WorldWideScience

Sample records for human cancer genes

  1. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  2. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  3. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  4. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    Science.gov (United States)

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  5. Cancer genes hypermethylated in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Vincenzo Calvanese

    Full Text Available Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.

  6. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  7. Gene Therapy of Human Breast Cancer

    Science.gov (United States)

    1996-10-01

    1987. Partial characterization of chicken spleen cell culture supernatants stimulated with Staphylococcus aureus. Developmental & Comparative...Immunology 1 1: 191. 8. Schoof, D. D., and C. H. Tempelis. 1 986. The role of soluble protein A in chicken spleen cell activation. Developmental...promoter upstream of the neomycin phosphotransferase gene. No other eukarjotic genes are expressed. Other sequences include an intron and poly(A) site

  8. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  9. A Gene Regulatory Program in Human Breast Cancer.

    Science.gov (United States)

    Li, Renhua; Campos, John; Iida, Joji

    2015-12-01

    Molecular heterogeneity in human breast cancer has challenged diagnosis, prognosis, and clinical treatment. It is well known that molecular subtypes of breast tumors are associated with significant differences in prognosis and survival. Assuming that the differences are attributed to subtype-specific pathways, we then suspect that there might be gene regulatory mechanisms that modulate the behavior of the pathways and their interactions. In this study, we proposed an integrated methodology, including machine learning and information theory, to explore the mechanisms. Using existing data from three large cohorts of human breast cancer populations, we have identified an ensemble of 16 master regulator genes (or MR16) that can discriminate breast tumor samples into four major subtypes. Evidence from gene expression across the three cohorts has consistently indicated that the MR16 can be divided into two groups that demonstrate subtype-specific gene expression patterns. For example, group 1 MRs, including ESR1, FOXA1, and GATA3, are overexpressed in luminal A and luminal B subtypes, but lowly expressed in HER2-enriched and basal-like subtypes. In contrast, group 2 MRs, including FOXM1, EZH2, MYBL2, and ZNF695, display an opposite pattern. Furthermore, evidence from mutual information modeling has congruently indicated that the two groups of MRs either up- or down-regulate cancer driver-related genes in opposite directions. Furthermore, integration of somatic mutations with pathway changes leads to identification of canonical genomic alternations in a subtype-specific fashion. Taken together, these studies have implicated a gene regulatory program for breast tumor progression.

  10. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  11. Aberrant rel/nfkb genes and activity in human cancer.

    Science.gov (United States)

    Rayet, B; Gélinas, C

    1999-11-22

    Rel/NF-kappaB transcription factors are key regulators of immune, inflammatory and acute phase responses and are also implicated in the control of cell proliferation and apoptosis. Remarkable progress has been made in understanding the signal transduction pathways that lead to the activation of Rel/NF-kappaB factors and the consequent induction of gene expression. Evidence linking deregulated Rel/NF-kappaB activity to oncogenesis in mammalian systems has emerged in recent years, consistent with the acute oncogenicity of the viral oncoprotein v-Rel in animal models. Chromosomal amplification, overexpression and rearrangement of genes coding for Rel/NF-kappaB factors have been noted in many human hematopoietic and solid tumors. Persistent nuclear NF-kappaB activity was also described in several human cancer cell types, as a result of constitutive activation of upstream signaling kinases or mutations inactivating inhibitory IkappaB subunits. Studies point to a correlation between the activation of cellular gene expression by Rel/NF-kappaB factors and their participation in the malignant process. Experiments implicating NF-kappaB in the control of the apoptotic response also support a role in oncogenesis and in the resistance of tumor cells to chemotherapy. This review focuses on the status of the rel, nfkb and ikb genes and their activity in human tumors and their association with the onset or progression of malignancies.

  12. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  13. Differential BCCIP gene expression in primary human ovarian cancer, renal cell carcinoma and colorectal cancer tissues.

    Science.gov (United States)

    Liu, Xiaoxia; Cao, Lingling; Ni, Jinsong; Liu, Ning; Zhao, Xiaoming; Wang, Yanfang; Zhu, Lin; Wang, Lingyao; Wang, Jin; Yue, Ying; Cai, Yong; Jin, Jingji

    2013-12-01

    Human BCCIP, a protein which interacts with BRCA2 and CDKN1A (Cip1, p21), has been implicated in many cellular processes including cell cycle regulation, DNA recombination and damage repair, telomere maintenance, embryonic development and genomic stability. BCCIP gene expression, which is an important BRCA2 cofactor in tumor suppression, has been identified in some primary cancers. Thus, we investigated the role of BCCIP expression in a large sample of clinically diagnosed primary ovarian cancer, renal cell carcinoma (RCC) and colorectal cancer (CRC) tissues. Using clinically diagnosed frozen primary cancer tissues, quantitative PCR (qPCR), western blot analysis (WB) and immunohistochemical staining (IHC) approaches were used to detect and measure gene expression. Reduced BCCIP gene expression in ovarian cancer, RCC and CRC tissues occurred in 74, 89 and 75% of tissue samples, respectively. qPCR analysis of mRNA expression in 54 ovarian cancer, 50 RCC and 44 CRC samples revealed significant (>2-fold decreased) BCCIP downregulation in 56, 70 and 46% of tissue samples, respectively. Although BCCIP expression in three different tumor tissues decreased, the relationship between BCCIP expression and clinicopathological features of each cancer was distinct. Compared to normal tissues, BCCIP expression in ovarian cancers was significantly downregulated in serous, endometrioid and mucinous carcinomas. Downregulation of BCCIP expression was strongly associated with clear cell RCC (ccRCC) and Fuhrman tumor grading, but significant differences in BCCIP expression between CRC and matched normal tissues occurred only in male CRC tissues (ptissue with a T4 tumor stage (ptissue samples (phuman ovarian cancer, RCC and CRC tissues, suggesting a role for the gene in the pathogenesis of these cancers.

  14. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Lindsay J. Stanbridge

    2003-01-01

    Full Text Available Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.

  15. Single and Multiple Gene Manipulations in Mouse Models of Human Cancer

    Science.gov (United States)

    Lehman, Heather L; Stairs, Douglas B

    2015-01-01

    Mouse models of human cancer play a critical role in understanding the molecular and cellular mechanisms of tumorigenesis. Advances continue to be made in modeling human disease in a mouse, though the relevance of a mouse model often relies on how closely it is able to mimic the histologic, molecular, and physiologic characteristics of the respective human cancer. A classic use of a genetically engineered mouse in studying cancer is through the overexpression or deletion of a gene. However, the manipulation of a single gene often falls short of mimicking all the characteristics of the carcinoma in humans; thus a multiple gene approach is needed. Here we review genetic mouse models of cancers and their abilities to recapitulate human carcinoma with single versus combinatorial approaches with genes commonly involved in cancer. PMID:26380553

  16. Viral Etiology Relationship between Human Papillomavirus and Human Breast Cancer and Target of Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    YAN Chen; TENG Zhi Ping; CHEN Yun Xin; SHEN Dan Hua; LI Jin Tao; ZENG Yi

    2016-01-01

    ObjectiveTo explore the viral etiology of human breast cancer to determine whether there are novel molecular targets for gene therapy of breast cancer and provide evidence for the research of gene therapy and vaccine development for breast cancer. MethodsPCR was used to screen HPV16 and HPV18 oncogenesE6 andE7 in the SKBR3 cell line andin 76 paraffin embedded breast cancer tissue samples. RNA interference was used to knock down the expression of HPV18E6 andE7 in SKBR3 cells, then the changes in the expression of cell-cycle related proteins, cell viability, colony formation, metastasis, and cell cycle progression were determined. ResultsHPV18 oncogenesE6 andE7 were amplified and sequenced from the SKBR3 cells. Ofthe patient samples, 6.58% and 23.68% were tested to bepositivefor HPV18E6 and HPV18E7. In the cell culture models, the knockdown of HPV18E6 andE7 inhibited the proliferation, metastasis, and cell cycle progression of SKBR3 cell. The knockdown also clearly affected the expression levels of cell cycle related proteins. ConclusionHPV was a contributor to virus causedhuman breast cancer, suggesting that the oncogenes in HPV were potential targets for gene therapy of breast cancer.

  17. Inactivation of X-linked tumor suppressor genes in human cancer.

    Science.gov (United States)

    Liu, Runhua; Kain, Mandy; Wang, Lizhong

    2012-04-01

    Cancer cells silence autosomal tumor suppressor genes by Knudson's two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of 'two-hit inactivation' in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches in cancer therapy.

  18. Serotype Chimeric Human Adenoviruses for Cancer GeneTherapy

    Directory of Open Access Journals (Sweden)

    Akseli Hemminki

    2010-09-01

    Full Text Available Cancer gene therapy consists of numerous approaches where the common denominator is utilization of vectors for achieving therapeutic effect. A particularly potent embodiment of the approach is virotherapy, in which the replication potential of an oncolytic virus is directed towards tumor cells to cause lysis, while normal cells are spared. Importantly, the therapeutic effect of the initial viral load is amplified through viral replication cycles and production of progeny virions. All cancer gene therapy approaches rely on a sufficient level of delivery of the anticancer agent into target cells. Thus,enhancement of delivery to target cells, and reduction of delivery to non-target cells, in an approach called transductional targeting, is attractive. Both genetic and non-genetic retargeting strategies have been utilized. However, in the context of oncolytic viruses, it is beneficial to have the specific modification included in progeny virions and hence genetic modification may be preferable. Serotype chimerism utilizes serotype specific differences in receptor usage, liver tropism and seroprevalence in order to gain enhanced infection of target tissue. This review will focus on serotype chimeric adenoviruses for cancer gene therapy applications.

  19. β-2 microglobulin is unsuitable as an internal reference gene for the analysis of gene expression in human colorectal cancer.

    Science.gov (United States)

    Nihon-Yanagi, Yasuhiro; Terai, Kensuke; Murano, Takeyoshi; Kawai, Takayuki; Kimura, Shinya; Okazumi, Shinichi

    2013-03-01

    It is well-known that gene expression levels should be normalized to a carefully selected and appropriately stable internal control gene. However, numerous studies have demonstrated that the expression of housekeeping (HK) genes, typically used as internal control genes varies considerably. A number of studies have shown that β-2 microglobulin (B2M), an HK gene, frequently used as an internal reference gene, is expressed at low levels in colorectal cancer tissue, when assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Due to the fact that the expression levels of various HK genes vary depending on the tissue type or experimental conditions, it has been suggested that several control genes should be analyzed in parallel for certain tissues. In the present study, mRNA expression levels of toll-like receptors 2 (TLR2) and 4 (TLR4) in sporadic human colorectal cancerous and non-cancerous tissues were analyzed relative to three HK genes, β-glucuronidase (GUS), β-actin (BA) and B2M, using a commercially available tool. Relative expression levels were quantified using the three genes individually and together, and TLR2 as well as TLR4 expression was compared in cancerous and non-cancerous colorectal tissue specimens. Consistent data were obtained in most cases when GUS and BA were used as internal control genes. When B2M was used as the internal control gene, TLR2 and TLR4 expression was demonstrated to be higher in cancerous compared to non-cancerous colorectal tissues. These results were consistent with previous observations of low-level B2M expression in cancerous colorectal tissue and suggest that B2M may be inappropriate as an internal control gene for gene expression studies of colorectal cancer.

  20. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Kornel E Schuebel

    2007-09-01

    Full Text Available We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be promoter methylated in an individual tumor. When directly compared to gene mutations, we find larger numbers of genes hypermethylated in individual tumors, and a higher frequency of hypermethylation within individual genes harboring either genetic or epigenetic changes. Thus, to enumerate the full spectrum of alterations in the human cancer genome, and to facilitate the most efficacious grouping of tumors to identify cancer biomarkers and tailor therapeutic approaches, both genetic and epigenetic screens should be undertaken.

  1. Mutations of p53 gene exons 4-8 in human esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Ya Li; Jin-Tian Tang; Li-Qun Jia; Pei-Wen Li

    2005-01-01

    AIM: To characterize the tumor suppressor gene p53 mutations in exon 4, esophageal cancer and adjacent noncancerous tissues.METHODS: We performed p53 (exons 4-8) gene mutation analysis on 24 surgically resected human esophageal cancer specimens by PCR, single-strand conformation polymorphism, and DNA sequencing. RESULTS: p53 gene mutations were detected in 9 of 22 (40.9%) esophageal cancer specimens and 10 of 17 (58.8%) adjacent non-cancerous tissues. Eight of sixteen (50.0%) point mutations detected were G-A transitions and 9 of 18 (50.0%) p53 gene mutations occurred in exon 4 in esophageal cancer specimens. Only 1 of 11 mutations detected was G-A transition and 4 of 11 (36.4%) p53 gene mutations occurred in exon 4 in adjacent non-cancerous tissues.CONCLUSION: Mutation of p53 gene in exon 4 may play an important role in development of esophageal cancer. The observation of p53 gene mutation in adjacent noncancerous tissues suggests that p53 gene mutation may be an early event in esophageal carcinogenesis. Some clinical factors, including age, sex, pre-operation therapy and location of tumors, do not influence p53 gene mutation rates.

  2. Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer.

    Science.gov (United States)

    Yang, J; Zhang, Y; Cui, X; Yao, W; Yu, X; Cen, P; Hodges, S E; Fisher, W E; Brunicardi, F C; Chen, C; Yao, Q; Li, M

    2013-03-01

    Deregulated expression of zinc transporters was linked to several cancers. However, the detailed expression profile of all human zinc transporters in normal human organs and in human cancer, especially in pancreatic cancer is not available. The objectives of this study are to investigate the complete expression patterns of 14 ZIP and 10 ZnT transporters in a large number of normal human organs and in human pancreatic cancer tissues and cell lines. We examined the expression patterns of ZIP and ZnT transporters in 22 different human organs and tissues, 11 pairs of clinical human pancreatic cancer specimens and surrounding normal/benign tissues, as well as 10 established human pancreatic cancer cell lines plus normal human pancreatic ductal epithelium (HPDE) cells, using real time RT-PCR and immunohistochemistry. The results indicate that human zinc transporters have tissue specific expression patterns, and may play different roles in different organs or tissues. Almost all the ZIPs except for ZIP4, and most ZnTs were down-regulated in human pancreatic cancer tissues compared to the surrounding benign tissues. The expression patterns of individual ZIPs and ZnTs are similar among different pancreatic cancer lines. Those results and our previous studies suggest that ZIP4 is the only zinc transporter that is significantly up-regulated in human pancreatic cancer and might be the major zinc transporter that plays an important role in pancreatic cancer growth. ZIP4 might serve as a novel molecular target for pancreatic cancer diagnosis and therapy.

  3. Screening and analysis of breast cancer genes regulated by the human mammary microenvironment in a humanized mouse model

    Science.gov (United States)

    Zheng, Mingjie; Wang, Jue; Ling, Lijun; Xue, Dandan; Wang, Shui; Zhao, Yi

    2016-01-01

    Tumor microenvironments play critical regulatory roles in tumor growth. Although mouse cancer models have contributed to the understanding of human tumor biology, the effectiveness of mouse cancer models is limited by the inability of the models to accurately present humanized tumor microenvironments. Previously, a humanized breast cancer model in severe combined immunodeficiency mice was established, in which human breast cancer tissue was implanted subcutaneously, followed by injection of human breast cancer cells. It was demonstrated that breast cancer cells showed improved growth in the human mammary microenvironment compared with a conventional subcutaneous mouse model. In the present study, the novel mouse model and microarray technology was used to analyze changes in the expression of genes in breast cancer cells that are regulated by the human mammary microenvironment. Humanized breast and conventional subcutaneous mouse models were established, and orthotopic tumor cells were obtained from orthotopic tumor masses by primary culture. An expression microarray using Illumina HumanHT-12 v4 Expression BeadChip and database analyses were performed to investigate changes in gene expression between tumors from each microenvironment. A total of 94 genes were differentially expressed between the primary cells cultured from the humanized and conventional mouse models. Significant upregulation of genes that promote cell proliferation and metastasis or inhibit apoptosis, such as SH3-domain binding protein 5 (BTK-associated), sodium/chloride cotransporter 3 and periostin, osteoblast specific factor, and genes that promote angiogenesis, such as KIAA1618, was also noted. Other genes that restrain cell proliferation and accelerate cell apoptosis, including tripartite motif containing TRIM36 and NES1, were downregulated. The present results revealed differences in various aspects of tumor growth and metabolism between the two model groups and indicated the functional

  4. Regulation of deleted in liver cancer-1 gene domains on the proliferation of human colon cancer HT29 cell

    Institute of Scientific and Technical Information of China (English)

    吴平平

    2013-01-01

    Objective To study the role of deleted in liver cancer-1(DLC-1) gene main domains on the regulation of hu-man colon cancer HT29 cell proliferation. Methods Subcloning recombinant plasmid vectors with Rho GTPase activating protein(RhoGAP),sterile alpha motif(SAM)

  5. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Xuan Lu; Dao-Zhen Chen; Shu-Feng Li; Li-Shan Zhang

    2004-01-01

    AIM: To investigate the in vitro effects of suicide gene therepy system of herpes simplex virus thymidine kinase gene (HSV-TK) in combination with the treatment of nucleotide analog-ganciclovir (GCV) on human pancreatic cancer, and to provide a novel clinical therapeutic method for human pancreatic cancer.METHODS: We used a replication defective recombinant retrovirus vector GINaTK (bearing HSV-TK gene) to make packaging cell PA317 produce progeny virions. We then transferred the HSV-TK gene to target cells SW1990 using these progeny virions, and treated these gene-modified tumor cells with GCV to study the sensitivity of the cells to GCV and their bystander effects by routine MTT-method.RESULTS: Packaging cell PA317/TK was successfully constructed, and we acquired SW1990/TK through virus progeny infection. These gene-modified pancreatic cancer cells were sensitive to the treatment of GCV compared with unmodified tumor cells (t=4.15, n=10, P<0.0025). We also observed a remarkable bystander effect by mixing two kinds of cells at different ratio.CONCLUSION: Our data demonstrate that HSV-TK/GCV suicide gene therapy system is effective for treating experimental human pancreatic cancer, which is largely resistant to the common therapies, so the suicide gene therapy system may be a potential treatment approach for pancreatic cancer.

  6. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  7. Studies of Differentially-Expressed Genes in Human Endometrial Cancer of Various Differentiated Grades

    Institute of Scientific and Technical Information of China (English)

    Bin Cai; David Hogg; Guangzhong Lu; Ling Liu; Xiaowei Xi; Wei Xu; Huifang Lu; Yongbin Yang; Xiaoping Wan

    2007-01-01

    OBJECTIVE To study the gene expression profiles of human endometrial cancers at various differentiaOted grade levels and to identify the genes related to differentiation of the endometrial cancers. METHODS cDNA microarray technology was used to analyze the differentially-expressed genes among different differentiated grades of 32 cases of endometrial cancer. Hierarchical cluster analysis (HCA) for the gene expression profiles of the cases was employed. RESULTS The tissue samples were grouped based on the various dif ferentiated tumor grades with 33 differentiation-related genes identified out (P<0.001). Based on the results from the HCA, the conformity rate was 91% among the 33 differentially-expressed genes and the analysis of pathological classification.CONCLUSION Genes related to the differentiation of endometrial cancer can be identified by using gene chips to analyze the expression profiles of endometrial cancers at various differentiated grades; HCA of the gene expression profiles can be helpful for distinguishing high-risk endometrial cancers before surgery.

  8. NORTHERN BLOT ANALYSIS OF nm23 GENE EXPRESSION IN HUMAN LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    LIU Lun-xu; ZHOU Qing-hua; SHI Ying-kang; QIN Yang; SUN Zhi-lin; SUN Ze-fang

    1999-01-01

    Objective: To investigate the role of nm23 gene expression in human lung cancer. Methods: Forty human lung cancer tissues and 19 non-cancer pulmonary tissues were studied for their nm23-H1 and nm23-H2 mRNA expression with non-radioactive Northern blot hybridization. The correlation of nm23 mRNA expression with clinical features of lung cancer was analyzed. Results: The mRNA expression of nm23-H2 gene in poorly differentiated squamous cell carcinoma was significantly decreased compared to that in moderate-high differentiated squamous cell carcinoma. The mRNA expression of nm23-H1 and nm23-H2 gene in small cell lung cancer was significantly decreased compared to that in squamous cell carcinoma. No significant difference in nm23 mRNA expression was observed between lung cancer with and without lymph node metastasis, nor was there significant difference between tumor stage. Conclusion: The mRNA expression of nm23 gene is correlated with the degree of differentiation of lung cancer, but there is no evidence of metastasis suppression effect by nm23 gene.

  9. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles

    Directory of Open Access Journals (Sweden)

    Tchou Julia

    2012-09-01

    Full Text Available Abstract Background Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2 of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. Methods To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC and six Her2+. Results We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER + cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs likely contribute to the enhanced migration of breast cancer cells in transwell assays and may contribute to the unfavorable prognosis of Her2+ breast cancer. Conclusions These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer.

  10. CAGE: A Database of Cancer Genes of Human, Mouse and Rat

    Directory of Open Access Journals (Sweden)

    Sana Khalid

    2011-11-01

    Full Text Available CAGE is the database of cancer genes of human, mouse and rat. We have designed PCR oligonucleotide primer sequences for each gene, with their features and conditions given. This feature alone greatly facilitates researchers in PCR amplification of genes sequences, especially in cloning experiments. Currently it encompasses more than 1000 nucleotide entries. Flexible database design, easy expandability, and easy retrieval of information are the main features of this database. The Database is publicly available at cgdb.pakbiz.org.

  11. Transcriptome Analysis Identifies the Dysregulation of Ultraviolet Target Genes in Human Skin Cancers.

    Science.gov (United States)

    Shen, Yao; Kim, Arianna L; Du, Rong; Liu, Liang

    2016-01-01

    Exposure to ultraviolet radiation (UVR) is a major risk factor for both melanoma and non-melanoma skin cancers. In addition to its mutagenic effect, UVR can also induce substantial transcriptional instability in skin cells affecting thousands of genes, including many cancer genes, suggesting that transcriptional instability may be another important etiological factor in skin photocarcinogenesis. In this study, we performed detailed transcriptomic profiling studies to characterize the kinetic changes in global gene expression in human keratinocytes exposed to different UVR conditions. We identified a subset of UV-responsive genes as UV signature genes (UVSGs) based on 1) conserved UV-responsiveness of this subset of genes among different keratinocyte lines; and 2) UV-induced persistent changes in their mRNA levels long after exposure. Interestingly, 11 of the UVSGs were shown to be critical to skin cancer cell proliferation and survival. Through computational Gene Set Enrichment Analysis, we demonstrated that a significant portion of the UVSGs were dysregulated in human skin squamous cell carcinomas, but not in other human malignancies. This highlights the potential and specificity of the UVSGs in clinical diagnosis of UV damage and stratification of skin cancer risk.

  12. Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification

    Science.gov (United States)

    Chen, Liming; Jenjaroenpun, Piroon; Pillai, Andrea Mun Ching; Ivshina, Anna V.; Ow, Ghim Siong; Efthimios, Motakis; Zhiqun, Tang; Lee, Song-Choon; Rogers, Keith; Ward, Jerrold M.; Mori, Seiichi; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.; Ban, Kenneth Hon-Kim; Kuznetsov, Vladimir A.; Thiery, Jean Paul

    2017-01-01

    Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers. PMID:28251929

  13. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  14. Genomic structure of the human BCCIP gene and its expression in cancer.

    Science.gov (United States)

    Meng, Xiangbing; Liu, Jingmei; Shen, Zhiyuan

    2003-01-02

    Human BCCIPalpha (Tok-1alpha) is a BRCA2 and CDKN1A (Cip1, p21) interacting protein. Our previous studies have showed that overexpression of BCCIPalpha inhibits the growth of certain tumor cells [Oncogene 20 (2001) 336]. In this study, we report the genomic structure of the human BCCIP gene, which contains nine exons. Alternative splicing of the 3'-terminal exons produces two isoforms of BCCIP transcripts, BCCIPalpha and BCCIPbeta. The BCCIP gene is flanked by two genes that are transcribed in the opposite orientation of the BCCIP gene. It lies head-to-head and shares a bi-directional promoter with the uroporphyrinogen III synthase (UROS) gene. The last three exons of BCCIP gene overlap the 3'-terminal seven exons of a DEAD/H helicase-like gene (DDX32). Using a matched normal/tumor cDNA array, we identified a reduced expression of BCCIP in kidney tumor, suggesting a role of BCCIP in cancer etiology.

  15. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Elo, J.P.; Kvist, L.; Leinonen, K.; Isomaa, V. [Univ. of Oulu (Finland)] [and others

    1995-12-01

    Androgens are necessary for the development of prostatic cancer. The mechanisms by which the originally androgen-dependent prostatic cancer cells are relieved of the requirement to use androgen for their growth are largely unknown. The human prostatic cancer cell line LNCaP has been shown to contain a point mutation in the human androgen receptor gene (hAR), suggesting that changes in the hAR may contribute to the abnormal hormone response of prostatic cells. To search for point mutations in the hAR, we used single strand conformation polymorphism analysis and a polymerase chain reaction direct sequencing method to screen 23 prostatic cancer specimens from untreated patients, 6 prostatic cancer specimens from treated patients, and 11 benign prostatic hyperplasia specimens. One mutation was identified in DNA isolated from prostatic cancer tissue, and the mutation was also detected in the leukocyte DNA of the patient and his offspring. The mutation changed codon 726 in exon E from arginine to leucine and was a germ line mutation. The mutation we found in exon E of the hAR gene does not alter the ligand binding specificity of the AR, but the mutated receptor was activated by estradiol to a significantly greater extent than the wild-type receptor. The AR gene mutation described in this study might be one explanation for the altered biological activity of prostatic cancer. 36 refs., 4 figs.

  16. THE CONSTRUCTION AND EXPRESSION OF THE MURINE SCFV GENE IN E. COLI AGAINST HUMAN CERVICAL CANCER

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Chen Wei; Li Xu

    2006-01-01

    Objective To obtain the gene of murine Single chain Fv fragment (ScFv) against human cervical cancer and to express it in E. coli. Methods The variable region gene fragments of the heavy and light chains, which were amplified respectively using recombinant DNA techniques from CsA125 hybridoma cells, were spliced together through a flexible linker to ScFv against human cervical cancer. The ScFv genes were then cloned into expression vector pCANTAB 5E and expressed in E. coli HB2151 and TG1 respectively. The soluble ScFv were characterized by SDS PAGE and Western blot. The antigen-binding activities of the soluble and phage displayed ScFv were assayed by ELISA and cell immunohistochemical analysis. Results The expressed ScFv antibodies were soluble and phage displayed. The soluble ScFv secreted and expressed in E. coli HB2151 induced by IPTG were confirmed with SDS-PAGE, Western blot and ELISA. The specific binding capacity of the soluble and phage displayed ScFv to the surface associated antigen of human cervical cancer cell line was further confirmed with immunohistochemical studies. Conclusion The soluble and phage displayed ScFv expressed in E. coli against human cervical cancer showed high, specific affinity for the cervical cancer cell line surface associated antigen.

  17. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

    Science.gov (United States)

    Vrba, Lukas; Muñoz-Rodríguez, José L; Stampfer, Martha R; Futscher, Bernard W

    2013-01-01

    miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.

  18. Gene expression profile differences in high and low metastatic human ovarian cancer cell lines by gene chip

    Institute of Scientific and Technical Information of China (English)

    许沈华; 牟瀚舟; 吕桂泉; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 程勇; 杨文

    2002-01-01

    Objectives To study the difference between gene expressions of high (H0-8910PM) and low (HO-8910) metastatic human ovarian carcinoma cell lines and screen novel associated genes by cDNA microarray. Methods cDNA retro-transcribed from equal quantities of mRNA derived from high and low metastatic tumor cells or normal ovarian tissues were labeled with Cy5 and Cy3 fluorescein as probes. The mixed probe was hybridized with two pieces of BioDoor 4096 double dot human whole gene chip and scanned with a ScanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results A total of 355 genes with expression levels more than 3 times larger were found by comparing the HO-8910 cell with normal ovarian epithelial cells. A total of 323 genes with expression levels more than 3 times larger in HO-8910PM cells compared to normal ovarian epithelium cells were also detected. A total of 165 genes whose expression levels were more than two times those of HO-8910PM cells compared to their mother cell line (HO-8910) were detected. Twenty-one genes with expression levels >3 times were found from comparison of these two tumor cell lines.Conclusions cDNA microarray techniques are effective in screening differential gene expression between two human ovarian cancer cell lines (H0-8910PM; HO-8910) and normal ovarian epithelial cells. These genes may be related to the genesis and development of ovarian carcinoma. Analysis of the human ovarian cancer gene expression profile with cDNA microarray may help in gene diagnosis, treatment and prevention.

  19. Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity

    Institute of Scientific and Technical Information of China (English)

    韩明勇; 郑树; 于金明; 彭佳萍; 郭其森; 王家林

    2004-01-01

    To study the effect of interleukin-18 gene transfection on the tumorigenesis of breast cancer cell line Bacp37, human breast cancer cell line Bcap37 were transfected with Lipofectamine and selected by G418. The biological expression of rhIL-18 was tested by RT-PCR and ELISA method; nude mice were injected with Bcap37 cell with or without the hIL-18 gene. The hIL-18 cDNA was successfully integrated into Bcap37 cell; 126.3±4.5 pg hIL-18 secreted by one million transduced cells in 24 hours. Nude mice injected with IL-18 gene engineered Bcap37 cell had no tumor growth. These findings indicated that human breast cancer cells were successfully modified by the gene of IL-18 cytokine; the IL-18 gene engineered Bcap37 cells secreted hIL-18 and lost their tumorigenicity. The Bcap37 cells transduced with IL-18 gene may be used as breast cancer vaccine.

  20. Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity

    Institute of Scientific and Technical Information of China (English)

    韩明勇; 郑树; 于金明; 彭佳萍; 郭其森; 王家林

    2004-01-01

    To study the effect of interleukin-18 gene transfection on the tumorigenesis of breast cancer cell line Bacp37,human breast cancer cell line Bcap37 were transfected with Lipofectamine and selected by G418.The biological expression of rhIL-18 was tested by RT-PCR and ELISA method;nude mice were injected with Bcap37 cell with or without the hIL-18 gene.The hIL-18 cDNA was successfully integrated into Bcap37 cell; 126.3±4.5pg hIL-18 secreted by one million transduced cells in 24 hours. Nude mice injected with IL-18 gene engineered Bcap37 cell had no tumor growth.These findings indicated that human breast cancer cells were successfully modified by the gene of IL-18 cytokine;the IL-18 gene engineered Bcap37 cells secreted hIL-18 and lost their tumorigenicity.The Bcap37 cells transduced with IL-18 gene may be used as breast cancer vaccine.

  1. MODULATION OF MDR-1 GENE IN HUMAN BREAST CANCER CELLS BY SODIUM BUTYRATE AND DMSO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To analyze the regulation effect of MDR-1 gene inhuman breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure the mRNA level before and after the treatment of sodium butyrate, DMSO, using b -actin as control; 2. Evaluated the effect of sodium butyrate, DMSO on MDR-1 gene expression of human breast cancer at the protein level by immunoflow cytometry; 3. P-glycoprotein function was examined after accumulation of the fluorescent drug, Phodamine-123, by flow cytometry; 4. Chemosensitivity to doxorubicin was analyzed using the MTT assay. Results: Sodium butyrate and DMSO were found to increase the MDR characteristics on MDR-1 gene, MDR-1 expression levels, P-glycoprotein function and chemosensitivity to doxorubicin. Conclusion: sodium butyrate, DMSO can modulate the MDR-1 gene at gene level, protein level, protein function level and cell level.

  2. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  3. Analysis of mitochondrial ND1 gene in human colorectal cancer

    Directory of Open Access Journals (Sweden)

    Mansoureh Akouchekian

    2011-01-01

    Conclusions: Results showed that a high frequency of somatic alterations of mtDNA occurs during the carcinogenesis and/or the progression of colorectal cancer. Based on the mtDNA mutation pattern observed in this study and other pre-viously studies it is believed that looking for somatic mutations in mtDNA would be one of the diagnostic values in early detection of cancer.

  4. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    Directory of Open Access Journals (Sweden)

    Ribeiro Ricardo

    2012-09-01

    Full Text Available Abstract Background Periprostatic (PP adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia. Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated. Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis, whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH. Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable

  5. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue.

    Science.gov (United States)

    Ribeiro, Ricardo; Monteiro, Cátia; Catalán, Victoria; Hu, Pingzhao; Cunha, Virgínia; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Fraga, Avelino; Príncipe, Paulo; Lobato, Carlos; Lobo, Francisco; Morais, António; Silva, Vitor; Sanches-Magalhães, José; Oliveira, Jorge; Pina, Francisco; Lopes, Carlos; Medeiros, Rui; Frühbeck, Gema

    2012-09-25

    Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for prostate cancer progression.

  6. Effect of Polypurine Reverse Hoogsteen Hairpins on Relevant Cancer Target Genes in Different Human Cell Lines.

    Science.gov (United States)

    Villalobos, Xenia; Rodríguez, Laura; Solé, Anna; Lliberós, Carolina; Mencia, Núria; Ciudad, Carlos J; Noé, Véronique

    2015-08-01

    We studied the ability of polypurine reverse Hoogsteen hairpins (PPRHs) to silence a variety of relevant cancer-related genes in several human cell lines. PPRHs are hairpins formed by two antiparallel polypurine strands bound by intramolecular Hoogsteen bonds linked by a pentathymidine loop. These hairpins are able to bind to their target DNA sequence through Watson-Crick bonds producing specific silencing of gene expression. We designed PPRHs against the following genes: BCL2, TOP1, mTOR, MDM2, and MYC and tested them for mRNA levels, cytotoxicity, and apoptosis in prostate, pancreas, colon, and breast cancer cell lines. Even though all PPRHs were effective, the most remarkable results were obtained with those against BCL2 and mammalian target of rapamycin (mTOR) in decreasing cell survival and mRNA levels and increasing apoptosis in prostate, colon, and pancreatic cancer cells. In the case of TOP1, MDM2, and MYC, their corresponding PPRHs produced a strong effect in decreasing cell viability and mRNA levels and increasing apoptosis in breast cancer cells. Thus, we confirm that the PPRH technology is broadly useful to silence the expression of cancer-related genes as demonstrated using target genes involved in metabolism (DHFR), proliferation (mTOR), DNA topology (TOP1), lifespan and senescence (telomerase), apoptosis (survivin, BCL2), transcription factors (MYC), and proto-oncogenes (MDM2).

  7. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Burns, Jorge S; Nielsen, Ole;

    2009-01-01

    Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can...... spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found...... that tumorigenic transformation of hMSC-TERT20 cells induced the expression of members of several cancer-germline antigen gene families (ie, GAGE, MAGE-A, and XAGE-1), with promoter hypomethylation and histone acetylation of the corresponding genes. Both in vitro cultures and tumor xenografts derived from...

  8. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hae-Jeong Park; Sung-Vin Yim; Joo-Ho Chung; Seon-Pyo Hong; Seo-Hyun Yoon; Long-Shan Han; Long-Tai Zheng; Kyung-Hee Jung; Yoon-Kyung Uhm; Je-Hyun Lee; Ji-Seon Jeong; Woo-Sang Joo

    2005-01-01

    AIM: The genes were divided into seven categories according to biological function; apoptosis-reiated, immune response-related, signal transduction-related, cell cyclerelated, cell growth-related, stress response-related and transcription-related genes.METHODS: We compared the gene expression profiles of SNU-C4 cells between amygdalin-treated (5 mg/mL,24 h) and non-treated groups using cDNA microarray analysis. We selected genes downregulated in cDNA microarray and investigated mRNA levels of the genes by RT-PCR. RESULTS: Microarray showed that amygdalin downregulated especially genes belonging to cell cycle category: exonuclease 1 (EXO1), ATP-binding cassette, sub-family F, member 2 (ABCF2), MRE11 meiotic recombination 11 homolog A (MRE114), topoisomerase (DNA) I (TOP1), and FK506 binding protein 12-rapamycin-associated protein 1 (FRAP1). RT-PCR analysis revealed that mRNA levels of these genes were also decreased by amygdalin treatment in SNU-C4 human colon cancer cells.CONCLUSION: These results suggest that amygdalin have an anticancer effect via downregulation of cell cycle-related genes in SNU-C4 human colon cancer cells,and might be used for therapeutic anticancer drug.

  9. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells.

    Science.gov (United States)

    Park, Hae-Jeong; Yoon, Seo-Hyun; Han, Long-Shan; Zheng, Long-Tai; Jung, Kyung-Hee; Uhm, Yoon-Kyung; Lee, Je-Hyun; Jeong, Ji-Seon; Joo, Woo-Sang; Yim, Sung-Vin; Chung, Joo-Ho; Hong, Seon-Pyo

    2005-09-07

    The genes were divided into seven categories according to biological function; apoptosis-related, immune response-related, signal transduction-related, cell cycle-related, cell growth-related, stress response-related and transcription-related genes. We compared the gene expression profiles of SNU-C4 cells between amygdalin-treated (5 mg/mL, 24 h) and non-treated groups using cDNA microarray analysis. We selected genes downregulated in cDNA microarray and investigated mRNA levels of the genes by RT-PCR. Microarray showed that amygdalin downregulated especially genes belonging to cell cycle category: exonuclease 1 (EXO1), ATP-binding cassette, sub-family F, member 2 (ABCF2), MRE11 meiotic recombination 11 homolog A (MRE11A), topoisomerase (DNA) I (TOP1), and FK506 binding protein 12-rapamycin-associated protein 1 (FRAP1). RT-PCR analysis revealed that mRNA levels of these genes were also decreased by amygdalin treatment in SNU-C4 human colon cancer cells. These results suggest that amygdalin have an anticancer effect via downregulation of cell cycle-related genes in SNU-C4 human colon cancer cells, and might be used for therapeutic anticancer drug.

  10. STUDY OF ECK GENE EXON-3 FROM HUMAN NORMAL TISSUE AND BREAST CANCER CELL LINE

    Institute of Scientific and Technical Information of China (English)

    李瑶琛; 孔令洪; 王一理; 司履生

    2003-01-01

    Objective To establish a method cloning the exon 3 of eck gene from normal tissue and ZR-75-1 cell line (a human breast cancer cell line)and study whether these genes exist mutant. Methods Designed a pair of specific primers and amplified the exon 3 of eck gene fragment from the extracted genomic DNA derived from normal epithelial cells from skin tissue and ZR-75-1 cell line respectively by PCR technique. Transformed the E.coil. JM109 with recombinant plamids constructed by inserting the amplified fragments into medium vector pUCm-T and sequenced these amplified fragments after primary screening of endonuclease restriction digestion and PCR amplification. Results ① Obtained the genomic DNA of human normal epithelial cells and ZR-75-1 cell line respectively. ② Obtained the amplified fragments of human exon 3 of eck gene through PCR technique. ③ Obtained the cloning vectors of exon 3 of eck gene of human normal epithelial cells and ZR-75-1 cell line respectively. ④ ZR-75-1 cell line exists mutation of nucleotides. Conclusion Successfully established the method of cloning the human exon 3 of eck gene and found some mutations in the detected samples. This study lays a foundation for further studying the function of eck gene in tumorgenesis.

  11. Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer.

    Science.gov (United States)

    Nakano, Tetsuhiro; Shimizu, Kimihiro; Kawashima, Osamu; Kamiyoshihara, Mitsuhiro; Kakegawa, Seiichi; Sugano, Masayuki; Ibe, Takashi; Nagashima, Toshiteru; Kaira, Kyoichi; Sunaga, Noriaki; Ohtaki, Youichi; Atsumi, Jun; Takeyoshi, Izumi

    2012-11-01

    Convenient and reliable multiple organ metastasis model systems might contribute to understanding the mechanism(s) of metastasis of lung cancer, which may lead to overcoming metastasis and improvement in the treatment outcome of lung cancer. We isolated a highly metastatic subline, PC14HM, from the human pulmonary adenocarcinoma cell line, PC14, using an in vivo selection method. The expression of 34,580 genes was compared between PC14HM and parental PC14 by cDNA microarray analysis. Among the differentially expressed genes, expression of four genes in human lung cancer tissues and adjacent normal lung tissues were compared using real-time reverse transcription polymerase chain reaction. Although BALB/c nude mice inoculated with parental PC14 cells had few metastases, almost all mice inoculated with PC14HM cells developed metastases in multiple organs, including the lung, bone and adrenal gland, the same progression seen in human lung cancer. cDNA microarray analysis revealed that 981 genes were differentially (more than 3-fold) expressed between the two cell lines. Functional classification revealed that many of those genes were associated with cell growth, cell communication, development and transcription. Expression of three upregulated genes (HRB-2, HS3ST3A1 and RAB7) was higher in human cancer tissue compared to normal lung tissue, while expression of EDG1, which was downregulated, was lower in the cancer tissue compared to the normal lung. These results suggest that the newly established PC14HM cell line may provide a mouse model of widespread metastasis of lung cancer. This model system may provide insights into the key genetic determinants of widespread metastasis of lung cancer.

  12. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  13. Effect of human epididymis protein 4 gene silencing on the malignant phenotype in ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    ZOU Shu-li; CUI Heng; CHANG Xiao-hong; YE Xue; CHENG Hong-yan; CHENG Ye-xia; TANG Zhi-jian; ZHANG Zu-juan; GAO Li; CHEN Xin-hua

    2011-01-01

    Background Human epididymis secretory protein 4 (HE4) has been proved to be a promising novel biomarker for the detection of epithelial ovarian carcinomas. Compared with CA125, HE4 assay demonstrated an improved ability to discriminate between pelvic mass with malignant and benign disease. Though it is well known that HE4 is overexpressed in ovarian cancer, however, the role of HE4 in the carcinogenesis and progression of ovarian cancer remains unkown.Methods In this study, we explored the role of HE4 in the carcinogenesis and progression of ovarian cancer. We screened nine ovarian cancer cell lines for HE4 expression, and using RNA interference (RNAi), we silenced HE4 gene expression in CaoV3 and SKOV3.ip1 ovarian cancer cell lines. We assessed the effect of HE4 gene silencing on the transformed phenotype by examining the cell cycle, apoptosis, proliferation and transwell migration/invasion in vitro.Results HE4 gene silencing induces G0/G1 arrest and blocks the progression from the G1 to S phase in CaoV3 and SKOV3.ip1 cells. HE4 knockdown also inhibited cell proliferation, migration and invasion in SKOV3.ip1 cells in vitro.Conclusion HE4 may be involved in the regulation of the cell cycle and promote ovarian cancer migration and invasion.

  14. A distinct gene expression signature characterizes human neuroblastoma cancer stem cells.

    Science.gov (United States)

    Ross, Robert A; Walton, Jeanette D; Han, Dan; Guo, Hong-Fen; Cheung, Nai-Kong V

    2015-09-01

    Neuroblastoma, a malignancy of multipotent embryonic neural crest cells, is the most common extracranial solid cancer in childhood and most common cancer in infancy. Cellular phenotype has been shown to be an important determinant of the malignant potential in human neuroblastoma cells and tumors. Whereas neuroblastic (N-type) are moderately malignant and nonneuronal (S-type) cells are nonmalignant, I-type stem cells are highly tumorigenic, irrespective of N-myc amplification status. In the present study, we sought to determine which genes were overexpressed in the I-type cells which might characterize and maintain the stem cell state and/or malignancy of human neuroblastoma cancer stem cells. We used a microarray platform to compare the steady-state expression levels of mRNAs from 13 human neuroblastoma cell lines representing the three cellular phenotypes. Using qRT-PCR and Western blot analyses, we identified seven genes whose expression is consistently elevated exclusively in neuroblastoma cancer stem cells: CD133, KIT, NOTCH1, GPRC5C, PIGF2, TRKB, and LNGFR. Moreover, we show that the genes are phenotype specific, as differentiation of I-type BE(2)-C cells to either an N- or S-type morphology results in significantly reduced mRNA expression. Finally, we show that NOTCH1 plays an important role in maintaining the stem cell phenotype. The identification and characterization of these genes, elevated in highly malignant neuroblastoma stem cells, could provide the basis for developing novel therapies for treatment of this lethal childhood cancer.

  15. Identification of vitamin D3 target genes in human breast cancer tissue.

    Science.gov (United States)

    Sheng, Lei; Anderson, Paul H; Turner, Andrew G; Pishas, Kathleen I; Dhatrak, Deepak J; Gill, Peter G; Morris, Howard A; Callen, David F

    2016-11-01

    Multiple epidemiological studies have shown that high vitamin D3 status is strongly associated with improved breast cancer survival. To determine the molecular pathways influenced by 1 alpha, 25-dihydroxyvitamin D3 (1,25D) in breast epithelial cells we isolated RNA from normal human breast and cancer tissues treated with 1,25D in an ex vivo explant system. RNA-Seq revealed 523 genes that were differentially expressed in breast cancer tissues in response to 1,25D treatment, and 127 genes with altered expression in normal breast tissues. GoSeq KEGG pathway analysis revealed 1,25D down-regulated cellular metabolic pathways and enriched pathways involved with intercellular adhesion. The highly 1,25D up-regulated target genes CLMN, SERPINB1, EFTUD1, and KLK6were selected for further analysis and up-regulation by 1,25D was confirmed by qRT-PCR analysis in breast cancer cell lines and in a subset of human clinical samples from normal and cancer breast tissues. Ketoconazole potentiated 1,25D-mediated induction of CLMN, SERPINB1, and KLK6 mRNA through inhibition of 24-hydroxylase (CYP24A1) activity. Elevated expression levels of CLMN, SERPINB1, and KLK6 are associated with prolonged relapse-free survival for breast cancer patients. The major finding of the present study is that exposure of both normal and malignant breast tissue to 1,25D results in changes in cellular adhesion, metabolic pathways and tumor suppressor-like pathways, which support epidemiological data suggesting that adequate vitamin D3 levels may improve breast cancer outcome.

  16. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  17. MICROARRAY ANALYSIS OF DIFFERENT GENE EXPRESSION OF HUMAN CERVICAL CANCER SUBCLONE CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cervical cancer is the main cause of death inwomen.The influence of HPV plays an i mportantrole incervial cancer.It has been provedthat humanpapillomavirus(HPV)infectionis ani mportant fac-tor in cervical carcinogenesis.Multiple HPVinfec-tion was associated less frequently with cervical car-cinoma and with precancerous lesions compared withnor mal cytology[1].The activation of oncogene,in-activition of tumor suppressor gene and instabilityof genome are also majority reason.We establisheda cell line of human...

  18. Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance.

    Science.gov (United States)

    van Agthoven, Ton; Sieuwerts, Anieta M; Meijer-van Gelder, Marion E; Look, Maxime P; Smid, Marcel; Veldscholte, Jos; Sleijfer, Stefan; Foekens, John A; Dorssers, Lambert C J

    2009-02-01

    We have previously identified a set of breast cancer antiestrogen resistance (BCAR) genes causing estrogen independence and tamoxifen resistance in vitro using a functional genetic screen. Here, we explored whether these BCAR genes provide predictive value for tamoxifen resistance and prognostic information for tumor aggressiveness in breast cancer patients. mRNA levels of 10 BCAR genes (AKT1, AKT2, BCAR1, BCAR3, EGFR, ERBB2, GRB7, SRC, TLE3, and TRERF1) were measured in estrogen receptor-positive breast tumors using quantitative reverse-transcriptase polymerase chain reaction. Normalized mRNA levels were evaluated for association with progression-free survival (PFS) in 242 patients receiving tamoxifen as first-line monotherapy for recurrent disease, and with distant metastasis-free survival (MFS) in 413 lymph node-negative (LNN) primary breast cancer patients who did not receive systemic adjuvant therapy. Concerning tamoxifen resistance, BCAR3, ERBB2, GRB7, and TLE3 mRNA levels were predictive for PFS, independent of traditional predictive factors. By combining GRB7 (or ERBB2) and TLE3 mRNA levels, patients could be classified in three subgroups with distinct PFS. For the evaluation of tumor aggressiveness, AKT2, EGFR, and TRERF1 mRNA levels were all significantly associated with MFS, independent of traditional prognostic factors. Using the combined AKT2 and EGFR mRNA status, four prognostic groups were identified with different MFS outcomes. The majority of BCAR genes, which were revealed to confer tamoxifen resistance and estrogen independence in vitro by functional screening, have clinical relevance, and associate with tamoxifen resistance and/or tumor aggressiveness in breast cancer patients.

  19. Evaluating baculovirus as a vector for human prostate cancer gene therapy.

    Directory of Open Access Journals (Sweden)

    Stephanie L Swift

    Full Text Available Gene therapy represents an attractive strategy for the non-invasive treatment of prostate cancer, where current clinical interventions show limited efficacy. Here, we evaluate the use of the insect virus, baculovirus (BV, as a novel vector for human prostate cancer gene therapy. Since prostate tumours represent a heterogeneous environment, a therapeutic approach that achieves long-term regression must be capable of targeting multiple transformed cell populations. Furthermore, discrimination in the targeting of malignant compared to non-malignant cells would have value in minimising side effects. We employed a number of prostate cancer models to analyse the potential for BV to achieve these goals. In vitro, both traditional prostate cell lines as well as primary epithelial or stromal cells derived from patient prostate biopsies, in two- or three-dimensional cultures, were used. We also evaluated BV in vivo in murine prostate cancer xenograft models. BV was capable of preferentially transducing invasive malignant prostate cancer cell lines compared to early stage cancers and non-malignant samples, a restriction that was not a function of nuclear import. Of more clinical relevance, primary patient-derived prostate cancer cells were also efficiently transduced by BV, with robust rates observed in epithelial cells of basal phenotype, which expressed BV-encoded transgenes faster than epithelial cells of a more differentiated, luminal phenotype. Maximum transduction capacity was observed in stromal cells. BV was able to penetrate through three-dimensional structures, including in vitro spheroids and in vivo orthotopic xenografts. BV vectors containing a nitroreductase transgene in a gene-directed enzyme pro-drug therapy approach were capable of efficiently killing malignant prostate targets following administration of the pro-drug, CB1954. Thus, BV is capable of transducing a large proportion of prostate cell types within a heterogeneous 3-D prostate

  20. Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells

    Science.gov (United States)

    HSIAO, HUNG TSUNG; XING, LIGANG; DENG, XUELONG; SUN, XIAORONG; LING, C. CLIFTON; LI, GLORIA C.

