later as enhanced induction of heat shock proteins when embryonic hearts are cultured in

  8. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  9. Recent Progress in Cancer-Related Lymphedema Treatment and Prevention

    Science.gov (United States)

    Shaitelman, Simona F.; Cromwell, Kate D.; Rasmussen, John C.; Stout, Nicole L.; Armer, Jane M.; Lasinski, Bonnie B.; Cormier, Janice N.

    2016-01-01

    This article provides an overview of the recent developments in the diagnosis, treatment, and prevention of cancer-related lymphedema. Lymphedema incidence by tumor site is evaluated. Measurement techniques and trends in patient education and treatment are also summarized to include current trends in therapeutic and surgical treatment options as well as longer-term management. Finally, an overview of the policies related to insurance coverage and reimbursement will give the clinician an overview of important trends in the diagnosis, treatment, and management of cancer-related lymphedema. PMID:25410402

  10. Calcium-binding proteins from human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Gogstad, G.O.; Krutnes, M.B.; Solum, N.O.

    1983-06-01

    Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with /sup 45/Ca/sup 2 +/ and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with /sup 45/Ca/sup 2 +/. These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4. Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with /sup 45/Ca/sup 2 +/ prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was weakly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelet-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIB-IIIa precipitate also became apparent. No increased incorporation of calcium occured in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of /sup 45/Ca/sup 2 +/.

  11. Human immunodeficiency virus type 1, human protein interaction database at NCBI.

    Science.gov (United States)

    Fu, William; Sanders-Beer, Brigitte E; Katz, Kenneth S; Maglott, Donna R; Pruitt, Kim D; Ptak, Roger G

    2009-01-01

    The 'Human Immunodeficiency Virus Type 1 (HIV-1), Human Protein Interaction Database', available through the National Library of Medicine at www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions, was created to catalog all interactions between HIV-1 and human proteins published in the peer-reviewed literature. The database serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. To facilitate this discovery approach, the following information for each HIV-1 human protein interaction is provided and can be retrieved without restriction by web-based downloads and ftp protocols: Reference Sequence (RefSeq) protein accession numbers, Entrez Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. Currently, 2589 unique HIV-1 to human protein interactions and 5135 brief descriptions of the interactions, with a total of 14,312 PMID references to the original articles reporting the interactions, are stored in this growing database. In addition, all protein-protein interactions documented in the database are integrated into Entrez Gene records and listed in the 'HIV-1 protein interactions' section of Entrez Gene reports. The database is also tightly linked to other databases through Entrez Gene, enabling users to search for an abundance of information related to HIV pathogenesis and replication.

  12. Human Soluble TRAIL Protein Inducing Apoptosis in Osteosarcoma Cell

    Institute of Scientific and Technical Information of China (English)

    ZHU Shaobo; YU Aixi; ZHANG Zhongning; WU Gang

    2007-01-01

    This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cells were detected by MTT assay. The apoptosis induced by TRAIL in MG-63 human osteosarcoma cells was analyzed with FACS and TUNEL and the apoptotic bodies were observed by transmission electron microscope. MTT assay showed that the inhibitive rates of 500, 1 000,2 000 and 4 000 ng/mL TRAIL for 24 h were 10.1%, 24.3%,50.6% and 97.7% respectively. Flow cytometric analysis showed that after MG-63 cells were treated with 2 μg/mL TRAIL for 6 h,obvious apoptotic peak would immediately appear before diploid peak. Human soluble TRAIL protein can quickly kill MG-63 osteosarcoma cells selectively, and may have potential value for clinical treatment of osteosarcoma.

  13. Viral proteins that bridge unconnected proteins and components in the human PPI network.

    Science.gov (United States)

    Rachita, H R; Nagarajaram, H A

    2014-07-29

    Viruses, despite having small genomes and few proteins, make an array of interactions with host proteins as they solely depend on host machinery for their replication and reproduction. Hence, analysis of the Human-Virus Protein-Protein Interaction Network (Hu-Vir PPI network) helps us to gain certain insights into the molecular mechanisms underlying the hijacking of host cell machinery by viruses for their perpetuation. Here we report an analysis of the Human-Virus Bridged PPI Networks that has led us to identify viral articulation points (VAPs) which connect unconnected components of the Human-PPI (Hu-PPI) network. VAPs cross-link peripheral nodes to the giant component of the Hu-PPI network. VAPs interact with a number of relatively lower topologically central human proteins and are conserved among related viruses. The linked nodes comprise of those that are mostly expressed during viral infection, as well as those that are found exclusively in some metabolic pathways, indicating that the novel viral mediation of certain human protein-protein interactions may form the basis for virus-specific tuning of the host machinery. The functional importance of VAPs and their interaction partners in virus replication make them potential drug targets against viral infection. Our investigations also led to the discovery of an example of a Human Endogenous Retrovirus (HERV) encoded protein, syncytin, as an Articulation Point (AP) in the Hu-PPI network, suggesting that VAPs may be retained in a genome if they result in any beneficial function in the host.

  14. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  15. Expansion of the protein repertoire in newly explored environments: human gut microbiome specific protein families.

    Directory of Open Access Journals (Sweden)

    Kyle Ellrott

    2010-06-01

    Full Text Available The microbes that inhabit particular environments must be able to perform molecular functions that provide them with a competitive advantage to thrive in those environments. As most molecular functions are performed by proteins and are conserved between related proteins, we can expect that organisms successful in a given environmental niche would contain protein families that are specific for functions that are important in that environment. For instance, the human gut is rich in polysaccharides from the diet or secreted by the host, and is dominated by Bacteroides, whose genomes contain highly expanded repertoire of protein families involved in carbohydrate metabolism. To identify other protein families that are specific to this environment, we investigated the distribution of protein families in the currently available human gut genomic and metagenomic data. Using an automated procedure, we identified a group of protein families strongly overrepresented in the human gut. These not only include many families described previously but also, interestingly, a large group of previously unrecognized protein families, which suggests that we still have much to discover about this environment. The identification and analysis of these families could provide us with new information about an environment critical to our health and well being.

  16. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...... amounts of GFA, up to 85 times the concentration in parietal grey substance of normal human brain. GFA was not found in neurinomas, meningiomas, adenomas of the hypophysis, or in a single case of metastasis of adenocarcinoma. Non-glial tumours of craniopharyngioma and haemangioblastoma were infiltrated...

  17. Human SNPs resulting in premature stop codons and protein truncation

    OpenAIRE

    Savas Sevtap; Tuzmen Sukru; Ozcelik Hilmi

    2006-01-01

    Abstract Single nucleotide polymorphisms (SNPs) constitute the most common type of genetic variation in humans. SNPs introducing premature termination codons (PTCs), herein called X-SNPs, can alter the stability and function of transcripts and proteins and thus are considered to be biologically important. Initial studies suggested a strong selection against such variations/mutations. In this study, we undertook a genome-wide systematic screening to identify human X-SNPs using the dbSNP databa...

  18. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  19. [Fluorescent fusion proteins with 10th human fibronectin domain].

    Science.gov (United States)

    Petrovskaia, L E; Gapizov, S Sh; Shingarova, L N; Kriukova, E A; Boldyreva, E F; Iakimov, S A; Svirshchevskaia, E V; Lukashev, E P; Dolgikh, D A; Kirpichnikov, M P

    2014-01-01

    In the current paper we describe a new type of hybrid molecules including red fluorescent protein mCherry and 10th type III human fibronectin domain (10Fn3) - one of the alternative scaffold proteins which can be used for the construction of antibody mimics with various binding specificity. We have constructed different gene variants encoding for the hybrid fluorescent protein and studied their expression in Escherichia coli cells. It was shown that N-terminal position of mCherry and modification of its N-terminal amino acid sequence promotes efficientbacterial expression of the hybrid protein in the soluble form. On the basis of the proposed construction we have obtained the hybrid fluorescent protein ChIBF, containing alphaVbeta3-integrin binding vari- ant of 10Fn3, and demonstrated the possibility of its utilization for the visualization of alphaVbeta3-integrin at the surface of MDCK epithelial cells by confocal microscopy.

  20. Absolute Quantification of Selected Proteins in the Human Osteoarthritic Secretome

    Directory of Open Access Journals (Sweden)

    Mandy J. Peffers

    2013-10-01

    Full Text Available Osteoarthritis (OA is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.

  1. Low heart rate variability and cancer-related fatigue in breast cancer survivors.

    Science.gov (United States)

    Crosswell, Alexandra D; Lockwood, Kimberly G; Ganz, Patricia A; Bower, Julienne E

    2014-07-01

    Cancer-related fatigue is a common and often long lasting symptom for many breast cancer survivors. Fatigued survivors show evidence of elevated inflammation, but the physiological mechanisms driving inflammatory activity have not been determined. Alterations in the autonomic nervous system, and particularly parasympathetic nervous system activity, are a plausible, yet understudied contributor to cancer-related fatigue. The goal of this study was to replicate one previous study showing an association between lower parasympathetic activity and higher fatigue in breast cancer survivors (Fagundes et al., 2011), and to examine whether inflammation mediates this association. Study participants were drawn from two samples and included 84 women originally diagnosed with early stage breast cancer prior to age 50. Participants completed questionnaires, provided blood samples for determination of interleukin (IL)-6 and C-reactive protein (CRP), and underwent electrocardiography (ECG) assessment for evaluation of resting heart rate variability (HRV), a measure of parasympathetic activity. Results showed that lower HRV was associated with higher fatigue (pcancer-related fatigue, but suggest that inflammation does not mediate this association in younger, healthy breast cancer survivors who are several years post-treatment. The autonomic nervous system merits additional attention in research on the etiology of cancer-related fatigue.

  2. Controllability in protein interaction networks.

    Science.gov (United States)

    Wuchty, Stefan

    2014-05-13

    Recently, the focus of network research shifted to network controllability, prompting us to determine proteins that are important for the control of the underlying interaction webs. In particular, we determined minimum dominating sets of proteins (MDSets) in human and yeast protein interaction networks. Such groups of proteins were defined as optimized subsets where each non-MDSet protein can be reached by an interaction from an MDSet protein. Notably, we found that MDSet proteins were enriched with essential, cancer-related, and virus-targeted genes. Their central position allowed MDSet proteins to connect protein complexes and to have a higher impact on network resilience than hub proteins. As for their involvement in regulatory functions, MDSet proteins were enriched with transcription factors and protein kinases and were significantly involved in bottleneck interactions, regulatory links, phosphorylation events, and genetic interactions.

  3. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses.

    Science.gov (United States)

    Durmuş, Saliha; Ülgen, Kutlu Ö

    2017-01-01

    Viruses are obligatory intracellular pathogens and completely depend on their hosts for survival and reproduction. The strategies adopted by viruses to exploit host cell processes and to evade host immune systems during infections may differ largely with the type of the viral genetic material. An improved understanding of these viral infection mechanisms is only possible through a better understanding of the pathogen-host interactions (PHIs) that enable viruses to enter into the host cells and manipulate the cellular mechanisms to their own advantage. Experimentally-verified protein-protein interaction (PPI) data of pathogen-host systems only became available at large scale within the last decade. In this study, we comparatively analyzed the current PHI networks belonging to DNA and RNA viruses and their human host, to get insights into the infection strategies used by these viral groups. We investigated the functional properties of human proteins in the PHI networks, to observe and compare the attack strategies of DNA and RNA viruses. We observed that DNA viruses are able to attack both human cellular and metabolic processes simultaneously during infections. On the other hand, RNA viruses preferentially interact with human proteins functioning in specific cellular processes as well as in intracellular transport and localization within the cell. Observing virus-targeted human proteins, we propose heterogeneous nuclear ribonucleoproteins and transporter proteins as potential antiviral therapeutic targets. The observed common and specific infection mechanisms in terms of viral strategies to attack human proteins may provide crucial information for further design of broad and specific next-generation antiviral therapeutics.

  4. Breast Cancer-Related Lymphedema: Implications for Family Leisure Participation

    Science.gov (United States)

    Radina, M. Elise

    2009-01-01

    An estimated 20% of breast cancer survivors face the chronic condition of breast cancer-related lymphedema. This study explored the ways in which women with this condition experienced changes in their participation in family leisure as one indicator of family functioning. Participants (N = 27) were interviewed regarding lifestyles before and after…

  5. Breast Cancer-Related Lymphedema: Implications for Family Leisure Participation

    Science.gov (United States)

    Radina, M. Elise

    2009-01-01

    An estimated 20% of breast cancer survivors face the chronic condition of breast cancer-related lymphedema. This study explored the ways in which women with this condition experienced changes in their participation in family leisure as one indicator of family functioning. Participants (N = 27) were interviewed regarding lifestyles before and after…

  6. Surgical inpatient cancer-related mortality in a Nigerian tertiary ...

    African Journals Online (AJOL)

    Surgical inpatient cancer-related mortality in a Nigerian tertiary hospital. ... One hundred and eight (63.2 %) were male. The yearly mortality ... The leading causes of mortality were cancer of prostate 50(29.2 %) and breast cancer 40(23.4 %).

  7. Characterisation of human coronavirus-NL63 nucleocapsid protein

    African Journals Online (AJOL)

    Michael

    2012-09-18

    Sep 18, 2012 ... Coronavirus N is a multifunctional protein that plays an essential role in enhancing the efficiency of .... HCoV-NL63 was shown to be most similar to the human ... evolution of these coronaviruses and gave rise to the.

  8. Sulfur in human nutrition - effects beyond protein synthesis

    NARCIS (Netherlands)

    Schaafsma, Gertjan

    2008-01-01

    That sulfur is essential to humans is based on the requirement of S-animo acids for normal growth and maintenance of nitrogen balance and not on the optimization of metabolic proccesses involving the synthesis of non-protein sulphur containing compounds. This paper reviews the significance of sulfur

  9. Dietary protein absorption of the small intestine in human neonates

    NARCIS (Netherlands)

    Schaart, Maaike W.; de Bruijn, Adrianus C. J. M.; Tibboel, Dick; Renes, Ingrid B.; van Goudoever, Johannes B.

    2007-01-01

    Background: The intestine plays a key role in the absorption of dietary proteins, which determines growth of human neonates. Bowel resection in the neonatal period brings loss of absorptive and protective surface and may consequently lead to malabsorption of dietary nutrients. However, there are no

  10. Competitive protein adsorption to polymer surface from human serum

    DEFF Research Database (Denmark)

    Holmberg, Maria; Jensen, Karin Bagger Stibius; Larsen, Niels Bent;

    2008-01-01

    Surface modification by "soft" plasma polymerisation to obtain a hydrophilic and non-fouling polymer surface has been validated using radioactive labelling. Adsorption to unmodified and modified polymer surfaces, from both single protein and human serum solutions, has been investigated. By using ...

  11. Efficient expression and purification of biologically active human cystatin proteins.

    Science.gov (United States)

    Chauhan, Sakshi; Tomar, Raghuvir S

    2016-02-01

    Cystatins are reversible cysteine protease inhibitor proteins. They are known to play important roles in controlling cathepsins, neurodegenerative disease, and in immune system regulation. Production of recombinant cystatin proteins is important for biochemical and function characterization. In this study, we cloned and expressed human stefin A, stefin B and cystatin C in Escherichia coli. Human stefin A, stefin B and cystatin C were purified from soluble fraction. For cystatin C, we used various chaperone plasmids to make cystatin C soluble, as it is reported to localize in inclusion bodies. Trigger factor, GroES-GroEL, DnaK-DnaJ-GrpE chaperones lead to the presence of cystatin C in the soluble fraction. Immobilized metal affinity chromatography, glutathione sepharose and anion exchange chromatography techniques were employed for efficient purification of these proteins. Their biological activities were tested by inhibition assays against cathepsin L and H3 protease.

  12. Beer consumption and changes in stability of human serum proteins.

    Science.gov (United States)

    Gorinstein, S; Caspi, A; Goshev, I; Moncheva, S; Zemser, M; Weisz, M; Libman, I; Lerner, H T; Trakhtenberg, S; Martín-Belloso, O

    2001-03-01

    The aim of this study was to evaluate the influence of beer consumption (BC) on the functional and structural properties of human serum proteins (HSP). Thirty-eight volunteers (after coronary bypass) were divided into two groups: experimental (EG) and control (CG). Nineteen volunteers of the EG consumed 330 mL per day of beer (about 20 g of alcohol) for 30 consecutive days. The CG volunteers consumed mineral water instead of beer. Blood samples were collected from EG and CG patients before and after the experiment. Albumin (Alb), globulin (Glo), and methanol-precipitable proteins (MPP) from human serum were denatured with 8 M urea. Fluorescence and electrophoresis were employed in order to elucidate urea-induced conformational changes and structural behavior of proteins. The measured fluorescence emission spectra were used to estimate the stability of native and denatured protein fractions before and after BC. It was found that before BC the fractions most stable to urea denaturation were Glo, Alb, and MPP fractions. After BC in most of the beer-consuming patients (EG) some changes in native and denatured protein fractions were detected: a tendency to lower stability and minor structural deviations. These qualitative changes were more profound in MPP than in Alb and Glo. Thus, Glo is more resistible to alcohol influence than Alb, which in turn is more resistible than MPP. No serum protein changes were detected in patients of CG.

  13. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  14. Implication of Human Endogenous Retrovirus Envelope Proteins in Placental Functions

    Directory of Open Access Journals (Sweden)

    Adjimon Gatien Lokossou

    2014-11-01

    Full Text Available Human endogenous retroviruses (ERVs represent 8% of the total human genome. Although the majority of these ancient proviral sequences have only retained non-coding long terminal repeats (LTRs, a number of “endogenized” retroviral genes encode functional proteins. Previous studies have underlined the implication of these ERV-derived proteins in the development and the function of the placenta. In this review, we summarize recent findings showing that two ERV genes, termed Syncytin-1 and Syncytin-2, which encode former envelope (Env proteins, trigger fusion events between villous cytotrophoblasts and the peripheral multinucleated syncytiotrophoblast layer. Such fusion events maintain the stability of this latter cell structure, which plays an important role in fetal development by the active secretion of various soluble factors, gas exchange and regulation of fetomaternal immunotolerance. We also highlight new studies showing that these ERV proteins, in addition to their localization at the cell surface of cytotrophoblasts, are also incorporated on the surface of various extracellular microvesicles, including exosomes. Such exosome-associated proteins could be involved in the various functions attributed to these vesicles and could provide a form of tropism. Additionally, through their immunosuppressive domains, these ERV proteins could also contribute to fetomaternal immunotolerance in a local and more distal manner. These various aspects of the implication of Syncytin-1 and -2 in placental function are also addressed in the context of the placenta-related disorder, preeclampsia.

  15. Sea Cucumber: New source of Protein for Human Consumption

    Directory of Open Access Journals (Sweden)

    Daniela Vaz Pratas

    2014-06-01

    Full Text Available Aquaculture, probably the fastest growing food-producing sector, now accounts for nearly 50 percent of the world's food fish consumed by humans, and this share is expected to increase further to meet future demand. Sea cucumbers are considered highly marketable product and this has resulted in an increasing overfishing of natural sea cucumber stocks. Nevertheless, these resources are almost unexploited in the Mediterranean region. Many species of holothurians have been recognized as an alternative source of first quality protein and considered a putative functional food, like hypocholesterolemic proprieties and contain many other bioactive compounds. Therefore, the aim of the present study was to determine and compare the protein content of two sea cucumber species, Holothuria forskali and Stichopus regalis. The Kjeldahl method was used to determine the crude protein through the measurement of nitrogen amount in each sample. The obtained results demonstrated that both species contain high protein levels, with higher results for S. regalis, which revealed values between 19,1% and 20,4%. H. forskali showed a protein level among 12,1% and 15,4%. Holothurian protein levels reveal great potential for human consumption. Those resources can be used as a partial substitute of fish meal (eg. sea bream nutrition, either to intern market as well as for exportation to Asian countries. Sea cucumber farming could have lucrative potential in the Mediterranean, converting sea cucumbers into aquaculture value-added products bringing to this region profitable economic benefits.

  16. Structural principles within the human-virus protein-protein interaction network

    Science.gov (United States)

    Franzosa, Eric A.; Xia, Yu

    2011-01-01

    General properties of the antagonistic biomolecular interactions between viruses and their hosts (exogenous interactions) remain poorly understood, and may differ significantly from known principles governing the cooperative interactions within the host (endogenous interactions). Systems biology approaches have been applied to study the combined interaction networks of virus and human proteins, but such efforts have so far revealed only low-resolution patterns of host-virus interaction. Here, we layer curated and predicted 3D structural models of human-virus and human-human protein complexes on top of traditional interaction networks to reconstruct the human-virus structural interaction network. This approach reveals atomic resolution, mechanistic patterns of host-virus interaction, and facilitates systematic comparison with the host’s endogenous interactions. We find that exogenous interfaces tend to overlap with and mimic endogenous interfaces, thereby competing with endogenous binding partners. The endogenous interfaces mimicked by viral proteins tend to participate in multiple endogenous interactions which are transient and regulatory in nature. While interface overlap in the endogenous network results largely from gene duplication followed by divergent evolution, viral proteins frequently achieve interface mimicry without any sequence or structural similarity to an endogenous binding partner. Finally, while endogenous interfaces tend to evolve more slowly than the rest of the protein surface, exogenous interfaces—including many sites of endogenous-exogenous overlap—tend to evolve faster, consistent with an evolutionary “arms race” between host and pathogen. These significant biophysical, functional, and evolutionary differences between host-pathogen and within-host protein-protein interactions highlight the distinct consequences of antagonism versus cooperation in biological networks. PMID:21680884

  17. Loss of Bloom syndrome protein destabilizes human gene cluster architecture.

    Science.gov (United States)

    Killen, Michael W; Stults, Dawn M; Adachi, Noritaka; Hanakahi, Les; Pierce, Andrew J

    2009-09-15

    Bloom syndrome confers strong predisposition to malignancy in multiple tissue types. The Bloom syndrome patient (BLM) protein defective in the disease biochemically functions as a Holliday junction dissolvase and human cells lacking functional BLM show 10-fold elevated rates of sister chromatid exchange. Collectively, these phenomena suggest that dysregulated mitotic recombination drives the genomic instability underpinning the development of cancer in these individuals. Here we use physical analysis of the highly repeated, highly self-similar human ribosomal RNA gene clusters as sentinel biomarkers for dysregulated homologous recombination to demonstrate that loss of BLM protein function causes a striking increase in spontaneous molecular level genomic restructuring. Analysis of single-cell derived sub-clonal populations from wild-type human cell lines shows that gene cluster architecture is ordinarily very faithfully preserved under mitosis, but is so unstable in cell lines derived from BLMs as to make gene cluster architecture in different sub-clonal populations essentially unrecognizable one from another. Human cells defective in a different RecQ helicase, the WRN protein involved in the premature aging Werner syndrome, do not exhibit the gene cluster instability (GCI) phenotype, indicating that the BLM protein specifically, rather than RecQ helicases generally, holds back this recombination-mediated genomic instability. An ataxia-telangiectasia defective cell line also shows elevated rDNA GCI, although not to the extent of BLM defective cells. Genomic restructuring mediated by dysregulated recombination between the abundant low-copy repeats in the human genome may prove to be an important additional mechanism of genomic instability driving the initiation and progression of human cancer.

  18. Transgenic rabbits as therapeutic protein bioreactors and human disease models.

    Science.gov (United States)

    Fan, Jianglin; Watanabe, Teruo

    2003-09-01

    Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.

  19. Protein tyrosine adduct in humans self-poisoned by chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin, E-mail: binli@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de [Walther-Straub-Institut Für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München (Germany); Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk [Clinical Pharmacology Unit, University of Edinburgh, Edinburgh (United Kingdom); Jiang, Wei, E-mail: wjiang@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Schopfer, Lawrence M., E-mail: lmschopf@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States); Lockridge, Oksana, E-mail: olockrid@unmc.edu [Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950 (United States)

    2013-06-15

    Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.

  20. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    Science.gov (United States)

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Radioimmunoassay of human placental protein 14 (PP14)

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, A.E.; Stoker, R.J. (North East London Polytechnic (UK)); Chapman, M.G.; Wass, D. (Queen Charlotte' s Maternity Hospital, London (UK)); Andrew, C.E. (Edgware General Hospital (UK)); Bohn, H. (Behringwerke AG, Marburg/Lahn (Germany, F.R.). Research Labs.)

    1983-12-30

    The development and validation of a radioimmunoassay for the measurement of human placental protein 14 in maternal serum is described. The mean concentration of this protein in serum from 22 normal pregnant women showed a decline during the third trimester from 120 ..mu..g/l at 27 weeks gestation to 65 ..mu..g/l at term. Serum samples from 16 patients with intra-uterine growth retardation tended to contain lower concentrations of placental protein 14, these results reaching significance at weeks 36-38 of gestation. Of seven patients with pre-eclampsia from whom two or more blood samples were taken, four showed increases in concentration of this protein as pregnancy proceeded, compared with the normal pattern of decreasing values.

  2. Improvements in human health through production of human milk proteins in transgenic food plants.

    Science.gov (United States)

    Arakawa, T; Chong, D K; Slattery, C W; Langridge, W H

    1999-01-01

    Plants are particularly suitable bioreactors for the production of proteins, as their eukaryotic nature frequently directs the appropriate post-translational modifications of recombinant proteins to retain native biological activity. The autotrophic growth of plants makes this in vivo biosynthesis system economically competitive for supplementation or replacement of conventional production systems in the future. For the production of biologically active proteins, food plants provide the advantage of direct delivery via consumption of transformed plant tissues. Here we describe the production of recombinant human milk proteins in food plants for improvements in human nutrition and health, with emphasis on enhanced nutrition for non-breast fed infants as well as children and adults. Nutritional improvements in edible plants generated through advancements in recombinant DNA technology are rapidly repositioning the world for enjoyment of a more healthful diet for humans in all age groups.

  3. Functional diversity of human protein kinase splice variants marks significant expansion of human kinome

    Directory of Open Access Journals (Sweden)

    Anamika Krishanpal

    2009-12-01

    Full Text Available Abstract Background Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.

  4. Expression and biochemical characterization of recombinant human epididymis protein 4.

    Science.gov (United States)

    Hua, Ling; Liu, Yunhui; Zhen, Shuai; Wan, Deyou; Cao, Jiyue; Gao, Xin

    2014-10-01

    Whey acidic proteins (WAP) belong to a large gene family of antibacterial peptides that perform critical immune system functions. The function of human epididymis protein 4 (HE4), a 124-amino acid long polypeptide that has two whey acidic protein four-disulfide core (WFDC) domains, is not well studied. Here, a fusion gene encoding the HE4 protein fused to an IgG1 Fc domain was constructed. The recombinant HE4 protein was expressed as a secretory protein in Pichia pastoris and mammalian HEK293-F cells and was subsequently purified. Our data suggested that the HE4 protein produced by these two expression systems bound to both gram-negative and gram-positive bacteria, but demonstrated slightly inhibitory activity towards the growth of Staphylococcus aureus. Moreover, HE4 exhibited proteinase inhibitory activity towards trypsin, elastase, matrix metallopeptidase 9, and the secretory proteinases from Bacillus subtilis. The effects of glycosylation on the biochemical characterization of HE4 were also investigated. LC-ESI-MS glycosylation analysis showed that the high-mannose glycosylated form of HE4 expressed by P. pastoris has lower biological activity when compared to its complex-glycosylated form produced from HEK293-F cells. The implications of this are discussed, which may be provide theoretical basis for its important role in the development of cancer and innate immune system.

  5. Protein Stability, Folding and Misfolding in Human PGK1 Deficiency

    Directory of Open Access Journals (Sweden)

    Giovanna Valentini

    2013-12-01

    Full Text Available Conformational diseases are often caused by mutations, altering protein folding and stability in vivo. We review here our recent work on the effects of mutations on the human phosphoglycerate kinase 1 (hPGK1, with a particular focus on thermodynamics and kinetics of protein folding and misfolding. Expression analyses and in vitro biophysical studies indicate that disease-causing mutations enhance protein aggregation propensity. We found a strong correlation among protein aggregation propensity, thermodynamic stability, cooperativity and dynamics. Comparison of folding and unfolding properties with previous reports in PGKs from other species suggests that hPGK1 is very sensitive to mutations leading to enhance protein aggregation through changes in protein folding cooperativity and the structure of the relevant denaturation transition state for aggregation. Overall, we provide a mechanistic framework for protein misfolding of hPGK1, which is insightful to develop new therapeutic strategies aimed to target native state stability and foldability in hPGK1 deficient patients.

  6. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Directory of Open Access Journals (Sweden)

    Laulumaa Saara

    2015-01-01

    Full Text Available Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  7. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  8. Prediction of 492 human protein kinase substrate specificities.

    Science.gov (United States)

    Safaei, Javad; Maňuch, Ján; Gupta, Arvind; Stacho, Ladislav; Pelech, Steven

    2011-10-14

    Complex intracellular signaling networks monitor diverse environmental inputs to evoke appropriate and coordinated effector responses. Defective signal transduction underlies many pathologies, including cancer, diabetes, autoimmunity and about 400 other human diseases. Therefore, there is high impetus to define the composition and architecture of cellular communications networks in humans. The major components of intracellular signaling networks are protein kinases and protein phosphatases, which catalyze the reversible phosphorylation of proteins. Here, we have focused on identification of kinase-substrate interactions through prediction of the phosphorylation site specificity from knowledge of the primary amino acid sequence of the catalytic domain of each kinase. The presented method predicts 488 different kinase catalytic domain substrate specificity matrices in 478 typical and 4 atypical human kinases that rely on both positive and negative determinants for scoring individual phosphosites for their suitability as kinase substrates. This represents a marked advancement over existing methods such as those used in NetPhorest (179 kinases in 76 groups) and NetworKIN (123 kinases), which consider only positive determinants for kinase substrate prediction. Comparison of our predicted matrices with experimentally-derived matrices from about 9,000 known kinase-phosphosite substrate pairs revealed a high degree of concordance with the established preferences of about 150 well studied protein kinases. Furthermore for many of the better known kinases, the predicted optimal phosphosite sequences were more accurate than the consensus phosphosite sequences inferred by simple alignment of the phosphosites of known kinase substrates. Application of this improved kinase substrate prediction algorithm to the primary structures of over 23, 000 proteins encoded by the human genome has permitted the identification of about 650, 000 putative phosphosites, which are posted on the

  9. Human intestinal mucus proteins isolated by transanal irrigation and proctosigmoidoscopy

    Directory of Open Access Journals (Sweden)

    Paola Andrea Gómez Buitrago

    2015-10-01

    Full Text Available Human intestinal mucus essentially consistsof a network of Mucin2 glycoproteinsembedded in many lower molecularweight proteins. This paper contributes tothe proteomic study of human intestinalmucus by comparing two sample collectionmethods (transanal irrigation and brushcytology during proctosigmoidoscopy andanalysis techniques (electrophoresis anddigestion in solution. The entire samplecollection and treatment process is explained,including protein extraction, digestion anddesalination and peptide characterisationusing a nanoAcquity UPLC chromatographcoupled to an HDMS spectrometer equippedwith a nanoESI source. Collecting mucus viatransanal irrigation provided a larger samplevolume and protein concentration from asingle patient. The proctosigmoidoscopysample could be analysed via digestion insolution after depleting albumin. The analysisindicates that a simple mucus lysis methodcan evaluate the electrophoresis and digestionin solution techniques. Studying humanintestinal mucus complexes is importantbecause they perform two essential survivalfunctions for humans as the first biochemicaland physical defences for the gastrointestinaltract and a habitat for intestinal microbiota,which are primarily hosted in the colon andexceeds the human genetic information andcell number 100- and 10-fold (1.

  10. Bryostatins activate protein kinase C in intact human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.B.; Tallant, E.A.; Pettit, G.R.; Wallace, R.W.

    1986-05-01

    Bryostatins, macrocyclic lactones isolated from a marine bryozoan, have antineoplastic activity in the P388 lymphocytic leukemia system. These compounds also stimulate growth in Swiss 3T3 cells, induce secretion in leukocytes, inhibit phorbol dibutyrate binding to a high affinity receptor, and activate the C-kinase in vitro. In human platelets, phorbol esters induce aggregation and activate protein kinase C, resulting in phosphorylation of a 47K protein and the 20K myosin light chain. The authors now show that bryostatin 7 (B-7) triggers platelet aggregation to the same rate and extent as phorbol 12-myristate 13-acetate (PMA). B-7 also causes the in vivo activation of the C-kinase, resulting in phosphorylation of both the 47K and the 20K proteins; the time courses and dose-responses of these B-7-induced phosphorylations were similar to those found with PMA. In addition, B-7 increases the level of /sup 32/P-incorporation into the platelet polyphosphoinositides, which also occurs in response to PMA. Bryostatin 3 (B-3), which has been shown to be much less potent than B-7 in mimicking other PMA effects, was much less effective than PMA or B-7 in inducing platelet aggregation and in stimulating /sup 32/P-incorporation into both proteins and the phosphoinositides. These results demonstrate that, intact human platelets, bryostatins mimic the phorbol esters tumor promoters and directly activate protein kinase C.

  11. Determination of in vivo protein synthesis in human palatine tonsil.

    Science.gov (United States)

    Januszkiewicz, Anna; Klaude, Maria; Loré, Karin; Andersson, Jan; Ringdén, Olle; Rooyackers, Olav; Wernerman, Jan

    2005-02-01

    The palatine tonsils are constantly exposed to ingested or inhaled antigens which, in turn, lead to a permanent activation of tonsillar immune cells, even in a basic physiological state. The aim of the present study was to investigate if the immunological activation of the human palatine tonsil is reflected by a high metabolic activity, as determined by in vivo measurement of protein synthesis. The protein synthesis rate of the tonsil was also compared with that of the circulating T-lymphocytes, the total blood mononuclear cells and the whole population of blood leucocytes. Phenotypic characterization of immune-competent cells in tonsil tissue and blood was performed by flow cytometry. Pinch tonsil biopsies were taken after induction of anaesthesia in healthy adult patients (n=12) scheduled for ear surgery, uvulopalatopharyngoplasty or nose surgery. Protein synthesis was quantitatively determined during a 90-min period by a flooding-dose technique. The in vivo protein synthesis rate in the palatine tonsils was 22.8+/-5.7%/24 h (mean+/-S.D.), whereas protein synthesis in the circulating T-lymphocytes was 10.7+/-3.4%/24 h, in mononuclear cells was 10.8+/-2.8%/24 h and in leucocytes was 3.2+/-1.2%/24 h. CD3+ lymphocytes were the most abundant cell population in the tonsil. The in vivo protein synthesis rate in human tonsils was higher compared with the circulating immune cells. This high metabolic rate may reflect the permanent immunological activity present in human tonsils, although cell phenotypes and activity markers do not explain the differences.