    2014-01-01

    The hypoxic microenvironment, an important feature of human solid tumors but absent in normal tissue, may provide an opportunity for cancer-specific gene therapy. The purpose of the present study was to investigate whether hypoxia-driven triple suicide gene TK/CD/UPRT expression enhances cytotoxicity to ganciclovir (GCV) and 5-fluorocytosine (5-FC), and sensitizes human colorectal cancer to radiation in vitro and in vivo. Stable transfectant of human colorectal HCT8 cells was established which expressed hypoxia-inducible vectors (HRE-TK/eGFP and HRE-CD/UPRT/mDsRed). Hypoxia-induced expression/function of TK, CD and UPRT was verified by western blot analysis, flow cytometry, fluorescent microscopy and cytotoxicity assay of GCV and 5-FC. Significant radiosensitization effects were detected after 5-FC and GCV treatments under hypoxic conditions. In the tumor xenografts, the distribution of TK/eGFP and CD/UPRT/mDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC and GCV in mice in combination with local irradiation resulted in tumor regression, as compared with prodrug or radiation treatments alone. Our data suggest that the hypoxia-inducible TK/GCV+CDUPRT/5-FC triple suicide gene therapy may have the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy. PMID:24912473

  1. Screening of Differently Expressed Genes in Human Prostate Cancer Cell Lines with Different Metastasis Potentials

    Institute of Scientific and Technical Information of China (English)

    SONG Anping; LIAO Guoning; WU Mingfu; LU Yunping; MA Ding

    2007-01-01

    In order to screen the genes differentially expressed in two human prostate cancer cells with different metastasis potentials, suppression subtractive hybridization (SSH) was done twice on human prostate cancer cell line with high potential of metastasis PC3M-1E8 and its synogenetic cell line PC3M-2B4 with low metastasis potential. In the first subtraction PC3M-2B4 was used as tester and PC3M-1E8 as driver and the forward subtractive library was constructed. In the second one the tester and driver were interchanged and the reverse subtractive library was constructed. The screened clones of both libraries were sequenced and Gene Bank homology search was performed. Some clones were confirmed by quantitative real-time PCR. The results showed that two subtrac-tive libraries containing 238 positive clones were constructed. Analysis of 16 sequenced clones ran-domly picked from two libraries showed that 4 differentially expressed gene fragments were identi-fied as new EST with unknown functions. It was concluded that two subtractive libraries of human prostate cancer cell lines with different metastasis potentials were constructed successfully.

  2. Prognostic Significance of Apoptosis Related Gene Family bcl-2 in Human Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the prognostic effect of bcl-2 oncogene and its gene family members bax, bcl-x expression in breast cancer patients. Methods: expression of bcl-2, bax proteins in 91 human breast cancer tissue sections were studied by immunohistochemical method. Bcl-x1 mRNA expression in frozen tissues from 16 breast cancer patients were detected using Northern blot method. Results: bcl-2 protein positivity was found in 60/91 (65.9%) patients, and bax positivity 59/91 (64.8%). Bcl-2 and bax expression levels were associated with apoptotic index(AI), histological grade, axillary lymph node metastasis, postoperative local recurrence and metastasis. Bcl-2 expression was related to ER positivity. In univariate analysis for disease free survival (DFS), bcl-2 and bax protein levels, and Al were all found to have prognostic value. The result of Cox's model multivariate analysis showed that bcl-2 protein level was an independent prognostic factor. In 16 frozen breast cancer tissues, 8/16(50%) had higher level of bcl-x1 mRNA, which showed correlation with bcl-2 protein expression and axillary lymph node metastasis. Conclusion: The findings indicate that dysregulated expressions of bcl-2, bax and bcl-x1 apoptosis-related genes, suggestive of serious deregulation of apoptotic process, may contribute to the biologic aggressiveness of breast cancer. Bcl-2 protein is an independent indicator of prognosis in breast cancer patients.

  3. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System

    Directory of Open Access Journals (Sweden)

    Takayuki Ueno

    2015-01-01

    Full Text Available The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment.

  4. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.

    Directory of Open Access Journals (Sweden)

    Howard Y Chang

    2004-02-01

    Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.

  5. Polymorphic expression of UDP-glucuronosyltransferase UGTlA gene in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available BACKGROUND: Polymorphism of genes encoding drug-metabolizing enzymes is known to play an important role in increased susceptibility of colorectal cancer. UGT1A gene locus has been suggested to define tissue-specific glucuronidation activity. Reduced capacity of glucuronidation is correlated with the development of colorectal cancer. Therefore, we sought to explore polymorphism of UGTlA gene in human colorectal cancer. METHODS: Cancerous and healthy tissues were obtained from selectedpatients. Blood samples were collected and UGTlA mRNA transcriptions were analyzed. Genomic DNA was prepared and UGTlA8 exon-1 sequences were amplified, visualized and purified. The extracted DNA was subcloned and sequenced. Two-tailed Fisher's exact test, Odds ratios (ORs, confidence interval (CIs and Logistics Regression Analysis were used for statistical analysis. RESULTS: UGTlA mRNA expression was reduced in cancerous tissues compared with healthy tissues from the same patient . The UGTlA mRNA expression of healthy tissue in study patients was lower than control . The mRNA expression of cancerous tissue was down-regulated in UGTlAl, 1A3, 1A4, lA6, 1A9 and up-regulated in UGTlA8 and UGTlAl0 UGT1A5 and UGT1A7 were not expressed in colonic tissue of either group. The allele frequency of WT UGTlA8*1 was higher (p = 0.000, frequency of UGTlA8*3 was lowered in control group (p = 0.000. The expression of homozygous UGTlA8*1 was higher in control group (p = 0.000. Higher frequency of both heterozygous UGTlA8*1/*3 and UGTlA8*2/*3 were found in study group (p = 0.000; p = 0.000. The occurrence of colorectal cancer was mainly related to the presence of polymorphic UGTlA8*3 alleles (p = 0.000. CONCLUSION: Regulation of human UGT1A genes is tissue-specific. Individual variation in polymorphic expressions of UGTlA gene locus was noted in all types of colonic tissue tested, whereas hepatic tissue expression was uniform. The high incidence of UGTlA8

  6. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  7. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers.

    Science.gov (United States)

    Sinkovics, Joseph G; Horvath, Joseph C

    2008-12-01

    Based on personal acquaintances and experience dating back to the early 1950s, the senior author reviews the history of viral therapy of cancer. He points out the difficulties encountered in the treatment of human cancers, as opposed by the highly successful viral therapy of experimentally maintained tumors in laboratory animals, especially that of ascites carcinomas in mice. A detailed account of viral therapy of human tumors with naturally oncolytic viruses follows, emphasizing the first clinical trials with viral oncolysates. The discrepancy between the high success rates, culminating in cures, in the treatment of tumors of laboratory animals, and the moderate results, such as stabilizations of disease, partial responses, very rare complete remissions, and frequent relapses with virally treated human tumors is recognized. The preclinical laboratory testing against established human tumor cell lines that were maintained in tissue cultures for decades, and against human tumors extricated from their natural habitat and grown in xenografts, may not yield valid results predictive of the viral therapy applied against human tumors growing in their natural environment, the human host. Since the recent discovery of the oncosuppressive efficacy of bacteriophages, the colon could be regarded as the battlefield, where incipient tumor cells and bacteriophages vie for dominance. The inner environment of the colon will be the teaching ground providing new knowledge on the value of the anti-tumor efficacy of phage-induced innate anti-tumor immune reactions. Genetically engineered oncolytic viruses are reviewed next. The molecular biology of viral oncolysis is explained in details. Elaborate efforts are presented to elucidate how gene product proteins of oncolytic viruses switch off the oncogenic cascades of cancer cells. The facts strongly support the conclusion that viral therapy of human cancers will remain in the front lines of modern cancer therapeutics. It may be a

  8. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo

    Directory of Open Access Journals (Sweden)

    Anastassiou Dimitris

    2011-12-01

    Full Text Available Abstract Background The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT. Methods We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. Results Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. Conclusions The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics.

  9. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells.

    Science.gov (United States)

    Guzey, Meral; Luo, Jianhua; Getzenberg, Robert H

    2004-10-01

    The vitamin D receptor (VDR) is a member of the steroid/retinoid receptor superfamily of nuclear receptors and has potential tumor-suppressive functions in prostate and other cancer types. Vitamin D3 (VD3) exerts its biological actions by binding within cells to VDR. The VDR then interacts with specific regions of the DNA in cells, and triggers changes in the activity of genes involved in cell division, cell survival, and cellular function. Using human primary cultures and the prostate cancer (PCa) cell line, ALVA-31, we examined the effects of VD3 under different culture conditions. Complete G0/G1 arrest of ALVA-31 cells and approximately 50% inhibition of tumor stromal cell growth was observed. To determine changes in gene expression patterns related to VD3 activity, microarray analysis was performed. More than approximately 20,000 genes were evaluated for twofold relative increases and decreases in expression levels. A number of the gene targets that were up- and down-regulated are related to potential mechanisms of prostatic growth regulation. These include estrogen receptor (ER), heat shock proteins: 70 and 90, Apaf1, Her-2/neu, and paxillin. Utilizing antibodies generated against these targets, we were able to confirm the changes at the protein level. These newly reported gene expression patterns provide novel information not only potential markers, but also on the genes involved in VD3 induced apoptosis in PCa.

  10. RCP is a human breast cancer-promoting gene with Ras-activating function.

    Science.gov (United States)

    Zhang, Jinqiu; Liu, Xuejing; Datta, Arpita; Govindarajan, Kunde; Tam, Wai Leong; Han, Jianyong; George, Joshy; Wong, Christopher; Ramnarayanan, Kalpana; Phua, Tze Yoong; Leong, Wan Yee; Chan, Yang Sun; Palanisamy, Nallasivam; Liu, Edison Tak-Bun; Karuturi, Krishna Murthy; Lim, Bing; Miller, Lance David

    2009-08-01

    Aggressive forms of cancer are often defined by recurrent chromosomal alterations, yet in most cases, the causal or contributing genetic components remain poorly understood. Here, we utilized microarray informatics to identify candidate oncogenes potentially contributing to aggressive breast cancer behavior. We identified the Rab-coupling protein RCP (also known as RAB11FIP1), which is located at a chromosomal region frequently amplified in breast cancer (8p11-12) as a potential candidate. Overexpression of RCP in MCF10A normal human mammary epithelial cells resulted in acquisition of tumorigenic properties such as loss of contact inhibition, growth-factor independence, and anchorage-independent growth. Conversely, knockdown of RCP in human breast cancer cell lines inhibited colony formation, invasion, and migration in vitro and markedly reduced tumor formation and metastasis in mouse xenograft models. Overexpression of RCP enhanced ERK phosphorylation and increased Ras activation in vitro. As these results indicate that RCP is a multifunctional gene frequently amplified in breast cancer that encodes a protein with Ras-activating function, we suggest it has potential importance as a therapeutic target. Furthermore, these studies provide new insight into the emerging role of the Rab family of small G proteins and their interacting partners in carcinogenesis.

  11. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    Directory of Open Access Journals (Sweden)

    Hummel Michael

    2010-11-01

    Full Text Available Abstract Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic

  12. Dietary Phenethyl Isothiocyanate Alters Gene Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Young Jin Moon

    2011-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC, a component in cruciferous vegetables, can block chemical carcinogenesis in animal models. Our objective was to determine the effect of treatment with PEITC on gene expression changes in MCF-7 human breast cancer cells in order to evaluate potential mechanisms involved in its chemopreventive effects. MCF-7 cells were treated for 48 hours with either PEITC (3 μM or the vehicle. Total RNA was extracted from cell membrane preparations, and labeled cDNA's representing the mRNA pool were reverse-transcribed directly from total RNA isolated for use in the microarray hybridizations. Two specific human GE Array Kits (Superarray Inc. that both contain 23 marker genes, related to signal transduction pathways or cancer/tumor suppression, plus 2 housekeeping genes (β-actin and GAPDH, were utilized. Arrays from treated and control cells (n=4 per group were evaluated using a Student's t-test. Gene expression was significantly induced for tumor protein p53 (p53, cyclin-dependent kinase inhibitor 1C (p57 Kip2, breast cancer Type 2 early onset (BRCA2, cAMP responsive element binding protein 2 (ATF-2, interleukin 2 (IL-2, heat shock 27 KD protein (hsp27, and CYP19 (aromatase. Induction of p57 Kip2, p53, BRCA2, IL-2, and ATF-2 would be expected to decrease cellular proliferation and increase tumor suppression and/or apoptosis. PEITC treatment produced significant alterations in some genes involved in tumor suppression and cellular proliferation/apoptosis that may be important in explaining the chemopreventive effects of PEITC.

  13. Systematic variation in gene expression patterns in human cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Douglas T.; Scherf, Uwe; Eisen, Michael B.; Perou, Charles M.; Rees, Christian; Spellman, Paul; Iyer, Vishwanath; Jeffrey, Stefanie S.; Van de Rijn, Matt; Waltham, Mark; Pergamenschikov, Alexander; Lee, Jeffrey C.F.; Lashkari, Deval; Shalon, Dari; Myers, Timothy G.; Weinstein, John N.; Botstein, David; Brown, Patrick O.

    2000-01-01

    We used cDNA micro arrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute s screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumors from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumor specimens revealed features of the expression patterns in the tumors that had recognizable counterparts in specific cell lines, reflecting the tumor, stromal and inflammatory components of the tumor tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumors in vivo.

  14. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    Directory of Open Access Journals (Sweden)

    Kurt W Kohn

    Full Text Available Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1; interactions at adherens junctions (CDH1, ADAP1, CAMSAP3; interactions at desmosomes (PPL, PKP3, JUP; transcription regulation of cell-cell junction complexes (GRHL1 and 2; epithelial RNA splicing regulators (ESRP1 and 2; epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B; epithelial Ca(+2 signaling (ATP2C2, S100A14, BSPRY; terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2; maintenance of apico-basal polarity (RAB25, LLGL2, EPN3. The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.

  15. CFTR is a tumor suppressor gene in murine and human intestinal cancer.

    Science.gov (United States)

    Than, B L N; Linnekamp, J F; Starr, T K; Largaespada, D A; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O'Sullivan, M G; Medema, J P; Fijneman, R J A; Meijer, G A; Van den Broek, E; Hodges, C A; Scott, P M; Vermeulen, L; Cormier, R T

    2016-08-11

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  16. Reversion of multidrug resistance of human gastric cancer SGC7901/DDP cells by E2F-1 gene silencing

    Institute of Scientific and Technical Information of China (English)

    廉超

    2014-01-01

    Objective To investigate the effects of E2F-1 gene silencing on multidrug resistance of human gastric cancer SGC7901/DDP cells and its possible mechanisms.Methods Gastric cancer SGC7901/DDP cells were seeded in 6 well plates and divided into three groups:the experimental group,blank control and the negative con-

  17. Epstein-Barr virus-specific methylation of human genes in gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Coleman William B

    2010-12-01

    Full Text Available Abstract Background Epstein-Barr Virus (EBV is found in 10% of all gastric adenocarcinomas but its role in tumor development and maintenance remains unclear. The objective of this study was to examine EBV-mediated dysregulation of cellular factors implicated in gastric carcinogenesis. Methods Gene expression patterns were examined in EBV-negative and EBV-positive AGS gastric epithelial cells using a low density microarray, reverse transcription PCR, histochemical stains, and methylation-specific DNA sequencing. Expression of PTGS2 (COX2 was measured in AGS cells and in primary gastric adenocarcinoma tissues. Results In array studies, nearly half of the 96 human genes tested, representing 15 different cancer-related signal transduction pathways, were dysregulated after EBV infection. Reverse transcription PCR confirmed significant impact on factors having diverse functions such as cell cycle regulation (IGFBP3, CDKN2A, CCND1, HSP70, ID2, ID4, DNA repair (BRCA1, TFF1, cell adhesion (ICAM1, inflammation (COX2, and angiogenesis (HIF1A. Demethylation using 5-aza-2'-deoxycytidine reversed the EBV-mediated dysregulation for all 11 genes listed here. For some promoter sequences, CpG island methylation and demethylation occurred in an EBV-specific pattern as shown by bisulfite DNA sequencing. Immunohistochemistry was less sensitive than was western blot for detecting downregulation of COX2 upon EBV infection. Virus-related dysregulation of COX2 levels in vitro was not recapitulated in vivo among naturally infected gastric cancer tissues. Conclusions EBV alters human gene expression in ways that could contribute to the unique pathobiology of virus-associated cancer. Furthermore, the frequency and reversability of methylation-related transcriptional alterations suggest that demethylating agents have therapeutic potential for managing EBV-related carcinoma.

  18. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Cai

    Full Text Available Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  19. PIK3CA and TP53 gene mutations in human breast cancer tumors frequently detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xusheng Bai

    Full Text Available Breast cancer is the most common malignancy and the leading cause of cancer deaths in women worldwide. While specific genetic mutations have been linked to 5-10% of breast cancer cases, other environmental and epigenetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive breast cancer molecular profile is needed to develop more effective target therapies. Until recently, identifying genetic cancer mutations via personalized DNA sequencing was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 105 human breast cancer samples. The sequencing analysis revealed missense mutations in PIK3CA, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  20. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene.

    Science.gov (United States)

    Suganuma, Masami; Kurusu, Miki; Suzuki, Kaori; Tasaki, Emi; Fujiki, Hirota

    2006-07-01

    To more clearly understand the molecular mechanisms involved in synergistic enhancement of cancer preventive activity with the green tea polyphenol (-)-epigallocatechin gallate (EGCG), we examined the effects of cotreatment with EGCG plus celecoxib, a cyclooxygenase-2 selective inhibitor. We specifically looked for induction of apoptosis and expression of apoptosis related genes, with emphasis on growth arrest and DNA damage-inducible 153 (GADD153) gene, in human lung cancer cell line PC-9: Cotreatment with EGCG plus celecoxib strongly induced the expression of both GADD153 mRNA level and protein in PC-9 cells, while neither EGCG nor celecoxib alone did. However, cotreatment did not induce expression of other apoptosis related genes, p21(WAF1) and GADD45. Judging by upregulation of GADD153, only cotreatment with EGCG plus celecoxib synergistically induced apoptosis of PC-9 cells. Synergistic effects with the combination were also observed in 2 other lung cancer cell lines, A549 and ChaGo K-1. Furthermore, EGCG did not enhance GADD153 gene expression or apoptosis induction in PC-9 cells in combination with N-(4-hydroxyphenyl)retinamide or with aspirin. Thus, upregulation of GADD153 is closely correlated with synergistic enhancement of apoptosis with EGCG. Cotreatment also activated the mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38 MAPK: Preteatment with PD98059 (ERK1/2 inhibitor) and UO126 (selective MEK inhibitor) abrogated both upregulation of GADD153 and synergistic induction of apoptosis of PC-9 cells, while SB203580 (p38 MAPK inhibitor) did not do so, indicating that GADD153 expression was mediated through the ERK signaling pathway. These findings indicate that high upregulation of GADD153 is a key requirement for cancer prevention in combination with EGCG.

  1. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines

    Science.gov (United States)

    Chen, Wei-Hua; Lu, Guanting; Chen, Xiao; Zhao, Xing-Ming; Bork, Peer

    2017-01-01

    OGEE is an Online GEne Essentiality database. To enhance our understanding of the essentiality of genes, in OGEE we collected experimentally tested essential and non-essential genes, as well as associated gene properties known to contribute to gene essentiality. We focus on large-scale experiments, and complement our data with text-mining results. We organized tested genes into data sets according to their sources, and tagged those with variable essentiality statuses across data sets as conditionally essential genes, intending to highlight the complex interplay between gene functions and environments/experimental perturbations. Developments since the last public release include increased numbers of species and gene essentiality data sets, inclusion of non-coding essential sequences and genes with intermediate essentiality statuses. In addition, we included 16 essentiality data sets from cancer cell lines, corresponding to 9 human cancers; with OGEE, users can easily explore the shared and differentially essential genes within and between cancer types. These genes, especially those derived from cell lines that are similar to tumor samples, could reveal the oncogenic drivers, paralogous gene expression pattern and chromosomal structure of the corresponding cancer types, and can be further screened to identify targets for cancer therapy and/or new drug development. OGEE is freely available at http://ogee.medgenius.info. PMID:27799467

  2. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines.

    Science.gov (United States)

    Chen, Wei-Hua; Lu, Guanting; Chen, Xiao; Zhao, Xing-Ming; Bork, Peer

    2017-01-04

    OGEE is an Online GEne Essentiality database. To enhance our understanding of the essentiality of genes, in OGEE we collected experimentally tested essential and non-essential genes, as well as associated gene properties known to contribute to gene essentiality. We focus on large-scale experiments, and complement our data with text-mining results. We organized tested genes into data sets according to their sources, and tagged those with variable essentiality statuses across data sets as conditionally essential genes, intending to highlight the complex interplay between gene functions and environments/experimental perturbations. Developments since the last public release include increased numbers of species and gene essentiality data sets, inclusion of non-coding essential sequences and genes with intermediate essentiality statuses. In addition, we included 16 essentiality data sets from cancer cell lines, corresponding to 9 human cancers; with OGEE, users can easily explore the shared and differentially essential genes within and between cancer types. These genes, especially those derived from cell lines that are similar to tumor samples, could reveal the oncogenic drivers, paralogous gene expression pattern and chromosomal structure of the corresponding cancer types, and can be further screened to identify targets for cancer therapy and/or new drug development. OGEE is freely available at http://ogee.medgenius.info.

  3. IN SILICO EXPRESSION ANALYSIS OF HUMAN NOVEL GENE UBAP1 IN MULTIPLE CANCERS

    Institute of Scientific and Technical Information of China (English)

    钱骏; 唐珂; 曹利; 李伟芳; 王蓉; 李桂源

    2002-01-01

    Objective: To identify the differential expression profile of human novel gene UBAP1, a putative nasopharyngeal neoplasms (NPC) relate gene, in multiple cancers. Methods: We first present an EST approach for electronic Northern in silico to analyse expression patterns of UBAP1 in tumor and normal tissues. Full length cDNA of UBAP1 gene was taken as a "probe" sequence, and a blastn search was performed against human EST Database. The Blastn report can be used to determine the fold differences between the pedigree ESTs in different libraries. Especially, the ESTs corresponding to UBAP1 present in fifteen tumor-derived libraries were compared against their normal counterpart to produce an electronic differential expression profile. Second, the distinct down-regulation of UBAP1 in meningioma, glioma, and colorectal tumor was confirmed by differentially RT-PCR analysis. Results: Database surveys indicated that UBAP1 gene was not only ubiquitously expressed in many normal tissues with various levels but also differentially expressed in different tumor tissues, especially down-regulated in multiple neoplastic tissues such as brain, breast, skin, colon, testis and uterus tumor tissues. Furthermore, differential RT-PCR analysis demonstrated that expression of UBAP1 was down-regulated or absent in 7 of 12 (58%) meningioma samples, 6 of 9 (66%) glioma and 7 of 11 (63%) colorectal tumor tissues respectively. Conclusion: we described a data mining procedure in silico that proved to be useful for the identification of differential expression patterns of UBAP1. These findings could be valuable for the investigation of the mechanism the differential expression of UBAP1 gene and its significance in the progression of multiple cancers.

  4. A GENE FROM HUMAN-CHROMOSOME REGION-3P21 WITH REDUCED EXPRESSION IN SMALL-CELL LUNG-CANCER

    NARCIS (Netherlands)

    CARRITT, B; KOK, K; van den Berg, Anke; OSINGA, J; PILZ, A; HOFSTRA, RMW; DAVIS, MB; VANDERVEEN, AY; RABBITTS, PH; GULATI, K; BUYS, CHCM

    1992-01-01

    A combination of cytogenetic and molecular studies has implicated the p21 region of human chromosome 3 as the probable site of a gene the loss of which contributes to the development of small cell lung cancer. We report here the isolation of a gene from this region which is expressed in normal lung

  5. Changes in expression of imprinted genes following treatment of human cancer cell lines with non-mutagenic or mutagenic carcinogens.

    Science.gov (United States)

    Shibui, Takeo; Higo, Yukari; Tsutsui, Takeo W; Uchida, Minoru; Oshimura, Mitsuo; Barrett, J Carl; Tsutsui, Takeki

    2008-08-01

    It remains possible that chemicals that act by mutagenic mechanisms as well as chemicals that do not induce gene mutations may affect epigenetic gene expression. To test the possibility, we investigated the ability of both types of chemicals to alter the expression of five imprinted genes, PEG3, SNRPN, NDN, ZAC and H19, using two human colon cancer cell lines and a human breast cancer cell line. The expression of imprinted genes was changed by some non-mutagenic and mutagenic carcinogens independent of their mutagenic activity. The genes most commonly exhibiting the changes in expression were SNRPN and PEG3. Alterations of the expression of NDN and ZAC were also observed in some conditions. Methylation-specific PCR and chromatin immunoprecipitation assays suggest the possibility that changes in the expression of SNRPN may be associated with DNA hypomethylation and histone acetylation of the promoters and euchromatinization of the heterochromatic domains of the promoters. Changes in expression of the imprinted genes, PEG3 and NDN, were also observed in cells immortalized by treatment of normal human fibroblasts with 4-nitroquinoline 1-oxide or aflatoxin B1. We previously demonstrated that expression of the cancer-related gene, INK4a, in these immortal cells was lost via epigenetic mechanisms. The results prove that, in cancer cells, some mutagenic or non-mutagenic carcinogens can epigenetically influence the transcription levels of imprinted genes and also suggest the possibility that some chemical carcinogens may have epigenetic carcinogenic effects in human cells.

  6. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    Science.gov (United States)

    2014-10-01

    SUBTITLE Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making Improve...to determine whether Fetal Mammary Stem Cell (fMaSC) signatures correlate with response to chemotherapy and metastasis in different breast cancer...positioned to achieve its aims. 15. SUBJECT TERMS Breast Cancer Prognosis, Mammary Stem Cells, Embryonic Development, Single Cell Transcriptomics 16

  7. Epigenetic regulation of pluripotent genes mediates stem cell features in human hepatocellular carcinoma and cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Xiao Qi Wang

    Full Text Available Activation of the stem cell transcriptional circuitry is an important event in cancer development. Although cancer cells demonstrate a stem cell-like gene expression signature, the epigenetic regulation of pluripotency-associated genes in cancers remains poorly understood. In this study, we characterized the epigenetic regulation of the pluripotency-associated genes NANOG, OCT4, c-MYC, KLF4, and SOX2 in a variety of cancer cell lines and in primary tumor samples, and investigated the re-activation of pluripotency regulatory circuits in cancer progression. Differential patterns of DNA methylation, histone modifications, and gene expression of pluripotent genes were demonstrated in different types of cancers, which may reflect their tissue origins. NANOG promoter hypomethylation and gene upregulation were found in metastatic human liver cancer cells and human hepatocellular carcinoma (HCC primary tumor tissues. The upregulation of NANOG, together with p53 depletion, was significantly associated with clinical late stage of HCC. A pro-metastatic role of NANOG in colon cancer cells was also demonstrated, using a NANOG-overexpressing orthotopic tumor implantation mouse model. Demethylation of NANOG promoter was observed in CD133+(high cancer cells. In accordance, overexpression of NANOG resulted in an increase in the population of CD133+(high cells. In addition, we demonstrated a cross-regulation between OCT4 and NANOG in cancer cells via reprogramming of promoter methylation. Taken together, epigenetic reprogramming of NANOG can lead to the acquisition of stem cell-like properties. These results underscore the restoration of pluripotency circuits in cancer cells as a potential mechanism for cancer progression.

  8. Genes Associated with Human Cancers: Their Expressions, Features, Functions, and Significance.

    Science.gov (United States)

    Maddaly, Ravi; Sahu, Bellona; Mohan, Divya K

    2015-01-01

    Various types of cancer continue to be subjects of intense research because of the impact of these diseases and their socioeconomic implications. Also, the complexity involved in the pathogenesis, nature of the triggers, and the progression of cancers is intriguing. An important aspect of cancers is the genetics involved, and studies involving cancer genes contributed immensely in not only understanding cancers better, but also for obtaining useful markers and therapy targets. We review the salient features, functions, and changes in gene expression for 103 carcinoma genes, 20 sarcoma genes, and 36 lymphoma genes. Apart from the three major levels of cancer type, we discuss the implications of altered gene expression at the tissue level as well. The possible uses of these gene functions and expression changes for diagnostic, prognostic, and therapeutic applications are presented. Also, the 159 genes are assessed for their involvement in more than a single cancer and tissue type. Only the p53 gene is commonly implicated in carcinomas, sarcoma and lymphomas. The CHEK2 and ERBB2 (HER2) genes are commonly found to be associated with carcinomas and sarcomas, whereas the MDM2, MSH2, and MSH6 genes are commonly implicated among carcinomas and lymphomas.

  9. Retroviral endostatin gene transfer inhibits human colon cancer cell growth in vivo

    Institute of Scientific and Technical Information of China (English)

    陈卫昌; 傅建新; 刘强; 阮长耿; 萧树东

    2003-01-01

    Objective To investigate the therapeutic effect of retroviral endostatin gene transfer on the human colon cancer cell line, LoVo.Methods A retroviral vector pLESSN expressing secretable endostatin was constructed and packaged with a titer of 8.2×105 CFU/ml. A LoVo cell line was subjected to retrovirus-mediated endostatin gene transfer. The proviral integration of endostatin was analyzed with PCR. The function of endostatin was tested by MTT assay in vitro and a mouse xenograft model in vivo.Results After transfection and superinfection, amphotropic retrovirus was collected, and transduction with amphotropic retroviruses resulted in endostatin proviral integration. The endostatin secreted by transduced LoVo cells markedly inhibited endothelial cell growth up to 67% (P<0.001), compared with the control cells. The gene expression of endostatin in LoVo colon tumor cells significantly inhibited tumor growth in vivo. There was an 86% reduction in tumor size in the endostatin-transduced group, accompanied by a reduction in vessels, compared with the control group (P<0.01). Conclusion Retroviruses can allow functional expression of the endostatin gene in human colon tumors, showing promise for an antitumor strategy using antiangiogenesis.

  10. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    Institute of Scientific and Technical Information of China (English)

    Michael A van Geer; Koert FD Kuhlmann; Conny T Bakker; Fibo JW ten Kate; Ronald PJ Oude Elferink; Piter J Bosma

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions.METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices.Tissue slices were cultured ex vivo for 1-6 d in an incubator using 95% O2. Slices were subsequently analyzed for viability and morphology. In addition the slices were incubated with different viral vectors expressing the repor ter genes GFP or DsRed.Expression of these reporter genes was measured at 72 h after infection.RESULTS: With the Krumdieck tissue slicer, uniform slices could be generated from pancreatic tissue but only upon embedding the tissue in 3% low melting agarose. Immunohistological examination showed the presence of all pancreatic cell types. Pancreatic normal and cancer tissue slices could be cultured for up to 6 d, while retaining viability and a moderate to good morphology. Reporter gene expression indicated that the slices could be infected and transduced efficiently by adenoviral vectors and by adeno associated viral vectors, whereas transduction with lentiviral vectors was limited. For the adenoviral vector, the transduction seemed limited to the peripheral layers of the explants.CONCLUSION: The presented sys tem al lows reproducible processing of minimal amounts of pancreatic tissue into slices uniform in size, suitable for pre-clinical evaluation of gene therapy vectors.

  11. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers

    Directory of Open Access Journals (Sweden)

    M. Rocas

    2011-11-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and related halogenated aromatic hydrocarbons (e.g., PCDFs, often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR. Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region, previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age. We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  12. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers.

    Science.gov (United States)

    Rocas, M; Jakubauskiene, E; Kanopka, A

    2011-11-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  13. Role of human papillomavirus and tumor suppressor genes in oral cancer.

    Science.gov (United States)

    Manvikar, Vardendra; Kulkarni, Rama; Koneru, Anila; Vanishree, M

    2016-01-01

    The incidence of oral cancer remains high and is associated with many deaths in both Western and Asian countries. Several risk factors for the development of oral cancer are now well known, including smoking, drinking and consumption of smokeless tobacco products. Genetic predisposition to oral cancer has been found in certain cases, but its components are not yet entirely clear. In accordance with the multi-step theory of carcinogenesis, the natural history of oral cancer seems to gradually evolve through transitional precursor lesions from normal epithelium to a full-blown metastatic phenotype. A number of genomic lesions accompany this transformation and a wealth of related results has appeared in recent literature and is being summarized here. Furthermore, several key genes have been implicated, especially well-known tumor suppressors such as the cyclin-dependent kinase inhibitors, TP53 and RB1 and oncogenes such as the cyclin family, epidermal growth factor receptor and RAS. Viral infections, particularly oncogenic human papillomavirus subtypes and Epstein-Barr virus, can have a tumorigenic effect on oral epithelia and their role is discussed, along with potential therapeutic interventions. A brief explanatory theoretical model of oral carcinogenesis is provided and potential avenues for further research are highlighted.

  14. Role of human papillomavirus and tumor suppressor genes in oral cancer

    Directory of Open Access Journals (Sweden)

    Vardendra Manvikar

    2016-01-01

    Full Text Available The incidence of oral cancer remains high and is associated with many deaths in both Western and Asian countries. Several risk factors for the development of oral cancer are now well known, including smoking, drinking and consumption of smokeless tobacco products. Genetic predisposition to oral cancer has been found in certain cases, but its components are not yet entirely clear. In accordance with the multi-step theory of carcinogenesis, the natural history of oral cancer seems to gradually evolve through transitional precursor lesions from normal epithelium to a full-blown metastatic phenotype. A number of genomic lesions accompany this transformation and a wealth of related results has appeared in recent literature and is being summarized here. Furthermore, several key genes have been implicated, especially well-known tumor suppressors such as the cyclin-dependent kinase inhibitors, TP53 and RB1 and oncogenes such as the cyclin family, epidermal growth factor receptor and RAS. Viral infections, particularly oncogenic human papillomavirus subtypes and Epstein-Barr virus, can have a tumorigenic effect on oral epithelia and their role is discussed, along with potential therapeutic interventions. A brief explanatory theoretical model of oral carcinogenesis is provided and potential avenues for further research are highlighted.

  15. Distinct patterns in the regulation and evolution of human cancer genes.

    Science.gov (United States)

    Furney, Simon J; Madden, Stephen F; Kisiel, Tomasz A; Higgins, Desmond G; Lopez-Bigas, Nuria

    2008-01-01

    Understanding the mechanism of regulation of cancer genes and the constraints on their coding sequences is of fundamental importance in understanding the process of tumour development. Here we test the hypothesis that tumour suppressor genes and proto-oncogenes, due to their involvement in tumourigenesis, have distinct patterns of regulation and coding selective constraints compared to non-cancer genes. Indeed, we found significantly greater conservation in the promoter regions of proto-oncogenes, suggesting that these genes are more tightly regulated, i.e. they are more likely to contain a higher density of cis-regulatory elements. Furthermore, proto-oncogenes appear to be preferentially targeted by microRNAs and have longer 3' UTRs. In addition, proto-oncogene evolution appears to be highly constrained, compared to tumour suppressor genes and non-cancer genes. A number of these trends are confirmed in breast and colon cancer gene sets recently identified by mutational screening.

  16. A novel gene signature for molecular diagnosis of human prostate cancer by RT-qPCR.

    Directory of Open Access Journals (Sweden)

    Federica Rizzi

    Full Text Available BACKGROUND: Prostate cancer (CaP is one of the most relevant causes of cancer death in Western Countries. Although detection of CaP at early curable stage is highly desirable, actual screening methods present limitations and new molecular approaches are needed. Gene expression analysis increases our knowledge about the biology of CaP and may render novel molecular tools, but the identification of accurate biomarkers for reliable molecular diagnosis is a real challenge. We describe here the diagnostic power of a novel 8-genes signature: ornithine decarboxylase (ODC, ornithine decarboxylase antizyme (OAZ, adenosylmethionine decarboxylase (AdoMetDC, spermidine/spermine N(1-acetyltransferase (SSAT, histone H3 (H3, growth arrest specific gene (GAS1, glyceraldehyde 3-phosphate dehydrogenase (GAPDH and Clusterin (CLU in tumour detection/classification of human CaP. METHODOLOGY/PRINCIPAL FINDINGS: The 8-gene signature was detected by retrotranscription real-time quantitative PCR (RT-qPCR in frozen prostate surgical specimens obtained from 41 patients diagnosed with CaP and recommended to undergo radical prostatectomy (RP. No therapy was given to patients at any time before RP. The bio-bank used for the study consisted of 66 specimens: 44 were benign-CaP paired from the same patient. Thirty-five were classified as benign and 31 as CaP after final pathological examination. Only molecular data were used for classification of specimens. The Nearest Neighbour (NN classifier was used in order to discriminate CaP from benign tissue. Validation of final results was obtained with 10-fold cross-validation procedure. CaP versus benign specimens were discriminated with (80+/-5% accuracy, (81+/-6% sensitivity and (78+/-7% specificity. The method also correctly classified 71% of patients with Gleason score or =7, an important predictor of final outcome. CONCLUSIONS/SIGNIFICANCE: The method showed high sensitivity in a collection of specimens in which a significant

  17. Cdc6 and Cyclin E2 Are PTEN-Regulated Genes Associated with Human Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2009-01-01

    Full Text Available Phosphatase and tensin homolog deleted on chromosome 10 (PTEN is frequently inactivated in metastatic prostate cancer, yet the molecular consequences of this and their association with the metastatic phenotype are incompletely understood. We performed transcriptomic analysis and identified genes altered by conditional PTEN reexpression in C4-2, a human metastatic prostate cancer cell line with inactive PTEN. PTEN-regulated genes were disproportionately represented among genes altered in human prostate cancer progression and metastasis but not among those associated with tumorigenesis. From the former set, we identified two novel putative PTEN targets, cdc6 and cyclin E2, which were overexpressed in metastatic human prostate cancer and up-regulated as a function of PTEN depletion in poorly metastatic DU145 human prostate cancer cells harboring a wild type PTEN. Inhibition of cdc6 and cyclin E2 levels as a consequence of PTEN expression was associated with cell cycle G1 arrest, whereas use of PTEN activity mutants revealed that regulation of these genes was dependent on PTEN lipid phosphatase activity. Computational and promoter-reporter evaluations implicated the E2F transcription factor in PTEN regulation of cdc6 and cyclin E2 expression. Our results suggest a hypothetical model whereby PTEN loss upregulates cell cycle genes such as cdc6 and cyclin E2 that in turn promote metastatic colonization at distant sites.

  18. Fatty Acid Esters of Phloridzin Induce Apoptosis of Human Liver Cancer Cells through Altered Gene Expression

    Science.gov (United States)

    Nair, Sandhya V. G.; Ziaullah; Rupasinghe, H. P. Vasantha

    2014-01-01

    Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated

  19. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  20. The structural complexity of the human BORIS gene in gametogenesis and cancer.

    Directory of Open Access Journals (Sweden)

    Elena M Pugacheva

    Full Text Available BACKGROUND: BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST promoter and the IGF2/H19 imprinting control region (ICR, it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258 in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates. CONCLUSIONS: The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may

  1. Deciphering the colon cancer genes--report of the InSiGHT-Human Variome Project Workshop, UNESCO, Paris 2010

    DEFF Research Database (Denmark)

    Kohonen-Corish, Maija R J; Macrae, Finlay; Genuardi, Maurizio;

    2011-01-01

    The Human Variome Project (HVP) has established a pilot program with the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) to compile all inherited variation affecting colon cancer susceptibility genes. An HVP-InSiGHT Workshop was held on May 10, 2010, prior to the HVP...... Integration and Implementation Meeting at UNESCO in Paris, to review the progress of this pilot program. A wide range of topics were covered, including issues relating to genotype-phenotype data submission to the InSiGHT Colon Cancer Gene Variant Databases (chromium.liacs.nl/LOVD2/colon_cancer...

  2. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Ma Jianjun

    2008-10-01

    Full Text Available Abstract Background NDRG2 (N-Myc downstream-regulated gene 2 was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. Methods In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40 and carcinomas (n = 35, along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. Results The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Conclusion Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.

  3. EFFECTS OF p53 GENE THERAPY COMBINED WITH CYCLOOXYGENASE-2 INHIBITOR ON CYCLOOXYGENASE-2 GENE EXPRESSION AND GROWTH INHIBITION OF HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Xia; LU Bin-Bin; WANG Teng; YIN Yong-Mei; DE Wei; SHU Yong-Qian

    2007-01-01

    Background Gene therapy by adenovirus-mediated wild-type p53 gene transfer has been shown to inhibit lung cancer growth in vitro, in animal models, and in human clinical trials. The antitumor effect of selective cyclooxygenase (COX)-2 inhibitors has been demonstrated in preclinical studies. However, no information is available on the effects of p53 gene therapy combined with selective COX-2 inhibitor on COX-2 gene expression and growth inhibition of human lung cancer cells. Methods We evaluated the effects of recombinant adenovirus-p53 (Ad-p53) gene therapy combined with selective COX-2 inhibitor on the proliferation, apoptosis, cell cycle arrest of human lung adenocarcinoma A549 cell line, and the effects of tumor suppressor exogenous wild type p53 on COX-2 gene expression. Results Ad-p53 gene therapy combined with selective COX-2 inhibitor celecoxib shows significant synergistic inhibition effects on the growth of human lung adenocarcinoma A549 cell line. Exogenous p53 gene can suppress COX-2 gene expression. Conclusions Significant synergistic inhibition effects of A549 cell line by the combined Ad-p53 and selective COX-2 inhibitor celecoxib may be achieved by enhancement of growth inhibition, apoptosis induction and suppression of COX-2 gene expression. This study provides first evidence that the administration of p53 gene therapy in combination with COX-2 inhibitors might be a new clinical strategy for the treatment or prevention of NSCLC.

  4. Expression of Dnmt1, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jing-Yuan Fang; Zhong-Hua Cheng; Ying-Xuan Chen; Rong Lu; Li Yang; Hong-Yin Zhu; Lun-Gen Lu

    2004-01-01

    AIM: To explore the effect of DNA methyltransferase,demethylase and methyl-CpG binding protein MeCP2 on the expressions and methylation of hMSH2 and protooncogene in human gastric cancer.METHODS: Paired samples of primary gastric cancer and corresponding para-cancerous, non-cancerous gastric mucosae were obtained from surgically resected specimens of 28 patients. Transcription levels of Dnmt1, mbd2, MeCP2, p16INK4A,hMSH2 and c-myc were detected by using real-time PCR or RT-PCR. Promoter methylation of p16INK4A, c-myc and hMSH2 genes was assayed by methylation-specific PCR (MSP) and sequencing (mapping). Their relationships were analyzed by Fisher's exact test using the software SPSS. RESULTS: The average mRNA level of Dnmt1 gene from cancerous tissue was higher and that of mbd2 gene from cancerous tissue was lower than that from non-cancerous tissue, respectively. mbd2 was lower in cancerous tissue than in non-cancerous tissue in 14 (50.0%) of patients but higher in 3 cases (10.7%) of non-cancerous gastric tissue (P<0.001). c-myc expression was up-regulated in cancer tissues (P<0.05). The up-regulation of mbd2 was found in all patients with hypomethylated c-myc. The transcriptional levels of p16INK4A and MeCP2 genes did not display any differencebetween gastric cancerous and matched non-cancerous tissues. There were down-regulation and hypermethylation of hMSH2 in cancer tissues, and the hypermethylation of hMSH2 coexisted with down-regulated transcription.However, the transcription level of the above genes was not associated with biological behaviours of gastric cancers.CONCLUSION: The up-regulation of proto-oncogene may be the consequence of epigenetic control of gene expression by demethylase, and mbd2 is involved in the regulation of hMSH2 expression in human gastric cancer.

  5. Comparative analysis of gene expression in normal and cancer human prostate cell lines

    Directory of Open Access Journals (Sweden)

    E. E. Rosenberg

    2014-04-01

    Full Text Available Prostate cancer is one of the main causes of mortality in men with malignant tumors. The urgent problem was a search for biomarkers of prostate cancer, which would allow distinguishing between aggressive metastatic and latent tumors. The aim of this work was to search for differentially expressed genes in normal epithelial cells PNT2 and prostate cancer cell lines LNCaP, DU145 and PC3, produced from tumors with different aggressiveness and metas­tatic ability. Such genes might be used to create a panel of prognostic markers for aggressiveness and metastasis. Relative gene expression of 65 cancer-related genes was determined by the quantitative polymerase chain reaction (Q-PCR. Expression of 29 genes was changed in LNCaP cells, 20 genes in DU145 and 16 genes in PC3 cell lines, compared with normal line PNT2. The obtained data make it possible to conclude that the epithelial-mesenchymal cell transition took place, which involved the loss of epithelial markers, reduced cell adhesion and increased migration. We have also found few differentially expressed genes among 3 prostate cancer cell lines. We have found that genes, involved in cell adhesion (CDH1, invasiveness and metastasis (IL8, CXCL2 and cell cycle control (P16, CCNE1 underwent most changes. These genes might be used for diagnosis and prognosis of invasive metastatic prostate tumors.

  6. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  7. Ets-1 regulates its target genes mainly by DNA methylation in human ovarian cancer.

    Science.gov (United States)

    Wan, S M; Peng, P; Guan, T

    2013-11-01

    Ovarian cancer is the second most common gynaecological cancer worldwide, and its molecular mechanism has not been completely understood. Ets-1 is a member of the Ets transcription family and can play important roles in the regulation of extracellular matrix remodelling, invasion, angiogenesis and drug resistance in several malignancies, including ovarian cancer. In the current study, we downloaded two datasets from Gene Expression Omnibus database and sought to explore the regulation mechanism of Ets-1 in ovarian cancer by computational analysis of gene expression profiles. Microarray analysis identified a total of 548 genes that were regulated by Ets-1 in ovarian cancer. Functional annotation of these genes revealed that Ets-1 may be involved in several biological processes, both physiological and pathological, such as system development, response to stimulus, vascular endothelial growth factor (VEGF) production, morphogenesis, cell proliferation, cell adhesion and signal transduction. Further, DNA methylation analysis of the DEGs found that 26.5% (145) of them were differentially methylated genes in ovarian cancer. Our results provide insight into the mechanism of Ets-1 regulating the transcription of its target genes in the complex and multistep process of ovarian cancer progression.

  8. Colorectal cancer and the KIR genes in the human genome: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Koroush Ghanadi

    2016-12-01

    Full Text Available Colorectal cancer is one of the most common types of inflammation-based cancers and is occurred due to growth and spread of cancer cells in colon and/or rectum. Previously genetic association of cell cycle genes, both proto-oncogenes and the tumor suppressors has been proved. But there were few studies about association of immune related genes such as killer-cell immunoglobulin-like receptors (KIRs. Thus we intend to perform a meta-analysis to find the association of different genes of KIR and susceptibility to be affected by colorectal cancer. The overall population of the four studies investigated in our meta-analysis was 953 individuals (470 individuals with colorectal cancer and 483 individuals in control groups. After the analyses, we concluded that colorectal cancer is affected by KIR2DS5 and also there were no protecting gene. This result shows the inflammatory basis of this cancer. In other words, in contrast to leukemia and blood cancers, colorectal cancers seem to be affected by hyper activity of natural killer-cells (NKs. Whys and therefore of this paradox, is suggested to be investigated further.

  9. Colorectal cancer and the KIR genes in the human genome: A meta-analysis.

    Science.gov (United States)

    Ghanadi, Koroush; Shayanrad, Bahareh; Ahmadi, Seyyed Amir Yasin; Shahsavar, Farhad; Eliasy, Hossein

    2016-12-01

    Colorectal cancer is one of the most common types of inflammation-based cancers and is occurred due to growth and spread of cancer cells in colon and/or rectum. Previously genetic association of cell cycle genes, both proto-oncogenes and the tumor suppressors has been proved. But there were few studies about association of immune related genes such as killer-cell immunoglobulin-like receptors (KIRs). Thus we intend to perform a meta-analysis to find the association of different genes of KIR and susceptibility to be affected by colorectal cancer. The overall population of the four studies investigated in our meta-analysis was 953 individuals (470 individuals with colorectal cancer and 483 individuals in control groups). After the analyses, we concluded that colorectal cancer is affected by KIR2DS5 and also there were no protecting gene. This result shows the inflammatory basis of this cancer. In other words, in contrast to leukemia and blood cancers, colorectal cancers seem to be affected by hyper activity of natural killer-cells (NKs). Whys and therefore of this paradox, is suggested to be investigated further.

  10. Prediction and experimental validation of novel STAT3 target genes in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Young Min Oh

    Full Text Available The comprehensive identification of functional transcription factor binding sites (TFBSs is an important step in understanding complex transcriptional regulatory networks. This study presents a motif-based comparative approach, STAT-Finder, for identifying functional DNA binding sites of STAT3 transcription factor. STAT-Finder combines STAT-Scanner, which was designed to predict functional STAT TFBSs with improved sensitivity, and a motif-based alignment to minimize false positive prediction rates. Using two reference sets containing promoter sequences of known STAT3 target genes, STAT-Finder identified functional STAT3 TFBSs with enhanced prediction efficiency and sensitivity relative to other conventional TFBS prediction tools. In addition, STAT-Finder identified novel STAT3 target genes among a group of genes that are over-expressed in human cancer cells. The binding of STAT3 to the predicted TFBSs was also experimentally confirmed through chromatin immunoprecipitation. Our proposed method provides a systematic approach to the prediction of functional TFBSs that can be applied to other TFs.

  11. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    Directory of Open Access Journals (Sweden)

    Lee Yeon-Su

    2010-05-01

    Full Text Available Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. Methods We assessed the suitability of six possible reference genes, beta-actin (ACTB, glyceraldehydes-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl transferase 1 (HPRT1, beta-2-microglobulin (B2M, ribosomal subunit L29 (RPL29 and 18S ribosomal RNA (18S rRNA in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. Results This RT-qPCR study showed that there are statistically significant (p Conclusion This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.

  12. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    Science.gov (United States)

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  13. Deciphering the Colon Cancer Genes-Report of the InSiGHT-Human Variome Project Workshop, UNESCO, Paris 2010

    NARCIS (Netherlands)

    Kohonen-Corish, Maija R. J.; Macrae, Finlay; Genuardi, Maurizio; Aretz, Stefan; Bapat, Bharati; Bernstein, Inge T.; Burn, John; Cotton, Richard G. H.; den Dunnen, Johan T.; Frebourg, Thierry; Greenblatt, Marc S.; Hofstra, Robert; Holinski-Feder, Elke; Lappalainen, Ilkka; Lindblom, Annika; Maglott, Donna; Moller, Pal; Morreau, Hans; Moeslein, Gabriela; Sijmons, Rolf; Spurdle, Amanda B.; Tavtigian, Sean; Tops, Carli M. J.; Weber, Thomas K.; de Wind, Niels; Woods, Michael O.

    2011-01-01

    The Human Variome Project (HVP) has established a pilot program with the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) to compile all inherited variation affecting colon cancer susceptibility genes. An HVP-InSiGHT Workshop was held on May 10, 2010, prior to the HVP Integrat

  14. RNA-seq reveals more consistent reference genes for gene expression studies in human non-melanoma skin cancers

    Directory of Open Access Journals (Sweden)

    Van L.T. Hoang

    2017-08-01

    Full Text Available Identification of appropriate reference genes (RGs is critical to accurate data interpretation in quantitative real-time PCR (qPCR experiments. In this study, we have utilised next generation RNA sequencing (RNA-seq to analyse the transcriptome of a panel of non-melanoma skin cancer lesions, identifying genes that are consistently expressed across all samples. Genes encoding ribosomal proteins were amongst the most stable in this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a valuable resource for the normalisation of qPCR data for the analysis of non-melanoma skin cancer.

  15. Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.

    Science.gov (United States)

    Skowronski, Karolina; Skowronki, Karolina; Andrews, Joseph; Rodenhiser, David I; Coomber, Brenda L

    2014-01-01

    DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.

  16. Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Pei-Hong Jiang; Yoshiharu Motoo; Norio Sawabu; Toshinari Minamoto

    2006-01-01

    AIM: To investigate the expression of genes involved in the gemcitabine-induced cytotoxicity in human pancreatic cancer cells.METHODS: A human pancreatic cancer cell line,PANC-1, was cultured. 1×104 PANC-1 cells were plated in 96-well microtiter plates. After being incubated for 24 h,gemcitabine was added to the medium at concentrations ranging 2.5 -1 000 mg/L. The AlamarBlue dye method was used for cell growth analysis. DNA fragmentation was quantitatively assayed using a DNA fragmentation enzyme-linked immunosorbent assay (ELISA) kit. PAP and TP53INP1 mRNA expression was determined using the reverse transcription-polymerase chain reaction with semi-quantitative analysis. The expression of GSK-3β and phospho-GSK-3β proteins was examined with Western blot analysis.RESULTS: The IC50 for the drug after a 48-h exposure to gemcitabine was 16 mg/L. The growth of PANC-1 cells was inhibited by gemcitabine in a concentrationdependent manner (P< 0.0001) and the cell growth was also inhibited throughout the time course (P<0.0001).The DNA fragmentation rate in the gemcitabine-treated group at 48 h was 44.7 %, whereas it was 25.3 % in the untreated group. The PAP mRNA expression was decreased after being treated with gemcitabine, whereas the TP53INP1 mRNA was increased by the gemcitabine treatment. Western blot analysis showed that phosphoGSK-3βser9 was induced by the gemcitabine treatment.CONCLUSION: Gemcitabine suppresses PANC-1cell proliferation and induces apoptosis. Apoptosis is considered to be associated with the inhibition of PAP and GSK-3β, and the activation of TP53INP1 and posphoGSK-33ser9 .

  17. THE CONSTRUCTION AND EXPRESSION OF THE MURINE SCFV GENE IN E.COLI AGAINST HUMAN CERVICAL CANCER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Human cervical cancer is one of the most com-mon malignant neoplas m in women with a highdeath rate.It is characterized by a lot of factors andits pathological process is very complicated.In spiteof progress in the diagnosis and therapy of humancervical cancer,ti mely and accurate methods are ur-gently needed[1].Application of murine monoclonal antibodies(McAb)for the study of diagnosis and treat mentsfor human tumors is li mited by a number of fac-tors.Due to the progress in gene engineering andphage displ...

  18. Genes Involved in Human Ribosome Biogenesis areTranscriptionally Upregulated in Colorectal Cancer

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Lamy, Philippe; Ørntoft, Torben Falck

    2009-01-01

    Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p<10-3) when compared to normal mucosa. Overexpression was independent of microsate......Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p... of rRNA processing genes points towards a coordinated process enabling the overproduction of matured ribosomal structures....

  19. Coexpression of cholecystokinin-B/gastrin receptor and gastrin gene in human gastric tissues and gastric cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Jian-Jiang Zhou; Man-Ling Chen; Qun-Zhou Zhang; Jian-Kun Hu; Wen-Ling Wang

    2004-01-01

    AIM: To compare the expression patterns of cholecystokininB (CCK-B)/gastrin receptor genes in matched human gastric carcinoma and adjacent non-neoplastic mucosa of patients with gastric cancer, inflammatory gastric mucosa from patients with gastritis, normal stomachs from 2 autopsied patients and a gastric carcinoma cell line (SGC-7901), and to explore their relationship with progression to malignancy of human gastric carcinomas.METHODS: RT-PCR and sequencing were employed to detect the mRNA expression levels of CCK-B receptor and gastrin gene in specimens from 30 patients with gastric carcinoma and healthy bordering non-cancerous mucosa, 10 gastritis patients and normal stomachs from 2 autopsied patients as well as SGC-7901. The results were semi-quantified by normalizing it to the mRNA level of β-actin gene using Lab Image software. The sequences were analyzed by BLAST program. RESULTS: CCK-B receptor transcripts were detected in all of human gastric tissues in this study, including normal, inflammatory and malignant tissues and SGC-7901. However, the expression levels of CCK-B receptor in normal gastric tissues were higher than those in other groups (P<0.05),and its expressions did not correlate with the differentiation and metastasis of gastric cancer (P>0.05). On the other hand, gastrin mRNA was detected in SGC-7901 and in specimens obtained from gastric cancer patients (22/30) but not in other gastric tissues, and its expression was highly correlated with the metastases of gastric cancer (P<0.05). CONCLUSION: Human gastric carcinomas and gastric cancer cell line SGC-7901 cells coexpress CCK-B receptor and gastrin mRNA. Gastrin/CCK-B receptor autocrine or paracrine pathway may possibly play an important role in the progression of gastric cancer.

  20. Comparison of Nuclear Accumulation of p53 Protein with Mutations in the p53 Gene of Human Breast Cancer Tissues

    Institute of Scientific and Technical Information of China (English)

    王萱仪; 查小明; 武正炎; 范萍

    2001-01-01

    Objective The objective was to compare nuclear accumulation of p53 protein with mutations in the p53 gene on the tissues of human breast cancer. Methods Fifty-four invasive ductal carcinomas of breast were analyzed by the method of polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) silver stain and strep-avidin-biotin-peroxidase complex (SABC) immunohistochemistry. Results A statistically significant association between the presence of p53 gene mutation and nuclear accumulation of p53 protein was found (P<0.01). 22 tumors that demonstrated p53 gene mutations showed nuclear accumulation of p53 protein, while only 9 (28%) showed nuclear accumulation of p53 protein in 32 tumors without p53 gene mutations. Both p53 mutation protein and p53 gene mutations were prevalent in steroid and progesterone receptors negative tumors (P<0.05). A statistically significant association was found between the nuclear accumulation of p53 protein and lymph node invasion (P<0.05), and between p53 gene mutations and lymph node invasion (P<0.05). p53 abnormalities might be associated with an aggressive phenotype in breast cancer. Conclusion The immunohistochemical detection of nuclear p53 protein accumulation is highly associated with p53 gene mutations in breast cancer tissues, and that this method is useful for rapid screening of p53 abnormalities. However, in order to avoid false positive reaction, the p53 gene mutations should be determined in cases slightly positive for p53 nuclear protein.

  1. Comparative effects of DHEA and DHT on gene expression in human LNCaP prostate cancer cells.

    Science.gov (United States)

    Steele, Vernon E; Arnold, Julia T; Lei, Hanh; Izmirlian, Grant; Blackman, Marc R

    2006-01-01

    DHEA is widely used as a dietary supplement in older men. Because DHEA can be converted to androgens or estrogens, such use may promote prostate cancer. In this study, the effects of DHEA were compared with those of DHT using gene expression array profiles in human LNCaP prostate cancer cells. LNCaP cells were exposed to DHEA (300 nM), DHT (300 nM), or vehicle for 48 h, and mRNA expression was measured using Affymetrix HU-95 gene chips. Gene expression values were sorted in ascending order on the p-values corresponding to the extent of differential RNA expression between control and either hormone treatment. S100 calcium binding protein, neurotensin, 24-dehydrocholesterol reductase, and anterior-gradient 2 homologue were the four most differentially expressed genes (p-values all DHT treatment (p DHT were used for pathway analysis. DHT decreased expression of more genes involved in intercellular communication, signal transduction, nucleic acid binding and transport, and in structural components, such as myosin and golgin, than DHEA. These data revealed consistent, measurable changes in gene expression patterns following treatment of LNCaP prostate cancer cells with DHEA and DHT. Understanding the mechanisms of DHEA versus DHT actions in the prostate may help clarify the separate and interactive effects of androgenic and estrogenic actions in prostate cancer progression.

  2. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer

    Institute of Scientific and Technical Information of China (English)

    Tadateru Maehata; Fumio Itoh; Hiroaki Taniguchi; Hiroyuki Yamamoto; Katsuhiko Nosho; Yasushi Adachi; Nobuki Miyamoto; Chic Miyamoto; Noriyuki Akutsu; Satoshi Yamaoka

    2008-01-01

    AIM:To clarify alterations of Dickkopfs (Dkks) and Kremen2 (Krm2) in gastrointestinal cancer.METHODS:We investigated the expression profiles and epigenetic alterations of Dkks and Krm2 genes in gastrointestinal cancer using RT-PCR,tissue microarray analysis,and methylation specific PCR (MSP).Cancer cells were treated with the demethylating agent and/or histone deacetylase inhibitor.WST-8 assays and in vitro invasion assays after treatment with specific siRNA for those genes were performed.RESULTS:Dkks and Krm2 expression levels were reduced in a certain subset of the gastrointestinal cancer cell lines and cancer tissues.This was correlated with promoter hypermethylation.There were significant correlations between Dkks over-expression levels and beta-catenin over-expression in colorectal cancer.In colorectal cancers with beta-catenin over-expression,Dkk-1 expression levels were significantly lower in those with lymph node metastases than in those without.Down-regulation of Dkks expression by siRNA resulted in a significant increase in cancer cell growth and invasiveness in vitro.CONCLUSION:Down-regulation of the Dkks associated to promoter hypermethylation appears to be frequently involved in gastrointestinal tumorigenesis.

  3. INHIBITION OF PROLIFERATION OF HUMAN BREAST CANCER MCF-7 CELLS BY SMALL INTERFERENCE RNA AGAINST LRP16 GENE

    Institute of Scientific and Technical Information of China (English)

    韩为东; 赵亚力; 李琦; 母义明; 李雪; 宋海静; 陆祖谦

    2004-01-01

    Objective: Our previous studies have firstly demonstrated that 17(-E2 up-regulates LRP16 gene expression in human breast cancer MCF-7 cells, and ectopic expression of the LRP16 gene promotes MCF-7 cells proliferation. Here, the effects of the LRP16 gene expression on growth of MCF-7 human breast cancer cells and the mechanism were further studied by establishing two stably LRP16-inhibitory MCR-7 cell lines. Methods: Hairpin small interference RNA (siRNA) strategy, by which hairpin siRNA was released by U6 promoter and was mediated by pLPC-based retroviral vector, was adopted to knockdown endogenous LRP16 level in MCF-7 cells. And the hairpin siRNA against green fluorescence protein (GFP) was used as the negative control. The suppressant efficiency of the LRP16 gene expression was confirmed by Nothern blot. Cell proliferation assay and soft agar colony formation assay were used to determine the status of the cells proliferation. Cell cycle checkpoints including cyclin E and cyclin D1 were examined by Western blot. Results: The results from cell proliferation assays suggested that down-regulation of LRP16 gene expression is capable of inhibiting MCF-7 breast cancer cell growth and down-regulation of the LRP16 gene expression is able to inhibit anchorage-independent growth of breast cancer cells in soft agar. We also demonstrated that cyclin E and cyclin D1 proteins were much lower in the LRP16-inhibitory cells than in the control cells. Conclusion: These data suggest that LRP16 gene play an important role in MCF-7 cells proliferation by regulating the pathway of the G1/S transition and may function as an important modulator in regulating the process of tumorigenesis in human breast.

  4. Associations of filaggrin gene loss-of-function variants and human papillomavirus-related cancer and pre-cancer in Danish adults.

    Directory of Open Access Journals (Sweden)

    Tea Skaaby

    Full Text Available Filaggrin proteins are expressed in the skin, oral cavity, oesophagus, and cervical mucose. Loss-of-function mutations in the filaggrin gene (FLG reduce filaggrin expression and cause an impaired skin barrier function. We hypothesized that FLG mutation carriers would be more susceptible to human papillomavirus (HPV infection and thus a higher risk of HPV-related cancer and pre-cancer. We investigated the association of the FLG genotype with incidence of HPV-related cancer of cervix, vagina, vulva, penis, anus and head and neck, and pre-cancer of the cervix.We included 13,376 persons from four population-based studies conducted in the same background population in Copenhagen, Denmark. Participants were genotyped for the most common FLG mutations in Europeans. Information on cancer was obtained from The Danish Cancer Registry until 11 July 2011.There were 489 cases of prevalent and 97 cases of incident HPV-related cancer and pre-cancer (median follow-up 11.5 years. There was a statistically significant association between FLG genotype and incident HPV-related cancer and pre-cancer with a hazard ratio, HR = 2.1 (95% confidence intervals, CI: 1.2, 3.7 for FLG mutation carriers vs. wild types.FLG loss-of-function mutations were associated with higher incidence of HPV-related cancers and pre-cancers that are potentially screening and vaccine preventable.

  5. Identification of specific genes and pathways involved in NSAIDs-induced apoptosis of human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Richard H Huang; Jianyuan Chai; Andrzej S Tarnawski

    2006-01-01

    AIM: To study whether indomethacin (IND), a nonselective cyclooxygenase (COX) inhibitor or NS-398(NS), a COX-2-selective inhibitor, in duces apoptosis inhuman colon cancer cells and which apoptosis-related genes and pathways are involved.METHODS: Human colon cancer Caco-2 cells were treated with either: placebo, IND (0.05-0.5 mmol/L)or NS (0.01-0.2 mmol/L) for 1, 5 and 18 h. We then studied: (1) Cell death by the TUNEL method, (2) mRNA expression of 96 apoptosis-related genes using DNA microarray, (3) expression of selected apoptosis related proteins by Western blotting.RESULTS: Both IND and NS induced apoptosis in 30%-50% of Caco-2 cells in a dose dependent manner.IND (0.1 mmol/L for 1 h) significantly up-regulated proapoptotic genes in four families: (1) TNF receptor and ligand, (2) Caspase, (3) Bcl-2 and (4) Caspase recruiting domain. NS treatment up-regulated similar pro-apoptotic genes as IND. In addition, IND also down-regulated antiapoptotic genes of the IAP family.CONCLUSION: (1) Both non-selective and COX-2-selective NSAIDs induce apoptosis in colon cancer cell sin a dose dependent manner. (2) Both NSAIDs induce apoptosis by activating two main apoptotic pathways:the death receptor pathway (involving TNF-R) and the mitochondrial pathway. (3) IND induces apoptosis by up-regulating pro-apoptotic genes and down-regulating anti-apoptotic genes, while NS only up-regulates proapoptotic genes. (4) Induction of apoptosis in colon cancer cells by NSAIDs may explain in part, their inhibitory action on colon cancer growth.

  6. SCREENING OF DRUG RESISTANCE-RELATED GENES FROM HUMAN OVARIAN CANCER CELL LINE OC3/ADR BY DD-PCR

    Institute of Scientific and Technical Information of China (English)

    田方; 程国均; 周海胜; 王宏; 肖凤君

    2001-01-01

    Objective: To screen novel genes related to adriamycin (Adr) resistance from human ovarian cancer resistance cell line OC3/Adr. Methods: Multidrug resistant ovarian cancer cell line OC3/Adr was induced by intermittent treatment of the human parent cell line OC3 with high concentration Adr. The difference of gene expression was screened by using different display analysis to the acquired Adr-resistance subline OC3/Adr and its parent cell line OC3. Results: OC3/Adr cell line was obtained which was more resistance to Adr than the parent cell line OC3 with the resistance index (RI) of 15.4. The OC3/Adr cell line also showed cross-resistance to other anti-cancer drugs (VP16, CDDP,5FU ). It grew slowly and exhibited changes of cell cycle. A number of differentially expressed ESTs (Expressed Sequence Tags, ESTs) were identified at mRNA level between the OC3/Adr and OC3. Four of 18 different ESTs were sequenced. The 431/432 base pair S1 was homologous to human sperm zona pellucida binding protein, while the other two ESTs, S3 and S4, were new gene segments, which were registered to GenBank with the number of AF 117656 and AF 126507 respectively. Particularly, the expression of S2 sequence increased in all the drug-resistance cell lines and S3 sequence overexpressed in human ovarian cancer tissues as compared with benign ovarian tumors. Adr in ovarian cancer OC3/Adr is involved with changes of multiple gene expressions.

  7. Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    LU; Aiping; LI; Qing; LIU; Jingwen

    2006-01-01

    Breast cancer-specific gene 1 (BCSG1), also referred as synuclein γ, was originally isolated from a human breast cancer cDNA library and the protein is mainly localized to presynaptic terminals in the nervous system. BCSG1 is not expressed in normal or benign breast lesions, but expressed at an extremely high level in the vast majority of the advanced staged breast carcinomas and ovarian carcinomas. Overexpression of BCSG1 in cancer cells led to significant increase in cell proliferation, motility and invasiveness, and metastasis. To elucidate the molecular mechanism and regulation for abnormal transcription of BCSG1, a variety of BCSG1 promoter luciferase reporters were constructed including 3' end deleted sequences, Sp1 deleted, and activator protein-1 (AP1) domains mutated. Transient transfection assay was used to detect the transcriptional activation of BCSG1 promoters. Results showed that the Sp1 sequence in 5'-flanking region was involved in the basal transcriptional activities of BCSG1 without cell-type specificity. In comparison to pGL3-1249, the reporter activities of pGL3-1553 in BCSG1-negative MCF-7 cells and pGL3-1759 in HepG2 cells were notably decreased. Mutations at AP1 sites in BCSG1 intron 1 significantly reduced the promoter activity in all cell lines. Transcription factors, c-jun, c-fos and cyclin AMP-responsive element binding (CREB) protein, could markedly enhance the promoter activities. Thus, our results suggest that the abnormal expression of BCSG1 in breast cancer cells is likely regulated by multiple mechanisms. The 5' flanking region of BCSG1 provides the basal transcriptional activity without cell type specificity. A critical promoter element involved in abnormal expression of BCSG1 presents in the first exon. The cell type specificity of BCSG1 transcription is probably affected through intronic cis-regulatory sequences. AP1 domains in the first intron play an important role in control of BCSG1 transcription.

  8. Chemosensitization of Human Renal Cell Cancer Using Antisense Oligonucleotides Targeting the Antiapoptotic Gene Clusterin

    Directory of Open Access Journals (Sweden)

    Tobias Zellweger

    2001-01-01

    Full Text Available BACKGROUND: Renal cell cancer (RCC is a chemoresistant disease with no active chemotherapeutic agent achieving objective response rates higher than 15%. Clusterin is a cell survival gene that increases in human renal tubular epithelial cells after various states of injury and disease. Downregulation of clusterin, using antisense oligonucleotides (ASO, has recently been shown to increase chemosensitivity in several prostate cancer models. The objectives in this study were to evaluate clusterin expression levels in human RCC and normal kidney tissue, and to test whether clusterin ASO could also enhance chemosensitivity in human RCC Caki-2 cells both in vitro and in vivo. METHODS: Immunohistochemical staining was used to characterize clusterin expression in 67 RCC and normal kidney tissues obtained from radical nephrectomy specimens. Northern blot analysis was used to assess changes in clusterin mRNA expression after ASO and paclitaxel treatment. The effects of combined clusterin ASO and paclitaxel treatment on Caki-2 cell growth was examined using an MTT assay. Athymic mice bearing Caki-2 tumors were treated with clusterin ASO alone, clusterin ASO plus paclitaxel, and mismatch control oligonucleotides plus paclitaxel, over a period of 28 days with measurement of tumor volumes once weekly over 8 weeks. RESULTS: Immunohistochemistry of normal and malignant kidney tissue sections of 67 patients demonstrated positive clusterin staining for almost all RCC (98% and an overexpression, compared to normal tissue, in a majority of RCC (69%. Clusterin ASO, but not mismatch control oligonucleotides, decreased clusterin mRNA expression in Caki-2 cells in a dosedependent and sequence-specific manner. Pretreatment of Caki-2 cells with clusterin ASO significantly enhanced chemosensitivity to paclitaxel in vitro. Characteristic apoptotic DNA laddering was observed after combined treatment with ASO plus paclitaxel, but not with either agent alone. In vivo

  9. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Si Chen

    Full Text Available Recent studies demonstrated that cancer stem cells (CSCs have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP cells than in non-side population (NSP cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  10. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Science.gov (United States)

    Chen, Si; Xu, Yingxi; Chen, Yanan; Li, Xuefei; Mou, Wenjun; Wang, Lina; Liu, Yanhua; Reisfeld, Ralph A; Xiang, Rong; Lv, Dan; Li, Na

    2012-01-01

    Recent studies demonstrated that cancer stem cells (CSCs) have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP) cells than in non-side population (NSP) cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  11. CDKN1C/p57kip2 is a candidate tumor suppressor gene in human breast cancer

    Directory of Open Access Journals (Sweden)

    Pistey Robert

    2008-03-01

    Full Text Available Abstract Background CDKN1C (also known as p57KIP2 is a cyclin-dependent kinase inhibitor previously implicated in several types of human cancer. Its family members (CDKN1A/p21CIP1 and B/p27KIP1 have been implicated in breast cancer, but information about CDKN1C's role is limited. We hypothesized that decreased CDKN1C may be involved in human breast carcinogenesis in vivo. Methods We determined rates of allele imbalance or loss of heterozygosity (AI/LOH in CDKN1C, using an intronic polymorphism, and in the surrounding 11p15.5 region in 82 breast cancers. We examined the CDKN1C mRNA level in 10 cancers using quantitative real-time PCR (qPCR, and the CDKN1C protein level in 20 cancers using immunohistochemistry (IHC. All samples were obtained using laser microdissection. Data were analyzed using standard statistical tests. Results AI/LOH at 11p15.5 occurred in 28/73 (38% informative cancers, but CDKN1C itself underwent AI/LOH in only 3/16 (19% cancers (p = ns. In contrast, CDKN1C mRNA levels were reduced in 9/10 (90% cancers (p Conclusion CDKN1C is expressed in normal epithelium of most breast cancer cases, mainly in the myothepithelial layer. This expression decreases, at both the mRNA and protein level, in the large majority of breast cancers, and does not appear to be mediated by AI/LOH at the gene. Thus, CDKN1C may be a breast cancer tumor suppressor.

  12. Increasing drug resistance in human lung cancer cells by mutant-type p53 gene mediated by retrovirus

    Institute of Scientific and Technical Information of China (English)

    高振强; 高志萍; 刘喜富; 张涛

    1997-01-01

    Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the complete coding sequence of p53 gene but mutated at codon 245 (G→T) and resulted in glycine to cysteine by sequencing analysis. The retroviral vector pD53M of the mt-p53 was constructed and introduced into the drug-sen-sitive human lung cancer cells GAO in which p53 gene did not mutate. The transfected GAO cells strongly expressed mutant-type p53 protein by immunohistochemistry, showing that pD53M vector could steadily express in GAO cells. The drug resistance to several anticancer agents of GAO cells infected by pD53M increased in varying degrees, with the highest increase of 4-fold, in vitro and in vivo. By quantitative PCR and flow cytometry (FCM) analyses, the expression of MDR1 gene and the activity of P-glycoprotein (Pgp) did not increase, the expression of MRP gene and the activity of m

  13. Alpharetroviral Vectors: From a Cancer-Causing Agent to a Useful Tool for Human Gene Therapy

    Directory of Open Access Journals (Sweden)

    Julia D. Suerth

    2014-12-01

    Full Text Available Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.

  14. Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment.

    Directory of Open Access Journals (Sweden)

    Ramin Radpour

    Full Text Available BACKGROUND: The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2'-deoxycytidine (DAC demethylation therapy in breast cancer at different molecular levels. METHODS AND FINDINGS: Here we investigate a synoptic model to predict complete DAC treatment effects at the level of genes, microRNAs and proteins for several human breast cancer lines. The present study assessed an effective treatment dosage based on the cell viability, cytotoxicity, apoptosis and methylation assays for the investigated cell lines. A highly aggressive and a non-aggressive cell line were investigated using omics approaches such as MALDI-TOF MS, mRNA- and microRNA expression arrays, 2-D gel electrophoresis and LC-MS-MS. Complete molecular profiles including the biological interaction and possible early and late systematic stable or transient effects of the methylation inhibition were determined. Beside the activation of several epigenetically suppressed TSGs, we also showed significant dysregulation of some important oncogenes, oncomiRs and oncosuppressors miRNAs as well as drug tolerance genes/miRNAs/proteins. CONCLUSIONS: In the present study, the results denote some new molecular DAC targets and pathways based on the chemical modification of DNA methylation in breast cancer. The outlined approach might prove to be useful as an epigenetic treatment model also for other human solid tumors in the management of cancer patients.

  15. Apoptosis induced by short hairpin RNA-mediated STAT6 gene silencing in human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-sheng; ZHOU Yun-feng; ZHANG Wen-jie; ZHANG Xiao-lian; PAN Qin; JI Xue-mei; LUO Zhi-guo; WU Jian-ping

    2006-01-01

    Background The relationship between signal transduction and tumors has become one of the foci in cancer research. Signal transducer and activator of the transcription 6 (STAT6) signaling pathway is found to be activated in some cancer cells. But the function of the pathway in cancer cells is unknown. This study was undertaken to investigate the effect of the Stat6 signaling pathway on apoptosis in human colon cancer cells (HT-29 cells) and the possible mechanism of Stat6 by RNA interference techniques.Methods Four eukaryotic expression plasmid vectors of short hairpin RNA (shRNA) specific for the STAT6gene were designed and generated by molecular biological technology. The plasmid vectors were transfected into HT-29 cells by cation liposomes to block the Stat6 signaling pathway. The expressions of STAT6 mRNA and phosph-Stat6 protein were detected by the reverse transcriptase polymerase chain reaction (RT-PCR) method and flow cytometry respectively to screen the most effective shRNA at 72 hours after transfection. The apoptosis condition of the cells in which the expression of the STAT6 gene had been interfered was analyzed by flow cytometry and confocal microscopy. Both mRNA and protein expression of B cell lymphoma-2 (Bcl-2) and Bax were detected by RT-PCR and western blotting.Results Two effective eukaryotic expression plasmid vectors of shRNA specific for the STAT6 gene were generated successfully. One can reduce the expression of the STAT6 gene by 82.4% and the other by 56.8%(P<0.01). The apoptotic rate of colon cancer cells in which STAT6 gene expression had been interfered was significantly higher than that in controlled colon cancer cells (P<0.01). In the cells in which the Stat6 signaling pathway was blocked, the levels of mRNA and protein Bcl-2 were significantly decreased, whereas those of Bax were significantly increased (P<0.01).Conclusions The Stat6 signaling pathway can inhibit apoptosis in human colon cancer cells. The subsequent disorder of

  16. Readthrough of premature termination codons in the adenomatous polyposis coli gene restores its biological activity in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Célia Floquet

    Full Text Available The APC tumor suppressor gene is frequently mutated in human colorectal cancer, with nonsense mutations accounting for 30% of all mutations in this gene. Reintroduction of the WT APC gene into cancer cells generally reduces tumorigenicity or induces apoptosis. In this study, we explored the possibility of using drugs to induce premature termination codon (PTC readthrough (aminoglycosides, negamycin, as a means of reactivating endogenous APC. By quantifying the readthrough of 11 nonsense mutations in APC, we were able to identify those giving the highest levels of readthrough after treatment. For these mutations, we demonstrated that aminoglycoside or negamycin treatment led to a recovery of the biological activity of APC in cancer cell lines, and showed that the level of APC activity was proportional to the level of induced readthrough. These findings show that treatment with readthrough inducers should be considered as a potential strategy for treating cancers caused by nonsense mutations APC gene. They also provide a rational basis for identifying mutations responsive to readthrough inducers.

  17. Differentially expressed genes during human cutaneous melanocytic tumor progression : a focus on cancer/testis-associated genes

    NARCIS (Netherlands)

    Zendman, Albert Johan Willem

    2003-01-01

    Human cutaneous melanoma, the skin cancer originating from the pigment producing melanocyte, is one of the most aggressive types of tumors due to its early dissemination. The progression of melanoma surpasses several stages from common nevi to metastatic tumors. For diagnostic and clinical purposes

  18. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haixi [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wang, Na; Zhao, Lijuan; Li, Shuman; Li, Qianqian; Chen, Ling; Luo, Xinrong; Qiu, Zhu [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Ren, Guosheng [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Xu, Yongzhu [Chongqing Health Service Center, Chongqing 400020 (China); Zhou, Xiangyang [The Wistar Institute, Philadelphia, PA (United States); Xiang, Tingxiu, E-mail: xiangtx1@gmail.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2015-03-15

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumor cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.

  19. MICROARRAY ANALYSIS OF DIFFERENT GENE EXPRESSION OF HUMAN CERVICAL CANCER SUBCLONE CELL LINES

    Institute of Scientific and Technical Information of China (English)

    Chen Wei; Li Xu; Wang Xiang

    2006-01-01

    Objective To examine the differentially expressed invasion-related genes in two anchorage-independent uterine cervical carcinoma cell lines derived from the same patient using a cDNA array. Methods Two human uterine cervical carcinoma subclonal cell lines CS03 and CS07 derived from a single donor line CS1213 were established by limited dilution procedure. The two cDNA samples retro-transcribed from total RNA derived from CS03 and CS07 cells were screened by a cDNA microarray carrying 234 human cell-cycle related genes and 1011 human signal transduction and membrane receptor -associated genes, scanned with a ScanArray 3000 laser scanner. Results The cDNA microarray analysis showed that 12 genes in CS03 were up-regulated compared to CS07, and 24 genes in CS07 were up-regulated. The function of a number of differentially expressed genes was consistently associated with cell-cycle, cell proliferation, migration, apoptosis, signal transduction and tumor metastasis, including p34cdc2, TSC22, plasminogen activator inhibitor I (PAI-1)and desmosome associated protein(Pinin). Conclusion Multiple genes are differentially expressed in uterine cervical carcinoma cell lines even came from the same patient. It is suggested that these genes are involved in the different phenotypic characteristics and development of cervical carcinoma.

  20. Effects of p53 gene on drug resistance in human lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Wentao YUE

    2008-04-01

    Full Text Available Background and Objective Drug resistance of lung cancer cells is one of main factors which affect the outcome of chemotherapy. It has been reported that abnormal p53 gene is well assosiated with chemotherapy resistance of tumor cells. The aim of this study is to evaluate the effects of p53 gene on drug resistance in human lung cancer celllines,so as to provide foundation of choosing individual chemotherapy drugs in clinical treatment. Methods The expression vectors which contain p53cDNA and p53 antisense cDNA respectively were constructed and were confirmed by sequencing. Transfected the 801D, a human lung cancer cell line with recombined plasmids by lipofectin mediating.Several kinds of monoclone cell lines,pEGFP-801D、pEGFP-sense p53-801D(including sense p53,pEGFP-p53(RS-801D)、pEGFP-antisense p53-801D(including antisense p53,pEGFP-p53(AS-801D), which contained p53 odifferent status were obtained. Green fluorescence was observed through fluorescence microscopy. The extraneous gene was detected by PCR. MTT assay was taken to determine the drug resistance of each cell line to chemotherapy agents. Cell cycle and apoptosis induced by antitumor drugs were examined by flow cytometer. Results Extraneous sense p53 andantisense p53 were proved to be linked to plasmid respectively by sequencing.Green fluorescence was found in transfectedcell lines. The IC50 of pEGFP-p53(AS-801D cell line(0.26±0.09 μg/mL) to Cisplatin(DDP) decreased markedly compared with 801D(0.55±0.19 μg/mL,P﹤0.05)and pEGFP-801D(0.77±0.13μg/mL,P﹤0.05). The IC50 value of pEGFP-p53(RS-801D to DDP is 0.43±0.25 μg/mL,which is significantly lower than that of pEGFP-801D(P =0.000)but higher than that of pEGFP-p53(AS-801D(P <0.05. pEGFP-p53(RS-801D cell line showed a notably smaller value of IC50(2.34±0.43 ng/mL to Paclitaxel(TAX) than 801D(8.40±1.50 ng/mL, P <0.05)did. The IC50 value of pEGFPp53(RS-801D is lower than that of p

  1. Csa-19, a radiation-responsive human gene, identified by an unbiased two-gel cDNA library screening method in human cancer cells

    Science.gov (United States)

    Balcer-Kubiczek, E. K.; Meltzer, S. J.; Han, L. H.; Zhang, X. F.; Shi, Z. M.; Harrison, G. H.; Abraham, J. M.

    1997-01-01

    A novel polymerase chain reaction (PCR)-based method was used to identify candidate genes whose expression is altered in cancer cells by ionizing radiation. Transcriptional induction of randomly selected genes in control versus irradiated human HL60 cells was compared. Among several complementary DNA (cDNA) clones recovered by this approach, one cDNA clone (CL68-5) was downregulated in X-irradiated HL60 cells but unaffected by 12-O-tetradecanoyl phorbol-13-acetate, forskolin, or cyclosporin-A. DNA sequencing of the CL68-5 cDNA revealed 100% nucleotide sequence homology to the reported human Csa-19 gene. Northern blot analysis of RNA from control and irradiated cells revealed the expression of a single 0.7-kilobase (kb) messenger RNA (mRNA) transcript. This 0.7-kb Csa-19 mRNA transcript was also expressed in a variety of human adult and corresponding fetal normal tissues. Moreover, when the effect of X- or fission neutron-irradiation on Csa-19 mRNA was compared in cultured human cells differing in p53 gene status (p53-/- versus p53+/+), downregulation of Csa-19 by X-rays or fission neutrons was similar in p53-wild type and p53-null cell lines. Our results provide the first known example of a radiation-responsive gene in human cancer cells whose expression is not associated with p53, adenylate cyclase or protein kinase C.

  2. Csa-19, a radiation-responsive human gene, identified by an unbiased two-gel cDNA library screening method in human cancer cells

    Science.gov (United States)

    Balcer-Kubiczek, E. K.; Meltzer, S. J.; Han, L. H.; Zhang, X. F.; Shi, Z. M.; Harrison, G. H.; Abraham, J. M.

    1997-01-01

    A novel polymerase chain reaction (PCR)-based method was used to identify candidate genes whose expression is altered in cancer cells by ionizing radiation. Transcriptional induction of randomly selected genes in control versus irradiated human HL60 cells was compared. Among several complementary DNA (cDNA) clones recovered by this approach, one cDNA clone (CL68-5) was downregulated in X-irradiated HL60 cells but unaffected by 12-O-tetradecanoyl phorbol-13-acetate, forskolin, or cyclosporin-A. DNA sequencing of the CL68-5 cDNA revealed 100% nucleotide sequence homology to the reported human Csa-19 gene. Northern blot analysis of RNA from control and irradiated cells revealed the expression of a single 0.7-kilobase (kb) messenger RNA (mRNA) transcript. This 0.7-kb Csa-19 mRNA transcript was also expressed in a variety of human adult and corresponding fetal normal tissues. Moreover, when the effect of X- or fission neutron-irradiation on Csa-19 mRNA was compared in cultured human cells differing in p53 gene status (p53-/- versus p53+/+), downregulation of Csa-19 by X-rays or fission neutrons was similar in p53-wild type and p53-null cell lines. Our results provide the first known example of a radiation-responsive gene in human cancer cells whose expression is not associated with p53, adenylate cyclase or protein kinase C.

  3. Suicide gene therapy of human breast cancer in SCID mice model by the regulation, of Tet-On

    Institute of Scientific and Technical Information of China (English)

    胡维新; 曾赵军; 罗赛群; 陈迁

    2004-01-01

    Background RevTet-On gene expression system was used to deliver the suicide gene tk to human breast cancer cell line MCF-7 and control the tk gene expression level. The animal model of human breast cancer on severe combined immune deficiency (SCID) mice was set up to explore the suicide gene therapy by the regulation of Tet-On.Methods Herpes simplex virus-thymidine kinase (HSVtk) gene was inserted into the plasmid pRevTRE and the recombinant retroviral vector pRevTRE/HSVtk was constructed. Using modified calcium phosphate co-precipitation method, two transfections, pRevTRE/HSVtk and pRevTet-On were performed for MCF-7 cell line and selected by hygromycin B and G418. MCF-7 cell line that stably expressed Tet-regulated tk gene was established. HSVtk gene expression in the MCF/TRE/tk/Tet-On cell line was under the control of Doxycycline (Dox). Cell viability was also determined by MTT assay, whereas HSVtk gene expression was analyzed by reverse transcription-PCR (RT-PCR).Results MCF/TRE/tk/Tet-On cell survival rate was decreased from 100% to less than 20% when ganciclovir (GCV) concentration was increased from 0 to 1000 μg/ml at 1 μg/ml of Dox after 72 hours of GCV administration. At 1 μg/ml of GCV concentration, the cell numbers decreased from 7104 cells/ml to 2×104 cells/ml when Dox concentration was increased from 0 to 1500 ng/ml after 72 hours culture. In addition, bystander effects were generated in vitro when 10%-25% of transduced MCF-7 cells were mixed in untransduced MCF-7 cells. On the other hand, the human breast cancer models in SCID mice were set up. The tk gene was expressed with the regulated character after MCF/TRE/tk/Tet-On cells were implanted into the female SCID mice 7 days after Dox induction followed by intraperitoneally administration of GCV for 23 days. Subcutaneous tumors in SCID mice that were implanted with MCF/TRE/tk/Tet-On cells shrank remarkably after Dox and GCV administration as compared with the control.Conclusion The human breast

  4. Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis

    Science.gov (United States)

    Shen, Ching-Ju; Chan, Te-Fu; Chen, Chien-Chung; Hsu, Yi-Chiang; Long, Cheng-Yu; Lai, Chung-Sheng

    2016-01-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) derived from the umbilical cord matrix have been reported to be used as anti-tumor gene carrier for attenuation of tumor growth, which extends the half-life and lowers the unexpected cytotoxicity of the gene in vivo. Interferon-β (IFNβ) is known to possess robust antitumor effects on different types of cancer cell lines in vitro. The present study was aimed to investigate the anti-tumor effect of IFNβ gene-transfected hUCMSCs (IFNβ-hUCMSCs) on breast cancer cells with emphasis on triple negative breast carcinoma. Our findings revealed that the co-culture of IFNβ-hUCMSCs with the human triple negative breast carcinoma cell lines MDA-MB-231 or Hs578T significantly inhibited growth of both carcinoma cells. In addition, the culture medium conditioned by these cells also significantly suppressed the growth and induced apoptosis of both carcinoma cells. Further investigation showed that the suppressed growth and the apoptosis induced by co-culture of IFNβ-hUCMSCs or conditioned medium were abolished by pretreating anti-IFNβ neutralizing antibody. These findings indicate that IFNβ-hUCMSCs triggered cell death of breast carcinoma cells through IFN-β production, thereby induced apoptosis and suppressed tumor cell growth. In conclusion, we demonstrated that IFNβ-hUCMSCs inhibited the growth of breast cancer cells through apoptosis. with potent anti-cancer activity, it represents as an anti-cancer cytotherapeutic modality against breast cancer. PMID:27129156

  5. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations.

    Science.gov (United States)

    Ajore, Ram; Raiser, David; McConkey, Marie; Jöud, Magnus; Boidol, Bernd; Mar, Brenton; Saksena, Gordon; Weinstock, David M; Armstrong, Scott; Ellis, Steven R; Ebert, Benjamin L; Nilsson, Björn

    2017-04-01

    Heterozygous inactivating mutations in ribosomal protein genes (RPGs) are associated with hematopoietic and developmental abnormalities, activation of p53, and altered risk of cancer in humans and model organisms. Here we performed a large-scale analysis of cancer genome data to examine the frequency and selective pressure of RPG lesions across human cancers. We found that hemizygous RPG deletions are common, occurring in about 43% of 10,744 cancer specimens and cell lines. Consistent with p53-dependent negative selection, such lesions are underrepresented in TP53-intact tumors (P ≪ 10(-10)), and shRNA-mediated knockdown of RPGs activated p53 in TP53-wild-type cells. In contrast, we did not see negative selection of RPG deletions in TP53-mutant tumors. RPGs are conserved with respect to homozygous deletions, and shRNA screening data from 174 cell lines demonstrate that further suppression of hemizygously deleted RPGs inhibits cell growth. Our results establish RPG haploinsufficiency as a strikingly common vulnerability of human cancers that associates with TP53 mutations and could be targetable therapeutically. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Role of Nuclear Matrix in Estrogen Regulated Gene Expression in Human Breast Cancer Cells

    Science.gov (United States)

    1998-08-01

    form of endocrine manipulative therapy, e.g., antiestrogen therapy. However, most human breast cancers originate as hormonally dependent tumors as...development. 49 "Proprietary Data - Distribution to Government Agencies Only" ACKNOWLEDGMENTS Pierre Chambon (Institut de Genetique et de Biologie

  7. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion

    Science.gov (United States)

    Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M.; Angeloni, Debora

    2016-01-01

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy. PMID:26689989

  8. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion.

    Science.gov (United States)

    Mariotti, Sara; Barravecchia, Ivana; Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M; Angeloni, Debora

    2016-01-12

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy.

  9. Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.

    Directory of Open Access Journals (Sweden)

    Karolina Skowronski

    Full Text Available DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia, two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116 was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.

  10. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples.

    Directory of Open Access Journals (Sweden)

    David R Riley

    Full Text Available There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA, we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a tumors than normal samples, (b RNA than DNA samples, and (c the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5'-UTR and 3'-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome.

  11. CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies.

    Science.gov (United States)

    Nakamura, Yoji; Komiyama, Tomoyoshi; Furue, Motoki; Gojobori, Takashi; Akiyama, Yasuto

    2010-07-27

    Immunoglobulin (IG or antibody) and the T-cell receptor (TR) are pivotal proteins in the immune system of higher organisms. In cancer immunotherapy, the immune responses mediated by tumor-epitope-binding IG or TR play important roles in anticancer effects. Although there are public databases specific for immunological genes, their contents have not been associated with clinical studies. Therefore, we developed an integrated database of IG/TR data reported in cancer studies (the Cancer-related Immunological Gene Database [CIG-DB]). This database is designed as a platform to explore public human and murine IG/TR genes sequenced in cancer studies. A total of 38,308 annotation entries for IG/TR proteins were collected from GenBank/DDBJ/EMBL and the Protein Data Bank, and 2,740 non-redundant corresponding MEDLINE references were appended. Next, we filtered the MEDLINE texts by MeSH terms, titles, and abstracts containing keywords related to cancer. After we performed a manual check, we classified the protein entries into two groups: 611 on cancer therapy (Group I) and 1,470 on hematological tumors (Group II). Thus, a total of 2,081 cancer-related IG and TR entries were tabularized. To effectively classify future entries, we developed a computational method based on text mining and canonical discriminant analysis by parsing MeSH/title/abstract words. We performed a leave-one-out cross validation for the method, which showed high accuracy rates: 94.6% for IG references and 94.7% for TR references. We also collected 920 epitope sequences bound with IG/TR. The CIG-DB is equipped with search engines for amino acid sequences and MEDLINE references, sequence analysis tools, and a 3D viewer. This database is accessible without charge or registration at http://www.scchr-cigdb.jp/, and the search results are freely downloadable. The CIG-DB serves as a bridge between immunological gene data and cancer studies, presenting annotation on IG, TR, and their epitopes. This database

  12. CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies

    Directory of Open Access Journals (Sweden)

    Furue Motoki

    2010-07-01

    Full Text Available Abstract Background Immunoglobulin (IG or antibody and the T-cell receptor (TR are pivotal proteins in the immune system of higher organisms. In cancer immunotherapy, the immune responses mediated by tumor-epitope-binding IG or TR play important roles in anticancer effects. Although there are public databases specific for immunological genes, their contents have not been associated with clinical studies. Therefore, we developed an integrated database of IG/TR data reported in cancer studies (the Cancer-related Immunological Gene Database [CIG-DB]. Description This database is designed as a platform to explore public human and murine IG/TR genes sequenced in cancer studies. A total of 38,308 annotation entries for IG/TR proteins were collected from GenBank/DDBJ/EMBL and the Protein Data Bank, and 2,740 non-redundant corresponding MEDLINE references were appended. Next, we filtered the MEDLINE texts by MeSH terms, titles, and abstracts containing keywords related to cancer. After we performed a manual check, we classified the protein entries into two groups: 611 on cancer therapy (Group I and 1,470 on hematological tumors (Group II. Thus, a total of 2,081 cancer-related IG and TR entries were tabularized. To effectively classify future entries, we developed a computational method based on text mining and canonical discriminant analysis by parsing MeSH/title/abstract words. We performed a leave-one-out cross validation for the method, which showed high accuracy rates: 94.6% for IG references and 94.7% for TR references. We also collected 920 epitope sequences bound with IG/TR. The CIG-DB is equipped with search engines for amino acid sequences and MEDLINE references, sequence analysis tools, and a 3D viewer. This database is accessible without charge or registration at http://www.scchr-cigdb.jp/, and the search results are freely downloadable. Conclusions The CIG-DB serves as a bridge between immunological gene data and cancer studies, presenting

  13. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Harold D Love

    Full Text Available Benign prostatic hyperplasia (BPH and prostate carcinoma (CaP are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1 highly expressed in prostate, 2 had significant expression changes in response to androgens, and, 3 encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  14. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Science.gov (United States)

    Love, Harold D; Booton, S Erin; Boone, Braden E; Breyer, Joan P; Koyama, Tatsuki; Revelo, Monica P; Shappell, Scott B; Smith, Jeffrey R; Hayward, Simon W

    2009-12-21

    Benign prostatic hyperplasia (BPH) and prostate carcinoma (CaP) are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ) human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1) highly expressed in prostate, 2) had significant expression changes in response to androgens, and, 3) encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  15. Tumor-specific gene therapy for pancreatic cancer using human neural stem cells encoding carboxylesterase.

    Science.gov (United States)

    Choi, Sung S; Yoon, Kichul; Choi, Seon-A; Yoon, Seung-Bin; Kim, Seung U; Lee, Hong J

    2016-11-15

    Advanced pancreatic cancer is one of the most lethal malignant human diseases lacking effective treatment. Its extremely low survival rate necessitates development of novel therapeutic approach. Human neural stem cells (NSCs) are known to have tumor-tropic effect. We genetically engineered them to express rabbit carboxyl esterase (F3.CE), which activates prodrug CPT-11(irinotecan) into potent metabolite SN-38. We found significant inhibition of the growth of BxPC3 human pancreatic cancer cell line in vitro by F3.CE in presence of CPT-11. Apoptosis was also markedly increased in BxPC3 cells treated with F3.CE and CPT-11. The ligand VEGF and receptor VEGF-1(Flt1) were identified to be the relevant tumor-tropic chemoattractant. We confirmed in vivo that in mice injected with BxPC3 on their skin, there was significant reduction of tumor size in those treated with both F3.CE and BxPC3 adjacent to the cancer mass. Administration of F3.CE in conjunction with CPT-11 could be a new possibility as an effective treatment regimen for patients suffering from advanced pancreatic cancer.

  16. Simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells.

    Science.gov (United States)

    Putaala, Heli; Mäkivuokko, Harri; Tiihonen, Kirsti; Rautonen, Nina

    2011-11-01

    High level of dietary fiber has been epidemiologically linked to protection against the risk for developing colon cancer. The mechanisms of this protection are not clear. Fermentation of dietary fiber in the colon results in production of for example butyrate that has drawn attention as a chemopreventive agent. Polydextrose, a soluble fiber that is only partially fermented in colon, was fermented in an in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse, and distal colon in sequence. The subsequent fermentation metabolomes were applied on colon cancer cells, and the gene expression changes studied. Polydextrose fermentation down-regulated gene ontology classes linked with cell cycle, and affected number of metabolically active cells. Furthermore, up-regulated effects on classes linked with apoptosis, with increased caspase 2 and 3 activity, implicate that polydextrose fermentation plays a role in induction of apoptosis in colon cancer cells. The up-regulated genes involved also key regulators of lipid metabolism, such as PPARα and PGC-1α. These results offer hypotheses for the mechanisms of two health benefits linked with consumption of dietary fiber, reducing risk of development of colon cancer, and dyslipidemia.

  17. Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating β-catenin

    Institute of Scientific and Technical Information of China (English)

    Dong ZHANG; Zheng-gang CHEN; Shao-hua LIU; Zuo-qing DONG; Martin DALIN; Shi-san BAO; Ying-wei HU; Feng-cai WEI

    2013-01-01

    Aim:Galectin-3 (Gal-3) is a member of the carbohydrate-binding protein family that contributes to neoplastic transformation,tumor survival,angiogenesis,and metastasis.The aim of this study is to investigate the role of Gal-3 in human tongue cancer progression.Methods:Human tongue cancer cell lines (SCC-4 and CAL27) were transfected with a small-interfering RNA against Gal-3 (Gal-3-siRNA).The migration and invasion of the cells were examined using a scratch assay and BD BioCoat Matrigel Invasion Chamber,respectively.The mRNA and protein levels of β-catenin,Akt/pAkt,GSK-Sβ/pGSK-3β,MMP-9 in the cells were measured using RT-PCR and Western blotting,respectively.Results:Transient silencing of Gal-3 gene for 48 h significantly suppressed the migration and invasion of both SCC-4 and CAL27 cells.Silencing of Gal-3 gene significantly decreased the protein level of β-catenin,leaving the mRNA level of β-catenin unaffected.Furthermore,silencing Gal-3 gene significantly decreased the levels of phosphorylated Akt and GSK-3β,and suppressed the mRNA and protein levels of MMP-9 in the cells.Conclusion:Our data suggest that Gal-3 mediates the migration and invasion of tongue cancer cells in vitro via regulating the Wnt/β-catenin signaling pathway and Akt phosphorylation.

  18. Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2017-01-01

    Full Text Available Background. This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs genetically engineered with the human proenkephalin (hPPE gene to treat bone cancer pain (BCP in a rat model. Methods. Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106 were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results. No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1β and IL-6 were ameliorated, and leucine-enkephalin (L-EK secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion. The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans.

  19. Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain

    Science.gov (United States)

    Tian, Yuke; Li, Haifeng; Zhang, Dengwen; Sun, Qiang

    2017-01-01

    Background. This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs) genetically engineered with the human proenkephalin (hPPE) gene to treat bone cancer pain (BCP) in a rat model. Methods. Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106) were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT) was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results. No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1β and IL-6 were ameliorated, and leucine-enkephalin (L-EK) secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion. The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans. PMID:28286408

  20. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells.

    Science.gov (United States)

    Shatz, Maria; Menendez, Daniel; Resnick, Michael A

    2012-08-15

    The transcription factor p53 regulates genes associated with a wide range of functions, including the Toll-like receptor (TLR) set of innate immunity genes, suggesting that p53 also modulates the human immune response. The TLR family comprises membrane glycoproteins that recognize pathogen-associated molecular patterns (PAMP) and mediate innate immune responses, and TLR agonists are being used as adjuvants in cancer treatments. Here, we show that doxorubicin, 5-fluorouracil, and UV and ionizing radiation elicit changes in TLR expression that are cell line- and damage-specific. Specifically, treatment-induced expression changes led to increased downstream cytokine expression in response to ligand stimulation. The effect of DNA stressors on TLR expression was mainly mediated by p53, and several p53 cancer-associated mutants dramatically altered the pattern of TLR gene expression. In all cell lines tested, TLR3 induction was p53-dependent, whereas induction of TLR9, the most stress-responsive family member, was less dependent on status of p53. In addition, each of the 10 members of the innate immune TLR gene family tested was differentially inducible. Our findings therefore show that the matrix of p53 status, chromosome stress, and responsiveness of individual TLRs should be considered in TLR-based cancer therapies.