  12. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically......-MS/MS) and GC-tandem MS (GC-MS/MS) have made these techniques an option for human muscle FSR measurements. Human muscle biopsies were freeze dried, cleaned, and hydrolyzed, and the amino acids derivatized using either N-acetyl-n-propyl, phenylisothiocyanate, or N.......89 ± 0.01, P muscle FSR, (2) LC-MS/MS comes quite close and is a good alternative when tissue quantities are too small for GC-C-IRMS, and (3) If GC-MS/MS is to be used, then the HFBA derivative should be used instead...

  13. Specificity of botulinum protease for human VAMP family proteins.

    Science.gov (United States)

    Yamamoto, Hideyuki; Ida, Tomoaki; Tsutsuki, Hiroyasu; Mori, Masatoshi; Matsumoto, Tomoko; Kohda, Tomoko; Mukamoto, Masafumi; Goshima, Naoki; Kozaki, Shunji; Ihara, Hideshi

    2012-04-01

    The botulinum neurotoxin light chain (BoNT-LC) is a zinc-dependent metalloprotease that cleaves neuronal SNARE proteins such as SNAP-25, VAMP2, and Syntaxin1. This cleavage interferes with the neurotransmitter release of peripheral neurons and results in flaccid paralysis. SNAP, VAMP, and Syntaxin are representative of large families of proteins that mediate most membrane fusion reactions, as well as both neuronal and non-neuronal exocytotic events in eukaryotic cells. Neuron-specific SNARE proteins, which are target substrates of BoNT, have been well studied; however, it is unclear whether other SNARE proteins are also proteolyzed by BoNT. Herein, we define the substrate specificity of BoNT-LC/B, /D, and /F towards recombinant human VAMP family proteins. We demonstrate that LC/B, /D, and /F are able to cleave VAMP1, 2, and 3, but no other VAMP family proteins. Kinetic analysis revealed that all LC have higher affinity and catalytic activity for the non-neuronal SNARE isoform VAMP3 than for the neuronal VAMP1 and 2 isoforms. LC/D in particular exhibited extremely low catalytic activity towards VAMP1 relative to other interactions, which we determined through point mutation analysis to be a result of the Ile present at residue 48 of VAMP1. We also identified the VAMP3 cleavage sites to be at the Gln 59-Phe 60 (LC/B), Lys 42-Leu 43 (LC/D), and Gln 41-Lys 42 (LC/F) peptide bonds, which correspond to those of VAMP1 or 2. Understanding the substrate specificity and kinetic characteristics of BoNT towards human SNARE proteins may aid in the development of novel therapeutic uses for BoNT.

  14. Structural Characterization of Human Coronavirus NL63 N Protein.

    Science.gov (United States)

    Szelazek, Bozena; Kabala, Wojciech; Kus, Krzysztof; Zdzalik, Michal; Twarda-Clapa, Aleksandra; Golik, Przemyslaw; Burmistrz, Michal; Florek, Dominik; Wladyka, Benedykt; Pyrc, Krzysztof; Dubin, Grzegorz

    2017-06-01

    Coronaviruses are responsible for upper and lower respiratory tract infections in humans. It is estimated that 1 to 10% of the population suffers annually from cold-like symptoms related to infection with human coronavirus NL63 (HCoV-NL63), an alphacoronavirus. The nucleocapsid (N) protein, the major structural component of the capsid, facilitates RNA packing, links the capsid to the envelope, and is also involved in multiple other processes, including viral replication and evasion of the immune system. Although the role of N protein in viral replication is relatively well described, no structural data are currently available regarding the N proteins of alphacoronaviruses. Moreover, our understanding of the mechanisms of RNA binding and nucleocapsid formation remains incomplete. In this study, we solved the crystal structures of the N- and C-terminal domains (NTD, residues 10 to 140, and CTD, residues 221 to 340, respectively) of the N protein of HCoV-NL63, both at a 1.5-Å resolution. Based on our structure of NTD solved here, we proposed and experimentally evaluated a model of RNA binding. The structure of the CTD reveals the mode of N protein dimerization. Overall, this study expands our understanding of the initial steps of N protein-nucleic acid interaction and may facilitate future efforts to control the associated infections.IMPORTANCE Coronaviruses are responsible for the common cold and other respiratory tract infections in humans. According to multiple studies, 1 to 10% of the population is infected each year with HCoV-NL63. Viruses are relatively simple organisms composed of a few proteins and the nucleic acids that carry the information determining their composition. The nucleocapsid (N) protein studied in this work protects the nucleic acid from the environmental factors during virus transmission. This study investigated the structural arrangement of N protein, explaining the first steps of its interaction with nucleic acid at the initial stages of

  15. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  16. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  17. Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and sarcopenia.

    Science.gov (United States)

    Beltran Valls, Maria R; Wilkinson, Daniel J; Narici, Marco V; Smith, Kenneth; Phillips, Bethan E; Caporossi, Daniela; Atherton, Philip J

    2015-02-01

    Aging is associated with a gradual loss of muscle mass termed sarcopenia, which has significant impact on quality-of-life. Because oxidative stress is proposed to negatively impact upon musculoskeletal aging, we investigated links between human aging and markers of oxidative stress, and relationships to muscle mass and strength in young and old nonsarcopenic and sarcopenic adults. Sixteen young and 16 old males (further subdivided into "old" and "old sarcopenic") were studied. The abundance of protein carbonyl adducts within skeletal muscle sarcoplasmic, myofibrillar, and mitochondrial protein subfractions from musculus vastus lateralis biopsies were determined using Oxyblot immunoblotting techniques. In addition, concentrations of recognized cytoprotective proteins (eg, heat shock proteins [HSP], αβ-crystallin) were also assayed. Aging was associated with increased mitochondrial (but not myofibrillar or sarcoplasmic) protein carbonyl adducts, independently of (stage-I) sarcopenia. Correlation analyses of all subjects revealed that mitochondrial protein carbonyl abundance negatively correlated with muscle strength ([1-repetition maximum], p = .02, r (2) = -.16), but not muscle mass (p = .13, r (2) = -.08). Abundance of cytoprotective proteins, including various HSPs (HSP 27 and 70), were unaffected by aging/sarcopenia. To conclude, these data reveal that mitochondrial protein carbonylation increases moderately with age, and that this increase may impact upon skeletal muscle function, but is not a hallmark of (stage-I) sarcopenia, per se. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

  18. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    Directory of Open Access Journals (Sweden)

    Maura Brioschi

    Full Text Available Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF. The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14 and non-failing human hearts (n = 13 were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS, the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01. We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK, whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  19. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    Science.gov (United States)

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  20. Insights into bacterial protein glycosylation in human microbiota.

    Science.gov (United States)

    Zhu, Fan; Wu, Hui

    2016-01-01

    The study of human microbiota is an emerging research topic. The past efforts have mainly centered on studying the composition and genomic landscape of bacterial species within the targeted communities. The interaction between bacteria and hosts is the pivotal event in the initiation and progression of infectious diseases. There is a great need to identify and characterize the molecules that mediate the bacteria-host interaction. Bacterial surface exposed proteins play an important role in the bacteria- host interaction. Numerous surface proteins are glycosylated, and the glycosylation is crucial for their function in mediating the bacterial interaction with hosts. Here we present an overview of surface glycoproteins from bacteria that inhabit three major mucosal environments across human body: oral, gut and skin. We describe the important enzymes involved in the process of protein glycosylation, and discuss how the process impacts the bacteria-host interaction. Emerging molecular details underlying glycosylation of bacterial surface proteins may lead to new opportunities for designing anti-infective small molecules, and developing novel vaccines in order to treat or prevent bacterial infection.

  1. Spinal cord stimulation for cancer-related pain in adults.

    Science.gov (United States)

    Lihua, Peng; Su, Min; Zejun, Zhou; Ke, Wei; Bennett, Michael I

    2013-02-28

    Cancer-related pain places a heavy burden on public health with related high expenditure. Severe pain is associated with a decreased quality of life in patients with cancer. A significant proportion of patients with cancer-related pain are under-treated.There is a need for more effective control of cancer-related pain. Spinal cord stimulation (SCS) may have a role in pain management. The effectiveness and safety of SCS for patients with cancer-related pain is currently unknown. This systematic review evaluated the effectiveness of SCS for cancer-related pain compared with standard care using conventional analgesic medication. We also appraised risk and potential adverse events associated with the use of SCS. We searched the following bibliographic databases in order to identify relevant studies: the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Libary (from inception to 2012, Issue 6); MEDLINE; EMBASE; and CBM (Chinese Biomedical Database) (from inception to July, 2012). We also handsearched relevant journals. We planned to include randomised controlled trials (RCTs) that directly compared SCS with other interventions with regards to the effectiveness of pain management. We also planned to include cross-over trials that compared SCS with another treatment. We planned to identify non-randomised controlled trials but these would only be included if no RCTs could be found. The initial search strategy yielded 430 articles. By scrutinising titles and abstracts, we found 412 articles irrelevant to the analytical purpose of this systematic review due to different scopes of diseases or different methods of intervention (intrathecal infusion system; oral medication) or aims other than pain control (spinal cord function monitoring, bladder function restoration or amelioration of organ metabolism). The remaining 18 trials were reviewed as full manuscripts. No RCTs were identified. Fourteen sporadic case reports and review articles were excluded and

  2. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  3. Expression and significance of P53 protein and MDM-2 protein in human gliomas

    Institute of Scientific and Technical Information of China (English)

    WANG An-liu; LIU Zhao-xia; LI Guang; ZHANG Li-wei

    2011-01-01

    Background P53 is one of the most studied tumor suppressors in the cancer research, and over 50% of human tumors carry P53 mutations. MDM-2 is amplified and/or overexpressed in a variety of human tumors of diverse tissue origin. The aim of this study was to examine the expression of P53 protein and MDM-2 protein in gliomas, and to investigate the relationship between the expression of the two proteins and the histopathological grades of glioma. The relationship between MDM-2 protein expression and P53 protein expression was also analyzed.Methods The expression of P53 protein and MDM-2 protein was immunohistochemically detected using monoclonal antibodies in 242 paraffin embedded tissues, including 30 normal brain tissues from patients with craniocerebral injury and 212 tissues from patients with primary glioma (grade Ⅰ-Ⅱ group: 5 cases of grade Ⅰ, 119 cases of grade Ⅱ; and grade Ⅲ-Ⅳ group: 53 cases of grade Ⅲ, and 35 cases of grade Ⅳ).Results The P53 positive rate was significantly higher in the glioma groups than in the control group (P <0.0001). The P53 positive rate was significantly higher in glioma tissues of grade Ⅲ-V than in glioma tissues of grade Ⅰ-Ⅱ group (P=0.001). The MDM-2 positive rate was significantly higher in glioma groups than in the control group (P <0.0001).There was no significant difference in the MDM-2 positive rate between the two glioma groups (P=0.936). The expression of P53 protein was not related to expression of MDM-2 protein (P=0.069)Conclusions Overexpression of P53 protein might be related to the occurrence and progression of glioma.Overexpression of MDM-2 protein may play an important role in glioma tumorigenesis, but may not be involved in glioma progression. The overexpression of MDM-2 protein was an early event in malignant transformation of glioma. MDM-2 may be a key player in glioma in its own right.

  4. Improved protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas.

    Science.gov (United States)

    Fu, Zongming; Yan, Kun; Rosenberg, Avraham; Jin, Zhicheng; Crain, Barbara; Athas, Grace; Heide, Richard S Vander; Howard, Timothy; Everett, Allen D; Herrington, David; Van Eyk, Jennifer E

    2013-04-01

    Evaluate combination of heat and elevated pressure to enhance protein extraction and quality of formalin-fixed (FF), and FF paraffin-embedded (FFPE) aorta for proteomics. Proteins were extracted from fresh frozen aorta at room temperature (RT). FF and FFPE aortas (3 months and 15 years) were extracted at RT, heat alone, or a combination of heat and high pressure. Protein yields were compared, and digested peptides from the extracts were analyzed with MS. Combined heat and elevated pressure increased protein yield from human FF or FFPE aorta compared to matched tissues with heat alone (1.5-fold) or at RT (8.3-fold), resulting in more proteins identified and with more sequence coverage. The length of storage did adversely affect the quality of proteins from FF tissue. For long-term storage, aorta was preserved better with FFPE than FF alone. Periostin and MGF-E8 were demonstrated suitable for MRM assays from FFPE aorta. Combination of heat and high pressure is an effective method to extract proteins from FFPE aorta for downstream proteomics. This method opens the possibility for use of archival and often rare FFPE aortas and possibly other tissues available to proteomics for biomarker discovery and quantification. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fast protein chromatofocusing of human very-low-density lipoproteins.

    Science.gov (United States)

    Weisweiler, P; Friedl, C; Schwandt, P

    1986-01-03

    Using fast protein chromatofocusing, a high-efficiency column chromatography method with a self-generated pH gradient and focusing effects, soluble human very-low-density lipoprotein (VLDL) apolipoproteins were fractionated between pH 6.3 and 4.0. In the presence of 6 mol/l urea and with a flow rate of 1 ml/min, one run (up to 10 mg of protein) took 30 min. VLDL apolipoproteins were separated in seven peaks. As revealed by SDS-polyacrylamide gel electrophoresis, isoelectric focusing and double-immunodiffusion against mono-specific antisera, fractions corresponded to the following proteins: apolipoprotein C-I, albumin, apolipoproteins A-I, E, C-II plus C-III0, C-III1 and C-III2, respectively. Apolipoproteins were eluted in sharp, well-resolved peaks. The recovery of proteins was 78% of the starting material. With fast protein chromatofocusing, an efficient isolation of single apolipoproteins is possible from small amounts of VLDL apolipoprotein preparations. This technique is superior to the commonly used, time-consuming methods for apolipoprotein isolation.

  6. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting.

    Science.gov (United States)

    Antunes, Diana; Padrão, Ana Isabel; Maciel, Elisabete; Santinha, Deolinda; Oliveira, Paula; Vitorino, Rui; Moreira-Gonçalves, Daniel; Colaço, Bruno; Pires, Maria João; Nunes, Cláudia; Santos, Lúcio L; Amado, Francisco; Duarte, José Alberto; Domingues, Maria Rosário; Ferreira, Rita

    2014-06-01

    Alterations in muscle mitochondrial bioenergetics during cancer cachexia were previously suggested; however, the underlying mechanisms are not known. So, the goal of this study was to evaluate mitochondrial phospholipid remodeling in cancer-related muscle wasting and its repercussions to respiratory chain activity and fiber susceptibility to apoptosis. An animal model of urothelial carcinoma induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and characterized by significant body weight loss due to skeletal muscle mass decrease was used. Morphological evidences of muscle atrophy were associated to decreased respiratory chain activity and increased expression of mitochondrial UCP3, which altogether highlight the lower ability of wasted muscle to produce ATP. Lipidomic analysis of isolated mitochondria revealed a significant decrease of phosphatidic acid, phosphatidylglycerol and cardiolipin in BBN mitochondria, counteracted by increased phosphatidylcholine levels. Besides the impact on membrane fluidity, this phospholipid remodeling seems to justify, at least in part, the lower oxidative phosphorylation activity observed in mitochondria from wasted muscle and their increased susceptibility to apoptosis. Curiously, no evidences of lipid peroxidation were observed but proteins from BBN mitochondria, particularly the metabolic ones, seem more prone to carbonylation with the consequent implications in mitochondria functionality. Overall, data suggest that bladder cancer negatively impacts skeletal muscle activity specifically by affecting mitochondrial phospholipid dynamics and its interaction with proteins, ultimately leading to the dysfunction of this organelle. The regulation of phospholipid biosynthetic pathways might be seen as potential therapeutic targets for the management of cancer-related muscle wasting.

  7. Prognostic implications of Kindlin proteins in human osteosarcoma

    Directory of Open Access Journals (Sweden)

    Ning K

    2017-02-01

    Full Text Available Kai Ning,* Haoshaqiang Zhang,* Zhigang Wang, Kun Li Department of Orthopedics Surgery Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China *These authors contributed equally to this work Abstract: The Kindlin protein family, comprising Kindlin-1, Kindlin-2 and Kindlin-3, play important roles in various human cancers. Here, to explore the clinical significance of Kindlins in human osteosarcomas, quantitative real-time PCR and Western blot analyses were performed to detect the expression of Kindlin-1, Kindlin-2 and Kindlin-3 mRNAs and proteins in 20 self-pairs of osteosarcoma and adjacent noncancerous tissues. Then, immunohistochemistry was performed to examine subcellular localizations and expression patterns of Kindlin proteins in 100 osteosarcoma and matched adjacent noncancerous tissues. Kindlin-1, Kindlin-2 and Kindlin-3 protein immunostainings were localized in the cytoplasm, nucleus and cytoplasm, respectively, of tumor cells in primary osteosarcoma tissues. Statistically, the expression levels of Kindlin-1 and Kindlin-2 mRNAs and proteins in osteosarcoma tissues were all significantly higher (both P<0.01, but those of Kindlin-3 mRNA and protein were both dramatically lower (both P<0.05, than in matched adjacent noncancerous tissues. In addition, the overexpressions of Kindlin-1 and Kindlin-2 proteins were both significantly associated with high tumor grade (both P=0.01, presence of metastasis (both P=0.006, recurrence (both P=0.006 and poor response to chemotherapy (both P=0.02. Moreover, Kindlin-1 and Kindlin-2 expressions were both identified as independent prognostic factors for overall (both P=0.01 and disease-free (P=0.02 and 0.01, respectively survivals of osteosarcoma patients. However, no associations were observed between Kindlin-3 expression and various clinicopathologic features and patients’ prognosis. In conclusion, aberrant expression of Kindlin-1 and Kindlin-2 may function

  8. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O

    2000-01-01

    on the function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast...

  9. Phosphorylation of proteins during human myometrial contractions: A phosphoproteomic approach.

    Science.gov (United States)

    Hudson, Claire A; López Bernal, Andrés

    2017-01-22

    Phasic myometrial contractility is a key component of human parturition and the contractions are driven by reversible phosphorylation of myosin light chains catalyzed by the calcium (Ca(2+))-dependent enzyme myosin light chain kinase (MYLK). Other yet unknown phosphorylation or de-phosphorylation events may contribute to myometrial contraction and relaxation. In this study we have performed a global phosphoproteomic analysis of human myometrial tissue using tandem mass tagging to detect changes in the phosphorylation status of individual myometrial proteins during spontaneous and oxytocin-driven phasic contractions. We were able to detect 22 individual phosphopeptides whose relative ratio changed (fold > 2 or contraction. The most significant changes in phosphorylation were to MYLK on serine 1760, a site associated with reductions in calmodulin binding and subsequent kinase activity. Phosphorylated MYLK (ser1760) increased significantly during spontaneous (9.83 ± 3.27 fold, P contractions and we were able to validate these data using immunoblotting. Pathway analysis suggested additional proteins involved in calcium signalling, cGMP-PRKG signalling, adrenergic signalling and oxytocin signalling were also phosphorylated during contractions. This study demonstrates that a global phosphoproteomic analysis of myometrial tissue is a sensitive approach to detect changes in the phosphorylation of proteins during myometrial contractions, and provides a platform for further validation of these changes and for identification of their functional significance.

  10. Loss of fragile histidine triad protein in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Po Zhao; Xin Song; Yuan-Yuan Nin; Ya-Li Lu; Xiang-Hong Li

    2003-01-01

    AIM: To investigate the expression of fragile histidine triad (FHIT) gene protein, Fhit, which is recently thought to be a candidate tumor suppressor. Abnormal expression of fragile histidine triad has been found in a variety of human cancers,but little is known about its expression in human hepatocellular carcinogenesis and evolution.METHODS: Sections of 83 primary human hepatocellular carcionoma with corresponding para-neoplastic liver tissue and 10 normal liver tissue were evaluated immunohistochemically for Fhit protein expression.RESULTS: All normal liver tissue and para-neoplastic liver tissue showed a strong expression of Fhit, whereas 50 of 83(65.0 %) carcinomas showed a marked loss or absence of Fhit expression. The differences of Fhit expression between carcinoma and normal or para-neoplastic liver tissue werehighly significant (P=0.000). The proportion of carcinomas with reduced Fhit expression showed an increasing trend (a) with decreasing differentiation or higher histological grade (P=0.219); (b) in tumors with higher clinical stage Ⅲ and ⅣV (91.3 %, P=0.000), compared with tumors with lower stage Ⅰ and Ⅱ (27.6 %); and (c) in cancers with bigger tumor size (>50 mm) (75.0 %, P=0.017), compared withsmaller tumor size (≤ 50 mm). CONCLUSION: FHIT inactivation seems to be both an earlyand a later event, associated with carcinogenesis andprogression to more aggressive hepatocellular carcinomas.Thus, evaluation of Fhit expression by immunohistochemistryin hepatocellular carcinoma may provide important diagnosticand prognostic information in clinical application.

  11. 人食管癌相关基因4在食管癌细胞系EC9706中表达缺失的机制%Mechanism of loss of human esophageal cancer-related gene 4 (ECRG4) gene expression in esophageal squamous cell carcinoma cell line EC9706

    Institute of Scientific and Technical Information of China (English)

    李林蔚; 余茜颖; 李晓燕; 郭黎平; 周云; 陆士新

    2011-01-01

    目的 探讨人食管癌相关基因4(ECRG4)在食管癌中表达缺失的机制.方法 采用聚 合酶链反应-单链构象多态(PCR-SSCP)和DNA测序的方法检测80对配对食管鳞状细胞癌(ESCC)肿瘤组织和癌旁正常上皮中ECRG4的外显子突变;采用DNA亚硫酸氧盐修饰和序列特异性聚合酶链反应(ssPCR)检测EC9706细胞系ECRG4基因启动子CpG岛甲基化状态;采用逆转录聚合酶链反应(RT-PCR)检测去甲基化药物5-氮杂-2-脱氧胞苷或三氧化二砷(As2O3)处理后ECRG4 mRNA的重新表达.结果 80对ESCC配对标本中,ECRG4的4个外显子编码区均未发现突变.EC9706细胞系ECRG4基因核心启动子区16个CpG岛中,有11个呈高甲基化状态,ECRG4 mRNA不表达.EC9706细胞处理前ECRG4 mRNA不表达,去甲基化药物处理后,ECRG4 mRNA均重新表达.结论 甲基化表观遗传学机制是导致ECRG4基因在食管癌细胞系EC9706中表达缺失的一个机制.%Objective To investigate the mechanism of loss of human esophageal cancer-related gene 4 (ECRG4) expression in esophageal squamous cell carcinoma (ESCC.) Methods PCR-SSCP and DNA sequencing analysis were used to detect the mutation of ECRG4 exons in esophageal cancer and matched adjacent normal tissues of 80 patients. DNA bisulfite-modifying ssPCR sequencing assay was used to examine the methylation status of ECRG4 promoter in human esophageal squamous cell carcinoma EC9706 cells. The re-expression of ECRG4 mRNA was examined by RT-PCR in EC9706 cells, after treatment with either demethylation drug 5-aza-2'-deoxycytidine or arsenic trioxide. Results No mutation in the four ECRG4 exons was found in all the ESCC and matched normal adjacent tissues. RT-PCR showed that 11 of 16 CpG islands of ECRG4 promoter were hypermethylated, while ECRG4 mRNA expression level was undetectable in the EC9706 cells. The ECRG4 mRNA was re-expressed after treatment with either demethylation drug 5-aza-2'-deoxycytidine or arsenic trioxide. Conclusion The

  12. Studies on the non-enzymatic glucosylation of human proteins

    Energy Technology Data Exchange (ETDEWEB)

    Brighton, M.W.

    1987-01-01

    Aspects of the thiobarbituric acid (TBA) method for quantitating non-enzymatic glucosylation (NEG) in proteins were assessed. Levels of NEG determined by this procedure were compared with values obtained by borohydride reduction and (/sup 14/C) labeling methods. Human albumin was non-enzymatically glucosylated in vitro and extent of glucosylation measured by the TBA, borohydride reduction and (/sup 14/C) labeling procedures. Comparison of in vivo and in vitro NEG was made by the TBA and borohydride reduction techniques. Kinetics of NEG of albumin and whole plasma proteins were assessed and compared. Non-enzymatic glucosylation of each of the major plasma protein fractions was demonstrated both in vivo and in vitro. Relative extends of glucosylation were established. A possible source of error when measuring total plasma NEG in patients with disturbed albumin/globulin ratios is described. Reversibility of the glucose-protein interaction was demonstrated in vitro. Evidence supporting the resistance of albumin to proteolysis, when non-enzymatically glucosylated, is presented.

  13. Pathogen receptor discovery with a microfluidic human membrane protein array

    Science.gov (United States)

    Glick, Yair; Ben-Ari, Ya’ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella

    2016-01-01

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein–pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism. PMID:27044079

  14. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations.

    Science.gov (United States)

    Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A

    2016-05-12

    Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus.

  15. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... stress (obesity, obese non-insulin-dependent diabetes mellitus), hypertrophy (training), de- and reinnervation (amyotrophic lateral sclerosis) or regeneration (polymyositis). We used an immunohistochemical approach to detect and localise GLUT3. GLUT3 immunoreactivity was not detectable in adult skeletal...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...

  16. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans.

    Directory of Open Access Journals (Sweden)

    Martin L Duennwald

    Full Text Available How small heat shock proteins (sHsps might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.

  17. Human epidermal growth factor receptor type 2 protein expression in Chinese metastatic prostate cancer patients correlates with cancer specific survival and increases after exposure to hormonal therapy

    Institute of Scientific and Technical Information of China (English)

    Bo Dai; Yun-Yi Kong; Ding-Wei Ye; Chun-Guang Ma; Xiao-Yan Zhou; Xu-Dong Yao

    2008-01-01

    Aim: To investigate human epidermal growth factor receptor type 2 (HER2) protein expression and gene amplification in Chinese metastatic prostate cancer patients and their potential value as prognostic factors. Methods: Immuno-histochemistry (IHC) was performed to investigate HER2 protein expression in prostate biopsy specimens from 104 Chinese metastatic prostate cancer patients. After 3-11 months of hormonal therapy, 12 patients underwent transure- thral resection of the prostate (TURP). HER2 protein expression of TURP specimens was compared with that of the original biopsy specimens. Of these, 10 biopsy and 4 TURP specimens with HER2 IHC staining scores ≥ 2+ were investigated for HER2 gene amplification status by fluorescent in situ hybridization (FISH). Results: Of the 104 prostate biopsy specimens, HER2 protein expression was 0, 1+, 2+ and 3+ in 49 (47.1%), 45 (43.3%), 8 (7.7%) and 2 (1.9%) cases, respectively. There was a significant association between HER2 expression and Gleason score (P = 0.026). HER2 protein expression of prostate cancer tissues increased in 33.3% of patients after hormonal therapy. None of the 14 specimens with HER2 IHC scores > 2+ showed HER2 gene amplification. Patients with HER2 scores ≥ 2+ had a significantly higher chance of dying from prostate cancer than those with HER2 scores of 0 (P = 0.004) and 1+ (P = 0.034). Multivariate Cox regression analysis showed that HER2 protein expression intensity was an independent predictor of cancer-related death (P = 0.039). Conclusion: An HER2 IHC score ≥ 2+ should be defined as HER2 protein overexpression in prostate cancer. Overexpression of HER2 protein in cancer tissue might suggest an increased risk of dying from prostate cancer. HER2 protein expression increases in some individual patients after hormonal therapy.

  18. Secretion of Human Protein C in Mouse Milk

    Directory of Open Access Journals (Sweden)

    Chae-Won Park

    2015-03-01

    Full Text Available To determine the production of recombinant human protein C (rec-hPC in milk, we created two homozygous mice lines for the goat β-casein/hPC transgene. Females and males of both lines (#10 and #11 displayed normal growth, fertility, and lactated normally. The copy number of the transgene was about fivefold higher in #10 line as compared to #11 line. mRNA expression of the transgene was only detected in the mammary glands of both lines. Furthermore, mRNA expression was fourfold higher on day 7 than on day 1 during lactation. Northern blot analysis of mRNA expression in the #10 line of transgenic (Tg mice indicated a strong expression of the transgene in the mammary glands after seven days of lactation. Comparison of rec-hPC protein level with that of mRNA in the mammary glands showed a very similar pattern. A 52-kDa band corresponding to the hPC protein was strongly detected in mammary glands of the #10 line during lactation. We also detected two bands of heavy chain and one weak band of light chain in the milk of the #10 and #11 lines. One single band at 52 kDa was detected from CHO cells transfected with hPC cDNA. hPC was mainly localized in the alveolar epithelial cell of the mammary glands. The protein is strongly expressed in the cytoplasm of the cultured mammary gland tissue. hPC protein produced in milk ranged from 2 to 28 ng/mL. These experiments indicated that rec-hPC can be produced at high levels in mice mammary glands.

  19. Biochemical characterization of human peroxiredoxin 2, an antioxidative protein

    Institute of Scientific and Technical Information of China (English)

    Sheng Yan; Shaopei Chen; Zhendong Li; Haiying Wang; Tuxiong Huang; Xiaoning Wang; Jufang Wang

    2012-01-01

    Human peroxiredoxin 2 (Prx2),which is abundant in erythrocytes,has been shown to play a key role in protecting erythrocytes against oxidative stress by scavenging reactive oxygen species as well as participating in cell signal transduction.Here,human Prx2 gene was successfully cloned into Escherichia coli BL21 (DE3) for Prx2 expression.Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis suggested that the recombinant protein was expressed mainly in a soluble form.The recombinant protein was purified by one-step Ni-nitrilotriacetic acid chelating affinity chromatography to a purity of up to 91.5%.The peroxidase activity of Prx2 to scavenge H2O2was determined by a ferrithiocyanate assay.The ability of Prx2 to protect plasmid DNA was tested by using a mixed-function oxidation system,and results showed that Prx2 could prevent DNA from undergoing oxidative stress. Ultraviolet (UV)-induced cell apoptosis assay demonstrated that Prx2 is also able to protect NIH/3T3 cells from UV-induced damage,suggesting its possible applications in cosmetics and other areas.

  20. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    Science.gov (United States)

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis.

  1. Expression of DNA-dependent protein kinase in human granulocytes

    Institute of Scientific and Technical Information of China (English)

    Annahita SALLMYR; Anna MILLER; Aida GABDOULKHAKOVA; Valentina SAFRONOVA; Gunnel HENRIKSSON; Anders BREDBERG

    2004-01-01

    Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in P MN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration.In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.

  2. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins

    Directory of Open Access Journals (Sweden)

    S Capossela

    2014-04-01

    Full Text Available Degeneration of intervertebral discs (IVDs is associated with back pain and elevated levels of inflammatory cells. It has been hypothesised that discogenic pain is a direct result of vascular and neural ingrowth along annulus fissures, which may expose the avascular nucleus pulposus (NP to the systemic circulation and induce an autoimmune reaction. In this study, we confirmed our previous observation of antibodies in human degenerated and post-traumatic IVDs cultured in vitro. We hypothesised that the presence of antibodies was due to an autoimmune reaction against specific proteins of the disc. Furthermore we identified antigens which possibly trigger an autoimmune response in degenerative disc diseases. We demonstrated that degenerated and post-traumatic IVDs contain IgG antibodies against typical extracellular proteins of the disc, particularly proteins of the NP. We identified IgGs against collagen type II and aggrecan, confirming an autoimmune reaction against the normally immune privileged NP. We also found specific IgGs against collagens types I and V, but not against collagen type III. In conclusion, this study confirmed the association between disc degeneration and autoimmunity, and may open the avenue for future studies on developing prognostic, diagnostic and therapy-monitoring markers for degenerative disc diseases.

  3. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins.

    Science.gov (United States)

    Capossela, S; Schläfli, P; Bertolo, A; Janner, T; Stadler, B M; Pötzel, T; Baur, M; Stoyanov, J V

    2014-04-04

    Degeneration of intervertebral discs (IVDs) is associated with back pain and elevated levels of inflammatory cells. It has been hypothesised that discogenic pain is a direct result of vascular and neural ingrowth along annulus fissures, which may expose the avascular nucleus pulposus (NP) to the systemic circulation and induce an autoimmune reaction. In this study, we confirmed our previous observation of antibodies in human degenerated and post-traumatic IVDs cultured in vitro. We hypothesised that the presence of antibodies was due to an autoimmune reaction against specific proteins of the disc. Furthermore we identified antigens which possibly trigger an autoimmune response in degenerative disc diseases. We demonstrated that degenerated and post-traumatic IVDs contain IgG antibodies against typical extracellular proteins of the disc, particularly proteins of the NP. We identified IgGs against collagen type II and aggrecan, confirming an autoimmune reaction against the normally immune privileged NP. We also found specific IgGs against collagens types I and V, but not against collagen type III. In conclusion, this study confirmed the association between disc degeneration and autoimmunity, and may open the avenue for future studies on developing prognostic, diagnostic and therapy-monitoring markers for degenerative disc diseases.

  4. Structural plasticity in human heterochromatin protein 1β.

    Directory of Open Access Journals (Sweden)

    Francesca Munari

    Full Text Available As essential components of the molecular machine assembling heterochromatin in eukaryotes, HP1 (Heterochromatin Protein 1 proteins are key regulators of genome function. While several high-resolution structures of the two globular regions of HP1, chromo and chromoshadow domains, in their free form or in complex with recognition-motif peptides are available, less is known about the conformational behavior of the full-length protein. Here, we used NMR spectroscopy in combination with small angle X-ray scattering and dynamic light scattering to characterize the dynamic and structural properties of full-length human HP1β (hHP1β in solution. We show that the hinge region is highly flexible and enables a largely unrestricted spatial search by the two globular domains for their binding partners. In addition, the binding pockets within the chromo and chromoshadow domains experience internal dynamics that can be useful for the versatile recognition of different binding partners. In particular, we provide evidence for the presence of a distinct structural propensity in free hHP1β that prepares a binding-competent interface for the formation of the intermolecular β-sheet with methylated histone H3. The structural plasticity of hHP1β supports its ability to bind and connect a wide variety of binding partners in epigenetic processes.