  1. Effects of Momordica charantia Extract on the Expression of MDR 1 Gene in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    T Yuan

    2014-10-01

    Full Text Available Objectives: Multi-drug resistance (MDR is a major hurdle in treatment of cancer, contributing to the failure of chemotherapy. Drug resistance is found to be linked to the overexpression of ATP-binding cassette (ABC drug transporter proteins that include P-glycoprotein (P-gp, causing a reduction in drug accretion inside the cancer cells. In the present study, the effect of the extracts from the fruit peel and pulp of Momordica charantia (MCFPE fruit in modulating the function of P-gp in human small-cell lung cancer (SCLC cell lines was assessed. Methods: The effects of MCFPE were tested on drug-sensitive (H69 and multi-drug resistant (H69/LX4 human SCLC cells. The cell survival percentage was assessed by MTT cytotoxicity assay. The percentage of drug accumulation and drug efflux were assessed by using [3H]-paclitaxel. The expression of MDR1 gene was analysed by reverse transcription polymerase chain reaction (RT-PCR, and P-gp by western blot analysis. Results: The extract was able to induce death of cancer cells as measured by cell survival percentage as well as improve drug accumulation, as evidenced by intracellular paclitaxel retention. Prior exposure of cells to MCFPE reversed resistance to paclitaxel. Treatment with MCFPE was found to have a significant impact on MDR 1 gene expression in H69/LX4 cell line by decreasing its expression. The extract had no influence on expression of MDR 1 gene in the drug-sensitive SCLC cell lines. Western blot analysis of P-gp protein in H69 and H69/LX4 cells revealed that the treatment with the extract modulates the expression of MDR 1 in H69/LX4 and had negligible effect on H69 cells. Conclusion: The results indicate that MCFPE was able to effectively reverse multi-drug resistance and improve cancer chemotherapy.

  2. Down-regulation of ECRG4, a candidate tumor suppressor gene, in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Renaud Sabatier

    Full Text Available INTRODUCTION: ECRG4/C2ORF40 is a potential tumor suppressor gene (TSG recently identified in esophageal carcinoma. Its expression, gene copy number and prognostic value have never been explored in breast cancer. METHODS: Using DNA microarray and array-based comparative genomic hybridization (aCGH, we examined ECRG4 mRNA expression and copy number alterations in 353 invasive breast cancer samples and normal breast (NB samples. A meta-analysis was done on a large public retrospective gene expression dataset (n = 1,387 in search of correlations between ECRG4 expression and histo-clinical features including survival. RESULTS: ECRG4 was underexpressed in 94.3% of cancers when compared to NB. aCGH data revealed ECRG4 loss in 18% of tumors, suggesting that DNA loss is not the main mechanism of underexpression. Meta-analysis showed that ECRG4 expression was significantly higher in tumors displaying earlier stage, smaller size, negative axillary lymph node status, lower grade, and normal-like subtype. Higher expression was also associated with disease-free survival (DFS; HR = 0.84 [0.76-0.92], p = 0.0002 and overall survival (OS; HR = 0.72 [0.63-0.83], p = 5.0E-06. In multivariate analysis including the other histo-clinical prognostic features, ECRG4 expression remained the only prognostic factor for DFS and OS. CONCLUSIONS: Our data suggest that ECRG4 is a candidate TSG in breast cancer, the expression of which may help improve the prognostication. If functional analyses confirm this TSG role, restoring ECRG4 expression in the tumor may represent a promising therapeutic approach.

  3. Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression.

    Science.gov (United States)

    Li, Dan; Williams, Jon I; Pietras, Richard J

    2002-04-25

    Angiogenesis is important for growth and progression of ovarian cancers. Squalamine is a natural antiangiogenic sterol, and its potential role in treatment of ovarian cancers with or without standard cisplatin chemotherapy was assessed. Since HER-2 gene overexpression is associated with cisplatin resistance in vitro and promotion of tumor angiogenesis in vivo, the response of ovarian cancer cells with or without HER-2 gene overexpression to squalamine and cisplatin was evaluated both in tumor xenograft models and in tissue culture. Ovarian cancer cells with or without HER-2 overexpression were grown as subcutaneous xenografts in nude mice. Animals were treated by intraperitoneal injection with control vehicle, cisplatin, squalamine or cisplatin combined with squalamine. At the end of the experiment, tumors were assessed for tumor growth inhibition and for changes in microvessel density and apoptosis. Additional in vitro studies evaluated effects of squalamine on tumor and endothelial cell growth and on signaling pathways in human endothelial cells. Profound growth inhibition was elicited by squalamine alone and by combined treatment with squalamine and cisplatin for both parental and HER-2-overexpressing ovarian tumor xenografts. Immunohistochemical evaluation of tumors revealed decreased microvessel density and increased apoptosis. Although HER-2-overexpressing tumors had more angiogenic and less apoptotic activity than parental cancers, growth of both tumor types was similarly suppressed by treatment with squalamine combined with cisplatin. In in vitro studies, we found that squalamine does not directly affect proliferation of ovarian cells. However, squalamine significantly blocked VEGF-induced activation of MAP kinase and cell proliferation in human vascular endothelial cells. The results suggest that squalamine is anti-angiogenic for ovarian cancer xenografts and appears to enhance cytotoxic effects of cisplatin chemotherapy independent of HER-2 tumor status.

  4. Identification and characterization of retinoblastoma gene mutations disturbing apoptosis in human breast cancers

    Directory of Open Access Journals (Sweden)

    Berge Elisabet

    2010-07-01

    Full Text Available Abstract Background The tumor suppressor pRb plays a key role regulating cell cycle arrest, and disturbances in the RB1 gene have been reported in different cancer forms. However, the literature reports contradictory findings with respect to a pro - versus anti - apoptotic role of pRb, and the consequence of alterations in RB1 to chemotherapy sensitivity remains unclear. This study is part of a project investigating alterations in pivotal genes as predictive factors to chemotherapy sensitivity in breast cancer. Results Analyzing 73 locally advanced (stage III breast cancers, we identified two somatic and one germline single nucleotide changes, each leading to amino acid substitution in the pRb protein (Leu607Ile, Arg698Trp, and Arg621Cys, respectively. This is the first study reporting point mutations affecting RB1 in breast cancer tissue. In addition, MLPA analysis revealed two large multiexon deletions (exons 13 to 27 and exons 21 to 23 with the exons 21-23 deletion occurring in the tumor also harboring the Leu607Ile mutation. Interestingly, Leu607Ile and Arg621Cys point mutations both localize to the spacer region of the pRb protein, a region previously shown to harbor somatic and germline mutations. Multiple sequence alignment across species indicates the spacer to be evolutionary conserved. All three RB1 point mutations encoded nuclear proteins with impaired ability to induce apoptosis compared to wild-type pRb in vitro. Notably, three out of four tumors harboring RB1 mutations displayed primary resistance to treatment with either 5-FU/mitomycin or doxorubicin while only 14 out of 64 tumors without mutations were resistant (p = 0.046. Conclusions Although rare, our findings suggest RB1 mutations to be of pathological importance potentially affecting sensitivity to mitomycin/anthracycline treatment in breast cancer.

  5. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future.

  6. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Meilan Xue

    2012-12-01

    Full Text Available Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3, which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells. Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  7. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Meilan; Ge, Yinlin; Zhang, Jinyu [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China); Wang, Qing [Affiliated Hospital of Qingdao University, Qingdao Shandong (China); Hou, Lin [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China)

    2012-09-14

    Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  8. Methylated Host Cell Gene Promoters and Human Papillomavirus Type 16 and 18 Predicting Cervical Lesions and Cancer.

    Directory of Open Access Journals (Sweden)

    Nina Milutin Gašperov

    Full Text Available Change in the host and/or human papillomavirus (HPV DNA methylation profile is probably one of the main factors responsible for the malignant progression of cervical lesions to cancer. To investigate those changes we studied 173 cervical samples with different grades of cervical lesion, from normal to cervical cancer. The methylation status of nine cellular gene promoters, CCNA1, CDH1, C13ORF18, DAPK1, HIC1, RARβ2, hTERT1, hTERT2 and TWIST1, was investigated by Methylation Specific Polymerase Chain Reaction (MSP. The methylation of HPV18 L1-gene was also investigated by MSP, while the methylated cytosines within four regions, L1, 5'LCR, enhancer, and promoter of the HPV16 genome covering 19 CpG sites were evaluated by bisulfite sequencing. Statistically significant methylation biomarkers distinguishing between cervical precursor lesions from normal cervix were primarily C13ORF18 and secondly CCNA1, and those distinguishing cervical cancer from normal or cervical precursor lesions were CCNA1, C13ORF18, hTERT1, hTERT2 and TWIST1. In addition, the methylation analysis of individual CpG sites of the HPV16 genome in different sample groups, notably the 7455 and 7694 sites, proved to be more important than the overall methylation frequency. The majority of HPV18 positive samples contained both methylated and unmethylated L1 gene, and samples with L1-gene methylated forms alone had better prognosis when correlated with the host cell gene promoters' methylation profiles. In conclusion, both cellular and viral methylation biomarkers should be used for monitoring cervical lesion progression to prevent invasive cervical cancer.

  9. Killing effect of adenoviral mediated cytosine deaminase gene on human pancreatic cancer cell line PaTu 8988

    Institute of Scientific and Technical Information of China (English)

    PAN Xue; LI Zhao-shen; XU Guo-ming; CUI Long; ZHANG Su-zhen; GONG Yan-fang; TU Zhen-xing

    2001-01-01

    Objective: To evaluate the in vitro killing effects of cytosine deaminase gene mediated by adenovirus vector on human pancreatic carcinoma. Methods: Cytosine Deaminase (CD) gene was cloned into pAdTrack-CMV-CD, pAdTrack-CMV-CD and pAdEasy-1 were recombined in bacteria, and the products containing green fluorescent protein (GFP)were propagated in 293 cells and purified by cesium chloride gradient centrifugation. Human pancreatic carcinoma cell line 8988 were infected with this virus, then 5-FC was added; XTT assay was used to estimate the relative numbers of viable cells. Results: The positive clones were confirmed by using endonuclease digestion, and the titer of the virus containing CD gene was 2 × 1011 pfu/ml. It was found that 5-FC possessed significant cytotoxic activities for CD gene transfected 8988cell line, but had little effects on non-transfected pancreatic carcinoma cells. Conclusion: CD gene mediated by adenovirus has a high infectivity and is efficient for killing cultured pancreatic carcinoma cells, indicating suicide gene may be effective for pancreatic cancer in furure.

  10. Down-regulation in multiple human cancers of a novel gene, DMHC, from 17q25.1 that encodes an integral membrane protein.

    Science.gov (United States)

    Mikami, I; Harada, H; Nagai, H; Tsuneizumi, M; Nobe, Y; Koizumi, K; Sugano, S; Tanaka, S; Emi, M

    2001-04-01

    Frequent observations of allelic loss in chromosomal band 17q25.1 in a variety of human cancers have suggested that one or more tumor suppressor genes are present in that region. Moreover, a genetic locus for hereditary focal non-epidermolytic palmoplantar keratoderma, a condition associated with cancer of the esophagus (TOC; Tylosis with Oesophageal Cancer), lies in the same region. We screened cell lines derived from a variety of human cancers by reverse transcription-polymerase chain reaction (RT-PCR) to detect alterations in expression of genes within the region in question, by examining expressed sequence tags located there. These experiments identified an 1834-bp full-length cDNA encoding a novel, 441-amino acid integral membrane protein with seven putative transmembrane domains. This gene showed loss or extreme decrease of expression in 6 of 10 uterine cancer-cell lines, 2 of 11 hepatic cell carcinoma-cell lines, 2 of 7 lung cancer-cell lines, 1 of 6 gastric cancer-cell lines, and 1 of 10 breast cancer-cell lines. (We named it DMHC ("down-regulated in multiple human cancers").) Our results suggest that loss of expression of DMHC at 17q25.1 may play an important role in development of variety of human cancers.

  11. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States); Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  12. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  13. Altered gene expression profiles of NIH3T3 cells regulated by human lung cancer associated gene CT120

    Institute of Scientific and Technical Information of China (English)

    Xiang Huo HE; Jin Jun LI; Yi Hu XIE; Yun Tian TANG; Gen Fu YAO; Wen Xin QIN; Da Fang WAN; Jian Ren GU

    2004-01-01

    CT120, a novel membrane-associated gene implicated in lung carcinogenesis, was previously identified from chromosome 17p13.3 locus, a hot mutation spot involved in human malignancies. In the present study, we further determined that CT120 ectopic expression could promote cell proliferation activity of NIH3T3 cells using MTS assay, and monitored the downstream effects of CT120 in NIH3T3 cells with Atlas mouse cDNA expression arrays. Among 588known genes, 133 genes were found to be upregulated or downregulated by CT120. Two major signaling pathways involved in cell proliferation, cell survival and anti-apoptosis were overexpressed and activated in response to CT120:One is the Raf/MEK/Erk signal cascades and the other is the PI3K/Akt signal cascades, suggesting that CT120 might contribute, at least in part, to the constitutively activation of Erk and Akt in human lung caner cells. In addition, some tumor metastasis associated genes cathepsin B, cathepsin D, cathepsin L, MMP-2/TIMP-2 were also upregulated by CT120, upon which CT120 might be involved in tumor invasiveness and metastasis. In addition, CT120 might play an important role in tumor progression through modulating the expression of some candidate "Lung Tumor Progression"genes including B-Raf, Rab-2, BAX, BAG-1, YB-1, and Cdc42.

  14. Characterization of Genes Associated with Different Phenotypes of Human Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Yu-Cong YANG; Xu LI; Wei CHEN

    2006-01-01

    To identify genes associated with morphological phenotypes of human bladder transitional cell carcinoma, we used suppression subtractive hybridization (SSH) to create a subtractive cDNA library of two established cell lines, BLZ-211 and BLS-211, derived from a patient with transitional cell carcinoma of the bladder, then to screen for differentially expressed genes. Real-time reverse transcription-polymerase chain reaction was used to further confirm the selected differentially expressed genes. Forward and reverse subtractive cDNA libraries yielded 168 and 305 putative clones, and among them more than 90% contained the inserts.After differential screening, 36 different transcripts were obtained from 64 cDNA clones of a forward and reverse subtraction library. Among them, 17 were identified as known genes by homology, for example,Vimentin, Keratin7, DDH and UCH-L1. The remaining 19 were unknown expressed genes, and were collected as new expressed sequence tags by the GenBank dbEST database with the accession numbers DR008207,DR010178, DR159652-DR159660, DY230447-DY230448, and DY505708-DY505713. Their function will be studied further. Thus, SSH appears to be a useful technique for identifying differentially expressed genes between cell lines or clones. Our results, as revealed by SSH, also suggest that differences in gene expression of cytoskeletal proteins might contribute to the different morphologies in BLZ-211 and BLS-211 cells.

  15. Hunting for Novel X-Linked Breast Cancer Suppressor Genes in Mouse and Human

    Science.gov (United States)

    2007-03-01

    B Fig. 5-2 CEPX RP11-344O14 (FOXP3) 353K22 344014 573N21 Fig. 5-3 C C a n c e r N o r m a l N CRepressor ZF LZ FKH E1 E2 E5E3 E4 E6 E7 E8 E9 E10...is an X-linked breast cancer suppressor gene and an important regulator of the HER-2/ErbB2 oncogene . 15. SUBJECT TERMS No subject terms provided 16...of this oncogene in breast cancer. One potential mechanism by which Foxp3 represses Her-2/ErbB2 is to inhibit the promoter activity. Analysis of the

  16. ShRNA-mediated gene silencing of β-catenin inhibits growth of human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To observe the gene silencing mediated by the specific shRNA targeted against β-catenin and its effect on cell proliferation and cycle distribution in the human colon cancer cell line Colo205.METHODS: Two shRNA plasmid vectors against β-catenin were constructed and transfected into Colo205 cells with LipofectamineTM2000. The down-regulations of β-catenin, c-myc and cyclinD1 expressions were detected by RT-PCR and western blot analysis. The cell proliferation inhibitions were determined by MTT assay and soft agar colony formation assay. The effect of these two β-catenin shRNAs on cell cycle distribution and apoptosis was examined by flow cytometry.RESULTS: These two shRNA vectors targeted against β-catenin efficiently suppressed the expression of β-catenin and its down stream genes, c-myc and cyclinD1. The expression inhibition rates were around 40%-50% either at the mRNA or at the protein level.The shRNA-mediated gene silencing of β-catenin resulted in significant inhibition of cell growth both on the culture plates and in the soft agar. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis at 72 h post transfection due to gene silencing.CONCLUSION: These specific shRNAs targeted against β-catenin could have a gene silencing effect and block the WNT signaling pathway. They could inhibit cell growth, increase apoptosis, and induce cell cycle arrest in Colo205 cells. ShRNA interference against β-catenin is of potential value in gene therapy of colon cancer.

  17. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Kentaro Wakasa

    Full Text Available Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.

  18. Change in expression of apoptosis genes after hyperthermia, chemotherapy and radiotherapy in human colon cancer transplanted into nude mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the change in expression of p53, Bcl-2, and Bax genes in human colon cancer cells transplanted into nude mice after hyperthermia,chemotherapy, radiotherapy, thermochemotherapy,thermoradiotherapy and thermochemoradiotherapy.METHODS: Human colon cancer cell line (HT29)was transplanted into the hind limbs of nude mice.Under laboratory simulated conditions of hyperthermia (43℃, 60 min), the actual radiation doses and doses of mitomycin C (MMC) were calculated in reference to the clinical radiotherapy for human rectal cancer and chemotherapy prescription for colon cancer. The mice were divided into 6 groups according to the treatment approaches: hyperthermia, chemotherapy,radiotherapy, thermochemotherapy, thermoradiotherapy,and thermochemoradiotherapy. The mice were sacrificed at different time points and the tumor tissue was taken for further procedures. The morphologic changes in membrane, cytoplasm and nuclei of tumor cells of p53, Bcl-2, and Bax after treatment, were observed by immunohistochemistry staining.RESULTS: All of the six treatment modalities downregulated the expression of p53, Bcl-2 and up-regulated the expression of Bax at different levels. The combined therapy of hyperthermia, with chemotherapy, and/or irradiation showed a greater effect on down-regulating the expression of p53 (0.208 ± 0.009 vs 0.155 ± 0.0115,P < 0.01) and Bcl-2 (0.086 ± 0.010 vs 0.026 ± 0.0170,P < 0.01) and up-regulating Bax expression (0.091 ±0.0013 vs 0.207 ±0.027, P < 0.01) compared with any single therapy.CONCLUSION: Hyperthermia enhances the effect of radio- and chemotherapy on tumors by changing the expression of apoptosis genes, such as p53, Bcl-2 and Bax.

  19. Cloning of NHE-1 gene fragment from human lung cancer cells and construction of its antisense expression vector

    Institute of Scientific and Technical Information of China (English)

    WU Guo-ming; HUANG Gui-jun; QIAN Gui-sheng

    2001-01-01

    To clone the partial sequence of Na+/H+ exchanger-1 (NHE-1) gene of human lung cancer cells and insert it reversely into the multiclone site of pLXSN in order to construct an antisense expression vector for tumor gene therapy in vivo. Methods: With use of the upstream and downstream primers containing Bam H I and EcoR I in their 5' ends respectively, a partial sequence of the first exon of NHE-1 gene was cloned in a length of 454 bp from genomic DNA of human lung cancer cell A549 with PCR method. The product was then directionally and reversely insert into the multiclone site of pLXSN. Finally, the constructed recombinant was identified with agarose gel electrophoresis and DNA sequencing. Results: The cloned fragment was 461 bp in length and successfully ligated to pLXSN with the identification by agarose gel electrophoresis. DNA sequencing confirmed that the fragment cloned and inserted into the vector was identical with the targeted one. Conclusion: The targeted fragment is successfully cloned and reversely inserted into pLXSN in our experiment. The antisense expression vector ofNHE-1, pNHE- 1, was constructed successfully.

  20. Activation of c-Ki-ras gene in human pancreatic cancer.

    Science.gov (United States)

    Prassolov, V S; Sakamoto, H; Nishimura, S; Terada, M; Sugimura, T

    1985-09-01

    DNA isolated from a lymph node with metastasis from pancreatic adenocarcinoma in a Japanese male patient transformed NIH3T3 cells upon transfection by the calcium-phosphate precipitation technique. Analysis of DNA from the transformant revealed the presence of an activated human c-Ki-ras gene, which is considered to be responsible for the transformation of the NIH3T3 cells.

  1. Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors.

    Science.gov (United States)

    Tell, Robert W; Horvath, Curt M

    2014-09-02

    Signal transducer and activator of transcription 3 (STAT3), a latent transcription factor associated with inflammatory signaling and innate and adaptive immune responses, is known to be aberrantly activated in a wide variety of cancers. In vitro analysis of STAT3 in human cancer cell lines has elucidated a number of specific targets associated with poor prognosis in breast cancer. However, to date, no comparison of cancer subtype and gene expression associated with STAT3 signaling in human patients has been reported. In silico analysis of human breast cancer microarray and reverse-phase protein array data was performed to identify expression patterns associated with STAT3 in basal-like and luminal breast cancers. Results indicate clearly identifiable STAT3-regulated signatures common to basal-like breast cancers but not to luminal A or luminal B cancers. Furthermore, these differentially expressed genes are associated with immune signaling and inflammation, a known phenotype of basal-like cancers. These findings demonstrate a distinct role for STAT3 signaling in basal breast cancers, and underscore the importance of considering subtype-specific molecular pathways that contribute to tissue-specific cancers.

  2. Two-step amplification of the human PPT sequence provides specific gene expression in an immunocompetent murine prostate cancer model.

    Science.gov (United States)

    Dzojic, H; Cheng, W-S; Essand, M

    2007-03-01

    The recombinant prostate-specific PPT sequence comprises a prostate-specific antigen enhancer, a PSMA enhancer and a TARP promoter. It is transcriptionally active in human prostate cancer cells both in the presence and absence of testosterone. However, in experimental murine prostate cancer, it has no detectable transcriptional activity. Herein, we describe that the PPT sequence in combination with a two-step transcriptional amplification (TSTA) system becomes active also in murine prostate cancer cells. An adenovirus with TSTA-amplified PPT-controlled expression of the luciferase reporter gene, Ad[PPT/TSTA-Luc], has up to 100-fold higher prostate-specific transcriptional activity than a non-amplified PPT-based adenovirus, Ad[PPT-Luc], in human cells. In addition, Ad[PPT/TSTA-Luc] confers prostate-specific transgene expression in murine cells, with an activity that is approximately 23% of Ad[CMV-Luc] in the transgenic adenocarcinoma of the mouse prostate (TRAMP)-C2 cells. Moreover, to visualize luciferase expression in living mice a charge-coupled device camera was used. Ad[PPT/TSTA-Luc] yielded approximately 30-fold higher transgene expression than Ad[PPT-Luc] in LNCaP tumor xenografts. Importantly, Ad[PPT/TSTA-Luc] also showed activity in murine TRAMP-C2 tumors, whereas Ad[PPT-Luc] activity was undetectable. These results highlight that the recombinant PPT sequence is active in murine prostate cancer cells when augmented by a TSTA system. This finding opens up for preclinical studies with prostate-specific therapeutic gene expression in immunocompetent mice.

  3. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators.

    Science.gov (United States)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16(INK4a) and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojun [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zhong, Xiaomin [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Tanyi, Janos L.; Shen, Jianfeng [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Xu, Congjian [Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Gao, Peng [Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zheng, Tim M. [Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); DeMichele, Angela [Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhang, Lin, E-mail: linzhang@mail.med.upenn.edu [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  5. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    Science.gov (United States)

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  6. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer.

    Directory of Open Access Journals (Sweden)

    Rachel Haviland

    Full Text Available Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down

  7. Clinical significance of human kallikrein 12 gene expression in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    En-Hao Zhao; Zhi-Yong Shen; Hua Liu; Xin Jin; Hui Cao

    2012-01-01

    AIM:To investigate whether the expression of kallikrein 12 (KLK12) is related to the development of gastric cancer (GC) and to determine the role of KLK12 in gastric cancer cells growth,invasion and migration.METHODS:Between September 2007 and March 2008,133 patients with histologically confirmed GC were recruited for the study.Expression of KLK12 was detected in samples from GC patients by quantitative real-time reverse transcription polymerase chain reaction and immunohistochemistry.The relationship between KLK12 protein expression and clinicopathological features of GC was analyzed.The difference in 5-year survival rates between the high KLK12 protein expression group and the low KLK12 expression group was compared.Additionally,the expression of KLK12 was examined in various human GC cell lines,including MKN-28,SGC-7901 and MKN-45.Small interfering RNA (siRNA) was used to inhibit KLK12 expression in MKN-45 cells.Cell clones stably transfected with KLK12 siRNA were tested for KLK12 expression by quantitative real-time reverse transcription-polymerase chain reaction and Western blotting.Furthermore,a series of functional assays were performed in this study to assess the biological features of transfected cells.Cell proliferation was assessed using the methylthiazolyltetrazoliumassay.Finally,cell migration and invasion were assessed using transwell chamber assays.RESULTS:Of the 133 GC patients induded in the study,126 (94.7%) showed a higher expression level of KLK12 mRNA when compared to noncancerous tissue specimens.Expression of KLK12 mRNA was significantly higher in GC tissues than in normal tissue (P < 0.001).KLK12 protein expression was detected in 96 of 133 (72.2%) GC samples with moderate or strong staining primarily in the cytoplasm.In contrast,negative immunostaining for KLK12 protein was observed in the corresponding normal gastric mucosal tissue.Overexpression of KLK12 protein was significantly associated with lymph node metastasis (P =0

  8. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    The laminin beta2 chain is a basement membrane component expressed in a tissue- and developmental stage-specific manner. In this report we have examined the transcriptional and post-transcriptional regulation of the human laminin beta2 chain in human tumor cell lines. Both the A204 rhabdomyosarcoma...... and clone A colon carcinoma cells express the laminin beta2 chain mRNA, but only the A204 cells secrete laminin heterotrimers containing the beta2 chain. Segments of the beta2 chain gene promoter region were cloned into luciferase reporter vectors, and their ability to stimulate transcription was tested...... by transient transfection. Sequences downstream of the transcription start site between nucleotides +91 and +120 were found to be essential for luciferase activity in the two cell lines. Additional positive regulatory regions were present further upstream, between nucleotides -164 to -667 and between...

  9. Liposomal insulin promoter-thymidine kinase gene therapy followed by ganciclovir effectively ablates human pancreatic cancer in mice.

    Science.gov (United States)

    Wu, James X; Liu, Shi-He; Nemunaitis, John J; Brunicardi, F Charles

    2015-04-10

    PDX1 is overexpressed in pancreatic cancer, and activates the insulin promoter (IP). Adenoviral IP-thymidine kinase and ganciclovir (TK/GCV) suppresses human pancreatic ductal carcinoma (PDAC) in mice, but repeated doses carry significant toxicity. We hypothesized that multiple cycles of liposomal IP-TK/GCV ablate human PDAC in SCID mice with minimal toxicity compared to adenoviral IP-TK/GCV. SCID mice with intraperitoneal human pancreatic cancer PANC-1 tumor implants were given a single cycle of 35 µg iv L-IP-TK, or four cycles of 1, 10, 20, 30, or 35 µg iv L-IP-TK (n = 20 per group), followed by intraperitoneal GCV. Insulin and glucose levels were monitored in mice treated with four cycles of 35 µg iv L-IP-TK. We found that four cycles of 10-35 µg L-IP-TK/GCV ablated more PANC-1 tumor volume compared to a single cycle with 35 µg. Mice that received four cycles of 10 µg L-IP-TK demonstrated the longest survival (P SCID mice with minimal toxicity, suggesting non-viral vectors are superior to adenoviral vectors for IP-gene therapy.

  10. E6 and e7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells.

    Science.gov (United States)

    Rampias, Theodore; Sasaki, Clarence; Weinberger, Paul; Psyrri, Amanda

    2009-03-18

    The E6 and E7 genes of human papillomavirus type 16 (HPV16) encode oncoproteins that bind and degrade p53 and retinoblastoma (pRb) tumor suppressors, respectively. We examined the effects of repressing E6 and E7 oncogene expression on the transformed phenotype of HPV16-positive oropharyngeal cancer cell lines. Human oropharyngeal squamous cell cancer 147T and 090 (harboring integrated HPV16 DNA) and 040T (HPV DNA-negative) cells were infected with retroviruses that expressed a short hairpin RNA (shRNA) targeting the HPV16 E6 and E7 genes or a scrambled-sequence control shRNA. Flow cytometry, terminal deoxynucleotidyltransferase-mediated UTP end-labeling assay, and immunoblotting for annexin V were used to assess apoptosis in shRNA-infected cell lines. Biochemical analysis involved quantitative real-time polymerase chain reaction analysis of p53- and pRb-target gene expression and immunoblotting for p53 and pRb protein expression. In 147T and 090 cells, shRNA-mediated inhibition of HPV16 E6 and E7 expression reduced the E6 and E7 mRNA levels by more than 85% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in restoration of p53 and pRB protein expression, increased expression of p53-target genes (p21 and FAS), decreased expression of genes whose expression is increased in the absence of functional pRb (DEK and B-MYB), and induced substantial apoptosis in 147T and 090 cells compared with the control shRNA-infected cells (from 13.4% in uninfected to 84.3% in infected 147T cells and from 3.3% in uninfected to 71.2% in infected 090 cells). Repression of E6 and E7 oncogenes results in restoration of p53 and pRb suppressor pathways and induced apoptosis in HPV16-positive oropharyngeal squamous cell cancer cell lines.

  11. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection.

    Directory of Open Access Journals (Sweden)

    Lin-Lin Liu

    Full Text Available Reverse transcription-quantitative polymerase chain reaction (RT-qPCR is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct, and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2 expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.

  12. Preparation of Superparamagnetic Dextran-coated Iron Oxide Nanoparticles used as a Novel Gene Carrier into Human Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    CAOZhengguo; ZHOUSiwei; LIUJihong; SONGXiaodong

    2005-01-01

    Objective: Application of magnetic nanoparticles as gene carrier in gene therapy has developed quickly. This study was designed to investigate the preparation of superparamagnetic dextran-coated iron oxide nanoparticles (SDION) and the feasibility of SDION used as a novel gene carrier for plasmid DNA in vitro. Methods: SDION were prepared by chemical coprecipitation and separated by gel filtration on Sephacryl S-300HR, characterized by TEM, laser scattering system and Vibrating Sample Magnetometer Signal Processor. The green fluorescent protein (pGFP-C2) plasmid DNA was used as target gene. SDION-pGFP-C2 conjugate compounds were produced by means of oxidoreduction reaction. The connection ratio of SDION and pGFP-C2 DNA was analyzed and evaluated by agarose electrophoresis and the concentration of pGFP-C2 in supernatant was measured. Using liposome as control, the transfection efficiency of SDION and liposome was respectively evaluated under fluorescence microscope in vitro. Results: The diameter of SDION ranges from 3 nm to 8 nm, the effective diameter was 59.2 nm and the saturation magnetization was 0.23 emu/g. After SDION were reasonably oxidized, SDION could connect with pGFP-C2 to a high degree. The transfection efficiency of SDION as gene carrier was higher than that of liposome. Conclusion:The successes in connecting SDION with pGFP-C2 plasmid by means of oxidoreduction reaction and in transferring pGFP-C2 gene into human bladder cancer BIU-87 cells in vitro provided the experimental evidence for the feasibility of SDION used as a novel gene carrier.

  13. Hormonal Involvement in Breast Cancer Gene Amplification

    Science.gov (United States)

    2010-10-01

    and s ubsequently amp lified at the Yale University sequenc ing facility for Illumina sequencing. However, it required a lot of effort to obtain this...and Polyak K. (2008). Genome-wide functi onal synergy between amp lified and mutated genes in human breast cancer. Cancer Res. 68: 9532-9540...east cancer patient samples. Other co-amp lified genes, within the HER2 amplicon and/or at other regions, could serve as additional novel target s for

  14. Genomic amplification of the human telomerase gene (hTERC associated with human papillomavirus is related to the progression of uterine cervical dysplasia to invasive cancer

    Directory of Open Access Journals (Sweden)

    Liu Hongqian

    2012-10-01

    Full Text Available Abstract Background Human papillomavirus (HPV infection plays an etiological role in the development of cervical dysplasia and cancer. Amplification of human telomerase gene (hTERC and over expression of telomerase were found to be associated with cervical tumorigenesis. This study was performed to analyze genomic amplification of hTERC gene, telomerase activity in association with HPV infection in different stages of cervical intraepithelial neoplasia (CIN and cervical cancer. We were studying the role of hTERC in the progression of uterine cervical dysplasia to invasive cancer, and proposed an adjunct method for cervical cancer screening. Methods Exfoliated cervical cells were collected from 114 patients with non neoplastic lesion (NNL, n=27, cervical intraepithelial neoplasia (CIN1, n=26, CIN2, n=16, CIN3, n=24 and cervical carcinoma (CA, n=21, and analyzed for amplification of hTERC with two-color fluorescence in situ hybridization (FISH probe and HPV-DNA with Hybrid Capture 2. From these patients, 53 were taken biopsy to analyze telomerase activity by telomeric repeat amplification protocol (TRAP and expression of human telomerase reverse transcriptase (hTERT, with immunohistochemistry (IHC. All biopsies were clinically confirmed by phathologists. Results Amplification of hTERC was significantly associated with the histologic diagnoses (p Conclusions hTERC ampliffication can be detected with FISH technique on exfoliated cervical cells. Amplification of hTERC and HPV infection are associated with more progressive CIN3 and CA. The testing of hTERC amplification might be a supplementary to cytology screening and HPV test, especially high-risk patients. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1857134686755648.

  15. Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-κB target genes in human breast cancer

    Science.gov (United States)

    Dalmases, Alba; González, Irene; Menendez, Silvia; Arpí, Oriol; Corominas, Josep Maria; Servitja, Sonia; Tusquets, Ignasi; Chamizo, Cristina; Rincón, Raúl; Espinosa, Lluis; Bigas, Anna; Eroles, Pilar; Furriol, Jessica; Lluch, Anna; Rovira, Ana; Albanell, Joan; Rojo, Federico

    2014-01-01

    NF-κB has been linked to doxorubicin resistance in breast cancer patients. NF-κB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-κB -dependent genes and the biological consequences are unclear. We studied NF-κB -dependent gene expression induced by doxorubicin in breast cancer cells and fresh human cancer specimens with different genetic backgrounds focusing on their p53 status. NF-κB -dependent signature of doxorubicin was identified by gene expression microarrays in breast cancer cells treated with doxorubicin and the IKKβ-inhibitor MLN120B, and confirmed ex vivo in human cancer samples. The association with p53 was functionally validated. Finally, NF-κB activation and p53 status was determined in a cohort of breast cancer patients treated with adjuvant doxorubicin-based chemotherapy. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF NF-κB driven-gene transcription signature. Modulation of genes related with invasion, metastasis and chemoresistance (ICAM-1, CXCL1, TNFAIP3, IL8) were confirmed in additional doxorubicin-treated cell lines and fresh primary human breast tumors. In both systems, p53-defcient background correlated with the activation of the NF-κB -dependent signature. Furthermore, restoration of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-κB driven transcription induced by doxorubicin. Moreover, a p53 deficient background and nuclear NF-κB /p65 in breast cancer patients correlated with reduced disease free-survival. This study supports that p53 deficiency is necessary for a doxorubicin driven NF-κB -response that limits doxorubicin cytotoxicity in breast cancer and is linked to an aggressive clinical behavior. PMID:24344116

  16. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer.

    Science.gov (United States)

    Panagopoulou, Maria; Lambropoulou, Maria; Balgkouranidou, Ioanna; Nena, Evangelia; Karaglani, Makrina; Nicolaidou, Christina; Asimaki, Anthi; Konstantinidis, Theocharis; Constantinidis, Theodoros C; Kolios, George; Kakolyris, Stylianos; Agorastos, Theodoros; Chatzaki, Ekaterini

    2017-04-01

    Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.

  17. Associations of Filaggrin Gene Loss-of-Function Variants and Human Papillomavirus-Related Cancer and PreCancer in Danish Adults

    DEFF Research Database (Denmark)

    Skaaby, Tea; Husemoen, Lise Lotte N; Jørgensen, Torben

    2014-01-01

    to human papillomavirus (HPV) infection and thus a higher risk of HPV-related cancer and pre-cancer. We investigated the association of the FLG genotype with incidence of HPV-related cancer of cervix, vagina, vulva, penis, anus and head and neck, and pre-cancer of the cervix. METHODS: We included 13...

  18. Associations of Filaggrin Gene Loss-of-Function Variants and Human Papillomavirus-Related Cancer and Pre-Cancer in Danish Adults

    DEFF Research Database (Denmark)

    Skaaby, Tea; Husemoen, Lise Lotte N; Jørgensen, Torben;

    2014-01-01

    to human papillomavirus (HPV) infection and thus a higher risk of HPV-related cancer and pre-cancer. We investigated the association of the FLG genotype with incidence of HPV-related cancer of cervix, vagina, vulva, penis, anus and head and neck, and pre-cancer of the cervix. METHODS: We included 13...

  19. Relationship between the expression of human telomerase reverse transcriptase gene and cell cycle regulators in gastric cancer and its significance

    Institute of Scientific and Technical Information of China (English)

    Jin-Chen Shao; Ji-Feng Wu; Dao-Bin Wang; Rong Qin; Hong Zhang

    2003-01-01

    AIM: To investigate the expression of human telomerase reverse transcriptase gene (hTRT) in gastric cancer (GC)and its relevance with cell cycle regulators including P16INK4,cyclin and P53.METHODS: In situ hybridization (ISH) for hTRT mRNA was performed in 53 cases of gastric cancer and adjacent cancerous tissues. Immunohistochemical staining (S-Pmethod) for hTRT protein, P16INK4, cyclinD1 and P53 was performed in 53 cases of GC and adjacent cancerous tissues.RESULTS: Of 53 cases of GC, the expression of hTRT mRNA and hTRT protein was significantly higher than the expression of hTRT mRNA and hTRT protein in adjacent canerous tissues (P<0.01), the positive rates of hTRTmRNA and hTRT protein were 79.2 % and 88.6 %. There was a stastical difference of the expression of hTRT protein among well differentiated adenocarcinoma, poorly differentiated adenocarcinoma and mucoid carcinoma. And there was a highly significant positive correlation between the expression of hTRT mRNA and hTRT protein (r=0.625, P<0.01). However, the expression of hTRT mRNA and its protein in GC were not related with other clinicopathological parameters including gender, age, location and size of neoplasm, invasion depth, lymph node metastasis and clinical stage. There was a significant positive correlation between the expression of hTRT mRNA and cyclinD1 protein (r=0.350, P<0.01). There was a significant positive correlation between the expression of cyclinD1 protein and hTRT protein (r=0.549, P<0.01), so was between P53 and hTRT protein (r=0.319, P<0.05).CONCLUSION: The expression of hTRT gene is correlated significantly to the specific defects of cell cycle on G1/S check point; telomerase activity may depend on cell cycle in gastric cancer and it is available to clarify the molecular mechanism of telomerase activity regulation. The expression of hTRT mRNA and hTRT protein in GC is significantly different from the expression of hTRT mRNA and hTRT protein in adjacent cancerous tissue

  20. Down-regulation in human cancers of DRHC, a novel helicase-like gene from 17q25.1 that inhibits cell growth.

    Science.gov (United States)

    Nagai, H; Yabe, A; Mine, N; Mikami, I; Fujiwara, H; Terada, Y; Hirano, A; Tsuneizumi, M; Yokota, T; Emi, M

    2003-04-10

    Frequent observations of allelic loss in chromosomal band 17q25.1 in a variety of human cancers have suggested that one or more tumor suppressor genes are normally present in this region. Moreover, a locus responsible for hereditary focal non-epidermolytic palmoplantar keratoderma (tylosis oesophageal cancer; TOC), a condition associated with esophageal cancer, has been mapped to the same band. During efforts to sequence, by shot-gun methods, a 1 Mb target region that we had defined as the DNA segment harboring the putative tumor suppressor gene(s) involved in these events, we identified a novel cDNA, DRHC (down-regulated in human cancers), that showed reduced expression in 28 of 95 (29%) cell lines derived from a variety of human cancers. The full-length cDNA, 6275 bp long, was expressed predominantly in thymus and brain. The predicted 1942-amino-acid product exhibited significant sequence homology to yeast enzymes belonging to the DEAD-helicase superfamily, and appeared to be a Uvr/Rep helicase with a DEXDc consensus domain. Transfection of a DRHC expression vector inhibited growth of cancer cells in liquid medium or soft agar. The results suggest that loss of expression of DRHC may play a role in human carcinogenesis.

  1. A monograph proposing the use of canine mammary tumours as a model for the study of hereditary breast cancer susceptibility genes in humans.

    Science.gov (United States)

    Goebel, Katie; Merner, Nancy D

    2017-05-01

    Canines are excellent models for cancer studies due to their similar physiology and genomic sequence to humans, companion status and limited intra-breed heterogeneity. Due to their affliction to mammary cancers, canines can serve as powerful genetic models of hereditary breast cancers. Variants within known human breast cancer susceptibility genes only explain a fraction of familial cases. Thus, further discovery is necessary but such efforts have been thwarted by genetic heterogeneity. Reducing heterogeneity is key, and studying isolated human populations have helped in the endeavour. An alternative is to study dog pedigrees, since artificial selection has resulted in extreme homogeneity. Identifying the genetic predisposition to canine mammary tumours can translate to human discoveries - a strategy currently underutilized. To explore this potential, we reviewed published canine mammary tumour genetic studies and proposed benefits of next generation sequencing canine cohorts to facilitate moving beyond incremental advances.

  2. Electro-gene therapy in a human oral tongue cancer cell by intratumoral injection of pcDNA3.1-p27Kip1 wt

    Directory of Open Access Journals (Sweden)

    Supriatno Supriatno

    2007-03-01

    Full Text Available Oral tongue cancers are characterized by a high degree of local invasion and a high rate of metastases to the cervical lymph nodes. Also, treatment options for this cancer are limited. However, a new strategy for refractory cancer, gene therapy is watched with keen interest. Recently, a novel method for high-efficiency and region-controlled in vivo gene transfer was developed by combining in vivo electro-gene therapy and intratumoral plasmid DNA injection. In the present study, a nonviral gene transfer system, in vivo electrogene therapy in human oral tongue cancer cell, SP-C1 xenograft was examined. The aim of the study is to examine the efficiency of transfection of exogenous p27Kip1 gene by electroporation and the antitumor activity of p27Kip1 gene therapy in human oral tongue cancer xenografts using pcDNA3.1-p27Kip1 wild type (wt and pcDNA3.1 empty vector with the local application of electric pulses. To evaluate this in vivo gene transfer method, the enhanced green fluorescence protein (EGFP gene was transfected into xenografts by electroporation. The efficiency of transfection of exogenous p27Kip1 gene by electroporation was confirmed by Western blotting analysis. To estimate the reduction of oral tongue cancer xenografts by this method, the size of SP-C1 xenografts in nude mice after electroporation with wild type p27Kip1 gene was measured. The growth of tumors was markedly suppressed by wild type p27Kip1 gene transfection by electroporation compared with transfection of empty vector only. Moreover, histological specimens revealed apoptotic cell death was increased in wild type p27Kip1-transfected tumors than empty vector. These results suggest that it is possible to transfer wild type p27Kip1 into human oral tongue cancer xenografts using electroporation. Wild type p27Kip1 has a high-potencially to suppress the growth of tumors. Finally, combination system of pcDNA3.1-p27Kip1 wt-injected tumor and electroporationmight be used for human

  3. DBGC: A Database of Human Gastric Cancer.

    Science.gov (United States)

    Wang, Chao; Zhang, Jun; Cai, Mingdeng; Zhu, Zhenggang; Gu, Wenjie; Yu, Yingyan; Zhang, Xiaoyan

    2015-01-01

    The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do.

  4. Overexpression of the promyelocytic leukemia gene suppresses growth of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    HE Dalin 贺大林; NAN Xunyi 南勋义; Chang Kun-Song; WANG Yafeng 王亚峰; Chung Leland W.K.

    2003-01-01

    Objectives To examine the anti-oncogenic effects of promyelocytic leukemia (PML) on bladder cancer and to explore its molecular mechanisms of growth suppression.Methods Wild-type PML was transfected into bladder cancer cells (5637 cell) and expressed in a replication-deficient adenovirus-mediated gene delivery system and introduced into human bladder cancer cells (5637 cell) in vitro and in vivo. The effect and mechanisms of the PML gene in cell growth, clonogenicity, and tumorigenicity of bladder cancer cells were studied using in vitro and in vivo growth assays, soft agar colony-forming assay, cell cycle analysis, apoptosis assay and in vivo tumorigenicity assay.Results Overexpression of PML in 5637 cells significantly reduced their growth rate and clonogenicity on soft agar. PML suppressed bladder cancer cell growth by inducing G1 cell cycle arrest and apoptosis. Adenovirus-mediated PML (Ad-PML) significantly suppressed the tumorigenicity and growth of bladder cancer cells. Intratumoral injection of Ad-PML into tumors induced by 5637 cells dramatically suppressed their growth. Conclusions The results indicated that overexpression of PML protein may promote efficient growth inhibition of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis, and adenovirus-mediated PML (Ad-PML) expression efficiently suppresses human bladder cancer growth.

  5. [Study of the association between polymorphism of persistent obesity, human leptin gene/leptin receptor gene and molecular subtypes of breast cancer].

    Science.gov (United States)

    Yuan, X L; Xu, Z P; Liu, C R; Yan, L P; Tao, P; Xiong, P; Li, Q; Zhou, M; Li, H; Zhao, M; Li, J Y

    2017-06-06

    Objectives: To explore the association between the polymorphism of persistent obesity and genetic variations in the LEP (human leptin gene, LEP) and LEPR (leptin receptor gene, LEPR) genes and different molecular subtypes of breast cancer. Methods: All 703 female patients of breast cancer diagnosed by histopathology in the Sichuan Cancer Hospital or the West China Hospital, excluding patients with metastatic breast cancer or mental disease, were selected as cases from April 2014 to May 2015. At the same time, 805 healthy women received physical examination in medical examination center of Sichuan People Hospital or Shuangliu maternal and child health care hospital, excluding those with therioma, breast disease, and mental disease, were enrolled in control group. A uniform questionnaire was used to collect general information including demographic characteristic, reproductive history height, weight, and so on. And the obesity status in recent 10 years was judged. Time of Flight Mass Spectrometer was used to determine the genotypes of LEP rs7799039, LEPR rs1137100 and LEPR rs1137101, while the multinomial logistic regression analysis was conducted to estimate the effect of risk factors related to breast cancer in different molecular subtypes; and then, the association between polymorphism of persistent obesity, the LEP, LEPR genes and breast cancer of different molecular subtypes was analyzed by binary logistic regression models. Results: The average age of controls was (48.98±8.83) years old, while the age of cases of TNBC, Luminal A, Luminal B, and HER-2+ were (51.43±11.33), (49.94±10.10), (49.73±9.38), (50.50±9.04) years old, respectively. The frequency of genotype LEP rs7799039, LEPR rs1137100 and LEPR rs1137101 in control group was separately 74.8%(1 157/1 546), 83.6%(1 339/1 602) and 88.4%(1 416/1 602); while 77.6% (1 074/1 384), 82.4% (1 155/1 402) and 87.9% (1 232/1 402) respectively in case group. Compared with non-persistent obesity subjects, the

  6. Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Yu L

    2014-12-01

    Full Text Available Lan Yu, Xiaoli Wang, Da Zhu, Wencheng Ding, Liming Wang, Changlin Zhang, Xiaohui Jiang, Hui Shen, Shujie Liao, Ding Ma, Zheng Hu, Hui Wang Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China Abstract: High-risk human papillomavirus (HPV, especially HPV16, is considered a main causative agent of cervical cancer. Upon HPV infection, the viral oncoprotein E6 disrupts the host tumor-suppressor protein p53, thus promoting malignant transformation of normal cervical cells. Here, we used the newly developed programmable ribonucleic acid-guided clustered regularly interspaced short palindromic repeat (CRISPR/Cas system to disrupt the HPV16 E6 gene. We showed that HPV16 E6 deoxyribonucleic acid was cleaved at specific sites, leading to apoptosis and growth inhibition of HPV16-positive SiHa and CaSki cells, but not HPV-negative C33A or human embryonic kidney 293 cells. We also observed downregulation of the E6 protein and restoration of the p53 protein. These data proved that the HPV16 E6 ribonucleic acid-guided CRISPR/Cas system might be an effective therapeutic agent in treating HPV infection-related cervical malignancy. Keywords: CRISPR/Cas system, E6, p53, SiHa, CaSki, cervical cancer

  7. BRB-ArrayTools Data Archive for Human Cancer Gene Expression: A Unique and Efficient Data Sharing Resource

    Directory of Open Access Journals (Sweden)

    Richard Simon

    2008-01-01

    Full Text Available The explosion of available microarray data on human cancer increases the urgency for developing methods for effectively sharing this data among clinical cancer investigators. Lack of a smooth interface between the databases and statistical analysis tools limits the potential benefits of sharing the publicly available microarray data. To facilitate the efficient sharing and use of publicly available microarray data among cancer investigators, we have built a BRB-ArrayTools Data Archive including over one hundred human cancer microarray projects for 28 cancer types. Expression array data and clinical descriptors have been imported into BRB-ArrayTools and are stored as BRB-ArrayTools project folders on the archive. The data archive can be accessed from: http://linus.nci.nih.gov/~brb/DataArchive.html Our BRB-ArrayTools data archive and GEO importer represent ongoing efforts to provide effective tools for efficiently sharing and utilizing human cancer microarray data.

  8. Deciphering the colon cancer genes--report of the InSiGHT-Human Variome Project Workshop, UNESCO, Paris 2010

    DEFF Research Database (Denmark)

    Kohonen-Corish, Maija R J; Macrae, Finlay; Genuardi, Maurizio;

    2011-01-01

    Integration and Implementation Meeting at UNESCO in Paris, to review the progress of this pilot program. A wide range of topics were covered, including issues relating to genotype-phenotype data submission to the InSiGHT Colon Cancer Gene Variant Databases (chromium.liacs.nl/LOVD2/colon_cancer/home.php...