  5. Mitochondrial uncoupling proteins in human physiology and disease.

    Science.gov (United States)

    Hagen, T; Vidal-Puig, A

    2002-02-01

    Uncoupling proteins are mitochondrial carrier proteins that catalyse a regulated proton leak across the inner mitochondrial membrane, diverting free energy from ATP synthesis by the mitochondrial F0F1-ATP synthase to the production of heat. Uncoupling protein 1 (UCP1), which is exclusively expressed in brown adipose tissue, is the mediator of thermogenesis in response to beta-adrenergic stimulation. Using gene a knockout mouse model, UCP1 has been shown to be required for cold acclimation. Two homologues of UCP1, UCP2 and UCP3, have been identified recently and show a much wider tissue distribution. UCP2 and UCP3 have been postulated to play a role in the regulation of cold acclimation, energy expenditure and diet-induced thermogenesis in humans, who, in contrast to rodents, have very little brown fat in adult life. However, evidence is accumulating that thermogenesis and regulation of body weight may not be the physiological functions of UCP2 and UCP3. For instance, mice deficient for UCP2 or UCP3 are not cold-intolerant and do not develop obesity. Alternative functions were suggested, primarily based on findings in UCP2 and UCP3 gene knockout mice. Both UCP2- and UCP3-deficient mice were found to overproduce reactive oxygen species and UCP2-deficient mice to hypersecrete insulin. Thus, the UCP1 homologues may play a role in regulating mitochondrial production of reactive oxygen species and b-cell function. In this review, we discuss the role of UCP1, UCP2 and UCP3 in human physiology and disease, primarily based on findings from the various animal models that have been generated.

  6. Analysis of necroptotic proteins in failing human hearts.

    Science.gov (United States)

    Szobi, Adrián; Gonçalvesová, Eva; Varga, Zoltán V; Leszek, Przemyslaw; Kuśmierczyk, Mariusz; Hulman, Michal; Kyselovič, Ján; Ferdinandy, Péter; Adameová, Adriana

    2017-04-28

    Cell loss and subsequent deterioration of contractile function are hallmarks of chronic heart failure (HF). While apoptosis has been investigated as a participant in the progression of HF, it is unlikely that it accounts for the total amount of non-functional tissue. In addition, there is evidence for the presence of necrotic cardiomyocytes in HF. Therefore, the objective of this study was to investigate the necroptotic proteins regulating necroptosis, a form of programmed necrosis, and thereby assess its potential role in human end-stage HF. Left ventricular samples of healthy controls (C) and patients with end-stage HF due to myocardial infarction (CAD) or dilated cardiomyopathy (DCM) were studied. Immunoblotting for necroptotic and apoptotic markers was performed. Triton X-114 fractionated samples were analyzed to study differences in subcellular localization. Elevated expression of RIP1 (receptor-interacting protein), pSer(227)-RIP3 and its total levels were observed in HF groups compared to controls. On the other hand, caspase-8 expression, a proapoptotic protease negatively regulating necroptosis, was downregulated suggesting activation of necroptosis signaling. Total mixed-lineage kinase domain-like protein (MLKL) expression did not differ among the groups; however, active cytotoxic forms of MLKL were present in all HF samples while they were expressed at almost undetectable levels in controls. Interestingly, pThr(357)-MLKL unlike pSer(358)-MLKL, was higher in DCM than CAD. In HF, the subcellular localization of both RIP3 and pThr(357)-MLKL was consistent with activation of necroptosis signaling. Expression of main apoptotic markers has not indicated importance of apoptosis. This is the first evidence showing that human HF of CAD or DCM etiology is positive for markers of necroptosis which may be involved in the development of HF.

  7. Factors that contribute to the immmunogenicity of therapeutic recombinant human proteins.

    Science.gov (United States)

    Mukovozov, Ilya; Sabljic, Thomas; Hortelano, Gonzalo; Ofosu, Frederick A

    2008-05-01

    Use of recombinant human proteins has revolutionized medicine by providing over 200 highly purified hormones and proteins that effectively treat many inherited and acquired peptide hormone and protein deficiencies. With the exception of therapeutic monoclonal antibodies, these biological medicines are synthesized by cultured cells using DNA sequences that would yield proteins with identical amino acid sequences as endogenous human proteins. Therefore, there was the broad expectation that recombinant human biological medicines would be non-immunogenic in patients capable of synthesizing even sub-optimal levels of these therapeutic proteins to which they are innately tolerant. However, the widespread clinical use of recombinant human proteins has demonstrated that nearly all of them are immunogenic. This observation suggests that factors additional to differences in amino acid sequences of endogenous and biotherapeutic proteins contribute to the immunogenicity of therapeutic proteins. The main aim of this review is to summarize some of the factors that are known to contribute to the immunogenicity of recombinant therapeutic proteins.

  8. Heterochromatin Protein 1 (HP1) Proteins Do Not Drive Pericentromeric Cohesin Enrichment in Human Cells

    Science.gov (United States)

    Serrano, Ángel; Rodríguez-Corsino, Miriam; Losada, Ana

    2009-01-01

    Sister chromatid cohesion mediated by cohesin is essential for accurate chromosome segregation. Classical studies suggest that heterochromatin promotes cohesion, but whether this happens through regulation of cohesin remains to be determined. Heterochromatin protein 1 (HP1) is a major component of heterochromatin. In fission yeast, the HP1 homologue Swi6 interacts with cohesin and is required for proper targeting and/or stabilization of cohesin at the centromeric region. To test whether this pathway is conserved in human cells, we have examined the behavior of cohesin in cells in which the levels of HP1 alpha, beta or gamma (the three HP1 proteins present in mammalian organisms) have been reduced by siRNA. We have also studied the consequences of treating human cells with drugs that change the histone modification profile of heterochromatin and thereby affect HP1 localization. Our results show no evidence for a requirement of HP1 proteins for either loading of bulk cohesin onto chromatin in interphase or retention of cohesin at pericentric heterochromatin in mitosis. However, depletion of HP1gamma leads to defects in mitotic progression. PMID:19352502

  9. PPI finder: a mining tool for human protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: The exponential increase of published biomedical literature prompts the use of text mining tools to manage the information overload automatically. One of the most common applications is to mine protein-protein interactions (PPIs from PubMed abstracts. Currently, most tools in mining PPIs from literature are using co-occurrence-based approaches or rule-based approaches. Hybrid methods (frame-based approaches by combining these two methods may have better performance in predicting PPIs. However, the predicted PPIs from these methods are rarely evaluated by known PPI databases and co-occurred terms in Gene Ontology (GO database. METHODOLOGY/PRINCIPAL FINDINGS: We here developed a web-based tool, PPI Finder, to mine human PPIs from PubMed abstracts based on their co-occurrences and interaction words, followed by evidences in human PPI databases and shared terms in GO database. Only 28% of the co-occurred pairs in PubMed abstracts appeared in any of the commonly used human PPI databases (HPRD, BioGRID and BIND. On the other hand, of the known PPIs in HPRD, 69% showed co-occurrences in the literature, and 65% shared GO terms. CONCLUSIONS: PPI Finder provides a useful tool for biologists to uncover potential novel PPIs. It is freely accessible at http://liweilab.genetics.ac.cn/tm/.

  10. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  11. Supervised exercise reduces cancer-related fatigue: a systematic review

    Directory of Open Access Journals (Sweden)

    José F Meneses-Echávez

    2015-01-01

    Full Text Available Question: Does supervised physical activity reduce cancer-related fatigue? Design: Systematic review with meta-analysis of randomised trials. Participants: People diagnosed with any type of cancer, without restriction to a particular stage of diagnosis or treatment. Intervention: Supervised physical activity interventions (eg, aerobic, resistance and stretching exercise, defined as any planned or structured body movement causing an increase in energy expenditure, designed to maintain or enhance health-related outcomes, and performed with systematic frequency, intensity and duration. Outcome measures: The primary outcome measure was fatigue. Secondary outcomes were physical and functional wellbeing assessed using the Functional Assessment of Cancer Therapy Fatigue Scale, European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire, Piper Fatigue Scale, Schwartz Cancer Fatigue Scale and the Multidimensional Fatigue Inventory. Methodological quality, including risk of bias of the studies, was evaluated using the PEDro Scale. Results: Eleven studies involving 1530 participants were included in the review. The assessment of quality showed a mean score of 6.5 (SD 1.1, indicating a low overall risk of bias. The pooled effect on fatigue, calculated as a standardised mean difference (SMD using a random-effects model, was –1.69 (95% CI –2.99 to –0.39. Beneficial reductions in fatigue were also found with combined aerobic and resistance training with supervision (SMD = –0.41, 95% CI –0.70 to –0.13 and with combined aerobic, resistance and stretching training with supervision (SMD = –0.67, 95% CI –1.17 to –0.17. Conclusion: Supervised physical activity interventions reduce cancer-related fatigue. These findings suggest that combined aerobic and resistance exercise regimens with or without stretching should be included as part of rehabilitation programs for people who have been diagnosed with cancer

  12. Altered resting brain connectivity in persistent cancer related fatigue

    Directory of Open Access Journals (Sweden)

    Johnson P. Hampson

    2015-01-01

    Full Text Available There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI. Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected. This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52 and poor sleep quality (P = 0.04, r = 0.52 in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected. Mental fatigue scores were associated with greater default mode network (DMN connectivity to the superior frontal gyrus (P = 0.05 FDR corrected among fatigued subjects (r = 0.82 and less connectivity in the non-fatigued group (r = −0.88. These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent

  13. Functional organization and its implication in evolution of the human protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Zhao Yiqiang

    2012-04-01

    Full Text Available Abstract Background Based on the distinguishing properties of protein-protein interaction networks such as power-law degree distribution and modularity structure, several stochastic models for the evolution of these networks have been purposed, motivated by the idea that a validated model should reproduce similar topological properties of the empirical network. However, being able to capture topological properties does not necessarily mean it correctly reproduces how networks emerge and evolve. More importantly, there is already evidence suggesting functional organization and significance of these networks. The current stochastic models of evolution, however, grow the network without consideration for biological function and natural selection. Results To test whether protein interaction networks are functionally organized and their impacts on the evolution of these networks, we analyzed their evolution at both the topological and functional level. We find that the human network is shown to be functionally organized, and its function evolves with the topological properties of the network. Our analysis suggests that function most likely affects local modularity of the network. Consistently, we further found that the topological unit is also the functional unit of the network. Conclusion We have demonstrated functional organization of a protein interaction network. Given our observations, we suggest that its significance should not be overlooked when studying network evolution.

  14. Sensing Small Changes in Protein Abundance: Stimulation of Caco-2 Cells by Human Whey Proteins.

    Science.gov (United States)

    Cundiff, Judy K; McConnell, Elizabeth J; Lohe, Kimberly J; Maria, Sarah D; McMahon, Robert J; Zhang, Qiang

    2016-01-04

    Mass spectrometry (MS)-based proteomic approaches have largely facilitated our systemic understanding of cellular processes and biological functions. Cutoffs in protein expression fold changes (FCs) are often arbitrarily determined in MS-based quantification with no demonstrable determination of small magnitude changes in protein expression. Therefore, many biological insights may remain veiled due to high FC cutoffs. Herein, we employ the intestinal epithelial cell (IEC) line Caco-2 as a model system to demonstrate the dynamicity of tandem-mass-tag (TMT) labeling over a range of 5-40% changes in protein abundance, with the variance controls of ± 5% FC for around 95% of TMT ratios when sampling 9-12 biological replicates. We further applied this procedure to examine the temporal proteome of Caco-2 cells upon exposure to human whey proteins (WP). Pathway assessments predict subtle effects due to WP in moderating xenobiotic metabolism, promoting proliferation and various other cellular functions in differentiating enterocyte-like Caco-2 cells. This demonstration of a sensitive MS approach may open up new perspectives in the system-wide exploration of elusive or transient biological effects by facilitating scrutiny of narrow windows of proteome abundance changes. Furthermore, we anticipate this study will encourage more investigations of WP on infant gastrointestinal tract development.

  15. Crystal Structure of the Human Astrovirus Capsid Protein

    Science.gov (United States)

    Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.; Yeager, Mark; Méndez, Ernesto

    2016-01-01

    ABSTRACT Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominant protein species with molecular masses of ∼34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP9071–415 (amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP9071–415 encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP9071–415 is comprised of two domains: an S domain, which adopts the typical jelly-roll β-barrel fold, and a P1 domain, which forms a squashed β-barrel consisting of six antiparallel β-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP9071–415 structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCE Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus

  16. Proteomic characterization of human milk whey proteins during a twelve-month lactation period.

    Science.gov (United States)

    Liao, Yalin; Alvarado, Rudy; Phinney, Brett; Lönnerdal, Bo

    2011-04-01

    Human milk is a rich source of bioactive proteins that support the early growth and development of the newborn. Although the major components of the protein fraction in human milk have been studied, the expression and relative abundance of minor components have received limited attention. We examined the expression of low-abundance proteins in the whey fraction of human milk and their dynamic changes over a twelve-month lactation period. The low-abundance proteins were enriched by ProteoMiner beads, and protein identification was performed by liquid chromatography tandem mass spectrometry. One hundred and fifteen proteins were identified, thirty-eight of which have not been previously reported in human colostrum or milk. We also for the first time described differences in protein patterns among the low-abundance proteins during lactation. These results enhance our knowledge about the complexity of the human milk proteome, which constitutes part of the advantages to the breast-fed infant.

  17. Identifying Liver Cancer-Related Enhancer SNPs by Integrating GWAS and Histone Modification ChIP-seq Data

    Directory of Open Access Journals (Sweden)

    Tianjiao Zhang

    2016-01-01

    Full Text Available Many disease-related single nucleotide polymorphisms (SNPs have been inferred from genome-wide association studies (GWAS in recent years. Numerous studies have shown that some SNPs located in protein-coding regions are associated with numerous diseases by affecting gene expression. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear. Enhancer elements are functional segments of DNA located in noncoding regions that play an important role in regulating gene expression. The SNPs located in enhancer elements may affect gene expression and lead to disease. We presented a method for identifying liver cancer-related enhancer SNPs through integrating GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer.

  18. Identifying Liver Cancer-Related Enhancer SNPs by Integrating GWAS and Histone Modification ChIP-seq Data

    Science.gov (United States)

    Hu, Yang; Wu, Xiaoliang; Ma, Rui

    2016-01-01

    Many disease-related single nucleotide polymorphisms (SNPs) have been inferred from genome-wide association studies (GWAS) in recent years. Numerous studies have shown that some SNPs located in protein-coding regions are associated with numerous diseases by affecting gene expression. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear. Enhancer elements are functional segments of DNA located in noncoding regions that play an important role in regulating gene expression. The SNPs located in enhancer elements may affect gene expression and lead to disease. We presented a method for identifying liver cancer-related enhancer SNPs through integrating GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer. PMID:27429976

  19. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  20. Nucleotidylylation of the VPg Protein of a Human Norovirus by its Proteinase-Polymerase Precursor Protein

    OpenAIRE

    Belliot, Gaël; Sosnovtsev, Stanislav V.; Chang, Kyeong-Ok; McPhie, Peter; Green, Kim Y.

    2008-01-01

    Caliciviruses have a positive strand RNA genome covalently-linked at the 5’-end to a small protein, VPg. This study examined the biochemical modification of VPg by the ProPol form of the polymerase of human norovirus strain MD145 (GII.4). Recombinant norovirus VPg was shown to be nucleotidylylated in the presence of Mn2+ by MD145 ProPol. Phosphodiesterase I treatment of the nucleotidylylated VPg released the incorporated UMP, which was consistent with linkage of RNA to VPg via a phosphodieste...

  1. Stability analysis of liver cancer-related microRNAs

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Zhenggang Jiang; Lijian Xu; Hu Yao; Jiangfeng Guo; Xianfeng Ding

    2011-01-01

    MicroRNAs(miRNAs)are non-coding,single-stranded RNAs of ~22 nt and constitute a novel class of gene regulators that are found in both plants and animals.Several studies have demonstrated that serum miRNAs could serve as potential biomarkers for the detection of various cancers and other diseases.A few documents regarding the stability of liver cancer-related miRNAs in serum are available.A systemic analysis of the stability of miRNA in serum is quite necessary.The purpose of this study was to evaluate the stability of miRNAs from three different sources,cultured liver cancer Huh-7 cell line,clinical liver cancer,and serum under different experimental conditions,including different temperature,time duration,pH values,Rnase A digestion,Dnase Ⅰ digestion,and various freeze-thaw cycles.The qRT-PCR analysis demonstrated that liver cancer-related miRNAs were detectable under each of test conditions,indicating that miRNAs were extremely stable and resistant to destruction and degradation under harsh environmental conditions.However,ribosomal RNA was fragile and easily degraded by demonstrating sharp decrease of relative expression under the non-physiological test conditions.We also established a robust procedure for serum RNA extraction,which is greatly important not only for the miRNA profiling studies bat also for the disease prognosis based on abnormal miRNA expression.

  2. Delta-like protein (DLK) is a novel immunohistochemical marker for human hepatoblastomas

    DEFF Research Database (Denmark)

    Dezso, Katalin; Halász, Judit; Bisgaard, Hanne Cathrine

    2008-01-01

    Delta-like protein (DLK) is a membrane protein with mostly unknown function. It is expressed by several embryonic tissues among others by the hepatoblasts of rodent and human fetal livers. We have investigated in the present study if this protein is expressed in human hepatoblastomas. The presenc...

  3. Human protein status modulates brain reward responses to food cues1–3

    NARCIS (Netherlands)

    Griffioen-Roose, S.; Smeets, P.A.M.; Heuvel, van den E.M.; Boesveldt, S.; Finlayson, G.; Graaf, de C.

    2014-01-01

    Background: Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. Objective: We investigated the effect of human protein status on neural responses to different food cues with the

  4. A Deacetylase-Deficient SIRT1 Variant Opposes Full-Length SIRT1 in Regulating Tumor Suppressor p53 and Governs Expression of Cancer-Related Genes

    Science.gov (United States)

    Shah, Zahid H.; Ahmed, Shafiq U.; Ford, Jack R.; Allison, Simon J.; Knight, John R. P.

    2012-01-01

    SIRT1 is an NAD-dependent deacetylase and epigenetic regulator essential for normal mammalian development and homeostasis. Here we describe a human SIRT1 splice variant, designated SIRT1-Δ2/9, in which the deacetylase coding sequence is lost due to splicing between exons 2 and 9. This work aimed to determine if SIRT1-Δ2/9 is a novel functional product of the SIRT1 gene. Endogenous SIRT1-Δ2/9 protein was identified in human cell lysate by immunoblotting and splice variant-specific RNA interference (RNAi). SIRT1-Δ2/9 mRNA is bound by CUGBP2, which downregulates its translation. Using pulldown assays, we demonstrate that SIRT1-Δ2/9 binds p53 protein. SIRT1-Δ2/9 maintains basal p53 protein levels and supports p53 function in response to DNA damage, as evidenced by RNAi-mediated depletion of SIRT1-Δ2/9 prior to damage. In turn, basal p53 downregulates SIRT1-Δ2/9 RNA levels, while stress-activated p53 eliminates SIRT1-Δ2/9. Loss of wild-type (wt) p53 has been correlated with overexpression of SIRT1-Δ2/9 in a range of human cancers. Exogenous SIRT1-Δ2/9 protein associates with specific promoters in chromatin and can regulate cancer-related gene expression, as evidenced by chromatin immunoprecipitation analysis and RNAi/genomic array data. SIRT1 is of major therapeutic importance, and potential therapeutic drugs are screened against SIRT1 deacetylase activity. Our discovery of SIRT1-Δ2/9 identifies a new, deacetylase-independent therapeutic target for SIRT1-related diseases, including cancer. PMID:22124156

  5. The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues

    Science.gov (United States)

    Basha, Omer; Barshir, Ruth; Sharon, Moran; Lerman, Eugene; Kirson, Binyamin F.; Hekselman, Idan; Yeger-Lotem, Esti

    2017-01-01

    Knowledge of the molecular interactions of human proteins within tissues is important for identifying their tissue-specific roles and for shedding light on tissue phenotypes. However, many protein–protein interactions (PPIs) have no tissue-contexts. The TissueNet database bridges this gap by associating experimentally-identified PPIs with human tissues that were shown to express both pair-mates. Users can select a protein and a tissue, and obtain a network view of the query protein and its tissue-associated PPIs. TissueNet v.2 is an updated version of the TissueNet database previously featured in NAR. It includes over 40 human tissues profiled via RNA-sequencing or protein-based assays. Users can select their preferred expression data source and interactively set the expression threshold for determining tissue-association. The output of TissueNet v.2 emphasizes qualitative and quantitative features of query proteins and their PPIs. The tissue-specificity view highlights tissue-specific and globally-expressed proteins, and the quantitative view highlights proteins that were differentially expressed in the selected tissue relative to all other tissues. Together, these views allow users to quickly assess the unique versus global functionality of query proteins. Thus, TissueNet v.2 offers an extensive, quantitative and user-friendly interface to study the roles of human proteins across tissues. TissueNet v.2 is available at http://netbio.bgu.ac.il/tissuenet. PMID:27899616

  6. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  7. Bacterial delivery of TALEN proteins for human genome editing.

    Science.gov (United States)

    Jia, Jingyue; Jin, Yongxin; Bian, Ting; Wu, Donghai; Yang, Lijun; Terada, Naohiro; Wu, Weihui; Jin, Shouguang

    2014-01-01

    Transcription Activator-Like Effector Nucleases (TALENs) are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and homologous recombination. Current methods of TALEN delivery involves introduction of foreign genetic materials, such as plasmid DNA or mRNA, through transfection. Here, we show an alternative way of TALEN delivery, bacterial type III secretion system (T3SS) mediated direct injection of the TALEN proteins into human cells. Bacterially injected TALEN was shown to efficiently target host cell nucleus where it persists for almost 12 hours. Using a pair of TALENs targeting venus gene, such injected nuclear TALENs were shown functional in introducing DNA mutation in the target site. Interestingly, S-phase cells seem to show greater sensitivity to the TALEN mediated target gene modification. Accordingly, efficiency of such genome editing can easily be manipulated by the infection dose, number of repeated infections as well as enrichment of S phase cells. This work further extends the utility of T3SS in the delivery of functional proteins into mammalian cells to alter their characters for biomedical applications.

  8. Shedding light on proteins, nucleic acids, cells, humans and fish

    Science.gov (United States)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  9. Bacterial delivery of TALEN proteins for human genome editing.

    Directory of Open Access Journals (Sweden)

    Jingyue Jia

    Full Text Available Transcription Activator-Like Effector Nucleases (TALENs are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and homologous recombination. Current methods of TALEN delivery involves introduction of foreign genetic materials, such as plasmid DNA or mRNA, through transfection. Here, we show an alternative way of TALEN delivery, bacterial type III secretion system (T3SS mediated direct injection of the TALEN proteins into human cells. Bacterially injected TALEN was shown to efficiently target host cell nucleus where it persists for almost 12 hours. Using a pair of TALENs targeting venus gene, such injected nuclear TALENs were shown functional in introducing DNA mutation in the target site. Interestingly, S-phase cells seem to show greater sensitivity to the TALEN mediated target gene modification. Accordingly, efficiency of such genome editing can easily be manipulated by the infection dose, number of repeated infections as well as enrichment of S phase cells. This work further extends the utility of T3SS in the delivery of functional proteins into mammalian cells to alter their characters for biomedical applications.

  10. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA

    DEFF Research Database (Denmark)

    Reddy, Madhava C; Christensen, Jesper; Vasquez, Karen M

    2005-01-01

    Human high mobility group box (HMGB) 1 and -2 proteins are highly conserved and abundant chromosomal proteins that regulate chromatin structure and DNA metabolism. HMGB proteins bind preferentially to DNA that is bent or underwound and to DNA damaged by agents such as cisplatin, UVC radiation......, and benzo[a]pyrenediol epoxide (BPDE). Binding of HMGB1 to DNA adducts is thought to inhibit nucleotide excision repair (NER), leading to cell death, but the biological roles of these proteins remain obscure. We have used psoralen-modified triplex-forming oligonucleotides (TFOs) to direct a psoralen-DNA...... interstrand cross-link (ICL) to a specific site to determine the effect of HMGB proteins on recognition of these lesions. Our results reveal that human HMGB1 (but not HMGB2) binds with high affinity and specificity to psoralen ICLs, and interacts with the essential NER protein, replication protein A (RPA...

  11. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  12. Considerations in meeting protein needs of the human milk-fed preterm infant.

    Science.gov (United States)

    Wagner, Julie; Hanson, Corrine; Anderson-Berry, Ann

    2014-08-01

    Preterm infants provided with sufficient nutrition to achieve intrauterine growth rates have the greatest potential for optimal neurodevelopment. Although human milk is the preferred feeding for preterm infants, unfortified human milk provides insufficient nutrition for the very low-birth-weight infant. Even after fortification with human milk fortifier, human milk often fails to meet the high protein needs of the smallest preterm infants, and additional protein supplementation must be provided. Although substantial evidence exists to support quantitative protein goals for human milk-fed preterm infants, the optimal type of protein for use in human milk fortification remains uncertain. This question was addressed through a PubMed literature search of prospective clinical trials conducted since 1990 in preterm or low-birth-weight infant populations. The following 3 different aspects of protein quality were evaluated: whey-to-casein ratio, hydrolyzed versus intact protein, and bovine milk protein versus human milk protein. Because of a scarcity of current studies conducted with fortified human milk, studies examining protein quality using preterm infant formulas were included to address certain components of the clinical question. Twenty-six studies were included in the review study. No definite advantage was found for any specific whey-to-casein ratio. Protein hydrolyzate products with appropriate formulations can support adequate growth and biochemical indicators of nutrition status and may reduce gastrointestinal transit time, gastroesophageal reflux events, and later incidence of atopic dermatitis in some infants. Plasma amino acid levels similar to those of infants fed exclusive human milk-based diets can be achieved with products composed of a mixture of bovine proteins, peptides, and amino acids formulated to replicate the amino acid composition of human milk. Growth and biochemical indicators of nutrition status are similar for infants fed human milk

  13. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    Science.gov (United States)

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  14. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    Full Text Available BACKGROUND: Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion. METHODOLOGY: In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity. SIGNIFICANCE: These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  15. Human immune cell targeting of protein nanoparticles - caveospheres

    Science.gov (United States)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  16. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins

    DEFF Research Database (Denmark)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J.; Shojaosadati, Seyed Abbas;

    2016-01-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins...... produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address...... native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better...

  17. Treatment of breast cancer-related lymphedema with adipose-derived regenerative cells and fat grafts

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline

    2017-01-01

    Breast cancer-related lymphedema (BCRL) is a debilitating late complication with a lack of treatment opportunities. Recent studies have suggested that mesenchymal stromal cells can alleviate lymphedema. Herein, we report the results from the first human pilot study with freshly isolated adipose......-derived regenerative cells (ADRC) for treating lymphedema with 6 months follow-up. Ten BCRL patients were included. ADRC was injected directly into the axillary region, which was combined with a scar-releasing fat graft procedure. Primary endpoints were change in arm volume. Secondary endpoints were change in patient...... tolerated and only minor transient adverse events related to liposuction were noted. In this pilot study, a single injection of ADRC improved lymphedema based on patient-reported outcome measures, and there were no serious adverse events in the 6 months follow-up period. In addition, half of the patients...

  18. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    Science.gov (United States)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  19. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum.

    Science.gov (United States)

    Mirshafiee, Vahid; Kim, Raehyun; Mahmoudi, Morteza; Kraft, Mary L

    2016-06-01

    Nanoparticle (NP) exposure to biological fluids in the body results in protein binding to the NP surface, which forms a protein coating that is called the "protein corona". To simplify studies of protein-NP interactions and protein corona formation, NPs are incubated with biological solutions, such as human serum or human plasma, and the effects of this exposure are characterized in vitro. Yet, how NP exposure to these two different biological milieus affects protein corona composition and cell response has not been investigated. Here, we explore the differences between the protein coronas that form when NPs are incubated in human serum versus human plasma. NP characterization indicated that NPs that were exposed to human plasma had higher amounts of proteins bound to their surfaces, and were slightly larger in size than those exposed to human serum. In addition, significant differences in corona composition were also detected with gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry, where a higher fraction of coagulation proteins and complement factors were found on the plasma-exposed NPs. Flow cytometry and confocal microscopy showed that the uptake of plasma-exposed NPs was higher than that of serum-exposed NPs by RAW 264.7 macrophage immune cells, but not by NIH 3T3 fibroblast cells. This difference is likely due to the elevated amounts of opsonins, such as fibrinogen, on the surfaces of the NPs exposed to plasma, but not serum, because these components trigger NP internalization by immune cells. As the human plasma better mimics the composition of the in vivo environment, namely blood, in vitro protein corona studies should employ human plasma, and not human serum, so the biological phenomena that is observed is more similar to that occurring in vivo.

  20. Identification of Novel Targets of the Human Cell Cycle Regulatory Protein Cdc34

    Science.gov (United States)

    1997-07-01

    human Cdc34 and its interacting proteins using Southern, Northern and Western blot analysis. 11 PROPRIETARY Conclusion Knowledge gained about...expression in yeast. Task 2: Month 2-3: Excision of the library (the prey) encoding candidate interacting proteins fused to the activation domain from...Cdc34 and its interacting proteins in carcinogenesis. Task 7: Month 18-28: Study of the structure of human CDC34 and its novel partner proteins in

  1. Evolutionarily Conserved and Nonconserved Cellular Localizations and Functions of Human SIRT Proteins

    OpenAIRE

    Michishita, Eriko; Park, Jean Y.; Burneskis, Jenna M.; Barrett, J. Carl; Horikawa, Izumi

    2005-01-01

    Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast...

  2. Identification of novel human damage response proteins targeted through yeast orthology.

    Directory of Open Access Journals (Sweden)

    J Peter Svensson

    Full Text Available Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rules were implemented to identify 45 candidates for human toxicity-modulating proteins. The corresponding transcripts were targeted by RNA interference in human cells. The cell lines with depleted target expression were challenged with three DNA damaging agents: the alkylating agents MMS and 4-NQO, and the oxidizing agent t-BuOOH. A comparison of the survival revealed that the majority (74% of proteins conferred either sensitivity or resistance. The identified human toxicity-modulating proteins represent a variety of biological functions: autophagy, chromatin modifications, RNA and protein metabolism, and telomere maintenance. Further studies revealed that MMS-induced autophagy increase the survival of cells treated with DNA damaging agents. In summary, we show that damage recovery proteins in humans can be identified through homology to S. cerevisiae and that many of the same pathways are represented among the toxicity modulators.

  3. Bioactive Proteins in Human Milk-Potential Benefits for Preterm Infants.

    Science.gov (United States)

    Lönnerdal, Bo

    2017-03-01

    Human milk contains many bioactive proteins that are likely to be involved in the better outcomes of breast-fed infants compared with those fed infant formula. Bovine milk proteins or protein fractions may be able to provide some of these benefits and may, therefore, be used for preterm infants. Recombinant human milk proteins are likely to exert bioactivities similar to those of the native human milk proteins, but considerable research is needed before they can be used in routine care of preterm infants.

  4. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels

    DEFF Research Database (Denmark)

    Domanski, Michal; Molloy, Kelly; Jiang, Hua;

    2012-01-01

    An efficient and reliable procedure for the capture of affinity-tagged proteins and associated complexes from human cell lines is reported. Through multiple optimizations, high yield and low background affinity-purifications are achieved from modest quantities of human cells expressing endogenous......-level tagged proteins. Isolations of triple-FLAG and GFP-tagged fusion proteins involved in RNA metabolism are presented.......An efficient and reliable procedure for the capture of affinity-tagged proteins and associated complexes from human cell lines is reported. Through multiple optimizations, high yield and low background affinity-purifications are achieved from modest quantities of human cells expressing endogenous...

  5. Identification of calcium-binding proteins associated with the human sperm plasma membrane

    National Research Council Canada - National Science Library

    Naaby-Hansen, Soren; Diekman, Alan; Shetty, Jagathpala; Flickinger, Charles J; Westbrook, Anne; Herr, John C

    2010-01-01

    The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation...

  6. Effect of Meridian Massage for Cancer Related Fatigue

    Institute of Scientific and Technical Information of China (English)

    In sook Jeoung; Hwa-Seung Yoo

    2008-01-01

    The purpose of this study is to investigate the effectiveness of meridian massage in lessening the fatigue and improving both physical and mental quality of life of cancer patients. Settings and design: This study was conducted at the East-West Cancer Center at Daejeon University; Using a single-arm, waiting list and non-treatment control research design, we compared the results of control group and to that of the experimental group. Materials and methods: From July 2, 2007 to July 28, 2007, eighteen eligible cancer patients were recruited to participate in the experiment. Modified Chalder Fatigue Scale (CFS), Visual Analogue Scale (VAS) and active oxygen level were measured before and after treatment for both control and experimental groups. Lying on their back or stomach inside a room with a temperature of 18-2℃2, the patients received 30 minutes of meridian massages mainly around the trapezius muscles 5 times a week.Statistical analysis used: Data analysis was carried out using independent t-test, paired t-test and One-way ANOVA.Results: Data analysis of modified CFS showed statistically significant results for all groups between before and after treatment. Within CFS, results of physical and psychological analysis showed significant results for all groups except before and after no treatment and secondary treatment. In the analysis of VAS, the experimental group showed a greater decrease in score compared to that of the control group and the average difference was statistically significant (P<0.05). Although the results were not statistically significant (P>0.05), active oxygen levels for the control group showed little difference before and after no treatment (331.11 and 330.78, respectively) while the experimental group observed a decrease in active oxygen level before and after treatment (327.28 and 314.11, respectively). Conclusion: In conclusion, patients who received meridian massage showed decreased cancer related fatigue scores compared to the

  7. Change of Water—Soluble—Protein,Urea—Soluble—Protein and Membrane Intrinsic Protein in Human Senile Cataract

    Institute of Scientific and Technical Information of China (English)

    HuirenZhao; JianhuaYang

    1995-01-01

    Purpose:To analyze the change of water-soluble-protein(WSP),urea-soluble-protein(USP)and membrane intrinsic protein(MIP)in human senile catarct.Methods:The water-soluble-fractions(WSF)were prepared basically according to the method of Kibbelear,et al.But in this study,5mmol/LB-mercaptoethanol was added to the buffer solution.The urea-soluble-fractions(USF)were pre-pared basically according to the method of Kibbelear,et al.Lens fiber cell mem-branes were purified basically according to the method of Russell,et al.SDS-PAGE were performed according to the procedure of Laemmili,et al.using re-solving gel13%and3%stacking gel.Results:The WSPwas fractionated intoHM+α-,β1-3-andγ-crystallin compo-nents.In nuclear cataractous lenses HM+α-and B-crystallin increase,while r-crystallin decrease.The USP from clear lenses contains mainlyαβchains of22KD,whereas in cataractous lenses,especially in nuclear cataractous lenses,the relative amount of the 28-and23KDpolypeptide(the components of β-crys-tallin)increased markedly.Lens fiber cell MIP,clear lens and cataract lens con-tained the main polypeptide of 27KD(MIP)and23KD(MP23).Conclusion:The water-insolube protein,whether in quantity or in quality,plays an important role in cataract formation.Eye Science 1995,11:124-127.