  9. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    NARCIS (Netherlands)

    Erk, M.J. van; Teuling, E.; Staal, Y.C.M.; Huybers, S.; Bladeren, P.J. van; Aarts, J.M.M.J.G.; Ommen, B. van

    2004-01-01

    Background. Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an a

  10. Expression of ECRG4, a novel esophageal cancer-related gene,downregulated by CpG island hypermethylation in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chun-Mei Yue; Da-Jun Deng; Mei-Xia Bi; Li-Ping Guo; Shih-Hsin Lu

    2003-01-01

    AIM: To study the mechanisms responsible for inactivation of a novel esophageal cancer related gene 4 (ECRG4) in esophageal squamous cell carcinoma (ESCC). METHODS: A pair of primers was designed to amplify a 220 bp fragment, which contains 16 CpG sites in the core promoter region of the ECRG 4 gene. PCR products of bisulfite-modified CpG islands were analyzed by denaturing high-performance liquid chromatography (DHPLC), which were confirmed by DNA sequencing. The methylation status of ECRG 4 promoter in 20 cases of esophageal cancer and the adjacent normal tissues, 5 human tumor cell lines (esophageal cancer cell line-NEC, EC109, EC9706; gastric cancer cell line- GLC; human embryo kidney cell line-Hek293)and 2 normal esophagus tissues were detected. The expression level of the ECRG 4 gene in these samples was examined by RT-PCR. RESULTS: The expression level of ECRG 4 gene was varied.Of 20 esophageal cancer tissues, nine were unexpressed,six were lowly expressed and five were highly expressed compared with the adjacent tissues and the 2 normal esophageal epithelia. In addition, 4 out of the 5 human cell lines were also unexpressed. A high frequency of methylation was revealed in 12 (8 unexpressed and 4 lowly expressed)of the 15 (80%) downregulated cancer tissues and 3 of the 4 unexpressed cell lines. No methylation peak was observed in the two highly expressed normal esophageal epithelia and the methylation frequency was low (3/20) among the 20 cases in the highly expressed adjacent tissues. The methylation status of the samples was consistent with the result of DNA sequencing. CONCLUSION: These results indicate that the inactivation of ECRG 4gene by hypermethylation is a frequent molecular event in ESCC and may be involved in the carcinogenesis of this cancer.

  11. Connexin 26 gene therapy of human bladder cancer: induction of growth suppression, apoptosis, and synergy with Cisplatin.

    Science.gov (United States)

    Tanaka, M; Grossman, H B

    2001-12-10

    The connexin 26 (Cx26) gene encodes a protein involved in gap junctional intercellular communication and is a putative tumor suppressor. We constructed a Cx26 adenovirus vector (Ad-Cx26) and used it to infect human bladder cancer cell lines UM-UC-3, UM-UC-6, UM-UC-14, and T24. Infection with Ad-Cx26 suppressed the growth of these cell lines in vitro and prevented tumor formation in vivo. Cell cycle accumulation or arrest at the G(1) phase was noted in UM-UC-3 cells and at the G(2)/M phase in UM-UC-6, UM-UC-14, and T24 cells. Apoptosis was noted in UM-UC-3, UM-UC-6, and UM-UC-14 cells both in vitro and in vivo. These effects were not seen with control adenovirus (Ad-CTR) or mock infection. Ad-Cx26 did not significantly alter the growth of the immortalized normal human bladder cell line SV-HUC. Direct injection of Ad-Cx26 into established UM-UC-3 and UM-UC-14 tumors in nude mice resulted in Cx26 expression, apoptosis, and significantly decreased growth compared with Ad-CTR treated tumors. Delayed resumption of tumor growth was associated with loss of Cx26 expression. Combination therapy with Ad-Cx26 and cisplatin resulted in decreased growth in vitro compared with either agent alone. We explored combination therapy with Ad-Cx26 and cisplatin to improve the in vivo efficacy of Cx26 gene therapy. In vivo therapy with Ad-Cx26 and cisplatin resulted in long-term suppression of tumor growth. These data demonstrate that combining gene and chemotherapy can result in dramatic synergy in vivo.

  12. Towards a Holistic, Yet Gene-Centered Analysis of Gene Expression Profiles: A Case Study of Human Lung Cancers

    OpenAIRE

    Yuchun Guo; Eichler, Gabriel S.; Ying Feng; Ingber, Donald E.; Sui Huang

    2006-01-01

    Genome-wide gene expression profile studies encompass increasingly large number of samples, posing a challenge to their presentation and interpretation without losing the notion that each transcriptome constitutes a complex biological entity. Much like pathologists who visually analyze information-rich histological sections as a whole, we propose here an integrative approach. We use a self-organizing maps -based software, the gene expression dynamics inspector (GEDI) to analyze gene expressio...

  13. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  14. Comparative Gene Expression Analyses Identify Luminal and Basal Subtypes of Canine Invasive Urothelial Carcinoma That Mimic Patterns in Human Invasive Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Deepika Dhawan

    Full Text Available More than 160,000 people are expected to die from invasive urothelial carcinoma (iUC this year worldwide. Research in relevant animal models is essential to improving iUC management. Naturally-occurring canine iUC closely resembles human iUC in histopathology, metastatic behavior, and treatment response, and could provide a relevant model for human iUC. The molecular characterization of canine iUC, however, has been limited. Work was conducted to compare gene expression array results between tissue samples from iUC and normal bladder in dogs, with comparison to similar expression array data from human iUC and normal bladder in the literature. Considerable similarities between enrichment patterns of genes in canine and human iUC were observed. These included patterns mirroring basal and luminal subtypes initially observed in human breast cancer and more recently noted in human iUC. Canine iUC samples also exhibited enrichment for genes involved in P53 pathways, as has been reported in human iUC. This is particularly relevant as drugs targeting these genes/pathways in other cancers could be repurposed to treat iUC, with dogs providing a model to optimize therapy. As part of the validation of the results and proof of principal for evaluating individualized targeted therapy, the overexpression of EGFR in canine bladder iUC was confirmed. The similarities in gene expression patterns between dogs and humans add considerably to the value of naturally-occurring canine iUC as a relevant and much needed animal model for human iUC. Furthermore, the finding of expression patterns that cross different pathologically-defined cancers could allow studies of dogs with iUC to help optimize cancer management across multiple cancer types. The work is also expected to lead to a better understanding of the biological importance of the gene expression patterns, and the potential application of the cross-species comparisons approach to other cancer types as well.

  15. Comparative Gene Expression Analyses Identify Luminal and Basal Subtypes of Canine Invasive Urothelial Carcinoma That Mimic Patterns in Human Invasive Bladder Cancer.

    Science.gov (United States)

    Dhawan, Deepika; Paoloni, Melissa; Shukradas, Shweta; Choudhury, Dipanwita Roy; Craig, Bruce A; Ramos-Vara, José A; Hahn, Noah; Bonney, Patty L; Khanna, Chand; Knapp, Deborah W

    2015-01-01

    More than 160,000 people are expected to die from invasive urothelial carcinoma (iUC) this year worldwide. Research in relevant animal models is essential to improving iUC management. Naturally-occurring canine iUC closely resembles human iUC in histopathology, metastatic behavior, and treatment response, and could provide a relevant model for human iUC. The molecular characterization of canine iUC, however, has been limited. Work was conducted to compare gene expression array results between tissue samples from iUC and normal bladder in dogs, with comparison to similar expression array data from human iUC and normal bladder in the literature. Considerable similarities between enrichment patterns of genes in canine and human iUC were observed. These included patterns mirroring basal and luminal subtypes initially observed in human breast cancer and more recently noted in human iUC. Canine iUC samples also exhibited enrichment for genes involved in P53 pathways, as has been reported in human iUC. This is particularly relevant as drugs targeting these genes/pathways in other cancers could be repurposed to treat iUC, with dogs providing a model to optimize therapy. As part of the validation of the results and proof of principal for evaluating individualized targeted therapy, the overexpression of EGFR in canine bladder iUC was confirmed. The similarities in gene expression patterns between dogs and humans add considerably to the value of naturally-occurring canine iUC as a relevant and much needed animal model for human iUC. Furthermore, the finding of expression patterns that cross different pathologically-defined cancers could allow studies of dogs with iUC to help optimize cancer management across multiple cancer types. The work is also expected to lead to a better understanding of the biological importance of the gene expression patterns, and the potential application of the cross-species comparisons approach to other cancer types as well.

  16. Identification of gene expression patterns in superficial and invasive human bladder cancer

    DEFF Research Database (Denmark)

    Andersen, Thomas Thykjær; Workman, Christopher; Kruhøffer, Mogens;

    2001-01-01

    genes. The obtained expression data were sorted according to a weighting scheme and were subjected to hierarchical cluster analysis of tissues and genes. Northern blotting was used to verify the array data, and immunohistology was used to correlate between RNA and protein levels. Hierarchical clustering...... of samples correctly identified the stage using both 4076 genes and a subset of 400 genes covarying with the stages and grades of tumors. Hierarchical clustering of gene expression levels identified several stage-characteristic, functionally related clusters, encoding proteins that were related to cell...... proliferation, oncogenes and growth factors, cell adhesion, immunology, transcription, proteinases, and ribosomes. Northern blotting correlated well with array data. Immunohistology showed a good concordance between transcript level and protein staining. The study indicates that gene expression patterns may...

  17. From Breast to Bone: Tracking Gene Expression Changes Responsible for Breast Cancer Metastasis in a Humanized Mouse Model with Molecular Imaging

    Science.gov (United States)

    2015-11-01

    to the date of euthanasia (Fig. 4, right panel). Normalization to the photon flux of the mammary tumors was not possible because they were resected... Humanized Mouse Model with Molecular Imaging PRINCIPAL INVESTIGATOR: Emily Powell CONTRACTING ORGANIZATION: The University of Texas MD Anderson...Breast to Bone: Tracking Gene Expression Changes Responsible for Breast Cancer Metastasis in a Humanized Mouse Model with Molecular Imaging 5b. GRANT

  18. Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells.

    Science.gov (United States)

    Zhu, Qingsong; Huang, Yi; Marton, Laurence J; Woster, Patrick M; Davidson, Nancy E; Casero, Robert A

    2012-02-01

    Aberrant epigenetic repression of gene expression has been implicated in most cancers, including breast cancer. The nuclear amine oxidase, lysine-specific demethylase 1 (LSD1) has the ability to broadly repress gene expression by removing the activating mono- and di-methylation marks at the lysine 4 residue of histone 3 (H3K4me1 and me2). Additionally, LSD1 is highly expressed in estrogen receptor α negative (ER-) breast cancer cells. Since epigenetic marks are reversible, they make attractive therapeutic targets. Here we examine the effects of polyamine analog inhibitors of LSD1 on gene expression, with the goal of targeting LSD1 as a therapeutic modality in the treatment of breast cancer. Exposure of the ER-negative human breast cancer cells, MDA-MB-231 to the LSD1 inhibitors, 2d or PG11144, significantly increases global H3K4me1 and H3K4me2, and alters gene expression. Array analysis indicated that 98 (75 up and 23 down) and 477 (237 up and 240 down) genes changed expression by at least 1.5-fold or greater after treatment with 2d and PG11144, respectively. The expression of 12 up-regulated genes by 2d and 14 up-regulated genes by PG11144 was validated by quantitative RT-PCR. Quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated that up-regulated gene expression by polyamine analogs is associated with increase of the active histone marks H3K4me1, H3K4me2 and H3K9act, and decrease of the repressive histone marks H3K9me2 and H3K27me3, in the promoter regions of the relevant target genes. These data indicate that the pharmacologic inhibition of LSD1 can effectively alter gene expression and that this therapeutic strategy has potential.

  19. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells

    Directory of Open Access Journals (Sweden)

    Matyunina Lilya V

    2009-12-01

    Full Text Available Abstract Background Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube. Methods Comparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI isolated by laser capture micro-dissection (LCM from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms. Results Consistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development. Conclusions Our results are consistent with the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings do not rule out the possibility that ovarian cancers may also arise from other sources, they are inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer initiating cells.

  20. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine.

    Directory of Open Access Journals (Sweden)

    Zhen Sheng

    Full Text Available Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, RNA-seq technology was used to detect the differentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer cells induced by berberine. Functional enrichment analysis indicated that these genes were mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically proven that the two sets of genes were locally co-enriched along chromosomes, closely connected to each other based on protein-protein interaction and functionally similar on Gene Ontology tree. These results suggested that the two sets of genes regulated by berberine might be functionally cross-talked and jointly contribute to its cell cycle arresting effect. It has provided new clues for further researches on the pharmacological mechanisms of berberine as well as the other botanical drugs.

  1. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine.

    Science.gov (United States)

    Sheng, Zhen; Sun, Yi; Zhu, Ruixin; Jiao, Na; Tang, Kailin; Cao, Zhiwei; Ma, Chao

    2015-01-01

    Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, RNA-seq technology was used to detect the differentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer cells induced by berberine. Functional enrichment analysis indicated that these genes were mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically proven that the two sets of genes were locally co-enriched along chromosomes, closely connected to each other based on protein-protein interaction and functionally similar on Gene Ontology tree. These results suggested that the two sets of genes regulated by berberine might be functionally cross-talked and jointly contribute to its cell cycle arresting effect. It has provided new clues for further researches on the pharmacological mechanisms of berberine as well as the other botanical drugs.

  2. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  3. Hypoxia induces upregulation of the deoxyribonuclease I gene in the human pancreatic cancer cell line QGP-1.

    Science.gov (United States)

    Kominato, Yoshihiko; Iida, Reiko; Nakajima, Tamiko; Tajima, Yutaka; Takagi, Rie; Makita, Chikako; Kishi, Koichiro; Ueki, Misuzu; Kawai, Yasuyuki; Yasuda, Toshihiro

    2007-11-01

    We have previously demonstrated that ischemia caused by acute myocardial infarction induces an abrupt increase of serum deoxyribonuclease I (DNase I) activity. In this study, we examined whether hypoxia can affect the levels of DNase I activity and/or its transcripts in vitro. We first exposed the human pancreatic cancer cell line QGP-1, which is the first documented DNase-I-producing cell line, to hypoxia (2% O2), and found that this induced a significant increase in both the activity and transcripts of DNase I. This response was mediated by increased transcription only from exon 1a of the two alternative transcription-initiating exons utilized simultaneously in the human DNase I gene (DNASE1); exposure of QGP-1 cells to hypoxia for 24 h resulted in a 15-fold increase of DNASE1 transcripts starting from exon 1a compared with the expression level under normoxic conditions. Promoter, electrophoretic mobility shift, and chromatin immunoprecipitation assays with QGP-1 cells exposed to hypoxia or normoxia showed that the region just upstream from exon 1a was involved in this response in a hypoxia-induced factor-1-independent, but at least in a Sp1 transcription factor-dependent manner possibly through enhanced binding of Sp1 protein to the promoter. These results indicate that DNASE1 expression is upregulated by hypoxia in the cells.

  4. Effects of Wei Chang An on expression of multiple genes in human gastric cancer grafted onto nude mice

    Institute of Scientific and Technical Information of China (English)

    Ai-Guang Zhao; Ting Li; Sheng-Fu You; Hai-Lei Zhao; Ying Gu; Lai-Di Tang; Jin-Kun Yang

    2008-01-01

    AIM:To investigate the expression of multiple genes in Chinese jianpi herbal recipe Wei Chang An (WCA) in human gastric cancer cell line SGC-7901.METHODS:A human gastric adenocarcinoma cell line SGC-7901 grafted onto nude mice was used as the animal model.The mice were randomly divided into 3 groups,one control and the two representing experimental conditions.Animals in the two experimental groups received either WCA over a 34-d period or 5-fluorouracil (5-FU) over 6-d period starting at 8th d after grafting.Control animals received saline on an identical schedule.Animals were killed 41 d after being grafted.The expression profiles in paired WCA treated gastric cancer samples and the N.S.control samples were studied by using a cDNA array representing 14181 cDNA clusters.The alterations in gene expression levels were confirmed by Real-time Quantitative polymerase chain reaction (qPCR).RESULTS:When compared with controls,the average tumor inhibitory rate in WCA group was 44.32%±5.67% and 5-FU 47.04% 4±11.33% (P<0.01,respectively).The average labeling index (LI) for PCNA in WCA group and 5-FU group was significantly decreased compared with the control group.Apoptotic index (AI) was significantly increased to 9.72%±4.51% using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method in WCA group compared with the controls 2.45%±1.37%.5-FU group was also found to have a significantly increased AI compared with the controls.The expression of cleaved Caspase-3 in WCA group and 5-FU group was significantly increased compared with the control group respectively.There were 45 different expressed sequence tags (ESTs) among the control sample pool and WCA sample pool.There were 24 ESTs up-regulated in WCA samples and 21 ESTs down-regulated.By using qPCR,the expression level of Stat3,rap2 interacting protein x (RIPX),regulator of differentiation 1 (ROD1) and Bcl-2 was lower in WCA group than that in control

  5. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: A novel epigenetic therapeutic approach

    Directory of Open Access Journals (Sweden)

    Athena Starlard-Davenport

    2013-01-01

    Full Text Available It is well established that transcriptional silencing of critical tumor-suppressor genes by DNA methylation is a fundamental component in the initiation of breast cancer. However, the involvement of microRNAs (miRNAs in restoring abnormal DNA methylation patterns in breast cancer is not well understood. Therefore, we investigated whether miRNA-29b, due to its complimentarity to the 3′- untranslated region of DNA methyltransferase 3A (DNMT3A and DNMT3B, could restore normal DNA methylation patterns in human breast cancers and breast cancer cell lines. We demonstrated that transfection of pre-miRNA-29b into less aggressive MCF-7 cells, but not MDA-MB-231 mesenchymal cells, inhibited cell proliferation, decreased DNMT3A and DNMT3B messenger RNA (mRNA, and decreased promoter methylation status of ADAM23 , CCNA1, CCND2, CDH1, CDKN1C, CDKN2A, HIC1, RASSF1, SLIT2, TNFRSF10D, and TP73 tumor-suppressor genes. Using methylation polymerase chain reaction (PCR arrays and real-time PCR, we also demonstrated that the methylation status of several critical tumor-suppressor genes increased as stage of breast disease increased, while miRNA-29b mRNA levels were significantly decreased in breast cancers versus normal breast. This increase in methylation status was accompanied by an increase in DNMT1 and DNMT3B mRNA in advanced stage of human breast cancers and in MCF-7, MDA-MB-361, HCC70, Hs-578T, and MDA-MB-231 breast cancer cells as compared to normal breast specimens and MCF-10-2A, a non-tumorigenic breast cell line, respectively. Our findings highlight the potential for a new epigenetic approach in improving breast cancer therapy by targeting DNMT3A and DNMT3B through miRNA-29b in non-invasive epithelial breast cancer cells.

  6. Expression of TN4 gene and its role in human hepatocarcinogenesis from Qidong, a liver cancer risk area

    Institute of Scientific and Technical Information of China (English)

    陆东东; 张锡然; 曹祥荣

    2004-01-01

    Background We investigated the expression and role of TN4 in the oncogenesis of human hepatocellular carcinoma (HCC) from Qidong which is a HCC risk area.Methods The expression of TN4 in HCC was observed using immunohistochemical staining (IHC). TN4 levels were manipulated in human liver cancer cell SMMC7721, using pcDNA3.1 eukaryotic expression constructs designed to express the complete TN4 cDNA. The biological changes of the cells were observed before and after transfection of TN4 and the change of gene expression was analysed by atlas cDNA expression array. Results Among 100 pairs of samples of HCC, TN4 down-regulation expression and up-regulation expression positive rate were 81% (81/100), 19% (19/100), respectively (P<0.01). TN4 protein was mainly localized in cytoplasm and membrane. The positive rate of TN4 were 10% (3/30), 100% (70/70) in lymph node metastasis and no lymph node metastasis, respectively (P<0.01). The growth rates of the derivative SMMC7721-TN4 cell lines were decreased in comparasion with that of normal SMMC7721 cells and pcDNA- SMMC7721. Some gene expression was changed before and after transfection of TN4. At 30 days of post-implantation of SMMC7721-TN4, SMMC7721-pcDNA3, SMMC7721 group produced tumors of (301.9±143.4) mm3, (2418.7±362.8) mm3, (2317.4±587.8) mm3, respectively, (P<0.01). Tumor inhibiting rate was 82.4% in TN4 transfection group. Sections of tumors were observed for their degree of tissue necrosis and there was higher degree of necrosis in tumors of the TN4-SMMC7721 cell group than those of the SMMC7721, SMMC7721-pcDNA groups.Conclusions TN4 may play an important role in the oncogenesis of human HCC, especially in Qidong, the HCC risk area and TN4 could be a candidate tumor suppressor gene for HCC.

  7. Isolation of Estrogen Regulated Genes from MCF-7 Human Mammary Cancer Cells

    Science.gov (United States)

    1990-07-13

    dramatic example of an anri-oncogene. The neoplastic phenotype of retinoblastoma, prostate cancer, or osteosarcoma can be suppressed by introducing an...which is down-regulated by esttogen tteattnent), and was kindly made avaUable by Dr Carl Dieffenbach and Dr. Robert Silverman (Department of Radiology

  8. Identifying cancer genes from cancer mutation profiles by cancer functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is of great importance to identify new cancer genes from the data of large scale genome screenings of gene mutations in cancers. Considering the alternations of some essential functions are indispensable for oncogenesis, we define them as cancer functions and select, as their approximations, a group of detailed functions in GO (Gene Ontology) highly enriched with known cancer genes. To evaluate the efficiency of using cancer functions as features to identify cancer genes, we define, in the screened genes, the known protein kinase cancer genes as gold standard positives and the other kinase genes as gold standard negatives. The results show that cancer associated functions are more efficient in identifying cancer genes than the selection pressure feature. Furthermore, combining cancer functions with the number of non-silent mutations can generate more reliable positive predictions. Finally, with precision 0.42, we suggest a list of 46 kinase genes as candidate cancer genes which are annotated to cancer functions and carry at least 3 non-silent mutations.

  9. Automated Detection of Cancer Associated Genes Using a Combined Fuzzy-Rough-Set-Based F-Information and Water Swirl Algorithm of Human Gene Expression Data.

    Science.gov (United States)

    Ganesh Kumar, Pugalendhi; Kavitha, Muthu Subash; Ahn, Byeong-Cheol

    2016-01-01

    This study describes a novel approach to reducing the challenges of highly nonlinear multiclass gene expression values for cancer diagnosis. To build a fruitful system for cancer diagnosis, in this study, we introduced two levels of gene selection such as filtering and embedding for selection of potential genes and the most relevant genes associated with cancer, respectively. The filter procedure was implemented by developing a fuzzy rough set (FR)-based method for redefining the criterion function of f-information (FI) to identify the potential genes without discretizing the continuous gene expression values. The embedded procedure is implemented by means of a water swirl algorithm (WSA), which attempts to optimize the rule set and membership function required to classify samples using a fuzzy-rule-based multiclassification system (FRBMS). Two novel update equations are proposed in WSA, which have better exploration and exploitation abilities while designing a self-learning FRBMS. The efficiency of our new approach was evaluated on 13 multicategory and 9 binary datasets of cancer gene expression. Additionally, the performance of the proposed FRFI-WSA method in designing an FRBMS was compared with existing methods for gene selection and optimization such as genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony algorithm (ABC) on all the datasets. In the global cancer map with repeated measurements (GCM_RM) dataset, the FRFI-WSA showed the smallest number of 16 most relevant genes associated with cancer using a minimal number of 26 compact rules with the highest classification accuracy (96.45%). In addition, the statistical validation used in this study revealed that the biological relevance of the most relevant genes associated with cancer and their linguistics detected by the proposed FRFI-WSA approach are better than those in the other methods. The simple interpretable rules with most relevant genes and effectively classified

  10. Imaging of dihydrofolate reductase fusion gene expression in xenografts of human liver metastases of colorectal cancer in living rats

    Energy Technology Data Exchange (ETDEWEB)

    Mayer-Kuckuk, Philipp; Bertino, Joseph R.; Banerjee, Debabrata [Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); The Cancer Institute of New Jersey, Robert Wood Johnson Medical School/UMDNJ, 195 Little Albany Street, NJ 08903, New Brunswick (United States); Doubrovin, Mikhail; Blasberg, Ronald; Tjuvajev, Juri Gelovani [Department of Neurooncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Gusani, Niraj J.; Fong, Yuman [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Gade, Terence; Koutcher, Jason A. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Balatoni, Julius; Finn, Ronald [Radiochemistry/Cyclotron Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Akhurst, Tim; Larson, Steven [Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2003-09-01

    Radionuclide imaging has been demonstrated to be feasible to monitor transgene expression in vivo. We hypothesized that a potential application of this technique is to non-invasively detect in deep tissue, such as cancer cells metastatic to the liver, a specific molecular response following systemic drug treatment. Utilizing human colon adenocarcinoma cells derived from a patient's liver lesion we first developed a nude rat xenograft model for colorectal cancer metastatic to the liver. Expression of a dihydrofolate reductase-herpes simplex virus 1 thymidine kinase fusion (DHFR-HSV1 TK) transgene in the hepatic tumors was monitored in individual animals using the tracer [{sup 124}I]2'-fluoro-2'-deoxy-5-iodouracil-{beta}-d-arabinofuranoside (FIAU) and a small animal micro positron emission tomograph (microPET), while groups of rats were imaged using the tracer [{sup 131}I]FIAU and a clinical gamma camera. Growth of the human metastatic colorectal cancer cells in the rat liver was detected using magnetic resonance imaging and confirmed by surgical inspection. Single as well as multiple lesions of different sizes and sites were observed in the liver of the animals. Next, using a subset of rats bearing hepatic tumors, which were retrovirally bulk transduced to express the DHFR-HSV1 TK transgene, we imaged the fusion protein expression in the hepatic tumor of living rats using the tracer [{sup 124}I]FIAU and a microPET. The observed deep tissue signals were highly specific for the tumors expressing the DHFR-HSV1 TK fusion protein compared with parental untransduced tumors and other tissues as determined by gamma counting of tissue samples. A subsequent study used the tracer [{sup 131}I]FIAU and a gamma camera to monitor two groups of transduced hepatic tumor-bearing rats. Prior to imaging, one group was treated with trimetrexate to exploit DHFR-mediated upregulation of the fusion gene product. Imaging in the living animal as well as subsequent gamma

  11. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    NARCIS (Netherlands)

    van Geer, M.A.; Kuhlmann, K.F.D.; Bakker, C.T.; ten Kate, F.J.W.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions. METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices. Tissue slic

  12. Canine and Human Insulinoma : prognostic factors, druggable genes and cancer stem cells

    NARCIS (Netherlands)

    Buishand, F.O.

    2016-01-01

    Insulinoma (INS), which causes clinical signs associated with hypoglycaemia, is the most common pancreatic neuroendocrine tumour (pNET) of dogs and humans. Ten tot fifteen percent of human INS metastasise to regional lymph nodes and the liver, and these are referred to as ‘malignant INS’. Surgical e

  13. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    NARCIS (Netherlands)

    van Geer, M.A.; Kuhlmann, K.F.D.; Bakker, C.T.; ten Kate, F.J.W.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions. METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices. Tissue slic

  14. Effects of silencing the ATP-binding cassette protein E1 gene by electroporation on the proliferation and migration of EC109 human esophageal cancer cells.

    Science.gov (United States)

    Li, Xiao-Rui; Yang, Liu-Zhong; Huo, Xiao-Qing; Wang, Ying; Yang, Qing-Hui; Zhang, Qing-Qin

    2015-07-01

    In the present study, the gene expression of ATP-binding cassette protein E1 (ABCE1) in the EC109 human esophageal cancer cell line was silenced using electroporation to examine the effect if the ABCE1 gene on the growth migration and cell cycle of cancer cells. The small interference (si)RNA sequence of ABCE1 was designed and synthesized to transfect the EC109 cells by electroporation. The mRNA and protein expression levels of ABCE1 were then detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The analysis of the cell cycle and apoptosis was performed using flow cytometry. The effect of silencing the ABCE1 gene on the proliferation, migration and invasive ability of the EC109 human esophageal cancer cells were assessed using a Cell counting kit-8 (CCK-8) and with proliferation, wound-healing and cell invasion assays. The mRNA and protein expression levels of ABCE1 were significantly lower in the experimental group compared with the control group (Pmigration capacity of the cells in the experimental group was significantly decreased (Pmigration in esophageal cancer and silencing the ABCE1 gene by electroporation can significantly reduce the proliferation, invasion and migration capacity of EC109 cells in vitro.

  15. Functional Characterization of Two Novel Human Prostate Cancer Metastasis Related Genes

    Science.gov (United States)

    2008-02-01

    capture microdissection. Science. 274:998- 1001, 1996. 13 31. Listisyn, N, Listisyn, N, and Wigler, M. Cloning the differences between tow ...phytohemaglutinin and phorbol 12-myristate 13- acetate . Anal. Biochem., 240:90-97, 1996. 36. Wang, Z., and Brown, D. D. A gene expression screen. (1991

  16. LOW MOLECULAR MASS POLYPEPTIDE AND TRANSPORTER ANTIGEN PEPTIDE GENES POLYMORPHISM AS THE RISK FACTORS OF CERVICAL CANCER WHICH CAUSED BY HUMAN PAPILLOMAVIRUS TYPE-16 INFECTION IN BALI

    Directory of Open Access Journals (Sweden)

    I N. B. Mahendra

    2015-12-01

    Full Text Available Background: Until recently, cervical cancer is one of the major problem in women’s health issue related to its high incidence and mortality rate. The etiology of cervical cancer is the high risk oncogenic group of Human Papillomavirus (HPV, especially HPV-16 and 18 and its phylogenies. Meanwhile in Bali, more than 50% of infection are caused by HPV-16 infection. The main objective of this study was to investigate the role of LMP-2, LMP-7, TAP-1 and TAP-2 gene polymorphism as the risk factor in the cervical cancer carcinogenesis that is caused by HPV-16 infection. Method: A nested non-paired case-control study was conducted at Obstetric and Gynecologic Department Sanglah General Hospital, Bali-Indonesia from March 1 until August 31, 2013. Laboratory testing was carried out at Laboratory of Histopathology Leiden University Medical Centre, Netherlands,. Results: A total of 40 samples were collected, consist of 20epithelial cervical cancer patients with positive HPV-16 infection as the case group and 20 non-cervical cancer patients with positive HPV-16 infection as the control group. Women infected by HPV-16 with LMP-7 gene polymorphism had a higher risk (OR=7.36, CI 95%=1.38-40.55, p=0.013 to be diagnosed with cervical cancer. Balinese women who were infected by HPV-16 with TAP-2 gene polymorphism had a higher risk (OR= 9.33, CI 95%=2.18-39.96, p=0.001 to be diagnosed with cervical cancer. Meanwhile, Balinese women who were infected by HPV-16 with LMP-7 and TAP-2 genes polymorphism had a higher risk (OR=12.67, CI 95%=1.40-114.42, p=0.020 to be diagnosed with cervical cancer. As the result, it was shown that both of this gene polymorphism was working synergistically. Conclusion: TAP-2 and LMP-7 genes polymorphism play a role in the carcinogenesis mechanism of cervical cancer that is caused by HPV-16 infection in Bali. Meanwhile, LMP-2 and TAP-1 genes polymorphism were not found to play a role in the immunology pathway of cervical cancer that is

  17. PCR-SSCP-DNA sequencing method in detecting PTEN gene mutation and its significance in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Chuan-Yong Guo; Xuan-Fu Xu; Jian-Ye Wu; Shu-Fang Liu

    2008-01-01

    AIM: To discuss the possible effect of PTEN gene mutations on occurrence and development of gastric cancer.METHODS: Fifty-three gastric cancer specimens were selected to probe PTEN gene mutations in genome of gastric cancer and paracancerous tissues using PCR-SSCP-DNA sequencing method based on microdissection and to observe the protein expression by immunohistochemistry technique.RESULTS: PCR-SSCP-DNA sequencing indicated that 4 kinds of mutation sites were found in 5 of 53 gastric cancer specimens.One kind of mutation was found in exons.AA-TCC mutation was located at 40bp upstream of 3' lateral exert 7 (115946 AA-TCC).Such mutations led to terminator formation in the 297th codon of the PTEN gene.The other 3 kinds of mutation were found in introns,including a G-C point mutation at 91 bp upstream of 5' lateral exon 5(90896 G-C),a T-G point mutation at 24 bp upstream of 5' lateral exon 5 (90963 T-G),and a single base A mutation at 7 bp upstream of 5' lateral exon 5 (90980 A del).The PTEN protein expression in gastric cancer and paracancerous tissues detected using immunohistochemistry technique indicated that the total positive rate of PTEN protein expression was 66% in gastric cancer tissue,which was significantly lower than that (100%) in paracancerous tissues (P<0.005).CONCLUSION: PTEN gene mutation and expression may play an important role in the occurrence and development of gastric cancer.(C)2008 The WJG Press.All rights reserved.

  18. Gene therapy in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Chang-tai; Guo Xue-gang; Pan Bo-rong

    2003-01-01

    @@ 1 Introduction We have reviewed the gene therapy in gastrointestinal diseases[1]. Gastric cancer is common in China[2~20] ,and its early diagnosis andtreatment are still difficult up to now[13~36]. The expression of anexogenous gene introduced by gene therapy into patients with gliomascan be monitored non- invasively by positron- emission tomography[4]. In recent years, gene study in cancer is a hotspot, and great progress hasbeen achieved[33~41].

  19. A functional polymorphism in the NKG2D gene modulates NK-cell cytotoxicity and is associated with susceptibility to Human Papilloma Virus-related cancers.

    Science.gov (United States)

    Espinoza, J Luis; Nguyen, Viet H; Ichimura, Hiroshi; Pham, Trang T T; Nguyen, Cuong H; Pham, Thuc V; Elbadry, Mahmoud I; Yoshioka, Katsuji; Tanaka, Junji; Trung, Ly Q; Takami, Akiyoshi; Nakao, Shinji

    2016-12-20

    Human papillomavirus (HPV) is the most common sexually transmitted agent worldwide and is etiologically linked to several cancers, including cervical and genital cancers. NKG2D, an activating receptor expressed by NK cells, plays an important role in cancer immune-surveillance. We analyzed the impact of a NKG2D gene variant, rs1049174, on the incidence of HPV-related cancers in Vietnamese patients and utilized various molecular approaches to elucidate the mechanisms of NKG2D receptor regulation by rs1049174. In a group of 123 patients with HPV+ anogenital cancers, the low cytotoxicity allele LNK was significantly associated with increased cancer susceptibility (p = 0.016). Similar results were also observed in a group of 153 women with cervical cancer (p = 0.05). In functional studies, NK cells from individuals with LNK genotype showed a lower NKG2D expression and displayed less efficient NKG2D-mediated functions than NK cells with HNK genotype. Notably, the rs1049174 variant occurs within a targeting site for miR-1245, a negative regulator of NKG2D expression. Compared with the higher cytotoxicity allele HNK, the LNK allele was more efficiently targeted by miR-1245 and thus determined lower NKG2D expression in NK cells with the LNK genotype. The NKG2D variants may influence cancer immunosurveillance and thus determine susceptibility to various malignancies, including HPV-induced cancers.

  20. Altered expression of the IQGAP1 gene in human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.E.; Palmisano, W.A.; Lechner, J.F. [and others

    1995-12-01

    IQGAP1 is a GTPase activation protein that accelerates GTP hydrolysis by normal p21 ras proteins. Therefore, IQGAP1 could act as an upstream affector of p21 ras activity by convert in excess amounts of active GTP-21 ras to inactive GDP-21 ras. IQGAP1 displays extensive sequence similarity to the catalytic domain of all previously reported ras GAPs, including the tumor suppressor gene protein neurofibromatosis type 1 (NF1). It has been shown that abnormal NF1 protein cannot negatively regulate the activity of ras proteins in neuroblast cells. This observation supports the hypothesis that NF1 is a tumor suppressor gene whose product acts upstream of ras. IQGAP1 is primarily expressed in lung, where it may play a role similar to NF1 in regulating the activity of H-ras or K-ras proteins. IQGAP1 functions as other GAPs by controlling the activity of ras.

  1. Tetranectin, a plasminogen kringle 4-binding protein. Cloning and gene expression pattern in human colon cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R

    1992-01-01

    BACKGROUND: Tetranectin is a recently discovered protein that binds to kringle 4 region of plasminogen (Clemmensen I, Petersen LC, Kluft C. Eur J Biochem 1986; 156:327. EXPERIMENTAL DESIGN: The mRNA encoding human tetranectin was cloned by using degenerate primers in a reverse transcriptase...... reaction followed by polymerase chain reaction amplification. The resulting polymerase chain reaction product was examined by DNA sequencing and subsequently used as probe for screening a human placental cDNA library. A full length cDNA clone (TET-1) was isolated, characterized, and used for Northern blot...

  2. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Sabine Hagemann

    Full Text Available The DNA methyltransferase inhibitors azacytidine and decitabine represent archetypal drugs for epigenetic cancer therapy. To characterize the demethylating activity of azacytidine and decitabine we treated colon cancer and leukemic cells with both drugs and used array-based DNA methylation analysis of more than 14,000 gene promoters. Additionally, drug-induced demethylation was compared to methylation patterns of isogenic colon cancer cells lacking both DNA methyltransferase 1 (DNMT1 and DNMT3B. We show that drug-induced demethylation patterns are highly specific, non-random and reproducible, indicating targeted remethylation of specific loci after replication. Correspondingly, we found that CG dinucleotides within CG islands became preferentially remethylated, indicating a role for DNA sequence context. We also identified a subset of genes that were never demethylated by drug treatment, either in colon cancer or in leukemic cell lines. These demethylation-resistant genes were enriched for Polycomb Repressive Complex 2 components in embryonic stem cells and for transcription factor binding motifs not present in demethylated genes. Our results provide detailed insights into the DNA methylation patterns induced by azacytidine and decitabine and suggest the involvement of complex regulatory mechanisms in drug-induced DNA demethylation.

  3. Dentin sialophosphoprotein (DSPP gene-silencing inhibits key tumorigenic activities in human oral cancer cell line, OSC2.

    Directory of Open Access Journals (Sweden)

    Rajeshree Joshi

    Full Text Available BACKGROUND: We determined recently that dentin sialophosphoprotein (DSPP, a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins family of phosphoglycoproteins, is highly upregulated in human oral squamous cell carcinomas (OSCCs where upregulation is associated with tumor aggressiveness. To investigate the effects of DSPP-silencing on the tumorigenic profiles of the oral cancer cell line, OSC2, short-hairpin RNA (shRNA interference was employed to silence DSPP in OSC2 cells. METHODOLOGY/PRINCIPAL FINDINGS: Multiple regions of DSPP transcript were targeted for shRNA interference using hDSP-shRNA lentiviral particles designed to silence DSPP gene expression. Control shRNA plasmid encoding a scrambled sequence incapable of degrading any known cellular mRNA was used for negative control. Following puromycin selection of stable lines of DSSP-silenced OSC2 cells, phenotypic hallmarks of oral carcinogenesis were assayed by western blot and RT-PCR analyses, MTT (cell-viability, colony-formation, modified Boyden-Chamber (migration and invasion, and flow cytometry (cell-cycle and apoptosis analyses. DSPP-silenced OSC2 cells showed altered cell morphology, reduced viability, decreased colony-formation ability, decreased migration and invasion, G0/G1 cell-cycle arrest, and increased tumor cell sensitivity to cisplatin-induced apoptosis. Furthermore, MMP-2, MMP-3, MMP-9, VEGF, Ki-67, p53, and EGFR were down-regulated. There was a direct correlation between the degree of DSPP-silencing and MMP suppression, as indicated by least squares regression: MMP-2 {(y = 0.850x, p<0.001 (y = 1.156x, p<0.001}, MMP-3 {(y = 0.994x, p<0.001 (y = 1.324x, p = 0.004}, and MMP-9 {(y = 1.248x, p = 0.005, y = 0.809, p = 0.013}. CONCLUSIONS/SIGNIFICANCE: DSPP-silencing in OSC2 cell decreased salient hallmarks of oral tumorigenesis and provides the first functional evidence of a potential key role for DSPP in oral cancer

  4. Expression of TIMP-3 Gene by Construction of a Eukaryotic Cell Expression Vector and Its Role in Reduction of Metastasis in a Human Breast Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    Xichun Han; Hong Zhang; Mingku Jia; Gang Han; Weidong Jiang

    2004-01-01

    The present study is aimed at studying the gene for TIMP-3, a mammalian tissue inhibitor, by constructing a recombinant eukaryotic cell vector for gene therapy in human breast cancer. We obtained the TIMP-3 gene from the human placent by RT-PCR. TIMP-3 gene was subcloned into pcDNA3.1 vetor from pMD18T vector by means of gene cloning to construct pcDNA3.1 recombinant vector. Human breast cancer cell line MDA-MB-453 was transfected with pcDNA3.1-TIMP3 recombinant vector using lipofectamine reagent. Then the expression of TIMP-3 and the effect on the metastasis of MDA-MB-453 were examined. The correct construction of pcDNA-TIMP3 was identified by means of restriction enzyme analysis, PCR amplication and nucleotide sequencing. Western blotting showed that the transfected cells were able to express TIMP-3,indicating that our construction of the pcDNA-TIMP3 eukaryotic expression vector was constructed successfully. Our experiments further indicated that the potential of metastasis was significantly reduced for the transfected cell line MDA-MB-453.

  5. Expression of TIMP-3 Gene by Construction of a Eukaryotic Cell Expression Vector and Its Role in Reduction of Metastasis in a Human Breast Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    XichunHan; HongZhang; MingkuJia; GangHan; WeidongJiang

    2004-01-01

    The present study is aimed at studying the gene for TIMP-3, a mammalian tissue inhibitor, by constructing a recombinant eukaryotic cell vector for gene therapy in human breast cancer. We obtained the TIMP-3 gene from the human placent by RT-PCR. TIMP-3 gene was subcloned into pcDNA3.1 vetor from pMD18T vector by means of gene cloning to construct pcDNA3.1 recombinant vector. Human breast cancer cell lineMDA-MB-453 was transfected with pcDNA3.1-TIMP3 recombinant vector using lipofectamine reagent. Then the expression of TIMP-3 and the effect on the metastasis of MDA-MB-453 were examined. The correct construction of pcDNA-TIMP3 was identified by means of restriction enzyme analysis, PCR amplication and nucleotide sequencing. Western blotting showed that the transfected cells were able to express TIMP-3, indicating that our construction of the pcDNA-TIMP3 eukaryotic expression vector was constructed successfully. Our experiments further indicated that the potential of metastasis was significantly reduced for the transfected cell line MDA-MB-453. Cellular & Molecular Immunology.

  6. Gene expression of fucosyl- and sialyl-transferases which synthesize sialyl Lewisx, the carbohydrate ligands for E-selectin, in human breast cancer.

    Science.gov (United States)

    Matsuura, N; Narita, T; Hiraiwa, N; Hiraiwa, M; Murai, H; Iwase, T; Funahashi, H; Imai, T; Takagi, H; Kannagi, R

    1998-05-01

    The adhesion of circulating cancer cells to vascular endothelium is an important step in the hematogenous metastasis of cancer. Until recently, it has been believed that carbohydrate antigens are expressed on cancer cells, and E-selectin is expressed on endothelial cells to effect this adhesion. We investigated the gene expression of fucosyl-transferase (Fuc-T) and sialyltransferase (ST), which are involved in the synthesis of sialyl Lewisx (s-Lex) in breast cancer by using Northern blot analysis. The concentration of s-Lex in the cancerous portion was increased, compared to that in the adjacent non-cancerous portion. A correlation was found between the concentration of s-Lex and the amount of Fuc-T VI message in 9 cases of breast cancer tissue. Expression of the Fuc-T III message was found in only one case who expressed s-Lea. No expression of the Fuc-T V or VII message was observed. There was no relationship between the concentration of s-Lex and the amount of ST3N and ST4 transcripts. Similar findings were obtained from an analysis using cell lines derived from human breast cancer. When Fuc-T VI gene was transfected to MCF-7 cells, the expression of s-Lex was markedly induced on MCF-7 cells, and the attachment of cancer cells to endothelial cells was enhanced. These findings suggest that Fuc-T VI is chiefly involved in the synthesis of s-Lex on breast cancer cells.

  7. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  8. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    OpenAIRE

    Shibakura M; Niiya K; Kiguchi T; Nakata Y; Tanimoto M

    2002-01-01

    We previously reported that anthracyclines, which could generate reactive oxygen species (ROS), could induce the urokinase-type plasminogen activator (uPA) gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC) cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT) and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significan...

  9. Conserved Molecular and Epigenetic Determinants of Aromatase Gene Induction by the Herbicide Atrazine in Human and Rat Cellular Models Relevant to Breast Cancer Risk

    OpenAIRE

    2011-01-01

    AbstractConserved Molecular and Epigenetic Determinants of Aromatase Gene Induction by the Herbicide Atrazine in Human and Rat Cellular Models Relevant to Breast Cancer Risk ByTheresa Ryan StueveDoctor of Philosophy in Molecular ToxicologyUniversity of California, BerkeleyProfessor Gary Firestone, Co-ChairProfessor Dale Leitman, Co-ChairFall 2011The widely-applied herbicide atrazine (ATR) is a potent endocrine disruptor that elicits anti-androgenic and estrogenic effects, often at concentrat...

  10. Differential gene expression pattern in human mammary epithelial cells induced by realistic organochlorine mixtures described in healthy women and in women diagnosed with breast cancer.

    Science.gov (United States)

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F

    2016-03-30

    Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis.

  11. Screening for genes associated with ovarian cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    CHANG Xiao-hong; ZHANG Li; YANG Rong; FENG Jie; CHENG Ye-xia; CHENG Hong-yan; YE Xue; FU Tian-yun; CUI Heng

    2009-01-01

    Background Human epithelial ovarian cancer cell line SKOV3.ipl is more invasive and metastatic compared with its parental line SKOV3. A total of 17 000 human genome complementary DNA microarrays were used to compare the gene expression patterns of the two cell lines. Based on this, the gene expression profiles of 22 patients with ovarian cancer were analyzed by cDNA microarray, and screened the 2-fold differentially expressed genes compared with the normal ones. We screened genes relevant to clinical prognosis of serous ovarian cancer by determining the expression profiles of ovarian cancer genes to investigate cell receptor and immunity-associated genes, and as groundwork, identify ovarian cancer-associated antigens at the gene level.Methods Total RNA was extracted from 22 patients with ovarian cancer and DNA microarrays were prepared. After scanning, hybridization signals were collected and the genes that were differentially expressed twice as compared with the normal ones were screened.Results We screened 236 genes relevant to the prognosis of ovarian cancer from the 17 000 human genome cDNA microarrays. According to gene classification, 48 of the 236 genes were cell receptor or immunity-associatad genes,including 2 genes related to the International Federation of Gynecology and Obstetrics (FIGO) stage, 4 genes to histological grade, 18 genes to lymph node metastasis, 11 genes to residual disease, and 13 genes to the reactivity to chemotherapy. Several functionally important genes including fibronectin 1, pericentriolar material 1, beta-2-microglobulin,PPAR binding protein were identified through review of the literature.Conclusions The cDNA microarray of ovarian cancer genes developed in this study was effective and high throughput in screening the ovarian cancer-associated genes differentially expressed. Through the studies of the cell receptor and immunity-associated genes we expect to identify the molecular biology index of ovarian cancer-associated antigens.

  12. Difference in Expression of Bcl-2 and Bcl-xl Genes in Cisplatin- sensitive and Cisplatin-resistant Human in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    于利利; 王泽华

    2004-01-01

    To investigate the expression of Bcl-2 and Bcl-xl gene in sensitive (A2780) and drug-resistance (AD6) human ovarian cancer cell lines and explore the molecular mechanism of multidrug resistance, A2780 and AD6 were detected by using DNA gel electrophoresis, flow cytometry and RT-PCR. Our results showed that (1)"DNA ladder" was observed in A2780 and AD6 after cisplatin treatment; (2) after 3.0, 6.0, 9.9 μg/ml of cisplatin treatment, a significant difference was noted in the rate of apoptosis between in A2780 and AD6 (P<0.05); (3) Bcl-2 and Bcl-xl genes were overexpressed in AD6. After cisplatin treatment, the expression of Bcl-2 and Bcl-xl genes was down-regulated in A2780 and AD6. It is concluded that cisplatin could induce the apoptosis of ovarian cancer cells, and the over-expression of Bcl-2 and Bcl-xl genes may contribute to apoptotic inhibition and the development of multidrug-resistance of human ovarian cancer.

  13. Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics.

    Science.gov (United States)

    Veeriah, Selvaraju; Kautenburger, Tanja; Habermann, Nina; Sauer, Julia; Dietrich, Helmut; Will, Frank; Pool-Zobel, Beatrice Louise

    2006-03-01

    Flavonoids from fruits and vegetables probably reduce risks of diseases associated with oxidative stress, including cancer. Apples contain significant amounts of flavonoids with antioxidative potential. The objectives of this study were to investigate such compounds for properties associated with reduction of cancer risks. We report herein that apple flavonoids from an apple extract (AE) inhibit colon cancer cell growth and significantly modulate expression of genes related to xenobiotic metabolism. HT29 cells were treated with AE at concentrations delivering 5-50 microM of one of the major ingredients, phloridzin ("phloridzin-equivalents," Ph.E), to the cell culture medium, with a synthetic flavonoid mixture mimicking the composition of the AE or with 5-100 microM individual flavonoids. HT29 cell growth was inhibited by the complex extract and by the mixture. HT29 cells were treated with nontoxic doses of the AE (30 microM, Ph.E) and after 24 h total RNA was isolated to elucidate patterns of gene expression using a human cDNA-microarray (SuperArray) spotted with 96 genes of drug metabolism. Treatment with AE resulted in an upregulation of several genes (GSTP1, GSSTT2, MGST2, CYCP4F3, CHST5, CHST6, and CHST7) and downregulation of EPHX1, in comparison to the medium controls. The enhanced transcriptional activity of GSTP1 and GSTT2 genes was confirmed with real-time qRT-PCR. On the basis of the pattern of differential gene expression found here, we conclude that apple flavonoids modulate toxicological defense against colon cancer risk factors. In addition to the inhibition of tumor cell proliferation, this could be a mechanism of cancer risk reduction.

  14. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  15. Growth inhibition of human breast cancer cells and down-regulation of ODC1 and ADA genes by Nepeta binaloudensis

    Directory of Open Access Journals (Sweden)

    Akbar Safipour Afshar

    Full Text Available ABSTRACT Nepeta binaloudensis Jamzad, Lamiaceae, is a rare medicinal plant endemic to Iran. In spite of many studies about the chemical constituents and antibacterial effects of this species, no report has been provided about its cytotoxic and anticancer activities. In this study we have evaluated the effects of EtOH 70%, hexane and aqueous extracts of N. binaloudensis on the cell proliferation and n-hexane extract on the expression of adenosine deaminase and ornithine decarboxylase 1 genes in breast cancer cell lines (MCF-7, MDA-MB-231 compared to non-cancer line (MCF-10A. The cell lines were subjected to increasing doses of the extracts ranging from 10 to 320 µg/ml. Cell viability was quantified by MTS assay. Expression of adenosine deaminase and ornithine decarboxylase 1 genes was analyzed by real time PCR. N. binaloudensis inhibited the growth of malignant cells in a time and dose-dependent manner. Among extracts of N. binaloudensis, the hexane extract was found to be more toxic compared to other extracts. Results showed a marked decrease in the expression of ornithine decarboxylase 1 and adenosine deaminase genes in cancer cell lines. At 60 µg/ml concentration of N. binaloudensis hexane extract ornithine decarboxylase 1 and adenosine deaminase mRNA expression were reduced 4.9 fold and 3.5 fold in MCF-7 cell line and 3.6 fold and 2.6 fold in MDA-MB-231 cell line compared to control, respectively. The result of our study highlights the potential influences of N. binaloudensis hexane extract on ornithine decarboxylase 1 and adenosine deaminase genes expression in breast cancer cells and its relation to inhibition of cancer cell growth.

  16. Selenium is critical for cancer-signaling gene expression but not cell proliferation in human colon Caco-2 cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H

    2007-01-01

    Selenium (Se) is a potential anticarcinogenic nutrient, and the essential role of Se in cell growth is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. To understand the molecular basis of Se-anticancer effects at nutritional doses (nmol/L) for cultured cells, we generated Se-deficient colon Caco-2 cells by gradually reducing serum in media because serum contains a trace amount of Se. The glutathione peroxidase (GPx) activity of Se-deficient Caco-2 cells was 10.8 mU/mg protein compared to 133.6 approximately 146.3 mU/mg protein in Caco-2 cells supplemented with 500 nmol/L selenite, SeMSC or SeMet (three tested Se-chemical forms) after 7-d culture in serum free media. Interestingly, there were no detectable differences in cell growth, cell cycle progression between Se-deficient cells and cells supplemented with 500 nmol/L Se. To examine differential cancer signaling-gene expression between Se-deficient and Se-supplemented cells, we employed a cancer signal pathway-specific array assay coupled with the real time PCR analysis. Our data demonstrate that although Caco-2 cells are resistant to Se deprivation, Se may exert its anticancer property through increasing the expression of humoral defense gene (A2M) and tumor suppressor-related genes (IGFBP3, HHIP) while decreasing pro-inflammatory gene (CXC L9, HSPB2) expression.

  17. Gene Expression Profiling of Gastric Cancer

    Science.gov (United States)

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  18. Effects of Chinese Jianpi herbs on cell apoptosis and related gene expression in human gastric cancer grafted onto nude mice

    Institute of Scientific and Technical Information of China (English)

    Ai-Guang Zhao; Hai-Lei Zhao; Xiao-Jie Jin; Jin-Kun Yang; Lai-Di Tang

    2002-01-01

    AIM: To explore the mechanism of the Sijunzi decoction and another Chinese herbal recipe (SRRS) based mainly on the Sijunzi decoction in treatment of gastric cancer.METHODS: A human gastric adenocarcinoma cell line SGC7901 grafted onto nude mouse was used as the animal model. The mice were divided into 3 groups, one control and the two representative experimental conditions. Ahimals in the two experimental groups received either Sijunzi decoction or SRRS over a 40-day period starting at 1st day after grafting. Control animals received saline on an identical schedule. Animals were killed 41 days after being grafted.The effect of therapy was assessed by two ways: (1)tumor size was periodically measured during the life of the animals; (2) tumor weight was determined by a electron balance immediately after the animals killed. For detection of apoptotic cells, apoptotic indices(AI) were examined by the terminal deoxynucleotidyl transferase-mediated deoxyuddine tdphosphate fluorescence nick end labeling (TUNEL) method.Morphological alterations were observed with electron microscopy. S-P immunohistochemical method was used to detect the expression of Ki-67 in xenografts. Expression of bcl-2 and p53 was semiquantitatively detected using a reverse transcriptase-polymerase chain reaction (RT-PCR)technique.RESULTS: When compared with controls, tumor growth (size and weight) was significantly inhibited by treatment with the Sijunzi decoction (P<0.05) or SRRS (P<0.01). The tumor inhibitory rate in the Sijunzi decoction group was 34.33 % and SRRS group 46.53 %. AI of human gastric cancer xenografts in nude mice was significantly increased to 16.24±3.21% using TUNEL method and 11.38±6.46 % by FACScan in the Sijunzi decoction group compared with the controls (TUNEL: 2.63±1.03 %, P<0.01; FACScan: 7.15± 1.32 %, P<0.05). SRRS group was also found a significantly increased AI by using TUNEL method and flow cytometry analysis compared with the controls (TUNEL: 13.18±3

  19. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells.

    Science.gov (United States)

    Dai, Can; Miao, Cong-Xiu; Xu, Xiao-Ming; Liu, Lv-Jun; Gu, Yi-Fan; Zhou, Di; Chen, Lian-Sheng; Lin, Ge; Lu, Guang-Xiu

    2015-09-11

    The cell division cycle associated 8 (CDCA8) gene plays an important role in mitosis. Overexpression of CDCA8 was reported in some human cancers and is required for cancer growth and progression. We found CDCA8 expression was also high in human ES cells (hESCs) but dropped significantly upon hESC differentiation. However, the regulation of CDCA8 expression has not yet been studied. Here, we characterized the CDCA8 promoter and identified its cis-elements and transcription factors. Three transcription start sites were identified. Reporter gene assays revealed that the CDCA8 promoter was activated in hESCs and cancer cell lines. The promoter drove the reporter expression specifically to pluripotent cells during early mouse embryo development and to tumor tissues in tumor-bearing mice. These results indicate that CDCA8 is transcriptionally activated in hESCs and cancer cells. Mechanistically, two key activation elements, bound by transcription factor NF-Y and CREB1, respectively, were identified in the CDCA8 basic promoter by mutation analyses and electrophoretic motility shift assays. NF-Y binding is positively correlated with promoter activities in different cell types. Interestingly, the NF-YA subunit, binding to the promoter, is primarily a short isoform in hESCs and a long isoform in cancer cells, indicating a different activation mechanism of the CDCA8 transcription between hESCs and cancer cells. Finally, enhanced CDCA8 promoter activities by NF-Y overexpression and reduced CDCA8 transcription by NF-Y knockdown further verified that NF-Y is a positive regulator of CDCA8 transcription. Our study unearths the molecular mechanisms underlying the activation of CDCA8 expression in hESCs and cancer cells, which provides a better understanding of its biological functions.

  20. Expression of telomerase hTERT in human non-small cell lung cancer and its correlation with c-myc gene

    Institute of Scientific and Technical Information of China (English)

    耿志华; 张敦华; 刘银坤

    2003-01-01

    Objective To investigate the expression of human telomerase catalytic subunit, hTERT, in human non-small cell lung cancer (NSCLC) and its correlations to c-myc gene.Methods hTERT and c-myc mRNA expressions were detected by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Statistical correlation analysis was made to estimate whether there was interrelation between them.Results Positive rate of hTERT expression in 51 surgically resected lung cancer specimens was 86.3%, significantly higher than that in adjacent non-neoplastic lung tissues and benign lesions, which were 14.3% and 27.3% respectively. No statistical significance was observed between the frequency of hTERT expression and histologic types, degree of differentiation, TNM stages, tumor size or lymph nodes metastases. Correlation analysis revealed that the expression of c-myc gene was significantly related to that of hTERT (correlation coefficient, r=0.633, P<0.001).Conclusions hTERT may be a useful tumor marker in diagnosing lung cancer. Significant correlation between the expression of hTERT and c-myc mRNA indicates that the activation and up-regulation of hTERT might be conferred by over-expression of c-myc gene.

  1. Epigenetic modification regulates both expression of tumor-associated genes and cell cycle progressing in human colon cancer cell lines:Colo-320 and SW1116

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan FANG; Ying Xuan CHEN; Juan LU; Rong LU; Li YANG; Hong Yin ZHU; Wei Qi GU; Lun Gen LU

    2004-01-01

    The aim of this study is to assess the effects of DNA methylation and histone acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methylation-specific PCR, and the acetylated status of the histones associated with the p21wAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry.We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21 WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73,c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.

  2. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  3. Discovering cancer genes by integrating network and functional properties

    Directory of Open Access Journals (Sweden)

    Davis David P

    2009-09-01

    Full Text Available Abstract Background Identification of novel cancer-causing genes is one of the main goals in cancer research. The rapid accumulation of genome-wide protein-protein interaction (PPI data in humans has provided a new basis for studying the topological features of cancer genes in cellular networks. It is important to integrate multiple genomic data sources, including PPI networks, protein domains and Gene Ontology (GO annotations, to facilitate the identification of cancer genes. Methods Topological features of the PPI network, as well as protein domain compositions, enrichment of gene ontology categories, sequence and evolutionary conservation features were extracted and compared between cancer genes and other genes. The predictive power of various classifiers for identification of cancer genes was evaluated by cross validation. Experimental validation of a subset of the prediction results was conducted using siRNA knockdown and viability assays in human colon cancer cell line DLD-1. Results Cross validation demonstrated advantageous performance of classifiers based on support vector machines (SVMs with the inclusion of the topological features from the PPI network, protein domain compositions and GO annotations. We then applied the trained SVM classifier to human genes to prioritize putative cancer genes. siRNA knock-down of several SVM predicted cancer genes displayed greatly reduced cell viability in human colon cancer cell line DLD-1. Conclusion Topological features of PPI networks, protein domain compositions and GO annotations are good predictors of cancer genes. The SVM classifier integrates multiple features and as such is useful for prioritizing candidate cancer genes for experimental validations.

  4. Benzo[a]pyrene, aflatoxine B₁ and acetaldehyde mutational patterns in TP53 gene using a functional assay: relevance to human cancer aetiology.

    Directory of Open Access Journals (Sweden)

    Vincent Paget

    Full Text Available Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B(1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY, the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B(1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers.

  5. HCSD: the human cancer secretome database

    Science.gov (United States)

    Feizi, Amir; Banaei-Esfahani, Amir; Nielsen, Jens

    2015-01-01

    The human cancer secretome database (HCSD) is a comprehensive database for human cancer secretome data. The cancer secretome describes proteins secreted by cancer cells and structuring information about the cancer secretome will enable further analysis of how this is related with tumor biology. The secreted proteins from cancer cells are believed to play a deterministic role in cancer progression and therefore may be the key to find novel therapeutic targets and biomarkers for many cancers. Consequently, huge data on cancer secretome have been generated in recent years and the lack of a coherent database is limiting the ability to query the increasing community knowledge. We therefore developed the Human Cancer Secretome Database (HCSD) to fulfil this gap. HCSD contains >80 000 measurements for about 7000 nonredundant human proteins collected from up to 35 high-throughput studies on 17 cancer types. It has a simple and user friendly query system for basic and advanced search based on gene name, cancer type and data type as the three main query options. The results are visualized in an explicit and interactive manner. An example of a result page includes annotations, cross references, cancer secretome data and secretory features for each identified protein. Database URL: www.cancersecretome.org. PMID:26078477

  6. Expression profile of the N-myc Downstream Regulated Gene 2 (NDRG2 in human cancers with focus on breast cancer

    Directory of Open Access Journals (Sweden)

    Vogel Lotte K

    2011-01-01

    Full Text Available Abstract Background Several studies have shown that NDRG2 mRNA is down-regulated or undetectable in various human cancers and cancer cell-lines. Although the function of NDRG2 is currently unknown, high NDRG2 expression correlates with improved prognosis in high-grade gliomas, gastric cancer and hepatocellular carcinomas. Furthermore, in vitro studies have revealed that over-expression of NDRG2 in cell-lines causes a significant reduction in their growth. The aim of this study was to examine levels of NDRG2 mRNA in several human cancers, with focus on breast cancer, by examining affected and normal tissue. Methods By labelling a human Cancer Profiling Array with a radioactive probe against NDRG2, we evaluated the level of NDRG2 mRNA in 154 paired normal and tumor samples encompassing 19 different human cancers. Furthermore, we used quantitative real-time RT-PCR to quantify the levels of NDRG2 and MYC mRNA in thyroid gland cancer and breast cancer, using a distinct set of normal and tumor samples. Results From the Cancer Profiling Array, we saw that the level of NDRG2 mRNA was reduced by at least 2-fold in almost a third of the tumor samples, compared to the normal counterpart, and we observed a marked decreased level in colon, cervix, thyroid gland and testis. However, a Benjamini-Hochberg correction showed that none of the tissues showed a significant reduction in NDRG2 mRNA expression in tumor tissue compared to normal tissue. Using quantitative RT-PCR, we observed a significant reduction in the level of NDRG2 mRNA in a distinct set of tumor samples from both thyroid gland cancer (p = 0.02 and breast cancer (p = 0.004, compared with normal tissue. MYC mRNA was not significantly altered in breast cancer or in thyroid gland cancer, compared with normal tissue. In thyroid gland, no correlation was found between MYC and NDRG2 mRNA levels, but in breast tissue we found a weakly significant correlation with a positive r-value in both normal and

  7. Effect of transfection with human interferon-beta gene entrapped in cationic multilamellar liposomes in combination with 5-fluorouracil on the growth of human esophageal cancer cells in vitro.

    Science.gov (United States)

    Tsunoo, Hideo; Komura, Sadaaki; Ohishi, Nobuko; Yajima, Haruyoshi; Akiyama, Seiji; Kasai, Yasushi; Ito, Katsuki; Nakao, Akimasa; Yagi, Kunio

    2002-01-01

    When human esophageal cancer cells were transfected with the human interferon-beta (hIFN-beta) gene entrapped in cationic multilamellar liposomes, the growth of all cancer cells tested was suppressed in a dose-dependent manner. The 50% inhibitory concentration (IC50) of the hIFN-beta gene entrapped in the liposomes ranged from 16 to 176 ng plasmid DNA/ml culture medium. Among the 10 cell lines examined, NUEC3, NUEC4, TE-3 and WSSC cell lines were highly susceptible to transfection with this gene entrapped in the liposomes. The IC50 values of the hIFN-beta gene entrapped in the liposomes with respect to cell growth were positively-correlated with those of exogenous cytokine hIFN-beta, suggesting that the antiproliferative effect of hIFN-beta gene entrapped in the liposomes can be mainly ascribed to the function of hIFN-beta produced by cells transfected with the gene. Two days after transfection with the liposome-entrapped gene, the concentration of hIFN-beta secreted into the medium was determined. Even though the level of hIFN-beta observed in the medium was lower than that of the IC50 of exogenously added hIFN-beta, the inhibitory potency of the hIFN-beta gene entrapped in the liposomes on the cell growth was remarkable. When the esophageal cancer cells were treated with 5-fluorouracil (5-FU) in the presence of a low concentration of liposome-entrapped-gene, the rate of growth inhibition of these cells increased over that caused by either 5-FU or hIFN-beta gene entrapped in the liposomes alone. All these data suggest that combination therapy with the hIFN-beta gene entrapped in cationic multilamellar liposomes and the anticancer drug 5-FU would be beneficial for preoperative treatment of carcinoma of the esophagus.

  8. Hexane extract of Raphanus sativus L. roots inhibits cell proliferation and induces apoptosis in human cancer cells by modulating genes related to apoptotic pathway.

    Science.gov (United States)

    Beevi, Syed Sultan; Mangamoori, Lakshmi Narasu; Subathra, Murugan; Edula, Jyotheeswara Reddy

    2010-09-01

    Raphanus sativus, a common cruciferous vegetable has been attributed to possess a number of pharmacological and therapeutic properties. It has been used in indigenous system of medicine for the treatment of various human ailments in India. This present study evaluated the chemopreventive efficacy of different parts of R. sativus such as root, stem and leaves, extracted with solvents of varying polarity and investigated the molecular mechanism leading to growth arrest and apoptotic cell death in human cancer cell lines. Of the different parts, significant growth inhibitory effect was observed with hexane extract of R. sativus root. Analysis of hexane extract by GC-MS revealed the presence of several isothiocyanates (ITCs) such as 4-(methylthio)-3-butenyl isothiocyanate (MTBITC), 4-(methylthio)-3-butyl isothiocyanate (erucin), 4-methylpentyl isothiocyanate, 4-pentenyl isothiocyanate and sulforaphene. R. sativus root extract induced cell death both in p53 proficient and p53 deficient cell lines through induction of apoptotic signaling pathway regardless of the p53 status of cells. The molecular mechanisms underlying R. sativus-induced apoptosis may involve interactions among Bcl(2) family genes, as evidenced by up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic genes along with activation of Caspase-3. Our findings present the first evidence that hexane extract of R. sativus root exerts potential chemopreventive efficacy and induces apoptosis in cancer cell lines through modulation of genes involved in apoptotic signaling pathway.

  9. Transfer of p14ARF gene in drug-resistant human breast cancer MCF-7/Adr cells inhibits proliferation and reduces doxorubicin resistance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To elucidate the effect of p14ARF gene on multidrug-resistant tumor cells. Methods: We transferred a p14ARF cDNA into p53-mutated MCF-7/Adr human breast cancer cells. Results: In this report we demonstrated for the first time that p14ARF expression was able to greatly inhibit the MCF-7/Adr cell proliferation. Furthermore, p14ARF expression resulted in decreases in MDR1 mRNA and P-glycoprotein production, which linked with the reducing resistance of MCF-7/Adr cells to doxorubicin. Conclusion: These results imply that drug resistance might be effectively reversed with the wild-type p14ARF expression in human breast cancer cells.

  10. [Effect of HIF-1α Gene Silence on Biological Characteristics of Human Colon Cancer Cells SW480].

    Science.gov (United States)

    Wang, Qiang; Hao, Lang-song; Shi, Jia; Huang, Jian

    2015-07-01

    To investigate changes in proliferation and apoptosis of human colon cancer SW480 cells after silencing hypoxia inducible factor-lα (HIF-1α) expression. siRNA interference technology was performed to silence the expression of HIF-1α using lipofectamine mediation to transfect siRNA into human colon cancer SW480 cells. The siRNA interfered SW480 cells were compared with a negative control group, an empty vector group, and a blank control group. Real-time PCR and Western blot were used to measure the expressions of HIF-lα protein and mRNA. MTT and flow cytometry (FCM) were used to evaluate the apoptosis and proliferation of SW480 cells. The interfered SW480 cells had a higher level of silence of HIF-lα mRNA (> 80%) compared with those of in the three control groups (P silencing promotes apoptosis and inhibits the proliferation of SW480 cells in vitro.

  11. High-Resolution Analysis of Gene Copy Number Alterations in Human Prostate Cancer Using CGH on cDNA Microarrays: Impact of Copy Number on Gene Expression

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2004-05-01

    Full Text Available Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classical chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28 and loss (18 were found, their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13% and gains at iq and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, 74-76 Mbp from the p-telomere, which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, 17q (losses, at 3q, 5p, 6p (gains. Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P < .0001 overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.

  12. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  13. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2013-02-01

    Full Text Available Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentration of cyclodextrin-curcumin and free curcumin. Telomerase gene expression level in two groups was compared by Real-time PCR. Results: MTT assay demonstrated that β-cyclodextrin-curcumin enhanced curcumin delivery in T47D breast cancer cells. The level of telomerase gene expression in cells treated with cyclodextrin-curcumin was lower than that of cells treated with free curcumin (P=0.001. Conclusion: Results are suggesting that cyclodextrin-curcumin complex can be more effective than free curcumin in inhibition of telomerase expression.

  14. 3p21.3 tumor suppressor gene RBM5 inhibits growth of human prostate cancer PC-3 cells through apoptosis

    Directory of Open Access Journals (Sweden)

    Zhao Lijing

    2012-11-01

    Full Text Available Abstract Background Recent studies have indicated that the nuclear RNA-binding protein RBM5 has the ability to modulate apoptosis and suppress tumor growth. The aim of this study is to investigate the expression of RBM5 in human prostate cancer and its mechanism of tumor suppression. Methods The expression of RBM5 protein in cancerous prostatic tissues and normal tissues was examined by IHC. PC-3 cell line was used to determine the apoptotic function of RBM5 in vitro. PC-3 cells were transiently transfected with pcDNA3.1-RBM5. Cell viability was determined by MTT assay. Rhodamine 123 staining and Annexin V analysis were performed to observe the apoptotic activity of PC-3 cells overexpressing RBM5. Expression of apoptosis-related genes was assessed by western blot. Results The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues compared to the normal tissues. PC-3 cells overexpressing RBM5 showed not only significant growth inhibition compared with the vector controls, but also dysfunction of mitochondrial membrane potential and increased apoptotic activity. To further define RBM5 function in apoptotic pathways, we investigated differential expression profiles of various BH3-only proteins including Bid, Bad, and Bim, and apoptosis regulatory proteins include P53, cleaved caspase9, and cleaved caspase3. We found that the expression of both BH3-only proteins and apoptosis regulatory proteins was increased in RBM5 transfected cells. Conclusion The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues, which suggests that RBM5 plays an important role in the pathogenesis of prostate cancer. RBM5 may induce the apoptosis of prostate cancer PC-3 cells by modulating the mitochondrial apoptotic pathway, and thus RBM5 might be a promising target for gene therapy on prostate cancer.

  15. Human Viruses and Cancer

    Directory of Open Access Journals (Sweden)

    Abigail Morales-Sánchez

    2014-10-01

    Full Text Available The first human tumor virus was discovered in the middle of the last century by Anthony Epstein, Bert Achong and Yvonne Barr in African pediatric patients with Burkitt’s lymphoma. To date, seven viruses -EBV, KSHV, high-risk HPV, MCPV, HBV, HCV and HTLV1- have been consistently linked to different types of human cancer, and infections are estimated to account for up to 20% of all cancer cases worldwide. Viral oncogenic mechanisms generally include: generation of genomic instability, increase in the rate of cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms and cell polarity changes, which often coexist with evasion mechanisms of the antiviral immune response. Viral agents also indirectly contribute to the development of cancer mainly through immunosuppression or chronic inflammation, but also through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant properties of an established tumor. In the present work, causation criteria for viruses and cancer will be described, as well as the viral agents that comply with these criteria in human tumors, their epidemiological and biological characteristics, the molecular mechanisms by which they induce cellular transformation and their associated cancers.

  16. DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells.

    Science.gov (United States)

    Yugawa, Takashi; Narisawa-Saito, Mako; Yoshimatsu, Yuki; Haga, Kei; Ohno, Shin-ichi; Egawa, Nagayasu; Fujita, Masatoshi; Kiyono, Tohru

    2010-05-15

    The p53 family member p63 is a master regulator of epithelial development. One of its isoforms, DeltaNp63alpha, is predominantly expressed in the basal cells of stratified epithelia and plays a fundamental role in control of regenerative potential and epithelial integrity. In contrast to p53, p63 is rarely mutated in human cancers, but it is frequently overexpressed in squamous cell carcinomas (SCC). However, its functional relevance to tumorigenesis remains largely unclear. We previously identified the Notch1 gene as a novel transcriptional target of p53. Here, we show that DeltaNp63alpha functions as a transcriptional repressor of the Notch1 gene through the p53-responsive element. Knockdown of p63 caused upregulation of Notch1 expression and marked reduction in proliferation and clonogenicity of both normal human keratinocytes and cervical cancer cell lines overexpressing DeltaNp63alpha. Concomitant silencing of Notch1 significantly rescued this phenotype, indicating the growth defect induced by p63 deficiency to be, at least in part, attributable to Notch1 function. Conversely, overexpression of DeltaNp63alpha decreased basal levels of Notch1, increased proliferative potential of normal human keratinocytes, and inhibited both p53-dependent and p53-independent induction of Notch1 and differentiation markers upon genotoxic stress and serum exposure, respectively. These results suggest that DeltaNp63alpha maintains the self-renewing capacity of normal human keratinocytes and cervical cancer cells partly through transcriptional repression of the Notch1 gene and imply a novel pathogenetical significance of frequently observed overexpression of DeltaNp63alpha together with p53 inactivation in SCCs.

  17. HCSD: the human cancer secretome database

    DEFF Research Database (Denmark)

    Feizi, Amir; Banaei-Esfahani, Amir; Nielsen, Jens

    2015-01-01

    database is limiting the ability to query the increasing community knowledge. We therefore developed the Human Cancer Secretome Database (HCSD) to fulfil this gap. HCSD contains >80 000 measurements for about 7000 nonredundant human proteins collected from up to 35 high-throughput studies on 17 cancer...... types. It has a simple and user friendly query system for basic and advanced search based on gene name, cancer type and data type as the three main query options. The results are visualized in an explicit and interactive manner. An example of a result page includes annotations, cross references, cancer...

  18. Human papillomaviruses and cancer.

    Science.gov (United States)

    Haedicke, Juliane; Iftner, Thomas

    2013-09-01

    Human papillomaviruses (HPV) are small oncogenic DNA viruses of which more than 200 types have been identified to date. A small subset of these is etiologically linked to the development of anogenital malignancies such as cervical cancer. In addition, recent studies established a causative relationship between these high-risk HPV types and tonsillar and oropharyngeal cancer. Clinical management of cervical cancer and head and neck squamous cell carcinomas (HNSCCs) is largely standardized and involves surgical removal of the tumor tissue as well as adjuvant chemoradiation therapy. Notably, the response to therapeutic intervention of HPV-positive HNSCCs has been found to be better as compared to HPV-negative tumors. Although the existing HPV vaccine is solely licensed for the prevention of cervical cancer, it might also have prophylactic potential for the development of high-risk HPV-associated HNSCCs. Another group of viruses, which belongs to the beta-HPV subgroup, has been implicated in nonmelanoma skin cancer, however, the etiology remains to be established. Treatment of HPV-induced nonmelanoma skin cancer is based on local excision. However, topically applied immune-modulating substances represent non-surgical alternatives for the management of smaller cutaneous tumors. In this review we present the current knowledge of the role of HPV in cancer development and discuss clinical management options as well as targets for the development of future intervention therapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Introduction: Cancer Gene Networks.

    Science.gov (United States)

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  20. HE4 Gene Overexpression in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    A Shahi

    2016-03-01

    Full Text Available Introduction: Ovarian cancer is one of the common malignancies within women and the fifth cause of cancer death in women all over the world. Recent developments in Genomics and Proteomics technologies have led to the identification of unknown candidate markers for the diagnosis of ovarian cancer. Human epididymis protein 4 (HE4 has recently been supported to monitor the recurrence or the progression of epithelial ovarian cancer. Therefore, this study aimed to measure the expression of HE4 in women suffering from ovarian cancer. Methods: In this study, 20 paraffin-embedded tissue samples from women with ovarian cancer and 10 normal samples were collected from Imam Khomeini Hospital in Tehran. After removing paraffin, RNA extraction was performed with RNAPlus solution. cDNA was synthesized through reverse transcription by MMULV enzyme. Gene expression was measured by Relative Real time PCR method. Glyceraldehyde phosphate dehydrogenase gene (GAPDH was used as an internal control. Results: The HE4 was expressed in normal and cancerous tissues, though its expression was observed more in tumor tissues (4.083 than noncancerous tissues. The study results also revealed that the expression level of HE4 increased with the advancement of the disease. Conclusion: According to the results, it can be concluded that HE4 expression levels greatly increases in tumor samples. Therefore, HE4 gene expression measurements can serve as a valuable prognostic factor for early detection and treatment management of the disease.

  1. Reversion of malignancy in human gastric cancer MKN—45 cells through the transfection of transforming growth factor—β type Ⅱ receptor gene

    Institute of Scientific and Technical Information of China (English)

    SUNHONG; WEIKANGSHI; 等

    1996-01-01

    Human gastric cancer MKN-45 cells which are resistant to TGF-β growth inhibition and possess TGF-β type I and type Ⅲ receptors,but not type Ⅱ receptors,have been used as a model system to reconstitute these cancer cells with TGF-β RII cDNA.The results of these experiments indicated that the reexpression of TGF-β RII gene in MKN-45 cells can restore their sensitivity to TGF-β growth inhibition,decrease their growth rate,reduce their cloning efficiency in soft agar and tumorigenicity in nude mice in stable transfectants,in comparison with their control MKN-45 cells.Among different RII transfectants,their difference in the changes of these parameters,as a result of the regain of autocrine negative growth control by TGF-β,is roughly proportional to their level of expression of transfected RII mRNA.From these data,it is concluded that the inactivation of TGF-β RII gene is related to the escape of growth control by TGF-β in MKN-45 cells.The importance of the study of the interplay of TGF-β and its receptor system in the negative growth control of gastric cancer,and possibly also of other cancers,is discussed.

  2. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  3. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

    Science.gov (United States)

    Aumsuwan, Pranapda; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Dasmahapatra, Asok K

    2016-09-01

    Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧1. Among these genes, 2439 genes were upregulated and 2002 were downregulated. DS exposure (2.30 μM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference when compared with the untreated cells (pMB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 were down-regulated. Regarding to PEA, 12 canonical pathways were significantly altered between these two cell lines. However, there was no alteration in any of these pathways in MCF-7 cells, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, we identified the shared DEG, which were targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, by intersection analysis (Venn diagram). We found that 7 DEG were overlapped of which six are reported in the database. This data highlight the diverse gene networks and pathways in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

  4. Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Rønnov-Jessen, Lone; Villadsen, René

    2002-01-01

    reading frame (ORF) encoding a putative 307-amino-acid protein, and mapped to chromosome 13q13.3. EPSTI1 was highly upregulated in invasive breast carcinomas compared with normal breast. In a tissue mRNA panel the most prominent expression of EPSTI1 was found in placenta. Thus, EPSTI1 is a novel human...... (DD), a transcript representing a novel gene, designated epithelial-stromal interaction 1 (breast) (EPSTI1), was identified. EPSTI1 showed no homology to any known gene, but matched a cluster of expressed-sequence tags (ESTs). The full-length cDNA of 1508 bp was generated by 5'-RACE, included an open...

  5. [Effects of 5-Aza-2'-deoxycytidine and trichostatin A on P16, hMLH1 and MGMT genes and DNA methylation in human gastric cancer cells].

    Science.gov (United States)

    Meng, Chun-feng; Zhu, Xin-jiang; Dai, Dong-qiu; Peng, Guo

    2009-09-01

    To investigate the effects of 5-Aza-2'-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) on DNA methylation and expression of P16, hMLH1 and MGMT genes in the human gastric cancer cell line MGC-803, and to explore the mechanism of P16, hMLH1 and MGMT gene silencing in human gastric cancer cells. MGC-803 cells were cultured in RPMI-1640 medium and were treated with 5-Aza-dC or TSA. Methylation-specific polymerase chain reaction (MS-PCR) was used to detect the promoter methylation status of P16, hMLH1 and MGMT genes. RT-PCR was used to detect the mRNA expressions of P16, hMLH1 and MGMT. Promoter hypermethylation of P16, hMLH1 and MGMT genes were detected in MGC-803 cells, and mRNA expressions of P16, hMLH1 and MGMT were absent before treatment. After treatment with 5-Aza-dC, the promoter region of the P16, hMLH1 and MGMT gene exhibited a demethylation status, and their mRNA expressions were increased. The treatment with TSA had no effects on DNA demethylation or restoration of P16 or hMLH1 expression. P16, hMLH1 and MGMT mRNA relative expression levels after treatment with a combination of 5-Aza-dC and TSA were 0.412+/-0.030, 0.397+/-0.024 and 0.553+/-0.043 respectively, which were higher than those after 5-Aza-dC treatment alone (0.221+/-0.022, 0.214+/-0.018 and 0.156+/-0.017, all Pmechanism of P16, hMLH1 and MGMT gene silencing in human gastric cancer cells. Treatment with 5-Aza-dC alone or the combination of 5-Aza-dC and TSA can reactivate the expressions of these genes.

  6. Relationship between cervical cancer and human telomerase gene%宫颈癌与人端粒酶基因关系的研究

    Institute of Scientific and Technical Information of China (English)

    李亚波; 王卓; 杨红英

    2013-01-01

    Objective: To explore the correlation between cervical cancer and the expression of human telomerase RNA component (TERC) gene and evaluate the significance of detecting TERC gene expression by fluorescence in situ hybridization (FISH) technique for predicting the progress from cervical intraepithelial neoplasia (CIN) to cervical cancer. Methods; TERC gene expression was detected by the method of FISH in uterine epithelial exfoliated cells from 81 patients including 20 patients in normal group, 28 patients in CIN1 group, 12 patients in CIN2 group, 9 patients in CIN3 group, and 12 patients in cervical cancer group. The correlation between cervical cancer and TERC gene was analyzed. Results: The positive rate of TERC gene test in normal group was significant lower than CIN1 group, CIN2 group (P0. 05) . There was also significant difference between CIN3 group and cervical cancer group (P<0. 05) . The higher malignant degree was, the more significant difference would be (P<0. 01) . Conclusions: The abnormal expression of TERC gene is closely related with the process of cervical cancer. The FISH technique for detecting TERC gene may be an effective method for helping to diagnose early cervical cancer.%目的 通过研究宫颈癌人端粒酶基因(Human telomerase RNA component gene,TERC gene)的表达情况,探讨宫颈癌与TERC基因异常表达的相关性,评估荧光原位杂交(Fluorescence in situ hybridization,FISH)技术检测TERC基因的表达对子宫颈上皮内瘤样病变(Cervical intraepithelial neoplasia,CIN)发展到宫颈癌的预测价值. 方法 采用FISH技术进行子宫颈上皮脱落细胞TERC基因的检测,实验对象81例,病理活检正常组20例,CIN1组28例,CIN2组12例,CIN3组9例,宫颈癌组1 2例.并进行宫颈癌与TERC基因相关性分析. 结果 在CIN1组、CIN2组、CIN3组和宫颈癌组中,TERC基因的表达均显著高于正常组(P<0.05);CIN1组和CIN2组之间无显著差异(P>0.05);CIN3组

  7. Distinct phenotypes of human prostate cancer cells associate with different adaptation to hypoxia and pro-inflammatory gene expression.

    Directory of Open Access Journals (Sweden)

    Linda Ravenna

    Full Text Available Hypoxia and inflammation are strictly interconnected both concurring to prostate cancer progression. Numerous reports highlight the role of tumor cells in the synthesis of pro-inflammatory molecules and show that hypoxia can modulate a number of these genes contributing substantially to the increase of cancer aggressiveness. However, little is known about the importance of the tumor phenotype in this process. The present study explores how different features, including differentiation and aggressiveness, of prostate tumor cell lines impact on the hypoxic remodeling of pro-inflammatory gene expression and malignancy. We performed our studies on three cell lines with increasing metastatic potential: the well differentiated androgen-dependent LNCaP and the less differentiated and androgen-independent DU145 and PC3. We analyzed the effect that hypoxic treatment has on modulating pro-inflammatory gene expression and evaluated the role HIF isoforms and NF-kB play in sustaining this process. DU145 and PC3 cells evidenced a higher normoxic expression and a more complete hypoxic induction of pro-inflammatory molecules compared to the well differentiated LNCaP cell line. The role of HIF1α and NF-kB, the master regulators of hypoxia and inflammation respectively, in sustaining the hypoxic pro-inflammatory phenotype was different according to cell type. NF-kB was observed to play a main role in DU145 and PC3 cells in which treatment with the NF-kB inhibitor parthenolide was able to counteract both the hypoxic pro-inflammatory shift and HIF1α activation but not in LNCaP cells. Our data highlight that tumor prostate cell phenotype contributes at a different degree and with different mechanisms to the hypoxic pro-inflammatory gene expression related to tumor progression.

  8. EFFECT OF TNF-( AND IFN-( ON THE EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE AND PROLIFERATION INHIBITION OF HUMAN COLON CANCER CELL LINE

    Institute of Scientific and Technical Information of China (English)

    庞希宁; 王芸庆; 宋今丹

    2002-01-01

    Objective: To study the expression of the inducible nitric oxide synthase (iNOS) gene and the effects of tumor necrosis factor-α(TNF-α) and interferon-γ(IFN-γ)on proliferation of the continuous cultured human colon cancer cell line CCL229. Methods: Using the molecular and biochemical techniques and electron microscopy to analyze the expression of iNOS, production of NO and growth characteristics of human colon cancer cells. Results: cytokine treatment can induce expression of the iNOS gene and production of nitric oxide was significantly higher after treatment of CCL229 cells with TNF-αor IFN-γ. Treatment with either cytokine or a combination of both significantly increased levels of Malondialdehyde (MDA) over control. Furthermore, cytokine treatment increased the proliferation inhibition rate as assessed in vitro and decreased the cell proliferation index on flow cytometry. Electron microscopy showed that cells treated with cytokines had fewer pseudopodia or cell processes than control cells and that cytokine treated cells had dilatation of the mitochondria and endoplasmic reticulum and dilated vesicular or tubular cisternae. Conclusion: Our findings indicate that TNF-α and IFN-γ induce the expression of iNOS gene in CCL229 cells, which increases the production of nitric oxide, inhibits proliferation, causes lipid peroxidation, and results in ultrastructural changes. 

  9. Analysis on gene expression profile of human pancreatic cancer stem cells by gene microarray%人胰腺癌干细胞差异性基因的表达

    Institute of Scientific and Technical Information of China (English)

    黄焕军; 王敏; 秦仁义; 申铭; 江建新; 朱峰; 田锐

    2009-01-01

    目的 分选、鉴定人胰腺癌干细胞,运用基因芯片技术分析其差异性基因的表达.方法 运用流式分选技术分选胰腺癌干细胞(CD24+CD44+ESA+),NOD/SCID鼠移植瘤试验进行肿瘤干细胞特性鉴定.采用Affymetrix U133 plus2.0人类全基因组表达谱芯片对胰腺癌干细胞和非干细胞进行差异基因筛选.结果 分选得到人胰腺癌CD24+CD44+ESA+亚群细胞,占所有细胞的0.8%;5×103个CD24+CD44+ESA+细胞就能成瘤(2/4),而阴性细胞1×105才能成瘤(1/4);CD24+CD44+ESA+具有一定的自我更新和分化能力.基因芯片杂交获得6553(11.99%)条差异基因,胰腺癌干细胞中5255(9.61%)条上调表达,1298(2.37%)条下调表达.其中差异基因涉及细胞凋亡、细胞周期、代谢、细胞线粒体结构和耐药等多个方面.结论 胰腺癌于细胞具有自身特征性基因表达谱,为进一步从干细胞层面研究胰腺癌发病机制及靶向治疗奠定基础.%Objective To identify and isolate human pancreatic cancer stem cells, and screen gene expression profile of human pancreatic cancer stem cells by gene mieroarray. Methods Pancreatic cancer stem ceils ( CD24+CD44+ESA+ ) were sorted from xenografts by flow eytometry. And the stem-like properties of this subpopulation were assessed by the xenografts model. The differential gene expression between pancreatic eancer stem cells and other pancreatic cancer cells was detected by whole human genome microarray (Affymetrix GeneChip U133 Arrays plus2.0). Results Human primary pancreatic caner CD24+CD44+ESA+ cells were isolated, and the mean frequency of this subpopulation was 0.8%.5 x 103 CD24+ CD44+ESA+ cells developed tumors in 2/4 mice ,while 1 x 105 negative cells developed tumors in 1/4 mice. CD24+CD44+ESA+ cells also exhibited stem ceil-like characteristics of self-renewal and differential properties. We identified 6553 ( 11.99% ) differentially expressed genes,including 5255 (9.61% ) up regulated and 1298 (2.37%) down

  10. Association between endogenous gene expression and growth regulation induced by TGF-β1 in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xue Li; Yun-Yan Zhang; Qi Wang; Song-Bin Fu

    2005-01-01

    AIM: To investigate the association between endogenous gene expression and growth regulation including proliferation and apoptosis induced by transforming growth factor-β1(TGF-β1) in human gastric cancer (GC) cells.METHODS: Reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the main components of the TGF-β1/Smads signal pathway in human poorly differentiated GC cell line BGC-823. Localization of Smad proteins was also determined using immunofluorescence.Then, the BGC-823 cells were cultured in the presence or absence of TGF-β1 (10 ng/mL) for 24 and 48 h, and the effects of TGF-β1 on proliferation and apoptosis were measured by cell growth curve and flow cytometry (FCM)analysis. The ultrastructural features of BGC-823 cells with or without TGF-β1 treatment were observed under transmission electron microscope. The apoptotic cells were visualized by means of the terminal deoxynucleotidyl transferase (TdT)-mediated dTUPin situ nick end-labeling (TUNEL) method. Meanwhile, the expression levels of endogenous p15, p21 and Smad7 mRNA and the corresponding proteins in the cells were detected at 1, 2and 3 h after culture in the presence or absence of TGF-β1(10 ng/mL) by semi-quantitative RT-PCR and Western blot,respectively.RESULTS: The TGF-β1/Smad signaling was found to be intact and functional in BGC-823 cells. The growth curve revealed the most evident inhibition of cell proliferation by TGF-β1 at 48 h, and FCM assay showed G1 arrest accompanied with apoptosis induced by TGF-β1. The typical morphological changes of apoptosis were observed in cells exposed to TGF-β1. The apoptosis index (AI) in TGF-β1-treated cells was significantly higher than that in the untreated controls (10.7±1.3% vs 0.32±0.06%, P<0.01).The levels of p15, p21 and Smad7mRNA and corresponding proteins in cells were significantly up-regulated at 1 h, but gradually returned to basal levels at 3 h following TGF-β1(10 ng/mL) treatment.CONCLUSION: TGF-β1

  11. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance

    Science.gov (United States)

    Miller, Todd W.; Balko, Justin M.; Ghazoui, Zara; Dunbier, Anita; Anderson, Helen; Dowsett, Mitch; González-Angulo, Ana M.; Mills, Gordon B.; Miller, William R.; Wu, Huiyun; Shyr, Yu; Arteaga, Carlos L.

    2011-01-01

    Purpose Although most patients with estrogen receptor α (ER)-positive breast cancer initially respond to endocrine therapy, many ultimately develop resistance to antiestrogens. However, mechanisms of antiestrogen resistance and biomarkers predictive of such resistance are underdeveloped. Experimental Design We adapted four ER+ human breast cancer cell lines to grow in an estrogen-depleted medium. A gene signature of estrogen independence was developed by comparing expression profiles of long-term estrogen-deprived (LTED) cells to their parental counterparts. We evaluated the ability of the LTED signature to predict tumor response to neoadjuvant therapy with an aromatase inhibitor, and disease outcome following adjuvant tamoxifen. We utilized Gene Set Analysis (GSA) of LTED cell gene expression profiles and a loss-of-function approach to identify pathways causally associated with resistance to endocrine therapy. Results The LTED gene expression signature was predictive of high tumor cell proliferation following neoadjuvant therapy with anastrozole and letrozole, each in different patient cohorts. This signature was also predictive of poor recurrence-free survival in two studies of patients treated with adjuvant tamoxifen. Bioinformatic interrogation of expression profiles in LTED cells revealed a signature of MYC activation. The MYC activation signature and high MYC protein levels were both predictive of poor outcome following tamoxifen therapy. Finally, knockdown of MYC inhibited LTED cell growth. Conclusions A gene expression signature derived from ER+ breast cancer cells with acquired hormone independence predicted tumor response to aromatase inhibitors and associated with clinical markers of resistance to tamoxifen. In some cases, activation of the MYC pathway was associated with this resistance. PMID:21346144

  12. Tissue-specific gene expression templates for accurate molecular characterization of the normal physiological states of multiple human tissues with implication in development and cancer studies.

    Science.gov (United States)

    Hwang, Pei-Ing; Wu, Huan-Bin; Wang, Chin-Di; Lin, Bai-Ling; Chen, Cheng-Tao; Yuan, Shinsheng; Wu, Guani; Li, Ker-Chau

    2011-09-01

    To elucidate the molecular complications in many complex diseases, we argue for the priority to construct a model representing the normal physiological state of a cell/tissue. By analyzing three independent microarray datasets on normal human tissues, we established a quantitative molecular model GET, which consists of 24 tissue-specific Gene Expression Templates constructed from a set of 56 genes, for predicting 24 distinct tissue types under disease-free condition. 99.2% correctness was reached when a large-scale validation was performed on 61 new datasets to test the tissue-prediction power of GET. Network analysis based on molecular interactions suggests a potential role of these 56 genes in tissue differentiation and carcinogenesis.Applying GET to transcriptomic datasets produced from tissue development studies the results correlated well with developmental stages. Cancerous tissues and cell lines yielded significantly lower correlation with GET than the normal tissues. GET distinguished melanoma from normal skin tissue or benign skin tumor with 96% sensitivity and 89% specificity. These results strongly suggest that a normal tissue or cell may uphold its normal functioning and morphology by maintaining specific chemical stoichiometry among genes. The state of stoichiometry can be depicted by a compact set of representative genes such as the 56 genes obtained here. A significant deviation from normal stoichiometry may result in malfunction or abnormal growth of the cells.

  13. Tissue-specific gene expression templates for accurate molecular characterization of the normal physiological states of multiple human tissues with implication in development and cancer studies

    Directory of Open Access Journals (Sweden)

    Yuan Shinsheng

    2011-09-01

    Full Text Available Abstract Background To elucidate the molecular complications in many complex diseases, we argue for the priority to construct a model representing the normal physiological state of a cell/tissue. Results By analyzing three independent microarray datasets on normal human tissues, we established a quantitative molecular model GET, which consists of 24 tissue-specific Gene Expression Templates constructed from a set of 56 genes, for predicting 24 distinct tissue types under disease-free condition. 99.2% correctness was reached when a large-scale validation was performed on 61 new datasets to test the tissue-prediction power of GET. Network analysis based on molecular interactions suggests a potential role of these 56 genes in tissue differentiation and carcinogenesis. Applying GET to transcriptomic datasets produced from tissue development studies the results correlated well with developmental stages. Cancerous tissues and cell lines yielded significantly lower correlation with GET than the normal tissues. GET distinguished melanoma from normal skin tissue or benign skin tumor with 96% sensitivity and 89% specificity. Conclusions These results strongly suggest that a normal tissue or cell may uphold its normal functioning and morphology by maintaining specific chemical stoichiometry among genes. The state of stoichiometry can be depicted by a compact set of representative genes such as the 56 genes obtained here. A significant deviation from normal stoichiometry may result in malfunction or abnormal growth of the cells.

  14. Serglycin in human cancers

    Institute of Scientific and Technical Information of China (English)

    Xin-Jian Li; Chao-Nan Qian

    2011-01-01

    Serglycin belongs to a family of small proteoglycans with Ser-Gly dipeptide repeats,and it is modified with different types of glycosaminoglycan side chains.Intracellular serglycin affects the retention and secretion of proteases,chemokines,or other cytokines by physically binding to these factors in secretory granules.Extracellular serglycin has been found to be released by several types of human cancer cells,and it is able to promote the metastasis of nasopharyngeal carcinoma cells.Serglycin can bind to CD44,which is another glycoprotein located in cellular membrane.Serglycin's function of promoting cancer cell metastasis depends on glycosylation of its core protein,which can be achieved by autocrine as well as paracrine secretion mechanisms.Further investigations are warranted to elucidate serglycin signaling mechanisms with the goal of targeting them to prevent cancer cell metastasis.

  15. Cytochrome P450 gene polymorphism and cancer.

    Science.gov (United States)

    Agundez, Jose A G

    2004-06-01

    Human cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.

  16. 转移相关基因在肿瘤中的研究进展%The advance of research of metastasis-associated gene in human cancer

    Institute of Scientific and Technical Information of China (English)

    曹磊; 任华

    2011-01-01

    MTA is a gene family closely related with carcinogenesis and cancer progression. According to many recent studies, the member of MTA overexpressed in a wide range of human cancers and was involved in invasion, metastasis and angiogenesis. MTA may be one of main regulatory molecules family in the procession of carcinogenesis and progression.%转移相关基因(MTA)是一个与肿瘤发生和进展密切相关的基因家族.最近的研究表明,MTA家族成员在多种人类肿瘤组织中表达异常升高,并通过多种机制参与肿瘤的侵袭、转移及血管生成.MTA可能是多种恶性肿瘤发生与进展相关的主要调节分子家族之一.

  17. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Keqiang [Department of General Surgery, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Li, Dan [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Pulli, Benjamin [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Yu, Fei; Cai, Haidong; Yuan, Xueyu [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Zhang, Xiaoping, E-mail: zxpsibs@163.com [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Lv, Zhongwei, E-mail: heyixue163@163.com [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Hsp90 is over-expressed in human breast cancer. Black-Right-Pointing-Pointer The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. Black-Right-Pointing-Pointer Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. Black-Right-Pointing-Pointer The tumor growth ratio was decline due to Hsp90 silencing. Black-Right-Pointing-Pointer The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic

  18. Exposure to cadmium chloride influences astrocyte-elevated gene-1 (AEG-1) expression in MDA-MB231 human breast cancer cells.

    Science.gov (United States)

    Luparello, Claudio; Longo, Alessandra; Vetrano, Marco

    2012-01-01

    It is known that cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity and intracellular signalization in normal and pathological human cells. We have already shown that Cd exerts a cytotoxic effect on neoplastic MDA-MB231 cells from the human breast, which is characterized by the onset of a "non-classical" apoptotic kind of death, impairment of mitochondrial activity and drastic changes in gene expression pattern. In the present study, employing a combination of conventional and differential display-PCR techniques, immunocytochemical, ELISA and Western analyses, we extended the knowledge on the transcriptional modulation exerted by the metal demonstrating that in MDA-MB231 cells 5 μM CdCl(2) treatment for 96 h selectively down-regulates astrocyte-elevated gene-1 (AEG-1) and reduces the accumulation of its protein product which appears to be associated with the internal cytomembranes and also present in the nucleoplasm. In addition, due to the acknowledged role of AEG-1 in the intranuclear shuttling of NF-κB p65 subunit, we also showed that CdCl(2) treatment determines the decrease of p65 amount in nuclear extracts and the down-regulation of the NF-κB downstream genes c-fos and c-jun, thus providing a new contribution to the comprehension of the intracellular molecular mechanisms implicated in Cd-breast cancer cell interactions.

  19. Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer

    Directory of Open Access Journals (Sweden)

    Knüchel Ruth

    2008-11-01

    Full Text Available Abstract Background We have previously reported that expression of the Wnt antagonist genes SFRP1 and SFRP5 is frequently silenced by promoter hypermethylation in breast cancer. SFRP2 is a further Wnt inhibitor whose expression was recently found being downregulated in various malignancies. Here we investigated whether SFRP2 is also implicated in human breast cancer, and if so whether SFRP2 promoter methylation might serve as a potential tumor biomarker. Methods We analyzed SFRP2 mRNA expression and SFRP2 promoter methylation in 10 breast cell lines, 199 primary breast carcinomas, 20 matched normal breast tissues and 17 cancer-unrelated normal breast tissues using RT-PCR, realtime PCR, methylation-specific PCR and Pyrosequencing, respectively. SFRP2 protein expression was assessed by immunohistochemistry on a tissue microarray. Proliferation assays after transfection with an SFRP2 expression vector were performed with mammary MCF10A cells. Statistical evaluations were accomplished with SPSS 14.0 software. Results Of the cancerous breast cell lines, 7/8 (88% lacked SFRP2 mRNA expression due to SFRP2 promoter methylation (P SFRP2 expression was substantially restored in most breast cell lines after treatment with 5-aza-2'-deoxycytidine and trichostatin A. In primary breast carcinomas SFRP2 protein expression was strongly reduced in 93 of 125 specimens (74%. SFRP2 promoter methylation was detected in 165/199 primary carcinomas (83% whereas all cancer-related and unrelated normal breast tissues were not affected by SFRP2 methylation. SFRP2 methylation was not associated with clinicopathological factors or clinical patient outcome. However, loss of SFRP2 protein expression showed a weak association with unfavorable patient overall survival (P = 0.071. Forced expression of SFRP2 in mammary MCF10A cells substantially inhibited proliferation rates (P = 0.045. Conclusion The SFRP2 gene is a high-frequent target of epigenetic inactivation in human breast

  20. Human Thyroid Cancer-1 (TC-1 is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast

    Directory of Open Access Journals (Sweden)

    Natalie K. Jones

    2015-07-01

    Full Text Available The human Thyroid Cancer-1 (hTC-1 protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.