  8. Investigation of correlation between colonic cancer related anemia and characteristics of clinical pathology

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Objective To investigate the correlation between colonic cancer-related anemia and the pathologic features of colonic cancer.Methods The relationship between colonic cancer-related anemia and the pathologic features of colonic cancer was analyzed in a statistical method.Results There was no statistical significance between the histopathological type and incidence of colonic cancer-related anemia(P>0.05).There was statistical significance between the general classification of colonic cancer

  9. Sperm protein 17 is expressed in human nervous system tumours

    Directory of Open Access Journals (Sweden)

    Frezza Eldo E

    2006-01-01

    Full Text Available Abstract Background Human sperm protein 17 (Sp17 is a highly conserved protein that was originally isolated from a rabbit epididymal sperm membrane and testis membrane pellet. It has recently been included in the cancer/testis (CT antigen family, and shown to be expressed in multiple myeloma and ovarian cancer. We investigated its immunolocalisation in specimens of nervous system (NS malignancies, in order to establish its usefulness as a target for tumour-vaccine strategies. Methods The expression of Sp17 was assessed by means of a standardised immunohistochemical procedure [(mAb/antigen MF1/Sp17] in formalin-fixed and paraffin embedded surgical specimens of NS malignancies, including 28 neuroectodermal primary tumours (6 astrocytomas, 16 glioblastoma multiforme, 5 oligodendrogliomas, and 1 ependymoma, 25 meningeal tumours, and five peripheral nerve sheath tumours (4 schwannomas, and 1 neurofibroma,. Results A number of neuroectodermal (21% and meningeal tumours (4% were found heterogeneously immunopositive for Sp17. None of the peripheral nerve sheath tumours was immunopositive for Sp17. The expression pattern was heterogeneous in all of the positive samples, and did not correlate with the degree of malignancy. Conclusion The frequency of expression and non-uniform cell distribution of Sp17 suggest that it cannot be used as a unique immunotherapeutic target in NS cancer. However, our results do show the immunolocalisation of Sp17 in a proportion of NS tumour cells, but not in their non-pathological counterparts. The emerging complex function of Sp17 makes further studies necessary to clarify the link between it and immunopositive cells.

  10. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of activ

  11. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  12. The hexameric structures of human heat shock protein 90.

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Lee

    Full Text Available BACKGROUND: The human 90-kDa heat shock protein (HSP90 functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood. PRINCIPAL FINDINGS: Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90. CONCLUSIONS: While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis.

  13. A genecentric Human Protein Atlas for expression profiles based on antibodies.

    Science.gov (United States)

    Berglund, Lisa; Björling, Erik; Oksvold, Per; Fagerberg, Linn; Asplund, Anna; Szigyarto, Cristina Al-Khalili; Persson, Anja; Ottosson, Jenny; Wernérus, Henrik; Nilsson, Peter; Lundberg, Emma; Sivertsson, Asa; Navani, Sanjay; Wester, Kenneth; Kampf, Caroline; Hober, Sophia; Pontén, Fredrik; Uhlén, Mathias

    2008-10-01

    An attractive path forward in proteomics is to experimentally annotate the human protein complement of the genome in a genecentric manner. Using antibodies, it might be possible to design protein-specific probes for a representative protein from every protein-coding gene and to subsequently use the antibodies for systematical analysis of cellular distribution and subcellular localization of proteins in normal and disease tissues. A new version (4.0) of the Human Protein Atlas has been developed in a genecentric manner with the inclusion of all human genes and splice variants predicted from genome efforts together with a visualization of each protein with characteristics such as predicted membrane regions, signal peptide, and protein domains and new plots showing the uniqueness (sequence similarity) of every fraction of each protein toward all other human proteins. The new version is based on tissue profiles generated from 6120 antibodies with more than five million immunohistochemistry-based images covering 5067 human genes, corresponding to approximately 25% of the human genome. Version 4.0 includes a putative list of members in various protein classes, both functional classes, such as kinases, transcription factors, G-protein-coupled receptors, etc., and project-related classes, such as candidate genes for cancer or cardiovascular diseases. The exact antigen sequence for the internally generated antibodies has also been released together with a visualization of the application-specific validation performed for each antibody, including a protein array assay, Western blot analysis, immunohistochemistry, and, for a large fraction, immunofluorescence-based confocal microscopy. New search functionalities have been added to allow complex queries regarding protein expression profiles, protein classes, and chromosome location. The new version of the protein atlas thus is a resource for many areas of biomedical research, including protein science and biomarker discovery.

  14. Projections of cancer incidence and cancer-related deaths in Germany by 2020 and 2030.

    Science.gov (United States)

    Quante, Anne S; Ming, Chang; Rottmann, Miriam; Engel, Jutta; Boeck, Stefan; Heinemann, Volker; Westphalen, Christoph Benedikt; Strauch, Konstantin

    2016-09-01

    Past patterns of cancer disease and future changes in the demographic structure have a major influence on the projected incidences of human malignancies. In Germany, nearly a quarter of men and 20% of women die of cancer, and it is estimated that in Germany around 51% men and 43% women will develop cancer during lifetime. Here, we project the cancer incidence case number as well as the number of deaths for the most common cancers in the German population for the years 2020 and 2030. By 2030, prostate cancer will be the most common malignancy, surpassing breast cancer. Lung cancer will rank third most frequent cancer and will remain the most common cause of cancer-related mortality. Additionally, our projections show a marked increase in liver cancer cases with a continuous rise in liver cancer-related deaths. Finally, we project a constant increase in the incidence of pancreatic cancer. Based on our projections, pancreatic cancer will surpass colorectal and breast cancer to rank as the second most common cause of cancer-related deaths in Germany by 2030. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. Human Thyroid Cancer-1 (TC-1 is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast

    Directory of Open Access Journals (Sweden)

    Natalie K. Jones

    2015-07-01

    Full Text Available The human Thyroid Cancer-1 (hTC-1 protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.

  16. Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas.

    Science.gov (United States)

    Kampf, Caroline; Olsson, Ingmarie; Ryberg, Urban; Sjöstedt, Evelina; Pontén, Fredrik

    2012-05-31

    The tissue microarray (TMA) technology provides the means for high-throughput analysis of multiple tissues and cells. The technique is used within the Human Protein Atlas project for global analysis of protein expression patterns in normal human tissues, cancer and cell lines. Here we present the assembly of 1 mm cores, retrieved from microscopically selected representative tissues, into a single recipient TMA block. The number and size of cores in a TMA block can be varied from approximately forty 2 mm cores to hundreds of 0.6 mm cores. The advantage of using TMA technology is that large amount of data can rapidly be obtained using a single immunostaining protocol to avoid experimental variability. Importantly, only limited amount of scarce tissue is needed, which allows for the analysis of large patient cohorts (1 2). Approximately 250 consecutive sections (4 μm thick) can be cut from a TMA block and used for immunohistochemical staining to determine specific protein expression patterns for 250 different antibodies. In the Human Protein Atlas project, antibodies are generated towards all human proteins and used to acquire corresponding protein profiles in both normal human tissues from 144 individuals and cancer tissues from 216 different patients, representing the 20 most common forms of human cancer. Immunohistochemically stained TMA sections on glass slides are scanned to create high-resolution images from which pathologists can interpret and annotate the outcome of immunohistochemistry. Images together with corresponding pathology-based annotation data are made publically available for the research community through the Human Protein Atlas portal (www.proteinatlas.org) (Figure 1) (3 4). The Human Protein Atlas provides a map showing the distribution and relative abundance of proteins in the human body. The current version contains over 11 million images with protein expression data for 12.238 unique proteins, corresponding to more than 61% of all proteins

  17. Comparison of Ehrlichia chaffeensis Recombinant Proteins for Serologic Diagnosis of Human Monocytotropic Ehrlichiosis

    OpenAIRE

    Yu, Xue-Jie; Patricia A Crocquet-Valdes; Cullman, Louis C.; Popov, Vsevolod L.; Walker, David H.

    1999-01-01

    Diagnosis of human monocytotropic ehrlichiosis (HME) generally depends on serology that detects the antibody response to immunodominant proteins of Ehrlichia chaffeensis. Protein immunoblotting was used to evaluate the reaction of the antibodies in patients’ sera with the recombinant E. chaffeensis 120- and 28-kDa proteins as well as the 106- and the 37-kDa proteins. The cloning of the genes encoding the latter two proteins is described in this report. Immunoelectron microscopy demonstrated t...

  18. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria.

    Science.gov (United States)

    Huang, Jing; Li, Xiangming; Coelho-dos-Reis, Jordana G A; Zhang, Min; Mitchell, Robert; Nogueira, Raquel Tayar; Tsao, Tiffany; Noe, Amy R; Ayala, Ramses; Sahi, Vincent; Gutierrez, Gabriel M; Nussenzweig, Victor; Wilson, James M; Nardin, Elizabeth H; Nussenzweig, Ruth S; Tsuji, Moriya

    2015-12-01

    In this study, we developed human immune system (HIS) mice that possess functional human CD4+ T cells and B cells, named HIS-CD4/B mice. HIS-CD4/B mice were generated by first introducing HLA class II genes, including DR1 and DR4, along with genes encoding various human cytokines and human B cell activation factor (BAFF) to NSG mice by adeno-associated virus serotype 9 (AAV9) vectors, followed by engrafting human hematopoietic stem cells (HSCs). HIS-CD4/B mice, in which the reconstitution of human CD4+ T and B cells resembles to that of humans, produced a significant level of human IgG against Plasmodium falciparum circumsporozoite (PfCS) protein upon immunization. CD4+ T cells in HIS-CD4/B mice, which possess central and effector memory phenotypes like those in humans, are functional, since PfCS protein-specific human CD4+ T cells secreting IFN-γ and IL-2 were detected in immunized HIS-CD4/B mice. Lastly, PfCS protein-immunized HIS-CD4/B mice were protected from in vivo challenge with transgenic P. berghei sporozoites expressing the PfCS protein. The immune sera collected from protected HIS-CD4/B mice reacted against transgenic P. berghei sporozoites expressing the PfCS protein and also inhibited the parasite invasion into hepatocytes in vitro. Taken together, these studies show that our HIS-CD4/B mice could mount protective human anti-malaria immunity, consisting of human IgG and human CD4+ T cell responses both specific for a human malaria antigen.

  19. BMP-7 PROTEIN EXPRESSION IS DOWNREGULATED IN HUMAN DIABETIC NEPHROPATHY.

    Science.gov (United States)

    Ivanac-Janković, Renata; Ćorić, Marijana; Furić-Čunko, Vesna; Lovičić, Vesna; Bašić-Jukić, Nikolina; Kes, Petar

    2015-06-01

    Bone morphogenetic protein-7 (BMP-7) is expressed in all parts of the normal kidney parenchyma, being highest in the epithelium of proximal tubules. It protects kidney against acute and chronic injury, inflammation and fibrosis. Diabetic nephropathy is the leading cause of chronic kidney disease, and is characterized by decreased expression of BMP-7. The aim of our study was to analyze whether the expression of BMP-7 is significantly changed in advanced stages of human diabetic nephropathy. Immunohistochemical analysis of the expression of BMP-7 was performed on archival material of 30 patients that underwent renal biopsy and had confirmed diagnosis of diabetic nephropathy. Results showed that BMP-7 was differently expressed in the cytoplasm of epithelial cells of proximal tubules and podocytes among all stages of diabetic nephropathy. At early stages of diabetic nephropathy, BMP-7 was strongly positive in proximal tubules and podocytes, while low expression was recorded in the majority of samples at advanced stages. In conclusion, increased expression of BMP-7 at initial stages of diabetic nephropathy with subsequent decrease at advanced stage highlights the role of BMP-7 in the protection of kidney structure and function. Further investigations should be focused on disturbances of BMP-7 receptors and signaling pathways in patients with diabetic nephropathy.

  20. A Human XPC Protein Interactome—A Resource

    Directory of Open Access Journals (Sweden)

    Abigail Lubin

    2013-12-01

    Full Text Available Global genome nucleotide excision repair (GG-NER is responsible for identifying and removing bulky adducts from non-transcribed DNA that result from damaging agents such as UV radiation and cisplatin. Xeroderma pigmentosum complementation group C (XPC is one of the essential damage recognition proteins of the GG-NER pathway and its dysfunction results in xeroderma pigmentosum (XP, a disorder involving photosensitivity and a predisposition to cancer. To better understand the identification of DNA damage by XPC in the context of chromatin and the role of XPC in the pathogenesis of XP, we characterized the interactome of XPC using a high throughput yeast two-hybrid screening. Our screening showed 49 novel interactors of XPC involved in DNA repair and replication, proteolysis and post-translational modifications, transcription regulation, signal transduction, and metabolism. Importantly, we validated the XPC-OTUD4 interaction by co-IP and provided evidence that OTUD4 knockdown in human cells indeed affects the levels of ubiquitinated XPC, supporting a hypothesis that the OTUD4 deubiquitinase is involved in XPC recycling by cleaving the ubiquitin moiety. This high-throughput characterization of the XPC interactome provides a resource for future exploration and suggests that XPC may have many uncharacterized cellular functions.

  1. Genetic background affects human glial fibrillary acidic protein promoter activity.

    Directory of Open Access Journals (Sweden)

    Xianshu Bai

    Full Text Available The human glial fibrillary acidic protein (hGFAP promoter has been used to generate numerous transgenic mouse lines, which has facilitated the analysis of astrocyte function in health and disease. Here, we evaluated the expression levels of various hGFAP transgenes at different ages in the two most commonly used inbred mouse strains, FVB/N (FVB and C57BL/6N (B6N. In general, transgenic mice maintained on the B6N background displayed weaker transgene expression compared with transgenic FVB mice. Higher level of transgene expression in B6N mice could be regained by crossbreeding to FVB wild type mice. However, the endogenous murine GFAP expression was equivalent in both strains. In addition, we found that endogenous GFAP expression was increased in transgenic mice in comparison to wild type mice. The activities of the hGFAP transgenes were not age-dependently regulated. Our data highlight the importance of proper expression analysis when non-homologous recombination transgenesis is used.

  2. The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues.

    Science.gov (United States)

    Basha, Omer; Barshir, Ruth; Sharon, Moran; Lerman, Eugene; Kirson, Binyamin F; Hekselman, Idan; Yeger-Lotem, Esti

    2017-01-04

    Knowledge of the molecular interactions of human proteins within tissues is important for identifying their tissue-specific roles and for shedding light on tissue phenotypes. However, many protein-protein interactions (PPIs) have no tissue-contexts. The TissueNet database bridges this gap by associating experimentally-identified PPIs with human tissues that were shown to express both pair-mates. Users can select a protein and a tissue, and obtain a network view of the query protein and its tissue-associated PPIs. TissueNet v.2 is an updated version of the TissueNet database previously featured in NAR. It includes over 40 human tissues profiled via RNA-sequencing or protein-based assays. Users can select their preferred expression data source and interactively set the expression threshold for determining tissue-association. The output of TissueNet v.2 emphasizes qualitative and quantitative features of query proteins and their PPIs. The tissue-specificity view highlights tissue-specific and globally-expressed proteins, and the quantitative view highlights proteins that were differentially expressed in the selected tissue relative to all other tissues. Together, these views allow users to quickly assess the unique versus global functionality of query proteins. Thus, TissueNet v.2 offers an extensive, quantitative and user-friendly interface to study the roles of human proteins across tissues. TissueNet v.2 is available at http://netbio.bgu.ac.il/tissuenet. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells.

    Science.gov (United States)

    Hsu, Hsien-Yeh; Hua, Kuo-Feng; Wu, Wei-Chi; Hsu, Jason; Weng, Shih-Ting; Lin, Tsai-Leng; Liu, Chun-Yi; Hseu, Ruey-Shyang; Huang, Ching-Tsan

    2008-04-01

    Ganoderma lucidum, a medicinal fungus is thought to possess and enhance a variety of human immune functions. An immuno-modulatory protein, Ling Zhi-8 (LZ-8) isolated from G. lucidum exhibited potent mitogenic effects upon human peripheral blood lymphocytes (PBL). However, LZ-8-mediated signal transduction in the regulation of interleukin-2 (IL-2) gene expression within human T cells is largely unknown. Here we cloned the LZ-8 gene of G. lucidum, and expressed the recombinant LZ-8 protein (rLZ-8) by means of a yeast Pichia pastoris protein expression system. We found that rLZ-8 induces IL-2 gene expression via the Src-family protein tyrosine kinase (PTK), via reactive oxygen species (ROS), and differential protein kinase-dependent pathways within human primary T cells and cultured Jurkat T cells. In essence, we have established the nature of the rLZ-8-mediated signal-transduction pathways, such as PTK/protein kinase C (PKC)/ROS, PTK/PLC/PKCalpha/ERK1/2, and PTK/PLC/PKCalpha/p38 pathways in the regulation of IL-2 gene expression within human T cells. Our current results of analyzing rLZ-8-mediated signal transduction in T cells might provide a potential application for rLZ-8 as a pharmacological immune-modulating agent.

  4. LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins.

    Science.gov (United States)

    Bezawork-Geleta, Ayenachew; Brodie, Erica J; Dougan, David A; Truscott, Kaye N

    2015-12-02

    Maintenance of mitochondrial protein homeostasis is critical for proper cellular function. Under normal conditions resident molecular chaperones and proteases maintain protein homeostasis within the organelle. Under conditions of stress however, misfolded proteins accumulate leading to the activation of the mitochondrial unfolded protein response (UPR(mt)). While molecular chaperone assisted refolding of proteins in mammalian mitochondria has been well documented, the contribution of AAA+ proteases to the maintenance of protein homeostasis in this organelle remains unclear. To address this gap in knowledge we examined the contribution of human mitochondrial matrix proteases, LONM and CLPXP, to the turnover of OTC-∆, a folding incompetent mutant of ornithine transcarbamylase, known to activate UPR(mt). Contrary to a model whereby CLPXP is believed to degrade misfolded proteins, we found that LONM, and not CLPXP is responsible for the turnover of OTC-∆ in human mitochondria. To analyse the conformational state of proteins that are recognised by LONM, we examined the turnover of unfolded and aggregated forms of malate dehydrogenase (MDH) and OTC. This analysis revealed that LONM specifically recognises and degrades unfolded, but not aggregated proteins. Since LONM is not upregulated by UPR(mt), this pathway may preferentially act to promote chaperone mediated refolding of proteins.

  5. Predicting Human Protein Subcellular Locations by the Ensemble of Multiple Predictors via Protein-Protein Interaction Network with Edge Clustering Coefficients

    Science.gov (United States)

    Du, Pufeng; Wang, Lusheng

    2014-01-01

    One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods. PMID:24466278

  6. A novel full-length gene of human ribosomal protein L14.22 related to human glioma

    Institute of Scientific and Technical Information of China (English)

    QI Zhen-yu; HUI Guo-zhen; LI Yao; ZHOU Zong-xiang; GU Shao-hua; XIE Yi

    2006-01-01

    Background This study was undertaken to obtain differentially expressed genes related to human glioma by cDNA microarray and the characterization of a novel full-length gene. Methods Total RNA was extracted from human glioma and normal brain tissues, and mRNA was used as a probe. The results of hybridization procedure were scanned with the computer system. The gene named 507E08clone was subsequently analyzed by northern blot, bioinformatic approach, and protein expression.Results Fifteen differentially expressed genes were obtained from human glioma by hybridization and scanning for four times. Northern blot analysis confirmed that the 507E08 clone was low expressed in human brain tissue and over expressed in human glioma tissues. The analysis of BLASTn and BLASTx showed that the 507E08clone was a novel full-length gene, which codes 203 amino acid of protein and is called human ribosomal protein 14.22 gene. The nucleotide sequence had been submitted to the GenBankTM with the accession number of AF329277. After expression in E. Coli., protein yielded a major band of apparent molecular mass 22 kDa on an SDS-PAGE gel.Conclusions cDNA microarray technology can be successfully used to identify differentially expressed genes.The novel full-length gene of human ribosomal protein 14.22 may be correlated with the development of human glioma.

  7. Classification of Cancer-related Death Certificates using Machine Learning

    Directory of Open Access Journals (Sweden)

    Luke Butt

    2013-05-01

    Full Text Available BackgroundCancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities.AimsIn this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated.Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes.ResultsDeath certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032 and false negative rate (0.0297 while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers.ConclusionThe selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with

  8. Yoga protocol for treatment of breast cancer-related lymphedema

    Science.gov (United States)

    Narahari, SR; Aggithaya, Madhur Guruprasad; Thernoe, Liselotte; Bose, Kuthaje S; Ryan, Terence J

    2016-01-01

    Introduction: Vaqas and Ryan (2003) advocated yoga and breathing exercises for lymphedema. Narahari et al. (2007) developed an integrative medicine protocol for lower-limb lymphedema using yoga. Studies have hypothesized that yoga plays a similar role as that of central manual lymph drainage of Foldi's technique. This study explains how we have used yoga and breathing as a self-care intervention for breast cancer-related lymphedema (BCRL). Methods: The study outcome was to create a yoga protocol for BCRL. Selection of yoga was based on the actions of muscles on joints, anatomical areas associated with different groups of lymph nodes, stretching of skin, and method of breathing in each yoga. The protocol was piloted in eight BCRL patients, observed its difficulties by interacting with patients. A literature search was conducted in PubMed and Cochrane library to identify the yoga protocols for BCRL. Results: Twenty yoga and 5 breathing exercises were adopted. They have slow, methodical joint movements which helped patients to tolerate pain. Breathing was long and diaphragmatic. Flexion of joints was coordinated with exhalation and extension with inhalation. Alternate yoga was introduced to facilitate patients to perform complex movements. Yoga's joint movements, initial positions, and mode of breathing were compared to two other protocols. The volume reduced from 2.4 to 1.2 L in eight patients after continuous practice of yoga and compression at home for 3 months. There was improvement in the range of movement and intensity of pain. Discussion: Yoga exercises were selected on the basis of their role in chest expansion, maximizing range of movements: flexion of large muscles, maximum stretch of skin, and thus part-by-part lymph drainage from center and periphery. This protocol addressed functional, volume, and movement issues of BCRL and was found to be superior to other BCRL yoga protocols. However, this protocol needs to be tested in centers routinely managing BCRL

  9. Up-regulation of human arrest-defective 1 protein is correlated with metastatic phenotype and poor prognosis in breast cancer.

    Science.gov (United States)

    Wang, Ze-Hua; Gong, Jun-Li; Yu, M; Yang, H; Lai, J H; Ma, M X; Wu, H; Li, L; Tan, D Y

    2011-01-01

    Human arrest defective 1 protein (ARD1), as a N-terminal acetyltransferase, has been reported to play a crucial role in tumorigenesis, but the results are somewhat controversial. To explore the clinical and pathological significance of ARD1 in breast tumorigenesis, we analyzed ARD1 status in multiple types of breast disease. The expression of ARD1 protein was assessed by immunohistochemistry in 356 cases including 82 invasive ductal carcinomas (IDC), 159 fibroadenomas, 66 hyperplasia of mammary glands, 19 inflammatory breast disease, 30 breast cysts, and in 29 postoperative treatment patients. We assessed the relationship of ARD1 protein with clinical and pathological characteristics using χ2 test. ARD1 protein was observed at 61.0% (50/82), 54.7% (87/159), 37.9% (25/66), 36.8% (7/19) in IDC, fibroadenoma, hyperplasia, and inflammation, respectively, and less than 30.0% for breast cyst. Thus, high ARD1 expression correlated with breast cancer (relative risk = 1.32, P < 0.005). Moreover, the level of ARD1 protein in carcinoma patients was distinctly related to lymph node metastasis and ER status, with 94.0% (47/50) as copmpared to 6.0% (3/50) in metastatic and non-metastatic (P < 0.001), and 84.0% (42/50) and 16.0% (8/50) for ER + and ER - (P < 0.01), respectively. In addition, the level of ARD1 appeared to have potential for evaluation of prognosis in breast cancer patients after postoperative therapy. These results suggest that ARD1 expression may be as a potential target for exploring the mechanism of breast cancer metastasic to lymph nodes and hormone-responsive regulation.

  10. Prediction and Classification of Human G-protein Coupled Receptors Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    Yun-Fei Wang; Huan Chen; Yan-Hong Zhou

    2005-01-01

    A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically significant features selected from single amino acid, dipeptide, and tripeptide compositions of protein sequences. Furthermore, the length distribution difference between GPCRsand non-GPCRs has also been exploited to improve the prediction performance.The testing results with annotated human protein sequences demonstrate that this system can get good performance for both prediction and classification of human GPCRs.

  11. A coach in your pocket: on chronic cancer-related fatigue and physical behavior

    NARCIS (Netherlands)

    Wolvers, Maria Dorethea Jacoba

    2017-01-01

    Fatigue is a common and distressing long-term consequence of cancer. Chronic cancer-related fatigue affects work ability, hampers in maintaining social relations, and impacts patients’ well-being. Most treatments for chronic cancer-related fatigue focus to some extend on changing physical behavior,

  12. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...... can all be predicted. Although the method relies on protein sequences as the sole input, it does not rely on sequence similarity, but instead on sequence derived protein features such as predicted post translational modifications (PTMs), protein sorting signals and physical/chemical properties...

  13. Tandem affinity purification of functional TAP-tagged proteins from human cells

    NARCIS (Netherlands)

    Gregan, Juraj; Riedel, Christian G; Petronczki, Mark; Cipak, Lubos; Rumpf, Cornelia; Poser, Ina; Buchholz, Frank; Mechtler, Karl; Nasmyth, Kim

    2007-01-01

    Tandem affinity purification (TAP) is a generic two-step affinity purification protocol for isolation of TAP-tagged proteins together with associated proteins. We used bacterial artificial chromosome to heterologously express TAP-tagged murine Sgo1 protein in human HeLa cells. This allowed us to tes

  14. Barcoding heat shock proteins to human diseases : looking beyond the heat shock response

    NARCIS (Netherlands)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) - and thus generally restoring the disturbed protein homeostasis associated with such diseases - has often been suggested as a

  15. A Quest for Missing Proteins : update 2015 on Chromosome-Centric Human Proteome Project

    NARCIS (Netherlands)

    Horvatovich, Péter; Lundberg, Emma K; Chen, Yu-Ju; Sung, Ting-Yi; He, Fuchu; Nice, Edouard C; Goode, Robert J A; Yu, Simon; Ranganathan, Shoba; Baker, Mark S; Domont, Gilberto B; Velasquez, Erika; Li, Dong; Liu, Siqi; Wang, Quanhui; He, Qing-Yu; Menon, Rajasree; Guan, Yuanfang; Corrales, Fernando Jose; Segura, Victor; Casal, José Ignacio; Pascual-Montano, Alberto; Albar, Juan Pablo; Fuentes, Manuel; Gonzalez-Gonzalez, Maria; Diez, Paula; Ibarrola, Nieves; Degano, Rosa M; Mohammed, Yassene; Borchers, Christoph H; Urbani, Andrea; Soggiu, Alessio; Yamamoto, Tadashi; Archakov, Alexander I; Ponomarenko, Elena; Lisitsa, Andrey V; Lichti, Cheryl F; Mostovenko, Ekaterina; Kroes, Roger A; Rezeli, Melinda; Vegvari, Akos; Fehniger, Thomas E; Bischoff, Rainer; Vizcaíno, Juan Antonio; Deutsch, Eric W; Lane, Lydie; Nilsson, Carol L; Marko-Varga, György; Omenn, Gilbert S; Jeong, Seul-Ki; Cho, Jin-Young; Paik, Young-Ki; Hancock, William S

    2015-01-01

    This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level

  16. Gene-specific correlation of RNA and protein levels in human cells and tissues

    DEFF Research Database (Denmark)

    Edfors, Fredrik; Danielsson, Frida; Hallström, Björn M.

    2016-01-01

    to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP...

  17. Tandem affinity purification of functional TAP-tagged proteins from human cells

    NARCIS (Netherlands)

    Gregan, Juraj; Riedel, Christian G; Petronczki, Mark; Cipak, Lubos; Rumpf, Cornelia; Poser, Ina; Buchholz, Frank; Mechtler, Karl; Nasmyth, Kim

    2007-01-01

    Tandem affinity purification (TAP) is a generic two-step affinity purification protocol for isolation of TAP-tagged proteins together with associated proteins. We used bacterial artificial chromosome to heterologously express TAP-tagged murine Sgo1 protein in human HeLa cells. This allowed us to tes

  18. A Quest for Missing Proteins : update 2015 on Chromosome-Centric Human Proteome Project

    NARCIS (Netherlands)

    Horvatovich, Péter; Lundberg, Emma K; Chen, Yu-Ju; Sung, Ting-Yi; He, Fuchu; Nice, Edouard C; Goode, Robert J A; Yu, Simon; Ranganathan, Shoba; Baker, Mark S; Domont, Gilberto B; Velasquez, Erika; Li, Dong; Liu, Siqi; Wang, Quanhui; He, Qing-Yu; Menon, Rajasree; Guan, Yuanfang; Corrales, Fernando Jose; Segura, Victor; Casal, José Ignacio; Pascual-Montano, Alberto; Albar, Juan Pablo; Fuentes, Manuel; Gonzalez-Gonzalez, Maria; Diez, Paula; Ibarrola, Nieves; Degano, Rosa M; Mohammed, Yassene; Borchers, Christoph H; Urbani, Andrea; Soggiu, Alessio; Yamamoto, Tadashi; Archakov, Alexander I; Ponomarenko, Elena; Lisitsa, Andrey V; Lichti, Cheryl F; Mostovenko, Ekaterina; Kroes, Roger A; Rezeli, Melinda; Vegvari, Akos; Fehniger, Thomas E; Bischoff, Rainer; Vizcaíno, Juan Antonio; Deutsch, Eric W; Lane, Lydie; Nilsson, Carol L; Marko-Varga, György; Omenn, Gilbert S; Jeong, Seul-Ki; Cho, Jin-Young; Paik, Young-Ki; Hancock, William S

    2015-01-01

    This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level

  19. The physical characteristics of human proteins in different biological functions.

    Science.gov (United States)

    Wang, Tengjiao; Tang, Hailin

    2017-01-01

    The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.

  20. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    Energy Technology Data Exchange (ETDEWEB)

    Yamakoshi, Takako [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Makino, Teruhiko, E-mail: tmakino@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Ur Rehman, Mati; Yoshihisa, Yoko [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Sugimori, Michiya [Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Shimizu, Tadamichi, E-mail: shimizut@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan)

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.

  1. Protein composition of catalytically active human telomerase from immortal cells

    DEFF Research Database (Denmark)

    Cohen, Scott B; Graham, Mark E; Lovrecz, George O

    2007-01-01

    Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on th...

  2. Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury.

    Directory of Open Access Journals (Sweden)

    Sonia Podvin

    Full Text Available By virtue of its ability to regulate the composition of cerebrospinal fluid (CSF, the choroid plexus (CP is ideally suited to instigate a rapid response to traumatic brain injury (TBI by producing growth regulatory proteins. For example, Esophageal Cancer Related Gene-4 (Ecrg4 is a tumor suppressor gene that encodes a hormone-like peptide called augurin that is present in large concentrations in CP epithelia (CPe. Because augurin is thought to regulate senescence, neuroprogenitor cell growth and differentiation in the CNS, we evaluated the kinetics of Ecrg4 expression and augurin immunoreactivity in CPe after CNS injury. Adult rats were injured with a penetrating cortical lesion and alterations in augurin immunoreactivity were examined by immunohistochemistry. Ecrg4 gene expression was characterized by in situ hybridization. Cell surface augurin was identified histologically by confocal microscopy and biochemically by sub-cellular fractionation. Both Ecrg4 gene expression and augurin protein levels were decreased 24-72 hrs post-injury but restored to uninjured levels by day 7 post-injury. Protein staining in the supraoptic nucleus of the hypothalamus, used as a control brain region, did not show a decrease of auguin immunoreactivity. Ecrg4 gene expression localized to CPe cells, and augurin protein to the CPe ventricular face. Extracellular cell surface tethering of 14 kDa augurin was confirmed by cell surface fractionation of primary human CPe cells in vitro while a 6-8 kDa fragment of augurin was detected in conditioned media, indicating release from the cell surface by proteolytic processing. In rat CSF however, 14 kDa augurin was detected. We hypothesize the initial release and proteolytic processing of augurin participates in the activation phase of injury while sustained Ecrg4 down-regulation is dysinhibitory during the proliferative phase. Accordingly, augurin would play a constitutive inhibitory function in normal CNS while down

  3. [Cancer-related Cognitive Impairment: Current Knowledge and Future Challenges].

    Science.gov (United States)

    Tanimukai, Hitoshi

    2015-01-01

    Cancer patients often suffer from various distresses, including cognitive impairment. Cognitive impairment during and after cancer diagnosis and treatment are collectively called "Cancer-related cognitive impairment (CRCI)". The number of publications about cognitive impairment due to cancer therapy, especially chemotherapy, hormonal therapy, and radiotherapy, has been growing. Patients often worry not only about their disease condition and therapies, but also experience concerns regarding their memory, attention, and ability to concentrate. Even subtle CRCI can have a significant impact on social relationships, the ability to work, undergo treatment, accomplish meaningful goals, and the quality of life. Longitudinal studies of cancer patients indicated that up to 75% experience CRCI during treatment. Furthermore, CRCI may persist for many years following treatment. However, it is not well understood by most physicians and medical staff. CRCI can be mediated through increased inflammatory cytokines and hormonal changes. In addition, the biology of the cancer, stress, and attentional fatigue can also contribute to CRCI. Genetic factors and co-occurring symptoms may explain some of the inter-individual variability in CRCI. Researchers and patients are actively trying to identify effective interventional methods and useful coping strategies. Many patients are willing to discuss their disease condition and future treatment with medical staff and/or their families. Some patients also hope to discuss their end-of-life care. However, it is difficult to express their will after developing cognitive impairment. Advance care planning (ACP) can help in such situations. This process involves discussion between a patient, their family, and clinicians to clarify and reflect on values, treatment preferences, and goals to develop a shared understanding of how end-of-life care should proceed. The number of cancer patients with cognitive impairment has been increasing owing to the

  4. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    Science.gov (United States)

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to

  5. Genomic analyses of musashi1 downstream targets show a strong association with cancer-related processes.

    Science.gov (United States)

    de Sousa Abreu, Raquel; Sanchez-Diaz, Patricia C; Vogel, Christine; Burns, Suzanne C; Ko, Daijin; Burton, Tarea L; Vo, Dat T; Chennasamudaram, Soudhamini; Le, Shu-Yun; Shapiro, Bruce A; Penalva, Luiz O F

    2009-05-01

    Musashi1 (Msi1) is a highly conserved RNA-binding protein with pivotal functions in stem cell maintenance, nervous system development, and tumorigenesis. Despite its importance, only three direct mRNA targets have been characterized so far: m-numb, CDKN1A, and c-mos. Msi1 has been shown to affect their translation by binding to short elements located in the 3'-untranslated region. To better understand Msi1 functions, we initially performed an RIP-Chip analysis in HEK293T cells; this method consists of isolation of specific RNA-protein complexes followed by identification of the RNA component via microarrays. A group of 64 mRNAs was found to be enriched in the Msi1-associated population compared with controls. These genes belong to two main functional categories pertinent to tumorigenesis: 1) cell cycle, cell proliferation, cell differentiation, and apoptosis and 2) protein modification (including ubiquitination and ubiquitin cycle). To corroborate our findings, we examined the impact of Msi1 expression on both mRNA (transcriptomic) and protein (proteomic) expression levels. Genes whose mRNA levels were affected by Msi1 expression have a Gene Ontology distribution similar to RIP-Chip results, reinforcing Msi1 participation in cancer-related processes. The proteomics study revealed that Msi1 can have either positive or negative effects on gene expression of its direct targets. In summary, our results indicate that Msi1 affects a network of genes and could function as a master regulator during development and tumor formation.

  6. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  7. A systematic survey of loss-of-function variants in human protein-coding genes

    NARCIS (Netherlands)

    MacArthur, D.G.; Balasubramanian, S.; Frankish, A.; Huang, N.; Morris, J.; Walter, K.; Jostins, L.; Habegger, L.; Pickrell, J.K.; Montgomery, S.B.; Albers, C.A.; Zhang, Z.D.; Conrad, D.F.; Lunter, G.; Zheng, H.; Ayub, Q.; DePristo, M.A.; Banks, E.; Hu, M.; Handsaker, R.E.; Rosenfeld, J.A.; Fromer, M.; Jin, M.; Mu, X.J.; Khurana, E.; Ye, K.; Kay, M.; Saunders, G.I.; Suner, M.M.; Hunt, T.; Barnes, I.H.; Amid, C.; Carvalho-Silva, D.R.; Bignell, A.H.; Snow, C.; Yngvadottir, B.; Bumpstead, S.; Cooper, D.N.; Xue, Y.; Romero, I.G.; Genomes Project, C.; Wang, J.; Li, Y.; Gibbs, R.A.; McCarroll, S.A.; Dermitzakis, E.T.; Pritchard, J.K.; Barrett, J.C.; Harrow, J.; Hurles, M.E.; Gerstein, M.B.; Tyler-Smith, C.

    2012-01-01

    Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to det

  8. Unconventional actins and actin-binding proteins in human protozoan parasites.

    Science.gov (United States)

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  9. Nucleotidylylation of the VPg protein of a human norovirus by its proteinase-polymerase precursor protein.

    Science.gov (United States)

    Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; McPhie, Peter; Green, Kim Y

    2008-04-25

    Caliciviruses have a positive strand RNA genome covalently-linked at the 5'-end to a small protein, VPg. This study examined the biochemical modification of VPg by the ProPol form of the polymerase of human norovirus strain MD145 (GII.4). Recombinant norovirus VPg was shown to be nucleotidylylated in the presence of Mn2+ by MD145 ProPol. Phosphodiesterase I treatment of the nucleotidylylated VPg released the incorporated UMP, which was consistent with linkage of RNA to VPg via a phosphodiester bond. Mutagenesis analysis of VPg identified Tyrosine 27 as the target amino acid for this linkage, and suggested that VPg conformation was important for the reaction. Nucleotidylylation was inefficient in the presence of Mg2+; however the addition of full- and subgenomic-length MD145 RNA transcripts led to a marked enhancement of the nucleotidylylation efficiency in the presence of this divalent cation. Furthermore, evidence was found for the presence of an RNA element near the 3'-end of the polyadenylated genome that enhanced the efficiency of nucleotidylylation in the presence of Mg2+.

  10. Functional test of PCDHB11, the most human-specific neuronal surface protein.

    Science.gov (United States)

    de Freitas, Guilherme Braga; Gonçalves, Rafaella Araújo; Gralle, Matthias

    2016-04-12

    Brain-expressed proteins that have undergone functional change during human evolution may contribute to human cognitive capacities, and may also leave us vulnerable to specifically human diseases, such as schizophrenia, autism or Alzheimer's disease. In order to search systematically for those proteins that have changed the most during human evolution and that might contribute to brain function and pathology, all proteins with orthologs in chimpanzee, orangutan and rhesus macaque and annotated as being expressed on the surface of cells in the human central nervous system were ordered by the number of human-specific amino acid differences that are fixed in modern populations. PCDHB11, a beta-protocadherin homologous to murine cell adhesion proteins, stood out with 12 substitutions and maintained its lead after normalizing for protein size and applying weights for amino acid exchange probabilities. Human PCDHB11 was found to cause homophilic cell adhesion, but at lower levels than shown for other clustered protocadherins. Homophilic adhesion caused by a PCDHB11 with reversion of human-specific changes was as low as for modern human PCDHB11; while neither human nor reverted PCDHB11 adhered to controls, they did adhere to each other. A loss of function in PCDHB11 is unlikely because intra-human variability did not increase relative to the other human beta-protocadherins. The brain-expressed protein with the highest number of human-specific substitutions is PCDHB11. In spite of its fast evolution and low intra-human variability, cell-based tests on the only proposed function for PCDHB11 did not indicate a functional change.

  11. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma

    DEFF Research Database (Denmark)

    Havelund, Jesper F.; Wojdyla, Katarzyna; Davies, Michael J.

    2017-01-01

    Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues...... in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine...

  12. Regulation of human genome expression and RNA splicing by human papillomavirus 16 E2 protein.

    Science.gov (United States)

    Gauson, Elaine J; Windle, Brad; Donaldson, Mary M; Caffarel, Maria M; Dornan, Edward S; Coleman, Nicholas; Herzyk, Pawel; Henderson, Scott C; Wang, Xu; Morgan, Iain M

    2014-11-01

    Human papillomavirus 16 (HPV16) is causative in human cancer. The E2 protein regulates transcription from and replication of the viral genome; the role of E2 in regulating the host genome has been less well studied. We have expressed HPV16 E2 (E2) stably in U2OS cells; these cells tolerate E2 expression well and gene expression analysis identified 74 genes showing differential expression specific to E2. Analysis of published gene expression data sets during cervical cancer progression identified 20 of the genes as being altered in a similar direction as the E2 specific genes. In addition, E2 altered the splicing of many genes implicated in cancer and cell motility. The E2 expressing cells showed no alteration in cell growth but were altered in cell motility, consistent with the E2 induced altered splicing predicted to affect this cellular function. The results present a model system for investigating E2 regulation of the host genome.

  13. One common structural feature of "words" in protein sequences and human texts.

    Science.gov (United States)

    Zemková, M; Trifonov, E N; Zahradník, D

    2014-01-01

    Frequently discussed analogy between genetic and human texts is explored by comparison of alternation of polar and non-polar amino-acid residues in proteins and alternation of consonants and vowels in human texts. In human languages, the usage of possible combinations of consonants and vowels is influenced by pronounceability of the combinations. Similarly, oligopeptide composition of proteins is influenced by requirements of protein folding and stability. One special type of structure often present in proteins is amphipathic α-helices in which polar and non-polar amino acids alternate with the period 3.5 residues, not unlike alternation of consonants and vowels. In this study, we evaluated the contribution made by amphipathic alternations to the protein sequence texts (20-24%). Their proportion is lower than respective values for alternating words in human texts (57-89%). The proteomes (full sets of proteins for selected organisms) were transformed into ranked sequences of n-grams (words of length n), including periodical amphipathic structures. Similarly, human texts were transformed into sequences of alternating consonants and vowels. Analysis of the vocabularies shows that in both types of texts (human languages and proteins) the alternating words are dominant or highly preferred, thus, strengthening the analogy between these two types of texts. The contribution of amphipathic words in the upper parts of the ranked lists for 10 analyzed proteomes varies between 58 and 74%. In human texts respective values range between 90 and 100%.

  14. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...

  15. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.

    Science.gov (United States)

    Michishita, Eriko; Park, Jean Y; Burneskis, Jenna M; Barrett, J Carl; Horikawa, Izumi

    2005-10-01

    Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.

  16. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Woods, Alan A; Linton, Stuart M; Davies, Michael Jonathan

    2003-01-01

    for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions......Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has...... by activated monocytes (and possibly macrophages) and is a highly basic protein, it would be expected to associate with polyanions such as the glycosaminoglycans of the extracellular matrix, and might result in damage being localized at such sites. In this study proteins extracted from extracellular matrix...

  17. Siah1 proteins enhance radiosensitivity of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Engenhart-Cabillic Rita

    2010-08-01

    Full Text Available Abstract Background Siah proteins play an important role in cancer progression. We evaluated the effect of Siah1, its splice variants Siah1L and the Siah1 mutant with the RING finger deleted (Siah1ΔR on radiosensitization of human breast cancer cells. Methods The status of Siah1 and Siah1L was analysed in five breast cancer cell lines. To establish stable cells, SKBR3 cells were transfected with Siah1, Siah-1L and Siah1ΔR. Siah1 function was suppressed by siRNA in MCF-7 cells. The impact of Siah1 overexpression and silencing on apoptosis, proliferation, survival, invasion ability and DNA repair was assessed in SKBR3 and MCF-7 cells, also in regards to radiation. Results Siah1 and Siah1L mRNA expression was absent in four of five breast cancer cells lines analysed. Overexpression of Siah1 and Siah1L enhanced radiation-induced apoptosis in stable transfected SKBR3 cells, while Siah1ΔR failed to show this effect. In addition, Siah1 and Siah1L significantly reduced cell clonogenic survival and proliferation. Siah1L sensitization enhancement ratio values were over 1.5 and 4.0 for clonogenic survival and proliferation, respectively, pointing to a highly cooperative and potentially synergistic fashion with radiation. Siah1 or Siah1L significantly reduced invasion ability of SKBR3 and suppressed Tcf/Lef factor activity. Importantly, Siah1 siRNA demonstrated opposite effects in MCF-7 cells. Siah1 and Siah1L overexpression resulted in inhibition of DNA repair as inferred by increased levels of DNA double-strand breaks in irradiated SKBR3 cells. Conclusion Our results reveal for the first time how overexpression of Siah1L and Siah1 can determine radiosensitivity of breast cancer cells. These findings suggest that development of drugs augmenting Siah1 and Siah1L activity could be a novel approach in improving tumor cell kill.

  18. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins.

  19. Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins.

    Science.gov (United States)

    Yu, G; Swiston, J; Young, D

    1994-06-01

    We previously reported the identification of human CAP, a protein that is related to the Saccharomyces cerevisiae and Schizosaccharomyces pombe adenylyl cyclase-associated CAP proteins. The two yeast CAP proteins have similar functions: the N-terminal domains are required for the normal function of adenylyl cyclase, while loss of the C-terminal domains result in morphological and nutritional defects that are unrelated to the cAMP pathways. We have amplified and cloned cDNAs from a human glioblastoma library that encode a second CAP-related protein, CAP2. The human CAP and CAP2 proteins are 64% identical. Expression of either human CAP or CAP2 in S. cerevisiae cap- strains suppresses phenotypes associated with deletion of the C-terminal domain of CAP, but does not restore hyper-activation of adenylyl cyclase by RAS2val19. Similarly, expression of either human CAP or CAP2 in S. pombe cap- strains suppresses the morphological and temperature-sensitive phenotypes associated with deletion of the C-terminal domain of CAP in this yeast. In addition, expression of human CAP, but not CAP2, suppresses the propensity to sporulate due to deletion of the N-terminal domain of CAP in S. pombe. This latter observation suggests that human CAP restores normal adenylyl cyclase activity in S. pombe cap- cells. Thus, functional properties of both N-terminal and C-terminal domains are conserved between the human and S. pombe CAP proteins.

  20. Differential digestion of human milk proteins in a simulated stomach model.

    Science.gov (United States)

    Zhang, Qiang; Cundiff, Judy K; Maria, Sarah D; McMahon, Robert J; Wickham, Martin S J; Faulks, Richard M; van Tol, Eric A F

    2014-02-07

    A key element in understanding how human milk proteins support the health and development of the neonate is to understand how individual proteins are affected during digestion. In the present study, a dynamic gastric model was used to simulate infant gastric digestion of human milk, and a subsequent proteomic approach was applied to study the behavior of individual proteins. A total of 413 human milk proteins were quantified in this study. This approach demonstrated a high degree of variability in the susceptibility of human milk proteins to gastric digestion. Specifically this study reports that lipoproteins are among the class of slowly digested proteins during gastric processes. The levels of integral lysozyme C and partial lactadherin in milk whey increase over digestion. Mucins, ribonuclease 4, and macrophage mannose receptor 1 are also resistant to gastric digestion. The retention or enhancement in whey protein abundance can be ascribed to the digestive release of milk-fat-globule-membrane or immune-cell enclosed proteins that are not initially accessible in milk. Immunoglobulins are more resistant to digestion compared to total milk proteins, and within the immunoglobulin class IgA and IgM are more resistant to digestion compared to IgG. The gastric digestion of milk proteins becomes more apparent from this study.

  1. Proteomic characterization of specific minor proteins in the human milk casein fraction.

    Science.gov (United States)

    Liao, Yalin; Alvarado, Rudy; Phinney, Brett; Lönnerdal, Bo

    2011-12-02

    Human milk contains many bioactive proteins that are likely to support the early development of the newborn. The aim of this study was to identify whether there are specific minor proteins associated with the human milk casein micelle prepared by the acid precipitation method. Protein identification was performed by liquid chromatography tandem mass spectrometry analysis. Eighty-two proteins were identified in the casein micelle, 18 of which are not present in their whey compartment. Thirty-two of these proteins specifically associated with the casein micelle have not previously been identified in human milk or colostrum. Proteins involved in immune function comprised the major part (28%) of total proteins, and another significant part is involved in metabolism/energy production (22%). Most of the proteins were of extracellular or cytoplasmic origin (accounting for 50 and 29%, respectively). This study indicates that various soluble proteins should be considered as part of the casein compartment, prepared by the acid precipitation method. The data provide new insight not only into the proteomic profile of the human milk casein micelle and its physiological significance, but also into the proper proportion of casein and casein-associated proteins to use in infant formula.

  2. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    Science.gov (United States)

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  3. The landscape of human proteins interacting with viruses and other pathogens.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2008-02-01

    Full Text Available Infectious diseases result in millions of deaths each year. Mechanisms of infection have been studied in detail for many pathogens. However, many questions are relatively unexplored. What are the properties of human proteins that interact with pathogens? Do pathogens interact with certain functional classes of human proteins? Which infection mechanisms and pathways are commonly triggered by multiple pathogens? In this paper, to our knowledge, we provide the first study of the landscape of human proteins interacting with pathogens. We integrate human-pathogen protein-protein interactions (PPIs for 190 pathogen strains from seven public databases. Nearly all of the 10,477 human-pathogen PPIs are for viral systems (98.3%, with the majority belonging to the human-HIV system (77.9%. We find that both viral and bacterial pathogens tend to interact with hubs (proteins with many interacting partners and bottlenecks (proteins that are central to many paths in the network in the human PPI network. We construct separate sets of human proteins interacting with bacterial pathogens, viral pathogens, and those interacting with multiple bacteria and with multiple viruses. Gene Ontology functions enriched in these sets reveal a number of processes, such as cell cycle regulation, nuclear transport, and immune response that participate in interactions with different pathogens. Our results provide the first global view of strategies used by pathogens to subvert human cellular processes and infect human cells. Supplementary data accompanying this paper is available at http://staff.vbi.vt.edu/dyermd/publications/dyer2008a.html.

  4. Automated production of recombinant human proteins as resource for proteome research

    Directory of Open Access Journals (Sweden)

    Poustka Annemarie

    2008-01-01

    Full Text Available Abstract Background An arbitrary set of 96 human proteins was selected and tested to set-up a fully automated protein production strategy, covering all steps from DNA preparation to protein purification and analysis. The target proteins are encoded by functionally uncharacterized open reading frames (ORF identified by the German cDNA consortium. Fusion proteins were produced in E. coli with four different fusion tags and tested in five different purification strategies depending on the respective fusion tag. The automated strategy relies on standard liquid handling and clone picking equipment. Results A robust automated strategy for the production of recombinant human proteins in E. coli was established based on a set of four different protein expression vectors resulting in NusA/His, MBP/His, GST and His-tagged proteins. The yield of soluble fusion protein was correlated with the induction temperature and the respective fusion tag. NusA/His and MBP/His fusion proteins are best expressed at low temperature (25°C, whereas the yield of soluble GST fusion proteins was higher when protein expression was induced at elevated temperature. In contrast, the induction of soluble His-tagged fusion proteins was independent of the temperature. Amylose was not found useful for affinity-purification of MBP/His fusion proteins in a high-throughput setting, and metal chelating chromatography is recommended instead. Conclusion Soluble fusion proteins can be produced in E. coli in sufficient qualities and μg/ml culture quantities for downstream applications like microarray-based assays, and studies on protein-protein interactions employing a fully automated protein expression and purification strategy. Future applications might include the optimization of experimental conditions for the large-scale production of soluble recombinant proteins from libraries of open reading frames.

  5. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ∼90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

  6. Health effects of soy protein and isoflavones in humans.

    Science.gov (United States)

    Xiao, Chao Wu

    2008-06-01

    Epidemiological investigations suggest that soy consumption may be associated with a lower incidence of certain chronic diseases. Clinical studies also show that ingestion of soy proteins reduces the risk factors for cardiovascular disease. This led to the approval of the food-labeling health claim for soy proteins in the prevention of coronary heart disease by the U.S. FDA in 1999. Similar health petitions for soy proteins have also been approved thereafter in the United Kingdom, Brazil, South Africa, the Philippines, Indonesia, Korea, and Malaysia. However, the purported health benefits are quite variable in different studies. The Nutrition Committee of the American Heart Association has assessed 22 randomized trials conducted since 1999 and found that isolated soy protein with isoflavones (ISF) slightly decreased LDL cholesterol but had no effect on HDL cholesterol, triglycerides, lipoprotein(a), or blood pressure. The other effects of soy consumption were not evident. Although the contributing factors to these discrepancies are not fully understood, the source of soybeans and processing procedures of the protein or ISF are believed to be important because of their effects on the content and intactness of certain bioactive protein subunits. Some studies have documented potential safety concerns on increased consumption of soy products. Impacts of soy products on thyroid and reproductive functions as well as on certain types of carcinogenesis require further study in this context. Overall, existing data are inconsistent or inadequate in supporting most of the suggested health benefits of consuming soy protein or ISF.

  7. Investigation of Function of Novel Sperm Binding Protein HBRP in Human

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the biology function of novel protein related to bovie seminal plasma protein in human testis.Methods Recombination pcDNA3/HBRP was constructed and transfected to HEK293 cell and permanently expression cell line was established.The activity of protein kinase C (PKC) of the cell line was detected by autoradiography method.Results The stable expression cell line of HBRP was obtained.The HBRP inhibited the activity of PKC significantly.Conclusion One of the newfunctions of novel sperm binding protein in human is the inhibitor action on activity of PKC.It may be involved in the sperm capacitation,and acrosome reaction.

  8. Alternative splicing in the human gene for the core protein A1 generates another hnRNP protein.

    Science.gov (United States)

    Buvoli, M; Cobianchi, F; Bestagno, M G; Mangiarotti, A; Bassi, M T; Biamonti, G; Riva, S

    1990-01-01

    The human hnRNP core protein A1 (34 kd) is encoded by a 4.6 kb gene split into 10 exons. Here we show that the A1 gene can be differentially spliced by the addition of an extra exon. The new transcript encodes a minor protein of the hnRNP complex, here defined A1B protein, with a calculated mol. wt of 38 kd, that coincides with a protein previously designated as B2 by some authors. In vitro translation of the mRNAs selected by hybridization with A1 cDNA produced two proteins of 34 and 38 kd; Northern blot analysis of poly(A)+ RNA from HeLa cells revealed that the abundance of the A1B mRNA was approximately 5% that of A1. The A1B protein was detected by Western blotting with an anti-A1 monoclonal antibody both in enriched preparations of basic hnRNP proteins and in 40S hnRNP particles. The A1B protein exhibits a significantly higher affinity than A1 for ssDNA. The recombinant A1B protein, expressed in Escherichia coli, shows the same electrophoretic mobility and charge as the cellular one. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1691095

  9. Training-induced changes in membrane transport proteins of human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, C.

    2006-01-01

    for 6-8 weeks substantially increases the density of membrane proteins, whereas years of training (as performed by athletes) have no further effect. Studies suggest that training-induced changes at the protein level are important functionally. The underlying factors responsible for these changes......Training improves human physical performance by inducing structural and cardiovascular changes, metabolic changes, and changes in the density of membrane transport proteins. This review focuses on the training-induced changes in proteins involved in sarcolemmal membrane transport. It is concluded...... that the same type of training affects many transport proteins, suggesting that all transport proteins increase with training, and that both sprint and endurance training in humans increase the density of most membrane transport proteins. There seems to be an upper limit for these changes: intense training...

  10. Purification of proteins specifically binding human endogenous retrovirus K long terminal repeat by affinity elution chromatography.

    Science.gov (United States)

    Trubetskoy, D O; Zavalova, L L; Akopov, S B; Nikolaev, L G

    2002-11-01

    A novel affinity elution procedure for purification of DNA-binding proteins was developed and employed to purify to near homogeneity the proteins recognizing a 21 base pair sequence within the long terminal repeat of human endogenous retroviruses K. The approach involves loading the initial protein mixture on a heparin-agarose column and elution of protein(s) of interest with a solution of double-stranded oligonucleotide containing binding sites of the protein(s). The affinity elution has several advantages over conventional DNA-affinity chromatography: (i) it is easier and faster, permitting to isolate proteins in a 1 day-one stage procedure; (ii) yield of a target protein is severalfold higher than that in DNA-affinity chromatography; (iii) it is not necessary to prepare a special affinity support for each factor to be isolated. Theaffinity elution could be a useful alternative to conventional DNA-affinity chromatography.

  11. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  12. Chromosome protein framework from proteome analysis of isolated human metaphase chromosomes.

    Science.gov (United States)

    Fukui, Kiichi; Uchiyama, Susumu

    2007-01-01

    We have presented a structural model of the chromosome based on its constituent proteins. Development of a method of mass isolation for intact human metaphase chromosomes and proteome analysis by mass spectrometry of the isolated chromosomal proteins enabled us to develop a four-layer structural model of human metaphase chromosomes. The model consists of four layers, each with different chromosomal protein sets, i.e., chromosome coating proteins (CCPs), chromosome peripheral proteins (CPPs), chromosome structural proteins (CSPs), and chromosome fibrous proteins (CFPs). More than 200 identified proteins have been classified and assigned to the four layers with each layer occupying a distinct region of the chromosome. CCPs are localized at the most outer regions of the chromosomes and they attach to the regions tentatively and occasionally. CCPs include mostly mitochondrial and cytoplasmic proteins, e.g., 70 kDa heat shock protein 9B and Hsp60. CPPs are also localized at the peripheral regions of the chromosomes, but as the essential part of the chromosomes. CPPs include nucleolin, lamin A/C, fibrillarin, etc. CSPs are the primary chromosomal structure proteins, and include topoisomerase IIalpha, condensin subunits, histones, etc. CFPs have a fibrous nature, e.g., beta-actin, vimentin, myosin II, tublin, etc. A data set of these proteins, which we developed, contains essential chromosome proteins with classified information based on this four-layer model and presents useful leads for further studies on chromosomal structure and function.

  13. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Quistgaard, Esben M. [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Nordlund, Par [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Thanabalu, Thirumaran [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Torres, Jaume, E-mail: jtorres@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore)

    2015-08-15

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.

  14. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    Directory of Open Access Journals (Sweden)

    Hur Soo

    2006-03-01

    Full Text Available Abstract Background Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. Methods We used the differential display (DD RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. Results DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH. YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Conclusion Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding

  15. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    Science.gov (United States)

    Xu, Guilian; Stevens, Stanley M; Kobeissy, Firas; Kobiessy, Firas; Brown, Hilda; McClung, Scott; Gold, Mark S; Borchelt, David R

    2012-01-01

    Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y) and glial (CCF-STTG1) lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48) residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.

  16. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    Directory of Open Access Journals (Sweden)

    Guilian Xu

    Full Text Available Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y and glial (CCF-STTG1 lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48 residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.

  17. Purification and functional characterization of a protein: Bombyx mori human growth hormone like protein in silkworm pupa.

    Science.gov (United States)

    Chen, Jianqing; Shu, Tejun; Lv, Zhengbing; Nie, Zuoming; Chen, Jian; Chen, Hao; Yu, Wei; Gai, Qijing; Zhang, Yaozhou

    2014-01-01

    Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people's interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.

  18. Purification and functional characterization of a protein: Bombyx mori human growth hormone like protein in silkworm pupa.

    Directory of Open Access Journals (Sweden)

    Jianqing Chen

    Full Text Available Human growth hormone (hGH is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people's interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.

  19. Mitochondrial trifunctional protein deficiency in human cultured fibroblasts

    DEFF Research Database (Denmark)

    Djouadi, Fatima; Habarou, Florence; Le Bachelier, Carole

    2016-01-01

    Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been...

  20. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes.

    Science.gov (United States)

    Lopes, Katia de Paiva; Campos-Laborie, Francisco José; Vialle, Ricardo Assunção; Ortega, José Miguel; De Las Rivas, Javier

    2016-10-25

    The development of large-scale technologies for quantitative transcriptomics has enabled comprehensive analysis of the gene expression profiles in complete genomes. RNA-Seq allows the measurement of gene expression levels in a manner far more precise and global than previous methods. Studies using this technology are altering our view about the extent and complexity of the eukaryotic transcriptomes. In this respect, multiple efforts have been done to determine and analyse the gene expression patterns of human cell types in different conditions, either in normal or pathological states. However, until recently, little has been reported about the evolutionary marks present in human protein-coding genes, particularly from the combined perspective of gene expression and protein evolution. We present a combined analysis of human protein-coding gene expression profiling and time-scale ancestry mapping, that places the genes in taxonomy clades and reveals eight evolutionary major steps ("hallmarks"), that include clusters of functionally coherent proteins. The human expressed genes are analysed using a RNA-Seq dataset of 116 samples from 32 tissues. The evolutionary analysis of the human proteins is performed combining the information from: (i) a database of orthologous proteins (OMA), (ii) the taxonomy mapping of genes to lineage clades (from NCBI Taxonomy) and (iii) the evolution time-scale mapping provided by TimeTree (Timescale of Life). The human protein-coding genes are also placed in a relational context based in the construction of a robust gene coexpression network, that reveals tighter links between age-related protein-coding genes and finds functionally coherent gene modules. Understanding the relational landscape of the human protein-coding genes is essential for interpreting the functional elements and modules of our active genome. Moreover, decoding the evolutionary history of the human genes can provide very valuable information to reveal or uncover their

  1. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes

    Directory of Open Access Journals (Sweden)

    Katia de Paiva Lopes

    2016-10-01

    Full Text Available Abstract Background The development of large-scale technologies for quantitative transcriptomics has enabled comprehensive analysis of the gene expression profiles in complete genomes. RNA-Seq allows the measurement of gene expression levels in a manner far more precise and global than previous methods. Studies using this technology are altering our view about the extent and complexity of the eukaryotic transcriptomes. In this respect, multiple efforts have been done to determine and analyse the gene expression patterns of human cell types in different conditions, either in normal or pathological states. However, until recently, little has been reported about the evolutionary marks present in human protein-coding genes, particularly from the combined perspective of gene expression and protein evolution. Results We present a combined analysis of human protein-coding gene expression profiling and time-scale ancestry mapping, that places the genes in taxonomy clades and reveals eight evolutionary major steps (“hallmarks”, that include clusters of functionally coherent proteins. The human expressed genes are analysed using a RNA-Seq dataset of 116 samples from 32 tissues. The evolutionary analysis of the human proteins is performed combining the information from: (i a database of orthologous proteins (OMA, (ii the taxonomy mapping of genes to lineage clades (from NCBI Taxonomy and (iii the evolution time-scale mapping provided by TimeTree (Timescale of Life. The human protein-coding genes are also placed in a relational context based in the construction of a robust gene coexpression network, that reveals tighter links between age-related protein-coding genes and finds functionally coherent gene modules. Conclusions Understanding the relational landscape of the human protein-coding genes is essential for interpreting the functional elements and modules of our active genome. Moreover, decoding the evolutionary history of the human genes can

  2. Simultaneous detection of two breast cancer-related miRNAs in tumor tissues using p19-based disposable amperometric magnetobiosensing platforms.

    Science.gov (United States)

    Torrente-Rodríguez, R M; Campuzano, S; López-Hernández, E; Montiel, V Ruiz-Valdepeñas; Barderas, R; Granados, R; Sánchez-Puelles, J M; Pingarrón, J M

    2015-04-15

    A novel magnetobiosensing approach for the rapid and simultaneous detection of two breast cancer-related miRs (miR-21 and miR-205) is reported. It involves the use of antimiR-21 and antimiR-205 specific probes, chitin-modified magnetic beads (Chitin-MBs), the p19 viral protein as capture bioreceptor and amperometric detection with the H2O2/hydroquinone (HQ) system at dual screen-printed carbon electrodes (SPdCEs). The use of SPdCEs allows the simultaneous independent amperometric readout for each target miR to be measured. The magnetosensor exhibited sensitive and selective detection with dynamic ranges from 2.0 to 10.0nM and detection limits of 0.6nM (6fmol) for both target miRs without any amplification step in less than 2h. The usefulness of the approach was evaluated by detecting the endogenous levels of both target miRs in total RNA (RNAt) extracted from metastatic breast cancer cell lines and human tissues.

  3. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    Directory of Open Access Journals (Sweden)

    Ma Isabel Salazar

    2013-01-01

    Full Text Available An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS, characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa and two less apparent proteins (100 and 130 kDa. Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1 that DENV-2 exhibited a direct tropism for human neurons and (2 that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  4. Constitutive phosphorylation of Shc proteins in human tumors

    DEFF Research Database (Denmark)

    Pelicci, G; Lanfrancone, L; Salcini, A E

    1995-01-01

    cells. In tumor cells with known TK gene alterations Shc proteins were constitutively phosphorylated and complexed with the activated TK. No constitutive Shc phosphorylation was found in primary cell cultures and normal tissues. In 14 of 27 tumor cell lines with no reported TK alterations, Shc proteins...... activated TKs and that the analysis of Shc phosphorylation allow the identification of tumors with constitutive TK activation....

  5. In vivo protein synthesis determinations in human immune cells

    OpenAIRE

    Januszkiewicz, Anna

    2005-01-01

    Intact immune responses are essential for defeating severe infections in individual patients. Insufficient function of the immune system contributes to a poor prognosis in these patients, in particular the ICU patients. Nevertheless, the immune system function is not easily monitored and evaluated. The ongoing metabolic activity of immune competent cells is reflected by their in vivo protein synthesis rate. The aim of this thesis was to apply in vivo protein synthesis measur...

  6. A quantitative approach to study indirect effects among disease proteins in the human protein interaction network

    Directory of Open Access Journals (Sweden)

    Jordán Ferenc

    2010-07-01

    Full Text Available Abstract Background Systems biology makes it possible to study larger and more intricate systems than before, so it is now possible to look at the molecular basis of several diseases in parallel. Analyzing the interaction network of proteins in the cell can be the key to understand how complex processes lead to diseases. Novel tools in network analysis provide the possibility to quantify the key interacting proteins in large networks as well as proteins that connect them. Here we suggest a new method to study the relationships between topology and functionality of the protein-protein interaction network, by identifying key mediator proteins possibly maintaining indirect relationships among proteins causing various diseases. Results Based on the i2d and OMIM databases, we have constructed (i a network of proteins causing five selected diseases (DP, disease proteins plus their interacting partners (IP, non-disease proteins, the DPIP network and (ii a protein network showing only these IPs and their interactions, the IP network. The five investigated diseases were (1 various cancers, (2 heart diseases, (3 obesity, (4 diabetes and (5 autism. We have quantified the number and strength of IP-mediated indirect effects between the five groups of disease proteins and hypothetically identified the most important mediator proteins linking heart disease to obesity or diabetes in the IP network. The results present the relationship between mediator role and centrality, as well as between mediator role and functional properties of these proteins. Conclusions We show that a protein which plays an important indirect mediator role between two diseases is not necessarily a hub in the PPI network. This may suggest that, even if hub proteins and disease proteins are trivially of great interest, mediators may also deserve more attention, especially if disease-disease associations are to be understood. Identifying the hubs may not be sufficient to understand

  7. Composition and Variation of Macronutrients, Immune Proteins, and Human Milk Oligosaccharides in Human Milk From Nonprofit and Commercial Milk Banks.

    Science.gov (United States)

    Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T

    2017-06-01

    When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.

  8. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Tecle, Tesfaldet

    2007-01-01

    BACKGROUND: Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr...... human SP-D multimers as well as reduced hemagglutination inhibiting activity against several strains of IAV. Natural SP-D trimers also had different interactions with human neutrophil peptide defensins (HNPs) in viral neutralization assays as compared to multimeric SP-D. CONCLUSION: These studies......-D can be useful for dissecting out different functional properties of the protein....

  9. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  10. Using competitive protein adsorption to measure fibrinogen in undiluted human serum

    Science.gov (United States)

    Choi, Seokheun; Wang, Ran; Lajevardi-Khosh, Arad; Chae, Junseok

    2010-12-01

    We report a unique sensing mechanism based on competitive protein adsorption to measure fibrinogen, a cardiovascular biomarker, in undiluted human serum. The method uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. Two fibrinogen concentrations were differentiated in spiked in human serum [3.0 mg/ml (normal concentration) versus 3.2 mg/ml (abnormal concentration with heart disease)]. Real-time surface plasmon resonance signals were monitored as fibrinogen displaced a preadsorbed protein, IgM, on a hydrophobic gold surface. The relatively strong-affinity protein, IgM, was displaced primarily by fibrinogen and much less by other proteins in human serum.

  11. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    Science.gov (United States)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  12. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  13. Assessing the impact of protein extraction methods for human gut metaproteomics.