  1. Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pezzetti Furio

    2008-08-01

    Full Text Available Abstract Background EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and in combination with EGF. Methods Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression and scanning electron microscopy (SEM evidenced the ultrastructural morphology. Gene expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40 K array A. Results Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this level of cell cycle distribution after treatment, suggesting a predominantly differentiated state. Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important reduction of the microvilli (which also lose their erect position in Caco-2, possibly invalidating microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the 2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment. In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes appeared to be less stimulated than for single drug cases. Conclusion This is the first study to have systematically investigated

  2. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  3. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  4. Expression of Beta-Human Chorionic Gonadotropin Genes in Renal Cell Cancer and Benign Renal Disease Tissues

    Institute of Scientific and Technical Information of China (English)

    姜永光; 曾甫清; 肖传国; 刘俊敏

    2003-01-01

    To study the expression of beta-human chorionic gonadotropin (βhCG) genes in renal cellcarcinomas (RCC) and benign renal disease tissues, nested reverse transcription-polymerase chainreaction (RT-PCR) and restriction endonuclease analysis were employed to detect the expression ofβhCG genes in 44 cases of RCC tissues and 24 cases of benign renal disease tissues. It was foundthat 52% RCC samples revealed positive for βhCG mRNA expression. Positive rate in advancedstage and poorly differentiated RCC was higher, but there was no significant difference. The posi-tive rate of βhCG mRNA expression was 54% in 24 cases of benign renal tissues, including 3 casesout of 6 polycystic kidneys, 7 cases out of 13 renal atrophies, 2 cases out of 2 oncocytomas and 1case out of 2 pyonephrotic kidneys. β7 was most frequently transcribed subtype gene independent onthe histology. These findings suggested βhCG gene transcription is not only involved in RCC but al-so in benign renal diseases.

  5. B4GALNT2 gene expression controls the biosynthesis of Sda and sialyl Lewis X antigens in healthy and cancer human gastrointestinal tract.

    Science.gov (United States)

    Groux-Degroote, Sophie; Wavelet, Cindy; Krzewinski-Recchi, Marie-Ange; Portier, Lucie; Mortuaire, Marlène; Mihalache, Adriana; Trinchera, Marco; Delannoy, Philippe; Malagolini, Nadia; Chiricolo, Mariella; Dall'Olio, Fabio; Harduin-Lepers, Anne

    2014-08-01

    The histo blood group carbohydrate Sd(a) antigen and its cognate biosynthetic enzyme B4GALNT2 show the highest level of expression in normal colon. Their dramatic down regulation previously observed in colon cancer tissues could play a role in the concomitant elevation of the selectin ligand sLe(x), involved in metastasis. However, down regulation of sLe(x) expression by B4GALNT2 has been so far demonstrated in vitro, but not in tissues. The human B4GALNT2 gene specifies at least two transcripts, diverging in the first exon, never studied in normal and cancer tissues. The long form contains a 253 nt exon 1L; the short form contains a 38 nt exon 1S. Using qPCR, we showed that cell lines and normal or cancerous colon, expressed almost exclusively the short form, while the long form was mainly expressed by the embryonic colon fibroblast cell line CCD112CoN. Immunochemistry approaches using colon cancer cells permanently expressing either B4GALNT2 cDNAs as controls, led to the observation of several protein isoforms in human normal and cancerous colon, and cell lines. We showed that tissues expressing B4GALNT2 protein isoforms were able to induce Sd(a) and to inhibit sLe(x) expression; both of which are expressed mainly on PNGase F-insensitive carbohydrate chains. Concomitant expression of B4GALNT2 and siRNA-mediated inhibition of FUT6, the major fucosyltransferase involved in sLe(x) synthesis in colon, resulted in a cumulative inhibition of sLe(x). In normal colon samples a significant relationship between sLe(x) expression and the ratio between FUT6/B4GALNT2 activities exists, demonstrating for the first time a role for B4GALNT2 in sLe(x) inhibition in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. MYC and Human Telomerase Gene (TERC) Copy Number Gain in Early-stage Non–small Cell Lung Cancer

    Science.gov (United States)

    Flacco, Antonella; Ludovini, Vienna; Bianconi, Fortunato; Ragusa, Mark; Bellezza, Guido; Tofanetti, Francesca R.; Pistola, Lorenza; Siggillino, Annamaria; Vannucci, Jacopo; Cagini, Lucio; Sidoni, Angelo; Puma, Francesco; Varella-Garcia, Marileila; Crinò, Lucio

    2015-01-01

    Objectives We investigated the frequency of MYC and TERC increased gene copy number (GCN) in early-stage non–small cell lung cancer (NSCLC) and evaluated the correlation of these genomic imbalances with clinicopathologic parameters and outcome. Materials and Methods Tumor tissues were obtained from 113 resected NSCLCs. MYC and TERC GCNs were tested by fluorescence in situ hybridization (FISH) according to the University of Colorado Cancer Center (UCCC) criteria and based on the receiver operating characteristic (ROC) classification. Results When UCCC criteria were applied, 41 (36%) cases for MYC and 41 (36%) cases for TERC were considered FISH-positive. MYC and TERC concurrent FISH-positive was observed in 12 cases (11%): 2 (17%) cases with gene amplification and 10 (83%) with high polysomy. By using the ROC analysis, high MYC (mean ≥2.83 copies/cell) and TERC (mean ≥2.65 copies/cell) GCNs were observed in 60 (53.1%) cases and 58 (51.3%) cases, respectively. High TERC GCN was associated with squamous cell carcinoma (SCC) histology (P = 0.001). In univariate analysis, increased MYC GCN was associated with shorter overall survival (P = 0.032 [UCCC criteria] or P = 0.02 [ROC classification]), whereas high TERC GCN showed no association. In multivariate analysis including stage and age, high MYC GCN remained significantly associated with worse overall survival using both the UCCC criteria (P = 0.02) and the ROC classification (P = 0.008). Conclusions Our results confirm MYC as frequently amplified in early-stage NSCLC and increased MYC GCN as a strong predictor of worse survival. Increased TERC GCN does not have prognostic impact but has strong association with squamous histology. PMID:25806711

  7. Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Jen-Hwey Chiu

    2014-01-01

    Full Text Available Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.

  8. Investigation of Astragalus honey and propolis extract′s cytotoxic effect on two human cancer cell lines and their oncogen and proapoptotic gene expression profiles

    Directory of Open Access Journals (Sweden)

    Hojjat Sadeghi-Aliabadi

    2015-01-01

    Full Text Available Background: Cancer is one of the major fatal human diseases. Natural products have been used in the treatment of cancer for long time. Bee products including honey and propolis have been introduced for malignancy treatment in recent decades. In this study cytotoxicity of bee products and their effects on the expression of proapoptotic genes have been investigated. Materials and Methods: Cytotoxic effects of Astragalus honey, ethanol extract of propolis and a sugar solution (as control against HepG2, 5637 and L929 cell lines have been evaluated by the MTT assay. Total RNAs of treated cells were isolated and p53 and Bcl-2 gene expression were evaluated, using real-time PCR. Results: Propolis IC50 values were 58, 30 and 15 μg/ml against L929, HepG2 and 5637, respectively. These values for honey were 3.1%, 2.4% and 1.9%, respectively. Propolis extract has increased the expression of the Bcl-2 gene in all cell lines whereas the honey decreased that significantly (P 0.05.

  9. Macrophage colony-stimulating factor gene transduction into human lung cancer cells differentially regulates metastasis formations in various organ microenvironments of natural killer cell-depleted SCID mice.

    Science.gov (United States)

    Yano, S; Nishioka, Y; Nokihara, H; Sone, S

    1997-02-15

    We investigated whether local production of macrophage colony-stimulating factor (M-CSF), responsible for migration and activation of monocytes/macrophages at a tumor growth site, affected the metastatic pattern of lung cancer. For this, highly metastatic human squamous (RERF-LC-AI) or small (H69/VP) cell lung carcinoma cells were transduced with the human M-CSF gene inserted into pRc/CMV-MCSF to establish M-CSF-producing clones (MCSF-AI-9-18, MCSF-AI-9-24, and MCSF-VP-5). M-CSF gene transduction had no effect on the expression of surface antigen or on in vitro proliferation. After s.c. injection into SCID mice, the growth rates of M-CSF-producing cells were slower than those of parent or mock-transduced cells. In the metastatic model in SCID mice depleted of natural killer cells, RERF-LC-AI cells formed metastases mainly in the liver and kidneys, whereas H69/VP cells metastasized mainly to the liver and systemic lymph nodes. The numbers of metastatic colonies of MCSF-AI-9-18 and MCSF-AI-9-24 cells in the liver but not the kidneys were significantly reduced. The development of lymph node metastases of MCSF-VP-5 cells was also less than that of parent or mock-transduced cells. Treatment of SCID mice with anti-human M-CSF antibody resulted in a significant increase in liver metastases of their M-CSF gene transfectants. No significant differences were observed in the distributions in mice or in the in vitro invasive potentials of MCSF-AI-9-18 cells and Neo-AI-3 cells. These findings indicate that the antimetastatic effect of M-CSF may be specific to particular organs, suggesting the influence of heterogeneity of organ microenvironments on the metastasis of lung cancer.

  10. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.Q. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Liao, Q.J.; Wang, X.W. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China); Xin, D.Q. [Institute of Urology, Peking University and Department of Urology, First Hospital, Peking University, Beijing (China); Chen, S.X.; Wu, Q.J.; Ye, G. [Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing (China)

    2012-08-10

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy.

  11. Identification of candidate methylation-responsive genes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dickerson Erin B

    2007-01-01

    Full Text Available Abstract Background Aberrant methylation of gene promoter regions has been linked to changes in gene expression in cancer development and progression. Genes associated with CpG islands (CGIs are especially prone to methylation, but not all CGI-associated genes display changes in methylation patterns in cancers. Results In order to identify genes subject to regulation by methylation, we conducted gene expression profile analyses of an ovarian cancer cell line (OVCAR-3 before and after treatment with the demethylating agent 5-aza-deoxycytidine (5-aza-dC. An overlapping subset of these genes was found to display significant differences in gene expression between normal ovarian surface epithelial cells and malignant cells isolated from ovarian carcinomas. While 40% of all human genes are associated with CGIs, > 94% of the overlapping subset of genes is associated with CGIs. The predicted change in methylation status of genes randomly selected from the overlapping subset was experimentally verified. Conclusion We conclude that correlating genes that are upregulated in response to 5-aza-dC treatment of cancer cell lines with genes that are down-regulated in cancer cells may be a useful method to identify genes experiencing epigenetic-mediated changes in expression over cancer development.

  12. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Science.gov (United States)

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  13. Genome editing for human gene therapy.

    Science.gov (United States)

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  14. Induction of the expression of genes encoding TGF-beta isoforms and their receptors by inositol hexaphosphate in human colon cancer cells.

    Science.gov (United States)

    Kapral, Małgorzata; Wawszczyk, Joanna; Hollek, Andrzej; Weglarz, Ludmiła

    2013-01-01

    Transforming growth factors-beta (TGF-beta) are multifunctional cytokines involved in the regulation of cell development, differentiation, survival and apoptosis. They are also potent anticancer agents that inhibit uncontrolled proliferation of cells. Incorrect TGF-beta regulation has been implicated in the pathogenesis of many diseases including inflammation and cancer. In humans, the TGF-beta family consists of three members (TGF-beta1, 2, 3) that show high similarity and homology. TGF-betas exert biological activities on various cell types including neoplastic cells via their specific receptors. Inositol hexaphosphate (phytic acid, IP6), a phytochemical has been reported to possess various health benefits. The aim of this study was to examine the effect of IP6 on the expression of genes encoding TGF-beta1, TGF-beta2, TGF-beta3 isoforms and their receptors TbetaRI, TbetaRII, TbetaRIII in human colorectal cancer cell line Caco-2. The cells were treated with 0.5, 1 and 2.5 mM IP6 for 3, 6 and 12 h. The untreated Caco-2 cells were used as the control. Quantification of genes expression was performed by real time QRT-PCR technique with a SYBR Green I chemistry. The experimental data revealed that the TGF-beta1 mRNA was the predominant isoform in Caco-2 cells and that IP6 enhanced transcriptional activity of genes of all three TGF-beta isoforms and their receptors TbetaRI, TbetaRII TbetaRIII in these cells. At concentrations up to 1 mM, IP6 over-expressed the genes in 6 h lasting cultures, and its higher dose (2.5 mM) caused successively increasing transcript level of TGF-beta isoforms and receptors with the duration of experiment up to 12 h. The findings of this study indicate that one of anti-cancer abilities of IP6 can be realized by enhancing the gene expression of TGF-beta isoforms and their receptors at the transcriptional level.

  15. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3.

    Science.gov (United States)

    Au Yeung, Chi Lam; Tsang, Tsun Yee; Yau, Pak Lun; Kwok, Tim Tak

    2017-01-06

    Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development.

  16. Cigarette smoke extracts induced the colon cancer migration via regulating epithelial mesenchymal transition and metastatic genes in human colon cancer cells.

    Science.gov (United States)

    Kim, Cho-Won; Go, Ryeo-Eun; Lee, Hae-Miru; Hwang, Kyung-A; Lee, Kyuhong; Kim, Bumseok; Lee, Moo-Yeol; Choi, Kyung-Chul

    2017-02-01

    There was considerable evidence that exposure to cigarette smoke is associated with an increased risk for colon cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and colon cancer remains unclear. Moreover, there were only a few studies on effects of complexing substance contained in cigarette smoke on colon cancer. Thus, we further investigated whether cigarette smoke extract (CSE) affects the cell cycle, apoptosis and migration of human metastatic colon cancer cells, SW-620. MTT assay revealed that SW-620 cell proliferation was significantly inhibited following treatments with all CSEs, 3R4F, and two-domestic cigarettes, for 9 days in a concentration-dependent manner. Moreover, CSE treatments decreased cyclin D1 and E1, and increased p21 and p27 proteins by Western blot analysis in SW-620 cells. Additionally, the treatment of the cells with CSE contributed to these effects expressing by apoptosis-related proteins. An increased migration or invasion ability of SW-620 cells following CSE treatment was also confirmed by a scratch or fibronectin invasion assay in vitro. In addition, the protein levels of E-cadherin as an epithelial maker were down-regulated, while the mesenchymal markers, N-cadherin, snail, and slug, were up-regulated in a time-dependent manner. A metastatic marker, cathepsin D, was also down-regulated by CSE treatment. Taken together, these results indicate that CSE exposure in colon cancer cells may deregulate the cell growth by altering the expression of cell cycle-related proteins and pro-apoptotic protein, and stimulate cell metastatic ability by altering epithelial-mesenchymal transition (EMT) markers and cathepsin D expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 690-704, 2017.

  17. Evaluation of a gene-directed enzyme-product therapy (GDEPT in human pancreatic tumor cells and their use as in vivo models for pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Juraj Hlavaty

    Full Text Available BACKGROUND: Gene-directed enzyme prodrug therapy (GDEPT is a two-step treatment protocol for solid tumors that involves the transfer of a gene encoding a prodrug-activating enzyme followed by administration of the inactive prodrug that is subsequently activated by the enzyme to its tumor toxic form. However, the establishment of such novel treatment regimes to combat pancreatic cancer requires defined and robust animal model systems. METHODS: Here, we comprehensively compared six human pancreatic cancer cell lines (PaCa-44, PANC-1, MIA PaCa-2, Hs-766T, Capan-2, and BxPc-3 in subcutaneous and orthotopical mouse models as well as in their susceptibility to different GDEPTs. RESULTS: Tumor uptake was 83% to 100% in the subcutaneous model and 60% to 100% in the orthotopical mouse model, except for Hs-766T cells, which did not grow orthotopically. Pathohistological analyses of the orthotopical models revealed an infiltrative growth of almost all tumors into the pancreas; however, the different cell lines gave rise to tumors with different morphological characteristics. All of the resultant tumors were positive for MUC-1 staining indicating their origin from glandular or ductal epithelium, but revealed scattered pan-cytokeratin staining. Transfer of the cytochrome P450 and cytosine deaminase suicide gene, respectively, into the pancreatic cancer cell lines using retroviral vector technology revealed high level infectibility of these cell lines and allowed the analysis of the sensitivity of these cells to the chemotherapeutic drugs ifosfamide and 5-fluorocytosine, respectively. CONCLUSION: These data qualify the cell lines as part of valuable in vitro and in vivo models for the use in defined preclinical studies for pancreas tumor therapy.

  18. IGF-Regulated Genes in Prostate Cancer

    Science.gov (United States)

    2006-02-01

    Burgess, A.W., and Ward, C.W. (2002) Cell 110(6), 763-773 53. Sambrook, J., Maniatis , T., and Fritsch, E.F. (1989) Molecular cloning : a laboratory...triplicate arrays that each contain >12,000 sequence-verified, non-redundant human cDNA clones . Data were analyzed by accepted means of normalization...this award. Review of the field-published in Genes, Chromosomes, and Cancer 36: 113-120 (2003) The IGFI Receptor Gene: A Molecular Target for

  19. Gene therapy for gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Zhan-Kui Liu

    2003-01-01

    Gastric cancer is common in China, and its early diagnosis and treatment are difficult. In recent years great progress has been achieved in gene therapy, and a wide array of gene therapy systems for gastric cancer has been investigated. The present article deals with the general principles of gene therapy and then focuses on how these principles may be applied to gastric cancer.

  20. Genetic and Functional Analysis of Polymorphisms in the Human Dopamine Receptor and Transporter Genes in Small Cell Lung Cancer.

    Science.gov (United States)

    Cherubini, Emanuela; Di Napoli, Arianna; Noto, Alessia; Osman, Giorgia Amira; Esposito, Maria Cristina; Mariotta, Salvatore; Sellitri, Rossella; Ruco, Luigi; Cardillo, Giuseppe; Ciliberto, Gennaro; Mancini, Rita; Ricci, Alberto

    2016-02-01

    The regulatory role of dopamine (DA) in endocrine, cardiovascular and renal functions has been extensively studied and used for clinical purposes. More recently DA has been indicated as a regulatory molecule for immune cells and malignant cell proliferation. We assessed the expression and the functional role DA, DA receptors, and transporters in primary small cell lung cancer (SCLC). By HPLC DA plasma levels were more elevated in SCLC patients in comparison with NSCLC patients and healthy controls. SCLC cell expressed DA D1- and D2-like receptors and membrane and vesicular transporters at protein and mRNA levels. We also investigated the effects of independent D1- or D2-like receptor stimulation on SCLC cell cultures. DA D1 receptor agonist SKF38393 induced the increase of cAMP levels and DARPP-32 protein expression without affecting SCLC growth rate. Cell treatment with the DA D1 receptor antagonist SCH23390 inhibited SKF38393 effects. In contrast, the DA D2 receptor agonist quinpirole (10 μM) counteracted, in a dose and time dependent way, SCLC cell proliferation, it did not affect cAMP levels and decreased phosphorylated AKT that was induced by DA D2 receptor antagonist sulpiride. However, in only one SCLC line, stimulation of DA D2 receptor failed to inhibit cell proliferation in vitro. This effect was associated to the existence of rs6275 and rs6277 polymorphisms in the D2 gene. These results gave more insight into DA control of lung cancer cell behavior and suggested the existence of different SCLC phenotypes.

  1. Applying a highly specific and reproducible cDNA RDA method to clone garlic up-regulated genes in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong Li; You-Yong Lu

    2002-01-01

    AIM: To develop and optimize cDNA representationaldifference analysis (cDNA RDA) method and to identify andclone garlic up-regulated genes in human gastric cancer(HGC) cells.METHODS: We performed cDNA RDA method by usingabundant double-stranded cDNA messages provided by twoself-constructed cDNA libraries (Allitridi-trested and paternalHGC cell line BGC823 cells cDNA libraries respectively).BamH Ⅰ and Xho I restriction sites harbored in the libraryvector were used to select representations. Northern andSlot blots analyses were employed to identify the obtaineddifference products.RESJLTS: Fragments released from the cDNA library vectorafter restriction endonuclease digestion acted as goodmarker indicating the appropriate digestion degree for libraryDNA. Two novel expressed sequence tags (ESTs) and arecombinant gene were obtained. Slot blots result showed a8-fold increase of gila-derived nexin/protease nexin 1 (GDN/PN1 ) gene expression level and 4-fold increase of hepatitis Bvirus x-interacting protein (XIP) mRNA level in BGC823 cellsafter Allitridi treatment for 72 h.CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAsinduced by Allitridi provide valuable molecular evidence forelucidating the garlic' s efficacies against neurodegenerativeand inflammatory diseases. Isolation of a recombinant geneand two novel ESTs further show cDNA RDA based on cDNAlibraries to be a powerful method with high specificity andreproducibility in cloning differentially expressed genes.

  2. Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line.

    Science.gov (United States)

    Legler, J; van den Brink, C E; Brouwer, A; Murk, A J; van der Saag, P T; Vethaak, A D; van der Burg, B

    1999-03-01

    Development of an estrogen receptor-mediated, chemical-activated luciferase reporter gene-expression (ER-CALUX) assay was attempted by stable transfection of luciferase reporter genes in a number of cell lines. Stable transfection of the chimeric Gal4 estrogen receptor and luciferase gene constructs in MCF-7 breast cancer and Hepa.1c1c7 mouse hepatoma cell lines, as well as transfection of a newly constructed luciferase reporter gene pEREtata-Luc in the ECC-1 human endometrial cell line, resulted in constitutive, non-estradiol-inducible clones. Stable transfection of pEREtata-Luc in the T47D breast cancer cell line, however, resulted in an extremely sensitive, highly responsive cell line. Following a 24-h exposure to estradiol (E2), stably transfected T47D.Luc cells demonstrated a detection limit of 0.5 pM, an EC50 of 6 pM, and a maximum induction of 100-fold relative to solvent controls. No clear reduction in responsiveness has been found over extended culture periods (50 passages). Anti-estrogens ICI 182,780, TCDD, and tamoxifen inhibited the estradiol-mediated luciferase induction. Genistein, nonylphenol, and o,p'DDT were the most potent (pseudo-)estrogens tested in this system (EC50 100, 260, and 660 nM, respectively). Determination of interactive effects of the (pseudo-)estrogens nonylphenol, o,p'DDT, chlordane, endosulfan, dieldrin, and methoxychlor revealed that, in combination with 3 pM E2, (pseudo-)estrogens were additive. Slightly more than additive effects (less than 2-fold) were found for combinations of dieldrin and endosulfan tested in the range of 3 to 6 microM. At these concentrations, the combination of endosulfan and chlordane demonstrated additive interaction. The ER-CALUX assay with T47D cells can provide a sensitive, responsive, and rapid in vitro system to detect and measure substances with potential (anti-)estrogenic activity.

  3. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Shibakura M

    2002-10-01

    Full Text Available We previously reported that anthracyclines, which could generate reactive oxygen species (ROS, could induce the urokinase-type plasminogen activator (uPA gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significantly increased the uPA accumulation in the conditioned media of both cells in a dose-dependent manner. The maximum induction of uPA mRNA levels was observed 24 h after stimulation. Pretreatment with pyrrolidine dithiocarbamate (PDTC, an anti-oxidant, inhibited the CPT-induced uPA mRNA expression. Thus, CPT induces uPA through gene expression, and, therefore, CPT may influence the tumor-cell biology by up-regulating the uPA/plasmin system.

  4. Camptothecin induces urokinase-type plasminogen activator gene-expression in human RC-K8 malignant lymphoma and H69 small cell lung cancer cells.

    Science.gov (United States)

    Shibakura, Misako; Niiya, Kenji; Kiguchi, Toru; Nakata, Yasunari; Tanimoto, Mitsune

    2002-10-01

    We previously reported that anthracyclines, which could generate reactive oxygen species (ROS), could induce the urokinase-type plasminogen activator (uPA) gene expression in human RC-K8 malignant lymphoma cells and in H69 small cell lung cancer (SCLC) cells. In screening other uPA-inducible anti-cancer agents, we found that camptothecin (CPT) and its derivative, SN38, could induce uPA in RC-K8 and H69 cells. CPT and SN38, which are also used for the treatment of lymphoma and SCLC, significantly increased the uPA accumulation in the conditioned media of both cells in a dose-dependent manner. The maximum induction of uPA mRNA levels was observed 24 h after stimulation. Pretreatment with pyrrolidine dithiocarbamate (PDTC), an anti-oxidant, inhibited the CPT-induced uPA mRNA expression. Thus, CPT induces uPA through gene expression, and, therefore, CPT may influence the tumor-cell biology by up-regulating the uPA/plasmin system.

  5. Induction of the LRP16 gene by estrogen promotes the invasive growth of Ishikawa human endometrial cancer cells through the downregulation of E-cadherin

    Institute of Scientific and Technical Information of China (English)

    Yuan Guang Meng; Wei Dong Han; Ya Li Zhao; Ke Huang; Yi Ling Si; Zhi Qiang Wu; Yi Ming Mu

    2007-01-01

    LRP16 was previously identified as an estrogen-induced gene in breast cancer cells.The responsiveness of LRPl6to estrogen and its functional effects in endometrial cancer(EC)cells are still unclear.Here,we show that the mRNAlevel and promoter activity of the LRP16 gene were significantly increased by 17β-estradiol(E2)in estrogen receptorα(ERα)-positive Ishikawa human EC cells.Although the growth rate of Ishikawa cells was not obviously affected byectopic expression of LIP16,the results of a Transwell assay showed an approximate one-third increase of the invasivecapacity of LRP16-overexpressing cells.As a result of molecular screening,we observed that the expression of E-cadherin,an essential adhesion molecule associated with tumor metastasis,was repressed by LRP16.Further promoter analysesdemonstrated that LRP16 inhibited E-cadherin transactivation in a dose-dependent manner.However,the inhibition wasabolished by estrogen deprivation.indicating that the downregulation of E-cadherin transcription by LRP16 requiresERa mediation.Chromatin immunoprecipitation analyses revealed that the binding of ERa to the E-cadherin promoterwas antagonized by LRP16,suggesting that LRP16 could interfere with ERα-mediated transcription.These results sug-gest that the upregulation of LRP16 by estrogen could be involved in invasive growth by downregulating E-cadherin inhuman ECs.

  6. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Advanced Scientific Research Leader Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ota, Ichiro; Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Mori, Eiichiro [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Noda, Taichi [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Furusawa, Yoshiya [Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kirita, Tadaaki [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Takeo, E-mail: tohnishi@naramed-u.ac.jp [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  7. Mutator gene and hereditary non-polyposis colorectal cancer

    Science.gov (United States)

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    2008-02-05

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  8. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each p...... with a high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC.......Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  9. Construction of human liver cancer vascular endothelium cDNA expression library and screening of the endothelium-associated antigen genes

    Institute of Scientific and Technical Information of China (English)

    Xing Zhong; Yu-Liang Ran; Jin-Ning Lou; Dong Hu; Long Yu; Yu-Shan Zhang; Zhuan Zhou; Zhi-Hua Yang

    2004-01-01

    AIM: To gain tumor endothelium associated antigen genes from human liver cancer vascular endothelial cells (HLCVECs)cDNA expression library, so as to find some new possible targets for the diagnosis and therapy of liver tumor.METHODS: HLCVECs were isolated and purified from a fresh hepatocellular carcinoma tissue sample, and were cultured and proliferated in vitro. A cDNA expression library was constructed with the mRNA extracted from HLCVECs.Anti-sera were prepared from immunized BALB/c mice through subcutaneous injection with high dose of fixed HLCVECs, and were then tested for their specificity against HLCVECs and angiogenic effectsin vitro, such as inhibiting proliferation and inducing apoptosis of tumor endothelial cells, using immunocytochemistry, immunofiuorescence,cell cycle analysis and MTT assays, etc. The identified xenogeneic sera from immunized mice were employed to screen the library of HLCVECs by modified serological analyses of recombinant cDNA expression libraries (SEREX).The positive clones were sequenced and analyzed by bioinformatics.RESULTS: The primary cDNA library consisted of 2x106recombinants. Thirty-six positive clones were obtained from6×10s independent clones by immunoscreening. Bio-informatics analysis of cDNA sequences indicated that 36 positive clones represented 18 different genes. Among them, 3 were new genes previously unreported, 2 of which were hypothetical genes. The other L5 were already known ones. Series analysis of gene expression (SAGE) database showed that ERP70,GRP58, GAPDH, SSB, S100A6, BMP-6, DVS27, HSP70 and NAC alpha in these genes were associated with endothelium and angiogenesis, but their effects on HLCVECs were still unclear. GAPDH, S100A6, BMP-6 and hsp70 were identified by SEREX in other tumor cDNA expression libraries.CONCLUSION: By screening of HLCVECs cDNA expression library using sera from immunized mice with HLCVECs,the functional genes associated with tumor endothelium or angiogenesis were identified. The

  10. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  11. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-08-02

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. The protective role of the -1306C>T functional polymorphism in matrix metalloproteinase-2 gene is associated with cervical cancer: implication of human papillomavirus infection.

    Science.gov (United States)

    Singh, Neha; Hussain, Showket; Sharma, Upma; Suri, Vanita; Nijhawan, Raje; Bharadwaj, Mausumi; Sobti, R C

    2016-04-01

    Cervical cancer is the major reproductive health problem among women caused by persistent infection of high-risk human papillomavirus (HR-HPV). Metalloproteinase-2 (MMP-2) is an endopeptidase highly expressed in cervical cancer; however, the genetic link between aberrant expression of MMP-2 and cervical carcinogenesis is not known. The genotypic distribution, expression pattern of MMP-2 and HPV infection, was analyzed in a total of 300 fresh surgically resected cervical tissue biopsies. The MMP-2 C1306T (rs243865) promoter polymorphism dominant model (CC v/s CT + CT + TT) revealed that the CC genotype had a 4.33-fold significant increased risk for development of cervical cancer (OR = 4.33; 95 % CI = 2.36-4.02, p = 0.0001) compared to those with variant genotypes (-1306 CT + TT). The C allele was associated with 3-fold significant increased risk (OR = 2.95; 95 % CI = 1.90-4.60, p = 0.0002) compared to T allele. Interestingly, a significant correlation was found between high expression of MMP-2 protein and CC genotype in cancer patients (p = 0.001) compared to normal controls (p = 0.012). Further analysis showed that the risk of cancer was extremely pronounced in HPV positive patients (OR = 9.33; 95 % CI = 2.88-30.20, p = 0.0001) compared to HPV negative ones, implicating the possible interaction between -1306CC genotype and HPV infection in increasing the cancer risk (p = 0.0001). The leads from the present study suggest the protective role of gene variant -1306C>T at the promoter region of the MMP-2 against HPV-mediated cervical cancer. These findings substantiate the functional role of MMP-2 C1306T polymorphism in a significant downregulation of MMP-2 protein in women with variant genotype (CT/TT) compared to the normal wild CC genotype.

  14. A STUDY OF MULTI-GENE EXPRESSION IN THE HIGHLY METASTASIZING HUMAN OVARIAN CANCER CELL LINE HO-8910PM AND ITS MOTHER CELL LINE HO-8910

    Institute of Scientific and Technical Information of China (English)

    Ni Xinghao; Xu Shenhua; Wu Xiongwei; Zhang Gu; Qian Lijuan; Gao Yongliang

    1998-01-01

    Objective: To investigate multi-gene expression in the highly metastasizing human ovarian cancer cell line HO8910PM and its mother cell line HO-8910. Method: The expression of 9 kinds of gene products in HO-8910PM and its mother cell line HO-8910 was detected by S-P immunohistochemical method. Result: Eight kinds oncogene products showed various degrees of positive expression in both HO-8910PM and HO-8910 cell lines except gene bax. The expression of P53, Cyclin D1, CD44v6 and EGFR in HO-8910PM was stronger than that in HO-8910. However, the expression of P16, nm23 in HO8910PM was weaker than that in HO-8910. There was no significant difference on the expression of C-erbB-2 and bcl-2 between the two cell lines. Conclusion: Stronger invasive and metastatic patential is found in HO-8910PM than that in HO-8910. Carcinogenesis is a result of multioncogene and multiple step process cooperation.

  15. Construction of cDNA representational difference analysis based on two cDNA libraries and identification of garlic inducible expression genes in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong Li; Lin Yang; Jian-Tao Cui; Wen-Mei Li; Rui-Fang Guo; You-Yong Lu

    2002-01-01

    AIM: To elucidate molecular mechanism of chemopreventiveefficacies of garlic against human gastric cancer (HGC):METHODS: HGC cell line BGC823 was treated with Allitridi (akind of garlic extract) and Allitridi-treated and parentalBGC823 cDNA librarles were constructed respectively byusing λZAP Ⅱ vector. cDNA Representatinal DifferenceAnalysis (cDNA RDA) was perfonmed using BamH Ⅰ cutting-site and abundant ~DNA messages provided by the Iibrarles.Northern blot analysls was applied to identifythe obtaineddifference prnducts.RESULTS: Two specific cDNA fragments were obtained andcharacterized to be derived from homo sapiens folatereceptorα (FRα) gene and calcyclin gene respectively.Northern blot results showed a 4-fold increase in FRα geneexpression level and 9-fold increase in calcyclin mRNA levelin BGC823 cells after Allilridi treatment for 72 h.CONCLUSION: The method of cDNA RDA based on cDNAlibraries combines the high specificity of cDNA RDA withabundant cDNA messages in cDNA library; this expands theapplication of cDNA library and increases the specificity ofcDNA RDA. Up-regulstion of FRα gene and calcyclin geneexpressions induced by Allitridi provide valuable molecularevidence for theefficacy of garlic in treating HGC as well asother diseases.

  16. Upregulation of autophagy-related gene-5 (ATG-5 is associated with chemoresistance in human gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jie Ge

    Full Text Available Autophagy-related gene-5 (ATG-5 is one of the key regulators of autophagic cell death. It has been widely regarded as a protective molecular mechanism for tumor cells during the course of chemotherapy. In the present study, we investigated the expression pattern of ATG-5 and multidrug resistance-associated protein-1 (MRP-1 in 135 gastric cancers (GC patients who were treated with epirubicin, cisplatin and 5-FU adjuvant chemotherapy (ECF following surgical resection and explored their potential clinical significance. We found that both ATG-5 (77.78% and MRP-1 (79.26% were highly expressed in GC patients. ATG-5 expression was significantly associated with depth of wall invasion, TNM stages and distant metastasis of GC (P<0.05, whereas MRP-1 expression was significantly linked with tumor size, depth of wall invasion, lymph node metastasis, TNM stages and differentiation status (P<0.05. ATG-5 expression was positively correlated with MRP-1 (rp = 0.616, P<0.01. Increased expression of ATG-5 and MPR-1 was significantly correlated with poor overall survival (OS; P<0.01 and disease free survival (DFS; P<0.01 of our GC cohort. Furthermore, we demonstrated that ATG-5 was involved in drug resistant of GC cells, which was mainly through regulating autophagy. Our data suggest that upregulated expression of ATG-5, an important molecular feature of protective autophagy, is associated with chemoresistance in GC. Expression of ATG-5 and MRP-1 may be independent prognostic markers for GC treatment.

  17. Knockdown of astrocyte elevated gene-1 inhibits tumor growth and modifies microRNAs expression profiles in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sujun [East Department of Gastroenterology, Institute of Geriatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080 (China); Southern Medical University, Guangzhou, Guangdong 510515 (China); Wu, Binwen, E-mail: wubinwengd@aliyun.com [East Department of Gastroenterology, Institute of Geriatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080 (China); Li, Dongfeng; Zhou, Weihong; Deng, Gang; Zhang, Kaijun; Li, Youjia [East Department of Gastroenterology, Institute of Geriatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080 (China)

    2014-02-14

    Highlights: • AEG-1 expression in CRC cell lines and down-regulation or upregulation of AEG-1 in vitro. • Knockdown of AEG-1 inhibits cell proliferation, colony formation and invasion. • Upregulation of AEG-1 enhances proliferation, invasion and colony formation. • Knockdown of AEG-1 accumulates G0/G1-phase cells and promotes apoptosis in CRC cells. • AEG-1 knockdown increases 5-FU cytotoxicity. - Abstract: Astrocyte elevated gene-1 (AEG-1), upregulated in various types of malignancies including colorectal cancer (CRC), has been reported to be associated with the carcinogenesis. MicroRNAs (miRNAs) are widely involved in the initiation and progression of cancer. However, the functional significance of AEG-1 and the relationship between AEG-1 and microRNAs in human CRC remains unclear. The aim of this study was to investigate whether AEG-1 could serve as a potential therapeutic target of human CRC and its possible mechanism. We adopted a strategy of ectopic overexpression or RNA interference to upregulate or downregulate expression of AEG-1 in CRC models. Their phenotypic changes were analyzed by Western blot, MTT and transwell matrix penetration assays. MicroRNAs expression profiles were performed using microarray analysis followed by validation using qRT-PCR. Knockdown of AEG-1 could significantly inhibit colon cancer cell proliferation, colony formation, invasion and promotes apoptosis. Conversely, upregulation of AEG-1 could significantly enhance cell proliferation, invasion and reduced apoptisis. AEG-1 directly contributes to resistance to chemotherapeutic drug. Targeted downregulation of AEG-1 might improve the expression of miR-181a-2{sup ∗}, -193b and -193a, and inversely inhibit miR-31 and -9{sup ∗}. Targeted inhibition of AEG-1 can lead to modification of key elemental characteristics, such as miRNAs, which may become a potential effective therapeutic strategy for CRC.

  18. Report: Human cancer genetics

    Institute of Scientific and Technical Information of China (English)

    LI Marilyn; ALBERTSON Donna

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  19. Human cancer genetics*

    OpenAIRE

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  20. Differential Gene Expression of BRCA1,ERBB2 and TP53 biomarkers between Human Breast Tissue and Peripheral Blood Samples of Breast Cancer.

    Science.gov (United States)

    Zghair, Abdulrazzaq Neamah; Sinha, Deepak Kumar; Kassim, Arkan; Alfaham, Mohmmad; Sharma, Anil K

    2016-01-01

    Breast cancer is a most common malignancy especially in Iraqi women accounting for high morbidity and mortality. Mutations in BRCA1 gene is one of the important genetic predisposing factors inbreast cancer. Similarly ERBB2 and TP53 are also key prognostic markers in breast cancer treatment.We were interested to explore the gene expression profiles of BRCA1, ERBB2 and TP53 in breast cancer women patients from Iraq so as to assess the potential of such markers in breast cancer treatment. The mRNA levels were significantly over-expressed in tumor tissues in comparison to normal ones with p values (pTP53 and benign tissue samples as well. However in blood samples, no considerable expression of these markers was observed. Out of three selected genes, ERBB2 expression was significantly expressed in comparison to BRCA1 and TP53 in cancer tissue. Mutation analysis of BRCA1, ERBB2 and TP53 has been made to find out the region most susceptible to mutations in these genes The BRCA1 exon 11, ERBB2 16 and TP53 exon 5 displayed increased chances of having mutations. We can conclude from the study that differential gene expression of BRCA1, ERBB2 and TP53 at mRNA levels may act as a diagnostic marker of circulating tumor cells having important prognostic value in breast cancer patients.

  1. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Terp, Mikkel Green; Christensen, Anne G

    2012-01-01

    The CD44(hi) compartment in human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. We used a triple-negative breast cancer cell line with a known bi-lineage phenotype to isolate and clone CD44(hi) single......-cells that exhibited mesenchymal/Basal B and luminal/Basal A features, respectively. Herein we demonstrate in this and other triple-negative breast cancer cell lines that rather than CD44(hi)/CD24(-) mesenchymal-like Basal B cells, the CD44(hi)/CD24(lo) epithelioid Basal A cells retained classical cancer stem cell...... of estrogen receptor-negative human breast cancers. These findings strongly favor functional heterogeneity in the breast cancer cell compartment and hold promise for further refinements of prognostic marker profiling. Our work confirms that, in addition to cancer stem cells with mesenchymal-like morphology...

  2. Search for new breast cancer susceptibility genes

    NARCIS (Netherlands)

    Oldenburg, Rogier Abel

    2008-01-01

    This thesis describes the search for new high-risk breast cancer susceptibility genes by linkage analysis. To date 20-25% of familial breast cancer is explained by mutations in the high-risk BRCA1 and BRCA2 breast cancer susceptibility genes. For the remaining families the genetic etiology is unknow

  3. Search for new breast cancer susceptibility genes

    NARCIS (Netherlands)

    Oldenburg, Rogier Abel

    2008-01-01

    This thesis describes the search for new high-risk breast cancer susceptibility genes by linkage analysis. To date 20-25% of familial breast cancer is explained by mutations in the high-risk BRCA1 and BRCA2 breast cancer susceptibility genes. For the remaining families the genetic etiology is

  4. Search for new breast cancer susceptibility genes

    NARCIS (Netherlands)

    Oldenburg, Rogier Abel

    2008-01-01

    This thesis describes the search for new high-risk breast cancer susceptibility genes by linkage analysis. To date 20-25% of familial breast cancer is explained by mutations in the high-risk BRCA1 and BRCA2 breast cancer susceptibility genes. For the remaining families the genetic etiology is unknow

  5. Effects of adenoviral-mediated gene transduction of NK4 on proliferation, movement, and invasion of human colonic LS174T cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jian-Zheng Jie; Jian-Wei Wang; Jian-Guo Qu; Wei Wang; Tao Hung

    2006-01-01

    AIM: To investigate the inhibitory effects of a recombinant adenovirus vector that expresses NK4,a truncated form of human hepatocyte growth factor (HGF), on human colonic adenocarcinoma cells in vitro to establish a basis for future NK4 gene cancer therapy.METHODS: Cells from the LS174T human colonic adenocarcinoma cell line were infected with recombinant adenovirus rvAdCMV/NK4 and the effects of the manipulation on tumor cell proliferation, scatter,migration, and basement membrane invasion were assessed. Cells infected with a recombinant adenovirus vector (Ad-LacZ) expressing β-galactosidase served as the controls.RESULTS: We found that rvAdCMV/NK4 expression attenuated HGF-induced tumor cell scatter, migration,and basement membrane invasion (P < 0.05), but did not inhibit tumor cell proliferation.CONCLUSION: HGF-induced LS174T tumor cell scatter,migration, and invasion can be antagonized by the recombinant NK4-expressing adenovirus.

  6. Oncopression: gene expression compendium for cancer with matched normal tissues.

    Science.gov (United States)

    Lee, Jungsul; Choi, Chulhee

    2017-07-01

    Expression profile of normal tissue is primary source to find genes showing aberrant expression pattern specific in matched cancer tissue, but sample number of normal control in public gene expression repositories is disproportionally small compared to cancer and scattered in several datasets. We built oncopression by integrating several datasets into one large dataset for comprehensive analysis about 25 types of human cancers including 20 640 cancer samples and 6801 normal control profiles. Expression profiles in cancers can be directly compared to normal tissue counterparts. Validity of the integration was tested using immunohistochemical staining results and principal component analysis. We have utilized the pre-release version of oncopression to identify cancer-specific genes in several studies. Free access at http://www.oncopression.com and all expression data are available for download at the site. cchoi@kaist.ac.kr or jungsullee@gmail.com. Supplementary data are available at Bioinformatics online.

  7. Gene expression profiles in liver cancer and normal liver tissues

    Institute of Scientific and Technical Information of China (English)

    Lian Xin Liu; Hong Chi Jiang; An Long Zhu; Jin Zhou; Xiu Qin Wang; Min Wu

    2000-01-01

    AIM To describe a liver cancer = specific gene expression profile and to identify genes that showed alteredexpression between liver cancer tissues and their adjacent nearly normal tissues.METHODS The cDNA probes which were labeled with a-32P dATP were synthesized from total RNA ofliver cancer and adjacent normal tissues and hybridized separately to two identical Atlas human cancer eDNAexpression array membranes containing 588 known genes.RESULTS Autoradiographic results were analyzed by specific Atlas ImageTM (version 1. 0) software.Among the 588 genes analyzed, 18 genes were found up-regulated in cancer, including TFDP2, Aktl, E2F-3etc, and 25 genes were down-regulated in cancer, including TDGF1, BAK, LAR, etc. Expression levels ofgenes that associated with the regulation of cell proliferation, apoptosis, differentiation, cell-cellinteraction, invasion regulators and eytokines altered mostly.CONCLUSION The result obtained from Atlas microarray provides a comprehensive liver cancer-specificexpression profile. The results can lead to the identification of liver cancer-specific biomarkers and may behelpful in early diagnosis and dentifiction of target genes for designing rational therapeutic strategies.

  8. Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2 encoding tRNase Z

    Directory of Open Access Journals (Sweden)

    Chen Yuan

    2005-05-01

    Full Text Available Abstract Background In humans, mutation of ELAC2 is associated with an increased risk of prostate cancer. ELAC2 has been shown to have tRNase Z activity and is associated with the γ-tubulin complex. Results In this work, we show that the yeast homolog of ELAC2, encoded by TRZ1 (tRNase Z 1, is involved genetically in RNA processing. The temperature sensitivity of a trz1 mutant can be rescued by multiple copies of REX2, which encodes a protein with RNA 3' processing activity, suggesting a role of Trz1p in RNA processing in vivo. Trz1p has two putative nucleotide triphosphate-binding motifs (P-loop and a conserved histidine motif. The histidine motif and the putative nucleotide binding motif at the C-domain are important for Trz1p function because mutant proteins bearing changes to the critical residues in these motifs are unable to rescue deletion of TRZ1. The growth defect exhibited by trz1 yeast is not complemented by the heterologous ELAC2, suggesting that Trz1p may have additional functions in yeast. Conclusion Our results provide genetic evidence that prostate cancer susceptibility gene ELAC2 may be involved in RNA processing, especially rRNA processing and mitochondrial function.

  9. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Munawwar Ali Khan

    2015-01-01

    Full Text Available Sulforaphane (SFN may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs and histone deacetylases (HDACs were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.

  10. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells.

    Science.gov (United States)

    Ali Khan, Munawwar; Kedhari Sundaram, Madhumitha; Hamza, Amina; Quraishi, Uzma; Gunasekera, Dian; Ramesh, Laveena; Goala, Payal; Al Alami, Usama; Ansari, Mohammad Zeeshan; Rizvi, Tahir A; Sharma, Chhavi; Hussain, Arif

    2015-01-01

    Sulforaphane (SFN) may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM) for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs) was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs) and histone deacetylases (HDACs) were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.

  11. Gene Therapy In Oral Cancer : An Overview

    OpenAIRE

    2010-01-01

    The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  12. Combined therapy using suicide gef gene and paclitaxel enhances growth inhibition of multicellular tumour spheroids of A-549 human lung cancer cells.

    Science.gov (United States)

    Prados, Jose; Melguizo, Consolacion; Rama, Ana; Ortiz, Raul; Boulaiz, Houria; Rodriguez-Serrano, Fernando; Caba, Octavio; Rodriguez-Herva, Jose Juan; Ramos, Juan Luis; Aranega, Antonia

    2008-07-01

    The low efficiency of conventional therapies in achieving long-term survival of lung cancer patients calls for development of novel options. The potential use of combined gene therapy is under intensive study. One approach uses the expression of genes encoding cytotoxic proteins that affect cellular viability. The gef gene from E. coli, identified as a member of a gene family encoding homologous cell-killing functions, encodes for a membrane protein with a toxic domain which leads to a decrease in the rate of tumour cell growth. To improve the antitumoral effect of the paclitaxel in lung cancer cells, we investigated a combined suicide gene therapy using this drug and gef gene in vitro, using A-549 lung cancer cells in culture and forming multicellular tumour spheroids (MTS). Our results showed that gef expression in A-549 cells led to an ultrastructural changes, including dilated mitochondria with clear matrices and disrupted cristae and cell surface alterations such as reduction in length and number of microvilli and cytoplasmic membrane evaginations. The use of paclitaxel in A-549 lung cancer cells transfected with gef gene enhanced the chemotherapeutic effect of this drug. Volume analyses showed an 87.4% decrease in the A-549 MTS growth after 96 h in comparison with control MTS. This inhibition was greater than that obtained using the gene therapy or chemotherapy alone. In conclusion, gef gene has a cytotoxic effect in lung cancer cells and enhances cell growth inhibition when used with paclitaxel. These results indicate that this combined therapy may be of potential therapeutic value in lung cancer.

  13. TP53 mutations, expression and interaction networks in human cancers.

    Science.gov (United States)

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  14. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells.

    Science.gov (United States)

    Li, Kai-Ting; Duan, Qin-Qin; Chen, Qing; He, Juan-Wen; Tian, Si; Lin, Hai-Dan; Gao, Qing; Bai, Ding-Qun

    2016-02-01

    Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)-encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm(2) ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human

  15. Gene conversion in human rearranged immunoglobulin genes.

    Science.gov (United States)

    Darlow, John M; Stott, David I

    2006-07-01

    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

  16. Endogenous retroviral promoter exaptation in human cancer

    Directory of Open Access Journals (Sweden)

    Artem Babaian

    2016-12-01

    Full Text Available Abstract Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.

  17. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  18. HUMAN PROSTATE CANCER RISK FACTORS

    Science.gov (United States)

    Prostate cancer has the highest prevalence of any non-skin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating an...

  19. Gene silencing of Toll-like receptor 2 inhibits proliferation of human liver cancer cells and secretion of inflammatory cytokines.

    Directory of Open Access Journals (Sweden)

    Yuzheng Huang

    Full Text Available BACKGROUND: Toll-like receptors (TLRs are key factors in the innate immune system and initiate the inflammatory response to foreign pathogens such as bacteria, fungi and viruses. In the microenvironment of tumorigenesis, TLRs can promote inflammation and cell survival. Toll-like receptor 2/6 (TLR2/6 signaling in tumor cells is regarded as one of the mechanisms of chronic inflammation but it can also mediate tumor cell immune escape and tumor progression. However, the expression of TLR2 and its biological function in the development and progression of hepatocarcinoma have not been investigated. This study aimed to determine the expression of TLRs 1-10 in the established human hepatocellular carcinoma cell line BLE-7402, to investigate the biological effect of TLR2 on cell growth and survival. METHODS: TLR expression in BLE-7402 cells was assayed by RT-PCR, real-time PCR and flow cytometry (FCM. To further investigate the function of TLR2 in hepatocarcinoma growth, BLE-7402 cells were transfected with recombinant plasmids expressing one of three forms of TLR2 siRNA (sh-TLR2 RNAi(A, B and C. TLR2 knockdown was confirmed using RT-PCR, real-time PCR and fluorescence microscopy. Tumor cell proliferation was monitored by MTT assay and secreted cytokines in the supernatant of transfected cells were measured by bead-based FCM, the function of TLR2 siRNA was also investigated in vivo. RESULTS: The BLE-7402 cell line expressed TLRs 2 to 10 at both mRNA and protein levels. TLR2 was the most highly expressed TLR. While all the three siRNAs inhibited TLR2 mRNA and protein expression, sh-TLR2 RNAi(B had the strongest knockdown effect. TLR2 knockdown with sh-TLR2 RNAi(B reduced cell proliferation. Furthermore, secretion of IL-6 and IL-8 was also reduced. The result showed a drastic reduction in tumor volume in mice treated with sh-TLR2 RNAi(B. DISCUSSION: These results suggest that TLR2 knockdown inhibit proliferation of cultured hepatocarcinoma cells and

  20. Reg gene family and human diseases

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Zhang; Liu-Song Ding; Mao-De Lai

    2003-01-01

    Regenerating gene (Reg or REG) family, within the superfamily of C-type lectin, is mainly involved in the liver,pancreatic, gastric and intestinal cell proliferation or differentiation. Considerable attention has focused on Reg family and its structurally related molecules. Over the last 15 years, 17 members of the Reg family have been cloned and sequenced. They have been considered as members of a conserved protein family sharing structural and some functional properties being involved in injury, inflammation,diabetes and carcinogenesis. We previously identified Reg Ⅳ as a strong candidate for a gene that was highly expressed in colorectal adenoma when compared to normal mucosa based on suppression subtractive hybridization (SSH),reverse Northern blot, semi-quantitative reverse transcriptase PCR (RT-PCR)and Northern blot. In situ hybridization results further support that overexpression of Reg Ⅳ may be an early event in colorectal carcinogenesis. We suggest that detection of Reg Ⅳ overexpression might be useful in the early diagnosis of carcinomatous transformation of adenoma.This review summarizes the roles of Reg family in diseases in the literature as well as our recent results of Reg Ⅳ in colorectal cancer. The biological properties of Reg family and its possible roles in human diseases are discussed. We particularly focus on the roles of Reg family as sensitive reactants of tissue injury, prognostic indicators of tumor survival and early biomarkers of carcinogenesis. In addition to our current understanding of Reg gene functions, we postulate that there might be relationships between Reg family and microsatellite instability, apoptosis and cancer with a poor prognosis. Investigation of the correlation between tumor Reg expression and survival rate, and analysis of the Reg gene status in human maliganancies, are required to elucidate the biologic consequences of Reg gene expression, the implications for Reg gene regulation of cell growth, tumorigenesis

  1. Can Genomic Amplification of Human Telomerase Gene and C-MYC in Liquid-Based Cytological Specimens Be Used as a Method for Opportunistic Cervical Cancer Screening?