    Science.gov (United States)

    Zhang, Xu; Li, Leyuan; Mayne, Janice; Ning, Zhibin; Stintzi, Alain; Figeys, Daniel

    2017-07-10

    Metaproteomics is a promising methodology for the functional characterizations of the gut microbiome. However, the performance of metaproteomic analysis is affected by protein extraction protocols in terms of the amount of protein recovered and the relative abundance of different bacteria observed in microbiome. Currently, there is a lack of consistency on protein extraction methods in published metaproteomics studies. Here we evaluated the effects of different protein extraction methods on human fecal metaproteome characterizations. We found that sodium dodecyl sulfate (SDS)-based lysis buffer obtained higher protein yields and peptide/protein group identifications compared to urea and the non-ionic detergent-based B-Per buffer. The addition of bead beating to any of the extraction buffers increased both protein yields and protein identifications. As well, bead beating led to a significant increase of the relative abundances of Firmicutes and Actinobacteria. We also demonstrated that ultrasonication, another commonly used mechanical disruption approach, performed even better than bead beating for gut microbial protein extractions. Importantly, proteins of the basic metabolic pathways showed significantly higher relative abundances when using ultrasonication. Overall, these results demonstrate that protein extraction protocols markedly impact the metaproteomic results and recommend a protein extraction protocol with both SDS and ultrasonication for metaproteomic studies. The gut microbiome is emerging as an important factor influencing human health. Metaproteomics is promising for advancing the understanding of the functional roles of the microbiome in disease. However, metaproteomics suffers from a lack of consistent sample preparation procedures. In the present study, protein extraction protocols for fecal microbiome samples were evaluated for their effects on protein yields, peptide identifications, protein group identifications, taxonomic compositions and

  14. Predicting the Subcellular Localization of Human Proteins Using Machine Learning and Exploratory Data Analysis

    Institute of Scientific and Technical Information of China (English)

    George K. Acquaah-Mensah; Sonia M. Leach; Chittibabu Guda

    2006-01-01

    Identifying the subcellular localization of proteins is particularly helpful in the functional annotation of gene products. In this study, we use Machine Learning and Exploratory Data Analysis (EDA) techniques to examine and characterize amino acid sequences of human proteins localized in nine cellular compartments. A dataset of 3,749 protein sequences representing human proteins was extracted from the SWISS-PROT database. Feature vectors were created to capture specific amino acid sequence characteristics. Relative to a Support Vector Machine, a Multi-layer Perceptron, and a Naive Bayes classifier, the C4.5 Decision Tree algorithm was the most consistent performer across all nine compartments in reliably predicting the subcellular localization of proteins based on their amino acid sequences (average Precision=0.88; average Sensitivity=0.86). Furthermore, EDA graphics characterized essential features of proteins in each compartment. As examples,proteins localized to the plasma membrane had higher proportions of hydrophobic amino acids; cytoplasmic proteins had higher proportions of neutral amino acids;and mitochondrial proteins had higher proportions of neutral amino acids and lower proportions of polar amino acids. These data showed that the C4.5 classifier and EDA tools can be effective for characterizing and predicting the subcellular localization of human proteins based on their amino acid sequences.

  15. Characterization of cell envelope proteins of Staphylococcus epidermidis cultured in human peritoneal dialysate.

    OpenAIRE

    Smith, D G; Wilcox, M. H.; Williams, P.; Finch, R G; Denyer, Stephen Paul

    1991-01-01

    The cell envelope protein profiles of Staphylococcus epidermidis cultured in used human peritoneal dialysate (HPD) differed markedly from those of cells cultured in nutrient broth. Compared with broth-grown cells, many cell wall proteins were repressed in HPD, although three proteins of 42, 48, and 54 kDa predominated and an iron-repressible 130-kDa protein was induced. Growth in HPD also resulted in expression of two cell membrane proteins of 32 and 36 kDa which were iron repressible. Sodium...

  16. Light-induced protein degradation in human-derived cells.

    Science.gov (United States)

    Sun, Wansheng; Zhang, Wenyao; Zhang, Chao; Mao, Miaowei; Zhao, Yuzheng; Chen, Xianjun; Yang, Yi

    2017-05-27

    Controlling protein degradation can be a valuable tool for posttranslational regulation of protein abundance to study complex biological systems. In the present study, we designed a light-switchable degron consisting of a light oxygen voltage (LOV) domain of Avena sativa phototropin 1 (AsLOV2) and a C-terminal degron. Our results showed that the light-switchable degron could be used for rapid and specific induction of protein degradation in HEK293 cells by light in a proteasome-dependent manner. Further studies showed that the light-switchable degron could also be utilized to mediate the degradation of secreted Gaussia princeps luciferase (GLuc), demonstrating the adaptability of the light-switchable degron in different types of protein. We suggest that the light-switchable degron offers a robust tool to control protein levels and may serves as a new and significant method for gene- and cell-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses.

    Science.gov (United States)

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2016-12-15

    A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage

  18. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  19. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

    Science.gov (United States)

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads

    2015-10-12

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  20. Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity

    Directory of Open Access Journals (Sweden)

    Nuzhat N. Kabir

    2011-01-01

    Full Text Available Reversible protein phosphorylation by protein kinases and phosphatases is a common event in various cellular processes. The eukaryotic protein kinase superfamily, which is one of the largest superfamilies of eukaryotic proteins, plays several roles in cell signaling and diseases. We identified 482 eukaryotic protein kinases and 39 atypical protein kinases in the bovine genome, by searching publicly accessible genetic-sequence databases. Bovines have 512 putative protein kinases, each orthologous to a human kinase. Whereas orthologous kinase pairs are, on an average, 90.6% identical, orthologous kinase catalytic domain pairs are, on an average, 95.9% identical at the amino acid level. This bioinformatic study of bovine protein kinases provides a suitable framework for further characterization of their functional and structural properties.

  1. Delineation of concentration ranges and longitudinal changes of human plasma protein variants.

    Directory of Open Access Journals (Sweden)

    Olgica Trenchevska

    Full Text Available Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

  2. Production of the Polyclonal Anti-human Metallothionein 2A Antibody with Recombinant Protein Technology

    Institute of Scientific and Technical Information of China (English)

    Faiz M.M.T.MARIKAR; Qi-Ming SUN; Zi-Chun HUA

    2006-01-01

    Metallothionein 2A (MT2A) is a small stress response protein that can be induced by exposure to toxic metals. It is highly expressed in breast cancer cells. In this study, the eDNA encoding the human MT2A protein was expressed as glutathione S-transferase (GST) fusion protein in Escherichia coli.Recombinant MT2A proteins were loaded onto 12% sodium dodecylsulfate-polyacrylamide gel and separated by electrophoresis, the recombinant protein was visualized by Coomassie blue staining and the 33 kDa recombinant GST-MT2A fusion protein band was cut out from the gel. The gel slice was minced and used to generate polyclonal antisera. Immunization of rabbit against MT2A protein allowed the production of high titer polyclonal antiserum. This new polyclonal antibody recognized recombinant MT2A protein in Western blot analysis. This low-cost antibody will be useful for detection in various immuno-assays.

  3. Effects of Exercise Interventions and Physical Activity Behavior on Cancer Related Cognitive Impairments: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Philipp Zimmer

    2016-01-01

    Full Text Available This systematic review analyzes current data on effects of exercise interventions and physical activity behavior on objective and subjective cancer related cognitive impairments (CRCI. Out of the 19 studies which met all inclusion criteria, five RCTs investigated rodents, whereas the other 14 trials explored humans and these included six RCTs, one controlled trial, two prospective noncontrolled trials, one case series, one observational study, and three cross-sectional studies. The results from animal models revealed positive effects of exercise during and after chemotherapy or radiation on structural alterations of the central nervous system, physiological as well as neuropsychological outcomes. The overall study quality in patient studies was poor. The current data on intervention studies showed preliminary positive effects of Asian-influenced movement programs (e.g., Yoga with benefits on self-perceived cognitive functions as well as a reduction of chronic inflammation for breast cancer patients in the aftercare. Exercise potentially contributes to the prevention and rehabilitation of CRCI. Additional RCTs with standardized neuropsychological assessments and controlling for potential confounders are needed to confirm and expand preliminary findings.

  4. Activation of human natural killer cells by the soluble form of cellular prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Yeon-Jae [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Hafis Clinic, Seoul (Korea, Republic of); Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Bum-Chan [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Park, Su-Hyung [Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Shin, Eui-Cheol, E-mail: ecshin@kaist.ac.kr [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  5. Human papillomavirus and p53 protein immunoreactivity in condylomata acuminatum and squamous cell carcinoma of penis

    Institute of Scientific and Technical Information of China (English)

    Xin-Hua ZHANG; Gui-Qin SUN; Yu YANG; Tai-He ZHANG

    2001-01-01

    To determine the immunoreactive pattem of human papillomavirus (HPV) antigen and p53 protein in condylomata acuminatum (CA) and squamous cell carcinoma (SCC) of penis. Methods: Immunohistochemistry for HPV and p53 were performed in 40 specimens of formalin fixed, paraffin embedded tissues using a polyclonal (rabbit) antibody against HPV and a monoclonal (mouse) antibody against human p53 protein. Twenty one cases of CA and nineteen cases of SCC were examined. Results: HPV antigen was detected in all 21 CA and 2 penile SCC. p53 protein overexpression was observed in 12 of 19 (63%) SCC in which 6 cases were strong positive. Five of 21 CA (24%)showed low-grade p53 protein overexpression. Conclusion: CA is related to HPV infection and some cases show p53 protein low-grade overexpression. In contrast, p53 protein overexpression is common in penile SCC, which is seldom related to HPV infection.

  6. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors.

    Science.gov (United States)

    Natsume, Toyoaki; Kiyomitsu, Tomomi; Saga, Yumiko; Kanemaki, Masato T

    2016-04-01

    Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID) technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES) cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.

  7. Identification and quantification of serum proteins secreted into the normal human jejunum

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Hegnhøj, J H

    1990-01-01

    The in vivo transfer of serum proteins to the human intestinal lumen was characterized by crossed immunoelectrophoretic analyses of intestinal perfusates from four healthy volunteers. Serum proteins with molecular masses below 100 kDa and the immunoglobulins were found in human jejunal perfusates....... Larger serum proteins were either absent (alpha and beta lipoproteins) or present in small amounts (alpha 2-macroglobulin, haptoglobulin and ceruloplasmin). These results demonstrate the existence of a selective transfer of serum proteins to the intestinal lumen under physiological conditions....... The intestinal clearance rate was 0.1 ml serum per hour per 10 cm jejunum for albumin, prealbumin, alpha 1-antitrypsin, orosomucoid, transferrin and haemopexin. The rate of secretion of total protein to the jejunal lumen was 100 mg protein per hour per 10 cm jejunum. About 45% was due to immunoglobulins...

  8. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  9. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors

    Directory of Open Access Journals (Sweden)

    Toyoaki Natsume

    2016-04-01

    Full Text Available Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.

  10. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    Science.gov (United States)

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.

  11. Detection of cow's milk proteins and minor components in human milk using proteomics techniques.

    Science.gov (United States)

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Varalda, A; Peila, C; Fabris, C; Conti, A; Bertino, E

    2012-10-01

    Cow's milk proteins (CMPs) are the best characterized food allergens. The aim of this study was to investigate cow's milk allergens in human colostrum of term and preterm newborns' mothers, and other minor protein components by proteomics techniques, more sensitive than other techniques used in the past. Sixty-two term and 11 preterm colostrum samples were collected, subjected to a treatment able to increase the concentration of the most diluted proteins and simultaneously to reduce the concentration of the proteins present at high concentration (Proteominer Treatment), and subsequently subjected to the steps of proteomic techniques. The most relevant finding in this study was the detection of the intact bovine alpha-S1-casein in human colostrum, then bovine alpha-1-casein could be considered the cow's milk allergen that is readily secreted in human milk and could be a cause of sensitization to cow's milk in exclusively breastfed predisposed infants. Another interesting result was the detection, at very low concentrations, of proteins previously not described in human milk (galectin-7, the different isoforms of the 14-3-3 protein and the serum amyloid P-component), probably involved in the regulation of the normal cell growth, in the pro-apoptotic function and in the regulation of tissue homeostasis. Further investigations are needed to understand if these families of proteins have specific biological activity in human milk.

  12. Perspectives from older adults receiving cancer treatment about the cancer-related information they receive

    OpenAIRE

    2015-01-01

    Objective: Cancer patients have reported that information plays a significant role in their capacity to cope with cancer and manage the consequences of treatment. This study was undertaken to identify the importance older adults receiving cancer treatment assign to selected types of cancer-related information, their satisfaction with the cancer-related information they received, and the barriers to effective information provision for this age group. Methods: This study was conducted in two ph...

  13. Low heart rate variability and cancer-related fatigue in breast cancer survivors

    OpenAIRE

    2014-01-01

    Cancer-related fatigue is a common and often long lasting symptom for many breast cancer survivors. Fatigued survivors show evidence of elevated inflammation, but the physiological mechanisms driving inflammatory activity have not been determined. Alterations in the autonomic nervous system, and particularly parasympathetic nervous system activity, are a plausible, yet understudied contributor to cancer-related fatigue. The goal of this study was to replicate one previous study showing an ass...

  14. A tool to facilitate clinical biomarker studies - a tissue dictionary based on the Human Protein Atlas

    Directory of Open Access Journals (Sweden)

    Kampf Caroline

    2012-09-01

    Full Text Available Abstract The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies.

  15. OPIOID PRECURSOR PROTEIN ISOFORM IS TARGETED TO THE CELL NUCLEI IN THE HUMAN BRAIN

    DEFF Research Database (Denmark)

    Kononenko, Olga; Bazov, Igor; Watanabe, Hiroyuki;

    2016-01-01

    Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. We here describe two novel splicing variants of human PDYN mRNA. Expression of one...

  16. Proteomic allergen-peptide/protein interaction assay for the identification of human skin sensitizers

    NARCIS (Netherlands)

    Dietz, L.; Kinzebach, S.; Ohnesorge, S.; Franke, B.; Goette, I.; Koenig-Gressel, D.; Thierse, H.J.

    2013-01-01

    Modification of proteins by skin sensitizers is a pivotal step in T cell mediated allergic contact dermatitis (ACD). In this process small reactive chemicals interact covalently or non-covalently with cellular or extracellular skin self-proteins or self-peptides to become recognized by the human imm

  17. B-1 cells and naturally occuring antibodies: influencing the immunogenicity of recombinant human therapeutic proteins

    NARCIS (Netherlands)

    Sauerborn, M.S.; Schellekens, H.

    2009-01-01

    Recombinant human therapeutic proteins are increasingly being used to treat serious and life-threatening diseases like multiple sclerosis, diabetes mellitus, and cancer. An important side effect of these proteins is the development of antidrug antibodies, which can be neutralizing and thus interfere

  18. A single rainbow trout cobalamin-binding protein stands in for three human binders

    DEFF Research Database (Denmark)

    Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S

    2012-01-01

    -binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases...

  19. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    Directory of Open Access Journals (Sweden)

    Robert C. Karn

    2013-12-01

    Full Text Available The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6 and the genome rat (BN/SsNHsd/Mcwi. Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals.

  20. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche

    Science.gov (United States)

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H.; Burk, Robert D.

    2015-01-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution. PMID:26086730

  1. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche.

    Directory of Open Access Journals (Sweden)

    Koenraad Van Doorslaer

    2015-06-01

    Full Text Available In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.

  2. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche.

    Science.gov (United States)

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H; Burk, Robert D

    2015-06-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.

  3. Derailing the UPS of Protein Turnover in Cancer and other Human Diseases

    Directory of Open Access Journals (Sweden)

    Jit Kong Cheong

    2013-01-01

    Full Text Available Protein modifications by the covalent linkage of ubiquitin have significant involvement in many cellular processes, including stress response, oncogenesis, viral infection, transcription, protein turnover, organelle biogenesis, DNA repair, cellular differentiation, and cell cycle control. We provide a brief overview of the fundamentals of the regulation of protein turnover by the ubiquitin-proteasome pathway and discuss new therapeutic strategies that aim to mitigate the deleterious effects of its dysregulation in cancer and other human disease pathophysiology.

  4. Hexapeptide libraries for enhanced protein PTM identification and relative abundance profiling in whole human saliva

    OpenAIRE

    Bandhakavi, Sricharan; van Riper, Susan K.; Tawfik, Pierre N; Matthew D Stone; Haddad, Tufia; Rhodus, Nelson L.; Carlis, John V.; Griffin, Timothy J.

    2011-01-01

    Dynamic range compression (DRC) by hexapeptide libraries increases MS/MS-based identification of lower-abundance proteins in complex mixtures. However, two unanswered questions impede fully realizing DRC’s potential in shotgun proteomics. First, does DRC enhance identification of post-translationally modified proteins? Second, can DRC be incorporated into a workflow enabling relative protein abundance profiling? We sought to answer both questions analyzing human whole saliva. Addressing quest...

  5. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts

    OpenAIRE

    Fuller, Stephen J.; Osborne, Sally A.; Leonard, Sam J.; Hardyman, Michelle A.; Vaniotis, George; Allen, Bruce G.; Sugden, Peter H.; Clerk, Angela

    2015-01-01

    Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) d...

  6. Separation of proteins from human plasma by sample displacement chromatography in hydrophobic interaction mode

    OpenAIRE

    Josic, Djuro; Breen, Lucas; Clifton, James; Gajdosik, Martina Srajer; Gaso-Sokac, Dajana; Rucevic, Marijana; Müller, Egbert

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method was first used for the preparative purification of peptides and proteins. Recently, SDC in ion-exchange mode was also successfully used for enrichment of low abundance proteins from human plasma. In this paper, the use of SDC for the separation of plasma proteins in hydrophobic interaction mode is demonstrated. By use of two or more columns coupled in se...

  7. Analysis of human protein replacement stable cell lines established using snoMEN-PR vector.

    Directory of Open Access Journals (Sweden)

    Motoharu Ono

    Full Text Available The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR. Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.

  8. Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation.

    Science.gov (United States)

    Marcon, Edyta; Ni, Zuyao; Pu, Shuye; Turinsky, Andrei L; Trimble, Sandra Smiley; Olsen, Jonathan B; Silverman-Gavrila, Rosalind; Silverman-Gavrila, Lorelei; Phanse, Sadhna; Guo, Hongbo; Zhong, Guoqing; Guo, Xinghua; Young, Peter; Bailey, Swneke; Roudeva, Denitza; Zhao, Dorothy; Hewel, Johannes; Li, Joyce; Gräslund, Susanne; Paduch, Marcin; Kossiakoff, Anthony A; Lupien, Mathieu; Emili, Andrew; Wodak, Shoshana J; Greenblatt, Jack

    2014-07-10

    Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  9. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  10. Effects of atorvastatin on human c reactive protein metabolism

    Science.gov (United States)

    Statins are known to reduce plasma C-reactive protein (CRP) concentrations. Our goals were to define the mechanisms by which CRP was reduced by maximal dose atorvastatin. Eight subjects with combined hyperlipidemia (5 men and 3 postmenopausal women) were enrolled in a randomized, placebo-controlled...

  11. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  12. Overexpression of the human major vault protein in gangliogliomas.

    NARCIS (Netherlands)

    Aronica, E; Gorter, J.A.; Vliet, van EA; Spliet, WG; Veelen, van CW; Rijen, van PC; Leenstra, S.; Ramkema, MD; Scheffer, G.L.; Scheper, R.J.; Sisodiya, SM; Troost, D.

    2003-01-01

    PURPOSE: Recent evidence has been obtained that the major vault protein (MVP) may play a role in multidrug resistance (MDR). We investigated the expression and cellular localization of MVP in gangliogliomas (GGs), which are increasingly recognized causes of chronic pharmacoresistant epilepsy. METHOD

  13. Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells.

    Science.gov (United States)

    Chen, Xi; Shen, Jianjun; Li, Xingyu; Wang, Xi; Long, Min; Lin, Fang; Wei, Junxia; Yang, Longfei; Yang, Chinglai; Dong, Ke; Zhang, Huizhong

    2014-07-01

    Stathmin is an oncoprotein and is expressed at high levels in a wide variety of human malignancies, which plays important roles in maintenance of malignant phenotypes. The regulation of Stathmin gene overexpression has been wildly explored, but the exact mechanism still needs to be elucidated. It is believed that regulation of an oncogene protein abundance through post-translational modifications is essential for maintenance of malignant phenotypes. Here we identified the Rlim, a Ring H2 zinc finger protein with intrinsic ubiquitin ligase activity, as a Stathmin-interacting protein that could increase Stathmin turnover through binding with this targeted protein and then induce its degradation by proteasome in a ubiquitin-dependent manner. Inhibition of endogenous Rlim expression by siRNA could increase the level of Stathmin protein, which further led to cell proliferation and cell cycle changes in human osteosarcoma cell lines. On the other hand, forced overexpression of Rlim could decrease the level of Stathmin protein. These results demonstrate that Rlim is involved in the negative regulation of Stathmin protein level through physical interaction and ubiquitin-mediated proteolysis. Hence, Rlim is a novel regulator of Stathmin protein in a ubiquitin-dependent manner, and represents a new pathway for malignant phenotype turnover by modulating the level of Stathmin protein in human osteosarcomas.

  14. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  15. Highly expressed genes in human high grade gliomas: immunohistochemical analysis of data from the Human Protein Atlas

    Directory of Open Access Journals (Sweden)

    Michael A. Meyer

    2014-06-01

    Full Text Available Gene expression within human glioblastomas were analyzed from data on 20,083 genes entered into the on-line Human Protein Atlas. In selecting genes that are strongly expressed within normal human brain tissue, 58 genes were identified from a search of the 20,083 entries that were rated as showing 90% or greater intensity of expression within normal brain tissues. Of these 58, a subset of 48 genes was identified that not only had expression data for human glioblastomas but also for the human glioblastoma cell line U-251. Four of these 48 selected genes were found to be strongly expressed within the cytoplasm when assessed by both histologic sampling of high grade glioma patient cases as well as U-251 glioblastoma cell line immunofluoresence analysis. These four human genes are: AGBL2 (ATP/GTP binding protein-like 2, BLOC1S6 (biogenesis of lysosomal organelles complex-1, subunit 6, MAP1A (microtubule-associated protein 1A and ZSWIM5 (zinc finger, SWIM-type containing 5, also known as KIAA1511. Further research is advocated to investigate the role of ZSWIM5 and AGBL2 in glioma cell biology.

  16. Effect of contractile protein alterations on cardiac myofilament function in human heart failure

    NARCIS (Netherlands)

    Narolska, N.A.

    2006-01-01

    The main objective of this thesis was to elucidate the effect of translational and post-translational alterations in contractile proteins occurring during heart failure on contractile function in human cardiac tissue. Isometric force and ATPase activity measurements were performed in skinned human

  17. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Keqiang [Department of General Surgery, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Li, Dan [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Pulli, Benjamin [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Yu, Fei; Cai, Haidong; Yuan, Xueyu [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Zhang, Xiaoping, E-mail: zxpsibs@163.com [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Lv, Zhongwei, E-mail: heyixue163@163.com [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Hsp90 is over-expressed in human breast cancer. Black-Right-Pointing-Pointer The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. Black-Right-Pointing-Pointer Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. Black-Right-Pointing-Pointer The tumor growth ratio was decline due to Hsp90 silencing. Black-Right-Pointing-Pointer The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic

  18. Structural characterization of human and bovine lung surfactant protein D

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Holmskov, U; Højrup, P

    1999-01-01

    was characterized in human SP-D. The carbohydrate was determined as a complex type bi-antennary structure, with a small content of mono-antennary and tri-antennary structures. No sialic acid residues were present on the glycan, but some had an attached fucose and/or an N-acetylglucosamine residue linked to the core...

  19. Detection of CFTR protein in human leukocytes by flow cytometry.

    Science.gov (United States)

    Johansson, Jan; Vezzalini, Marzia; Verzè, Genny; Caldrer, Sara; Bolognin, Silvia; Buffelli, Mario; Bellisola, Giuseppe; Tridello, Gloria; Assael, Baroukh Maurice; Melotti, Paola; Sorio, Claudio

    2014-07-01

    Leukocytes have previously been shown to express detectable levels of the protein cystic fibrosis transmembrane conductance regulator (CFTR). This study aims to evaluate the application of flow cytometric (FC) analysis to detect CFTR expression, and changes thereof, in these cells. Aliquots (200 μL) of peripheral whole blood from 12 healthy control volunteers (CTRLs), 12 carriers of a CFTR mutation (CFC), and 40 patients with cystic fibrosis (CF) carrying various combinations of CFTR mutations were incubated with specific fluorescent probes recognizing CFTR protein expressed on the plasma membrane of leukocytes. FC was applied to analyze CFTR expression in monocytes, lymphocytes, and polymorphonuclear (PMN) cells. CFTR protein was detected in monocytes and lymphocytes, whereas inconclusive results were obtained from the analysis of PMN cells. Mean fluorescence intensity (MFI) ratio value and %CFTR-positive cells above a selected threshold were the two parameters selected to quantify CFTR expression in cells. Lowest variability and the highest reproducibility were obtained when analyzing monocytes. ANOVA results indicated that both parameters were able to discriminate monocytes of healthy controls and CF individuals according to CFTR mutation classes with high accuracy. Significantly increased MFI ratio values were recorded in CFTR-defective cells that were also able to improve CFTR function after ex vivo treatment with PTC124 (Ataluren), an investigative drug designed to permit the ribosome to read through nonsense CFTR mutations. The method described is minimally invasive and may be used in the monitoring of responses to drugs whose efficacy can depend on increased CFTR protein expression levels. © 2014 International Society for Advancement of Cytometry.

  20. ABNORMAL PROTEIN TYROSINE KINASES ASSOCIATED WITH HUMAN HAEMATOLOGICAL MALIGNANCIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: To survey the role of protein tyrosine kinases (PTKs) in the pathogenesis of several hematopoietic malignancies. Methods: By reviewing the published laboratory and clinical studies on PTK-related oncoproteins and their causative role in some leukemias and lymphomas. Results: Protein tyrosine kinases are key participants in signal transduction pathways that regulate cellular growth, activation and differentiations. Aberrant PTK activity resulting from gene mutation (often accompanying chromosome translocation) plays an etiologic role in several clonal hematopoietic malignancies. For example, the PTK product of the BCR-ABL fusion gene resulting from the t (9; 22) translocation exhibits several fold higher tyrosine kinase activity than the product of the ABL gene. Evidence suggests that the BCR-ABL oncoprotein alone is sufficient to case chronic myelogenous leukemia (CML) and other Ph positive acute leukemia. PTK over-activity resulting from chromosomal translocations creating TEL-ABL, TEL-JAK2 and TEL-PDGFR( fusion proteins plays an important role in the pathogenesis of other types of leukemia. Another example occurs in anaplastic large cell lymphoma (ALCL). Experimental and clinical evidences indicate that translocations involving ALK gene on chromosome 2p23, most commonly resulting in an NPM-ALK fusion oncogene, result in constitutive activation of ALK and cause ALCL. This group of lymphomas is now named ALK positive lymphoma or ALKoma. Conclusion: Genetic lesions creating aberrant fusion proteins that result in excessive PTK activity are increasingly being recognized as central to the pathogenesis of hemotopoietic malignancies. These chimeric PTK molecules represent attractive disease-specific targets against which new classes therapeutic agents are being developed.

  1. Differentially expressed protein markers in human submandibular and sublingual secretions.

    Science.gov (United States)

    Hu, Shen; Denny, Patricia; Denny, Paul; Xie, Yongming; Loo, Joseph A; Wolinsky, Lawrence E; Li, Yang; McBride, Jim; Ogorzalek Loo, Rachel R; Navazesh, Mavash; Wong, David T

    2004-11-01

    Proteome analysis of secretions from individual salivary glands is important for understanding the health of the oral cavity and pathogenesis of certain diseases. However, cross-contamination of submandibular (SM) and sublingual (SL) glandular secretions can occur. The close anatomic relationship of the SM and SL ductal orifices can lead to such contamination. Additionally, these glands may share common ducts. To insure the purity of SM/SL secretions for proteomic analysis, it is important to develop unique biomarkers which could be used to verify the integrity of the individual glandular saliva. In this study, a proteomics approach based on mass spectrometry and gel electrophoresis techniques was utilized to identify and verify a set of proteins (cystatin C, calgranulin B and MUC5B mucin), which are differentially expressed in SM/SL secretions. SM/SL fluids were obtained from nine healthy subjects. Cystatin C was found to be an SM-selective protein as it was found in all SM fluids but not detected in two SL fluids. MUC5B mucin and calgranulin B, on the other hand, were found to be SL-selective proteins. All SL samples contained MUC5B mucin, whereas MUC5B mucin was not detected in four SM samples. Eight of the SL samples contained calgranulin B; however, calgranulin B was absent in eight SM samples. This set of protein markers, especially calgranulin B, can be used to determine the purity of SM/SL samples, and therefore identify potential individuals who do not exhibit cross-contaminated SM/SL secretions, an important requirement for subsequent proteome analysis of pure SM and SL secretions.

  2. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins.

    Science.gov (United States)

    Sánchez-Martín, David; Sanz, Laura; Álvarez-Vallina, Luis

    2011-12-01

    Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.

  3. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein.

    Science.gov (United States)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet; Quistgaard, Esben M; Nordlund, Par; Thanabalu, Thirumaran; Torres, Jaume

    2015-08-01

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target.

  4. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    Science.gov (United States)

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Human seminal proteinase and prostate-specific antigen are the same protein

    Indian Academy of Sciences (India)

    Abdul Waheed; Md Imtaiyaz Hassan; Robert L Van Etten; Faizan Ahmad

    2008-06-01

    Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and compared. Both are glycoproteins of 32–34 kDa with protease activities. Based on some physicochemical, enzymatic and immunological properties, it is concluded that these proteins are in fact identical. The protein exhibits properties similar to kallikrein-like serine protease, trypsin, chymotrypsin and thiol acid protease. Tests of the activity of the enzyme against some potential natural and synthetic substrates showed that bovine serum albumin was more readily hydrolysed than casein. The results of this study should be useful in purifying and assaying this protein. Based on published studies and the present results, the broad proteolytic specificity of human seminal proteinase suggests a role for this protein in several physiological functions.

  6. Human epidermal keratinocyte cell response on integrin-specific artificial extracellular matrix proteins.

    Science.gov (United States)

    Tjin, Monica Suryana; Chua, Alvin Wen Choong; Ma, Dong Rui; Lee, Seng Teik; Fong, Eileen

    2014-08-01

    Cell-matrix interactions play critical roles in regulating cellular behavior in wound repair and regeneration of the human skin. In particular, human skin keratinocytes express several key integrins such as alpha5beta1, alpha3beta1, and alpha2beta1 for binding to the extracellular matrix (ECM) present in the basement membrane in uninjured skin. To mimic these key integrin-ECM interactions, artificial ECM (aECM) proteins containing functional domains derived from laminin 5, type IV collagen, fibronectin, and elastin are prepared. Human skin keratinocyte cell responses on the aECM proteins are specific to the cell-binding domain present in each construct. Keratinocyte attachment to the aECM protein substrates is also mediated by specific integrin-material interactions. In addition, the aECM proteins are able to support the proliferation of keratinocyte stem cells, demonstrating their promise for use in skin tissue engineering.

  7. Human Jk recombination signal binding protein gene (IGKJRB): Comparison with its mouse homologue

    Energy Technology Data Exchange (ETDEWEB)

    Amakawa, Ryuichi; Jing, Wu; Matsunami, Norisada; Hamaguchi, Yasushi; Matsuda, Fumihiko; Kawaichi, Masashi; Honjo, Tasuku (Kyoto Univ., Sakyo-ku, Kyoto (Japan)); Ozawa, Kazuo (Tsukuba Life Science Center, Tsukuba, Ibraraki (Japan))

    1993-08-01

    The mouse Igkjrb protein specifically binds to the immunoglobulin Jk recombination signal sequence. The IGKJRB gene is highly conserved among many species such as human, Xenopus, and Drosophila. Using cDNA fragments of the mouse Igkjrb gene, the authors isolated its human counterpart, IGKJRB. The human genome contains one functional IGKJRB gene and two types of processed pseudogenes. In situ chromosome hybridization analysis demonstrated that the functional gene is localized at chromosome 3q25, and the pseudogenes (IGKJRBP1 and IGKJRBP2, respectively) are located at chromosomes 9p13 and 9q13. The functional gene is composed of 13 exons spanning at least 67 kb. Three types of cDNA with different 5[prime] sequences were isolated by rapid amplification of cDNA ends, suggesting the presence of three proteins. The aPCR-1 protein, which possessed the exon 1 sequence, was the counterpart of the mouse RBP-2 type protein. The aPCR-2 and 3 proteins may be specific to human cells because the mouse counterparts were not detected. The amino acid sequences of the human and mouse IGKJRB genes were 98% homologous in exons 2-11, whereas the homology of the human and mouse exon 1 sequences was 75%. 40 refs., 7 figs.

  8. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    Science.gov (United States)

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  9. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication.

    Science.gov (United States)

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanpin; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns.Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer inHCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.

  10. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication

    Indian Academy of Sciences (India)

    Guili Wang; Gaowei Ren; Xin Cui; Yanpin Ma; Ying Qi; Yujing Huang; Zhongyang Liu; Zhengrong Sun; Qiang Ruan

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns. Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer in HCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.

  11. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Otsuki

    Full Text Available Canine distemper virus (CDV becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  12. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa.

    Science.gov (United States)

    Schumacher, Julia; Ramljak, Sanja; Asif, Abdul R; Schaffrath, Michael; Zischler, Hans; Herlyn, Holger

    2013-12-06

    We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.

  13. Co-localization of the heat shock protein and human immunoglobulin G in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-guang; LIU Yan-fang; LI Kai-nan; YU Lu; CUI Ji-hong; LI Jing; YANG Shou-jing

    2005-01-01

    @@ Elevated levels of serum immunoglobulin observed in patients with cancers of epithelial origin, including carcinomas of breast, colon, and liver1,2 have been interpreted as humoral responses of host to cancer growth.3 Recently, Qiu et al4 described in detail that human cancers of epithelial origin, including carcinomas of breast, colon, liver, lung, established epithelial cancer lines, produce immunoglobulin G (IgG) in their cytoplasm. Under normal conditions, heat shock proteins (HSPs) have multiple cellular functions, such as folding and translocating newly synthesized proteins. When a cell is injured or under stress, HSPs refold damaged protein or facilitate degradation of proteins. In most cancers, heat shock proteins can capture tumour specific peptide to inhibit the growth of cancer. This study demonstrated that human IgG and HSPs are co-localized in hepatocellular carcinoma.

  14. HIP2: An online database of human plasma proteins from healthy individuals

    Directory of Open Access Journals (Sweden)

    Shen Changyu

    2008-04-01

    Full Text Available Abstract Background With the introduction of increasingly powerful mass spectrometry (MS techniques for clinical research, several recent large-scale MS proteomics studies have sought to characterize the entire human plasma proteome with a general objective for identifying thousands of proteins leaked from tissues in the circulating blood. Understanding the basic constituents, diversity, and variability of the human plasma proteome is essential to the development of sensitive molecular diagnosis and treatment monitoring solutions for future biomedical applications. Biomedical researchers today, however, do not have an integrated online resource in which they can search for plasma proteins collected from different mass spectrometry platforms, experimental protocols, and search software for healthy individuals. The lack of such a resource for comparisons has made it difficult to interpret proteomics profile changes in patients' plasma and to design protein biomarker discovery experiments. Description To aid future protein biomarker studies of disease and health from human plasma, we developed an online database, HIP2 (Healthy Human Individual's Integrated Plasma Proteome. The current version contains 12,787 protein entries linked to 86,831 peptide entries identified using different MS platforms. Conclusion This web-based database will be useful to biomedical researchers involved in biomarker discovery research. This database has been developed to be the comprehensive collection of healthy human plasma proteins, and has protein data captured in a relational database schema built to contain mappings of supporting peptide evidence from several high-quality and high-throughput mass-spectrometry (MS experimental data sets. Users can search for plasma protein/peptide annotations, peptide/protein alignments, and experimental/sample conditions with options for filter-based retrieval to achieve greater analytical power for discovery and validation.

  15. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    Science.gov (United States)

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  16. Cancers related to Immunodeficiencies:Update and perspectives

    Directory of Open Access Journals (Sweden)

    Esmaeil Mortaz

    2016-09-01

    Full Text Available The life span of patients with primary and secondary immunodeficiency is increasing due to recent improvements in therapeutic strategies. Whilst, the incidence of primary immunodeficiencies (PIDs is 1:10.000 births, that of secondary immunodeficiencies is more common and are associated with post transplantation immune dysfunction or with immunosuppressive medication for human immunodeficiency virus (HIV or with human T-cell lymphotropic virus (HTLV infection.After infection, malignancy is the most prevalent cause of death in both children and adults with primary immunodeficiency disorders (PIDs. PIDs more often associated with cancer include common variable immunodeficiency (CVID, Wiskott Aldrich syndrome (WAS, ataxia-telangiectasia (AT and severe combined immunodeficiency (SCID. This suggests that a protective immune response against both infectious non-self (pathogens and malignant self-challenges (cancer exist. The increased incidence of cancer has been attributed to defective elimination of altered or transformed cells and/or defective immunity towards cancer cells. The concept of abberant immune surveillance occurring in PIDs is supported by evidence in mice and from patients undergoing immunosuppression after transplantation. Here, we discuss the importance of PID defects in the development of malignancies, the current limitations associated with molecular pathogenesis of these diseases and emphasize the need for further knowledge of how specific mutations can modulate the immune system to alter immunosurveillance and thereby play a key role in the etiology of malignancies in PID patients.

  17. Sea Cucumber: New source of Protein for Human Consumption

    OpenAIRE

    Daniela Vaz Pratas

    2014-01-01

    Aquaculture, probably the fastest growing food-producing sector, now accounts for nearly 50 percent of the world's food fish consumed by humans, and this share is expected to increase further to meet future demand. Sea cucumbers are considered highly marketable product and this has resulted in an increasing overfishing of natural sea cucumber stocks. Nevertheless, these resources are almost unexploited in the Mediterranean region. Many species of holothurians have been recognized as an altern...

  18. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels.

    Science.gov (United States)

    Annabi, Nasim; Shin, Su Ryon; Tamayol, Ali; Miscuglio, Mario; Bakooshli, Mohsen Afshar; Assmann, Alexander; Mostafalu, Pooria; Sun, Jeong-Yun; Mithieux, Suzanne; Cheung, Louis; Tang, Xiaowu Shirley; Weiss, Anthony S; Khademhosseini, Ali

    2016-01-01

    A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.

  19. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Xia Dong

    2009-05-01

    . falciparum proteins and 77 human proteins as phosphorylated protein in pRBC, while only 48 human proteins were identified in the corresponding fractions from uninfected RBC. Refinement of the search to include significant ion scores indicating a specific phospho-peptide identified 21 P. falciparum proteins and 14 human proteins from pRBC, 13 host proteins were identified from normal RBC. The results achieved by complementary techniques consistently reflect a reliable proteomic overview of pRBC.

  20. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes.

    Science.gov (United States)

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Chan, Wai Yee

    2015-12-01

    Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.

  1. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    Science.gov (United States)

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  2. Protein Fv produced during vital hepatitis is a novel activator of human basophils and mast cells.

    Science.gov (United States)

    Patella, V; Bouvet, J P; Marone, G

    1993-11-15

    Protein Fv is found in the normal liver and is released in the stools of patients suffering from viral hepatitis. Protein Fv isolated from five patients stimulated the release of histamine and sulfidopeptide leukotriene C4 from purified and unpurified peripheral blood basophils. Protein Fv absorbed with protein A-Sepharose coated with polyclonal IgG did not induce histamine secretion, whereas removal of putative contaminating Ig did not modify the releasing activity. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE). There was an excellent correlation (Spearman rank coefficient (rs) = 0.83; p ADZ) blocked both anti-IgE- and protein Fv-induced releases, whereas human polyclonal IgG and a monoclonal IgG purified from another myeloma patient (patient ZEG) selectively blocked protein Fv-induced secretion. Protein Fv also induced the release of preformed (histamine and tryptase) and de novo synthesized mediators (sulfidopeptide leukotriene C4 and/or PGD2) from mast cells purified from human lung parenchyma and skin tissues. There was a significant correlation between the maximal percent histamine release induced by protein Fv and anti-IgE from skin mast cells (rs = 0.63; p < 0.01). There was also an excellent correlation between histamine and tryptase release caused by protein Fv from both lung (rs = 0.80; p < 0.001) and skin mast cells (rs = 0.70; p < 0.01). Thus, we established that protein Fv acts as a novel activator of human basophils and mast cells presumably by interacting with the VH domain of the IgE.

  3. p53 Family: Role of Protein Isoforms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Jinxiong Wei

    2012-01-01

    Full Text Available TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

  4. Generation of human scFvs antibodies recognizing a prion protein epitope expressed on the surface of human lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Imperiale Valentina

    2007-07-01

    Full Text Available Abstract Background A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc into an infectious disease-associated isoform, (PrPsc. Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP. Results We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. Conclusion Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.

  5. Adsorption of human serum proteins onto TREN-agarose: purification of human IgG by negative chromatography.

    Science.gov (United States)

    Bresolin, Igor Tadeu Lazzarotto; Borsoi-Ribeiro, Mariana; Caro, Juliana Rodrigues; dos Santos, Francine Petit; de Castro, Marina Polesi; Bueno, Sonia Maria Alves

    2009-01-01

    Tris(2-aminoethyl)amine (TREN) - a chelating agent used in IMAC - immobilized onto agarose gel was evaluated for the purification of IgG from human serum by negative chromatography. A one-step purification process allowed the recovery of 73.3% of the loaded IgG in the nonretained fractions with purity of 90-95% (based on total protein concentration and nephelometric analysis of albumin, transferrin, and immunoglobulins A, G, and M). The binding capacity was relatively high (66.63 mg of human serum protein/mL). These results suggest that this negative chromatography is a potential technique for purification of IgG from human serum.

  6. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul;

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate...... defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...

  7. Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Chang, Tsong-Min; Shi, Guey-Yueh; Wu, Hua-Lin; Wu, Chieh-Hsi; Su, Yan-Di; Wang, Hui-Lin; Wen, Hsin-Yun; Huang, Huey-Chun

    2011-01-01

    Salvianolic acid B (Sal B), a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothelial cells (HUVECs) were incubated at Sal B concentrations that can be reached in human plasma by pharmacological intervention. Results indicated that caldesmon, an actin-stabilizing protein, was downregulated in Sal B-exposed HUVECs. Proteins that showed increased expression levels upon Sal B treatment were vimentin, T-complex protein 1, protein disulfide isomerase, tropomyosin alpha, heat shock protein beta-1, UBX domain-containing protein 1, alpha enolase, and peroxiredoxin-2. Additionally, Sal B leads to increased phosphorylation of nucleophosmin in a dose-dependent manner and promotes proliferation of HUVECs. We found that Sal B exhibited a coordinated regulation of enzymes and proteins involved in cytoskeletal reorganization, oxidative stress, and cell growth. Our investigation would provide understanding to the endothelium protection information of Sal B. PMID:21423689

  8. Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tsong-Min Chang

    2011-01-01

    Full Text Available Salvianolic acid B (Sal B, a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothelial cells (HUVECs were incubated at Sal B concentrations that can be reached in human plasma by pharmacological intervention. Results indicated that caldesmon, an actin-stabilizing protein, was downregulated in Sal B-exposed HUVECs. Proteins that showed increased expression levels upon Sal B treatment were vimentin, T-complex protein 1, protein disulfide isomerase, tropomyosin alpha, heat shock protein beta-1, UBX domain-containing protein 1, alpha enolase, and peroxiredoxin-2. Additionally, Sal B leads to increased phosphorylation of nucleophosmin in a dose-dependent manner and promotes proliferation of HUVECs. We found that Sal B exhibited a coordinated regulation of enzymes and proteins involved in cytoskeletal reorganization, oxidative stress, and cell growth. Our investigation would provide understanding to the endothelium protection information of Sal B.

  9. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  10. Testing protein leverage in lean humans: a randomised controlled experimental study.

    Directory of Open Access Journals (Sweden)

    Alison K Gosby

    Full Text Available A significant contributor to the rising rates of human obesity is an increase in energy intake. The 'protein leverage hypothesis' proposes that a dominant appetite for protein in conjunction with a decline in the ratio of protein to fat and carbohydrate in the diet drives excess energy intake and could therefore promote the development of obesity. Our aim was to test the 'protein leverage hypothesis' in lean humans by disguising the macronutrient composition of foods offered to subjects under ad libitum feeding conditions. Energy intakes and hunger ratings were measured for 22 lean subjects studied over three 4-day periods of in-house dietary manipulation. Subjects were restricted to fixed menus in random order comprising 28 foods designed to be similar in palatability, availability, variety and sensory quality and providing 10%, 15% or 25% energy as protein. Nutrient and energy intake was calculated as the product of the amount of each food eaten and its composition. Lowering the percent protein of the diet from 15% to 10% resulted in higher (+12±4.5%, p = 0.02 total energy intake, predominantly from savoury-flavoured foods available between meals. This increased energy intake was not sufficient to maintain protein intake constant, indicating that protein leverage is incomplete. Urinary urea on the 10% and 15% protein diets did not differ statistically, nor did they differ from habitual values prior to the study. In contrast, increasing protein from 15% to 25% did not alter energy intake. On the fourth day of the trial, however, there was a greater increase in the hunger score between 1-2 h after the 10% protein breakfast versus the 25% protein breakfast (1.6±0.4 vs 25%: 0.5±0.3, p = 0.005. In our study population a change in the nutritional environment that dilutes dietary protein with carbohydrate and fat promotes overconsumption, enhancing the risk for potential weight gain.

  11. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins.

    Science.gov (United States)

    Atabekova, Anastasia K; Pankratenko, Anna V; Makarova, Svetlana S; Lazareva, Ekaterina A; Owens, Robert A; Solovyev, Andrey G; Morozov, Sergey Y

    2017-01-01

    Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins

    Directory of Open Access Journals (Sweden)

    Kahlem Pascal

    2006-06-01

    Full Text Available Abstract Background Trisomy of human chromosome 21 (Chr21 results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. Results We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb to MCM3AP (46.6 Mb, with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. Conclusion The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome.

  13. Computational Studies of the Structural Stability of Rabbit Prion Protein Compared to Human and Mouse Prion Proteins

    CERN Document Server

    Zhang, Jiapu

    2011-01-01

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. The neurodegenerative diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Str$\\ddot{a}$ussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle belong to prion diseases. By now there have not been some effective therapeutic approaches to treat all these prion diseases. Dogs, rabbits and horses were reported to be resistant to prion diseases. By the end of year 2010 all the NMR structures of dog, rabbit and horse prion proteins (X-ray for rabbits too) had been finished to release into protein data bank. Thus, at this moment it is very worth studying the NMR and X-ray molecular structures of horse, dog and rabbit prion proteins to obtain insights into their immunity prion diseases. The author found that dog and horse prion proteins have sta...

  14. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation

    DEFF Research Database (Denmark)

    Martínez, José L; Liu, Lifang; Petranovic, Dina;

    2012-01-01

    Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis...... techniques (the so-called—omics approaches) and integrative approaches (systems biology) allow the development of novel microbial cell factories as valuable platforms for large scale production of therapeutic proteins. This review summarizes the main achievements and the current situation in the field...

  15. HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Jonathan Miller

    Full Text Available Previous studies have shown that wild-type human telomerase reverse transcriptase (hTERT protein can functionally replace the human papillomavirus type 16 (HPV-16 E6 protein, which cooperates with the viral E7 protein in the immortalization of primary keratinocytes. In the current study, we made the surprising finding that catalytically inactive hTERT (hTERT-D868A, elongation-defective hTERT (hTERT-HA, and telomere recruitment-defective hTERT (hTERT N+T also cooperate with E7 in mediating bypass of the senescence blockade and effecting cell immortalization. This suggests that hTERT has activities independent of its telomere maintenance functions that mediate transit across this restriction point. Since hTERT has been shown to have a role in gene activation, we performed microarray studies and discovered that E6, hTERT and mutant hTERT proteins altered the expression of highly overlapping sets of cellular genes. Most important, the E6 and hTERT proteins induced mRNA and protein levels of Bmi1, the core subunit of the Polycomb Group (PcG complex 1. We show further that Bmi1 substitutes for E6 or hTERT in cell immortalization. Finally, tissue array studies demonstrated that expression of Bmi1 increased with the severity of cervical dysplasia, suggesting a potential role in the progression of cervical cancer. Together, these data demonstrate that hTERT has extra-telomeric activities that facilitate cell immortalization and that its induction of Bmi1 is one potential mechanism for mediating this activity.

  16. Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins.

    Science.gov (United States)

    Kudryashova, Elena; Koneru, Pratibha C; Kvaratskhelia, Mamuka; Strömstedt, Adam A; Lu, Wuyuan; Kudryashov, Dmitri S

    2016-09-01

    Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural "anti-chaperones", i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not β-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins - the intrinsically low thermodynamic protein stability.

  17. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex.

    Science.gov (United States)

    Peña, A; Reddy, C D; Wu, S; Hickok, N J; Reddy, E P; Yumet, G; Soprano, D R; Soprano, K J

    1993-12-25

    The presence of a CACGTG element within a region of the human ornithine decarboxylase (ODC) promoter located at -491 to -474 base pairs 5' to the start site of transcription suggested that the c-Myc.Max protein complex may play a role in the regulation of ODC expression during growth. Electrophoretic mobility shift assays and methylation interference analysis showed that the nuclei of WI-38 cells expressing ODC contained proteins that bound to this region of the ODC gene in a manner that correlated with growth-associated ODC expression. Also, use of antibodies against c-Myc and Max and purified recombinant c-Myc and Max protein in the electrophoretic mobility shift assay confirmed that these proteins can specifically bind this portion of the human ODC promoter. Transient transfection studies showed that increase in the level of c-Myc and/or Max led to a significant enhancement of expression of a human ODC promoter-CAT reporter construct. Moreover, treatment of actively growing WI-38 cells with an antisense oligomer to c-Myc reduced the amount of endogenous protein complex formed and the amount of endogenous ODC mRNA expressed. These studies show that the c-Myc.Max protein complex plays a role in the transcriptional regulation of human ODC in vivo.

  18. Identification of Human N-Myristoylated Proteins from Human Complementary DNA Resources by Cell-Free and Cellular Metabolic Labeling Analyses

    Science.gov (United States)

    Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko

    2015-01-01

    To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources. PMID:26308446

  19. The human HNRPD locus maps to 4q21 and encodes a highly conserved protein.

    Science.gov (United States)

    Dempsey, L A; Li, M J; DePace, A; Bray-Ward, P; Maizels, N

    1998-05-01

    The hnRNP D protein interacts with nucleic acids both in vivo and in vitro. Like many other proteins that interact with RNA, it contains RBD (or "RRM") domains and arg-gly-gly (RGG) motifs. We have examined the organization and localization of the human and murine genes that encode the hnRNP D protein. Comparison of the predicted sequences of the hnRNP D proteins in human and mouse shows that they are 96.9% identical (98.9% similar). This very high level of conservation suggests a critical function for hnRNP D. Sequence analysis of the human HNRPD gene shows that the protein is encoded by eight exons and that two additional exons specify sequences in the 3' UTR. Use of two of the coding exons is determined by alternative splicing of the HNRPD mRNA. The human HNRPD gene maps to 4q21. The mouse Hnrpd gene maps to the F region of chromosome 3, which is syntenic with the human 4q21 region.

  20. Human protein C: new preparations. Effective replacement therapy for some clotting disorders.

    Science.gov (United States)

    2003-02-01

    (1) Depending on its severity, congenital protein C deficiency can cause a variety of problems, such as increasing the frequency of venous thrombosis in high risk situations; recurrent venous thrombosis; skin necrosis at the start of treatment with a vitamin K antagonist; and severe thrombotic events in neonates. For many years the only available replacement treatment consisted of fresh frozen plasma which, among other adverse effects, carries a risk of hypervolemia. (2) Two human protein C concentrates prepared from donated blood have been given marketing authorisation in Europe for intravenous replacement therapy (Ceprotin from Baxter, and Protexel from LFB). (3) Their clinical files contain only retrospective case series (22 children with severe deficiency treated with Ceprotin; and 10 patients of various ages and with different degrees of severity treated with Protexel). The two preparations have not been compared with each other. (4) In patients with severe protein C deficiency, including neonates, replacement therapy with human protein C is effective, especially for treating cutaneous thrombosis and preventing thrombosis in high risk situations. (5) In patients with moderate deficiency, a short-course of human protein C prophylaxis reduces the frequency of thrombosis in high risk situations. (6) In long-term prophylaxis, human protein C replacement therapy, added to ongoing (but inadequately effective) vitamin K antagonist therapy, seems to reduce the risk of recurrent venous thrombosis even though it has some constraints. (7) The adverse effects of the two preparations are poorly documented. Allergic reactions and bleeding have been reported. Human protein C is a blood product, and therefore carries a risk of infection. (8) Ceprotin offers a small advantage, being available in two dose strengths: for a given dose the volume injected is halved. (9) In practice, Ceprotin and Protexel are the reference drugs for replacement therapy of constitutional protein C

  1. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes.

    Science.gov (United States)

    Lee, Sahmin; Lee, Hyun-Chae; Kwon, Yoo-Wook; Lee, Sang Eun; Cho, Youngjin; Kim, Joonoh; Lee, Soobeom; Kim, Ju-Young; Lee, Jaewon; Yang, Han-Mo; Mook-Jung, Inhee; Nam, Ky-Youb; Chung, Junho; Lazar, Mitchell A; Kim, Hyo-Soo

    2014-03-04

    Human resistin is a cytokine that induces low-grade inflammation by stimulating monocytes. Resistin-mediated chronic inflammation can lead to obesity, atherosclerosis, and other cardiometabolic diseases. Nevertheless, the receptor for human resistin has not been clarified. Here, we identified adenylyl cyclase-associated protein 1 (CAP1) as a functional receptor for human resistin and clarified its intracellular signaling pathway to modulate inflammatory action of monocytes. We found that human resistin directly binds to CAP1 in monocytes and upregulates cyclic AMP (cAMP) concentration, protein kinase A (PKA) activity, and NF-κB-related transcription of inflammatory cytokines. Overexpression of CAP1 in monocytes enhanced the resistin-induced increased activity of the cAMP-dependent signaling. Moreover, CAP1-overexpressed monocytes aggravated adipose tissue inflammation in transgenic mice that express human resistin from their monocytes. In contrast, suppression of CAP1 expression abrogated the resistin-mediated inflammatory activity both in vitro and in vivo. Therefore, CAP1 is the bona fide receptor for resistin leading to inflammation in humans.

  2. Socioeconomic and sociodemographic predictors of cancer-related information sources used by cancer survivors.

    Science.gov (United States)

    Blanch-Hartigan, Danielle; Viswanath, Kasisomayajula

    2015-01-01

    With 14 million cancer survivors in the United States, identifying and categorizing their use of sources of cancer-related information is vital for targeting effective communications to this growing population. In addition, recognizing socioeconomic and sociodemographic differences in the use of cancer-related information sources is a potential mechanism for reducing health disparities in survivorship. Fourteen sources of information survivors (N = 519) used for cancer-related information were factor-analyzed to create a taxonomy of source use. The association between social determinants and use of these source types was analyzed in regression models. Factor analysis revealed 5 categories of information source use (mass media; Internet and print; support organizations; family and friends; health care providers), and use varied based on sociodemographic and socioeconomic characteristics. Higher education predicted increased use of all source categories except mass media. African American cancer survivors turned to health care providers as a source for cancer-related information less often than did White survivors. Social determinants predicted differences in the type of cancer-related information sources used. Providers and health communicators should target communication platforms based on the demographic profile of specific survivor audiences.

  3. Bone morphogenetic protein 15 expression in human ovaries from fetuses, girls, and women.

    Science.gov (United States)

    Margulis, Sima; Abir, Ronit; Felz, Carmela; Nitke, Shmuel; Krissi, Haim; Fisch, Benjamin

    2009-11-01

    To investigate, for the first time, the protein expression of bone morphogenetic protein (BMP) 15 in human ovaries from fetuses, girls/women as well as its mRNA transcripts in ovaries from fetuses and girls. Controlled immunohistochemical and in situ hybridization study of expression of BMP-15 protein and mRNA transcripts in human ovaries. Major tertiary care academic center. Nine patients that underwent pregnancy terminations at 21-33 gestational weeks and 18 girls and women aged 5-39 years that underwent ovarian laparoscopies. None. Immunohistochemistry (protein detection) in all specimens and in situ hybridization (mRNA detection) in specimens from fetuses and girls. Both procedures were conducted on paraffin sections. The expression of the BMP-15 protein and its mRNA was identified already from primordial stages. Protein expression was detected in all oocytes and stroma cells from both ovarian sources, and in granulosa cells of specimens from girls and women. The mRNA transcripts were detected in the oocyte, granulosa, and stroma cells from fetuses and girls. The BMP-15 protein is expressed already at primordial stages in fetuses, girls, and women, and its mRNA transcripts in fetuses and girls. Further studies should be conducted to elucidate if indeed BMP-15 is involved in the activation of human primordial follicles.

  4. Characterization of ionizing radiation-induced unfolded protein response in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ju; Lee, Yoon Jin; Kang, Seong Man [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-04-15

    Misfolded or unfolded proteins within the endoplasmic reticulum (ER stress), viral infection, or amino acid deprivation induce eukaryotic translation initiation factor 2α phosphorylation (eIF2α) in eukaryotic cells, repressing global protein synthesis coincident with preferential translation of activating transcription factor 4 (ATF4). ATF4 is a transcriptional activator of genes involved in amino acid metabolism, cellular redox homeostasis, and regulation of apoptosis. When the eIF2α/ATF4 pathway is initiated by ER stress, the pathway is referred toas the unfolded protein response (UPR). In addition to DNA, proteins may be initial and important targets of ionizing radiation (IR), and the damaged protein can trigger ER stress pathway. Recent investigations suggested that IR induces ER stress followed by UPR in various cell types including intestinal epithelial cells. We conducted this study to determine whether IR can activate UPR in human vascular endothelial cells. Our data have shown that IR increased PERK-dependent eIF2α phosphorylation accompanied by induction in ATF4 protein levels in human vascular endothelial cells without alterations in expressions of XBP-1s and GRP78. Based on these data, we suggest that IR selectively activates PERK branch of unfolded protein response in human vascular endothelial cells.

  5. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction.

    Science.gov (United States)

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2016-07-08

    Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.

  6. A comprehensive analysis of the Streptococcus pyogenes and human plasma protein interaction network.

    Science.gov (United States)

    Sjöholm, Kristoffer; Karlsson, Christofer; Linder, Adam; Malmström, Johan

    2014-07-01

    Streptococcus pyogenes is a major human bacterial pathogen responsible for severe and invasive disease associated with high mortality rates. The bacterium interacts with several human blood plasma proteins and clarifying these interactions and their biological consequences will help to explain the progression from mild to severe infections. In this study, we used a combination of mass spectrometry (MS) based techniques to comprehensively quantify the components of the S. pyogenes-plasma protein interaction network. From an initial list of 181 interacting human plasma proteins defined using liquid chromatography (LC)-MS/MS analysis we further subdivided the interacting protein list using selected reaction monitoring (SRM) depending on the level of enrichment and protein concentration on the bacterial surface. The combination of MS methods revealed several previously characterized interactions between the S. pyogenes surface and human plasma along with many more, so far uncharacterised, possible plasma protein interactions with S. pyogenes. In follow-up experiments, the combination of MS techniques was applied to study differences in protein binding to a S. pyogenes wild type strain and an isogenic mutant lacking several important virulence factors, and a unique pair of invasive and non-invasive S. pyogenes isolates from the same patient. Comparing the plasma protein-binding properties of the wild type and the mutant and the invasive and non-invasive S. pyogenes bacteria revealed considerable differences, underlining the significance of these protein interactions. The results also demonstrate the power of the developed mass spectrometry method to investigate host-microbial relationships with a large proteomics depth and high quantitative accuracy.

  7. A preliminary screening study on the associated proteins in human psoriasis vulgaris by serum proteomics technologies

    Institute of Scientific and Technical Information of China (English)

    Zhankui Liu; Shengshun Tan; Chunshui Yu; Jinghua Fan; Zhuanli Bai; Junjie Li

    2007-01-01

    Objective:To investigate the optimum screening conditions of associated proteins in human psoriasis vulgaris by serum proteomics technique, and to screen the different expression proteins related with psoriasis vulgaris. Methods:Serum samples of peripheral blood were collected from newly diagnosed psoriasis vulgaris patients in the clinic, and 20 matched healthy persons.Serum albumin IgG was removed by filtering with ProteoExtract Albumin/IgG. After comparative proteomics analysis the different protein spots were identified using 2-DE and MS. Results :Electrophoresis figures with high resolution and reproducibility were obtained. Three different expression proteins were found only in the serum from psoriasis vulgaris patients,while nine other different proteins expressing from healthy volunteers. Conclusion:The protein expression was different in the serum between the psoriasis vulgaris patients and healthy volunteers. It was hoped that we could find the biomarkers related to psoriasis vulgaris by using proteomics.

  8. Association of filamin A and vimentin with hepatitis C virus proteins in infected human hepatocytes.

    Science.gov (United States)

    Ghosh, S; Ahrens, W A; Phatak, S U; Hwang, S; Schrum, L W; Bonkovsky, H L

    2011-10-01

    Chronic hepatitis C (CHC) infection caused by hepatitis C virus (HCV) is a major cause of liver disease and remains a major therapeutic challenge. A variety of host proteins interact with HCV proteins. The definitive role of cytoskeletal (CS) proteins in HCV infection remains to be determined. In this study, our aim was to determine the expression profile of differentially regulated and expressed selected CS proteins and their association with HCV proteins in infected hepatocytes as possible therapeutic targets. Using proteomics, qRT-PCR, Western blot and immunofluorescence techniques, we revealed that filamin A (fila) and vimentin (vim) were prominently increased proteins in HCV-expressing human hepatoma cells compared with parental cells and in liver biopsies from patients with CHC vs controls. HCV nonstructural (NS) 3 and NS5A proteins were associated with fila, while core protein partially with fila and vim. Immunoprecipitation showed interactions among fila and NS3 and NS5A proteins. Cells treated with interferon-α showed a dose- and time-dependent decrease in CS and HCV proteins. NS proteins clustered at the perinuclear region following cytochalasin b treatment, whereas disperse cytoplasmic and perinuclear distribution was observed in the no-treatment group. This study demonstrates and signifies that changes occur in the expression of CS proteins in HCV-infected hepatocytes and, for the first time, shows the up-regulation and interaction of fila with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection.

  9. Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses

    Science.gov (United States)

    Pappalardo, Morena; Juliá, Miguel; Howard, Mark J.; Rossman, Jeremy S.; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission. PMID:27009368

  10. [Pitfalls within the cancer-related doctor-patient communication].

    Science.gov (United States)

    Muszbek, Katalin; Gaal, Ilona

    2016-04-24

    There is a "confusion of tongues" in the communication between patient and physician that hinders mutual understanding. Cancer - because of its malignant and often chronic nature - accentuates the communication problems and emphasizes the importance of human relationship. The confusion of tongues can only be resolved through understanding of the situation and motivations of the other person. Thus our aim is to help medical doctors to recognize and understand the most important communication characteristics of the doctor-patient interactions that are strained by the burden of cancer. Interviews with directly concerned professionals and non-professionals were recorded in order to reveal the most common communication disturbances. The majority of the "communication vacuum" arose when bad news should be disclosed for the patient, as bad news is bad for the physician as well. It is emotionally burdening to perceive bad news, and a big challenge for the physician to break it gently, to be tactful, while he/she has no possibility to pay attention with regard to his/her own emotional stability. Medical doctors can cope with this challenge if they are acquainted with the psychological difficulties of the patients that block the effective medical communication.

  11. [mRNA-binding protein Human-antigen R regulates α-SMA expression in human bronchia smooth muscle cells].

    Science.gov (United States)

    Yan, Di; Gu, Xianmin; Jiang, Shujuan; Wang, Yuhong

    2015-10-13

    To investigate the role of mRNA binding protein Human-antigen R (HuR) in the over-expression of α-Smooth muscle actin (α-SMA) stimulated by Platelet-derived Growth Factor (PDGF) in cultured human bronchia smooth muscle cells. Human bronchia smooth muscle cells cultured in vitro were divided into 0, 6, 12 and 24 h groups according to the time of PDGF treatment. Total HuR protein and total α-SMA protein expression were detected by Western blot. Total HuR mRNA and total α-SMA mRNA level were determined by quantitative real time-polymerase chain reaction. RNA interference technology was used to down-regulate HuR protein level to study the protective effect of HuR in PDGF-stimulated α-SMA protein expression. PDGF up-regulated the expression of HuR in a time-dependent manner. The relative expression levels of whole-cell HuR protein and mRNA in 0, 6, 12, 24 h groups were 0.23±0.09, 0.42±0.11, 0.93±0.21, 1.37±0.28; 1.00±0.00, 1.09±0.03, 1.16±0.03, 1.27±0.02 (all PSMA protein and mRNA in 0, 6, 12, 24 h group also showed an increase trend marked in a time-dependent manner (1.03±0.08, 1.20±0.09, 1.39±0.11, 1.58±0.10; 1.00±0.00, 1.17±0.02, 1.23±0.02, 1.45±0.03; all PSMA protein expression. PDGF stimulation can increase the expression of HuR and α-SMA in the smooth muscle cells, and HuR protein is involved in the expression of α-SMA protein stimulated by PDGF.

  12. Mycoplasmal lipoprotein p37 binds human protein HER2.

    Science.gov (United States)

    Wu, Jun; Wu, Lijuan; Fang, Cheng; Nie, Rong; Wang, Jiamou; Wang, Xuan; Liu, Wenbin

    2016-11-01

    Mycoplasmas are a group of microbes that can cause human diseases. The mycoplasmal lipoprotein p37 promotes cancer metastasis, at least in part, by interacting with EGFR. In this study, we show that the p37 lipoprotein binds another member of the EGFR family, HER2, through the HER2 extracellular domain. The binding of p37-HER2 promotes phosphorylation of HER2 and activates the downstream signaling molecule Erk1/2. Because the HER2 signaling pathway contributes to breast tumor metastasis, our results imply that the mycoplasmal lipoprotein p37 may also be involved in breast cancer metastasis. This study contributes to our understanding of mycoplasmal lipoprotein p37 function and its potential involvement in tumorigenesis. Copyright © 2016. Published by Elsevier GmbH.

  13. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1...... the abundance of most of the CKIs, including p27Kip1, p57Kip2, p15ink4b and p18ink4c, was relatively maintained in the migrating epithelial tongue. These data indicate that downmodulation of several G(1)/S-phase cyclins and a relative excess of CKIs may cooperate to ensure the quiescent state of migrating...

  14. Monoclonal antibodies to intermediate filament proteins of human cells: unique and cross-reacting antibodies.

    Science.gov (United States)

    Gown, A M; Vogel, A M

    1982-11-01

    Monoclonal antibodies were generated against the intermediate filament proteins of different human cells. The reactivity of these antibodies with the different classes of intermediate filament proteins was determined by indirect immunofluorescence on cultured cells, immunologic indentification on SDS polyacrylamide gels ("wester blot" experiments), and immunoperoxidase assays on intact tissues. The following four antibodies are described: (a) an antivimentin antibody generated against human fibroblast cytoskeleton; (b), (c) two antibodies that recognize a 54-kdalton protein in human hepatocellular carcinoma cells; and (d) an antikeratin antibody made to stratum corneum that recognizes proteins of molecular weight 66 kdaltons and 57 kdaltons. The antivimentin antibody reacts with vimentin (58 kdaltons), glial fibrillary acidic protein (GFAP), and keratins from stratum corneum, but does not recognize hepatoma intermediate filaments. In immunofluorescence assays, the antibody reacts with mesenchymal cells and cultured epithelial cells that express vimentin. This antibody decorates the media of blood vessels in tissue sections. One antihepatoma filament antibody reacts only with the 54 kdalton protein of these cells and, in immunofluorescence and immunoperoxidase assays, only recognizes epithelial cells. It reacts with almost all nonsquamous epithelium. The other antihepatoma filament antibody is much less selective, reacting with vimentin, GFAP, and keratin from stratum corneum. This antibody decorates intermediate filaments of both mesenchymal and epithelial cells. The antikeratin antibody recognizes 66-kdalton and 57-kdalton proteins in extracts of stratum corneum and also identifies proteins of similar molecular weights in all cells tested. However, by immunofluorescence, this antibody decorates only the intermediate filaments of epidermoid carcinoma cells. When assayed on tissue sections, the antibody reacts with squamous epithelium and some, but not all

  15. Molecular bases of cyclic and specific disulfide interchange between human ERO1alpha protein and protein-disulfide isomerase (PDI).

    Science.gov (United States)

    Masui, Shoji; Vavassori, Stefano; Fagioli, Claudio; Sitia, Roberto; Inaba, Kenji

    2011-05-06

    In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b'-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a'-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis.

  16. Molecular Bases of Cyclic and Specific Disulfide Interchange between Human ERO1α Protein and Protein-disulfide Isomerase (PDI)*

    Science.gov (United States)

    Masui, Shoji; Vavassori, Stefano; Fagioli, Claudio; Sitia, Roberto; Inaba, Kenji

    2011-01-01

    In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b′-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a′-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis. PMID:21398518

  17. Gene-specific correlation of RNA and protein levels in human cells and tissues.

    Science.gov (United States)

    Edfors, Fredrik; Danielsson, Frida; Hallström, Björn M; Käll, Lukas; Lundberg, Emma; Pontén, Fredrik; Forsström, Björn; Uhlén, Mathias

    2016-10-20

    An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.