    Science.gov (United States)

    Gao, Kun; Eurasian, Menglan; Zhang, Jieqing; Wei, Yuluan; Zheng, Qian; Ye, Hongtao; Li, Li

    2015-01-01

    To evaluate the effectiveness of five methods including the ThinPrep cytological test (TCT), liquid-based cytology, the human papillomavirus (HPV) test, detection of the TERC and C-MYC genes and visual inspection with acetic acid/Lugol's iodine (VIA/VILI) for opportunistic cervical cancer screening, and to explore whether genomic amplification of the human telomerase gene and C-MYC in liquid-based cytological specimens can be used as a method for opportunistic cervical cancer screening. Data were collected prospectively from 1,010 consecutive patients who visited the gynecology clinic and agreed to participate in opportunistic cervical cancer screening at our institution from November 2010 to July 2011. The five methods mentioned above were used for the screening in all cases. The histopathological diagnosis served as the gold standard for the evaluation. A comparison between the five screening methods for the diagnosis of high-grade cervical intraepithelial neoplasia (CIN II and III) was performed for their sensitivity, specificity, false-positive rate, false-negative rate, accuracy rate, positive likelihood ratio and negative likelihood ratio. A comprehensive comparison of the different combination programs for screening was performed according to the analysis of the receiver operating characteristic (ROC) curve area. The accuracy of the five screening methods for the diagnosis of high-grade CIN (CIN II and III) was compared in the different age groups. A joint model for the diagnosis using different combinations of the five methods was developed according to the analysis by the SAS 8.0 software. The model was used to evaluate the accuracy of the different combination programs for the diagnosis of high-grade CIN, and the results were confirmed by the histopathological examination. The sensitivity and specificity of the single screen method (TCT, HPV test, detection of the TERC and C-MYC genes, and VIA/VILI method) for CIN II was 80.9, 70.2, 72.3, 76.6, and 72

  2. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    Science.gov (United States)

    2015-12-01

    SMART -seq 2 protocol to prepare cDNA libraries . Sequencing of these libraries is currently in progress. 2g. Cells will be sorted using population...cell capture and library preparation system to improve reproducibility in the generation of gene expression profiles from individual fMaSC. These...each predicted a higher likelihood of response, while stromal and luminal features predicted a lower response rate. D) The list of genes in the fMaSC

  3. Gene expression profiling of breast cancer in Lebanese women

    Science.gov (United States)

    Makoukji, Joelle; Makhoul, Nadine J.; Khalil, Maya; El-Sitt, Sally; Aldin, Ehab Saad; Jabbour, Mark; Boulos, Fouad; Gadaleta, Emanuela; Sangaralingam, Ajanthah; Chelala, Claude; Boustany, Rose-Mary; Tfayli, Arafat

    2016-01-01

    Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER®/Pathway Studio®. Many of the deregulated genes are associated with extracellular matrix, inflammation, angiogenesis, metastasis, differentiation, cell proliferation and tumorigenesis. Characteristics of breast cancers in Lebanese were compared to those of women from Western populations to explain why breast cancer is more aggressive and presents a decade earlier in Lebanese victims. Delineating molecular mechanisms of breast cancer in Lebanese women led to key genes which could serve as potential biomarkers and/or novel drug targets for breast cancer. PMID:27857161

  4. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  5. Up-regulation of glutathione-related genes, enzyme activities and transport proteins in human cervical cancer cells treated with doxorubicin.

    Science.gov (United States)

    Drozd, Ewa; Krzysztoń-Russjan, Jolanta; Marczewska, Jadwiga; Drozd, Janina; Bubko, Irena; Bielak, Magda; Lubelska, Katarzyna; Wiktorska, Katarzyna; Chilmonczyk, Zdzisław; Anuszewska, Elżbieta; Gruber-Bzura, Beata

    2016-10-01

    Doxorubicin (DOX), one of the most effective anticancer drugs, acts in a variety of ways including DNA damage, enzyme inhibition and generation of reactive oxygen species. Glutathione (GSH) and glutathione-related enzymes including: glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferases (GST) may play a role in adaptive detoxification processes in response to the oxidative stress, thus contributing to drug resistance phenotype. In this study, we investigated effects of DOX treatment on expression and activity of GSH-related enzymes and multidrug resistance-associated proteins in cultured human cervical cancer cells displaying different resistance against this drug (HeLa and KB-V1). Determination of expression level of genes encoding GST isoforms and MRP proteins (GCS, GPX, GSR, GSTA1-3, GSTM1, GSTP1, ABCC1-3, MGST1-3) was performed using StellARray™ Technology. Enzymatic activities of GPX and GSR were measured using biochemical methods. Expression of MRP1 was examined by immunofluorescence microscopy. This study showed that native expression levels of GSTM1 and GSTA3 were markedly higher in KB-V1 cells (2000-fold and 200-fold) compared to HeLa cells. Resistant cells have also shown significantly elevated expression of GSTA1 and GSTA2 genes (200-fold and 50-fold) as a result of DOX treatment. In HeLa cells, exposure to DOX increased expression of all genes: GSTM1 (7-fold) and GSTA1-3 (550-fold, 150-fold and 300-fold). Exposure to DOX led to the slight increase of GCS expression as well as GPX activity in KB-V1 cells, while in HeLa cells it did not. Expression of ABCC1 (MRP1) was not increased in any of the tested cell lines. Our results indicate that expression of GSTM1 and GSTA1-3 genes is up-regulated by DOX treatment and suggest that activity of these genes may be associated with drug resistance of the tested cells. At the same time, involvement of MRP1 in DOX resistance in the given experimental conditions is unlikely

  6. N-myc downstream regulated gene 1 (NDRG1 promotes metastasis of human scirrhous gastric cancer cells through epithelial mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Hiroki Ureshino

    Full Text Available Our recent study demonstrated that higher expression of N-myc downregulated gene 1 (NDRG1 is closely correlated with poor prognosis in gastric cancer patients. In this study, we asked whether NDRG1 has pivotal roles in malignant progression including metastasis of gastric cancer cells. By gene expression microarray analysis expression of NDRG1 showed the higher increase among a total of 3691 up-regulated genes in a highly metastatic gastric cancer cell line (58As1 than their parental low metastatic counterpart (HSC-58. The highly metastatic cell lines showed decreased expression of E-cadherin, together with enhanced expression of vimentin and Snail. This decreased expression of E-cadherin was restored by Snail knockdown in highly metastatic cell lines. We next established stable NDRG1 knockdown cell lines (As1/Sic50 and As1/Sic54 from the highly metastatic cell line, and both of these cell lines showed enhanced expression of E-cadherin and decreased expression of vimentin and Snail. And also, E-cadherin promoter-driven luciferase activity was found to be increased by NDRG1 knockdown in the highly metastatic cell line. NDRG1 knockdown in gastric cancer cell showed suppressed invasion of cancer cells into surround tissues, suppressed metastasis to the peritoneum and decreased ascites accumulation in mice with significantly improved survival rates. This is the first study to demonstrate that NDRG1 plays its pivotal role in the malignant progression of gastric cancer through epithelial mesenchymal transition.

  7. State-of-the-art human gene therapy: part I. Gene delivery technologies.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-01-01

    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  8. Epigenetic changes in virus-associated human cancers

    Institute of Scientific and Technical Information of China (English)

    Hsin Pai LI; Yu Wei LEU; Yu Sun CHANG

    2005-01-01

    Epigenetics of human cancer becomes an area of emerging research direction due to a growing understanding of specific epigenetic pathways and rapid development of detection technologies. Aberrant promoter hypermethylation is a prevalent phenonmena in human cancers. Tumor suppressor genes are often hypermethylated due to the increased activity or deregulation of DNMTs. Increasing evidence also reveals that viral genes are one of the key players in regulating DNA methylation. In this review, we will focus on hypermethylation and tumor suppressor gene silencing and the signal pathways that are involved, particularly in cancers closely associated with the hepatitis B virus, simian virus 40 (SV40), and Epstein-Barr virus. In addition, we will discuss current technologies for genome-wide detection of epigenetically regulated targets, which allow for systematic DNA hypermethylation analysis. The study of epigenetic changes should provide a global view of gene profile in cancer, and epigenetic markers could be used for early detection,prognosis, and therapy of cancer.

  9. Human papilloma viruses (HPV and breast cancer.

    Directory of Open Access Journals (Sweden)

    James Sutherland Lawson

    2015-12-01

    Full Text Available Purpose: Human papillomaviruses (HPV may have a role in some breast cancers. The purpose of this study is to fill important gaps in the evidence. These gaps are: (i confirmation of the presence of high risk for cancer HPVs in breast cancers, (ii evidence of HPV infections in benign breast tissues prior to the development of HPV positive breast cancer in the same patients, (iii evidence that HPVs are biologically active and not harmless passengers in breast cancer.Methods: RNA-seq data from The Cancer Genome Atlas (TCGA was used to identify HPV RNA sequences in breast cancers. We also conducted a retrospective cohort study based on polymerase chain reaction (PCR analyses to identify HPVs in archival specimens from Australian women with benign breast biopsies who later developed breast cancer. To assess whether HPVs in breast cancer were biologically active, the expression of the oncogenic protein HPV E7 was assessed by immunohistochemistry (IHC.Results: Thirty (3.5% low risk and 20 (2.3% high risk HPV types were identified in 855 breast cancers from the TCGA data base. The high risk types were HPV 18 (48%, HPV 113 (24%, HPV 16 (10%, HPV 52 (10%. Data from the PCR cohort study, indicated that HPV type 18 was the most common type identified in breast cancer specimens (55% of 40 breast cancer specimens followed by HPV 16 (13%. The same HPV type was identified in both the benign and subsequent breast cancer in 15 patients. HPV E7 proteins were identified in 72% of benign breast specimens and 59% of invasive breast cancer specimens.Conclusions: There were 4 observations of particular interest: (i confirmation by both NGS and PCR of the presence of high risk HPV gene sequences in breast cancers, (ii a correlation between high risk HPV in benign breast specimens and subsequent HPV positive breast cancer in the same patient, (iii HPVs in breast cancer are likely to be biologically active (as shown by transcription of HPV DNA to RNA plus the expression of

  10. An in vivo genetic screen in Drosophila identifies the orthologue of human cancer/testis gene SPO11 among a network of targets to inhibit lethal(3)malignant brain tumour growth.

    Science.gov (United States)

    Rossi, Fabrizio; Molnar, Cristina; Hashiyama, Kazuya; Heinen, Jan P; Pampalona, Judit; Llamazares, Salud; Reina, José; Hashiyama, Tomomi; Rai, Madhulika; Pollarolo, Giulia; Fernández-Hernández, Ismael; Gonzalez, Cayetano

    2017-08-01

    Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila. © 2017 The Authors.

  11. Studies on microsatellite instability in p16 gene and expression of hMSH2 mRNA in human gastric cancer tissues

    Institute of Scientific and Technical Information of China (English)

    Qin-Xian Zhang; Yi Ding; Xiao-Ping Le; Peng Du

    2003-01-01

    AIM: To detect the loss of heterozygosity (LOH) frequency of microsatellite sites D9s171, D9s1604 of p16 gene and expression of hMSH2 mRNA in various differentiated types of gastric cancer, adjacent cancer tissues and normal gastric mucosa.METHODS: LOH was detected by polymerase chain reaction (PCR)-denaturing polyacrylamide gel electrophoresis-silver staining. The expression of hMSH2 mRNA was examined with in situ hybridization.RESULTS: The frequency rate of LOH was significantly higher in gastric cancers than that in adjacent cancer tissues (P=0.032). No significant difference was noted among various differentiated types and various clinical stages of gastric cancers. The significantly reduced expression of hMSH2mRNA positive signal cells exhibited in gastric cancers, in comparison with that in the adjacent cancer tissues and normal gastric mucosa, respectively (P=0.001). No significant difference was noted among various clinical stages of gastric cancers (P>0.05). The difference of positive signal cells in poorly differentiated cancers and those in well and moderately differentiated cancers were significant (P<0.001).CONCLUSION: The frequencies of LOH in two microsatellite sites, D9s171 and D9s1604, in p16 genome were associated with development of gastric cancer and no significant correlation was demonstrated between the LOH frequency and the cell differentiated types of tumor cells or clinical stages. There was a positive relationship between the expression of hMSH2 mRNA and the differentiated types of gastric cancer.

  12. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3

    Directory of Open Access Journals (Sweden)

    Zhu Liang

    2012-03-01

    Full Text Available Abstract Background Response gene to complement-32 (RGC-32 is comprehensively expressed in many kinds of tissues and has been reported to be expressed abnormally in different kinds of human tumors. However, the role of RGC-32 in cancer remains controversial and no reports have described the effect of RGC-32 in pancreatic cancer. The present study investigated the expression of RGC-32 in pancreatic cancer tissues and explored the role of RGC-32 in transforming growth factor-beta (TGF-β-induced epithelial-mesenchymal transition (EMT in human pancreatic cancer cell line BxPC-3. Methods Immunohistochemical staining of RGC-32 and E-cadherin was performed on specimens from 42 patients with pancreatic cancer, 12 with chronic pancreatitis and 8 with normal pancreas. To evaluate the role of RGC-32 in TGF-β-induced EMT in pancreatic cancer cells, BxPC-3 cells were treated with TGF-β1, and RGC-32 siRNA silencing and gene overexpression were performed as well. The mRNA expression and protein expression of RGC-32 and EMT markers such E-cadherin and vimentin were determined by quantitative reverse transcription-PCR (qRT-PCR and western blot respectively. Finally, migration ability of BxPC-3 cells treated with TGF-β and RGC-32 siRNA transfection was examined by transwell cell migration assay. Results We found stronger expression of RGC-32 and higher abnormal expression rate of E-cadherin in pancreatic cancer tissues than those in chronic pancreatitis tissues and normal pancreatic tissues. Immunohistochemical analysis revealed that both RGC-32 positive expression and E-cadherin abnormal expression in pancreatic cancer were correlated with lymph node metastasis and TNM staging. In addition, a significant and positive correlation was found between positive expression of RGC-32 and abnormal expression of E-cadherin. Furthermore, in vitro, we found sustained TGF-β stimuli induced EMT and up-regulated RGC-32 expression in BxPC-3 cells. By means of si

  13. Absence of point mutation in the 12th codon of transformed c-Ha-rasl genes of human cancer of the breast, stomach, melanoma, and neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, P.G.; Schafer, R.; Willecke, K.V.; Seitz, I.F.

    1985-11-01

    In the authors' previous investigations, they established that the tumorous cell lines SK-BR-3 (breast cancer), LAN-1 (neuroblastoma), and a heterotransplant of malignant melanoma Jal contain transforming genes of Ha-ras type. Now, the authors report their results using restriction endonucleases of MspI and HpaII restriction to study nucleotide sequences 5'-CCGGC-3' and 3'GGCCG-5', which contain the 12th codon of GGC for the amino acid glycine in the normal allele of c-Ha-rasl in the three tumors listed above, in addition to human adenocarcinoma of the stomach (CaVSt) and normal cells corresponding to them. For hybridization of MspI/HpaII, fragments of chromosomal DNA isolated from cell lines SK-BR-3, and LAN-1, Ja-1 heterotransplant, and stomach adenocarcinoma CaVSt, the XmaI section of EJ oncogene, c-Ha-rasl (plasmid pEJ 6.6), labeled with /sup 32/P was used in down-translation reaction. Hybridization was performed in 3 x SSC buffer containing 5x Deinhardt's reagent and 10% dextran sulfate at 68/sup 0/C for 16-18 h. Washing of filters was conducted under rigid conditions. For autoradiography, Kodak XR-5 x-ray film in cartridges with reinforcing shields was used at -70/sup 0/C, exposure time of four to six days.

  14. DDEC: Dragon database of genes implicated in esophageal cancer

    KAUST Repository

    Essack, Magbubah

    2009-07-06

    Background: Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. Description: Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new \\'association hypotheses\\' generated based on the precompiled reports. Conclusion: We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is

  15. Fatigue and gene expression in human leukocytes: increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue.

    Science.gov (United States)

    Bower, Julienne E; Ganz, Patricia A; Irwin, Michael R; Arevalo, Jesusa M G; Cole, Steve W

    2011-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n=11) and non-fatigued controls (n=10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p<.05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors.

  16. Impact of homeobox genes in gastrointestinal cancer

    Science.gov (United States)

    Joo, Moon Kyung; Park, Jong-Jae; Chun, Hoon Jai

    2016-01-01

    Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal (GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1 (CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett’s esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers. PMID:27729732

  17. Impact of homeobox genes in gastrointestinal cancer.

    Science.gov (United States)

    Joo, Moon Kyung; Park, Jong-Jae; Chun, Hoon Jai

    2016-10-07

    Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal (GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1 (CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett's esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers.

  18. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens

    Energy Technology Data Exchange (ETDEWEB)

    Puxeddu, Efisio [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Zhao Guisheng [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Stringer, James R. [Department of Molecular Genetics, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Medvedovic, Mario [Center for Biostatistic Service, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Moretti, Sonia [Dipartimento di Medicina Interna, Universita degli Studi di Perugia, Via E. dal Pozzo, Perugia 06126, (Italy); Fagin, James A. [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States)]. E-mail: james.fagin@uc.edu

    2005-02-15

    The two main forms of RET rearrangement in papillary thyroid carcinomas (PTC) arise from intrachromosomal inversions fusing the tyrosine kinase domain of RET with either the H4 (RET/PTC1) or the ELE1/RFG genes (RET/PTC3). PTEN codes for a dual-specificity phosphatase and maps to chromosome 10q22-23. Germline mutations confer susceptibility to Cowden syndrome whereas somatic mutations or deletions are common in several sporadic human tumors. Decreased PTEN expression has been implicated in thyroid cancer development. We report the characterization of a new chromosome 10 rearrangement involving H4 and PTEN. The initial H4/PTEN rearrangement was discovered as a non-specific product of RT-PCR for RET/PTC1 in irradiated thyroid cell lines. Sequencing revealed a transcript consisting of exon 1 and 2 of H4 fused with exons 3-6 of PTEN. Nested RT-PCR with specific primers bracketing the breakpoints confirmed the H4/PTEN rearrangements in irradiated KAT-1 and KAT-50 cells. Additional H4/PTEN variants, generated by recombination of either exon 1 or exon 2 of H4 with exon 6 of PTEN, were found in non-irradiated KAK-1, KAT-50, ARO and NPA cells. Their origin through chromosomal recombination was confirmed by detection of the reciprocal PTEN/H4 product. H4/PTEN recombination was not a clonal event in any of the cell lines, as Southern blots with appropriate probes failed to demonstrate aberrant bands, and multicolor FISH of KAK1 cells with BAC probes for H4 and PTEN did not show a signal overlap in all cells. Based on PCR of serially diluted samples, the minimal frequency of spontaneous recombination between these loci was estimated to be approximately 1/10{sup 6} cells. H4/PTEN products were found by nested RT-PCR in 4/14 normal thyroid tissues (28%) and 14/18 PTC (78%) (P < 0.01). H4/PTEN is another example of recombination involving the H4 locus, and points to the high susceptibility of thyroid cells to intrachromosomal gene rearrangements. As this also represents a

  19. Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the HSV-tk gene.

    Directory of Open Access Journals (Sweden)

    Chien-Fu Hung

    Full Text Available Ovarian cancer is the leading cause of death from all gynecological cancers and conventional therapies such as surgery, chemotherapy, and radiotherapy usually fail to control advanced stages of the disease. Thus, there is an urgent need for alternative and innovative therapeutic options. We reason that cancer gene therapy using a vector capable of specifically delivering an enzyme-encoding gene to ovarian cancer cells will allow the cancer cell to metabolize a harmless prodrug into a potent cytotoxin, which will lead to therapeutic effects. In the current study, we explore the use of a human papillomavirus (HPV pseudovirion to deliver a herpes simplex virus thymidine kinase (HSV-tk gene to ovarian tumor cells. We found that the HPV-16 pseudovirion was able to preferentially infect murine and human ovarian tumor cells when administered intraperitoneally. Furthermore, intraperitoneal injection of HPV-16 pseudovirions carrying the HSV-tk gene followed by treatment with ganciclovir led to significant therapeutic anti-tumor effects in murine ovarian cancer-bearing mice. Our data suggest that HPV pseudovirion may serve as a potential delivery vehicle for ovarian cancer gene therapy.

  20. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  1. Gene Therapy In Oral Cancer : An Overview

    Directory of Open Access Journals (Sweden)

    Kanaram Choudhary

    2010-07-01

    Full Text Available The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  2. Modelling mutational landscapes of human cancers in vitro

    Science.gov (United States)

    Olivier, Magali; Weninger, Annette; Ardin, Maude; Huskova, Hana; Castells, Xavier; Vallée, Maxime P.; McKay, James; Nedelko, Tatiana; Muehlbauer, Karl-Rudolf; Marusawa, Hiroyuki; Alexander, John; Hazelwood, Lee; Byrnes, Graham; Hollstein, Monica; Zavadil, Jiri

    2014-03-01

    Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data.

  3. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  4. 1. HUMAN POPULATION MONITORING FOR CANCER PREVENTION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Most of the chemicals classified by the International Agency for Research on Cancer (IARC) as human carcinogens are mutagenic across test systems, cf. [www.epa.gov/gapdb ] and induce tumors at multiple sites in rodent species. They are therefore readity detected in short term tests for gene-tic and related effects (GRE), in animal carcinogenesis bioassays and in human monitoring studies. Carcinogens that are not genotoxic may be studied using new toxicogenomic approaches as will be discussed. A Chemical Effects in Biological Systems (CEBS) database is planned by the National Center for Toxicogenomics to contain information on such compounds. The 1992 Preamble to the IARC Monographs

  5. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  6. Oncogenes and human cancer

    NARCIS (Netherlands)

    E.C.P. Heisterkamp (Nora); J.H.C. Groffen (John)

    1984-01-01

    textabstractThe first demonstrations that cancer could have an infectious nature was by Ellerman and Bang (1) ~ who showed that leukemia in chickens was transmissible with cell-free extracts and by Rous (2), who found in a similar fashion that naturally occurring chicken sarcomas were transmissible.

  7. Mobile genetic elements and cancer. From mutations to gene therapy.

    Science.gov (United States)

    Kozeretska, I A; Demydov, S V; Ostapchenko, L I

    2011-12-01

    In the present review, an association between cancer and the activity of the non-LTR retroelements L1, Alu, and SVA, as well as endogenous retroviruses, in the human genome, is analyzed. Data suggesting that transposons have been involved in embryogenesis and malignization processes, are presented. Events that lead to the activation of mobile elements in mammalian somatic cells, as well as the use of mobile elements in genetic screening and cancer gene therapy, are reviewed.

  8. 突变型p27基因对大肠癌生物学行为的影响%Influence of human mutant p27 gene on the biological behaviors of colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Guangxin Lu; Bin Wang; Wuhua Ding

    2009-01-01

    Objective: To observe the influence of human mutant p27 gene (p27mt) on the growth and apoptosis of colon can-cer cells so as to investigate the function mechanism of p27mt in gene therapy for colon cancer. Methods: Colon cancer cell line SW480 was infected with recombinant replication defective adenovirus Ad-p27mt, and expression of p27mt protein was detected by Western blot; the inhibition effect of p27mt on SW480 cells was detected with cytometry. Cell cycle was decided with flow cytometer, and DNA fragment analytic process identified the occurrence of apoptosis. Results: After transfected SW480 cells with Ad-p27mt, high expression of p27 protein was identified with immunoblotting assay. PI staining and flow cytometer assay showed 77.96% colon cancer cells was blocked in phase G0/G1, while in Ad-LacZ group and blank control group, 27.57% and 25.29% cells were blocked in the same phase, respectively. Growth curve showed Ad-p27mt has an obvious inhibition effect on the growth of SW480 cells, DNA fragment assay demonstrated that p27mt was able to induce the apoptosis of colon cancer cells. Conclusion: p27mt has an obvious blocking effect on colon cancer cell cycle, and most cells were blocked in phase G0/G1. This blockage is related with the growth inhibition and apoptosis induction effect of p27mt.

  9. Targeting tumor suppressor genes for cancer therapy.

    Science.gov (United States)

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  10. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun [Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Jin, Shi; Cao, Shoubo [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Yu, Yan, E-mail: yuyan@hrbmu.edu.cn [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China)

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  11. Cancer therapeutic target genes identified on chromosome 20q

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2016-08-01

    Full Text Available An integrated quantitative genome data analysis was recently able to pinpoint 18 genes on human chromosome 20q that could potentially serve as novel molecular targets for cancer therapy. Researchers Antoine M Snijders and Jian-Hua Mao from Lawrence Berkeley National Laboratory’s Biological Systems and Engineering Division in Berkeley, California, United States, in their study published by the journal Advances in Modern Oncology Research (AMOR sought to compare the amounts of individual mRNAs – messenger RNAs that specify the amino acid sequence of the protein products of gene expression – in cancerous human tissues with corresponding normal tissues. The duo conducted a meta-analysis of genes on chromosome 20q that are found to be consistently upregulated across different human tumor types, while collecting gene transcript data of normal and tumor tissues across 11 different tumor types including brain, breast, colon, gastric, head and neck, liver, lung, ovarian, cervix, pancreas, and prostate cancers. “We calculated the differential expression of all 301 genes present on chromosome 20q for which gene transcript data was available. We then filtered for genes that were upregulated in tumors by at least 1.5 fold (p < 0.05 in seven or more tumor types,” they said. The resulting analysis identified 18 genes – some such as AURKA, UBE2C, TPX2, FAM83D, ZNF217, SALL4 and MMP9 have been previously known to potentially cause cancer. The 18-gene signature is revealed by the study to have robustly elevated levels across human cancers. “We observed significant association of our signature with disease-free survival in all 18 independent data… These data indicated that our signature is broadly predictive for disease-free survival, independent of tumor type,” the researchers said. In certain cases, Snijders and Mao found that increased gene expression was associated with better prognosis. “For example, the increased expressions of MMP9 and

  12. Targeted Gene Therapy for Breast Cancer

    Science.gov (United States)

    2005-06-01

    vein endothelial cells (HUVEC) cortisone , human FGF-fl, VEGF, ascorbic acid, heparin, were obtained from Dr Francoise Booyse (The University human EGF...cell mice resulted in a decrease in proliferative and metastatic lung cancer. Cancer Res. 2002;62:7124-7129. indices, further suggesting the feasibility

  13. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    Science.gov (United States)

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  14. CONSTRUCTION AND EXPRESSION OF A HUMAN-MOUSE CHIMERIC ANTIBODY AGAINST HUMAN BLADDER CANCER

    Institute of Scientific and Technical Information of China (English)

    白银; 王琰; 周丽君; 俞莉章

    2001-01-01

    To construct and express a human-mouse chimeric antibody against human bladder cancer. Method: The variable region genes of anti-human bladder cancer monoclonal antibody BDI-1 were cloned by RT-PCR. A human-mouse chimeric antibody expression vector was constructed and transfected into CHO cells. The chimeric antibody against bladder cancer was expressed and characterized. Result: Eukaryotic expression vector of the chimeric antibody against human bladder carcinoma was successfully constructed, and was expressed in eukaryotic cells; the expressed chimeric antibody ch-BDI showed same specificity as its parent McAb against human bladder cancer cells. Conclusion: The constructed chimeric antibody was expressed successfully in eukaryotic cells, and the chimeric antibody had desired affinity against human bladder cancer cells.

  15. MIM, a potential metastasis suppressor gene in bladder cancer

    National Research Council Canada - National Science Library

    Lee, Young-Goo; Macoska, Jill A; Korenchuk, Susan; Pienta, Kenneth J

    2002-01-01

    Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11-300...

  16. T Cell Coinhibition and Immunotherapy in Human Breast Cancer

    OpenAIRE

    Janakiram, Murali; Abadi, Yael M.; Sparano, Joseph A.; Zang, Xingxing

    2012-01-01

    Costimulation and coinhibition generated by the B7 family and their receptor CD28 family have key roles in regulating T lymphocyte activation and tolerance. These pathways are very attractive therapeutic targets for human cancers including breast cancer. Gene polymorphisms of B7x (B7-H4/B7S1), PD-1 (CD279), and CTLA-4 (CD152) are associated with increased risk of developing breast cancer although the underlying mechanisms are unclear. In human breast cancer microenvironment, up-regulation of ...

  17. Viruses and human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, R.C.; Haseltine, W.; Klein, G.; Zur Hausen, H.

    1987-01-01

    This book contains papers on the following topics: Immunology and Epidemiology, Biology and Pathogenesis, Models of Pathogenesis and Treatment, Simian and Bovine Retroviruses, Human Papilloma Viruses, EBV and Herpesvirus, and Hepatitis B Virus.

  18. Pitaya Extracts Induce Growth Inhibition and Proapoptotic Effects on Human Cell Lines of Breast Cancer via Downregulation of Estrogen Receptor Gene Expression

    Directory of Open Access Journals (Sweden)

    Deborah de Almeida Bauer Guimarães

    2017-01-01

    Full Text Available Breast cancer is one of the most prevalent cancers in the world and is also the leading cause of cancer death in women. The use of bioactive compounds of functional foods contributes to reduce the risk of chronic diseases, such as cancer and vascular disorders. In this study, we evaluated the antioxidant potential and the influence of pitaya extract (PE on cell viability, colony formation, cell cycle, apoptosis, and expression of BRCA1, BRCA2, PRAB, and Erα in breast cancer cell lines (MCF-7 and MDA-MB-435. PE showed high antioxidant activity and high values of anthocyanins (74.65 ± 2.18. We observed a selective decrease in cell proliferation caused by PE in MCF-7 (ER+ cell line. Cell cycle analysis revealed that PE induced an increase in G0/G1 phase followed by a decrease in G2/M phase. Also, PE induced apoptosis in MCF-7 (ER+ cell line and suppressed BRCA1, BRCA2, PRAB, and Erα gene expression. Finally, we also demonstrate that no effect was observed with MDA-MB-435 cells (ER− after PE treatment. Taken together, the present study suggests that pitaya may have a protective effect against breast cancer.

  19. ETS fusion genes in prostate cancer.

    Science.gov (United States)

    Gasi Tandefelt, Delila; Boormans, Joost; Hermans, Karin; Trapman, Jan

    2014-06-01

    Prostate cancer is very common in elderly men in developed countries. Unravelling the molecular and biological processes that contribute to tumor development and progressive growth, including its heterogeneity, is a challenging task. The fusion of the genes ERG and TMPRSS2 is the most frequent genomic alteration in prostate cancer. ERG is an oncogene that encodes a member of the family of ETS transcription factors. At lower frequency, other members of this gene family are also rearranged and overexpressed in prostate cancer. TMPRSS2 is an androgen-regulated gene that is preferentially expressed in the prostate. Most of the less frequent ETS fusion partners are also androgen-regulated and prostate-specific. During the last few years, novel concepts of the process of gene fusion have emerged, and initial experimental results explaining the function of the ETS genes ERG and ETV1 in prostate cancer have been published. In this review, we focus on the most relevant ETS gene fusions and summarize the current knowledge of the role of ETS transcription factors in prostate cancer. Finally, we discuss the clinical relevance of TMRPSS2-ERG and other ETS gene fusions in prostate cancer.

  20. Differential expression of ZFX gene in gastric cancer

    Indian Academy of Sciences (India)

    Parvaneh Nikpour; Modjtaba Emadi-Baygi; Faezeh Mohammad-Hashem; Mohamad Reza Maracy; Shaghayegh Haghjooy-Javanmard

    2012-03-01

    Gastric cancer accounts for 8% of the total cancer cases and 10% of total cancer deaths worldwide. In Iran, gastric cancer is the leading cause of national cancer-related mortality. Most human cancers show substantial heterogeneity. The cancer stem cell (CSC) hypothesis has been proposed to reconcile this heterogeneity. ZFX encodes a member of the krueppel C2H2-type zinc-finger protein family that is required as a transcriptional regulator for self-renewal of stem cells. A total of 30 paired tissue gastric samples were examined for ZFX gene expression by quantitative real-time RT-PCR. Although the relative expression of the gene was significantly high in 47% of the examined tumour tissues, its expression was low in the others (53%). There was a statistically significant association between the ZFX gene expression and different tumour types and grades. This is the first report that shows ZFX was differentially expressed in gastric cancer. Of note, it was overexpressed in diffused-type and grade III gastric tumoural tissues. Due to this, ZFX may have the potential to be used as a target for therapeutic interventions.

  1. Association of Polymorphism rs198977 in Human Kallikrein-2 Gene (KLK2 with Susceptibility of Prostate Cancer: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Lishan Wang

    Full Text Available To assess the association of polymorphism rs198977 in the human kallikrein-2 gene (KLK2 and risk of prostate cancer (PCa.Two investigators independently searched the PubMed, Elsevier, EMBASE, Web of Science, Wiley Online Library and Chinese National Knowledge Infrastructure (CNKI. Pooled odds ratios (ORs and 95% confidence intervals (95% CIs for rs198977 and PCa were calculated in a fixed-effects model (the Mantel-Haenszel method and a random-effects model (the DerSimonian and Laird method when appropriate.Six studies met the inclusion criteria in this meta-analysis, which included 5859 PCa cases and 4867 controls. Overall, rs198977 was associated with the PCa risk (TT+CT vs. CC, pooled OR = 1.163, 95% CI = 1.076-1.258, P-value <0.0001. When stratified by ethnicity, significant association was observed in Caucasian samples under both allele comparison (T vs. C, pooled OR = 1.152, 95% CI = 1.079-1.229, P-value <0.0001 and dominant model (TT+CT vs. CC, pooled OR = 1.197, 95% CI = 1.104-1.297, P-value <0.0001. In the overall analysis, a comparably significant increase in the frequency of allele T for rs198977 was detected between cases and controls in Caucasian.This meta-analysis suggests that rs198977 of KLK2 was associated with susceptibility of PCa in Caucasian and the allele T might increase the risk of PCa in Caucasian.

  2. The effects of vitamin E succinate on the expression of c-jun gene and protein in human gastric cancer SGC-7901 cells

    Institute of Scientific and Technical Information of China (English)

    Yan Zhao; Kun Wu; Wei Xia; Yu-Juan Shan; Li-Jie Wu; Wei-Ping Yu

    2002-01-01

    AIM: To investigate the effects of vitamin E succinate (VES) on the expression of c-jun gene and protein in human gastric cancer SGC-7901 cells.METHODS: After SGC-7901 cells were treated with VES at different doses (5,10,20 mg@L-1) at different time, reverse transcription-PCR technique was used to detect the level of c-jun mRNA; Western Blot was applied to measure the expression of c-jun protei n/RESULTS: After the cells were treated with VES at 20 mg@L-1 for 3 h, the expression rapidly reached its maximum that was 3.5 times of UT control (P<0.01). The level of c-jun mRNA was also increased following treatment of VES for 6 h.However, the expression after treatment of VES at 5 mg@L-1for 24 h was 1.6 times compared with UT control (P<0.01).Western blot analysis showed that the level of c-jun protein was obviously elevated in VES-treated SGC-7901 cells at 20 mg@L-1 for 3 h. The expression of c-jun protein was gradually increased after treatment of VES at 20 mg@L-1 for 3, 6, 12 and 24 h, respectively, with an evident time-effect relationship. CONCLUSION: The levels of c-jun mRNA and protein in VES-treated SGC-7901 cells were increased in a dose- and time-dependent manner; the expression of c-jun was prolonged by VES, indicating that c-jun is involved in VESinduced apoptosis in SGC-7901 cells.

  3. Xenogeneic homologous genes, molecular evolution and cancer therapy

    Institute of Scientific and Technical Information of China (English)

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  4. Cell type-specific properties and environment shape tissue specificity of cancer genes.

    Science.gov (United States)

    Schaefer, Martin H; Serrano, Luis

    2016-02-09

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.

  5. Human papillomavirus and cervical cancer.

    Science.gov (United States)

    Crosbie, Emma J; Einstein, Mark H; Franceschi, Silvia; Kitchener, Henry C

    2013-09-07

    Cervical cancer is caused by human papillomavirus infection. Most human papillomavirus infection is harmless and clears spontaneously but persistent infection with high-risk human papillomavirus (especially type 16) can cause cancer of the cervix, vulva, vagina, anus, penis, and oropharynx. The virus exclusively infects epithelium and produces new viral particles only in fully mature epithelial cells. Human papillomavirus disrupts normal cell-cycle control, promoting uncontrolled cell division and the accumulation of genetic damage. Two effective prophylactic vaccines composed of human papillomavirus type 16 and 18, and human papillomavirus type 16, 18, 6, and 11 virus-like particles have been introduced in many developed countries as a primary prevention strategy. Human papillomavirus testing is clinically valuable for secondary prevention in triaging low-grade cytology and as a test of cure after treatment. More sensitive than cytology, primary screening by human papillomavirus testing could enable screening intervals to be extended. If these prevention strategies can be implemented in developing countries, many thousands of lives could be saved.

  6. Drug Helps Fight Breast Tumors Tied to 'Cancer Genes'

    Science.gov (United States)

    ... Drug Helps Fight Breast Tumors Tied to 'Cancer Genes' Lynparza may offer a new treatment for women ... with breast cancer linked to BRCA1 and BRCA2 gene mutations, according to the study. Olaparib delayed cancer ...

  7. The herbal medicine Melissa officinalis extract effects on gene expression of p53, Bcl-2, Her2, VEGF-A and hTERT in human lung, breast and prostate cancer cell lines.

    Science.gov (United States)

    Jahanban-Esfahlan, Rana; Seidi, Khaled; Monfaredan, Amir; Shafie-Irannejad, Vahid; Abbasi, Mehran Mesgari; Karimian, Ansar; Yousefi, Bahman

    2017-05-20

    Earlier, we verified that Melissa officinalis extract (MOE) elicits potent antiproliferative effects on different human cancer cells. To gain insights into the molecular mechanisms accounting for the cytotoxic effects of MOE, we assessed the expression patterns of several prominent molecules with therapeutic potential in cancer by Quantitative PCR (Q-PCR). A549, MCF-7 and PC3 cancer cells were grown in complete RPMI 1640 and seeded in 24 well micro plates. After incubation for 72h, 100μg/ml of MOE was added and the cells were further incubated for 72h. Afterwards, the cells were subjected to RNA extraction for the means of Q-PCR. Our results indicated that in PC3 cancer cells, MOE resulted in a significant downregulation of VEGF-A (0.0004 fold), Bcl-2 (0.001 fold), Her2 (0.02 fold), and hTERT (0.023 fold) compared to the untreated control. In addition, VEGF-A and hTERT mRNA were significantly downregulated in MCF-7 and A549 cancer cells, as well. Notably, high anti-angiogenic activity was closely associated with a high anti-telomerase activity of MOE in studying cancer cells. The decrease in VEGF-A expression was significantly superior than that of hTERT downregulation, as PC3 cancer cells with the highest hTERT down regulation (0.023) presented the highest anti VEGF activity (0.0004 fold), whereas MCF-7 cells with the lowest hTERT inhibition (0.213) showed the lowest VEGF inhibition(0.0435) among the three studied cancer cells. We noticed that the modulation of VEGF-A and hTERT gene expression can be considered as a common target, accounting for the therapeutic potential of MOE on human breast, lung and prostate cancer cells. Altogether, it is suggested that the potent antiproliferative activity of the hydroalcoholic extract of Melissa officinalis is somehow explainable by its high potency to inhibit expression of the prominent oncogenes Bcl2, Her2, VEGF-A and hTERT in prostate cancer. In tumors with functional p53, including MCF-7 and A549 cancer cells, the role

  8. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner.

    Science.gov (United States)

    Jin, Lihua; Hanigan, Christin L; Wu, Yu; Wang, Wei; Park, Ben Ho; Woster, Patrick M; Casero, Robert A

    2013-01-15

    Epigenetic silencing of gene expression is important in cancer. Aberrant DNA CpG island hypermethylation and histone modifications are involved in the aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) is a H3K4 (histone H3 Lys4) demethylase associated with gene repression and is overexpressed in multiple cancer types. LSD1 has also been implicated in targeting p53 and DNMT1 (DNA methyltransferase 1), with data suggesting that the demethylating activity of LSD1 on these proteins is necessary for their stabilization. To examine the role of LSD1 we generated LSD1 heterozygous (LSD1+/-) and homozygous (LSD1-/-) knockouts in the human colorectal cancer cell line HCT116. The deletion of LSD1 led to a reduced cell proliferation both in vitro and in vivo. Surprisingly, the knockout of LSD1 in HCT116 cells did not result in global increases in its histone substrate H3K4me2 (dimethyl-H3K4) or changes in the stability or function of p53 or DNMT1. However, there was a significant difference in gene expression between cells containing LSD1 and those null for LSD1. The results of the present study suggested that LSD1 is critical in the regulation of cell proliferation, but also indicated that LSD1 is not an absolute requirement for the stabilization of either p53 or DNMT1.

  9. Septin mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Elias T Spiliotis

    2016-11-01

    Full Text Available Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4 and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.

  10. MIM, a Potential Metastasis Suppressor Gene in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Young-Goo Lee

    2002-01-01

    Full Text Available Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11300 was isolated that was not expressed in the metastatic cell line TccSuP. Sequence analysis revealed that this gene was identical to KIAA 0429, has a 5.3-kb transcript that mapped to 8824.1. The protein is predicted to be 356 amino acids in size and has an actin-binding WH2 domain. Northern blot revealed expression in multiple normal tissues, but none in a metastatic breast cancer cell line (SKBR3 or in metastatic prostatic cancer cell lines (LNCaP, PC3. We have named this gene Missing in Metastasis (MIM and our data suggest that it may be involved in cytoskeletal organization.

  11. The histone demethylase LSD1 is required for estrogen-dependent S100A7 gene expression in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Eun [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Yonsei Biomolecule Research Initiative, Yonsei University, Seoul 120-749 (Korea, Republic of); Jang, Yeun Kyu, E-mail: ykjang@yonsei.ac.kr [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Yonsei Biomolecule Research Initiative, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer S100A7 gene is up-regulated in response to estrogen in breast cancer cells. Black-Right-Pointing-Pointer Histone demethylase LSD1 can associate physically with S100A7 gene promoters. Black-Right-Pointing-Pointer E2-induced S100A7 expression requires the enzymatic activity of LSD1. Black-Right-Pointing-Pointer S100A7 inhibits cell proliferation, implying its tumor suppressor-like function. -- Abstract: S100A7, a member of S100 calcium binding protein family, is highly associated with breast cancer. However, the molecular mechanism of S100A7 regulation remains unclear. Here we show that long-term treatment with estradiol stimulated S100A7 expression in MCF7 breast cancer cells at both the transcriptional and translational levels. Both treatment with a histone demethylase LSD1 inhibitor and shRNA-based knockdown of LSD1 expression significantly decreased 17{beta}-estradiol (E2)-induced S100A7 expression. These reduced E2-mediated S100A7 expression are rescued by the overexpressed wild-type LSD1 but not by its catalytically inactive mutant. Our data showed in vivo association of LSD1 with S100A7 promoters, confirming the potential role of LSD1 in regulating S100A7 expression. S100A7 knockdown increased both normal cell growth and estrogen-induced cell proliferation, suggesting a negative influence by S100A7 on the growth of cancer cells. Together, our data suggest that estrogen-induced S100A7 expression mediated by the histone demethylase LSD1 may downregulate breast cancer cell proliferation, implying a potential tumor suppressor-like function for S100A7.

  12. An overview of gene therapy in head and neck cancer

    OpenAIRE

    2013-01-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  13. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  14. Lentivirus-mediated RNA interference targeting the ObR gene in human breast cancer MCF-7 cells in a nude mouse xenograft model

    Institute of Scientific and Technical Information of China (English)

    XUE Rong-quan; GU Jun-chao; DU Song-tao; YU Wei; WANG Yu; ZHANG Zhong-tao; BAI Zhi-gang; MA Xue-mei

    2012-01-01

    Background There is a significant association between obesity and breast cancer,which is possibly due to the expression of leptin.Therefore,it is important to clarify the role of leptin/ObR (leptin receptor) signaling during the progression of human breast cancer.Methods Nude mice with xenografts of MCF-7 human breast cancer cells were administered recombinant human leptin subcutaneous via injection around the tumor site.Mice in the experimental group were intratumorally injected with ObR-RNAi-lentivirus,while negative control group mice were injected with the same dose of negative-lentivirus.Tumor size was blindly measured every other day,and mRNA and protein expression levels of ObR,estrogen receptor α(ERα),and vascular endothelial growth factor (VEGF) for each group were determined.Results Knockdown of ObR-treated xenografted nude mice with a high leptin microenvironment was successfully established.Local injection of ObR-RNAi-lentivirus significantly suppressed the established tumor growth in nude mice.ObR level was significantly lower in the experimental group than in the negative control group,while the amounts of ERα and VEGF expression were significantly lower in the leptin group than in the control group (P <0.01 for all).Conclusions Inhibition of leptin/ObR signaling is essential to breast cancer proliferation and possible crosstalk between ObR and ERα,and VEGF,and may lead to novel therapeutic treatments aiming at targeting ObR in breast cancers.

  15. Differential network analysis in human cancer research.

    Science.gov (United States)

    Gill, Ryan; Datta, Somnath; Datta, Susmita

    2014-01-01

    A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures.

  16. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  17. Human gene therapy: a brief overview of the genetic revolution.

    Science.gov (United States)

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  18. Targeting Gene-Virotherapy for Cancer

    Institute of Scientific and Technical Information of China (English)

    Xin-Yuan LIU; Jing-Fa GU; Wen-Fang SHI

    2005-01-01

    Gene therapy and viral therapy for cancer have therapeutic effects, but there has been no significant breakthrough in these two forms of therapy. Therefore, a new strategy called "targeting genevirotherapy", which combines the advantages of gene therapy and viral therapy, has been formulated. This new therapy has stronger antitumor effects than either gene therapy or viral therapy. A tumor-specific replicative adenovirus vector ZD55 (E1B55KD deleted Adv.) was constructed and various single therapeutic genes were inserted into ZD55 to form ZD55-gene. These are the targeting gene-virotherapy genes. But experiments showed that a single gene was not effective in eliminating the tumor mass, and therefore two genes were separately inserted into ZD55. This strategy is called "targeting dual gene-virotherapy" (with PCT patent). Better results were obtained with this strategy, and all the xenograft tumor masses were completely eliminated in all mice when two suitable genes producing a synergetic or compensative effect were chosen. Twenty-six papers on these strategies have been published by researchers in our laboratory.Furthermore, an adenoviral vector with two targeting promoters harboring two antitumor genes has been constructed for cancer therapy. Promising results have been obtained with this adenoviral vectorand another patent has been applied for. This antitumor strategy can be used to kill tumor cells completely with minimum damage to normal cells.

  19. Common filaggrin gene mutations and risk of cervical cancer

    DEFF Research Database (Denmark)

    Bager, Peter; Wohlfahrt, Jan; Sørensen, Erik

    2015-01-01

    BACKGROUND: As carriers of filaggrin gene (FLG) mutations may have a compromised cervical mucosal barrier against human papillomavirus infection, our primary objective was to study their risk of cervical cancer. METHODS: We genotyped 586 cervical cancer patients for the two most common FLG...... mutations, R501X and 2282del4, using blood from the Copenhagen Hospital Biobank, Denmark. Controls (n = 8050) were genotyped in previous population-based studies. Information on cervical cancer, mortality and emigration were obtained from national registers. Odds ratios (OR) were estimated by logistic...... and stratification by cancer stage. RESULTS: The primary results showed that FLG mutations were not associated with the risk of cervical cancer (6.3% of cases and 7.7% of controls were carriers; OR adjusted 0.81, 95% CI 0.57-1.14; OR adjusted+ weighted 0.96, 95% CI 0.58-1.57). Among cases, FLG mutations increased...

  20. Expression of liver cancer associated gene HCCA3

    Institute of Scientific and Technical Information of China (English)

    Zheng-Xu Wang; Gui-Fang Hu; Hong-Yang Wang; Meng-Chao Wu

    2001-01-01

    AIM: To study and clone a novel liver cancer reisted gene,and to explore the molecular basis of liver cancer genesis. METHODS: Using mRNA differential display polymerasechain reaction (DDPCR), we investigated the difference of mRNA in human hepatocellular carcinoma (HCC) and paired surrounding liver tissues, and got a gene probe. By screening a human placenta cDNA library and genomic homologous extend, we obtained a full-length cDNA named HCCA3. We analyzed the expression of this novel gene in 42pairs of HCC and the surrounding liver tissues, and distribution in human normal tissues by means of Northern blot assay. RESULTS: A full-length cDNA of liver cancer associated gene HCCA3 has been submitted to the GeneBank nucleotide sequence databases ( Accession No. AF276707 ). The positive expression rate of this gene was 78.6% (33/42) in HCC tissues, and the clinical pathological data showed that the HCCA3 was closely associated with the invasion of tumor capsule ( P = 0.023) and adjacant small metastasis satellite nodules lesions ( P= 0.041). The HCCA3 was widely distributed in the human normal tissues, which was intensively expressed in lungs, brain and colon tissues,while lowly expressed in the liver tissues. CONCLUSION: A novel full-length cDNA was cloned and differentiated, which was highly expressed in liver cancer tissues. The high expression was closely related to the tumor invasiveness and metastasis, that may be the late heredited change in HCC genesis.