  18. Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs.

    Directory of Open Access Journals (Sweden)

    Runzhen Zhao

    Full Text Available Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC, cystic fibrosis transmembrane conductance regulator (CFTR, and aquaporin 5 (AQP5 proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI and II (ATII-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3 was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.

  19. Transduction of human primitive repopulating hematopoietic cells with lentiviral vectors pseudotyped with various envelope proteins.

    Science.gov (United States)

    Kim, Yoon-Sang; Wielgosz, Matthew M; Hargrove, Phillip; Kepes, Steven; Gray, John; Persons, Derek A; Nienhuis, Arthur W

    2010-07-01

    Lentiviral vectors are useful for transducing primitive hematopoietic cells. We examined four envelope proteins for their ability to mediate lentiviral transduction of mobilized human CD34(+) peripheral blood cells. Lentiviral particles encoding green fluorescent protein (GFP) were pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G), the amphotropic (AMPHO) murine leukemia virus envelope protein, the endogenous feline leukemia viral envelope protein or the feline leukemia virus type C envelope protein. Because the relative amount of genome RNA per ml was similar for each pseudotype, we transduced CD34(+) cells with a fixed volume of each vector preparation. Following an overnight transduction, CD34(+) cells were transplanted into immunodeficient mice which were sacrificed 12 weeks later. The average percentages of engrafted human CD45(+) cells in total bone marrow were comparable to that of the control, mock-transduced group (37-45%). Lenti-particles pseudotyped with the VSV-G envelope protein transduced engrafting cells two- to tenfold better than particles pseudotyped with any of the gamma-retroviral envelope proteins. There was no correlation between receptor mRNA levels for the gamma-retroviral vectors and transduction efficiency of primitive hematopoietic cells. These results support the use of the VSV-G envelope protein for the development of lentiviral producer cell lines for manufacture of clinical-grade vector.

  20. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among...... proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each...... susceptibility gene's tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model...

  1. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  2. Establishment and characterization of human engineered cells stably expressing large extracellular matrix proteins.

    Science.gov (United States)

    Kwon, Daekee; Kang, Gwang-Sik; Han, Dong Keun; Park, Kwideok; Kim, Jae-Hwan; Lee, Soo-Hong

    2014-01-01

    Commercially available extracellular matrix (ECM) hydrogel-coated culture plates have been used to study the relationship between the ECM microenvironment and stem cell behavior. However, it is unclear whether ECM-coated dishes mimic the natural ECM microenvironment because the architecture of the ECM is constructed of randomly distributed fibers. The purpose of this study was the production and confirmation of human engineered cell lines stably expressing large ECM proteins such as collagen I/II and fibronectin. First, large (over 10 kb) ECM vectors encoding human collagen I/II and fibronectin were constructed and the circular vectors were linearized. Second, the linear ECM vectors were introduced into immortalized human embryonic kidney cells using various transfection methods. The polyethylenimine and liposome methods showed higher efficiencies than electroporation for transfection of these large vectors. Third, human ECM engineered cells were established by stable integration of the vector into the genomic DNA and resulted in stable overexpression of mRNA and proteins. In summary, human engineered cell lines stably expressing large ECM proteins such as human collagen I/II and fibronectin were successfully prepared, and secretion of the ECM components into the surrounding environment was confirmed by immunocytochemistry. Thus, human ECM engineered cells naturally secreting ECM components could be valuable for studying the relationship between the native ECM microenvironment and stem cell behavior.

  3. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    Science.gov (United States)

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV.IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  4. The potential for targeting extracellular LOX proteins in human malignancy.

    Science.gov (United States)

    Mayorca-Guiliani, Alejandro; Erler, Janine T

    2013-11-25

    The extracellular matrix (ECM) is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX) enzymes cross-links collagens and elastin and, therefore, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths. However, LOX biosynthesis results in by-product with antiproliferative properties in certain cancers, and LOX enzymes may have different effects depending on the molecular network in which they are active. Therefore, the design of therapies targeting the LOX family needs to be guided by the molecular makeup of the individual disease and will probably require other agents to act on both the LOX enzymes and their associated network.

  5. The potential for targeting extracellular LOX proteins in human malignancy

    Directory of Open Access Journals (Sweden)

    Mayorca-Guiliani A

    2013-11-01

    Full Text Available Alejandro Mayorca-Guiliani, Janine T Erler Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark Abstract: The extracellular matrix (ECM is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX enzymes cross-links collagens and elastin and, therefore, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths. However, LOX biosynthesis results in by-product with antiproliferative properties in certain cancers, and LOX enzymes may have different effects depending on the molecular network in which they are active. Therefore, the design of therapies targeting the LOX family needs to be guided by the molecular makeup of the individual disease and will probably require other agents to act on both the LOX enzymes and their associated network. Keywords: cancer, extracellular matrix, lysyl oxidase, metastasis

  6. The potential for targeting extracellular LOX proteins in human malignancy

    Science.gov (United States)

    Mayorca-Guiliani, Alejandro; Erler, Janine T

    2013-01-01

    The extracellular matrix (ECM) is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX) enzymes cross-links collagens and elastin and, therefore, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths. However, LOX biosynthesis results in by-product with antiproliferative properties in certain cancers, and LOX enzymes may have different effects depending on the molecular network in which they are active. Therefore, the design of therapies targeting the LOX family needs to be guided by the molecular makeup of the individual disease and will probably require other agents to act on both the LOX enzymes and their associated network. PMID:24348049

  7. C21orf57 is a human homologue of bacterial YbeY proteins.

    Science.gov (United States)

    Ghosal, Anubrata; Köhrer, Caroline; Babu, Vignesh M P; Yamanaka, Kinrin; Davies, Bryan W; Jacob, Asha I; Ferullo, Daniel J; Gruber, Charley C; Vercruysse, Maarten; Walker, Graham C

    2017-03-11

    The product of the human C21orf57 (huYBEY) gene is predicted to be a homologue of the highly conserved YbeY proteins found in nearly all bacteria. We show that, like its bacterial and chloroplast counterparts, the HuYbeY protein is an RNase and that it retains sufficient function in common with bacterial YbeY proteins to partially suppress numerous aspects of the complex phenotype of an Escherichia coli ΔybeY mutant. Expression of HuYbeY in Saccharomyces cerevisiae, which lacks a YbeY homologue, results in a severe growth phenotype. This observation suggests that the function of HuYbeY in human cells is likely regulated through specific interactions with partner proteins similarly to the way YbeY is regulated in bacteria.

  8. The human fatty acid-binding protein family: Evolutionary divergences and functions

    Directory of Open Access Journals (Sweden)

    Smathers Rebecca L

    2011-03-01

    Full Text Available Abstract Fatty acid-binding proteins (FABPs are members of the intracellular lipid-binding protein (iLBP family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20 fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

  9. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein.

    Science.gov (United States)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W; Shen, Rong-Fong; Daniels, Mathew P; Levine, Stewart J

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  10. The Peptide Network between Tetanus Toxin and Human Proteins Associated with Epilepsy

    Directory of Open Access Journals (Sweden)

    Guglielmo Lucchese

    2014-01-01

    Full Text Available Sequence matching analyses show that Clostridium tetani neurotoxin shares numerous pentapeptides (68, including multiple occurrences with 42 human proteins that, when altered, have been associated with epilepsy. Such a peptide sharing is higher than expected, nonstochastic, and involves tetanus toxin-derived epitopes that have been validated as immunopositive in the human host. Of note, an unexpected high level of peptide matching is found in mitogen-activated protein kinase 10 (MK10, a protein selectively expressed in hippocampal areas. On the whole, the data indicate a potential for cross-reactivity between the neurotoxin and specific epilepsy-associated proteins and may help evaluate the potential risk for epilepsy following immune responses induced by tetanus infection. Moreover, this study may contribute to clarifying the etiopathogenesis of the different types of epilepsy.

  11. Regulation of SUMO2 Target Proteins by the Proteasome in Human Cells Exposed to Replication Stress

    DEFF Research Database (Denmark)

    Bursomanno, Sara; McGouran, Joanna F; Kessler, Benedikt M

    2015-01-01

    In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role of the prot......In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role...... of genome instability, which is suggested to drive tumorigenesis and possibly aging, our data will facilitate future functional studies in the fields of DNA metabolism and cancer biology....

  12. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3.

  13. Identification of novel human WW domain-containing proteins by cloning of ligand targets.

    Science.gov (United States)

    Pirozzi, G; McConnell, S J; Uveges, A J; Carter, J M; Sparks, A B; Kay, B K; Fowlkes, D M

    1997-06-06

    A recently described protein module consisting of 35-40 semiconserved residues, termed the WW domain, has been identified in a number of diverse proteins including dystrophin and Yes-associated protein (YAP). Two putative ligands of YAP, termed WBP-1 and WBP-2, have been found previously to contain several short peptide regions consisting of PPPPY residues (PY motif) that mediate binding to the WW domain of YAP. Although the function(s) of the WW domain remain to be elucidated, these observations strongly support a role for the WW domain in protein-protein interactions. Here we report the isolation of three novel human cDNAs encoding a total of nine WW domains, using a newly developed approach termed COLT (cloning of ligand targets), in which the rapid cloning of modular protein domains is accomplished by screening cDNA expression libraries with specific peptide ligands. Two of the new genes identified appear to be members of a family of proteins, including Rsp5 and Nedd-4, which have ubiquitin-protein ligase activity. In addition, we demonstrate that peptides corresponding to PY and PY-like motifs present in several known signaling or regulatory proteins, including RasGAP, AP-2, p53BP-2 (p53-binding protein-2), interleukin-6 receptor-alpha, chloride channel CLCN5, and epithelial sodium channel ENaC, can selectively bind to certain of these novel WW domains.

  14. Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin.

    Science.gov (United States)

    Ishii, Takeshi; Mori, Taiki; Ichikawa, Tatsuya; Kaku, Maiko; Kusaka, Koji; Uekusa, Yoshinori; Akagawa, Mitsugu; Aihara, Yoshiyuki; Furuta, Takumi; Wakimoto, Toshiyuki; Kan, Toshiyuki; Nakayama, Tsutomu

    2010-07-15

    Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human serum albumin (HSA) by tea catechins and investigate the relationship between catechin chemical structure and its pro-oxidant property. To assess the formation of protein carbonyl in HSA, HSA was incubated with four individual catechins under physiological conditions to generate biotin-LC-hydrazide labeled protein carbonyls. Comparison of catechins using Western blotting revealed that the formation of protein carbonyl in HSA was higher for pyrogallol-type catechins than the corresponding catechol-type catechins. In addition, the formation of protein carbonyl was also found to be higher for the catechins having a galloyl group than the corresponding catechins lacking a galloyl group. The importance of the pyrogallol structural motif in the B-ring and the galloyl group was confirmed using methylated catechins and phenolic acids. These results indicate that the most important structural element contributing to the formation of protein carbonyl in HSA by tea catechins is the pyrogallol structural motif in the B-ring, followed by the galloyl group. The oxidation stability and binding affinity of tea catechins with proteins are responsible for the formation of protein carbonyl, and consequently the difference in these properties of each catechin may contribute to the magnitude of their biological activities.

  15. Hepatitis C virus proteins do not directly trigger fibrogenic events in cultured human liver myofibroblasts.

    Science.gov (United States)

    Tan, K; Guibert, C; Neaud, V; Rosenbaum, J

    2003-11-01

    Although liver fibrosis is the major complication of hepatitis C virus (HCV) infection, the mechanisms of fibrogenesis in this setting are not completely understood. The aim of this study was to test the direct effect of HCV proteins on signalling- and fibrosis-related events in cultured human liver myofibroblasts, the effector cells of liver fibrogenesis. Cultured myofibroblasts were exposed to recombinant HCV core, a structural protein, and nonstructural proteins (NS) 3, NS 4 and NS 5. HCV proteins did not significantly increase DNA synthesis in myofibroblasts. We then examined if these proteins affected early signalling events. None of the HCV proteins affected the phosphorylation of the mitogen activated protein kinases/extracellular regulated kinases 1 and 2, or of the phosphatidylinositol 3-kinase target, Akt. HCV proteins had also no effect on intracellular calcium concentration. In other experiments, fibrogenesis-related parameters were measured. None of the HCV proteins had any effect on the secretion of type I collagen, tissue inhibitor of matrix metalloproteinases type 1, gelatinase or urokinase. Alpha-smooth muscle actin expression was also not modified. In summary, our experiments do not support a direct effect of these HCV proteins on fibrogenic cells.

  16. Identification of human proteins that modify misfolding and proteotoxicity of pathogenic ataxin-1.

    Directory of Open Access Journals (Sweden)

    Spyros Petrakis

    Full Text Available Proteins with long, pathogenic polyglutamine (polyQ sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1-interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.

  17. Humoral and Cell-mediated Autoimmune Reactions to Human Acidic Ribosomal P2 Protein in Individuals Sensitized to Aspergillus fumigatus P2 Protein

    Science.gov (United States)

    Mayer, Christina; Appenzeller, Ulrich; Seelbach, Heike; Achatz, Gernot; Oberkofler, Hannes; Breitenbach, Michael; Blaser, Kurt; Crameri, Reto

    1999-01-01

    A panel of cDNAs encoding allergenic proteins was isolated from an Aspergillus fumigatus cDNA library displayed on the surface of filamentous phage. Solid phase–immobilized serum immunoglobulin E (IgE) from A. fumigatus–allergic individuals was used to enrich phage displaying IgE-binding molecules. One of the cDNAs encoded a 11.1-kD protein that was identified as acidic ribosomal phosphoprotein type 2 (P2 protein). The allergen, formally termed rAsp f 8, shares >62% sequence identity and >84% sequence homology to corresponding eukaryotic P2 proteins, including human P2 protein. The sequences encoding human and fungal P2 protein were subcloned, expressed in Escherichia coli as His6-tagged fusion proteins, and purified by Ni2+–chelate affinity chromatography. Both recombinant P2 proteins were recognized by IgE antibodies from allergic individuals sensitized to the A. fumigatus P2 protein and elicited strong type 1–specific skin reactions in these individuals. Moreover, human and fungal P2 proteins induced proliferative responses in peripheral blood mononuclear cells of A. fumigatus– allergic subjects sensitized to the fungal P2 protein. These data provide strong evidence for in vitro and in vivo humoral and cell-mediated autoreactivity to human P2 protein in patients suffering from chronic A. fumigatus allergy. PMID:10224291

  18. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  19. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  20. Variations in the concentration of total human milk proteins in the first month of lactation

    Directory of Open Access Journals (Sweden)

    Mladenović Marija

    2007-01-01

    Full Text Available Introduction. Human milk proteins are maximally adapted to physiological needs of a neonate. Thus, depending on the speed of the neonatal growth and development, the content of milk proteins changes, both in quantity and quality. Objective. The study was conducted in order to determine variations of total protein concentrations in milk in the first and third lactation week in lactating mothers of term and preterm neonates. Also, we analyzed the influence of the mode of delivery, neonatal Apgar score and parity on the concentration of human milk proteins in both lactation phases. Method. The study aims were evaluated on the sample of 48 women, of whom 33 were mothers of term neonates and 15 of neonates born between the 34th to 37th gestational weeks. Total protein level of the lactation milk from the middle phase was determined using the standard laboratory method (Lowry et al., 1951, and the obtained differences were analyzed by t-test. Results. Total protein concentration in term colostrum was 17.60-45.17 g/l (X=24.71±5.19, while in preterm colostrum it was 28.39-73.30 g/l (X=39.17±11.08. The total protein level of mature milk in women who had term delivery was 11.90-22.11 g/l (X=16.39±2.96, while in women who had preterm delivery it was 14.50-44.19 g/l (X=23.25±8.96. The obtained results indicated that total protein concentration in women who had preterm delivery was significantly higher than that of women who had term delivery, both in the colostral and mature phase of lactation. (p<0.01. Also, the difference in the protein concentration was statistically highly significant (p<0.01 in the colostral and mature phase of lactation, both in women who had term and preterm delivery. Variations in the total protein level of human milk were not significant, depending on the prematurity stage, the mode and severity of delivery and parity, both in the first and third week of lactation. Conclusion. Our results show that total protein concentration

  1. Hepatitis C virus core protein induces neuroimmune activation and potentiates Human Immunodeficiency Virus-1 neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Pornpun Vivithanaporn

    Full Text Available BACKGROUND: Hepatitis C virus (HCV genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection. METHODOLOGY: Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed. PRINCIPAL FINDINGS: HCV-encoded RNA as well as HCV core and non-structural 3 (NS3 proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05 but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8 expression was observed in both microglia and astrocytes (p<0.05. HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05. Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05. HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05. HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05. CONCLUSIONS: HCV core protein exposure caused neuronal injury

  2. Analysis of transcript and protein overlap in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Emanuelsson Olof

    2010-12-01

    Full Text Available Abstract Background An interesting field of research in genomics and proteomics is to compare the overlap between the transcriptome and the proteome. Recently, the tools to analyse gene and protein expression on a whole-genome scale have been improved, including the availability of the new generation sequencing instruments and high-throughput antibody-based methods to analyze the presence and localization of proteins. In this study, we used massive transcriptome sequencing (RNA-seq to investigate the transcriptome of a human osteosarcoma cell line and compared the expression levels with in situ protein data obtained in-situ from antibody-based immunohistochemistry (IHC and immunofluorescence microscopy (IF. Results A large-scale analysis based on 2749 genes was performed, corresponding to approximately 13% of the protein coding genes in the human genome. We found the presence of both RNA and proteins to a large fraction of the analyzed genes with 60% of the analyzed human genes detected by all three methods. Only 34 genes (1.2% were not detected on the transcriptional or protein level with any method. Our data suggest that the majority of the human genes are expressed at detectable transcript or protein levels in this cell line. Since the reliability of antibodies depends on possible cross-reactivity, we compared the RNA and protein data using antibodies with different reliability scores based on various criteria, including Western blot analysis. Gene products detected in all three platforms generally have good antibody validation scores, while those detected only by antibodies, but not by RNA sequencing, generally consist of more low-scoring antibodies. Conclusion This suggests that some antibodies are staining the cells in an unspecific manner, and that assessment of transcript presence by RNA-seq can provide guidance for validation of the corresponding antibodies.

  3. Proteomic-based identification of CD4-interacting proteins in human primary macrophages.

    Directory of Open Access Journals (Sweden)

    Rui André Saraiva Raposo

    Full Text Available BACKGROUND: Human macrophages (Mφ express low levels of CD4 glycoprotein, which is constitutively recycled, and 40-50% of its localization is intracellular at steady-state. Although CD4-interacting proteins in lymphoid cells are well characterised, little is known about the CD4 protein interaction-network in human Mφ, which notably lack LCK, a Src family protein tyrosine kinase believed to stabilise CD4 at the surface of T cells. As CD4 is the main cellular receptor used by HIV-1, knowledge of its molecular interactions is important for the understanding of viral infection strategies. METHODOLOGY/PRINCIPAL FINDINGS: We performed large-scale anti-CD4 immunoprecipitations in human primary Mφ followed by high-resolution mass spectrometry analysis to elucidate the protein interaction-network involved in induced CD4 internalization and degradation. Proteomic analysis of CD4 co-immunoisolates in resting Mφ showed CD4 association with a range of proteins found in the cellular cortex, membrane rafts and components of clathrin-adaptor proteins, whereas in induced internalization and degradation CD4 is associated with components of specific signal transduction, transport and the proteasome. CONCLUSIONS/SIGNIFICANCE: This is the first time that the anti-CD4 co-immunoprecipitation sub-proteome has been analysed in human primary Mφ. Our data have identified important Mφ cell surface CD4-interacting proteins, as well as regulatory proteins involved in internalization and degradation. The data give valuable insights into the molecular pathways involved in the regulation of CD4 expression in Mφ and provide candidates/targets for further biochemical studies.

  4. RAGE inhibits human respiratory syncytial virus syncytium formation by interfering with F-protein function

    OpenAIRE

    2013-01-01

    Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognitio...

  5. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2

    OpenAIRE

    Zhang, Zheng; WANG, GUOXIAN; Li, Chen; Liu, Danping

    2013-01-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2+ ...

  6. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders

    OpenAIRE

    Bouazoune, Karim; Kingston, Robert Edward

    2012-01-01

    Mutations in the CHD7 gene cause human developmental disorders including CHARGE syndrome. Genetic studies in model organisms have further established CHD7 as a central regulator of vertebrate development. Functional analysis of the CHD7 protein has been hampered by its large size. We used a dual-tag system to purify intact recombinant CHD7 protein and found that it is an ATP-dependent nucleosome remodeling factor. Biochemical analyses indicate that CHD7 has characteristics distinct from SWI/S...

  7. Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells

    OpenAIRE

    Tsong-Min Chang; Guey-Yueh Shi; Hua-Lin Wu; Chieh-Hsi Wu; Yan-Di Su; Hui-Lin Wang; Hsin-Yun Wen; Huey-Chun Huang

    2011-01-01

    Salvianolic acid B (Sal B), a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothe...

  8. Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association

    OpenAIRE

    Fu, Dragony; Collins, Kathleen

    2006-01-01

    Cajal bodies are nuclear structures that host RNA modification and assembly reactions. Some RNAs transit Cajal bodies, while others must concentrate in Cajal bodies to function. Here we report that at least a subfraction of human telomerase RNA and individual resident Cajal body RNAs is associated with Sm proteins. Surprisingly, of seven Sm proteins assembled into a heteroheptameric ring, only a subset copurifies telomerase and Cajal body ribonucleoproteins. We show that a Cajal body RNA loca...

  9. Protein and Amino Acid Restriction, Aging and Disease: from yeast to humans

    OpenAIRE

    Mirzaei, Hamed; Suarez, Jorge A.; Valter D Longo

    2014-01-01

    Many of the effects of dietary restriction (DR) on longevity and health span in model organisms have been linked to reduced protein and amino acid (AA) intake and the stimulation of specific nutrient signaling pathways. Studies in yeast have shown that addition of serine, threonine, and valine in media promotes cellular sensitization and aging by activating different but connected pathways. Protein or essential AA restriction extends both lifespan and healthspan in rodent models. In humans, p...

  10. Detection of human immunodeficiency virus type 1 (HIV-1) Tat protein by aptamer-based biosensors

    Science.gov (United States)

    Hashim, Uda; Fatin, M. F.; Ruslinda, A. R.; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    A study was conducted to detect the human immunodeficiency virus (HIV-1) Tat protein using interdigitated electrodes. The measurements and images of the IDEs' finger gaps and the images of chitosan-carbon nanotubes deposited on top of the interdigitated electrodes were taken using the Scanning Electron Microscope. The detection of HIV-1 Tat protein was done using split aptamers and aptamer tail. Biosensors were chosen as diagnostic equipment due to their rapid diagnostic capabilities.

  11. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  12. Long interspersed element-1 protein expression is a hallmark of many human cancers.

    Science.gov (United States)

    Rodić, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H

    2014-05-01

    Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen.

  13. HPIminer: A text mining system for building and visualizing human protein interaction networks and pathways.

    Science.gov (United States)

    Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar

    2015-04-01

    The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    Science.gov (United States)

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  15. Effects of Shuanghuangbu on the total protein content and ultrastructure in cultured human periodontal ligament cells

    Institute of Scientific and Technical Information of China (English)

    许彦枝; 邹慧儒; 王小玲; 刘世正; 王永军

    2004-01-01

    Background Successful periodontal regeneration depends on the migration, proliferation and differentiation of periodontal ligament cells in periodontal defects. The total protein content and the ultrastructure demonstrate the metabolizability and activity of periodontal ligament cells. This study was conducted to observe the effects of Shuanghuangbu, a mixture of medicinal herbs, on the total protein content and the ultrastructure of human periodontal ligament cells.Methods Periodontal ligament cells were grown to confluence and then cultured in Dulbecco's modified eagle medium (DMEM) supplemented with Shuanghuangbu over the concentration range of 0 to 1000 μg/ml. The total protein content in cultured cells was determined by using Coommasie brilliant blue technique. Periodontal ligament cells were incubated in 0 and 100 μg/ml Shuanghuangbu decoction for 5 days, then observed through transmission electron microscope.Results The total protein content of human periodontal ligament cells increased in each experiment group added 10-1000 μg/ml Shuanghuangbu respectively, and the effect of 100 μg/ml was excellent. Under the transmission electron microscope, there were more rough endoplasmic reticulums and mitochodrias in the experiment group than those in the control group. Conclusion Shuanghuangbu stimulates the protein synthesis of human periodontal ligament cells and improves human periodontal ligament cells' metabolizability and activity.

  16. A high confidence, manually validated human blood plasma protein reference set

    DEFF Research Database (Denmark)

    Schenk, Susann; Schoenhals, Gary J; de Souza, Gustavo

    2008-01-01

    sources, including the HUPO PPP dataset. CONCLUSION: Superior instrumentation combined with rigorous validation criteria gave rise to a set of 697 plasma proteins in which we have very high confidence, demonstrated by an exceptionally low false peptide identification rate of 0.29%.......BACKGROUND: The immense diagnostic potential of human plasma has prompted great interest and effort in cataloging its contents, exemplified by the Human Proteome Organization (HUPO) Plasma Proteome Project (PPP) pilot project. Due to challenges in obtaining a reliable blood plasma protein list...

  17. Chromosomal localization of murine and human oligodendrocyte-specific protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, J.M.; Wu, S.; Korenberg, J.R. [UCLA School of Medicine, Los Angeles, CA (United States)] [and others

    1996-06-01

    Oligodendrocyte-specific protein (OSP) is a recently described protein present only in myelin of the central nervous system. Several inherited disorders of myelin are caused by mutations in myelin genes but the etiology of many remain unknown. We mapped the location of the mouse OSP gene to the proximal region of chromosome 3 using two sets of multilocus crosses and to human chromosome 3 using somatic cell hybrids. Fine mapping with fluorescence in situ hybridization placed the OSP gene at human chromosome 3q26.2-q26.3. To date, there are no known inherited neurological disorders that localize to these regions. 24 refs., 2 figs.

  18. An approach to including protein quality when assessing the net contribution of livestock to human food supply.

    Science.gov (United States)

    Ertl, P; Knaus, W; Zollitsch, W

    2016-11-01

    The production of protein from animal sources is often criticized because of the low efficiency of converting plant protein from feeds into protein in the animal products. However, this critique does not consider the fact that large portions of the plant-based proteins fed to animals may be human-inedible and that the quality of animal proteins is usually superior as compared with plant proteins. The aim of the present study was therefore to assess changes in protein quality in the course of the transformation of potentially human-edible plant proteins into animal products via livestock production; data from 30 Austrian dairy farms were used as a case study. A second aim was to develop an approach for combining these changes with quantitative aspects (e.g. with the human-edible feed conversion efficiency (heFCE), defined as kilogram protein in the animal product divided by kilogram potentially human-edible protein in the feeds). Protein quality of potentially human-edible inputs and outputs was assessed using the protein digestibility-corrected amino acid score and the digestible indispensable amino acid score, two methods proposed by the Food and Agriculture Organization of the United Nations to describe the nutritional value of proteins for humans. Depending on the method used, protein scores were between 1.40 and 1.87 times higher for the animal products than for the potentially human-edible plant protein input on a barn-gate level (=protein quality ratio (PQR)). Combining the PQR of 1.87 with the heFCE for the same farms resulted in heFCE×PQR of 2.15. Thus, considering both quantity and quality, the value of the proteins in the animal products for human consumption (in this case in milk and beef) is 2.15 times higher than that of proteins in the potentially human-edible plant protein inputs. The results of this study emphasize the necessity of including protein quality changes resulting from the transformation of plant proteins to animal proteins when

  19. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  20. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  1. Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM).

    Science.gov (United States)

    Huang, Jincui; Kailemia, Muchena J; Goonatilleke, Elisha; Parker, Evan A; Hong, Qiuting; Sabia, Rocchina; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B

    2017-01-01

    Human milk plays a substantial role in the child growth, development and determines their nutritional and health status. Despite the importance of the proteins and glycoproteins in human milk, very little quantitative information especially on their site-specific glycosylation is known. As more functions of milk proteins and other components continue to emerge, their fine-detailed quantitative information is becoming a key factor in milk research efforts. The present work utilizes a sensitive label-free MRM method to quantify seven milk proteins (α-lactalbumin, lactoferrin, secretory immunoglobulin A, immunoglobulin G, immunoglobulin M, α1-antitrypsin, and lysozyme) using their unique peptides while at the same time, quantifying their site-specific N-glycosylation relative to the protein abundance. The method is highly reproducible, has low limit of quantitation, and accounts for differences in glycosylation due to variations in protein amounts. The method described here expands our knowledge about human milk proteins and provides vital details that could be used in monitoring the health of the infant and even the mother. Graphical Abstract The glycopeptides EICs generated from QQQ.

  2. Expression of TMEM166 protein in human normal and tumor tissues.

    Science.gov (United States)

    Xu, Dong; Yang, Fan; He, Huiying; Hu, Jia; Lv, Xiaodong; Ma, Dalong; Chen, Ying Yu

    2013-12-01

    Transmembrane protein 166 (TMEM166) is a novel human regulator involved in both autophagy and apoptosis. In this study, we generated a specific rabbit polyclonal antibody against human TMEM166 and assessed the expression of this protein in various human normal and tumor tissue samples by tissue microarray-based immunohistochemical analysis. Varying TMEM166 protein levels were expressed in a cell-type and tissue-type-specific manner in detected tissues or organs. Strong TMEM166 expression was shown in the glomerular zona of the adrenal cortex, chromophil cells of the pituitary gland, islet cells, squamous epithelium of the esophagus mucosa, the fundic gland, and hepatocytes. Moderate or weak TMEM166 staining was identified in the parathyroid gland, the testis, vaginal stratified squamous cells, lung macrophages, hematopoietic cells, renal tubular epithelial cells, macrophages in the spleen red pulp, and neuronal cells in the cerebral cortex. Some tissues failed to stain for TMEM166, such as adipose tissue, colon, cerebellum, lymph node, mammary gland, ovary, prostate, rectum, skin, small intestine, thyroid gland, tonsil, and thymus. In comparing human normal and tumor tissues, TMEM166 expression was widely downregulated in the cancer tissues. Our studies provide the basis for future investigations into cell-type-specific functions of this protein in human normal and tumor tissues.

  3. LYZL6, an acidic, bacteriolytic, human sperm-related protein, plays a role in fertilization

    Science.gov (United States)

    Huang, Peng; Li, Wenshu; Yang, Zhifang; Zhang, Ning; Xu, Yixin; Bao, Jianying; Jiang, Deke; Dong, Xianping

    2017-01-01

    Lysozyme-like proteins (LYZLs) belong to the c-type lysozyme/α-lactalbumin family and are selectively expressed in the mammalian male reproductive tract. Two members, human sperm lysozyme-like protein (SLLP) -1 and mouse LYZL4, have been reported to contribute to fertilization but show no bacteriolytic activity. Here, we focused on the possible contribution of LYZL6 to immunity and fertilization. In humans, LYZL6 was selectively expressed by the testis and epididymis and became concentrated on spermatozoa. Native LYZL6 isolated from sperm extracts exhibited bacteriolytic activity against Micrococcus lysodeikticus. Recombinant LYZL6 (rLYZL6) reached its peak activity at pH 5.6 and 15 mM of Na+, and could inhibit the growth of Gram-positive, but not Gram-negative bacteria. Nevertheless, the bacteriolytic activity of rLYZL6 proved to be much lower than that of human lysozyme under physiological conditions. Immunodetection with a specific antiserum localized the LYZL6 protein on the postacrosomal membrane of mature spermatozoa. Immunoneutralization of LYZL6 significantly decreased the numbers of human spermatozoa fused with zona-free hamster eggs in a dose-dependent manner in vitro. Thus, we report here for the first time that LYZL6, an acidic, bacteriolytic and human sperm-related protein, is likely important for fertilization but not for the innate immunity of the male reproductive tract. PMID:28182716

  4. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  5. Expression of survivin, a novel apoptosis inhibitor and cell cycle regulatory protein, in human gliomas

    Institute of Scientific and Technical Information of China (English)

    焦保华; 姚志刚; 耿少梅; 左书浩

    2004-01-01

    @@ Recently, a novel anti-apoptosis gene, named survivin,was identified as a structurally unique member of the inhibitor of apoptosis protein (lAP) family. The gene is located on chromosome 17q25. Survivin is a 16.5 kDa protein that is expressed in vivo in common human cancers, but not in normal adjacent tissue,1 during the G2/M phase of the cell cycle. Survivin expression is turned off during fetal development and not found in nonneoplastic adult human tissue, and it is turned on in most common human cancers. We investigated the expression of survivin in 50 patients with human gliomas, and determined its association with cell apoptosis and cell proliferation, and its impact on tumor progression and prognosis.

  6. Constructing the HBV-human protein interaction network to understand the relationship between HBV and hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Huang De-Rong

    2010-11-01

    Full Text Available Abstract Background Epidemiological studies have clearly validated the association between hepatitis B virus (HBV infection and hepatocellular carcinoma (HCC. Patients with chronic HBV infection are at increased risk of HCC, in particular those with active liver disease and cirrhosis. Methods We catalogued all published interactions between HBV and human proteins, identifying 250 descriptions of HBV and human protein interactions and 146 unique human proteins that interact with HBV proteins by text mining. Results Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HBV are made up of core proteins that are interconnected with many pathways. A global analysis based on functional annotation highlighted the enrichment of cellular pathways targeted by HBV. Conclusions By connecting the cellular proteins targeted by HBV, we have constructed a central network of proteins associated with hepatocellular carcinoma, which might be to regard as the basis of a detailed map for tracking new cellular interactions, and guiding future investigations.

  7. Natural selection on protein-coding genes in the human genome

    DEFF Research Database (Denmark)

    Bustamente, Carlos D.; Fledel-Alon, Adi; Williamson, Scott

    2005-01-01

    Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection 1, 2, 3, 4 . The extent to which weak negative and positive darwini......, show an excess of rapidly evolving genes, whereas others, such as cytoskeletal proteins, show an excess of genes with extensive amino acid polymorphism within humans and yet little amino acid divergence between humans and chimpanzees....

  8. wKinMut-2: Identification and Interpretation of Pathogenic Variants in Human Protein Kinases

    DEFF Research Database (Denmark)

    Vazquez, Miguel; Pons, Tirso; Brunak, Søren;

    2016-01-01

    is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random...... forest approach. To understand the biological mechanisms